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Introduction

Electricity has often been considered a typical example of natural monopoly:
as an indivisible, capital intensive product totally dependent on a network struc-
ture which constantly requires instantaneous balance between production and
consumption, it seemed natural to entrust its production and distribution to
state-owned, monopolistic companies. Only during the last two decades many
countries around the world undertook a process of reforms for the liberalization
of this sector, in order to introduce competition and foster investments, e�ciency
and price transparency.

It is probably too early to assess if this worldwide process of liberalization
of the power sector has been a success or not, and certainly the judgement
may di�er depending on the market we consider. What is interesting and has
inspired this work is the fact that with liberalization electricity prices have
started to follow the laws of supply and demand rather than being decided by a
central authority. So the particular nature of electricity has brought extremely
high volatility in prices, far higher than the one observed in other commodity
and �nancial assets markets, and the occasional occurrence of spikes in the
process, introducing the necessity of modeling the dynamics of power prices in
a proper way in order to meet the new-coming needs of risk management and
derivative pricing. The problem hence consists in adapting the mathematical
and statistical tools already widely used in �nancial markets to model stock
prices and price derivatives, to the unique characteristics of electricity prices
and of the particular derivatives used in such markets.

The contribution of this thesis is twofold. First, it provides the mathemat-
ical and statistical tools which lie at the basis of every modeling approach for
dynamic stochastic processes; moreover, it gives an economical background for
energy markets in a general fashion and for the most popular approaches in
modeling energy prices. Secondly, it applies the previous arguments in order to
analyse the spot price model proposed in Kluge [16] and in Kluge, Hambly and
Howison [15] for electricity prices, trying to explain every passage as clearly as
possible.

To this end, the thesis is organised as follows. In Chapter 1, we intro-
duce the main mathematical and statistical tools used for modeling stochastic
processes. It is an important chapter since it provides a fundamental theoret-
ical background, necessary for the remainder of the work. In Chapter 2 we
give a descriptive picture of energy markets in general and of the most widely
derivative products used in those markets; in addition, we review the most
basic approaches to modeling prices and pricing derivatives, and we provide the
possible methods we may adopt to modify these models in order to implement
the peculiar characteristics of energy commodities. Finally, in Chapter 3, we
introduce jump-di�usion models for energy prices, and give a thorough analysis
of the mean-reverting spot price model with spikes, proposed in Kluge [16] and
in Kluge, Hambly and Howison [15] for electricity prices.

1. Probability Measures and Stochastic Calculus

The �rst chapter provides the theoretical framework which is at the basis
of any kind of modeling in a stochastic context and hence of the analysis of
�nancial and commodity markets. This is not a descriptive chapter, in the
sense that it proposes many de�nitions and theorems which will often be used
as a reference in the subsequent chapters. Therefore, here we introduce the
main results exposed in this chapter.

As a starting point, we state the de�nition of σ − algebra and probability
measure, concepts which underpin our future analysis of stochastic calculus. A
sigma-algebra can be de�ned in the following way:
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De�nition 1. (Sigma-algebra) Let Ω be a non-empty set, Ω 6= ∅.A σ − algebra
F on Ω is a family of subsets of Ω such that:

1. (Empty set) ∅ ∈ F ;
2. (Complement) if F ∈ F then F c := (Ω \ F ) ∈ F ;
3. (Countable unions) If F1, F2, . . . ∈ F , then

⋃∞
n=1 Fn ∈ F .

The notion of sigma-algebra is essential for the de�nition of a measure since it
collects only a certain subclass of �non-pathological� subsets of Ω called mea-
surable sets, which have properties that one may expect from a measurable
set, namely that the complement of a measurable set is a measurable set and
that a countable union of measurable sets is still a measurable set. In the
framework of probability space, a sigma-algebra represents all the available in-
formation, meaning the collection of all the events that may happen with a
certain probability.

We have the following de�nition of measure.

De�nition 2. (Measure)A measure on the σ−algebra F of Ω is an application

P : F → [0,+∞]

such that:
1. P (∅) = 0;
2. (Countable additivity) for all countable collections (Fn)n∈Nof pairwise

disjoint sets in F , it holds

P (

∞⋃
n≥1

Fn) =

∞∑
n≥1

P (Fn).

If P (Ω) <∞, P is called a �nite measure. In addition, if
3. P (Ω) = 1,

holds, then we say that P is a probability measure.
The couple composed by a non-empty set Ω and a sigma-algebra F on Ω is called
a measurable space, and a triple (Ω, F , P ) is called measure space, i.e. a
measurable space endowed by a positive measure de�ned on the sigma-algebra
of its measurable sets. If P is a probability measure, then the triple is a
probability space. In this case, Ω is called sample space and can be thought
of as the set of all possible outcomes of an experiment; an element E of F is
called event and P (E) is the probability of the event E. In this context, we
introduce the following de�nition of random variable.

De�nition 3. (Random Variable) Let (Ω,F , P ) be a probability space and
(E,=) a measurable space. Then an (E ,=)−valued random variable is a function
X : Ω → E which is (F ,=)-measurable. If E = R and = = B(R), then it
is called a real − valued random variable. If X = (X1, . . . , XN ) is de�ned on
(RN ,B(RN )) we will refer to it as a N − dimensional random variable.

The probability measure induced on a measurable space by a random vari-
able X is called distribution. Knowing the distribution of a random variable
allows us to calculate its expected value and variance. The expected value
of a random variable X is the average of all possible values of X weighted by
their probability P . The variance instead and measures the �width� of the
distribution around its mean, i.e. it gives an estimate of how much a random
variable spreads out on average around its expected value.

A stochastic process is a collection of random variables and it is often
used to represent the evolution of some random value over time. More formally,

De�nition 4. (Stochastic Process) A stochastic process is a family of random
variables X = (Xt)t∈T of the form:

X = (Ω, F , (Ft)t∈T , (Xt)t∈T , P )

where:
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� T (set of times) can be a subset of N or R+.
� F is a sigma − algebra of Ω.
� P is a probability measure on (Ω,F).
� (Ft)t∈T is a filtration, i.e. a family of increasing (i.e. such that Fn ⊆ Fn+1

for any n) sub− σ − algebras of F .
� (Xt)t∈T is a family of random variables on (Ω,F) to values in a measurable

space (E, E) and such that, for every t, Xt is Ft −measurable. In such case
Xt is said to be adapted to the filtration (Ft)t , or equivalently that FXn ⊆ Fn,
for every t ∈ T .

Two important examples of stochastic processes are the Brownian motion and
the Poisson process. A Brownian motion is a particular type of Gaussian
process.

De�nition 5. (Brownian Motion)A real-valued processB =
(

Ω,F , (Ft)t≥0 , (Bt)t≥0 , P
)

is a Brownian motion if

1. Bt is Ft −measurable for each t ≥ 0;
2. B0 = 0 almost surely;
3. for every 0 ≤ s ≤ t the random variable Bt − Bs is independent from Fs

(independent increments property);
4. for every 0 ≤ s ≤ t the random variable Bt − Bs has law N (0, t− s) (sta-

tionary increments property);
5. Bt has continuous paths.

The Poisson process is the prototype of a pure jump process and it is impor-
tant to study its main features for our future analysis of electricity prices. The
Poisson process ideally is collocated at the opposite extreme from Brownian
motion, since it only changes values by means of jumps, and even then, the
jumps are nicely spaced.

De�nition 6. (Poisson Process) Let {Ft} be a �ltration, not necessarily
satisfying the usual conditions. A Poisson process with parameter λ > 0 is a
stochastic process N with the following properties:

1. N0 = 0, almost surely.
2. The paths of Nt are right continuous with left limits.
3. If s < t, then Nt−Ns is a Poisson random variable with parameter λ (t− s).
4. If s < t, then Nt −Ns is independent of Fs.
The parameter λ is called the intensity of the Poisson process.

Stochastic differential equations like the Geometric Brownian motion and
the Ornstein −Uhlenbeck process, and Ito′s Lemma are among the most im-
portant instruments for the study of a dynamic process and therefore for the
analysis of �nancial markets.

De�nition 7. We will say that the process (Ω,F , (Ft)t∈[0,T ], (ξt)t∈[u,t], (Bt)t, P )
is the solution of the stochastic differential equation

dξt = b (ξt, t) dt+ σ (ξt, t) dBt

ξu = x x ∈ Rm

if

1. (Ω,F , (Ft)t, (Bt)t, P ) is a standard d − dimensional Brownian motion;
2. for every t ∈ [u, T ] we have

ξt = x+

ˆ t

u

b (ξs, s) ds+

ˆ t

u

σ (ξs, s) dBs.

σ is the di�usion coe�cient, b is the drift coe�cient.
The following one-dimensional equation is called the Ornstein-Uhlenbeck

process,

dξt = −λξtdt+ σdBt

ξ0 = x
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where λ, σ ∈ R, i.e. we suppose a linear drift and a constant di�usion coe�cient.
In particular, λ represents the speed of mean reversion, in a sense which will
be speci�ed in the following chapters.

Let's now consider the one-dimensional equation

dξt = µξtdt+ σξtdBt

ξ0 = x

This is called a Geometric Brownian motion. Since it can only take positive
values, this process is widely used in �nancial applications, expecially to describe
the evolution of prices.

Theorem 8. (Ito's Lemma) Let Xi, i = 1, . . . , m, be processes which have
the stochastic di�erential

dXi(t) = Fi(t)dt+Gi(t)dB(t) i = 1, . . . ,m

and let f : Rmx × R+
t → R be a continuous function in (x, t), continuously

di�erentiable once in t and twice in x. Then given Xt = (X1(t), . . . , Xm(t)),
the process (f (Xt, t))t has the stochastic di�erential

df (Xt, t) =

ft (Xt, t) +

m∑
i=1

fxi
(Xt, t)Fi(t) +

1

2

m∑
i,j=1

fxixj
(Xt, t)Gi(t)Gj(t)

 dt

+

m∑
i=1

fxi
(Xt, t)Gi(t)dBt

= ft (Xt, t) dt+

m∑
i=1

fxi
(Xt, t) dXi(t) +

1

2

m∑
i,j=1

fxixj
(Xt, t)Gi(t)Gj(t)dt.

Denoting with f ′ the gradient of f with respect to x, we can write Ito's Lemma
more compactly as

df (Xt, t) = ft (Xt, t) + f ′ (Xt, t) dXt +
1

2

m∑
i,j=1

fxixj (Xt, t) d 〈Xi, Xj〉t .

Let b(x, t) = (bi(x, t))1≤i≤m and σ(x, t) = (σij(x, t))
1≤j≤d
1≤i≤m be measurable

functions de�ned on Rm× [0, T ] to values in Rm and in M (m, d)1 respectively.

2. Energy Markets and Electricity

Energy markets are commodity markets which deal speci�cally with the
trade and supply of energy. They include commodities that are quite di�erent
in nature, for example fuels like oil, gas and coal, electricity, or emissions and
weather products. It is clear that these kinds of markets present features which
make them unique with respect to the other �nancial markets. In this chapter
we try to describe, without claiming to be complete, the main characteristics
and structures of fuels and power markets, and the most important and peculiar
derivative products developed in these markets. Finally, in order to introduce
the subject of the last chapter, we review the basic approaches to price modeling
and to derivative pricing, and the possible solutions one may adopt to adapt
these models to the unique price evolution processes of energy commodities.

2.1. Energy markets

For convenience, we break energy markets in two main categories: fuel
markets and electricity, or power, markets. The two most important fuel

1 M (m, d) is the vector space of the real matrices m× d.
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markets are oil and gas markets. With the oil market we refer to the trade
of two basically di�erent products: crude oil and re�ned products. Physical
crude oil markets are highly �uid, global and volatile, the quality of the oil
being determined essentially by two factors, the density of the oil and its sulfur
content. Through a complex re�ning procedure, it is possible to obtain many
di�erent re�ned products from crude oil. Re�ned product markets have a
much smaller the scale of operations than crude oil markets and re�ned prod-
ucts must meet very stringent quality standards. Gas is nowadays the fastest
growing energy commodity. A great part of its demand comes from industrial
customers, residentials and commercial consumption, which together accrue for
almost 75% of the demand (according to Geman [9]), but a fast-growing share
is being used for power generation. Gas cannot be moved over large distances
without incurring in considerable transportation costs; therefore, three regional
markets have come into existence, with limited trade between them: one in the
Americas, one in Europe and the last in Asia. There are three main types of
physical trading contracts: swing contracts, baseload contracts and �rm
contracts.

Historically the power sector was extremely regulated worldwide with prices
generally settled by regulatory authorities controlled by each individual country.
However in the last two decades many countries have started to liberalize this
sector in order to improve e�ciency and reduce electricity prices. Electricity
delivery contracts are now traded in many regular markets and in this case
prices are determined by the mechanisms of supply and demand. Electrical
energy cannot be stored e�ciently and therefore is considered an instantaneous
consumption good. For this reason, the equilibrium between supply and de-
mand needs to be secured at any time. Demand is highly inelastic with respect
to price and is characterized by daily, weekly and annual seasonality, which
highly a�ects prices. In particular, during the day there is generally the distinc-
tion between on-peak prices during high demand hours, and o�-peak prices
during the rest of the day. Supply may suddenly change in case of plant outage
or problems in the transmission network, and this, together with the inelas-
ticity of demand and the absence of a bu�ering e�ect of inventory, may cause
spikes in price trajectories. In general, electricity markets are structured as
day-ahead markets, meaning that transactions are referred to the generation
of the following day, or as day-of markets, where power generation for the rest
of the day is transacted; generally these structures coexist with a hour-ahead
or an Ex-post market. Deregulated spot power markets generally can be
either pools or exchange markets.

2.2. Basic products and structures

Derivatives, according to Hull [11], can be de�ned as �nancial instruments
whose value depends on, or derives from, the values of other, more basic, under-
lying variables. Such instruments are extensively used in �nancial markets to
hedge positions, take advantage of arbitrage opportunities or speculate in the
market, and they naturally migrated to commodity and energy markets to ful�ll
all the risk management needs that these markets create. The most standard
derivative products, also called �plain vanilla�, are forwards and futures,
standard options and swaps; non-standard products are called exotic and a
wide variety of them developed in energy markets to meet the needs of operators
and the peculiarities of the underlying products.

A futures contract is in general an agreement between two parties to buy or
sell a commodity or �nancial product at a certain time in the future for a certain
price (Hull [11]). A commodity futures is a highly standardized exchange-traded
contract which is typically physically settled and is de�ned by the following
characteristics:
� Volume
� Price
� Delivery location
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� Delivery period
� Last trading day or settlement date.
A forward contract is de�ned in the same way of a futures contract, since it
is an agreement to buy or sell an asset at a certain future time for a certain
price (Hull [11]). The main di�erence consists in the fact that a forward is an
over-the-counter (OTC) product, which means that it is not traded in ex-
change markets and therefore it guarantees more �exibility to the parties than
futures contracts. In commodity markets, a forward contract can be physically
or �nancially settled and speci�es some delivery details such as the total quan-
tity of the commodity considered, the delivery time and location and the price
agreed. Moreover, in energy markets it is frequent that a forward contract pays
over a whole delivery period, say [T1, T2]. Then, the strike price of a zero-cost
forward contract depends strictly on when the money is paid. In particular, if
the forward pays (St − ft) ∆t at time t, we say that it is instantly settled,
while if the contract speci�es the payment of the whole amount at the end of
the delivery period, then we say that the forward is settled at maturity.

Hull [11] describes a swap in the following terms: �a swap is an agreement
between two companies to exchange cash �ows in the future. The agreement
de�nes the dates when the cash �ows are to be paid and the way in which they
are to be calculated. Usually the calculation of the cash �ows involves the future
value of an interest rate, an exchange rate, or other market variable�. The most
popular swaps are the plain vanilla interest rate swaps, and currency swaps.
A variety of swap structures appear in energy markets. We have for example
�xed-for-�oat swaps, which involve an exchange of cash �ows or commodities.
In di�erential swaps instead the �oating �ow is calculated as the di�erence
between the prices of two assets. One party can also choose to share with
the other the pro�ts deriving from a favourable movement of the price of the
underlying asset with a participation swap, which allows the �xed leg holder
to retain a certain percentage of the upside price movement. Finally, options
(calls or puts) on swaps exist and are called swaptions.

As a general de�nition, an option is a derivative which gives its holder
the right, but not the obligation, to buy (Call option) or sell (Put option)
an underlying asset at a predetermined strike price on or before a matu-
rity (expiration) date. The most popular standard options are call and put
options. If the holder has the possibility of exercising the option only at the
expiration date, we are at the presence of a so called European option, while
if the option can be exercised at any time up to maturity, it is an American
option. Based on the strike price, we can further distinguish between at the
money (ATM) options, if the strike price is concentrated near the current
market price of the underlying, out of the money (OTM) options, if the
strike price is signi�cantly below the market price for call option and above the
market price for put options, and in the money (ITM) options, if on the
contrary calls have their strike below current market price and put above market
price.

Options in energy markets are de�ned in the same way as in �nancial mar-
kets, however, they usualy include also other speci�cations, like
� Location,
� Exercise time,
� Delivery conditions, and the type or quality of the underlying product,
� Strike,
� Volume.
In particular, it is frequent that in energy markets the right guaranteed by the
option is applied to a whole period of time rather than only at the exercise
date: we can in fact �nd calendar-year, quarterly and monthly options
depending on the period of time considered. Often, options are de�ned on a
whole period of time, but the exercise decision is established on a daily basis
during that period. These are options on the spot commodity and are very
common since they o�er the possibility of managing price risk on a daily basis.
Daily options are options which are exercised every day during a speci�ed



Contents 9

period at a �xed strike price. Index or cash options instead can be exercised
at a �oating strike price based on a chosen index. In power markets hourly
options also exist, with which it is possible to manage power prices risk on a
real-time hourly basis.

Exotic options are options with a more complex structure than standard
options. In energy markets they have great relevance and are widely used since
they suit the characteristics of the transactions performed in these markets
particularly well and are naturally embedded in most common energy contracts.
The most important kinds of exotic options are
� spread options, where a spread is a price di�erential between two commodi-

ties. Indeed, power plants, re�neries or transmission lines can be described as
spreads between input fuels and output commodities or geographical spreads.
Common classes of spreads are the quality spread between di�erent qual-
ities of the same commodities, geographic spread between di�erent loca-
tions, time or calendar spread and intercommodity spread, between
two di�erent but linked commodities;

� tolling agreements, which can be considered as a leasing contract between
the owner of a plant and a �toller� who holds raw materials and need to use
the plant to process them. Then the agreement specify that the toller can use
the plant to process his/her materials paying a premium (capacity payment)
and take possession of the �nal output. In �nancial terms we can represent
this agreement as a call option on the �nal output with �oating strike linked
to raw materials prices. Calls-on-toll are compund options which allow its
holders to enter, if they want, into a tolling agreement at some future date
T0 in exchange of a speci�c payment K.

� swings, recalls and nominations, which are volumetric options that
give the holder the right, but not the obligation, to adjust the volume of
received or delivered commodity. Swing options can be de�ned as a options
which allow the owner to exercise K times the right to vary the amount of
commodity delivered within a certain range over N periods. Nomination
options are similar to swing options since they o�er the holder the right to
change the volume of the underlying commodity delivered K times over N
periods, but, unlike swings, now the level of the volume is adjusted for the
remainder of the contract until next right is exercised. Recalls are like swing
options, but are used to interrupt delivery under stressful circumstances,
while swings are used for managing demand.

2.3. Modeling price processes

Modeling energy prices and electricity in particular, requires di�erent instru-
ments from the usual ones used in �nancial markets. In stock markets the most
widely used model of stock price behaviour is the Geometric Brownian motion,
since it resembles the path of stock prices quite well, it can only take positive
values and its expected returns are independent of the value of the process. If
St denotes as usual the spot price at time t and dBt the increments of standard
Brownian motion, the most standard form of the Geometric Brownian motion
is:

dSt
St

= bdt+ σdBt.

A frequently used equivalent form of (2.3.1) is obtained with the change of
variables

Zt = lnSt

and using Ito's lemma we obtain

dZt =

(
b− 1

2
σ2

)
dt+ σdBt.
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If the value of Zt is known at some initial time t and b and σ are constant, then
its solution is a Geometric Brownian motion, i.e., with Ss = x,

Sx,st = x exp

[(
b− σ2

2

)
(t− s) + σ (Bt −Bs)

]
.

Equation (2.3.4) implies that for any future time t, t ≥ s, the variable Zt is
normally distributed, since it is a linear combination of Bt ∼ N (s, t):

Zt ∼ φ
[
Zs +

(
b− σ2

2

)
(t− s) , σ

√
t− s

]
.

Black and Scholes [6] demonstrated that it is possible to derive a pricing
formula for European call and put options, based on speci�c hypotheses and
the assumption that the market consists of two assets with dynamics given by

dR(t) = rR(t)dt,

dS(t) = S(t)bdt+ S(t)σdB(t).

In particular, the Black and Scholes pricing formulas for European calls and
puts are:

c (t) = sN (d1)−Ke−r(T−t)N (d2)

p (t) = Ke−r(T−t)N (−d2)− sN (−d1) ,

where

d2 = −
ln K

s −
(
r − 1

2σ
2
)

(T − t)
σ
√
T − t

and

d1 = d2 + σ
√
T − t.

European options on forwards can be priced extending the results we ob-
tained, as in Black [5]. If we assume that the forward price follows a lognormal
process with zero mean

dft
ft

= σdBt,

with σ constant, then equations (2.3.46) and (2.3.48) can be modi�ed replacing
s with ft to obtain

c (t) = e−r(T−t) [ftN (d1)−KN (d2)] ,

p (t) = e−r(T−t) [KN (−d2)− ftN (−d1)] ,

where

d1 =
ln ft

K + 1
2σ

2 (T − t)
σ
√
T − t

,

d2 =
ln ft

K −
1
2σ

2 (T − t)
σ
√
T − t

= d1 − σ
√
T − t,

and σ is now the volatility of the forward price.
Energy prices possess distinctive features which make Geometric Brownian

motion in its standard form not suitable to describe properly their dynamics.
Two essential attributes in particular seem to characterize energy prices, di�er-
ently from stock prices: mean-reversion and seasonality. A quantity is said
to be mean reverting toward a certain long-term mean, if the further it moves
away from this level, the higher the probability that in the future it will move
back towards it (Eydeland [8]). We can include mean-reversion in a process
in several ways. For example, we can assume that spot prices on average tend
toward their long-term mean. This means that the drift term changes sign
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depending on whether prices are above or below the long-term level. Namely,
we have

dSt
St

= κ (S∞ − St) dt+ σdBt,

where S∞ is the long-term mean of spot prices and κ is the strength of mean
reversion.

Another possible solution is to assume mean reversion to the long-term
price logarithm. The process now has the following form

dSt
St

= κ (θ − logSt) dt+ σdBt.

Seasonality is one of the most typical characteristics of commodity prices
and it depends essentially on supply and demand factors. In order to account
for seasonality while keeping mean reversion in the process, the model for com-
modity spot prices may be written as follows:

lnS(t) = f (t) +X (t) ,

where f (t) is a deterministic component accounting for the seasonality of prices,
usually expressed as a sin or cos with annual or semi-annual periodicity, and

dX(t) = (α− βX(t)) dt+ σdBt

is a mean-reverting process.
Many statistical properties of energy prices, like pronounced skewness and

kurtosis, invalidate the use of Geometric Brownian motion as a process to model
their evolution, too. Two possible explanations for the inconsistency of the
lognormal assumption are stochastic volatility or the presence of jumps in
the price process.

A �rst approach to model volatility, instead of supposing that it remains
constant as in Black and Scholes model, is to assume that it takes a determinate
functional form which depends on some chosen variable. Constant Elasticity
of Volatility models (CEV) assume that instantaneous volatility is a function
of the prices themselves, that is,

dS

S
= rdt+ σ (S) dB.

We can also model volatility as a continuous time process. Stochastic
volatility models usually have the following form:

dS

S
= µ (S, t) dt+ σdB1,

dm (σ) = γ (σ, t) dt+ φ (σ, t) dB2,

dB1dB2 = ρdt.

The variance of returns is hence modelled as some function of a stochastic
process with its drift and di�usion coe�cient with a correlation ρ ≥ 0 between
the two processes.

3. A Jump Di�usion Model for Electricity Markets

A possible explanation for the inconsistency of the lognormality assumption
for energy prices is the presence of jumps in the process. Indeed, the occurrence
of spikes in the dynamic of prices is a characteristic feature of energy prices, in
particular of electricity prices. Spikes are de�ned as a large upward movement
in prices, immediately followed by a rapid downward movement to the normal
level, or vice versa. Jump-di�usion models are a class of models which
allows to incorporate jumps or spikes in the process of interest and hence are
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widely used to model energy prices. A jump-di�usion process is generally a
combination of a di�usion process and a jump process, typically represented
through a discontinuous Poisson process.

A typical jump di�usion process for price returns has usually the following
representation

dSt
St

= (µ− λk) dt+ σdBt + (Jt − 1) dNt,

or, after the usual substitution Zt = lnSt,

dZt =

(
µ− λk − 1

2
σ2

)
dt+ σdBt + ln (Jt) dNt,

where Jt−1, Jt ≥ 0, is a random variable which represents the jump magnitude
in price returns, k = E (Jt − 1) is the expected jump magnitude and λ is the
intensity of the Poisson process.

A mean-reverting spot price model with spikes is described in Kluge [16]
and in Kluge, Hambly and Howison [15]. The authors propose a mean-reverting
process for electricity spot prices, enriched with a seasonal component and a
jump component, which could represent the occurrence of spikes in the price
process. The model implements the mean-reversion, seasonality and jump prop-
erties de�ning the spot price process S as the exponential of the sum of three
components: a deterministic periodic function f representing seasonality,
an Ornstein-Uhlenbeck (OU) process X and a mean-reverting process
with a jump component to incorporate spikes Y :

St = exp (f (t) +Xt + Yt) ,

dXt = −αXtdt+ σdBt,

dYt = −βYt−dt+ JtdNt,

where as usual Nt is a Poisson-process with intensity λ and Jt is an independent
and identically distributed (i.i.d.) process representing the jump size. By as-
sumption, Bt, Nt and Jt are mutually independent processes. In particular, the
Ornstein-Uhlenbeck process represents the price path without the occurrence of
spikes, i.e. the situation when the market is not under stress; the jump-di�usion
process can represent the �spikey� nature of power prices by letting a very high
level of mean reversion β.

We can compute the moment generating function of the whole process St =
exp (f (t) +Xt + Yt). Keeping in mind the fact that Xt and Yt are mutually
independent, and therefore the expectation of their product is simply equal to
the product of their expectations, we have the following moment generating
function of f (t) +Xt + Yt.

Theorem 9. Let2 the spot process (St) be de�ned by (3.2.1-2-3) and let (Zt) be
its natural logarithm, i.e. Zt := lnSt = f (t) + Xt + Yt, with X0 and Y0 given.
Then the moment generating function of Zt is

E
[
eθZt

]
= exp

(
θf (t) + θX0e

−αt + θ2 σ
2

4α

(
1− e−2αt

)
+ θY0e

−βt + λ

ˆ t

0

mJ

(
θe−βs

)
− 1ds

)
.

The expectation value of the spot process S at time T , given Xt and Yt be
the values at time t, immediately follows by setting θ = 1. Hence3:

E [ST | Xt, Yt] = exp

(
f (T ) +Xte

−α(T−t) + Yte
−β(T−t) +

σ2

4α

(
1− e−2α(T−t)

)
+ λ

ˆ T−t

0

mJ

(
e−βs

)
− 1ds

)
.

2 Kluge, Hambly and Howison [15], Theorem 2.4.
3 See Kluge [16], Corollary 3.4.13.
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This expectation is formed by the deterministic seasonal component, the initial
terms, a contribution from the volatility of Xt and the jump term.

For very high mean reversion rates β and small jump intensities λ, the main
contribution to the jump distribution comes from the last jump. Then, let's
de�ne the truncated spike process as

Ỹt :=

{
JNt

e−β(t−TNt) Nt > 0,

0 Nt = 0.

Unlike Yt, Ỹt is a process consisting only of the last jump occured. Now, it can
be shown that the truncated spike process is identically distributed as

Zt :=

{
J1e
−βT1 T1 ≤ t,

0 T1 > t.

So, we have the following result.

Lemma 10. (Moment generating function of the truncated spike pro-
cess) The4 random variable Ỹt of the truncated spike process at time t with
initial condition Ỹ0 = 0 has the moment generating function

mỸ (θ, t) = 1 + λ

ˆ t

0

(
mJ

(
θe−βs

)
− 1
)
e−λsds.

3.1. Option pricing

First of all, let's see to price an option whose payo� depends exclusively on
the value of the underlying asset at maturity date T . If the contingent claim of
such an option is given by g (ST ), then its arbitrage free price at time t is given
by

V (x, y, t) = e−r(T−t)EQ [g (ST ) | Xt = x, Yt = y] ,

i.e. it is the expected value of the contingent claim at time T under the
risk-neutral probability measure Q, discounted by the constant risk-free rate
r and assuming that the mean-reverting and spike processes are individually
observable at time t. The following general theorem puts the fact that the
distribution function of a random variable may be recovered from its moment
generating function.

Theorem 11. (Levy's Inversion Formula) Let5 m (θ) : Θ ⊂ C→ R be the
moment generating function of a random variable Z

m (θ) := E
[
eθZ
]

=

ˆ
R
eθZdFZ (x) ,

then the cumulative distribution FZ : R→ [0, 1] is given by

FZ (x) =
1

2
− 1

π

ˆ +∞

0

=
(
m (0 + iν) e−iνx

)
ν

dν,

where = (z) denotes the imaginary part of any value z ∈ C.

The inversion formula can be generalised to truncated moment generating
functions (see Kluge [16], Proposition 4.3.3)

Proposition 12. Let Z be a random variable and its truncated moment generating
function be de�ned by

Gν (x) := E
[
eνZ1{Z≤x}

]
=

ˆ x

−∞
eνydFZ (y) .

4 Kluge, Hambly and Howison [15], Lemma 2.6.
5 Kluge [16], Theorem 4.3.1.
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If the moment generating function m (ν + iθ) exists for some ν ∈ R and all
θ ∈ R, then

Gν (x) =
m (ν)

2
− 1

π

ˆ +∞

0

=
(
m (ν + iθ) e−iθx

)
θ

dθ.

We can use this result to price put options because we have

E
[
(K − ST )

+
]

= KE [1ST≤K ]− E [ST1ST≤K ] = KG0 (lnK)−G1 (lnK) ,

and we can obtain the price of a call option from put-call parity.
Considering forward contracts, since electricity is a �ow variable, they are in

general speci�ed over a whole delivery period, rather than one single maturity

date. Let f
[T1,T2]
t denote the strike price of a zero-cost forward contract with

delivery period [T1, T2] at time t. Formally, it is de�ned as

f
[T1,T2]
t =

ˆ T2

T1

w (T ; T1, T2) fTt dT,

where w (T ; T1, T2) is the weighting factor and is equal to 1
T2−T1

for settlement

at maturity T2 and to re−rT

(e−rT1−e−rT2)
for instantaneous settlement. We notice

that such forward contracts are similar to Asian options6. An approximated
method to price such options is to assume that the average price of the underly-
ing is lognormally distributed and calculate its �rst and second moment. Then,
using the Black [5] formula one obtains the approximated result (see Haug [10],
for example). In our case, the �rst moment is given by:

M1 = f
[T1,T2]
t ,

while the second moment is given by

M2 = EQ

(ˆ T2

T1

w (T ) f
[T ]
T1

)2

dT | Ft


=

ˆ T2

T1

ˆ T2

T1

w (T )w (T ∗)EQ
[
f

[T ]
T1
f

[T∗]
T1
| Ft

]
dTdT ∗. (0.0.1)

Based on Black [5] formula for options on forwards, we give the following ap-
proximated price of a European call on a forward with delivery period:

c (t) = e−r(T−t)
[
f

[T1,T2]
t N (d1)−KN (d2)

]
,

where

d1 =
ln
(
f

[T1,T2]
t /K

)
+ 1

2σ
2 (T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

σ2 =
1

T − t
ln

(
M2

M2
1

)
.

The pricing of swing options is a more di�cult problem. As already told,
swings are volumetric options which allow the holder to exercise N times the
right to vary the amount of commodity delivered, subject to daily and periodic
constraints, over a predetermined period. In this way swing options provide for
the �exibility necessary to deal with the complex patterns of consumption and
the limited storability of energy.

6 Asian options are options where the payo� depends on the average price of the un-
derlying asset during some speci�ed period (Hull [11]).
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Let the maturity date be a �xed T and the payo� at time t be for simplicity
(St −K)

+
, and let's assume that it is only possible to exercise one unit of the

underlying at a time. Then, the value of the swing contract, V (n, s, t), depends
only on the price St = s and the number n of exercise rights left. Kluge [16]
formalises the optimization problem with the following equation:

V (n, s, t) = max

{
e−r∆tEQ [V (n, St+∆t, t+ ∆t) | St = s] ,

e−r∆tEQ [V (n− 1, St+∆t, t+ ∆t) | St = s] + (s−K)
+
.

(0.0.2)
In other words, today's value is the highest between the expected tomorrow's
value with n exercise rights left, and the expected tomorrow's value with n −
1 exercise rights plus the payo� from the exercise. According to Kluge [16],
assuming that V (k, s, t+ ∆t) is known for every k, s, then the expectation can
be expressed as

EQ [V (n, St+∆t, t+ ∆t) | St = si] ≈
∑
j

V (n, sj , t+ ∆t) pi,i+j .

So, using the notation V ni,k = V (n, si, tk), the dynamic optimization can be
written as

V ni,k = max

e−r∆t∑
j

V nj,k+1pi,j , e
−r∆t

∑
j

V n−1
j,k+1pi,j + (si −K)

+

 ,

V 0
i,k = 0,

V ni,m = 0,

where the two boundary conditions mean that a swing option with no exercise
rights left, and the one at maturity date T respectively, are both worth zero.
If we assume that the mean-reverting process Xt and the jump process Yt are
both individually observable, then the value of the swing contract depends on
both of them and we can write

V (n, x, y, t) = max


e−r∆tEQ [V (n, Xt+∆t, Yt+∆t, t+ ∆t) | Xt = x, Yt = y] ,

e−r∆tEQ [V (n− 1, Xt+∆t, Yt+∆t, t+ ∆t) | Xt = x, Yt = y]

+
(
ef(t)+x+y −K

)+
.

In order to calculate the expectations, we need to create a non-uniform grid to
perform the approximation and estimate the transition probabilities. Since Xt

and Yt are independent, the probability of arriving at the node (Xt+∆t, Yt+∆t) =
(xk, yl) from a starting node of (Xt, Yt) = (xi, yj) is approximately given by

pi,j,k,l ≈ fXt+∆t|Xt=xi
(xk) · fYt+∆t|Yt=yj (yl) ∆x∆y.

The conditional density of Xt is known, since Xt+∆t following equation (3.2.8)
is a normal variable with distribution

Xt+∆t ∼ N
(
xie
−α∆t,

σ2

2α

(
1− e−2α∆t

))
.

As for the density of the spike process, we can use the approximations of the
truncated spike process that we developed previously. A computer simulation
of this method then gives a numerical value for the price of the swing option.

Conclusions

This thesis has tried to provide a picture of how mathematical and statistical
instruments used in �nancial markets can be applied in energy markets and in
particular in the case of electricity prices. Energy markets are interesting for
many reasons:
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� Their price evolution processes are unique: energy prices possess many
unique characteristics. As commodities, their prices are mainly driven by
supply and demand and often exhibit mean reversion. In addition, a distinc-
tive feature of almost every energy commodity is the exceptional volatility
of prices, higher than any other asset, and the frequent occurrence of spikes
in the process.

� Energy derivatives are unique: we have seen that a number of energy deriva-
tive products are speci�c features of energy markets. Volumetric options, like
swings or nominations, spread options or tolling agreement are all examples
of products speci�cally developed to manage the risks associated with meet-
ing the demand of natural gas or electricity. Even plain-vanilla products, for
example forwards, exhibit unique features like delivery periods.

� Energy derivatives require special modeling methodologies: well-established
models have to be adapted to energy markets providing them with particular
features like stochastic volatility or a jump process, in order to address the
speci�c characteristics of energy markets.

The model of [16] and [15] we analysed in the third chapter is an example of
such e�orts. The stochastic process introduced in the model is in fact capable of
representing the main properties of electricity prices, namely, mean-reversion,
seasonality and the occurrence of spikes. The model has the advantage of being
analytically tractable, since it provides closed-form solutions of the expectation
values for pricing path-independent options and an approximated pricing for-
mula for options on forwards with a delivery period. Finally, the model proposes
a grid-based method for pricing swing options, using the approximations of the
probability distributions of the jump process.

We could have extended this thesis in several ways. Firstly, a computer
simulation of the model would have been worthwhile, to test the performance
of the model: in particular, we could have given a numerical implementation of
the method for pricing swing options in order to perform a qualitative analysis
of the prices at the variation of the parameters. In addition, the issue of the
incompleteness of power markets and the consequent absence of a unique mar-
tingale measure, introduced at the beginning of section 3.3, would have deserved
a deeper analysis.

Finally, we could have modi�ed the model including alternative stochastic
processes. For example, a natural development would have been to include a
stochastic volatility process or a stochastic seasonality component. However we
must notice that, even if such modi�cations would probably improve the ability
of the model to �t historical data, they would make parameter calibration and
option pricing further more di�cult.
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