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Abstract

The increasing global attention to greenhouse emissions and the recent cre-
ation of EU Emission Trading Scheme has clearly suggested the need of consis-
tent methods to value projects aimed to reduce gases. This need particularly
concerns companies that have to �nd a way to both remain pro�table and con-
form to new legal requirements. Multiple ways of cutting emission costs are
available nowadays: short term abatement measures, which primary involve
switching production machinery from coal to gas; long term abatement mea-
sures, which envisage the implementation of new types of projects �e.g Clean
Development Mechanism or Joint Implementation Mechanism suggested by Ky-
oto Protocol -. In this work we study the impact of the introduction of both
kinds of policy in a pricing model for CO2 allowances.

Keywords: CO2 emission certi�cates, EU-ETS system, CDM projects, Sto-
chastic optimal control.
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1 Introduction

The Kyoto protocol, signed in December 1997 in the homonymous Japanese city, established

the basis for the global �ght against carbon emissions. Not all countries in the world have

signed it � e.g. Afghanistan or Taiwan -, and some of the countries that subscribed the

protocol haven�t rati�ed it yet1 �from now on �Non-Annex I countries�2 �in opposition to

those nations that have both signed and rati�ed it � from now on �Annex I countries� -.

The original mechanisms introduced were mainly three:3

� International Emission Trading (IET): it permits the trade of CO2 allowances�

credits �Assigned Amount Units (AAUs) �between Annex I countries;

� Joint Implementation (JI): it consists in projects implemented by an Annex I coun-

try into another Annex I country. Those projects give origins to carbon credit called Emission

Reduction Units (ERUs) for the implementing country, while create carbon debits of AAUs

that have to be deducted from the host country quota;

� Clean Development Mechanism (CDM): it involves the enforcement of projects by

Annex I countries into Non-Annex I countries. The plan under analysis allows the Annex

I country to achieve carbon credits called Certi�ed Emission Reduction Units (CERs) that

will be added to its own endowment of carbon certi�cates.

The European Union has been one of the �rst to create a trading scheme system, the Eu-

ropean Union Emission Trading System - EU ETS -, which is nowadays the most developed

in the �eld.

Meanwhile lots of studies have been focused on the ways of optimizing this relatively new

system. Environmental �nance is a branch of �nance that has an important role in this sort

of works. Within it, an even more innovative research front is the so-called carbon �nance,

whose main goal is to understand price dynamics of carbon permits. Two types of factors

that could in�uence the evolution of CO2 prices are currently under investigation:4 short-

term abatement measures and long-term abatement measures. The main di¤erence between

the two is the time the measure needs to become e¤ective and reduce GHG emissions. Short-
1See Borloo et al. (2008).
2The term �Annex I countries� is interchangeable with �Annex B countries� since it includes countries

listed in Annex B of the Kyoto Protocol. �Annex I�is used just for simplicity but refers exactly to the same
nations.

3See Carmona, Fehr and Hinz (2009).
4See Carmona, Fehr and Hinz (2009).

2



term measures are typically the ones whose results occur rapidly, already starting from the

�rst compliance period �the period at the end of which a company is required to comply

with the �cap and trade�5 system depending on CO2 emitted throughout the period -. They

are mainly represented by fuel switching processes �e.g. switching machinery from coal to

gas �or production re-schedule. Long-term measures, on the contrary, become e¤ectively

carbon pro�table only some years after their inception: they require high initial investments

�which can be considered �xed costs �that will be recovered over the time of workability

of the plan through the carbon returns collected during the entire project�s horizon. JI and

CDM belong in all the e¤ects to this category. They depend critically on the availability of a

long term horizon in order to amortize their initial consistent cost. It has been observed6 that

the number of these projects sharply fell in the �nal part of Phase II: they have become less

relevant in this pre-2013 period since their validity was conditioned to the fact that, even

if registered before 2013, they would have started to generate carbon emission reduction

from 2013 onwards.7 However their number started to grow again in these �rst months of

Phase III, and it is forecasted to reach maximum peaks in the actual Phase due to its major

length.8

In this work project a two-scenario �nite horizon, continuous-time model is built in order

to reproduce the EU-ETS taking in consideration the environment with and without the

presence of CDM, in both models short term abatement measures are present. We focus

only on CDM since they are the most interesting instruments to lower carbon reduction. JIs

are only mechanisms to reallocate credits within countries that rati�ed the Protocol and,

actually, do not generate new carbon allowances. Possible extensions of the research could

try to insert this additional abatement measure in the model and study a more complete

and realistic scenario. At the end a numerical simulation is implemented in order to verify

the e¤ects of the presence of CDM projects on carbon price.

5�The overall volume of GHG that can be emitted each year by the power plants, factories and other
companies covered by the system is subject to a cap set at EU level. Within this Europe-wide cap, companies
receive or buy emission allowances which they can trade if they wish�, The EU-Emission Trading System
(EU ETS) �European Commission Factsheet, 2013.

6See Kossoy and Guigon (2012).
7See Directive 2009/29/EC.
8Phase III will be 8 years long, the longest Phase since the creation of the EU-ETS.
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2 Literature Review

An initial input for the body of literature today known as environmental �nance has been

given by Coase (1960) and Dales (1968). These authors were the �rst to propose the idea

of tradable allowances as a way of endogenizing the social cost of pollution and make more

e¤ective the resolution of this increasingly analyzed environmental problem. After these

publications a wide number of studies headed toward the search for the equilibrium price of

emission allowances. The topic was particularly deepened by Cronshaw and Kruse (1996)

and Rubin (1996) who demonstrated the equality between such price at equilibrium and

the marginal cost of the cheapest available abatement strategy for pollution. These results

apply only to situations without uncertainty, so their real implementation is quite di¢ cult

and they remain con�ned as more theoretical �ndings. Nonetheless they represent the basis

for the future developments in the �eld. Carmona, Fehr and Hinz (2009) analyzed in a

more realistic way the environmental problem, contextualizing the opportunity of reducing

carbon emission in the newborn EU Emission Trading Scheme. They were the �rst to make

a distinction between short-term and long-term abatement measures, available to �rms after

the implementation of the Kyoto Protocol to reduce carbon emissions. The paper suggests

a model for pricing CO2 permits in case N �rms decide to apply fuel switching, the cheapest

short-term abatement process available. The analysis under consideration relates only to

one trading period �in the case of EU ETS it is the year - that, even if divided in subperiods

to account for within-period trading among �rms, does not permit to consider multiperiod

abatement strategies such as JI or CDM, explicitly introduced by Kyoto Protocol. Evaluat-

ing only short-term measures is not representative of the real future possibilities available to

�rms since, even if in the present they are the cheapest procedures, in the near future they

could be considered obsolete: when a �rm already switches its technologies it becomes harder

to �nd new pro�table opportunities to switch them again. Seifert et al. (2008) consider one

representative agent/�rm that can decide how to comply with the pollution restrictions ei-

ther paying a penalty or reducing its emissions. The paper develops an interesting model

that permits to analyze the spot price of CO2 allowances at the beginning of the compliance

period. Starting from this equilibrium price a sensitivity analysis is conducted in order to

understand which variables impact on this price. Like the previous paper also this one lacks

a multiperiod view and is limited to short-term measures implemented in a compliance inter-
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val. Chesney and Taschini (2012) re-elaborate the preceding works introducing asymmetric

information between participants in the carbon market. The main �nding is that the carbon

price re�ects the probability of not complying with the regulation at the end of the period.

They introduce the problem of long-term abatement projects but only as a matter whose

value can be in�uenced by the carbon price path. Actually they want to predict future

carbon spot prices in order to understand what could be the actual value of these projects,

while in this paper we want to understand which impact the availability of these schemes

can have on the decision to implement them from the �rms�and regulator�s point of view.

We have identi�ed a gap in the literature history mainly concerning the non-inclusion of

long term projects in decisions taken by �rms relating to their emission schemes. Since we

support the idea that those projects are an essential part of a company�s decision making

process, we want to include them in the analysis and see if their introduction is worth or

not. Their presence should be pro�table simultaneously9 for the �rms and the Policy Maker:

a company in order to implement them should be better o¤, in terms of wealth, with their

inclusion, while the Policy Maker should observe a diminution in the overall level of CO2

emitted in the environment. In order to control for those two e¤ects we used dynamic

programming instruments respectively for evaluating the �rms�wealth, function of both the

emission policy of every company and the rules imposed by the EU-ETS,10 and the aggregate

level of emissions in the air, function of the emission policies only. At the end of this paper

we elaborate a numerical simulation showing under which conditions the presence of long

term projects is justi�ed. In these cases CDM should be considered a basic instrument for

the Policy Maker to in�uence carbon price preventing the Scheme to reach extreme peaks.

3 The Model

3.1 The main assumptions

Following the assumptions made by Seifert et al (2008) the model does not refer to the

wealth-maximization of a single �rm, but rather to a social wealth-maximization problem in

which all �rms that take part in the economic process are considered.11 The social planner

9If only one part considers the project necessary it will not apport any positive e¤ects in the world we
are considering.
10In particular we will show that some EU-ETS�s rules will impact directly on the level of emissions chosen

by �rms.
11For a discussion of the equivalence between this two maximization problems refer to Appendix B.
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is called to make a social-optimum choice, considering the aggregate level of emission and

the aggregate costs linked with emission cut. All the parameters presented thereafter should

be intended as aggregate ones.

As already discussed in the introduction, the framework in which the model is inserted

is a �nite horizon one, with T representing the �nal period under analysis. We assumed

T to be the duration of a EU-ETS Phase, presently it is equal to 8 years. Since in the

European scheme a compliance period is one year long12 we impose a penalty condition for

every integer intermediate instant:

P
�
xAt
�
=Min

�
0; pt(et�1 � xAt )

�
, t = 1; 2; 3::; T (1)

where xA is the total accounted emissions for the �rms in the Scheme - it will be de�ned later

in Sections 3.2 and 3.3 -, et is the initial endowment of EUAs13 allocated at the beginning

of every compliance period to the companies by the regulator - for t = 0; 1; 2; ::; T � 1 - and

pt is the penalty charged for every additional emission unit.

In the absence of abatement policies the �rms emit at a rate yt at every instant for the

entire duration of the period; yt is not under the control of the planner, and it can be split

in two parts: a deterministic component �(t; yt), and a volatility of �(t; yt).

The emission process yt follows the subsequent stochastic process, with y0 equal to a

given constant:

dyt = �(t; yt)dt+ �(t; yt)dWt (2)

where dWt represents the instantaneous increment of a standard Wiener process.14 It appears

reasonable to have an exogenous emission rate since in reality it can be a¤ected by unexpected

factors: changes in prices or structural changes in the sector.

In the models there are mainly three ways of reducing carbon emissions in every instant

t:
12At the end of every year the �rms have to comply with the restrictions of the Scheme, and in case their

emissions overpass their permits they have to pay a penalty.
13EUAs stay for European Union Allowances that is the European equivalent of AAUs.
14A standard Wiener process, also called standard Brownian motion, is a continuous time stochastic

process; on the interval [0; T ] it satis�es the following conditions: W (0) = 0 and for 0 � s < t � T
W (s) �W (t) �

p
t� s � N (0; 1) where N (:) is the normal distribution with mean � = 0 and variance

�2 = 1; so the Wiener process has stationary and independent increments.
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type of abatement strategy cost of the strategy payout of the strategy
buy CO2 permits on the market S(t) n

short term abatement strategies �t f

CDM projects C
t+1

t
(Table 1.)

The carbon price in every instant is S(t), n is the quantity of CO2 embedded in every

permit; �t is the price of implementing a short term abatement measure at every t it is

considered exogenous, f is the quantity of CO2 abated by the short term strategy in every

instant; C
t+1
is the �xed cost of implementing a CDM project - it is decreasing in time meaning

that a full initial amount C is paid only at t = 0 while thereafter only lower amounts are

paid to maintain the project operative - , while t is the carbon return of the project in

every t it is also taken as exogenous, it depends on two factors: g, the quantity of CO2

e¤ectively saved by the project in every moment and �; the conversion rate adopted by the

regulator to convert carbon saved in carbon reduction within the scheme. In particular t

can be modelled as:

t = �tg: (3)

For example if � = 1 every unit of carbon saved by the project can be translated in a complete

unit of carbon saved in the scheme, if � < 1 the scheme accepts as carbon reduction a lower

quantity than the one e¤ectively cut, and if � > 1 the scheme accepts as carbon reduction a

higher quantity than the one e¤ectively saved in the CDM. This � is an interesting variable

to study since it can be chosen by the policy maker and directly a¤ects the carbon price

through the carbon return of the projects under consideration.

In order to simplify the problem we assume homogeneity in the economy: every �rm

implements in period 0 the same project with the same cost and the same carbon returns.

So if N �rms are considered in the economy the cost of a single CDM will result in C
N
while

the return in every instant of a single project will be t
N
:

As previously explained trade of permits is explicitly considered as a way of reducing

carbon emissions. Nevertheless, since we are considering an aggregate problem, it does

not impact on the solution. In fact if zi;t represents the number of permits exchanged -

positive if bought, negative if sold - by �rm i at time t, we have to assume the market

7



clearing condition
PN

i=1 z
�
i;t = 0, and the exchange of permits does not impact anymore on

the aggregate objective function of our problem.15 This condition implies the assumption

that permits are exchanged only between �rms that take part to the Scheme; in reality we all

know that the trading is open also to other institutions as well as to individual investors. So,

using the above mentioned description, would give only a partial and incomplete description

of the real market. For now we limit our analysis to this more abstract case leaving this

problem to possible future expansion of the study.

At this point we have to mention some simpli�cations that help us to solve explicitly

the maximization problem that will be introduced in Sections 3.2 and 3.3: in particular

� (t; yt) = 0 and � (t; yt) = � so the volatility is independent of time, in this case yt is

assumed to follow a translated Brownian motion; in addition the time discount factor r = 0,

there is no time preference in the model; �nally we assume t =  constant along the duration

T of the Phase.16 These conditions, even if reductive in terms of reality, help us to solve the

model and understand the basic properties of the solutions.

3.2 Model 1 - without CDM

3.2.1 General Setup

Now that all the assumptions have been stated we can go deeply in the speci�cations of the

two models. We start with the one in which CDM are not considered.

The total expected emission in the environment at period t is xt: it has an uncontrolled

component yt;17 and a component that can be in�uenced directly by behaviors of the com-

panies that take part in the scheme, ut:

xt = yt �
Z t

0

usds : (4)

The expected emissions coincide with the actual ones because we assume the past to be the

best prediction of the future:

Et(yT ) = yt: (5)

15See Appendix B for the complete derivation.
16The stability of �-policy will rely, in reality, on the actual duration of the phase: for small T it is

reasonable to assume constant , while for big T the Policy Maker could �nd more favourable to change �
along time in order to better in�uence the carbon price.
17What impact on xt is the expected value in instant t of the total emission over the period [0; T ]: yt:
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Following directly from the aforementioned de�nition the �nal and initial expectations

read respectively:

xT = yT �
Z T

0

usds ; (6)

x0 = y0: (7)

An in�nitesimal increment in xt will be:

dxt = �utdt+ �dWt: (8)

At this point it is useful to introduce a focal distinction between actual emissions re�ected

in Equation (4) and the emissions related to the account of the �rms. The latter ones come

directly from the rules of the Scheme that allow �rms, with permits in excess, to keep those

permits as credits for the next period, whereas �rms with a lack of permits only have to pay

the penalty but are not a¤ected by the permits�account of next period. What we mean is

that if in the �rst compliance period the �rm pollutes less than the number of permits it

has been provided with, e0 > x1, it will be able to transfer the excess of permits (e0 � x1)

to the second compliance period, while in the case e0 < x1 it will have to pay a penalty of

p1 (x1 � e0) ; but no debt will be registered in her second period permits�account which will

be cleared at the moment of the payment. We will call the account value of emission xA to

distinguish it from the actual value of total emissions x; all the choices, that the �rms will

take, will depend on xA, while the policy maker will be interested mainly in x as an indicator

of the overall pollution present in the environment. Notice that an in�nitesimal increment

in xA will be the same of x - as expressed in Equation (8) -, except at integer t. Due to

this "jump" at the end of every compliance periods in the account side of emissions, we will

have a discontinuity between the �nal and initial value of emissions registered by �rms, in

particular the �nal value of accounted emissions for the �rst period will be:18

xA1 = y1 � y0 �
Z 1

0

usds = x1 � x0; (9)

while the initial value of emissions accounted by �rms for the second period - to distinguish

it from the previous one we indicate it with a �+�- will be:

xA1+ = �max
�
0; e0 � xA1

�
: (10)

18Notice that only for the �rst period we have a coincidence between xA1 and x1:
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If we want to generalize this condition we have to better de�ne it compliance period

by compliance period; in particular considering a compliance period that starts in m and

�nishes in n;19 we have the �nal condition:20

xAn = xn � xm �
mX
i=1

max [0; ei�1 � (xi � xi�1)] ; (11)

and the initial condition of the next compliance period:21

xAn+ = �
nX
i=1

max [0; ei�1 � (xi � xi�1)] : (12)

This condition will apply also to all the subsequent intermediate xAt in the next compliance

period [n; o], with t 2 (n; o):

xAt = xt � xn �
nX
i=1

max [0; ei�1 � (xi � xi�1)] . (13)

Equation (4) is qualitatively di¤erent from both Equations (11) and (12) since it expresses

the actual emissions in the environment and it is not in�uenced by �rms�carbon credits.

The �nal compliance conditions P (�) will be all expressed in terms of xAn if referred to the

�nal period n:

The aggregate cost function, increasing in time, is assumed to satisfy the quadratic

relation between cost and chosen abatement rate:

C (t; ut) = �
1

2�t
u2t : (14)

Every �rm in reality will choose �rst to use the cheapest available measures and only after

to use the more expensive ones. Consequently we will observe an increasing sequence of

�t where �1 < �2 < ::: < �T so that the marginal abatement cost 1
�t
will be decreasing in

time. Also in this case it is assumed that all �rms have access in every period to the same

abatement technology. As already stated by Seifert et Al (2008) the simpli�cation that all

�rms face an equal marginal abatement cost could be a very restrictive assumption since

if all �rms could use the same technology to abate a carbon trading scheme would become

meaningless; in fact the scheme can be considered a valuable option for �rms to �nd on the

19Remember that a compliance period in the EU ETS is 1 year long, therefore in order to contestualize
our model in reality we should have m� n = 1:
20In the following three equations, the summation starts from 1 if the �rm never paid a penalty before

compliance period n; otherwise it should start in the period after the last penalty payment. To keep notation
lighter, we write as if the former is always the case. The modi�cation to the general case is straightforward.
21Note that xAn+ is a function of x

A
i ; i = 1; ::; n:
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market cheapest ways to abate their carbon emissions levels, given that they face di¤erent

costs of short term abatement.

At this point, remembering the sequence of �nal conditions for every compliance period

in Equation (1), the objective function can be formulated as:

max
(ut)t2[0;T ]

E0

"Z T

0

C (t; ut) dt+
TX
i=1

P
�
xAi
�#
; (15)

with the �nal conditions expressed as

P (xAi ) = min
�
0; pi(ei�1 � xAi )

�
for i = 1; ::; T � 1. (16)

This problem can be characterized as partial equilibrium since it refers solely to carbon

market, taking in consideration the "carbon" side of both costs and revenues: the cost

function refers to costs related to emission abatement measures while the "carbon" revenues

are considered for the state equation, in particular they contribute to decrease the overall

level of emissions in the system.

3.2.2 Solution for T=2

We conducted the analysis for T=2 for ease of exposition, but an identical procedure can be

applied to every T .

In this scenario the problem can be reformulated as follows:

max
(ut)t2[0;2]

E0

"Z 2

0

� 1

2�t
u2tdt+

2X
i=1

min
�
0; pi(ei�1 � xA1 )

�#
: (17)

We approached our analysis through a dynamic programming backward approach solving

�rst the optimization problem over the period [1; 2],22 considering as �nal condition:

P (xA2 ) = min
�
0; p2(e1 � xA2 )

�
; (18)

and �nding an explicit resolution for the �rms�value function V (�), at the beginning of the

considered interval: V1
�
1; xA1+

�
;23 we, then, rewrote our problem as:

max
(ut)t2[0;2]

E0

�Z 1

0

� 1

2�t
u2tdt+min

�
0; p1(e0 � xA1 )

�
+ V1(1; x

A
1+)

�
, (19)

22This second part coincides with the solution found by Seifert et al (2008).
23We evaluated V (�) at xA1+ and not at xA1 because �rms base their decision not on actual emissions but

on accounted emissions, therefore taking in consideration eventual credits obtained in the precedent period.
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taking into consideration as �nal condition:

P (xA1 ) = min
�
0; p1(e0 � xA1 )

�
+ V1(1; x

A
1+) , (20)

we arrived at an implicit formulation of V0(0; xA0 ):

It is possible to generalize the problem, in particular the principle of optimality for

stochastic optimal control requires that:

V (t; xAt ) = max
ut
Et
�
C(t; ut)dt+ V (t+ dt; x

A
t + dx

A
t )
�
. (21)

This only holds on (0; 1)[ (1; 2)[ :::[ (T � 1; T ), but not on t = 1; 2; :::T � 1 where we have

the discontinuity analyzed before in relation with the rule imposed by EU ETS Scheme at

every crossing point between two compliance periods.

Since from Equations (2) and (8) the expected change in V (�) is:24

E(dV ) = V (t)dt� utV (x)dt+
1

2
�2V (xx)dt ; (22)

the Hamilton-Jacobi-Bellman equation results in:

0 = max
ut

�
� 1

2�t
u2t + V

(t) � utV (x) +
1

2
�2V (xx)

�
: (23)

Using the FOC of this maximization problem we arrive to the optimal abatement rate:

u�t = V
(x)�t , (24)

and remembering that the equilibrium carbon price equals the marginal abatement cost:

S�(t; xAt ) =
u�t
�t
= �V (x) . (25)

The optimal carbon prices for the two compliance periods respectively S1; S0;25 calling:

A(xAt ; t) =
e1 � xAt + p2�1(2� t)

�
p
(2� t)

; (26)

B(xAt ; t) =
e1 � xAt
�
p
(2� t)

, (27)

D
�
xAt ; t

�
=
p2(p2�1 + 2(e1 � xAt ))

2�2
, (28)

24See Seifert et al (2008), pag 184.
25For the explicit derivation of these expressions see Appendix A.
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and:

erf (k) =
2p
�

Z k

0

e�t
2

dt: (29)

are:

S1(t; x
A
t ) =

p2e
D(xAt ;t)[1� erf(A

�
xAt ; t

�
)]

1 + erf(B (xAt ; t)) + [e
D(xAt ;t)(1� erf(A (xAt ; t))]

; (30)

and, de�ning:

��
�
t; xAt

�
=

1

2�
p
(1� t)�

Z e0

�1
e
�(xAt �x

A
0 )
2

2�2(1�t) dxA0 ; (31)

�+
�
t; xAt

�
=

1

2�
p
(1� t)�

Z +1

e0

e
�(xAt �x

A
0 )
2

2�2(1�t) e
p1(e0�x

A
0 )�t

�2 dxA0 ; (32)

��
�
t; xAt

�
=

1

2�
p
(1� t)�

Z e0

�1
e
�(xAt �x

A
0 )
2

2�2(1�t)
�2(xAt � xA0 )
2�2(1� t)

dxA0 ; (33)

�+
�
t; xAt

�
=

1

2�
p
(1� t)�

Z +1

e0

e
�(xAt �x

A
0 )
2

2�2(1�t) e
p1(e0�x

A
0 )�t

�2
�2(xAt � xA0 )
2�2(1� t)

dxA0 ; (34)

together with:

F1 =
1

2�
(1 + erf(B(xA0+; 0)) + e

D(xA0+;0)(1� erf(A
�
xA0+; 0

�
))): (35)

S0
�
t; xAt

�
=
�2

�t

 
��
�
t; xAt

�
F1 + �+

�
t; xAt

�
F1

�� (t; x
A
t )F1 + �+ (t; x

A
t )F1

!
: (36)

3.3 Model 2 - with CDM

3.3.1 General Setup

The structure of this second Model resembles the one of Model 1, the principal di¤erence

is that now every �rm implements a CDM project in period 0; the aggregate initial cost of

these projects is C and they deliver an aggregate return of 26 in every instant t:

The total expected emissions xt is now in�uenced also by the carbon returns of the

projects in every instant of the aforementioned subperiod, namely :

xt = yt �
Z t

0

(us + )ds: (37)

Following directly from the aforementioned de�nition only the �nal expectation appears

changed:

xT = yT �
Z T

0

(us + )ds, (38)

26For the speci�cation of  see Equation (3).
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while the initial one remains the same as Equation (7).

Therefore an in�nitesimal increment in xt will be:

dxt = �(ut + )dt+ �dWt . (39)

Also in Model 2 we have a di¤erentiation between actual emissions - Equation (37) - and

accounted emissions that, generalized over a compliance period [m;n], now read at the end

of the period:27

xAn = xn � xm �
mX
i=1

max [0; ei�1 � (xi � xi�1)] ; (40)

and at the beginning of the next compliance period:28

xAn+ = �
nX
i=1

max [0; ei�1 � (xi � xi�1)] : (41)

This condition will apply also to all the subsequent intermediate xAt in the next compliance

period [n; o] ;with t 2 (n; o):

xAt = xt � xn �
nX
i=1

max [0; ei�1 � (xi � xi�1)] : (42)

As in the previous model, the aggregate cost function is assumed increasing-in time, but

now it presents an additional component linked with the costs associated to CDM projects:

C (t; ut) = �
1

2�t
u2t �

C

t+ 1
. (43)

The objective function can be formulated as in Model 1, following Equation (15). With

�nal conditions expressed as in Equation (16).

We are again in front of a partial-equilibrium problem as it takes in consideration only

the carbon market.

3.3.2 Solution for T=2

The same methodology as before is applied and the analysis is conducted for T = 2 for ease

of exposition.29

27In the following three equations, the summation starts from 1 if the �rm never paid a penalty before
compliance period n; otherwise it should start in the period after the last penalty payment. To keep notation
lighter, we write as if the former is always the case. The modi�cation to the general case is straightforward.
28Note that xAn+ is a function of x

A
i , i = 1; ::; n:

29Remember that this procedure can be applied to every desired T.
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In this scenario the problem can be reformulated as follows:

max
(ut)t2[0;2]

E0

"Z 2

0

�
� 1

2�t
u2t �

C

t+ 1

�
dt+

2X
i=1

min
�
0; pi(ei�1 � xAi )

�#
: (44)

Since the �xed cost C is not time dependent, we can subtract it from the expectation and

add it back only at the end when explicit solutions for V (�) are found. Therefore Equation

(44) can be rewritten as:

max
(ut)t2[0;2]

E0

"Z 2

0

� 1

2�t
u2tdt+

2X
i=1

min
�
0; pi(ei�1 � xAi )

�#
� C ln 3: (45)

Equation (21) applies also to Model 2, together with the already discussed discontinuity

of V (�). On account of the resulting expected change in V (�) from Equations (38) and (39):

E(dV ) = V (t)dt� (ut + )V (x)dt+
1

2
�2V (xx)dt , (46)

the Hamilton-Jacobi-Bellman equation results in:

0 = max
ut

�
� 1

2�t
u2t + V

(t) � (ut + )V (x) +
1

2
�2V (xx)

�
. (47)

Using the FOC of this maximization problem we arrive to the optimal abatement rate

in Equation (24) which coincides with the one found in Model 1; this is due to the fact that

the presence of CDM projects does not impact directly on the abatement rate that has to be

chosen by the �rm, not modifying consequently the optimal rate. Furthermore, remembering

that the equilibrium carbon price equals the marginal abatement cost, we obtain S� as in

Equation (25); once more this optimal level is not impacted directly by the presence of CDM

projects, since it ultimately relies on the optimal abatement rate.

We conduct our analysis through a dynamic programming backward approach following

exactly the same steps previously faced. The second part of Equation (44) coincides with

the problem stated by Seifert et al (2008), so we achieve an easy derivation of the solution

which coincides with solution (3.2) of the paper30 modi�ed for the presence of  in the

expected emission function. Finding an explicit value for V1
�
1; xA1+

�
allows us to rewrite

the maximization problem (44) as in Equation (19) with a new �nal condition expressed

in Equation (20). Solving this new maximization problem lead us to V0(0; xA0 ) which now

appears to be implicitly formulated.

30See Seifert et al (2008), pag. 185, Equation (3.2).
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The optimal carbon prices for the two compliance periods respectively S1; S0;31 and call-

ing:

ACDM(x
A
t ; t) =

e1 � (xAt+ + t) +  + p2�1(2� t)
�
p
(2� t)

; (48)

BCDM(x
A
t ; t) =

e1 � (xAt+ + t) + 
�
p
(2� t)

, (49)

DCDM

�
xAt ; t

�
=
p2(p2�1 + 2(e1 � (xAt+ + t) + ))

2�2
. (50)

are now:

S1;CDM(t; x
A
t ) =

p2e
DCDM(xAt+;t)[1� erf(ACDM

�
xAt+; t

�
)]

1 + erf(BCDM (xAt+; t)) + e
DCDM(xAt+;t)[1� erf(ACDM (xAt+; t)]

; (51)

and, de�ning:

Ĉ = C ln
3

2
; (52)

��;CDM
�
t; xAt

�
=

e�Ĉ
�1
�2

2�
p
(1� t)�

Z e0

�1
e
�(xAt +t�x

A
0 )
2

2�2(1�t) dxA0 ; (53)

�+;CDM
�
t; xAt

�
=

e�Ĉ
�1
�2

2�
p
(1� t)�

Z +1

e0

e
�(xAt +t�x

A
0 )
2

2�2(1�t) e
p1(e0�x

A
0 )�t

�2 dxA0 ; (54)

��;CDM
�
t; xAt

�
=

e�Ĉ
�1
�2

2�
p
(1� t)�

Z e0

�1
e
�(xAt +t�x

A
0 )
2

2�2(1�t)
�2(xAt + t� xA0 )

2�2(1� t)
dxA0 ; (55)

�+;CDM
�
t; xAt

�
=

e�Ĉ
�1
�2

2�
p
(1� t)�

Z +1

e0

e
�(xAt +t�x

A
0 )
2

2�2(1�t) e
p1(e0�x

A
0 )�t

�2
�2(xAt + t� xA0 )

2�2(1� t)
dxA0 ;(56)

together with:

F1;CDM =
1

2�
(1 + erf(BCDM(x

A
0+; 0)) + e

DCDM(xA0+;0)(1� erf(ACDM
�
xA0+; 0

�
))): (57)

S0;CDM
�
t; xAt

�
=
�2

�t

 
��;CDM

�
t; xAt

�
F1;CDM + �+;CDM

�
t; xAt

�
F1;CDM

��;CDM (t; x
A
t )F1;CDM + �+;CDM (t; x

A
t )F1

!
: (58)

4 Numerical validation

4.1 Simulation A

Now that we have the quantitative tools to analyze the problem, we want to put them in

practice with some numerical simulation attempts. As already stated in the introduction, it
31For the explicit derivation of all the following expressions see Appendix A.
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is our intention to verify numerically the relevance of the CDM presence. Choosing, like in

Seifert (2008),32 some numbers for the parameters included in the analysis, we were able to

compare Model 1 and Model 2 scenarios. In particular we imposed in both Models:

� y0 e0 e1 p1 p2

288 6240 150 100 70 130
(Table 2.)

and an increasing33 sequence of �t :

�t = 0:24 for t 2 [0; 1] ;

�t = 0:35 for t 2
�
1;
1

2

�
;

�t = 0:40 for t 2
�
1

2
; 2

�
:

while only for the case with CDM:
C 

25 2:5
(Table 3.)

with � = 1 and g = 2:5:

The results obtained are the following:34

Final Emissions x2 (Model 1- Model 2)

5 0 5 10 15 20 25
0

2

4

6

8

10

12

Variability Indicators
Average 6:89

St. Deviation 5:67

Min. Value �1:98
Max. Value 23:31

1st Quartile 3:21

Median Value 5:99

3rd Quartile 10:81

(Exhibit 1)

With a positive percentage change in V (x0; 0) from Model 1 to Model 2 of 3:15%:

As it can be noticed:

�
x2 (with CDM) <

�
x2 (without CDM) ;

32The analysis was mainly inspired by Seifert et. al (2008) Table 2, pag 186.
33This re�ects the assumption of increasing marginal costs for short-term abatement measures.
34These numbers are the results obtained with 50 realizations of the in�nite number of Brownian Motion

that we can simulate. The simulations are performed in Excel with the Brownian Motion discretized over
100 points - each period -, and integrals are computed numerically by the rectangles�method.
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meaning that Model 2 scenario will be preferred to the one of Model 1 by the Policy Maker

because of the lower level of emissions in the environment; and

V (x0; 0) (with CDM) > V (x0; 0) (without CDM) ;

meaning that the �rms are better o¤ in Model 2, if compared to Model 1, because they

experience a higher level of wealth there. Therefore the two requirements - one imposed by

the Policy Maker and the other by the �rms taking part to the Scheme - are simultaneously

satis�ed, and CDM projects are always implemented under the aforementioned conditions.

4.2 Simulation B

Now a static setting - the same elaborated by Seifert and extended in a multiperiod scenario-

is taken into consideration, with non-changing number of permits and level of penalty:

� y0 e0 e1 p1 p2

288 6240 150 150 70 70
(Table 5.)

and a constant � = 0:24. Maintaining unaltered the condition for Model 2, we obtain:

Final Emissions x2 (Model 1 - Model 2)

35 30 25 20 15 10 5 0 5 10 15
0

5

10

15

20

25

30

35

Variability Indicators
Average 4:58

St. Deviation 5:91

Min. Value �33:08
Max. Value 10:68

1st Quartile 3:91

Median Value 5:29

3rd Quartile 6:35

(Exhibit 2)

With a positive percentage change in V (x0; 0) from Model 1 to Model 2 of 3:20%:

As it can be expected, in the static case the introduction of CDM projects is still worth

for the Policy Maker and the �rms because it ensures lower carbon emissions and higher

wealth level. Nevertheless, through a direct comparison with simulation A juxtaposing

absolute values instead of di¤erences and percentual changes, we realize that, while �rms

prefer Simulation B case - the reason is straightforward: in this scenario the cost of short-

term abatement measures remains constant, together with penalty and number of permits
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immitted in the market, all throughout the Phase therefore the total cost paid by �rms to

reduce carbon emissions is overall lower -, the Policy Maker favors Simulation A case where

absolute lower levels of emissions in the environment are reached.

To sum up the e¤ectiveness of CDM projects�introduction is veri�ed in all the Model

speci�cations since it positively impacts both on the �rms�wealth and on the overall carbon

emissions�level, but we mostly agree with the fact that, in order to maximize their social

value, they should be used in combination with a progressively increasing penalty system -

as the one in Simulation A, which mostly resembles the real world case - where short-term

abatement measures�cost increases with time, the penalty becomes more stringent year by

year and the number of carbon permits immited on the market is similarly reduced. The

regulator should consider, at all the e¤ects, these projects an alternative way - additional

to the number of carbon permits emitted - of impacting on the carbon market and possibly

in�uencing carbon price�s �uctuations.35

5 Conclusion and Remarks

The aim of this work has been to study the introduction of CDM projects in the European

carbon market through a theoretical model. Using dynamic programming tools, we were

able to derive the intertemporal choices of the social planner about emission processes of

�rms included in the Scheme. We derived such an intertemporal analysis for both the cases

in which CDM were present or not. The dynamic problem was solved for a 2-period scenario

that allowed for a simpler manual resolution, but it can be extended to whichever Phase�s

length with the help of speci�c mathematical software.

We concluded that the presence of long term projects is justi�ed and can be exploited, as

a policy-making instrument, at most in the cases where the regulation parameters re�ect a

punishment mechanism that penalizes more emissions at the end of the Phase than the ones

at the beginning. We strongly think that such a structure mirrors the one actually in use

in the EU-ETS, therefore we consider this conclusion valid and applicable to the European

reality.

Recently the European Trading Scheme has faced some challenges relating to the drop

of carbon price. In April 2013 this price reached a minimum peak of 3.05 euro, putting
35In Appendix C we will show carbon price reactions to changes in the di¤erent parameters under analysis.
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in danger the very survival of the overall System. In fact if the price would continue to

decrease, reaching the minimum admissible threshold of 0, there will be no more need of a

carbon market: every market is useless if the good traded does not have a price. It is now

clear that the Policy Maker should �nd new and more e¤ective ways to in�uence the carbon

price and take under control the market�s tendencies.

Following the results of our study we recommend the Regulator to take in consideration

CDM projects as a way of directly in�uencing the aforementioned variables. Our feeling is

that those projects have been disregarded in the previous Phases of the Scheme, a fact that

could be explained by the short duration of such Phases and the consequent complexity in

developing complete projects. However, due to the length of the actual Phase, we consider

the reappraisal of CDM projects, and macro-policies related to them, as a fundamental and

unavoidable choice for the Policy Maker. All throughout the paper we underlined diverse

factors that can be manipulated in order to achieve prede�ned goals: the use of the conversion

rate between permits originated in a project and permits accepted in the market - the so

called �-variable -; the cost of the CDM project; the recognized carbon returns of the project

- strictly related to the �-policy -. Appraising these instruments could be a possible way of

escaping the actual unwanted situation, bringing the Scheme back to a healtier and more

e¤ective functioning.
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7 Appendices

7.1 Appendix A - Extensive Solution of the Maximization Prob-
lem in 2 Periods

Since Model 1 and 2 are very similar for what concerns the objective function to maximize

and the procedure used to solve the problem, we give the explicit resolution for Model 2

conscious that the same approach has been used for Model 1.

In Section 3 we already stated the initial problem in Equation (45);36 making use of

Dynamic Programming, we take the �nal part considering only the problem:

max
(ut)t2[1;2]

E1

�Z 2

1

� 1

2�t
u2tdt+min

�
0; p2(e1 � xA2 )

��
: (59)

the �nal condition is espressed at the �nal period T = 2: Through the HJB Equation (47)

we are able to compute the optimal abatement rate (24), and adding it back to the HJB

Equation we arrive at the characteristic Partial Di¤erential Equation - from now on PDE -:

V (t) = �1
2
�2V (xx) � 1

2
�tV

2(x) + V (x) , (60)

which is very similar to the one found in Seifert et. al (2008) with the exception of a new

term in V (x) linked with :

Our goal is to reduce this PDE to a standard Heat Equation of the type:

f (t) = 'f (xx);
f
�
xA1 ; 1

�
= g

�
xA1
�
:

(61)

to be able to solve it through the standard solution expressed as:

f (x; t) =
1p
4�'t

Z +1

�1
e�

(x�y)2
4't g(y)dy . (62)

In order to follow this structure we need to apply to Equation (60) three transormations.

Transformation 1:

V (xAt ; t) =
�2

�t
ln(v(xAt ; t)) , (63)

with the inverse:

v(xAt ; t) = e
�t
�2
V (xAt ;t) . (64)

Transformation 2:

v(xAt ; t) = u(zt; t) , (65)

36We take as given the already discussed - in Section 4.1 - question of the removal of C
t+1 from the

maximization problem.
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where zt = xt + t; with the inverse:

u(zt; t) = v(zt � t; t) . (66)

Transformation 3:

u(zt; t) = ~u(z� ; �) , (67)

where � = T � t; with the inverse:

~u(z� ; �) = u(zt; T � �) . (68)

From Transformation (63) we obtain the following values for the derivatives of V with re-

spect to t and xt - using the fact that �t is taken as exogenous - , respectively V (t); V (x); V (xx) :37

V (t) = �2

�t
v(t)

v
;

V (x) = �2

�t
v(x)

v
;

V (xx) = �2

�t
[v
(xx)

v
� (v(x)

v
)2]:

which plugged into PDE (60) gives:

v(t) = �1
2
�2v(xx) + v(x) . (69)

From Transformation (65) we obtain the following values for the derivatives of v with

respect to t and xt, respectively v(t); v(x); v(xx) :

v(t) = u(z) + u(t);

v(x) = u(z);

v(xx) = u(zz):

which plugged into PDE (69) gives:

u(t) = �1
2
�2u(zz) , (70)

which is almost Equation (61).

In order to obtain exactly the Heat Equation we apply Transformation (67), from which

we obtain the following values for the derivatives of u with respect to t and zt, respectively

u(t); u(x); u(xx) :
u(t) = �~u(�);
u(x) = ~u(z);
u(xx) = ~u(zz):

37V (xx) represents the second derivative of V (�) with respect to xA:
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which plugged into PDE (70) gives:

~u(�) =
1

2
�2~u(zz) , (71)

which is exactly Equation (61), with ' = 1
2
�2:

Since, in order to solve the Heat Equation we need an initial condition, we use our

bundary condition (18). To be consistent we apply to this condition all the transformations

applied to the PDE. After Transformation (63) it reads:

P (xA2 ; 2) = e
min[0;p2(e1�xA2 )]

�2
�2 : (72)

Applying, then, Transformation (65) we obtain:

P (z2; 2) = e
min[0;p2(e1�(z2�2))] �2

�2 : (73)

The �nal condition is altered also by Transformation (67), since it is expressed in T and we

know that:

t = T , � = 0 , (74)

therefore it should be expressed at the beginning of the period under consideration; since

we are analyzing separately the period [1; 2], as it would be a unique one � = 0 is actually

translatable in � = 1:Equation (73) becomes:

P (z1; 1) = e
min[0;p2(e1�z1+)] �2

�2 (75)

Combining Equation (71) with the initial condition (75) we arrive at the solution:

~u(z� ; �) =
1

2�
p
�

h
1 + erf(B0 (z� ; �)) + e

D0(z� ;�)(1� erf(A0 (z� ; �)))
i
, (76)

where:

A0 (z� ; �) =
e1 � z� +  + p2��2

�
p
�

, (77)

B0 (z� ; �) =
e1 � z� + 
�
p
�

, (78)

D0 (z� ; �) =
p2(�2p2 + 2(e1 � z� + ))

2�2
. (79)

Now we need to apply all the inverse transformations to express the solution in V (xAt ; t):

We �rst apply to Equation (76) the Transformation (68) obtaining:

u(zt; t) =
1

2�
p
2� t

[1 + erf(B00 (zt; t)) + e
D00(zt;t)(1� erf(A00 (zt; t)))]; (80)
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where:

A00 (zt; t) =
e1 � zt +  + p2�2(2� t)

�
p
(2� t)

; (81)

B00 (zt; t) =
e1 � zt + 
�
p
(2� t)

, (82)

D00 (zt; t) =
p2(�2p2 + 2(e1 � zt + ))

2�2
. (83)

Then we have to apply Transformation (66) to Equation (80) which gives:

v(xAt ; t) =
1

2�
p
2� t

[1 + erf(BCDM(x
A
t ; t)) + e

DCDM (x
A
t ;t)(1� erf(ACDM(xAt ; t)))] , (84)

Finally it remains to apply Transformation (64) to Equation (84) in order to get the �nal

solution:38

V (xAt ; t) =
�2

�t
ln

24 1
2�
p
2�t [1 + erf(BCDM(x

A
t ; t))+

eDCDM (x
A
t ;t)�

(1� erf(ACDM(xAt ; t)))]

35 (85)

�C[ln 3� ln(t+ 1)],

where A (�) ; B (�) and D(�) are speci�ed in Equations (48), (49) and (50). At this point, in

order to obtain the optimal solution (25) we need to di¤erentiate (85) with respect to xAt :

It can be easily shown that this solution coincides with Equation (51), which gives us the

instantaneous price in every moment of the interval [1; 2] :

In order to proceed with dynamic programming we need the value function evaluated

at t = 1; from the previous discussion we know that this is a discontinuity point for V (�)

which can take two di¤erent values depending on if it is evaluated at xA1 or x
A
1+. Since we

are using a dynamic programming approach and this �nal condition comes directly from the

maximization over the period [1; 2] we should use V
�
xA1+; 1

�
:

V (xA1+; 1) =
�2

�1
ln

24 1
2�
[1 + erf(BCDM(x

A
1+; 1))+

eDCDM (x
A
1+;1)�

(1� erf(ACDM(xA1+; 1)))]

35� Ĉ:39 (86)

Once obtained this value we need to plug it back in Equation (59) in place of the last

part of the Equation. The maximization problem can be rewritten as:

max
(ut)t2[0;1]

E0

�Z 1

0

� 1

2�t
u2tdt+min

�
0; p1(e0 � xA1 )

�
+ V

�
xA1+; 1

��
, (87)

38Remember that we have previously removed from the maximization problem the parameter - Ct+1 ; so now

we have to add back to the value function
R 2
t
� C
x+1dx = �C[log 3� log(t+ 1)]:
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where the new terminal condition is:

P (xA1 ; 1) = min
�
0; p1(e0 � xA1 )

�
+ V

�
xA1+; 1

�
. (88)

Notice that this �nal condition contains both xA1 and x
A
1+: the compliance condition is

expressed in terms of xA1 , while the maximum value V (�) depends on xA1+; we should not

forget that xA1+ is a function of x
A
1 :

Given the fact that from Equation (59) nothing has changed, except for the �nal condi-

tion, also the PDE will remain the same as in Equation (60). Following exactly the same

passages as before we only have to recompute the di¤erent �nal condition under all the

transformations. After Transformation (63) we will obtain:

P (xA1 ; 1) = e
min[0;p1(e0�xA1 )]

�1
�2

24 1
2�
[1 + erf(BCDM(x

A
1+; 1))]+

eDCDM (x
A
1+;1)�

(1� erf(ACDM(xA1+; 1)))]

35 e�Ĉ �1
�2 : (89)

After Transormation (65) it will read as:40

P (z1; 1) = e
min[0;p1(e0�z1+)] �1

�2

24 1
2�
[1 + erf(BCDM(z1+ � ; 1))+

eDCDM (z1+�;1)�
(1� erf(ACDM(z1+ � ; 1)))]

35 e�Ĉ �1
�2 : (90)

After Transformation (67), remembering the condition (74), it will become:

P (z0; 0) = e
min[0;p1(e0�z0)] �1

�2

24 1
2�
[1 + erf(BCDM(z0+; 0))+

eDCDM (z0+;0)�
(1� erf(ACDM(z0+; 0)))]

35 e�Ĉ �1
�2 : (91)

We are now ready to compute the solution of the Heat Equation, neverthless this time

we are unable to obtain it explicitly; in particular we arrive at:

~u(z� ; �) =
e�Ĉ

�1
�2

2�
p
��
(

Z e0

�1

8<:e�(z��z0)22�2�

24 1
2�
[1 + erf(B(z0+; 0))+
eDCDM (z0+;0)�

(1� erf(A(z0+; 0)))]

359=; dz0 + (92)

Z +1

e0

8<:e�(z��z0)22�2� ep1(e0�z0)
�1
�2

24 1
2�
[1 + erf(BCDM(z0+; 0))+

eDCDM (z0+;0)�
(1� erf(ACDM(z0+; 0)))]

359=; dz0) .
In order to obtain a solution for V (xAt ; t); we need to apply all the inverse transormations;

we start with Transformation (68),41 obtaining:

u(zt; t) = ��;CDM
�
t; zAt

� 1
2�
[1 + erf(BCDM(z0+; 0)) + e

DCDM (z0+;0)(1� erf(ACDM(z0+; 0)))](93)

+�+;CDM
�
t; zAt

� 1
2�
[1 + erf(BCDM(z0+; 0)) + e

DCDM (z0+;0)(1� erf(ACDM(z0+; 0)))]:

40Since we want to mantain the distinction between xA1 and x
A
1+ we will use z1 for the transformed x

A
1

and z1+ for the transformed xA1+:
41Remeber that this Transformation applied on the �nal condition in T gave us the condition expressed

in (z0; 0); now we should bring them back into (zT ; T ), which in this case is equivalent to say (z1; 1) :
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Then we apply Transformation (66), obtaining:

v(xAt ; t) = ��;CDM
�
t; xAt

�
F1;CDM + �+;CDM

�
t; xAt

�
F1;CDM : (94)

Finally, applying Transformation (64) we arrive at the solution42:

V (xAt ; t) =
�2

�t
ln[��;CDM

�
t; xAt

�
F1;CDM +�+;CDM

�
t; xAt

�
F1;CDM ]�C[ln 2� ln(t+1)]: (95)

At this point, in order to obtain the optimal solution (25) we need to di¤erentiate (95)

with respect to xt: It can be easily shown that this solution coincides with Equation (58),

which gives us the instantaneous price in every moment of the interval [0; 1] :

7.2 Appendix B - Equivalence between Single and Aggregate Prob-
lems

This Appendix is mainly inspired by Seifert et al (2008), Appendix A. We want to give just a

brief overview of the main ideas behind the equivalence of joint cost problem and individual

cost problem, which are also recalled in this work project. Nevertheless we recommend to

refer to Seifert�s work to deepen the topic.

Trading among �rms is allowed, but when considering the aggregate problem it doesn�t

impact anymore on the aggregate objective function, because of the market clearing con-

dition. In particular if N �rms are considered in the market we would have N di¤erent

individual objective functions, each associated to the peculiar parameters of the �rm i:

max
(ui;t;zi;t)t2[0;T ]

E0

�Z T

0

e�rtCi (t; ui;t) dt�
Z T

0

e�rtS(t)zi;t + e
�rtP

�
xAi;T
��
; (1b)

where zi;t represents the number of permits exchanged - positive if bought, and negative if

sold - of �rm i in time t. In this individual formulation each �rm has to decide in addition

to the optimal level of abatement rate for each period also the optimal level of trading for

each period. The market clearing condition associate to this trade of permits reads:

NX
i=1

z�i;t = 0 : (2b)

As far as only the �rms in the scheme participate to the trading the cumulative level of

42Remember that we had previously removed from the maximization problem the parameter - Ct+1 ; so now

we have to add back to the value function
R 1
t
� C
x+1dx = �C[log 2� log(t+ 1)]
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exchange should be 0.43 Once we aggregate the problem we obtain:

max
(ui;t;zi;t)t2[0;T ]

E0

"
NX
i=1

Z T

0

e�rtCi (t; ui;t) dt�
NX
i=1

Z T

0

e�rtS(t)zi;t +

NX
i=1

e�rtP
�
xAi;T
�#
; (3b)

which together with Equation (2b) becomes:

max
(ui;t)t2[0;T ]

E0

"
NX
i=1

Z T

0

e�rtCi (t; ui;t) dt+
NX
i=1

e�rtP
�
xAi;T
�#
; (4b)

which can be rewritten as Equation (15) if we assume:

C(t; ut) =
NX
i=1

Ci(t; ui;t), (5b)

and:

P
�
xAi;T
�
=

NX
i=1

P
�
xAi;T
�
: (6b)

7.3 Appendix C - Sensitivity Analysis

We want to devote this paragraph to the analysis of which impact the change in the main

parameters of the Model can have on the path of CO2 price. Inspired by the sensitivity

analysis conducted by Seifert,44 we want to study the reaction of the price sequence S (xt; t)

to changes in fundamental parameters when CDM projects are taken into account.45 We

used as benchmark the numerical case of Model 2 already discussed in previous Sections,

and we let the parameters change to understand the carbon price reactions to these changes

- our aim was to elaborate just an illustrative exercise, not an exhaustive comparative statics

study -.

Changing Parameter Benchmark Case Study Case
� 1 1:5

� 0:24 2 [0; 1] ; 0:35 2 (1; 2] 0:2 2 [0; 1] ; 0:31 2 (1; 2]
p1 70 100

p2 130 150

e0 150 160

e1 100 110

(Table 1c)

In order to have a broader view on the topic we analyzed for every case 50 scenarios -

given by 50 di¤erent simulations of the Brownian Motion -:46. The study was conducted in
43This condition is not very close to reality since admits to participate to the trade only �rms belonging

to the scheme, we all know that in reality also other actors can buy or sell permits: for example individual
investors with speculative aims. In this case the market clearing condition does not hold anymore.
44Seifert et al (2008), Table 2 pag. 186.
45Remember that, in Seifert work, long-term projects were not included in the analysis.
46The Brownian Motions were simulated and chosen randomly with the help of a dedicate software.
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the same two-periods scenario - as in Section 3 -, but it can be extended to every desired

horizon. To follow Seifert�s structure we underlined the impact of a parameter�s increase on

S (x0; 0) and S (x1; 1) which are the carbon prices at the begging respectively of the �rst and

the second compliance period.

We obtained the following results:

Changing Parameter (increase) S (x0; 0) change S (x1; 1) change
� + �
1
�

� +

p1 + +

p2 � +

e0 � +

e1 + �

(Table 2c)

As it can be noticed, C is not included in the parameters to be varied. This derives from

the fact that, even if there are policies that can in�uence C - for example public funding

incentivizing CDM projects can decrease the cost of those projects -, this parameter does not

directly in�uence the abatement level chosen and consequently the CO2 price. It in�uences

only the �rms�wealth level giving an incentive, or viceversa a disincentive, to implement the

projects. In the case of "low-cost" projects �rms will face an higher level of initial wealth,

therefore deciding to implement a CDM.

In analyzing Table (2.c) it is clear that an increase in the numbers of permits immitted

in the market has the same negative e¤ect as in Seifert�s analysis; the only di¤erence is that

here we have a multiperiod model therefore the increase of permits will negatively impact

only on the carbon price of the subsequent compliance period and not on the overall price.

Another analogy, found with Seifert�s work, is the positive impact on carbon price of an

increase in the penalty; in particular the increase of the �rst period penalty will push up

carbon prices of the following periods, while the increase of the second period penalty will

push up prices only from the second period on.

An increase in the marginal cost of short-term abatement measures has the same positive

e¤ect as in Seifert�s analysis, but only in the second period. The explanation remains the

same: once that short-term measures become more expensive to implement, there will be

a natural shift to the implementation of long-term projects and to the purchase of permits

from the market; this will push carbon price up particularly in the second period because in
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the �rst one short terms abatement measure are still considered a¤ordable and the real shift

occurs only thereafter.

Finally the main originality of this work is represented by the presence of CDM projects

that, also through the so-called ��policy, impact on carbon price. The reaction of this price

is ambiguous: it increases - even though very lightly - in the �rst period, and decreases in the

second one. This could be due to a general inclination of �rms of buying more permits in the

�rst compliance period than in the second one for di¤erent reasons: the carry-on mechanism

that allows companies to bring permits in excess from the �rst to the second period; the fact

that CDM projects are not e¤ectively productive47 from the initial period and start bring

their carbon contribution only afterwards, therefore �rms recognize their bene�cial e¤ect

only with a time-lag. Anyway, what really matters is that after a �rst adjustment period the

increase of � pushes down carbon prices; the reason is very straightforward: with a bigger

�, leaving all the other parameters unchanged, a bigger number of permits is present on the

market and carbon prices will naturally go down due to this allowances�overabundance.

In succession all the histograms with the frequency density of percentage changes in

S (x1; 1) registered in the passage from the benchmark case - all parameters being unchanged

- to the study case when one parameter per time is left vary, as already underlined before

the sample is composed by 50 observations obtained through as much simulations of the

Brownian Motion.48

47With productive we mean that they need some periods to recover the big initial investment needed for
their implementation.
48Notice that S (x0; 0) does not depend on the realization of the Brownian Motion - it is based on the

expectation at time 0 -, therefore its values - both in the benchmark and in the study scenarios - remain the
same.
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Increase of � :

S (x1; 1) deviation from benchmark

0.03 0.025 0.02 0.015 0.01 0.005 0 0.005
0

5

10

15

20

25

30 Percentage change
from benchmark
S (x0; 0) +0:59%

S (x1; 1)
Average �1:26%

St. Deviation +0:49%
Min. Value �2:87%
Max. Value +0:39%
1st Quartile �1:38%
Median Value �1:14%
3rd Quartile �0:98%

(Exhibit 1c)

Increase of p1 :

S (x1; 1) deviation from benchmark

1 0.5 0 0.5
0

5

10

15

20

25

30

35

40

45 Percentage change
from benchmark
S (x0; 0) +37:32%

S (x1; 1)
Average +30:47%

St. Deviation +18:70%
Min. Value �96:66%
Max. Value +41:45%
1st Quartile +31:62%
Median Value +33:39%
3rd Quartile +34:84%

(Exhibit 2c)
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Increase of p2 :

S (x1; 1) deviation from benchmark

0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
0

2

4

6

8

10

12 Percentage change
from benchmark
S (x0; 0) �26:52%

S (x1; 1)
Average +2:93%

St. Deviation +3:37%
Min. Value �1:65%
Max. Value +10:77%
1st Quartile �0:01%
Median Value +1:48%
3rd Quartile +6:03%

(Exhibit 3c)

Increase of e0 :

S (x1; 1) deviation from benchmark

0.015 0.01 0.005 0 0.005 0.01 0.015
0

2

4

6

8

10

12

14

16

18

20 Percentage change
from benchmark
S (x0; 0) �4:92%

S (x1; 1)
Average +0:40%

St. Deviation +0:45%
Min. Value �1:07%
Max. Value +1:50%
1st Quartile +0:21%
Median Value +0:34%
3rd Quartile +0:56%

(Exhibit 4c)
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Increase of e1 :

S (x1; 1) deviation from benchmark

0.25 0.2 0.15 0.1 0.05 0 0.05 0.1
0

5

10

15

20

25 Percentage change
from benchmark
S (x0; 0) +0:41%

S (x1; 1)
Average �9:31%

St. Deviation +3:41%
Min. Value �20:56%
Max. Value +2:98%
1st Quartile �10:35%
Median Value �9:02%
3rd Quartile �7:02%

(Exhibit 5c)

Decrease of � :

S (x1; 1) deviation from benchmark

0.02 0.015 0.01 0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
0

5

10

15

20

25 Percentage change
from benchmark
S (x0; 0) �20:00%

S (x1; 1)
Average +1:31%

St. Deviation +0:61%
Min. Value �1:55%
Max. Value +2:94%
1st Quartile +1:04%
Median Value +1:31%
3rd Quartile +1:50%

(Exhibit 6c)
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