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INTRODUCTION 
 

The objective of this thesis is to provide a technical explanation about the mechanism 

through which position auctions are designed and implemented. A particular attention will 

be given to the section of online ad auctions. In fact, nowadays the most successful search 

engines, base their auctions formats on the consideration of some specific assumptions 

regarding agents’ behavior and incentives. 

Before analyzing the models provided by the famous economist Hal R. Varian, some 

concepts related to the world of second price auctions will be analyzed.  

In principle, a classification of the different types of auctions existing in the marketplace is 

provided. Thereafter, the topic explored is the one of the Generalized Second Price (GSP) 

auctions.  In fact, as it will be possible to see, position auctions indeed rely on some basic 

rules of this types of auctions. It is impossible to describe the Generalized Second Price 

auctions, without mentioning the Vickrey-Clarke-Groves (VCG) mechanism. In fact the 

latter, presents some peculiarities strictly linked to GSP auctions, even if it differs in some 

aspects. For example, truthful reporting, is a dominant equilibrium only in VCG auctions.  

Finally an overview about the Pay Per Click pricing will be given , in order to understand 

why eventually this was the winning kind of pricing chosen, and its deterrent action 

towards the so-called “skewed bidding”. 

After this first part, where the fundamental preliminary knowledge is provided to the 

reader, the work goes on by introducing the model on position auctions,  elaborated in 

detail by Varian. The model carefully examines the process by which positions are assigned 

to agents by search engines. The economic aim pursued is an efficient allocation of 

positions in order to maximize welfare; analogously the advertisers tries to maximize its 

surplus. However there is a substantial divergence of incentives in advertising: the 

publisher owns space on its web page for an ad and it is willing  to sell these ad 

impressions to the highest bidders. On the other hand, the advertiser does not care about 

ad impressions but it is interested about the number of  visitors on its web site. This 
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implies that the publisher  wants to sell impression while the advertiser wants to buy 

clicks. The latter can be considered as a problem of exchange rate, which can be described 

by the predicted clickthrough rate. The clickthrough rate aligns the interests of buyers and 

sellers but creates other problems, e.g. if an advertiser pays only for clicks then it has no 

incentives to economize on impressions. Nevertheless the exchange rate has been 

standardized indeed to the clickthrough rate.  

The description of the mechanism underneath position auctions, reserves a special part for 

its application to online ad auctions, where additional and interesting observations 

integrate the general framework.  

A brief section is dedicated to the previous literature present before Varian’s elaborates, 

from whom the author took some inspiration and insights.  

Varian’s studies provided a reference point for many subsequent works related to position 

auctions and it represents a solid and valid structure, seriously considered from the 

economic community. This implies that his model gave rise to a series of academic 

elaborates. The one that has been selected and analyzed in this thesis is a study made by 

Kuminov and Tennenholtz on competitive safety strategies in position auctions, in which 

the model of position auctions relied on is represented indeed by Varian’s one, even if 

some slight changes were applied for research objectives.  

Both Varian’s elaborates and Kuminov and Tennenholtz’ ones, focus on the notion of 

incentives with respect to  agents’ behavior.  

The last section of the thesis reports some economic arguments related to: the market for 

internet advertising, the features of computer- mediated transactions and  the logic 

beneath the so-called “Googleconomics”. 

In conclusion, the ultimate objective of this thesis is to explain and understand why search 

engines implement online auctions in order to allocate positions on their webpages. This is 

done also by exploring the effectiveness of alternative methods. Nowadays, especially in 
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online markets, it is possible to notice the centrality of these themes for many companies 

and their respective revenue policies. 

PRELIMINARY NOTIONS 

 

AUCTIONS: CLASSIFICATION AND DESIGN 

There exist two types of auction formats: open bid auctions and sealed bid auctions. Open 

bid auctions can either be ascending bid auctions or descending bid auctions. In the first 

case the price is raised until the point in which only one bidder remains; the latter wins 

and pays the final price. In the second case the price is lowered until somebody accepts it; 

he wins the objects and pays the current price. However this thesis will concentrate on 

sealed bid auctions. The latter are composed of two subgroups: first price and second price 

auctions. The main difference between the two is that in first price auctions the highest 

bidder wins and pays his bid, while in second price auctions the highest bidder wins but 

pays the second highest bid. 

Auctions can differ also with respect to the valuation of the bidders. In private value 

auctions each bidder knows only his value while in common value auctions the value of the 

object is the same for everyone but bidders have different private information about that 

value. 

Online advertisements via auction mechanisms are one of the main sources of income for 

many internet companies. When users make searches on Google they give start 

automatically to a position auction, which takes place among many different advertisers. 

This process allows the search engine to earn significant revenues per auctions so it is 

crucial to designing well these auctions (Ashlagi et al, 2010). 

Good auction design is not “one size fits all”. Risk aversion affects the revenue equivalence 

result. Revenue equivalence is a concept that derives from the assumption that each of a 

given number of risk-neutral potential buyers of an object has a privately-known signal 
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drawn independently from a common strictly-increasing distribution. Given these 

circumstances, then  any auction mechanism where: 

I. the object is always awarded to the buyer with the highest signal, and 

II. any bidder characterized by the lowest-feasible signal expects zero surplus 

yields the same expected revenue. The implied result is that each bidder makes the same 

expected payment as a function of his signal.  However in second-price auctions risk 

aversion has no effect on a bidder’s optimal strategy. Ascending auctions lead to higher 

expected prices than sealed-bid second price auctions, which in turn lead to higher 

expected prices than first- price auctions. The intuition is that the winning bidder’s surplus 

is due to his private information. So the lower is the winners information, the higher the 

expected price (Klemperer, 2002). 

ISSUES ON THE GENERALIZED SECOND-PRICE AUCTION 

The Generalized Second-Price Auction (GSP) is tailored to the unique environment of the 

market for online ads. This novel mechanism has led to a spectacular commercial success 

(ex: Google’s total revenue in 2005 was $6.14 billion).                                                                                                                 

GSP  auctions work in the following way (Edelman et al, 2007): when a user enters a search 

term into a search engine he gets back a page with results containing both the links most 

relevant for the query and the sponsored links, namely paid advertisements. The user can 

clearly distinguish the two; advertisers thus target their ads based on search keywords. 

When a user clicks on the sponsored link, he is sent to the advertiser’s webpage. The latter 

then pays the search engine for sending the user to its web page, the so called PPC pricing.                                                                               

Since the number of ads the search engine can display to users is limited , different 

positions on the search page have different desirability for advertisers (Edelman et al 

,2007). In fact an ad shown on the top is more likely to be clicked than an ad shown at the 

bottom. This implies that auctions are a natural choice for search engines for the need of 

having a mechanism for allocating positions to advertisers. 
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In the simplest GSP auction, for a specific keyword, advertisers submit bids stating their 

maximum willingness to pay for a click. If a user clicks on ad in position i , that advertiser is 

charged an amount equal to the next highest bid, i.e. the bid of the advertiser in position 

i+1. If a search engine offered only one advertisement per result page, the mechanism 

would be equivalent to the Vickrey-Clarke-Groves(VCG) mechanism. However the GSP 

auction lacks some properties of the VCG one. For example GSP does not have an 

equilibrium in dominant strategies, and truth telling is not an equilibrium of GSP. However 

the difference between the GSP and the VCG mechanisms will be clearer in the next 

section. 

VICKREY-CLARKE-GROVES  AUCTIONS 

The design of online auctions includes the consideration of Vickrey-Clarke-Groves (VCG) 

auction mechanism. One of the major goals is to design the right incentives such that the 

efficient outcomes will be chosen and  implement the efficient outcome in dominant 

strategies. Efficiency can be maximized in two ways: 

 Choose efficient outcomes given the bids 

 Each player pays his “social cost” 

DESCRIPTION OF THE GENERAL VCG DESIGN 

Even if Vickrey’s original research included both auctions of  a single item and auctions of 

multiple identical items, the mechanism is often referred to as the second-price sealed bid 

auction, i.e. Vickrey auction is the one for single items. Bidders simultaneously submit 

sealed bid for the item. The highest bidder wins the item, but the winner pays the amount 

of the second highest bid. These rules imply that a winner bidder can never affect the price 

it pays , so there is no incentive for any bidder to misrepresent his value. This outcomes 

provides important results from the point of view of information asymmetries in the 

market.  From bidder n’s perspective it can be proven  that the amount he bids determines 

only whether he wins and only by bidding his true value he can be sure to win exactly 

when he is willing to pay the price.  



8 
 

In Vickrey’ original treatment of multiple units of homogeneous good (Ausubel and 

Milgrom): 

1)  Each bidder is assumed to have monotonic non- increasing marginal values for the 

good.  

2) The bidders simultaneously submit sealed bid comprising demand curves.  

3) The seller combines the individual demand curves to determine an aggregate 

demand curve and a clearing price for S units 

4) Each bidder wins the quantity he demanded at the clearing price 

5) However rather than paying the prices he bid or the clearing price for his units, a 

winning bidder pays the opportunity cost  for the units won. 

The mechanism can be used either as a mechanism to sell (standard auction) or as a 

mechanism to buy (reverse auction). In the first case the buyers generally pay a discount 

compared to the clearing price; in the second case the sellers generally receive a premium 

compared to the clearing price. 

Since Vickrey original contribution his auction design has been melded with the Clarke-

Groves design for public goods.  The resulting auction design works both for homogeneous 

and heterogeneous goods and does not require that bidders have non-increasing marginal 

values. Still this mechanism (Ausubel and Milgrom): 

1) Assigns goods efficiently 

2) Charges bidders the opportunity cost of the items they win 

The main difference is that the amounts paid cannot generally be expressed as the sum of 

bids for individual items. 

Formally the VCG mechanism gives rise to the following result: 

Theorem 1:  Truthful reporting is a dominant strategy for each bidder in the VCG 

mechanism. Moreover when each bidder reports truthfully, the outcome of the 

mechanism is one that maximizes total value. 
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Ausubel and Milgrom show that agent n’s payoff from truthful reporting, is always optimal 

and that no other reporting is optimal. 

VIRTUES  AND VICES OF THE VCG MECHANISM 

One key element of strength is the dominant strategy property. This feature  reduces the 

costs of the auction by making it easier for bidders to determine their optimal bidding 

strategies and by eliminating bidders’ incentives to spend resources learning about 

competitors’ values or strategies which is a pure waste from a social perspective since it is 

not needed to find the efficient allocation. This property has also the apparent advantage 

of adding reliability to the efficient prediction, because it means that the conclusion is not 

sensitive to assumptions about what bidders may know about each others’ values and 

strategies (Ausubel, Milgrom). This feature is also reinforced by the following theorem. 

Before defining it is useful to explain the concept of “smooth path connectivity”, since it is 

an extra assumption made in the theorem. Namely, given any two functions in V, there 

exists a smoothly parameterized family of functions, {v(x, t)}, entirely lying in V and 

connecting the two functions. 

Theorem 2:  if the set of possible value functions, V, is smoothly path connected and 

contains the zero function, then there exists a unique direct revelation mechanism for 

which truthful reporting is a dominant strategy. This implies that the outcomes are always 

efficient, and there are no payments by or to losing bidders in the VCG mechanism.  

The latter has also desirable properties from the point of view of the scope of its 

application because theorems 1 and 2 do not impose restrictions on the bidders’ possible 

rankings of different outcomes.  Lastly the average revenues are not less than that from 

any other efficient mechanism, even when the notion of implementation is expanded to 

include the Bayesian equilibrium as confirmed by the revenue equivalence theorem 

(Ausubel, Milgrom).   Nevertheless the VCG mechanism does not exclude drawbacks. In 

fact it allows the seller revenues to be low or zero. In addition it presents vulnerability to 

collusion by a coalition of losing bidders and to the use of multiple bidding identities by a 

single bidder.                                                 
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 However by analyzing some conditions it is possible to spot the possibility of these 

weaknesses. In fact in economic environment where every bidder has substitutes 

preferences, the abovementioned weaknesses will never occur. When complexity is 

present  or there is a single bidder whose preferences violate the substitutes condition, all 

the weaknesses are present. However VCG is implemented rarely also because often it 

excludes discussing auction revenues, that for private resellers are of primary importance.                       

WHY PAY-PER-CLICK  PRICING 

Online advertising is primarily priced using Pay Per Click (PPC): advertisers pay only when a 

consumer clicks on the advertisement. Slots for advertisements are auctioned and per-click 

bids are weighted by the probability of a click , the clickthrough rate (CTR) and other 

factors (N. Agarwal et al, 2009). The PPC method allows the advertising platform (Google) 

to bundle otherwise heterogeneous items for example impressions on different positions 

on a search page into more homogeneous units, simplifying the advertiser’s bidding 

problem. However PPC presents drawbacks as well (N. Agarwal et al, 2009): 

1) All clicks are not created equal; e.g. clicks on a Paris hotel website that is displayed 

for a search for Paris Hilton may result in lower profit conditional on the click. 

2) For infrequently searched phrases it is difficult for the advertiser to accurately 

estimate the rate at which clicks convert into sales, thus increasing the risk and 

monitoring costs to advertisers and diminishing their incentives to advertise 

broadly. 

3) A problem of “click fraud”: when publishers receive a share of advertising revenue, 

advertisers place a single bid applying to many publishers and revenue is derived 

through clicks. So a small publisher could be tempted to click on ads on its pages 

anonymously in order to inflate its payments. 

One possible solution is the Pay Per Action (PPA) advertising system. Here advertisers pay 

only when consumers complete predefined actions on their web site. The appeal is that 

they pay only when the valuable events occur (N. Agarwal et al). At a first glace it could 
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seem that PPA and PPC  are just two variants of the same system: a click versus an action. 

However there are a number of problem with PPA that do not arise with PPC systems: 

 To maximize the value of the system to advertisers a PPA system would allow them 

to specify more than one action, since most advertisers sell products of varying 

value. 

 The probability that an action is recorded can be controlled by an advertiser in more 

complex ways. 

These two characteristics create incentives for advertisers to engage in strategic behavior 

that undermines the efficiency of risk reallocation. More in detail advertisers have the 

incentive to engage in the so called “skewed bidding”. This means that even if there are 

many ways to achieve the same aggregate bid there is the tendency of  bidding high on 

actions that are overestimated and this minimizes the expected payment for a given 

aggregate bid. Advertisers are also prompted to  combine skewed bidding with the 

strategic manipulation of the probabilities of different actions through destroyed links and 

artificial stock outs. The problem about the fact that the advertiser has an incentive to 

“overbid” on actions underestimated by the platform  is augmented by the fact that 

advertisers have control over the reporting of actions. 

Skewing leads to allocation inefficiencies with respect to sponsored links: bidders whose 

action probabilities have been misestimated most severely by the ad platform will be 

favored because those bidders perceive the largest gap between their bid as calculated as 

calculated by the ad platform and their payment, and thus can afford to place bids 

perceived to be advantageous by the ad platform. Another consequence is that firms that 

are willing to actively game the system can outbid those that are not. Further the potential 

gain from risk allocation is diminished as advertisers’ optimal strategies do not accurately 

report actions.  

So it is difficult to solve the inefficiencies without losing some benefits of PPA pricing. We 

expect to see advertising platforms to restrict PPA systems to a single action or to place 

strong restrictions on changes in bids. 
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EVOLUTION OF MARKET INSTITUTIONS  AND ASSESSING THE MARKET 

DEVELOPMENT 

Sponsored search auctions represent a case study of whether, in which way and how 

quickly markets choose to address their structural failures. In fact, recently many 

mechanisms have been designed from the beginning, thus reversing and replacing old 

allocation mechanisms with much superior ones, as happened for example for radio 

spectrum auctions (Edelman et al, 2007). However the internet advertising market evolved 

much faster than any other market, probably because of higher competitive pressures, 

lower barriers to entry, improved technology and so on. The authors provide a synthetic 

chronological review of the development of sponsored search mechanisms, which included 

four phases: 

Early Internet Advertising. This type of advertisements started to appear in 1994 and were 

sold on a per-impression basis. This implied that advertisers paid flat fees to show their ads 

a fixed number of times, which in general they went around 1000 showings, i.e. 

“impressions”. In this period contracts were negotiated and concluded on a case-by-case 

basis which implied that: 

 Minimum contracts for advertising purchases were large 

 Entry was slow 

Generalized First Price Auctions. In 1997 a completely new way of selling internet 

advertising was introduced by Overture, a firm then become GoTo and now part of Yahoo!. 

The initial Overture auction design implied that each advertiser submitted a bid, which 

reported each advertiser’s willingness to pay on a per-click basis. In this way advertisers 

were allowed to target their ads: instead of paying for an ad shown to every kind of 

consumer visiting a website, advertisers are now provided with the possibility of choosing 

which keyword are relevant to their products and how much they valued each of those 

keywords. Moreover advertising was no longer sold per 1000 impressions, rather one click 

at a time. Each time a consumer clicked on a sponsored link, an advertiser’s account was 

directly billed the amount of his most recent bid. The highest bid was made most 
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prominent by arranging links in descending order of bids. The success of Overture’s paid 

search platform occurred thanks to the transparency of the mechanism, the ease of use 

and the low entry costs. However the perfection of the mechanism was far to happen 

because of the fact that bids could be changed very often and this gave instability to the 

system. 

Generalized Second-Price Auctions. The Generalized First Price Auction created volatile 

prices and allocative inefficiencies by encouraging inefficient investments in the gaming 

system. In fact the mechanism implied that the advertiser who could react to competitors’ 

moves fastest gained a big advantage. Google managed to address these problems by 

recognizing that an advertiser in position i would be never willing to pay more than one bid 

increment above the bid of the advertiser in bid (i+1). This principle was indeed adopted in 

its auction mechanism.  In the simplest GSP auction, in fact, an advertiser in position i pays: 

1) A price per click equal to the bid of an advertiser in position (i+1)  

2) A small increment which typically corresponds to $0.01 

The above structure made the market more user friendly and less vulnerable to the 

gaming. In fact these desirable properties made companies as Yahoo!/Overture to switch 

to GSP. 

Generalized Second-Price and VCG Auctions.  The two mechanisms present similarities in 

the sense that both set each agent’s payments uniquely on the allocation and bids of other 

players and not based on the agent’s own bid. Nevertheless GSP is different from VCG. In 

fact GSP doesn’t have an equilibrium in dominant strategies and truth-telling is not an 

equilibrium in GSP. The two mechanisms would be identical if and only if there is only one 

slot. If there are more than one slot they would be different. 

 GSP charges the advertiser in position i the bid of the advertiser in position i+1, 

while 

 VCG charges the advertiser in position i the externality that he imposes on others, 

by removing one slot away from them. The advertiser in position i totally pays an 
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amount equal to the difference between the aggregate value of clicks that all 

advertisers would have received in the case i was not present and in the case he is 

present. 

It is useful to notice that (Edelman et al, 2007): 

1) An advertiser in position j<i, receives an externality equal to zero since he is not 

affected by i 

2) An advertiser in position j>i, would have been awarded position (j-1) if agent i was 

absent. Here the externality corresponds to his value per click times the difference 

in the number of clicks in position j and (j-1) 

The above described chronology shows three main steps in the development of the 

sponsored search advertising market. In the first one ads were sold manually, in large 

batches and on a cost-per-impression basis. In the second one, Overture began to 

streamline advertisement sales, having the drawback of instability. Finally Google 

implemented the GSP auction, later adopted by Yahoo!. It is peculiar to notice that Google 

and Yahoo! preferred for many years GSP to VCG. In fact the latter is hard to explain to 

standard buyers; switching to it may imply enormous transaction costs since VCG revenues 

are lower with respect to GSP ones for the same bids (Edelman et al, 2007). Switching 

costs can be high both for advertisers and for search engines because of the fact that the 

revenue outcomes of switching to VCG in not certain and simply testing a new system can 

be really expensive. 

POSITION AUCTIONS 

 

INTRODUCTION TO VARIAN’S MODELS 

The analysis that will be here presented, consists in a theoretical analysis of Varian’s 

studies on position auctions. His work provides an explanation of how search engines base 

the design of their auction formats. Game theory fits in a perfect way the need of 

understanding bidders behavior and incentives thanks to the right quantitative tools 
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available in the discipline. For example, one key concept fully exploited relates to the 

notions of Nash Equilibrium and Symmetric Nash Equilibrium which have a strong link with 

incentives. Furthermore the author relies also on some achievements in the discipline as 

the one of Vickrey-Clarke-Groves mechanism and the Generalized-Second-Price auction. 

During his study on position auctions the author  dedicates a special section for online ad 

auctions. However this specific topic is deepened and better reconsidered in a subsequent 

work made by Varian in 2009, namely “Online Ad Auctions”.  

A THEORETIC APPROACH 

Varian’s studies on position auctions were aimed at maximizing the allocation of slots.  The 

basic design of ad auctions is simple. This is structured in a way that each advertiser has to 

choose a set of keywords which are related to the product it wishes to sell (Varian, 2007). 

Each of them makes a bid for each keyword which  represents his willingness to pay if a 

user clicks on its ad .  When a user search query matches a keyword, a set of ads is 

displayed. The latter are ranked by bids and the ad with the highest bid receives the best 

position; in fact it is the one most likely to be clicked by end customers. If the user clicks on 

the ad the advertiser is charged an amount that depends on the bid of the advertiser 

below in the ranking. 

THE MODEL 

Assume that the following conditions hold (Varian, 2007): 

 There are agents a=1,…,A 

 There are slots s=1,…,S 

 The slots are numbered so that x1>x2>…>xs 

 xs=0 for all s>S 

 The number of agents is greater than the number of slots 

The model provides the following two definitions:  

 va is the value per click of the agent assigned to slot s and 
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  xs is the correspondent clickthrough rate for slot s, i.e. a measure of the number of 

users that click on a link . In fact as previously mentioned higher positions receive 

more clicks.                                                                                               

In this way, agent a’s valuation for slot s is given by : 

uas=vaxs 

According to the above assumptions, Varian considers the problem of assigning agents to 

slots. In this case agents are represented by advertisers while slots symbolize positions on 

a web page. This logic brings to conceive the equation uas=vaxs  as the expected profit to 

advertiser a from appearing in slot s. 

In position auctions slots are assigned and sold via an auctions. This implies that: 

1) Each agent bids an amount ba 

2) The slot with the best clickthrough rate is awarded to the slot with the highest bid 

and assigned to the agent with the highest bid; the second-best slot is assigned to 

the agent with the second highest bid, and so on.  

These concepts can be reshaped in game theoretic terms, by distinguishing them into 

two categories: definitions and assumptions.   The assumption relates to the fact that 

the context is the one of second price auctions, which implies that: 

 ps= bs+1 , i.e. the price agent s faces is equal to the bid of the agent immediately 

below him 

Given that, it is possible to provide the following two definitions:                                                                                   

 ba is the amount that each agent bids 

 vs is the value per click of the agent assigned to slot s. The private value in the 

underlying model represents the utility that each agent derives from a single unit of 

CTR (clickthrough rate, i.e. the rate at which sponsored links are clicked by users). 

The implication is that the expected profit from acquiring slot s for agent a is :  
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(va-ps)xs= (va-bs+1)xs 

This nice mathematical structure of position auctions is strongly related to the two-sided 

matching models, i.e. bilateral exchanges mechanisms between two disjoint parties.  

NASH EQUILIBRIUM OF POSITION AUCTIONS 

Assume there are S=4 available slots. It is known that (Varian, 2007): 

I. xs>xs+1. This means that slots are numbered in decreasing order of clickthrough rate. 

The CTR can be interpreted as a publicly known property of a slot which does not 

depend on the player who is using it (Kuminov and Tennenholtz, 2007).  

II. bs>bs+1. Players bids are conceived as the maximal price per unit of CTR they are 

ready to pay to the CTR provider. The just stated inequality implies that agents are 

ordered in decreasing number of bids (Kuminov and Tennenholtz, 2007).  

The auction structure thus has as consequence that if agent number 3 wants to move up 

by one position, he would be forced to bid an amount at least as equal as b2. However if 

agent number 2 is willing to move down by one position the amount he has to bid would 

be just at least equal to b4=p3,i.e. the bid of agent in position 4.  The reasoning just 

described leads to achieve two conclusions (Varian, 2007): 

1) To move to a higher slot it is necessary to beat the bid of the agent who currently 

occupies that slot. 

2) To move to a lower slot, it is only necessary to beat the price of that agent who 

currently occupies the slot below.  

This game can be modeled as a simultaneous move game with complete information since 

each agent a simultaneously chooses a bid ba. Thereafter the bids are ordered and the 

price that each agent has to pay is determined, as  implied by second price auctions, by the 

bid of the agent below him in the ranking. 

 

Table 1 (Hal R. Varian, Position auctions, 2007) 
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POSITION VALUE BID PRICE CTR 

1 v1 b1 p1=b2 x1 

2 v2 b2 p2=b3 x2 

3 v3 b3 p3=b4 x3 

4 v4 b4 p4=b5 x4 

5 v5 b5 0 0 

 

A Nash equilibrium implies that in equilibrium each agent prefers his current slot to any 

other slot so that (Varian, 2007): 

1) (vs-ps)xs    (vs-pt)xt for t>s                                                          (1) 

2) (vs-ps)xs    (vs-pt)xt-1 for t<s                                                        (2) 

where pt=bt+1 

The inference is that a NE is a set of bids b1>b2…>bn such that no agent strictly benefits by 

decreasing his bid and getting a lesser slot and no agent strictly benefits by increasing his 

bid and getting a better slot (Kuminov and Tennenholtz,2007).  

It is important to observe that the inequalities are linear in prices so that given (xs) and (vs),  

it is possible to solve the maximum and the minimum equilibrium revenue attainable by 

the auction (Varian, 2007). Another observation relates to the fact  that generally there is a 

range of bids and prices that satisfy the inequalities so that a slight change in the bid will 

not affect the agent’s position or payment. 

A symmetric Nash equilibrium (SNE) is a subset of Nash equilibria that can be defined as 

(Varian, 2007): 

 (vs-ps)xs    (vs-pt)xt for all t and s 

An equivalent definition is: 

 vs(xs-xt)    psxs- ptxt  for all t and s  
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It can be noticed that the inequalities characterizing an SNE are the same characterizing an 

NE for t>s. Since the above definitions assume fixed valuations, the game is essentially a 

complete information game. 

At this point, the model goes on by  temporarily suspending the auction argument, 

analyzed until now. Suppose that (Varian, 2007) : 

 prices are given exogenously  

  agents can purchase slots at these prices 

The fact that in SNE each agent prefers to purchase the slot as it is rather than some other 

slot, makes possible to include the notion of competitive equilibrium in this description . 

The SNE prices thus provide supporting prices for the classic assignment problem (Varian, 

2007). Despite these supporting prices can only be calculated by using a linear program, in 

this special case the prices can be computed using a simple recursive formula. Some 

arguments can be shown in this respect (Varian, 2007). Namely, the author went through 

the consideration of the following facts: 

Fact 1: Non-negative surplus 

In a SNE v s ps 

Proof:  by using the inequalities that define a SNE, 

(vs-ps)xs≥ (vs+1-ps+1)xs+1=0 

Since xs+1=0 

Fact 2: Monotone values 

In a SNE vs-1   vs for all s. 

Proof:  SNE definition leads to the following conditions: 

1) vt(xt-xs)≥ptxt-psxs                                                                                                                      (3) 

2) vs(xs-xt)≥psxs-ptxt                                                                                                                      (4) 
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the addition of these two inequalities provides as result: 

(vt-vs)(xt-xs)≥0 

This shows that vt and xt must be ordered using the same methodology. Moreover because 

of the fact that agents with higher values are assigned to better slots a SNE is an efficient 

allocation (Varian, 2007). 

Fact 3: Monotone prices 

In a SNE ps-1xs-1>psxs and ps-1>ps for all s. If vs>ps  then ps-1>ps 

Proof: the definition of SNE previously analyzes was: 

(vs-ps)xs≥(vs-ps-1)xs-1 

However the latter can be rearranged to get: 

ps-1xs-1≥psxs+vs(xs-1-xs)>psxs 

However this explanation just proves the first part. The second part can be proved by 

writing: 

ps-1xs-1≥psxs+vs(xs-1-xs)≥psxs+ps(xs-1-xs)=psxs-1  

By erasing xs-1 it can be seen that ps-1≥ps. In addition, if vs>ps then the second inequality is 

strict, and this proves the last part of the fact. 

Fact  4: NE Ↄ SNE 

If a set of prices is SNE it is a NE. 

Proof: the fact that pt-1≥pt implies that: 

(vs-ps)xs≥(vs-pt)xt≥ (vs-pt-1)xt for all s and t. 

The set of symmetric NE is attractive mainly for the following property: in order to verify if 

the entire set of inequalities is satisfied it is only necessary to verify the inequalities for one 

step up or down.  
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Fact 5: One step solution 

If a set of bids satisfies the symmetric Nash equilibria inequalities for s+1 and s-1, then it 

satisfies the inequalities for all s. 

Proof:  the author provides this proof by implementing an example. Assume that the SNE 

relation holds for : 

1) slot 1 and 2 

2) slot 2 and 3 

the aim is now to show that it holds also for slot 1 and 3. By exploiting the fact that v1≥v2, 

v1(x1-x2)≥p1x1-p2x2            v1(x1-x2)≥p1x1-p2x2 

v2(x2-x3)≥p2x2-p3x3            v1(x2-x3)≥p2x2-p3x3         

By adding the left and the right columns, the result obtained is: 

v1(x1-x3)≥p1x1-p3x3 as was to be shown. A similar argument can be proven in the other 

direction.  

USEFUL INSIGHTS 

The facts just described can be implemented to obtain an explicit characterization of 

equilibrium prices and equilibrium bids.  

Because of the fact that the agent in position s is not willing to move down one slot 

(Varian, 2007): 

1) (vs-ps)xs≥(vs-ps+1)xs+1 

Analogously since agent in position s+1 does not want to move up one slot: 

2) (vs+1-ps+1)xs+1≥ (vs+1-ps)xs     

Putting the previous two inequalities together we find: 

vs(xs-xs+1)+ps+1xs+1≥ psxs≥vs+1(xs-xs+1)+ps+1xs+1                                                                    (5) 
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These inequalities can also be written in the following way, recalling  that ps=bs+1: 

vs-1(xs-1-xs)+bs+1xs≥bsxs-1≥vs(xs-1-xs)+bs+1xs                                                                             (6) 

Let’s assume that the following condition holds (Varian, 2007): 

     αs=xs/xs-1<1          

 then the inequalities can also be written as: 

vs-1(1-αs)+bs+1αs≥bs≥vs(1-αs) + bs+1αs                                                          (7) 

Therefore, the equivalent conditions (5)-(7) show that, in equilibrium, each agent’s bid is 

bounded above and below respectively by a convex combination of the bid of the agent 

immediately below him and a value which can either be his own or the one of the agent 

immediately above him.  

This is an attainment that allows to state that the pure strategy Nash equilibria can be 

merely found by recursively selecting a sequence of bids that satisfy these inequalities 

(Varian, 2007). The upper and lower bounds in inequalities (6) will be implemented in 

order to analyze the boundary cases. The recursions then become (Varian, 2007): 

bs
Uxs-1=vs-1(xs-1-xs)+bs+1xs                                                                              (8) 

bs
Lxs-1=vs(xs-1-xs)+bs+1xs                                                                                 (9) 

These recursions provide as solution: 

bs
Uxs-1=     t-1(xt-1-xt)                                                                               (10) 

bs
Lxs-1=     t(xt-1-xt)                                                                                  (11) 

The values implemented for the recursions derive from the fact that there are only S 

positions, so that xs=0 when s>S. However if s=S+1, the outcome would be: 

bs+1
Lxs=vs+1(xs-xs+1) 

           =vs+1xs 
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It can thus be concluded that for the first excluded bidder, it is optimal to bid his own 

value. This argument recalls the Vickrey auction mechanism, that later will be explained. So 

if you are excluded, bidding lower than your value does not make sense; nevertheless if 

you do happen to be shown you will be able to get a payoff (Varian, 2007).  

BOUNDS: THE UNDERLYING LOGIC 

Sometimes agents find  bidding at one end of the upper or lower bounds particularly 

attractive to the bidder, even if any bid comprised in the range described by equations (5) 

and (7) is a SNE and thus a NE bid (Varian, 2007).  Suppose that: 

1) I am in a position s and I am making a profit of: (vs-bs+1)xs. 

2) In NE my bid is optimal given my beliefs with respect to the bids of other agents 

3) I can change my bid in range specified by equation (6) 

4) I can’t change my payments or positions 

The question that arises at this point relates to the utilities’ maximizing behavior of agents. 

In fact any agent would find  optimal to set the highest bid possible so that if it exceeds the 

agent above him and he moves up by one slot, he is sure to make at least as much profit as 

he is making now (Varian, 2007). In this respect the worst case occurs when I beat the 

advertiser above me only for a very small amount and I am anyway obliged to pay my bid 

bs minus a tiny amount. The issue can be analyzed from two different perspectives. The 

first result derives from a reasoning that starts from the analysis of the break even 

situation and ends up with the computation of the lower bound recursion. The break even 

case satisfies the following equation (Varian, 2007): 

(vs-bs
*)xs-1 = (vs-bs+1)xs 

The latter represents a comparison between the worst case possible (where profit moves 

up) to current profit. Solving for bs
*, the result is (Varian,2007): 

bs
*xs-1=vs(xs-1-xs) + bs+1xs  

This equation coincides to the lower-bound recursion described in equation (9).       
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On the other hand it is possible to think defensively in order to get the upper bound 

recursion. If an agent sets a bid too high, he will squeeze the profit of the player ahead of 

him at the point that he could prefer to move town to his position. The highest breakeven 

bid that would not induce the agent above to move down is (Varian, 2007): 

His profit now= how much he would make in my position 

(vs-1-bs
*)xs-1= (vs-1-bs+1)xs 

By solving the equation we obtain: 

bs
*xs-1=vs-1(xs-1-xs) + bs+1xs, as previously found in equation (8). 

So one might argue that setting the bid so that I am able to make a profit if a move up in 

the ranking is a reasonable strategy even if any bid in the range (5) is a reasonable 

strategy. 

 REVENUES: NE, SNE and ADDITIONAL CONCERNS 

Varian’s study continues by focusing on the concept of revenues, one of the main pillars in 

auction mechanisms. The topic of revenues is reconsidered also in 2009 starting from the 

same logic applied in 2007. However, rather than focusing on the NE and SNE aspects of 

the issue, in his recent work, the author’s  goal is more oriented at explaining the logic 

behind the upper and lower bounds of revenues and providing a way to compute auction 

revenues.  As economic theory suggests, advertisers are interested in surplus 

maximization; in this case surplus can be intended as the value of clicks they receive minus 

the cost of those clicks. Here the conclusions achieved in the two elaborates will find a 

pattern of integration. In describing the role of revenue models , which are a pillar of 

companies’ business strategy, the author recalls that in general search engines implement 

revenue models based on the following rules of the Generalized Second Price Auctions: 

 Each advertiser a chooses a bid ba 

 The advertisers are ordered by bid times predicted clickthrough rate of advertiser a 

in slot s, i.e. baea.  
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 The price that advertiser a pays for a click is the minimum bid necessary to retain its 

position 

 If there are fewer bidders than slots, the last bidder pays a reserve price r 

In principle, Varian analyzes the topic of revenues from the following considerations. He 

argues that by summing equations (10) -(11) over s=1,…, S upper and lower bounds on 

total revenue in an SNE can be computed. For instance if the number of slots is S=3, the 

lower and upper bounds can be obtained by: 

1) RL=v2(x1-x2)+2v3(x2-x3)+3v4x3 

2) RU=v1(x1-x2)+2v2(x2-x3)+3v3x3 

The process that allowed to arrive to these results will be later illustrated in the next 

paragraph.  

Underlying assumption (Varian, 2009) : all advertisers are characterized by the same 

quality, so: 

 ea 1 for all advertisers. 

In equilibrium the advertiser placed in slot s+1 doesn’t want to move up to slot s, so that:                       

 (vs+1-ps+1)   (xs+1)   (vs+1 – ps) xs. 

 By rearranging the equation it is possible to have an important result(Varian,2009): 

(1)    psxs   ps+1xs+1 + vs+1 (xs – xs+1) 

The latter outcome is meaningful because it shows that the cost of slot s must be at least 

as large as the cost of slot s+1 plus the value of the incremental clicks attributable to the 

higher position, i.e. plus a premium. The relevant value is thus the one of s+1. In fact that is 

the bid that the advertiser in slot s must beat (Varian, 2009).   

The price of the last ad shown on the page is either the reserve price or the bid of the first 

omitted ad. This price can be denoted by pm . Now it is possible to solve the recursion in 

inequality (1) repeatedly to get the following inequalities (Varian, 2009): 
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p1x1   v2(x1-x2) + v3(x2-x3) + v4(x3-x4) + … + pmxm 

p2x2                    +v3(x2-x3) + v4(x3-x4) + … + pmxm 

p3x3                                     + v4(x3-x4) + … + pmxm 

By summing up the terms it is possible to get a lower bound on total revenue: 

   sxs   v2(x1-x2) + 2v3(x2-x3) + … + (m – 1)pmxm 

By analogy, in equilibrium each advertiser prefers its slot to the slot above it. In this way it 

is possible to obtain an upper bound on total revenue as well:  

     sxs  v1(x1-x2) + 2v2(x2-x3) + … + (m – 1)pmxm  

So now we have proven how the author arrived to the definition of upper and lower 

bounds provided previously. As it is possible to verify it was in fact deriving indeed from 

this reasoning. Namely (Varian, 2007):  

 RL=v2(x1-x2)+2v3(x2-x3)+3v4x3 

 RU=v1(x1-x2)+2v2(x2-x3)+3v3x3 

Were  equations defined considering the special circumstance were S=3. 

Advertisers values can be thought as drawn from a distribution. In fact if we assume that S 

slots are available, the ads that are shown are the ones with the S largest values among the 

available ads in the set. In the contingency where there is a large number of advertisers 

competing for a small number of slots, the upper and the lower bounds will be closed 

together. 

In conclusion this simple calculation allows to determine the auction revenue. 

It can be shown that these bounds have a relationship with the bounds for the NE. Because 

of the fact that the set of NE contains the set of SNEs, it could be possible to conclude that 

the maximum and minimum revenues are larger and smaller, respectively, if compared to 

the SNE maximum and minimum revenue (Varian, 2007). Nevertheless this is confirmed 

only in part. In fact on the one hand, it is true that  the upper bound for the SNE revenue 
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coincides with the maximum revenue for the NE. But on the other hand, the lower bound 

on revenue from the NE is in general less with respect to the revenue bound for the SNE. 

Fact 6: The maximum revenue NE yields the same revenue as the upper recursive solution 

to the SNE (Varian, 2007). 

Proof:  Assume the following conditions: 

1) Let (ps
N) be the prices related to the maximum revenue NE 

2) Let (ps
U) be the prices which solve the upper recursion for the SNE 

Since NE Ↄ SNE, it must hold the condition for which the revenue associated with (ps
N) 

must be at least equal to the one associated with (ps
U). Given the definition of NE in 

equation (1), the result is that: 

ps
NxsVps+1

Nxs+1+vs(xs-xs+1) 

From equation (8) which provides the definition of upper bound recursion, we have: 

ps
Uxs=ps+1

Uxs+1+vs(xs-xs+1) 

it is important to highlight that the recursions start at s=S. Since xs+1=0, we obtain: 

ps
NVvs=ps

U 

By analyzing the recursions immediately above, it follows that (Varian, 2007): 

ps
U≥ps

N          for all s 

This result has an important meaning: the maximum revenue from SNE is at least as large 

as the maximum revenue from NE (Varian, 2007). Thus the revenue must be equal. By 

analogy it is possible to make examples in which the minimum revenue NE has less 

revenue with respect to the solution to the lower recursion for the SNE; however this is 

merely the consequence of the fact that the set of inequalities that define the NE strictly 

contains the one defining the SNE. Given these conclusions, some general relation can be 

finalized (Varian, 2007): 
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Maximum revenue NE = value of upper recursion of SNE 

                                         ≥ value of the lower recursion of SNE ≥ min revenue NE 

Underlying assumption: the inequalities are strict except in the degenerate cases.  

AN INCENTIVE-BASED VIEW 

Since until now optimal bids in position auctions have been conceived as being dependent 

on other agents’ bids, it is interesting to explore the possibility that other auction 

structures let agent a’s optimal bid to depend entirely on its value. Even if authors as 

Demange and Gale demonstrate that the answer is “yes”, by implementing a variation of 

the Hungarian algorithm for the assignment problem, here  the VCG mechanism will be 

taken into consideration, because it takes a simpler form. 

Let’s assume (Varian, 2007):  

I. a central authority is going to choose some outcome z in order to maximize the sum 

of the reported utilities of agents a=1,…,A. 

II. agent a’s true utility function is denoted by ua(*) 

III. agent a’s reported utility function is denoted by ra(*) 

The above assumptions imply that, in considering the VCG framework as  an alternative to 

other types of auction models, Varian conceives a mechanism where (Varian, 2009): 

  Each advertiser reports a value ra 

 Each advertiser pays the cost that it imposes on the other advertisers, using the 

values reported by other agents 

For the purpose of aligning incentives, the center declares it will pay each agent the sum of 

the utilities reported by the other agents at the utility-maximizing outcome. So that the 

centre will maximize (Varian, 2007):  

ra(z) +      b(z) 

However agent a cares about: 
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ua(z) +      b(z) 

It is not difficult to understand that in order for agent a to maximize his own payoff, the 

true utility function and the reported one should coincide so that: 

ra(*)= ua (*) 

In fact in this way the center will optimize exactly what agent a wants. By subtracting an 

amount from agent a that does not depend on its report, the size of the side payments can 

be reduced. A convenient choice could be maximizing the sum of reported utilities 

omitting agent a’s report (Varian, 2007). This implies that the final payoff to agent a 

becomes: 

ua(z) +       b(z)- maxy      b(y) 

Agent a’s payment can be conceived as the harm that his presence imposes on other 

agents, i.e. the difference between what they get when agent a is present and what they 

would get if agent a is absent. If the problem of assigning agents to positions is considered, 

if agent s-1 is omitted, each agent below him will move up by one position while agents 

above s-1 are unaffected. Hence the payment that agent s-1 must make is (Varian, 2007): 

VCG payment of agent s-1 =      t(xt-1-xt)                                       (14) 

In this case rt is the reported value of agent t. It should be recalled that in the dominant 

strategy VCG equilibrium, each agent t will announce rt=vt  so that: 

VCG payment of agent s-1 =      t(xt-1-xt)                                       (15) 

The analogy with the lower bound for the symmetric Nash equilibria is clear, if compared 

to expression (11).                                                                                                                                              

It can be demonstrated that this relationship is true in general even for arbitrary uas. A 

wide range of authors (e.g. Demange and Gale (1985)) agree on the fact that the best (in 

terms of cost) equilibrium for buyers in the competitive equilibrium for the assignment 

problem is indeed the one given by the VCG mechanism. 
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In order to understand this process it is useful to report the practical example provided by 

Varian with respect to the abovementioned concepts.                                   

Assume that there are 3 slots and 4 advertisers. On the one hand if  advertiser 1 is present, 

the other 3 receive the reported values r2x2 + r3x3. As it is possible to observe, advertiser 4 

is not present so it receives an amount equal to zero. On the other hand if advertiser 1 is 

absent, the other three advertisers would each move up by a position. This implies that 

their reported value would be r2x1+r3x2+r4x3. 

The difference between these two amounts represents the required payment by advertiser 

1 and it corresponds to: 

r2(x1-x2) + r3(x2-x3) + r4x4 

Since the dominant strategy equilibrium in the VCG auction is for each advertiser to report 

its true value, advertiser 1’s payment becomes: 

v2(x1-x2) + v3(x2-x3) + v4x4 

This last result coincides with the lower bound of equilibrium payments previously 

described. The same calculations can be made for other bidders, so we can conclude that: 

The revenue for the VCG auction is the same as the lower bound of the price equilibrium 

described above (Varian, 2009). 

This is a special case of the two sided market. 

Despite apparently the implementation of VCG auctions requires exact knowledge of the 

expected number of clicks in each position, this is not true. This concept can be understood 

by considering the following algorithm:  

1) each time there is a click on position 1, charge advertiser 1 r2 

2) each time there is a click on position s > 1 pay advertiser 1 rs – rs+1 

in the 3-advertisers example considered, the net payment made by advertiser 1 will be 

(Varian, 2009) :                               
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 r2x1 – (r2 – r3)x3. The argument also extends for other advertisers. 

BOUNDS ON VALUES 

By using the observed equilibrium prices it is possible to derive useful bounds on the 

unobserved values of the agents in the symmetric Nash equilibrium case. Consider (Varian, 

2007): 

 ps=bs+1 

 this is the equilibrium price paid by agent s in a specific symmetric NE. Then, it must be 

true the following condition: 

(vs-ps)xs   (vs-pt)xt 

By rearranging the equation the result changes in this way: 

vs(xs-xt)≥psxs-ptxt 

By dividing by xs-xt Varian arrives at this point: 

mint>s psxs-ptxt   ≥ vs≥ maxt<s psxs-ptxt                                                                                                                                                                                                                

                       xs-xt                              xs-xt 

Fact 5 stated that the maximum and the minimum are attained at the neighboring 

positions. For this reason it is possible to rewrite it in this way (Varian, 2007): 

 

 ps-1xs-1-psxs   ≥ vs≥  psxs-ps+1xs+1                                                                                                                                                                                                                

       xs-1-xs                      xs-xs+1 

 

The interpretation of these inequalities is simple and straightforward: in fact the ratio 

represent the incremental cost of moving up by one position. Moreover if the latter 

inequalities are recursively applied it is possible to obtain (Varian, 2007): 
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v1≥  p1x1-p2x2   ≥                                                                                          (16) 

                  x1-x2      

 v2≥  p2x2-p3x3   ≥                                                                                         (17) 

                  x2-x3         

So that: 

vs≥ps                                                                                                             (18) 

The main conclusion that can be inferred is that the incremental costs have to decrease as 

one moves to lower positions. This result yields three important consequences(Varian, 

2007): 

 Each of the intervals should be non-empty. This is a necessary  condition for the 

existence of a pure strategy NE. It is also sufficient since non-emptiness allows to 

find a set of values consistent with the equilibrium 

 A bidding rule for the agents: if your value exceeds the marginal cost of moving 

up by one position, then bid higher until this is no longer true 

 An intuitive characterization of SNE: the marginal cost of a click must increase as 

you move to higher positions. This happens because if it never decreased there 

would be an advertiser who passed up cheap clicks in order to buy expensive 

ones. 

The author shows in a  parallel manner that the same computation can be done also for 

the NE inequalities, in this way (Varian, 2007): 

mint>s psxs-pt-1xt   ≥ vs≥ maxt<s psxs-ptxt                                                                                                                                                                                                                

                       xs-xt                              xs-xt 

However there are two differences with respect to the other situation; namely: 

1) The upper bounds for the NE ( when t>s) are looser than the case of SNE 

2) The upper bounds now comprise the entire set of bids, and are not just limited to 

the neighboring bids. 
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GEOMETRIC INTERPRETATION 

The following figure represents the so called “expenditure profile”. It is possible to identify 

on the horizontal axes the clickthrough rates, while on the vertical axes the SNE 

expenditure, i.e. psxs=bs+1xs. The slope of the segments that connect each vertex represent 

the marginal costs previously analyzed. Indeed these marginal costs have been shown to 

necessarily bound the agents’ values (Varian, 2007). The previous discussion implies that if 

the observed choices are an SNE then the graph should be an increasing, convex function.  

Graph 1 ( Hal R. Varian, 2007) 

 

The profit accruing to agent s is (Varian, 2007): 

 π=vsxs-psxs 

This implies that the iso-profit lines are expressed by: 

psxs=vsxs-πs 

these lines are straight and have slope equal to vs, while the vertical intercept is –πs. The 

figure shows that a profit-maximizing bidder is willing to select the position having  to the 

lowest associated profit. So the range of slopes of the supporting hyperplanes at each 

point are indeed the range of values associated with the equilibrium (Varian, 2007). 
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Similarly the NE bounds can be illustrated by implementing the same sort of diagram. In 

the next figure the lower bounds show the SNE bounds along with the NE bounds from 

inequalities (19). Even if for the NE the lower bounds are the same, the upper bounds are 

looser and thus steeper than the SNE (Varian, 2007).  

 Graph 2 (Hal R. Varian, 2007) 

 

APPLICATIONS TO AD AUCTIONS 

In order to understand Google’s auction design some refinements must be added to the 

abstract strategic structure of the position auction until now analyzed. Google ranks the 

ads not only on the basis of the bid alone, rather by the product of a measurement of ad 

quality and advertiser bid. Varian concentrates on this topic both in 2007 and in 2009. His 

study begins with the description of a set of auction rules, oriented at outlining the way  

search engines establish which , where and at which cost ads are shown. The points in 

common in the two elaborates can be identified in the following considerations: 

1) Let a=1,…,A indicate advertisers, which in this case represent agents 

2) Let s=1,….,S indicate slots 

3) zas is the advertiser s’s observed clickthrough rate 

4) Let (va, ba, pa) indicate the value, the bid, and the price per click of advertiser a for a 

given keyword 
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Underlying assumption: the observed and expected clickthrough rate for advertiser a in 

position s, i.e. zas,  can also be written as the product of this “quality effect”,(es) and a 

“position effect”, (xs). This formula has been chosen by Varian because it leads to simpler 

outcomes.  

so that zas=esxs 

Nash equilibrium requires that each agent prefers his position to any other position by 

realizing that the cost and clickthrough rate of the other position is dependent  on his ad 

quality.  

If a specific auction is considered and advertisers are identified by their slot position, the 

rules imply that b1e1>b2e2>,…,>bmem    

It is useful to specify that m should be less than or equal to the number of possible slots. 

Since the price paid by advertiser in slot s is the minimum necessary to retain its position 

(Varian, 2009) : pses=bs+1es+1. By rearranging the terms of the equation the price results to 

be: 

 ps=bs+1es+1/es 

Similarly in his previous work Varian defines qst as the amount that advertiser s needs to 

pay to be in position t. Since by construction we have: qstes=bt+1et+1, it yields the same 

result. In fact, solved for qst becomes: 

qst=bt+1et+1/ es                                                                                                 (20) 

It can thus be concluded that the price paid per click by the last advertiser is (Varian, 

2009): 

1)  the reserve price if m<S  

2) determined by the bid of the first omitted advertiser if m=S. 

So it is possible to write (Varian, 2007): 

(vs-qss)esxs    (vs-qst)esxt 
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Varian substitutes equation (20) in the latter expression in order to find: 

(esvs-bs+1es+1)xs≥(esvs-bt+1et+1)xt 

Letting the following  assumptions of the model to hold: 

 ps=bs+1es+1 

 pt=bt+1et+1 

yields: 

(esvs-ps)xs≥(esvs-pt)xt 

If the same logic of equations (16) and (18) is applied then we have (Varian, 2007): 

 

e1v1≥  p1x1-p2x2   ≥                                                                                          (21) 

                    x1-x2      

 e2v2≥  p2x2-p3x3   ≥                                                                                         (22)  

                           x2-x3         

Then the outcome would be: 

esvs≥ps                                                                                                              (23) 

The previous inequalities are to be considered testable and stemming from the symmetric 

NE model. For the sake of completeness the category of “non-fully sold pages” should be 

described. The latter are auctions in which the number of ads displayed on the right hand 

side is less than 8 (Varian, 2007). In this situation the bottom ad on the page pays a reserve 

price that has been standardized at 5 cents.  

Coming back to the topic of online ad auctions in 2009 , Varian remodeled some terms in 

the previous study while maintaining a sense of continuity with his antecedent work.  His 

achievements provide a framework that search engines implement to design their auction 

formats. The reasoning will be here presented by trying to integrate and compare the 
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insights got in 2007 and the ones got in 2009 for the sake of completeness and 

understanding. Even if the notation has experienced some slight changes , an homogenous 

pattern of description will be attempted to be achieved. The main inferences to be 

underlined are that: in his later work Varian reconsidered the topics of bounds and 

equilibrium revenues, while adding some interesting considerations on advertisers’ surplus 

and bidding behavior.  

A FOCUS ON BIDDING BEHAVIOUR 

Notation: in the previous section xs was the number of clocks in position s while here xa is 

the number of clicks received by advertiser a in a given time period. 

The just described model assumes that advertisers can choose their bids on an auction-by-

auction basis. However in reality they choose often one bid that will apply to many 

auctions. Let’ s assume that there is a stable relationship between an advertiser’s bid and 

the number of clicks it receives during some time period (Varian, 2009). This can be 

included in the following equation: 

ba= Ba(xa) 

The cost function ca(xa) represents the cost that advertiser a must pay to receive xa clicks 

during a given period. Even if both the bid function and the cost function depend on the 

interaction with the other advertisers in the ad auction, we take that behavior as fixed. 

This framework shapes the advertiser’s surplus as: 

vaxa – ca(xa) 

it is possible to observe that the previous equation has been called “surplus” rather than 

“profit” because profit generally includes fixed costs. However conceptually surplus 

maximization is equivalent to profit maximization . 

The profit-maximizing number of clicks, is suggested by conventional price theory as the 

point where : 
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Value= Marginal Cost 

Given the optimal number of clicks it is possible to determine the average cost per click. 

This implies that once the advertiser conquers awareness about the cost-per-click and the 

bid-per-click function, it can determine its optimal behavior (Varian, 2009). Nowadays 

these relationships can be estimated only through experimentation. 

ADVERTISER SURPLUS 

The previous relationships can be used to construct the so called “surplus ratio”, i.e. a 

bound on the ratio of aggregate value to aggregate cost.  

Assume that advertiser a chooses a number of clicks xa at a cost of ca. However this 

advertiser is contemplating to change its bid so that it receives some smaller number of 

clicks   a in return for a smaller cost,   a (Varian, 2009). The assumption is that the surplus at 

(xa, ca) exceeds the one at (  a,   a), so that: vaxa – ca    va  a -     a that rearranged becomes: xa 

-   a 

va   
                                      

        
 

After some calculations the final expression is (Varian, 2009): 

     

    
  

 

   

                                      

        

  

    
 

A GEOMETRIC INTERPRETATION 

The function π= vaxa – ca describes the isosurplus line through xa. The same function can be 

used to conclude that (Varian, 2009): 

ca= vaxa- πa 
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Graph 3 (Hal R. Varian, 2009)

 

the point (  a,   a) must lie above this line since it has a lower surplus by assumption (Varian, 

2009). This implies that the chord that links (xa, ca) to (  a,   a) must intersect the vertical axis 

at a point above - πa.  

This reasoning demonstrates that the equation above gives a lower bound on the surplus 

ratio. By analogy it is possible to apply the same logic for the upper bound and this can be 

done by identifying a lower surplus point with a larger number of clicks and costs (Varian, 

2009). The figure indicates in a clear way that the tightness of the bounds will depend on 

the curvature of the cost function. If the latter is affine, then the bounds will coincide and 

will be equal to the true surplus, while for highly convex functions, the bounds will be 

wider (Varian, 2009). 

MAIN RESULTS FROM THE STUDY OF ONLINE AD AUCTIONS 

The observations that can be clearly inferred are related to the number of clicks advertiser 

a is getting currently and to the cost of these clicks. However, the analysis does not cover 
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the issue of how many clicks it would receive in a different position.  In trying to address 

the question algorithm 1 is used, and it entails three steps (Varian, 2009): 

Algorithm 1: 

I. Cut advertiser a’s bid in half. 

II. Establish the position and the willingness to pay in the ad auction with this lower 

bid. 

III. Make an estimate on how many clicks it would receive being at this lower position. 

The first step could appear extreme at a first glance, however a 50% decrease in bids 

implies only a 12% reduction in costs; while a small cut in bids determines a small 

reduction in clicks and costs so that       could be of significant importance for small 

choices of   . 

Step two implies the implementation of auction rules. 

The third step is the more complex calculation since it requires of how clicks of a given ad 

change as ad position changes, but it is simplified by the assumption that the actual 

number of clicks is represented by the product of the advertiser-specific effect and the 

position-specific effect. 

An interesting result is that ad configurations that are “fully sold”, i.e., have all the slots 

occupied, tend to have a lower surplus than those which are “undersold” (Varian, 2009). 

Finally the previous estimates are applicable only to  the value of “paid” clicks; by adding 

and including also the value of search results clicks the number obtained would be 

substantially larger. 

INFORMATION REQUIREMENTS IN POSITION AUCTIONS 

The Nash equilibria of the position auction game is a full-information solution concept. 

Even if the assumption that advertisers have full information could seem unrealistic, in 

real-world ad auctions is very likely to apply it. In fact Google reports clicks and impression 

data on an hour by hour basis (Varian, 2007). The search engine itself offers a “Traffic 
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estimator” that provides an estimate of the number of clicks per day and the cost per day 

associated with the advertiser’s choice of keywords. Moreover third-party companies 

known as “Search Engine Managers” (SEM’s) offer a wide range of services related to 

managing bids (Varian, 2007). All these conditions imply that the full-information 

assumption is a reasonable approximation. 

EMPIRICAL ANALYSIS 

In order to see if the expenditure profile is increasing and convex it is possible to plot xt 

versus the expenditure btxt, given the fact that it is available a set of position effects, 

quality effects and bids. However if it happens that the graph is does not show the 

previously mentioned properties, a perturbation of the data can be made. So the main 

point to address is: what to perturb? The first variable to perturb is represented by the ad 

quality, es, because this variable is the most difficult to observe and for this reason has the 

highest level of uncertainty. Now consider these facts (Varian, 2007): 

1) let (dses) the value of the perturbed ad quality 

2) let (ds) be the set of multipliers that indicate how much each ad quality has to be 

perturbed in order to satisfy the inequalities (21)-(23) 

Because of the fact that prices, ps, are linear functions of es, perturbations can be thought 

as applying to prices. The model can thus motivate the following quadratic problem 

(Varian, 2007): 

mind    s-1)2 

such that:  

 ds-1ps-1-xs-1-dspsxs ≥  dspsxs-ds+1ps+1 xs+1                                                                                                                                                                                                               

       (xs-1-xs)                      (xs-xs+1) 

 

The latter is a simple quadratic problem easily solvable because the constraints are linear 

in (ds) (Varian, 2007). 
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Graph 4 (Hal R. Varian, 2007) 

 

In figure 4 examples of expenditures profiles using actual data are shown. As theoretically 

predicted the shape of the expenditure profile tends to be increasing and convex. 

Moreover is frequently flat. One possible reason is that Google will promote ads in these 

slots to the top-of-the-page position given that certain conditions hold. Varian made finally 

a statistical study where he concludes that relatively small perturbations are required to 

make the observations consistent with the SNE models. It is interesting to notice that since 

the NE inequalities are weaker than the SNE inequalities, the required perturbation for 

consistency with NE would be even smaller.  

A COMPARISON WITH THE PREVIOUS LITERATURE 
 

There are mainly three elaborates belonging to the previous literature in which the topic of 

position auctions is examined. The first one encountered in chronological order is a work 

made by Shapley and Shubik (1972). They describe an assignment game where agents are 

allocated objects with at most one object being assigned to an agent. In game theory 

terms agent a’s valuation of object s is given by uas. The goal is to find the assignment of 

objects to agents that maximizes value. This is possible to solve by using linear 
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programming or other specific algorithms. The main result is that an optimal assignment 

can be decentralized by implementing price mechanism. This means that at an optimal 

assignment there will be a set of numbers (pa) that can be interpreted as the price of the 

object assigned to agent a so that: 

uas-pa≥ uas-pb for all a and b 

the logical consequence is that at the prices (pa) each agent will find himself in a condition 

where the object assigned to him is weakly preferred over any other object.  The 

comparison of these concepts with the ones of symmetric Nash inequalities  leads to 

notice that the definitions are the same with: 

1)  uas=vaxs and  

2) pa=ba+1xs 

The intuition is that the position auction game described by Varian is merely a competitive 

equilibrium of an assignment game having a specific and special structure for utility. The 

special structure of uas allows to solve for the largest and the smallest competitive 

equilibrium.  

The second reference point can be identified in the work performed by Demange et al 

(1986). They construct an auction which establishes a competitive equilibrium. However 

the latter presents some differences with the position auction. 

Finally the third work is represented by Edelman et al (2005). The concept they introduce is 

the one of “locally envy free equilibria”. They recognize the fact that advertisers bidding on 

search engines can change their bids very frequently. For this reason sponsored search 

auctions can be thought as continuous time or infinitely repeated games where advertisers 

originally have private information about their types, gradually learn the values of others, 

and can adjust their bids repeatedly. In principle the set of equilibria in these games can be 

very large , with players potentially punishing each other for deviations. Since the 

strategies required to support such equilibria can be very complex we focus on simple 

strategies by imposing some restrictions and assumptions: 
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 All values are common knowledge: over time advertisers learn all relevant 

information 

 Bids can be changed at any time. Stable bids must be best response to each other. 

Otherwise they have an incentive to change it. The assumptions is thus that the bids 

form an equilibrium in the simultaneous move, one-shot game of complete 

information 

 Establish the set of simple strategies that can be used by an advertiser to increase 

its payoff, beyond simple best responses to other players’ bids. 

Definition 1: an equilibrium of the simultaneous move game induced by GSP is locally envy-

free if a player cannot improve his payoff by exchanging bids with the player ranked one 

position above him.  

However their study concluded that each player can’t increase his payoff by exchanging 

bids with the player ranked one position above him. This yields the same bids as the lower 

bound of the SNEs previously described. The  model also assumes that advertisers have 

converged to a long run steady state, have learned about each other’s values, and no 

longer have incentives to change their bids. These useful insights rely on the notion of 

“Generalized English Auction”, where there is a clock showing the current price, which 

continually increases over time. At the beginning the price is zero and all advertisers are in 

the auction. An advertiser can drop out at any time, and his bid is the price on the clock at 

the time when he drops out. The auction is over when the next-to-last advertiser drops 

out. The price at which he dropped out is the payment of the last remaining advertiser and 

so on. So the English auction turned out to be a useful approximation.  

This concept indeed demonstrates that the unique perfect equilibrium of this game is the 

same as the locally-envy free outcome. 

Beyond the above mentioned studies there exist several papers that developed auctions 

yielding competitive equilibria for the assignment game. However their relationship with 

this paper is only marginal.  
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POSITION AUCTIONS: APPLICATION TO COMPETITIVE SAFETY 

STRATEGIES  
 

One of the main challenges of game theory relates to the provision of an advice to the 

decision maker on how to choose an action in a given multi-agent encounter. However, 

many notions falling under the so-called “prescriptive agenda” face not fully satisfying 

answers. The concept of NE for instance is a very useful concept from a descriptive point of 

view but does not address the issue of how an agent should choose his action in a game. 

The fact that a NE strategy can only be justified by assuming that the other agents are 

committed to a specific action profile is an extremely strong assumption about their 

rationality(Kuminov and Tennenholtz, 2007) . There are mainly two approaches to the 

issue in order to solve the above mentioned problem. The first one does not consider any 

guarantee to the agent, but in one case, i.e. when the class of opponents he may face is 

strongly restricted. The second one, goes under the name of “ competitive safety analysis” 

and deals with guarantees the agent can be provided with.  

INTRODUCTION TO KUMINOV AND TENNENHOLTZ STUDIES 

This model on competitive safety strategies has been elaborated by Kuminov and 

Tennenholtz and it relies on Varian’s work on position auctions discussed in the previous 

sections. However the authors have considered opportune to apply some slight changes to 

the original framework in order to get some interesting insights on safety strategies; in 

some cases their decision was also related to the realness of the assumptions. However, 

these concepts will be clearer in the next paragraphs. 

THE REVISED AD-AUCTION SETTING 

The model of ad auctions on which the analysis is based is build on the formal model 

discussed in the previous sections, made by Varian. However minor changes will be here 

applied. Even if the model has been originally presented for the complete information 

setting, its adaptation to the incomplete information one is straightforward. The ad-

auction setting relies on the following facts  (Kuminov and Tennenholtz, 2007): 



46 
 

 It is assumed that N=S; this means that there are N players competing for S slots. 

 The clickthrough rate of a slot is denoted by xi, i   {1…N}. It is useful to recall that 

the CTR (Clickthrough rate) represents the publicly known property of a slot and is 

not depending on the player who is using it.  Moreover  i: xi≥xi+1, so slots are 

numbered in decreasing number of CTR. For the sake of simplicity, xi=0 is defined 

for all i>N. 

 In this model the private value is represented by the utility derived by each agent 

from a single unit of CTR. The latter is assumed to be the same, notwithstanding the 

slot from which it originates. In addition, vi,i   {1…N} and  i   {1…N} : vi>0. Always 

for simplicity vi=0 for all i>N 

 The players’ bids represent the maximal price per unit of CTR they are disposed to 

pay to the CTR provider. They can be denoted by:   i,i   {1…N}. Analogously of what 

we said before,    i≥   i+1, which means that agents are numbered in decreasing order 

of bids. The rules of the auction imply that  i:   i≥0; however for ease of analysis in 

this elaborate,   i=0 for all i>N 

 Varian’s model assumes slots are assigned to users according to the decreasing 

number of bids. In that case the highest bidder is awarded the slot with the highest 

CTR; the second highest bidder, the second best slot, and so on. For the sake of 

simplicity in this model ties are broken. The price that must be paid by an agent per 

unit of CTR is equal to the bid of the agent immediately below him by following this 

ordering. The price paid by agent i is denoted by pi so that: 

pi=   i+1 

 When agents’ bids are:   1 ≥    2≥ …  I ≥   i+1 … ≥  N, the utility of agent i,  having 

private value vi corresponds to: 

 (vi-  i+1)xi 

So it is possible to notice that Kuminov and Tennenholtz gave a sense of homogeneity to 

their study by posing: 

I. xi=0 for all i>N 



47 
 

II. vi=0 for all i>N 

III. bi=0 for all i>N 

The definitions of NE and SNE in the complete information setting are already provided in 

(Varian, 2007). The SNE presents several nice properties, as(Kuminov and Tennenholtz, 

2007) : 

1) In a SNE, s : vs > vs+1. This means that agent i is willing to bid higher than agent k 

only if i’s true type is really higher than that of k. This notion is central because in 

this work it is assumed that agents are indexed in decreasing order of valuations; 

moreover they use indeed this property to state that this order coincides with the 

order of their bids in a SNE 

2) If a numbered sequence of bids is a SNE it must be that:  

    sxs-1≥ vs (xs-1-xs) +   s+1xs 

3) Property number 2 implies the fact that the bid of agent i in a SNE is bounded in this 

way: 

         i≥    
 

    
        

   t (xt-1 – xt)  

         

It is important to highlight the fact that a bidding profile where all bids are equal to their 

respective lower bounds shown above, is a SNE. The term that will be used here to denote 

this bidding profile is:“the best SNE”. 

 Moreover in the best SNE agents never overbid and the payoff of agent i in the best SNE is 

vixi-      
     t(xt-1 – xt). The latter is equal to what his equilibrium payoff would be in a VCG 

auction with the same valuation. In fact his payment corresponds indeed to the externality 

it imposes on other agents. The expression provided in (Varian, 2007) for the bid of agent i 

and the utility of agent i can be rewritten in the best SNE: 

  i≥ 
 

    
        

   t (xt-1 – xt)=   
 

    
 [ vixi-1 –    

   t (vt-vt+1)] 
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  i= (vi-  i+1)xi = vixi –vi+1 – vi+1xi +    
     t (vt –vt+1) =    

   t (vt-vt+1) 

 

One important thing is to underline that this model presents some differences with  

Varian’s one. In primis, the previous work assumes that N>S, instead here N=S. This change 

brings two important consequences: firstly the situation is altered with respect to the 

auctioneer, who has enough ad slots for all the agents; moreover the only motivation for 

agents’ bidding is the willingness to get a better slot. Perhaps this assumption is more 

realistic because of the fact that the nature of online advertisement does not present a 

practical limit on the number of ad slots, so the auctioneer has no reasonable motives to 

deny agents’ requests for slots(Kuminov and Tennenholtz, 2007) . 

Secondly in this model it is assumed that there is no reserve price. In this way the agent 

with the lowest bid gets the Nth slot for free. Differently from the previous case, here the 

decision is not linked with real-world similarities, rather it is considered a good 

approximation because the reserve price is negligible with respect to other agents’ 

valuations. 

In addition, even if the formulae for the bid and the utility in the best SNE derive from 

(Varian, 2007), they are valid in this model as well, where vN+1=0. In fact it is possible to 

reduce this model from that of Varian by adding a fictitious player having fixed valuation 

equal to zero. It can be noticed that in the best equilibrium this player does not affect slot 

allocation and expected utility since it always bids truthfully. However recall that this 

reduction does not function for other kind of equilibrium where the fictitious agent could 

overbid. 

ANALYZING THE COMPLETE INFORMATION SETTING 

The assumptions in this case are that (Kuminov and Tennenholtz, 2007): 

 Agents’ valuations are fixed  

 Agents’ valuations are common knowledge 
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The aim is to find the payoff that an agent can guarantee to himself regardless of other 

agents’ behavior. If there are no assumptions about other agents’ rationality, they can 

always force the agent to take the N’s slot, by bidding higher than the agent’s valuation. 

The latter case implies that the payoff loss that the agent suffers relative to his payoff in an 

equilibrium can be defined unbounded. Even in the case where other agents are 

constrained not to bid above their valuation , the agent’s payoff in best SNE could be N-  

times bigger with respect to his safety level (       ). This can be understood in the 

following example: 

 There are N agents and N slots 

 0  q  1 

 x1 0 

 the valuation is: vi=   
   

N-t= 
        

   
 

 The CTR’s is: xi=x1qi-1 

The consequence is that: 

 

I xi vi 

1 x1 1-qN/1-q 

2 x1q 1-qN-1/1-q 

… … … 

N-1 x1qN-2 q+1 

N x1qN-1 1 

 

The next objective is to determine the utility of agent 1. For the time being, let’s assume 

that all other agents bid truthfully; this implies that a bid made by agent 1 capturing slot i 

gives a payoff of (Kuminov and Tennenholtz, 2007) :  

 



50 
 

U1= (v1-vi+1)xi= x1qi-1   
   

N-t = x1qi-1     qN-i 
    

   
 = x1qN-1 

    

   
 

                                                                                        

The expression is increasing in i and monotone. For this reason agent 1 prefers to: 

1) Bid 0 

2) Take slot N 

Get a payoff that equals to = x1qN-1 
    

   
 

On the one hand, it is thus clear that the safety level payoff of agent 1 (  1) cannot be 

higher that this value. On the other hand, the utility of agent 1 in the best SNE is(Kuminov 

and Tennenholtz, 2007) :  

  1=   
   t(vt-vt+1)=    

   1qt-1qN-t=Nx1qN-1 

The competitive safety ratio is the ratio between the expected payoff in the best SNE 

induced by the valuations’ realizations and the expected payoff guaranteed by the safety 

level strategy, given that other agents do not overbid. In this case it is:  

R(N)= 
   

   
 ≥ 

    
   

   
      

 

   

  = 
      

    
 

The inference is that for every N and 0    1, is possible to construct an example where 

the competitive safety ratio is at least N-  by choosing q≤ 
 

 
. The following theorem shows 

indeed that N is an upper bound on the competitive safety ratio: 

Theorem 3: In the complete information setting with N slots and N players, the competitive 

safety ratio, i.e. the ratio between an agent’s payoff in a best SNE and the payoff 

guaranteed by a safety level strategy, given that the agents do not overbid, is at most N. 

Proof: when calculating the pure safety level of an agent, the underlying assumption is that 

other agents know the bid of the agent under consideration plus all the valuations. They 
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try to maximize the utility of the agent considered, who will be here simply denoted as  the 

agent (Kuminov and Tennenholtz, 2007).   

 

We will adopt the following notation: 

 vi represents the ith valuation in the ordered sequence of all agents’ valuations 

    i represents the ith bid in the ordered sequence of all agents bids 

    represents the valuation of the agent 

    i’ represents the bid of the agent 

 v-index(x):  [0,1]       {0…N-1} stands for the number of adversarial agents 

characterized by valuations strictly higher than x (e.g. the valuation of the agent 

under consideration is vv-index(v’)+1; the one of the agent immediately below is vv-index 

(v’)+2) 

 b-index(x):  [0,1]       {0…N-1} stands for the number of adversarial agents 

characterized by bids strictly higher than x 

the utility of the agent is (Kuminov and Tennenholtz, 2007): 

(v’-  b-index (b’)+2)xb-index(b’)+1 

So, in order to maximize the agent’s payoff, it is necessary that other agents choose their 

bids in way that they maximize: 

1)   b-index (b’)+2       

        and 

2)  b-index (  ’) +1 

However the previous two are conflicting objectives. In fact since agents aren’t allowed to 

overbid by assumption. This suggests that in order to maximize the price paid by the 

agent, some of the agents with valuation higher than his bid will have to bid lower than 

him, in order to make him get a better slot. Because of the fact that there is no need to let 
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the agent go up more than one slot, an optimal adversarial strategy can be identified in 

the following threefold solution: 

I. All adversarial agents having valuations smaller than the agent’s bid must bid 

truthfully 

II. The ones with valuations higher than the agent’s bid, except one, should bid 

truthfully 

III. One of the players having higher valuation can choose between bid truthfully or 

submit a bid equals to that of the agent.  

This implies that (Kuminov and Tennenholtz, 2007): 

 The agent’s utility if all adversarial players bid truthfully would be: 

              xv-index (b’)+1 (v’-vv-index (b’)+2) 

 The agent’s utility when one of the adversarial players with higher valuation 

chooses to bid an amount equal to him is: 

             xv-index(b’)(v’-  ’) 

So, taking into consideration all valuations and his bid, the utility of an agent is: 

min{xv-index(b’)+1 (v’-vv-index (b’)+2),  xv-index(b’)(v’-  ’)} 

It will be soon explained why among all possible bids that guarantee slot k, i.e. all   ’ so that 

v-index (  ’) =k-1, the agent weakly prefers to submit the smallest bid possible. This is clear 

by recalling that: 

  all the adversarial agents implement the strategy described above  

  that if there is complete information the agent knows all the valuations 

 Ties are decided in favor of the agent. This means that the agent can, without 

incurring a loss of utility, consider only N-v-index (v’)+1 strategies – the valuations of 

the adversarial agents with valuations lower than his own 

So, his safety level payoff is: 
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  = max0≤b’ min {xv-index(b’)+1(v’-vv-index(b’)+2), xv-index(b’) (v’-  ’) 

Which yields as result: 

maxi: v-index(v’)+1≤i≤Nxi(v’-vi+1) 

From this stems the fact that for any index j such that v-index (v’)+1 ≤j≤N: 

  

  
 ≤1/ v’-vj+1 

This implies that the competitive safety ratio is: 

  

  
= 

            
 
               

  
    ≤   

       

       

 
               ≤ N 

                                                                                               

In the special circumstance in which the CTR’s are linear, the following theorem provides 

the worst-case bound: 

Theorem 4: In an ad auction setting with complete information where there are N slots and 

N players, when the CTR’s are given by xi=d(N-i+1) for some d>0, the competitive safety 

ratio is at most: 

 
 

 

 
    ≤ 1+ ln N  

Proof:  in the best SNE the payoff of the agent corresponds to (Kuminov and Tennenholtz): 

  = (v’-bv-index(v’)+2)xv-index(v’)+1=v’xv-index(v’)+1 –      
               t(xt-1 –xt) = v’d(N-v-index(v’))-d 

     
               t= 

=d       
               ’-vt) 

Moreover the bound on the safety level payoff provided in theorem 1 implies that for all i 

such that v-index(v’)+2 ≤i≤N+1, the following condition holds (Kuminov and Tennenholtz, 

2007): 
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(v’-v)≤ 
  

        
 

The above statement implies that the competitive safety ratio is at most: 

  

  
≤  

 

     

   
                = 1+  

 

 

             
    < 1+ ln N 

It can be shown that  
 

 

 
    is a tight bound, therefore it corresponds to the competitive 

safety ratio. 

WHAT HAPPENS IN THE INCOMPLETE INFORMATION SETTING 

The decision problem of an agent in an auction with incomplete information, will be here 

analyzed by considering the following six circumstances(Kuminov and Tennenholtz, 2007):  

I. The agent which is being considered has valuation v’   [0,1]; the latter is known to 

him 

II. The agent makes an assumption about other agents’ distributions: they are 

distributed according to a known distribution 

III. The agent is characterized by risk neutrality 

IV. The agent faces a choice between two available courses of action. The first one is to 

select to “play for the best SNE”. This could for instance reflect the fact that the 

auction is repeated with the same agents and the same valuations; here the play 

sequence is conceived to converge at the best SNE. The value that the agent assigns 

to this action is corresponds to his expected payoff in the best SNE, induced from 

the realizations of the players valuations in which the expectation is conceived in 

relation to the distribution of the other agents’ valuations. It should be noticed that 

this corresponds also to his expected payoff, given his valuation,  present in the 

corresponding Bayes-Nash equilibrium of this auction. The second course of action 

is to implement a “safety level strategy”. The latter implies that the agent chooses 

an action that guarantees him the best expected payoff possible during the auction, 

against any reasonable action taken by the other players. Notice that the 

expectation is computed with respect to the distribution of other agents’ valuations. 
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The value assigned by the agent to this action is represented by the guaranteed 

expected payoff. In particular, the model of interaction assumed is the following 

one (Kuminov and Tennenholtz, 2007): 

 All agents are assigned by taking into consideration their private values, 

which are fixed 

 The agent considered, chooses his bid   ’, by considering his valuation only. In 

fact he is not aware about other agents’ valuations, beyond their distribution 

 The other agents choose their bids by considering   ’ plus the realizations of 

all valuations; they include the agent’s one. It is assumed that: they can freely 

communicate, they cannot overbid ( the bid should be at most equal to their 

valuations); they select the joint action that maximizes the agent’s utility 

This model of interaction implies that agents are not able to gain by using mixed 

strategies. For this reason only pure strategies will be here considered. 

V. All things being equal, the intuition is that the second course of action is preferred 

to the first one because of the fact that it does not require neither elaborate and 

hard-to-justify assumptions with respect to the rationality of other agents’ behavior 

nor additional structure on the basic auction format 

VI. The agent is willing to know how much of his utility will be lost by selecting action 2 

instead of action 1. However the answer depends on: the distribution of the 

valuations and the CTR values of the ads slots. Here uniformly distributed valuations 

will be considered and two central types of CTRs: exponentially decreasing and 

linearly decreasing. 

EXPONENTIALLY DECREASING CTRs 

Theorem 5: In the incomplete information ad auction setting characterized by the 

following parameters (Kuminov and Tennenholtz, 2007):  

1) Agents’ valuations are independently and uniformly distributed over [0,1] 

2) The CTR’s can be obtained by xk = x1qk-1 for 0<q<1 and x1>0 
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The ratio between the expected payoff in the best SNE stemming from the valuations’ 

realizations and the expected payoff guaranteed thanks to the safety level strategy is : 

At most  e. 

Underlying assumption: other agents do not overbid 

Proof: let : 

 v-index be a random variable, representing the number of adversarial agents with 

valuations strictly higher than v’.  

 the goal be finding the agent’s expected utility in the best SNE 

  =    
    (    v-index (v’)+1=k) P(v-index (v’)+1=k) 

P(v-index(v’)+1=k) =  
   
   

  (1-v’)k-1 v’N-k 

E(    v-index(v’)+1=k) = E (   
   t (vt-vt+1) | v-index(v’)+1=k) = 

= xk(v’- E(vk+1|v-index(v’)+1=k) +   
     t E(vt-vt+1 |v-index(v’)+1=k) 

From the above calculation emerges that the condition: 

v-index(v’)+1=k 

implies that the valuations {vt: t=k+1,…,N} represent the order statistics of N-k 

independent random variables, uniformly distributed over [o,v’]. For this reason: 

1) vt  v’ Beta(N-t+1, t-k) 

2) E(vt)= v’ 
     

     
 

So: 

E(vt-vt+1)=v’
     

     
 -v’ 

   

     
=  

  

     
 

This implies that: 

E (  |v-index(v’)+1=k) =xk (v’-v’
   

     
) +   

     t 
  

     
= 



57 
 

= 
  

     
    

   t 

The consequence is that in best SNE the expected utility is (Kuminov and Tennenholtz, 

2007): 

   =    
    (U|v-index(v’)+1=k) P(i=k) which equals 

 

 
   

      
   t)  

 
   

 (1-v’)k-1v’N-k+1 

Because of the fact that: 

   
   i = xk 

        

   
= 

  

   
 (qk-1-qN) 

At the equilibrium, the expected utility is equal to: 

  = 
 

 
    

      
   t)  

 
   

 (1-v’)k-1v’N-k+1= 

  

      
 [  

 
   

  
    ((1-v’)q)k-1v’N-k+1-  qN  

 
   

  
   

 (1-v’)k-1v’N-k+1] 

It is possible to reformulate the equations by recalling that the second sum corresponds to 

a particular case of the first sum when q=1. In this way the authors achieve the following 

result: 

  =  
  

      
  [((1-v’)q +v’)N – q N] 

However, when calculating the safety level the assumptions are that: 

 The other agents know the bid of the agent and all the valuations 

 The other agents seek to minimize the utility of the agent, which stems from all the 

valuations and his bid.  

The agent instead (Kuminov and Tennenholtz, 2007): 

 Knows his valuation 

 Assumes other players’ valuations are i.i.d. (independently identically distributed) 
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This implies that he will select a bid that maximizes: 

  =    
   (  |v-index(  ’)+1=k)P(v-index(  ’)+1=k) 

P(v-index(  ’)+1=k) = 
   
   

  (1-  ’)k-1  ’N-k 

E(  |v-index(  ’)+1=k)≥xk(v’-  ’) 

For this reason: 

  ≥ max0≤b’≤1    
   k (v’-  ’)  

   
   

  (1-  ’)k-1  ’N-k= 

=max0≤b’≤1 x1 (v’-  ’) ((1-q)   ’+q)N-1 

In order to find the maximum it is possible to apply the first order condition, i.e. to find the 

first derivative and compare it to zero: 

 

    
   =0 which gives as ultimate result the following one: 

  ’= 
              

      
= v’

   

 
 - 

 

      
 

Since the above expression is positive if v’≥
 

          
 

The maximum can be achieved using this strategy: 

  ’ =  
     

 
  

 

       
            

 

          

                          
  

The safety ratio is computed in the model for both cases. After the due calculation the 

outcome achieved in the first case is (Kuminov and Tennenholtz, 2007): 

   ≥
   

 

      
 
 

 
 

Because of the fact that as previously seen: 

  ≤ 
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It is possible to observe that the relative payoff loss from the implementation of the safety 

level strategy is bounded by e. 

In the second case since the agent bids    =0, he obtains the last slot for free, and so: 

  ≥ v’x1qN-1 

Recalling that: 

  = 
  

      
     

 
 
  

    ((1-q)v’)iqN-i  

The relative payoff loss from the usage of the safety level strategy is bounded by: 

  

  
≤ 1/ N(1-q)v’qN-1   

 
 
  

   ((1-q)v’)iqN-i= 

=  
         

 
 N-1   

It is possible to replace v’ with this bound in the expression above, which yields: 

  

  
 <  

  

   
  

 
 N-1 =    

 

   
 N-1 < e 

In conclusion, it can be stated that the payoff loss ratio caused by using a safety level 

strategy rather than playing for SNE is bounded by e. 

LINEARLY DECREASING CTRs  

The following theorem provides a solution for linearly decreasing CTR’s and uniformly 

distributed valuations. 

Theorem 6:  In the complete information setting with the following parameters (Kuminov 

and Tennenholtz, 2007): 

I. Agents’ valuations are independently and uniformly distributed over [0,1] 

II. The CTR’s can be obtained by xk= d(N-k+1) for d>0 
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III. The ratio between the expected payoff in the best SNE stemming from the 

valuations’ realizations and the expected payoff guaranteed thanks to the safety 

level strategy is : 

At most  2. 

Underlying assumption: other agents do not overbid 

Proof: In the best SNE, the utility of agent i is the following one: 

  i= (vi-   i+1)xi = vixi –    
     t (xt-1 –xt) 

The latter can be compared with the expected utility of the agent in the best SNE, which is 

(Kuminov and Tennenholtz, 2007): 

  =    
    (  |v-index (v’)+1=k) P(v-index(v’)+1=k) 

Since: P(v-index(v’)+1=k)=  
   
   

  (1-v’)k-1v’N-k 

Then:  

E(  |v-index(v’)+1=k) = E (vkxk –    
     t (xt-1 –xt)| v-index (v’)+1=k) = 

= v’d (N-k+1)-d    
     (vt| v-index(v’)+1=k) 

It is important to recall that (Kuminov anf Tennenholtz, 2007): 

 Given v-index(v’)+1=k the valuation of the N-k agents having valuations lower than 

v’ is uniformly distributed over [o,v’] 

 For the above reason the expected value of each of them, not constraining any 

order of them, is 
  

 
 

 The expected utility at the equilibrium level is:  

          E(  |v-index(v’)+1=k)=v’d(N-k+1)- 
        

 
 = dv’ 

     

 
 

Therefore : 
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   = 
   

 
         

   
   

            
                

   
   

     
   

    1       

By doing the right computations it results that: 

   = 
   

 
 ((N-1)v’+2) 

On the other hand, the previous theorem stated that the safety level of the agent is: 

  ≥ max0≤b’≤1    
   k (v’-  ’)  

   
   

  (1-  ’)k-1  ’N-k 

To find the maximum the same process is applied. Namely it is necessary to find the first 

derivative and compare it to zero (Kuminov and Tennenholtz, 2007): 

 

    
   =0 , which yields as outcome: 

   = 
  

 
 -  

 

      
 

Here it is possible to recognize two cases: 

1) 
  

 
 -  

 

      
 ≥0 , i.e. v’≥ 

 

   
 

In this specific case the safety level payoff is: 

  ≥ d(
  

 
 + 

 

      
)        

  

 
  

 

      
    = 

=
 

 
              

 

   
  

So, in this case the competitive safety level is represented by (Kuminov and Tennenholtz, 

2007): 

  

  
≤ 2 

            

             
 

     

 < 2 

2) 
  

 
 -  

 

      
 <0, i.e. v’< 
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Here, in order to guarantee the maximal value, the agent should: 

 Bid 0 

 Take the lowest slot 

 Get   =v’d 

On the other hand in the best SNE the expected payoff is: 

  = 
   

 
 ((N-1)v’+2) < 

    

 
 

So the competitive safety ratio is: 

  

  
< 

 

 
 

So, the payoff loss ratio stemming from the implementation of a safety level strategy and 

the abandonment of the SNE strategy is bounded by 2. 

ADDING QUALITY EFFECTS TO THE LINEARLY DECREASING CTRs 

In his model, Varian used an additional parameter, the “ad quality” property of an 

advertiser. This reflects the actual ad auction mechanism used by Google. As discussed in 

the previous sections, Varian’s model that the amount of clicks received by an ad allocated 

to slot i, is the product of the measurement of the ad quality and the advertiser’s bid. So, 

the model implied that the price per click paid by each advertiser was the minimum to 

retain its position (Kuminov and Tennenholtz, 2007). 

Because of the fact that the model here considered assumed instead that all advertisers 

are of the same quality, it considered only this special case. It should be remembered that 

the negative results related to the complete information setting, are applicable here as 

well.   

In order to analyze the incomplete information model, it is possible to rely on the 

observation that this model corresponds to a variation of the basic one, in which players’ 

valuations are said to be the product of their “core” valuations and the ad quality 

parameter of the corresponding player. Given that, it will be here assumed that: 
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1) Both the valuations and the ad quality of advertisers are independently and 

uniformly distributed over [0,1] 

2) The  resulting equivalent basic model implies that the valuations are distributed 

according to the PDF (probability density function):  f(x)= - lnx 

3) There are linearly decreasing CTRs 

So, the competitive safety ratio is given by the next theorem: 

Theorem 7: In the incomplete information setting with the following parameters (Kuminov 

and Tennenholtz, 2007): 

1) Agents’ valuations are i.i.d over [0,1] with PDF f(x)= -lnx 

2) The CTR’s are represented by: xk=d(N-K+1) for d>0 

Then the ratio between the expected payoff in the best SNE induced by the valuations’ 

realizations and the expected payoff stemming from the safety level strategy: 

 Is at most 1+
 

 
(N-1) 

Underlying assumption: other agents do not overbid 

Proof:  The main passages that prove the above theorem can be summarized in the 

following conclusions: 

F(a)= P(Z<a)= 
         

        
 

In the best SNE the utility of agent a is:  

  i= (vi-  i+1)xi = vixi –    
     t(xt-1-xt) 

So, the corresponding expected utility associated is: 

  =   
   (  |v-index(v’)+1=k) P(v-index(v’)+1=k) 

Since: P(v-index(v’)+1=k) =  
   
   

  (1- F(v’))k-1 F(v’)N-k 

Then: E(  |v-index(v’)+1=k)= v’d(N-k+1)-d      
     t)|v-index(v’)+1=k) 
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Given that: 

1) v-index(v’)=k 

2) there is no imposition on any ordering of players 

the expected value of each member among the N-k players is: 

E(v|v<v’) = 
           

         
 , which implies that at the equilibrium the expected utility is: 

E(  |v-index(v’)+1=k) = 
   

         
   2N ln v’-3N+2ln v’-1 (k-1) (2ln v’-3)] 

Kuminov and Tennenholtz continue their study with a series of computations, aimed at 

showing that the expected utility in best SNE is: 

   = dv’    
  

 
                 

The previous theorem provided the safety level of the agent: 

  ≥ max0≤b’≤1    
   k (v’-  ’)  

   
   

  (1- F(   ))k-1 F(   )N-k= 

=max0≤b’≤1 d(v’-  ’) ((N-1)   ’(1-ln  ’)+1) 

To find the maximum the same process applied before is implemented; thus the 

computation of the first derivative and the comparison of it to zero: 

 

    
  =  d(N-1) (2  ’ ln  ’ +v’ ln  ’ -  ’)-d 

It should be noticed that the derivative is always negative. This implies that in order to 

guarantee the maximal value, the agent should: 

1) bid 0 

2) take the lowest slot 

3) get   = v’d 

The above considerations imply that the competitive safety ratio is: 
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≤ 1+

  

 
 (3-2 ln v’) (N-1) 

It is possible to verify that the previous expression is monotonic and increasing over v’  

[0,1]. The implication is that the maximal competitive safety ratio is obtained when v’=1. 

Then: 

  

  
≤ 1+

 

 
 (N-1) which stands for the competitive safety ratio in this case. 

ACCOUNTING FOR SPECIFIC VALUATION VALUES OF THE AGENT 

While until now Kuminov and Tennenholtz concentrated on bounds on the competitive 

safety ratio that hold in an homogeneous way for all the valuations of the agent, now the 

possibility that those bounds can be enhanced by limiting the valuation values of the agent 

is explored.  

Moreover, the decision problem formulated before implies that showing a good bound for 

a subset of possible valuations considers the fact that if the agent’s valuation falls in that 

subset, he should analyze the possibility of using a safety level strategy. Differently for 

other kinds of valuations he could improve his situation by using alternative strategies. The 

following theorem motivates the next section: 

Theorem 8: In the incomplete information ad auction setting, in which the agents’ 

valuations are distributed over [0,1] with a PDF which is strictly positive in [0,1]  and well-

defined then  (Kuminov and Tennenholtz, 2007): 

 N:           =1, where v’ represents the valuation of the agent 

Underlying assumption: R is the ratio between the expected payoff in the best SNE induced 

by the valuations’ realizations and the expected payoff guaranteed by the safety level 

strategy, given that other agents do not overbid. 

Proof: let 

1) xN denote the CTR of the last slot 

2)    denote the safety level payoff of the agent 
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Then for any valuation it is known that v>c of the agent:  

  ≥ vxN 

In fact the agent has always the possibility to bid 0 and guarantee at least the last slot.  

On the other hand from the notion of  expected equilibrium payoff it is possible to obtain 

that: 

          ≤         
                  

       

   
 = 1 

In fact as the valuation of the agent approaches 0, the probability that all other agents’ 

valuation are greater than his one approximates 1. 

However the above explained theorem has only motivational importance, while from a 

practical point of view it does not present considerable concerns. In fact even if it arrives at 

the point that for any competitive safety ratio R>1 there exists c>0 so that for every 

v’        the ratio is at most R, it fails in demonstrating how to compute this c or to show 

that it has a value large enough to be practically useful (Kuminov and Tennenholtz, 2007). 

So in order in order to study the behavior of the competitive safety ratio when v’ assumes 

small values additional assumptions are required. This regard the CTR values of the slots 

and the distribution of the valuations. 

IMPORTANT INFERENCES 

In the next paragraphs, there will be presented some observations stemming directly from 

the previous analysis. 

Observation 1:  In the incomplete ad auction setting characterized by the following 

parameters (Kuminov and Tennenholtz, 2007): 

 The agents’ valuations are uniformly and independently distributed over [0,1] 

 The CTRs are represented by xk=x1qk-1 for 0<q<1 and x1 is positive 

When the agent’s valuation is:  v’<
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The ratio between the expected payoff in the best SNE stemming from the valuations’ 

realizations and the expected payoff guaranteed thanks to the safety level strategy given 

that other agents do not overbid is obtained by: 

 
         

 
 N-1   e ^ 

          

 
v’ 

It can thus be inferred that the competitive safety ratio diminishes exponentially for small 

valuations of the agent, as v’ gets close to zero. However, the relevant range is very small. 

In fact for values: N=10 and q=0.5 the valuation of the agent should be lower than 0.01 in 

order to have a safety ratio of 1.1. 

Observation 2: In the incomplete ad auction setting characterized by the following 

parameters (Kuminov and Tennenholtz, 2007): 

 The agents’ valuations are uniformly and independently distributed over [0,1] 

 The CTRs are given by xk=d(N-k+1) for d>0 

In the case where the agent’s valuation corresponds to v’<
 

   
 

Then the ratio between the expected payoff in the best SNE stemming from the valuations’ 

realizations and the expected payoff guaranteed thanks to the safety level strategy given 

that other agents do not overbid is obtained should be: 

At most: 
 

 
 ((N-1)v’+2)=1+

   

 
 v’ 

The above statement communicates that the competitive safety ratio decreases linearly 

for small valuations of the agent, as v’ gets close to 0. In fact if N=11, to obtain a safety 

ratio of 1.1 the agent’s valuation must be lower than 0.02. 

Observation 3: In the incomplete information ad auction setting characterized by the 

following parameters (Kuminov and Tennenholtz, 2007): 

 The agents’ valuations are uniformly and independently distributed over [0,1] over a 

PDF f(x)= -lnx 
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 The CTRs are given by xk=d(N-k+1) for d>0 

It is possible to observe that the ratio between the expected payoff in the best SNE 

stemming from the valuations’ realizations and the expected payoff guaranteed thanks to 

the safety level strategy given that other agents do not overbid is obtained is: 

At most: 1+
  

 
 (3-2lnv’) (N-1) 

In fact in the case where N=11, in order to obtain a competitive safety ratio of 1.1, the 

agent’s valuation should be lower than 0.0027. Even if this value might seem too low, the 

safety strategy turns to be very useful if the agent’s valuation is assumed to have the same 

distribution as the opponents’. 

INTUITIONS AND RESULTS 

In this model the assumptions that the slots values are either decreasing exponentially or 

linearly are believed to be real-world assumptions. For the latter setting, in the complete 

information model, achieving a constant competitive safety ratio is not possible. 

Differently in the incomplete information setting having uniformly distributed valuations, a 

competitive safety ratio of e can be obtained for exponentially decreasing CTRs, while for 

linearly decreasing CTRs it is equal to 2 (Kuminov and Tennenholtz, 2007). 

The intuition is that the divergent result obtained respectively for the complete and 

incomplete information settings is rooted in the fact that while a specific profile of 

valuations arbitrarily bad for the agent is shown, the probability that these “bad” profiles 

actually occur is negligible. Moreover the profiles that occur with a high probability, show a 

constant competitive safety ratio. 
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CONCLUSIVE REMARKS 

 

PECULIARITIES OF THE MARKET FOR INTERNET ADVERTISING 

The first thing that distinguishes the market for Internet advertising is that bids can be 

changed at any time. In fact an advertiser bid for a particular keyword will apply every time 

that keyword is entered by a search engine user, until the advertiser changes or withdraws 

that bid. For this reason the order ads are displayed to the user could be different any time 

since bids could have changed in the meantime.  

Second search engines sell flows of perishable advertising services rather than storable 

objects: if there are no ads for a particular search term during some period of time, the 

“capacity” is wasted (Edelman et al,2007). 

Third, unlike other markets where it is clear how to measure what is sold, there is no “unit” 

of Internet advertisement that is natural from the points of view of all the involved parties. 

In fact from the advertiser’s perspective, the relevant unit is the cost of attracting a 

customer who makes a purchase; the corresponding pricing model is a one where the 

advertiser pays only when a customer actually completes a transaction. Instead from the 

search engine’s perspective, the relevant unit is what it collects in revenues every time a 

user performs a search for a particular keyword; here the corresponding pricing model 

implies that the advertiser is charged every time its link is shown to a potential customer. 

PPC is a compromise between the two models: the advertiser pays every time a user clicks 

on the link (Edelman et al, 2007).  

GSP insists that for each keyword, advertisers submit a single bid even if different items 

are for sale. This one-bid requirement makes sense in this setting. In fact the value of being 

in each position is proportional to the number of clicks associated with that position; the 

benefit of placing an ad in a higher position is proportional to the number of clicks 

associated with that position. Even if the benefit of placing an ad to a higher position is 

that it is clicked more, the users who click on ads in different positions are assumed to 
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have the same values to advertisers, for example the same purchase probabilities. For this 

reason despite the GSP environment is multi-object, buyer valuations can be represented 

by one-dimensional types (Edelman et al, 2007). 

It is important to remember that different search engines implement different 

mechanisms. In fact Yahoo! Ranks advertisers purely in decreasing order of bids, thus 

ignoring the possible different dimensions among them, while Google multiplies each 

advertiser’s bid by its “quality score”, which is based on CTR and other factors to compute 

its “rank number”, ranks the ads by rank numbers and then charges each advertiser the 

smallest amount sufficient to exceed the rank number of the next advertiser. 

COMPUTER MEDIATED TRANSACTIONS 

The internet and the web represent a case of “combinatorial innovation”, where the 

component parts of these technologies can be combined many times by innovators in 

order to create new devices and applications. Nowadays a wide portion of economic 

transaction takes place over the Internet. The impact of computer mediated transactions 

can be classified in 4 main categories (Varian, 2010): 

 Facilitate new forms of contact 

 Facilitate data extraction and analysis  

 Facilitate controlled experimentation 

 Facilitate personalization and customization 

There is a crucial divergence of incentives in advertising: the publisher has space on its web 

page for an ad and it wants to sell these ad impressions to the highest bidders. The 

advertiser does not care about ad impressions but it does care about visitors on its web 

site. This implies that the publisher  wants to sell impression while the advertiser wants to 

buy clicks. This is a problem of exchange rate (Varian,2010). This is equal to the predicted 

clickthrough rate. The latter aligns the interests of buyers and sellers but creates other 

problems. For example if an advertiser pays only for clicks then it has no incentives to 

economize on impressions. 
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THE ROLE OF POSITION AUCTIONS IN GOOGLECONOMICS 

Google hired Varian as a chief economist. Googleconomics is two-folded: has a micro and a 

macro aspect. 

The macroeconomic side involves some of the company’s  apparent altruistic behavior. 

Google frees out products as Google Chrome, Android Os and so on. According to Varian 

anything that increases Internet use ultimately enriches Google; and since using Internet 

without using Google is not possible, we are speaking about a competition for “eyeballs” 

(Levy,2009).  

The microeconomics of Google is a little bit more complex. Selling ads generates both 

profits and huge amounts of data about users tastes and habits. These data are analyzed 

by the search engine in order to predict future consumer behavior. In fact Googleconomics 

is a system of constant self-analysis. 

As the business grew Kamangar and Veach decided to price the slots on the side of the 

page by means of an auction. It was a huge marketplace of virtual auctions in which sealed 

bids were submitted in advance and winners are determined algorithmically in fractions of 

a second (Levy, 2009).  

When Varian was hired in 2002, a bit after the implementation of the auction-based 

version of Adwords, he found out that the mathematical structure of the Google auction 

was the same was the same as those two-sided matching markets and his contribution to 

the firm was really decisive.  
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