
 

 
 
 

Department of Economics and Finance 

Mathematical Finance 

 
 
 
 

  Portfolio Optimization using CVaR 
 
 
 
 
 

Supervisor:     Student: 

Papi Marco        Simone Forghieri 
     170261 

 

 
 
 

2013-14 
 

 
  



	
   2 

Abstract 
 
In this thesis we perform the optimization of a selected portfolio by minimizing the 

measure of risk defined as Conditional Value at Risk (CVaR). The method described 

is very robust, and allows us to calculate the optimal asset weights while 

simultaneously minimizing the CVaR and the Value at Risk (VaR). 

The future return scenarios used in the portfolio optimization formula are sampled 

from an estimated distribution, which is the best approximation of the historical 

distribution of stocks returns. This estimation is conducted on a comparative level by 

using a Normal distribution, t-Location Scale distribution, and Generalized 

Hyperbolic distribution. By comparing the results of the portfolio optimization using 

the different distributions, we provide both a graphical and a mathematical proof that 

the Generalized Hyperbolic distribution delivers the best fit for the real distribution of 

returns and is the most accurate in minimizing risk and calculating optimal weights.  
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1. Introduction 

Measures of risk are a crucial part in portfolio optimization, in particular in order to 

maintain a strict control of risk and expected losses. The numerous publicly known 

cases of problems in handling risk, from both banks and companies, have raised 

awareness on the importance of methods and measures to manage portfolio risk. 

Markowitz was the first to address the portfolio selection problem (H. Markowitz, 

1952) as a one-period static setting where maximizing expected return, subject to a 

constraint on variance. In 2005, the mean-variance problem was solved in a dynamic 

complete market setting (Bielecki et al., 2005). 

The center of research then shifted towards risk measures that focus on the portfolio 

losses that occur in the tail of the loss distribution, and quantile-based models have 

become more and popular. One of the most widespread quantile-based risk measures 

is the Value-at-Risk (VaR). The VaR refers to the worst expected loss at a target 

horizon, according to a determined confidence level. This value is a quick and easy 

measure that is frequently used to determine the stop-loss thresholds by traders, or to 

evaluate risk-adjusted returns by companies (P. Jorion, 1996). The popularity of the 

VaR was also determined by its inclusion in the Basel II Accords as a primary risk 

gauge for banks’ exposure. 

The Value at Risk concept lies however on the assumption that the loss distribution, 

imagined as a function 	
  (where  is the decision vector - defined by the 

current portfolio - and  is the vector of predicted future values), is distributed 

according to a Normal distribution. This distribution though does not usually occur in 

reality. In fact, the empirical distribution of the loss function  is mainly 

characterized by fatter tails than the Normal distribution. This difference between the 

estimated and the observed distribution leads to biased results, making the VaR fail to 

z = ƒ(x, y) x

y

z
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be coherent (P. Artzner et al., 1999). Another shortcoming of the VaR is the fact that 

the measurement can be done with several legitimate methods, which yield very 

different results (M. Pritsker, 1997) and make it very inconsistent and unreliable. The 

measure itself is very limited, as it does not provide any information on the extent of 

the losses that will be suffered beyond the VaR threshold. It only provides a lower 

bound for losses, without distinguishing between situations in which losses may be 

slightly or much higher than the threshold. In addition the VaR calculated with 

scenarios is a non-convex non-smooth function, with multiple local extrema, which 

make it a very unsuitable function for optimization models based on minimization. 

For the reasons listed above, the VaR has been associated with an alternative measure 

that aims at quantifying the losses that will be held when they exceed the VaR 

threshold. This measure is called the Conditional Value at Risk (CVaR), and it is 

defined as the weighted average of the VaR and of losses strictly exceeding the VaR. 

Rockafellar and Uryasev were the first to visualize the CVaR concept and develop its 

minimization formula (R. T. Rockafellar and S. Uryasev, 2000). They demonstrated 

the effectiveness of CVaR through several case studies, including portfolio 

optimization and options hedging. The CVaR was then found to have many 

computational advantages over the VaR, while maintaining consistency with the VaR 

by yielding the same results in cases where applied to Normal or elliptical 

distributions (P. Embrechts et al., 2001). In these cases in fact, working with VaR, 

CVaR, or minimum variance (H. Markowitz, 1952) is equivalent (R. T. Rockafellar 

and S. Uryasev, 2000). Moreover, the fact that the CVaR function is convex, and its 

minimization model can be condensed into a simple linear programming formula, 

make it a widely used and studied area of research and development. On the other 

side the VaR becomes a rather complex model when applied to more detailed 
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distributions, making it unsuitable for environments such as the financial world, 

where computational speed is a necessary condition for the applicability of a model. 

For this reason, an efficient algorithm for VaR optimization in high-dimensional 

settings is not yet available, despite the great efforts in research (J. V. Andersen and 

D. Sornette, 1999; S. Basak and A. Shapiro, 2001; A. A. Gaivoronski and G. Pflug, 

2000; C. Gourieroux et al., 2000; H. Grootweld and W. G. Hallerbach, 2000; R. Kast 

et al., 1998; A. Puelz, 1999; D. Tasche, 1999). 

Meanwhile, the CVaR has been studied as both a minimization problem with an 

expected return constraint, and as a maximization of expected return with the CVaR 

constraint (P. Krokhmal et al., 2002). Strategies for investigating the efficient frontier 

between CVaR and return were considered as well. Moreover the concept was applied 

to credit risk management of a portfolio of bonds (C. Andersson et al., 2000), and 

extended to the concept of conditional drawdown-at-risk (CDaR) in the optimization 

of portfolios with drawdown constraints (Checklov et al. - Press). Today’s currents in 

the field flow towards models of CVaR in varying distribution with the simultaneous 

drop of some of its assumptions. Although the CVaR is not yet a standard in finance, 

it provides investors with a flexible and strong risk management tool, therefore it will 

most likely plays a major role in portfolio optimization. 

In this thesis we are going to use the original linear programming CVaR optimization 

model studied by R.T. Rockafellar and S. Uryasev, 2000, focusing on the prediction 

of future scenarios and their impact on its results. 
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2. Dataset 

 

The dataset used in this thesis consists in a sample of daily prices from 10 stocks 

listed in the Nasdaq 100 market index. Prices are taken from the 17/05/2004 to the 

16/05/2014, amounting to 2518 observations. The stocks chosen are taken from 

different sectors and with different capitalizations in order to make the model more 

generally applicable and effective in varying situations. 

For the purpose of this work, stocks are taken from and compared to one single index 

representing the market, allowing for the prediction of returns using the Normal 

distribution, the Capital Asset Pricing Model while implementing a fitted t-location 

scale distribution, and the hyperbolic distribution. Market returns are approximated by 

the returns of the index in which the stocks are listed; in our case the Nasdaq 100 

index was used. 

The composition and the characteristics of the sample taken are listed in Table 2.1 and 

Table 2.2. 

 

 Min Max Mean Median 

AAPL -0.6850 0.1302 0.0012 0.0013 

CSCO -0.1769 0.1480 0.0001 0.0004 

MSFT -0.1246 0.1706 0.0002 0 

CMCSA -0.4179 0.2193 0.0002 0 

WFM -0.6844 0.3166 -0.0003 0.0004 

PFE -0.1182 0.0969 -0.0001 -0.0004 

MAR -0.7029 0.1412 0.0001 0.0006 

MNST -1.4835 0.2323 0.0005 0.0007 

SBUX -0.6792 0.1687 0.0003 -0.0002 

FISV -0.6946 0.1466 0.0002 0.0009 

Table 2.1 – Sample statistics of the dataset, for daily prices. 
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 Variance Standard Deviation Kurtosis Skewness 

AAPL 0.0007 0.0268 174.9831 -6.7184 

CSCO 0.0004 0.0197 13.8786 -0.4002 

MSFT 0.0003 0.0171 14.1104 0.0064 

CMCSA 0.0004 0.0211 72.5071 -3.0062 

WFM 0.001 0.0321 158.0768 -6.9383 

PFE 0.0002 0.0152 10.9353 -0.3874 

MAR 0.0007 0.0258 222.9072 -8.0153 

MNST 0.0023 0.0483 396.2292 -14.1807 

SBUX 0.0006 0.0252 215.7112 -7.6391 

FISV 0.0004 0.0212 465.5107 -14.0554 

Table 2.2 – More sample statistics of the dataset, for daily prices. 

 

From these statistics, we can already notice some characteristics of stock returns that 

can help us predict their distribution. In particular, the mean returns approximate zero, 

therefore we will expect the cumulative distribution functions to be intersecting the y-

axis at values around 50%. The negative values of skewness suggest that the 

distributions are left-skewed, therefore we expect higher probabilities in the negative 

returns tail compared to the positive returns tail. Moreover the values of kurtosis are 

on average very high; therefore we will expect a leptokurtic behavior, meaning higher 

probability around the mean and fatter tails. 

We refer to Appendix 1.1 for the MatLab code related to the calculation of the sample 

statistics. 
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3. CVaR Algorithm 

 

In this section we describe the algorithm used to calculate the CVaR and to find the 

optimal weights by minimizing that value. The portfolio optimization is then solved 

by using both a general scenario and a more specific one with constraints on expected 

portfolio return and asset weights. 

The first step of the CVaR calculation is to find the matrix of historical returns from 

the matrix of historical prices. We consider logarithmic returns, which are the 

preferred method for return calculations in finance (E. Eberlein, 2001), and will make 

calculations simpler in later stages of the thesis. The general formula for logarithmic 

returns is the following: 

 

 

 

Here  denotes the initial price of the security, whereas  is the price in the next 

period. We refer to Appendix 1.2 for the MatLab code related to the calculation of the 

matrix of logarithmic returns. 

We consider the loss function , where  is the decision vector (represented by 

our portfolio), and  is a random vector (representing the future values of the items 

in the portfolio). Suppose that  belongs to a set of portfolios X that satisfies the 

given requirements on short selling and expected return, while  represents the 

uncertainty of future returns. For each , the loss function  can be seen as a 

random variable characterized by a probability distribution  induced by the 

rlog = ln
Pi+1
Pi

!

"
#

$

%
&

Pi Pi+1

ƒ(x, y) x

y

x

y

x ƒ(x, y)

p(y)
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probability distribution of . This property of the CVaR algorithm is relevant to this 

work. Since the different models used to derive the probability distribution of returns 

have an impact on the final results, they will be discussed in the following chapter. 

Let the portfolio of assets  be constructed as 	
  where  represents our 

position in instrument  such that: 

 

	
  	
  	
  for	
  	
  	
   	
  	
  	
  with    

 

The random returns is defined as the Rn-valued vector  defined on a 

given probability space (Ω, F, P), endowed with the σ-algebra of events F and the 

probability measure P. Here  is the future return of instrument , and it is 

distributed according to the probability distribution	
   A ∈ F→ P(Y ∈ A) , having a 

continuous density function . As long as  is continuous, also the probability 

density function of  is continuous, allowing for the use of simpler methods for 

the minimization, see Y. S. Kan and A. I. Kibzun, 1996 and S. Uryasev, 1995. 

In order to simplify the presentation, let the portfolio consist of only two assets (Asset 

1 and Asset 2). In this case,  is the vector of positions of the two instruments 

. Let  be the vector of future returns y = (y1, y2 ) . Keep in mind that  

includes a certain level of uncertainty, as it expresses either a prediction or 

expectation of return calculated with future prices. The loss function  will be 

equal to the sum of the product between the weight and the relative return: 

  

f (x, y) = x1y1 + x2y2 .	
  

 

y

x x = (x1,…, xn ) x j

j

x j ≥ 0 j =1,…,n x j =1j=1

n
∑

y = (y1,…, yn )

yj j

p(y) p(y)

ƒ(x, y)

x

x = (x1, x2 ) y y

ƒ(x, y)
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Since, in our case, where more assets are included we have: 

 

f (x, y) = −[x1y1 +…+ x2y2 ] 	
  .	
  	
  	
  	
   

 

Let us denote with  the probability that  does not exceed the threshold 

, that is: 

,  

 

Where the integral is over Rn . By fixing ,  is a function of  that 

represents the cumulative distribution function for the loss associated with . This 

function is fundamental for the definition of VaR and CVaR and, as stated above, we 

assume that it is continuous with respect to . 

When considering a general case with probability level , then we could see  as the 

function  expressing the percentile of the loss distribution with confidence 

level : by definition the VaR. In other words, the VaR is defined as the lowest value 

such that : 

 

. 

 

We refer to Appendix 1.3 for the MatLab code related to the calculation of the VaR. 

If  exceeds the VaR (with threshold ) then the expected loss, defined as 

CVaR (denoted by ), is expressed by: 

 

Ψ(x,α) ƒ(x, y)

α

Ψ(x,α) = p(y)dy
f (x,y)≤α∫

x Ψ(x,α) α

x

α

β α

α(x,β)

β

Ψ(x,α(x,β)) = β

VaRβ =αβ (x) =min α ∈ R :Ψ(x,α) ≥ β}{

ƒ(x, y) α

Φβ (x)
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. 

 

The presence of the VaR function in the CVaR formula makes the model complicated 

and difficult to handle in the minimization; therefore the approach used in this work 

handles with a simpler function for the CVaR expression:	
  

 

. 

 

This function behaves exactly like the original CVaR function, as it is convex with 

respect to , and the VaR is a minimum point of  with respect to . 

Moreover, minimizing , with respect to , yields the CVaR. In short, the 

results are summarized in Theorem 1 of R. T. Rockafellar and S. Uryasev, 2000: 

 

. 

 

This statement can be proven by taking the derivative of the function  with 

respect to . The derivative equals . By setting it equal to 

zero and solving for , we obtain that , which was the original 

VaR equation. This means that by minimizing the function  with respect to 

both  and , we simultaneously optimize the CVaR and calculate the 

corresponding VaR. 

We solve the problem using a linear programming approach. We consider a portfolio 

Φβ (x) =
1

(1−β)
f (x, y)p(y)dy

f (x,y)>α (x,β )∫

Fβ (x,α) =α +
1

(1−β)
( f (x, y)−α)p(y)dy

f (x,y)>α∫

α Fβ (x,α) α

Fβ (x,α) α

Φβ (x) = Fβ (x,α(x,β)) =minα Fβ (x,α)

Fβ (x,α)

α 1+ (1−β)−1(Ψ(x,α)−1)

Ψ(x,α) Ψ(x,α) = β

Fβ (x,α)

x α
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composed of a finite number of assets, each with a finite sequence of historical data. 

As seen above, the calculations of the CVaR and VaR require future values for each 

asset, therefore by assuming that the future returns will follow a specific distribution 

, a finite set of scenarios 	
  with	
    can be inferred from this 

distribution. If the assumptions above are respected, the function  can be 

approximated with the function: 

	
  

, 

where      
	
  
and     if   ,  while      if   .

	
  

 

The proof is available in R. T. Rockafellar and S. Uryasev, 2000. 

In this case, since the function 	
  is linear with respect to , the problem can be 

solved with linear programming techniques. We first replace the term  

with auxiliary variables  in the function , with the constraints: 

 and . Then the minimization of the function 	
  is 

equivalent to solving the LP problem: 

 

min	
  	
   	
   subject to: ,  , . 

 

This procedure yields the minimal CVaR (proof available in F. Andersson, H. 

Mausser, D. Rosen, and S. Uryasev, 2000). 

In this thesis we extend the constraints to expected portfolio return, and upper-lower 

p(y) yj j =1,..., J

Fβ (x,α)

F
~
β (x,α) =α +ν ( f (x, yj )− a)

+

j=1

J
∑

ν =
1

((1−β)J )
[t]+ = t t > 0 [t]+ = 0 t ≤ 0

f (x, y) x

( f (x, yj )−α)
+

zj F
~
(x,α)

zj ≥ f (x, yj )−α zj ≥ 0 F
~
(x,α)

α +ν zjj=1

J
∑ x ∈ X zj ≥ f (x, yj )−α zj ≥ 0
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bound for the stock weights. In order to implement the minimization, we construct 

matrices of constraint	
   A , b , Aeq  and beq . 

To create A , first consider a general column vector of stock weights, where each 

weight is calculated as 1
n

, where n is the total number of assets, so that each stock has 

the same weight in the portfolio and the sum of the weights equals 1. Then we set in 

cell n+1  the VaR of the portfolio; the reasons for this will be explained later. 

Subsequently we construct the matrix A , which is expressed as follows: 

 

A =

µ1 µ2 ! µn 0
−1 0 ! 0 0
0 −1 " 0
" −1 0 0
0 ! 0 −1 0
1 0 ! 0 0
0 1 " 0
" 1 0 0
0 ! 0 1 0

"

#

$
$
$
$
$
$
$
$
$
$
$$

%

&

'
'
'
'
'
'
'
'
'
'
''
.

 

 

Where the first row represent the set of stock average returns µ1,µ2,!,µn , which are 

followed by the negative of an n×n  identity matrix and an n×n  identity matrix 

below. The two identity matrices represent the coefficients of weights in order to 

apply the upper bound and lower bound for the portfolio weights. 

Then we construct the column vector b , which is equal to: 
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b =

−Er
−LB
!
!

−LB
UB
!
!
UB

"

#

$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'
.

 

 

The first component represents the negative of the expected portfolio return Er , 

which allows for the constraint on the expected portfolio return. Then it is followed 

by a column vector with length n 	
  where each cell equals the negative of the lower 

bound LB  for the weights; below another n  column vector that contains the upper 

bound	
  UB . Consequently we find the column vector Aeq  and beq 	
  composed as: 

 

Aeq =

1
!
1
0

!

"

#
#
#
#

$

%

&
&
&
&

   and   beq = 1( ) . 

 

Where Aeq  is an n×1  column vector of ones with an added zero cell below, and beq  

is equal to 1. 

After defining these matrices, we can minimize the function  with the 

following constraints: 

 

A ⋅w ≤ b 	
  	
  	
  and   Aeq ⋅w = beq . 

 

α +ν zjj=1

J
∑
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The solution is the CVaR, and a vector w  of optimal weights. 

In case the objective is to only minimize the CVaR without setting any limit on upper 

or lower bound for weights or on expected return, the computations remain 

unchanged, with the only difference that the matrix A  and b  are not used as 

constraints in the minimization. 

We refer to Appendix 1.4 for the MatLab code on the CVaR algorithm and 

calculation of optimal weights, with and without the constraints.  
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4. Generating Future Return Scenarios 

 

In this section we use the Maximum-Likelihood Estimation method in order to 

estimate future scenarios for the stocks’ returns. This method is generally defined in 

the first part, and then applied to the Normal, t-location scale, and generalized 

hyperbolic distributions. 

 

4.1 Maximum-Likelihood Estimation (MLE) 

The Maximum-Likelihood Estimation (MLE) is a method that estimates the 

parameters of a statistical model. Starting from the set of observed data, the MLE is a 

method that, given the statistical model of interest, finds the parameters of that 

distribution that maximize the likelihood function (J.W. Harris and H. Stocker, 1998). 

The likelihood function L(θ | x)  is a function of the parameter values, given the 

observed data, which equals the probability of the observed data, given those 

parameter values: 

 

L(θ | x) = P(x |θ ) . 

 

Suppose we have an independent and identically distributed sample of returns 

y1, y2, y3,!, yn . The probability density function of the historical returns f0 (y)  is 

unknown, but we assume that it belongs to a certain class of parametric distributions, 

denotes as f0 (y |θ ) 	
  such that	
   f0 (y) = f0 (y |θ0 ) . Where θ0  is the vector of true 

parameters. 

The MLE aims at finding a vector of parameters θ
∧

 that is a good approximation of 
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the true vector of θ0 . The first step is to find the joint density function of the 

independent and identically distributed sample: 

 

f (y1, y2,!, yn |θ ) = f (y1 |θ )× f (y2 |θ )×!× f (yn |θ ) . 

 

Then we use the joint density function to calculate the likelihood by considering a 

function of the parameters θ  with given y1, y2, y3,!, yn : 

 

L(θ | y1, y2,!, yn ) = f (y1, y2,!, yn |θ ) = f (yi |θ )
i=1

n

∏
.
 

 

To simplify the calculations in this thesis we use a modification of the likelihood 

function that is obtained by taking the logarithm of both sides in the previous 

equation. The new function is called the log-likelihood: 

 

logL(θ | y1, y2,!, yn ) = log f (yi |θ )
i=1

n

∏
.
 

 

Since the logarithm is a monotonically increasing function, then it reaches the 

maximum point at the same point of the original function. This means that in 

likelihood maximization problems, the likelihood function can be substituted with the 

log-likelihood without altering the results. The property of the logarithm allows us to 

express the logarithm of a product as the sum of logarithms: 
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logL(θ | y1, y2,!, yn ) = log f (yi |θ )
i=1

n

∏ = log f (y i |θ )
i=1

n

∑
.
 

 

This feature makes the calculations much easier, since the maximization problems 

often require to take the derivative, and taking the derivative of a sum is always easier 

than taking the derivative of a product. 

The MLE is therefore a key method for our purposes, since it provides us with the 

opportunity to generalize a set of historical stocks returns data into a given 

distribution, that will subsequently be used as a basis to sample random returns 

coherent with that distribution, which represent the predicted returns. 

Historical data of asset returns follow complex distributions, and in order to provide 

better fit for the historical observations, three different models for predicting the 

future returns are considered: The Normal distribution, the t-Location Scale 

distribution and the Generalized Hyperbolic distribution. 

 

4.2 Normal Distribution 

The Normal or Gaussian distribution is a very common distribution in natural and 

social sciences. Its central role in statistics comes from the Central Limit Theorem, 

which states that under some basic assumptions, the mean of a large pool of 

independent random variables is normally distributed. As a fundamental distribution 

in mathematics, we have applied it to forecasting returns. The general formula for the 

probability density function  (PDF) of the Normal distribution is: 

 

. 

f (x,µ,σ )

f (x,µ,σ ) = 1
σ 2π

e
−
(x−µ )2

2σ 2
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In our case  is the mean return, and  is the standard deviation of returns. 

The cumulative distribution function  (CDF) of a Normal, which represents the 

probability that a scenario is lower than or equal to the value at which the cumulative 

distribution function is calculated, can be written as: 

 

. 

 

The CDF can also be expressed as the integral, between  and , of the probability 

density function . This means that we can write  as: 

 

	
  

or 

.	
  

 

As shown in the second expression, the solution of the integral cannot be represented 

by elementary functions, therefore we have to include a special function named the 

error function : 

 

. 

 

We refer to Appendix 1.5 for the MatLab code on the construction of the cumulative 

µ σ

FN (x)

FN (x) = P(X ≤ x)

−∞ x

f (x,µ,σ ) FN (x)

FN (x) = f (x,µ,σ )
−∞

x
∫ =

e
−
(x−µ )2

2σ 2

σ 2π−∞

x
∫

FN (x) =
1
2
1+ erf x −µ

σ 2
"

#
$

%

&
'

(

)
*

+

,
-

erf (x)

erf (x) = 1
π

e−t
2

dt
−x

x
∫
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distribution function for the Normal distribution. 

For the purpose of this work, we use matrix notation in order to construct the model 

and implement it in the MatLab environment. We started with a matrix of logarithmic 

returns as follows: 

 

. 

 

The first necessary assumption is that the returns for each stock are normally 

distributed in the form: 

 

. 

 

The future values of stock i 	
  can then be predicted by summing the average return µi  

and a factor N  that accounts for the standard deviation. To comply with the model, 

the factor N 	
  has to be normally distributed. Therefore the general formula is: 

 

yi
j = µi + N 	
   where    N ~ N(µ,σ 2 ) . 

 

To obtain the factor N  we first decomposed the variance-covariance matrix into 

y1
.
.
.
yn

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

≈

y1
1 . . . y1

n

. . . .

. . .

. . . .
yn
1 . . . yn

n

!

"

#
#
#
#
#
##

$

%

&
&
&
&
&
&&

y1
.
.
.
yn

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

≈

N(µ1,σ1
2 )

.

.

.
N(µ2,σ 2

2 )
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product of matrix 	
  and its transpose , using the Cholesky decomposition as 

follows: 

 

. 

 

Then we multiply the matrix  for a vector of independent standard Normal random 

variables . Hence, to generate the scenario j for the asset returns, we use the 

following representation: 

 

, 

 

Where zj  denotes a sample of n random numbers from the standard Normal 

distribution. We refer to Appendix 1.6 for the MatLab Code on the generation of 

return scenarios using the Normal distribution. 

By doing simple statistics it is however easy to realize that the Normal distribution 

cannot perfectly approximate the historical distribution of returns (J. Y. Campbell, A. 

W. Lo, and A. C. MacKinlay, 1997). In fact the values of skewness and kurtosis for 

the Normal distribution are both equal to 0, while the real values shown in Table 1.2 

are on average very far from 0. Moreover in Figure 4.2.1 the distribution of market 
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returns of the Nasdaq 100 index it is plotted against the fitted Normal distribution. 

The graphical representation stresses the impossibility of the Normal distribution to fit 

higher values around the mean and the fatter tails, therefore a different distribution 

should be applied. 

 

 

Figure 4.2.1 – Plot of the Nasdaq 100 returns against the fitted Normal distribution. 

 

4.3 T-Location Scale Distribution 

The t-location scale is a more complex distribution than the Gaussian, since it 

includes in addition to the expected return  and standard deviation , a parameter 

 expressing the degrees of freedom. This parameter determines the shape of the 

distribution around the mean and the tails. For high values of , we have higher 

probabilities around the mean, while for lower ones, we have higher probabilities 

around the tails. Moreover, when the degrees of freedom go to infinity, the t-location 

µ σ

ν
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scale is exactly equal to the Normal distribution. Thanks to the listed properties, the t-

location scale distribution is preferred in cases of leptokurtosis, as expressed by the 

distribution of returns in our case (H. Rinne, 2010). 

We denote the probability density function as , expressed by the formula: 

 

,  

 

Where Γ(n)  is the Gamma function. In case n  belongs to the set of integers, then the 

Gamma function is simply a variation of the factorial function, where the argument is 

n−1 . Therefore it is summarized in the expression: 

 

Γ(n) = (n−1)!  

 

However, if n  is a complex number with a positive real part, then it is expressed as 

the integral: 

 

Γ(n) = xn−1e−x dx
0

∞

∫ . 

 

Since the t-location scale includes the gamma function, the cumulative distribution 

function (CDF) cannot be explicitly found by taking the integral of the probability 

density function above, but it can be approximated by analyzing the probability 

density function (PDF). The t-location scale distribution is in fact a broad expression 

T (x,µ,σ ,ν )

T (x,µ,σ ,ν ) =
Γ
ν +1
2

"

#
$

%

&
'

σ νπΓ
v
2
"

#
$
%

&
'

ν +
x −µ
σ

"

#
$

%

&
'
2

v

)

*

+
+
+
+

,

-

.

.

.

.

−
ν+1
2

"

#
$

%

&
'



	
   25 

that includes the Student t-distribution. Therefore if we consider a random variable  

distributed according to the t-location scale distribution with parameters , , and 

; then  is distributed according to a Student t-distribution with  degrees of 

freedom, that is: 
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This property allows us to approximate the CDF of the t-location scale by using the 

CDF of the Student t-distribution with argument .  In short: 
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Or equivalently, we can express it as a relationship between the cumulative 

distribution functions: 
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Here F  stands for the CDF. 

We refer to Appendix 1.7 for the MatLab code related to the calculation of the 

cumulative distribution function for the t-location scale distribution. 

To predict the future values of the stocks returns, we have to analyze the probability 

density function formula of the t-Location scale distribution. All the variables in the 

equation are known, apart from the number of degrees of freedom , which has to be 

x

µ σ

ν x −µ
σ

ν

x −µ
σ

ν



	
   26 

estimated. This estimation complicates the procedure, making the model slower and 

unsuitable for the purpose of this work. Moreover, another limitation is brought by the 

presence of the Gamma function . The argument  in the gamma function is in 

our case a linear combination of the degrees of freedom , and since the degrees of 

freedom can only be greater than or equal to zero, we can isolate the gamma function 

in the first quadrant of the Cartesian plane when plotted in a graph with  on the x-

axis and Γ(ν )  on the y-axis (as in Figure 4.3.1). 

 

 

Figure 4.3.1 – Plot of the Gamma function  on the first quadrant of the 

Cartesian plane. 

 

The chart shows the values of the gamma function plotted over the degrees of 

freedom. We can see that the value of the function quickly goes to infinity as the 

degrees of freedom rise, making the t-location scale equal to the Normal distribution. 

This downside, added to the limitations on the definiteness of the kurtosis, make this 

approach unsuitable (from the numerical and computational storage viewpoint) for a 

multivariate version of the scalar t-location scale distribution.     
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We have therefore constructed a new model based on a classical financial theory: the 

Capital Asset Pricing Model (CAPM) (W.F. Sharpe, 1964). The CAPM tries to 

combine concepts from portfolio valuation and market equilibrium in order to 

construct a formula for the pricing of assets based on their risk, and therefore provide 

a tool to measure and to price risk. We consider a model based on the direct 

relationship between risk and return, where the risk is considered as the sum of 

systematic and unsystematic risk. The CAPM however assumes that the unsystematic 

risk, which can be diversified by using the correlations between assets in a portfolio, 

is not relevant; while systematic risk is the only risk present in a well-diversified 

portfolio and is measured with . The CAPM formula is: 

 

 

 

Where  is the expected return on security i = 1, 2, … , n, which is equal to the 

sum of the risk-free rate , plus the product of the market sensitivity  times the 

equity risk premium , all summed to an error term . In our case, the 

market is taken to be the index Nasdaq 100, while the risk-free rate corresponds the 

short-term U.S. Government bonds, as they are highly rated and in line with the 

market for the stocks chosen. The  coefficient, which represents the sensitivity of 

security i  returns to the market returns, has obtained by a simple linear regression 

between the historical returns of security i  and the market returns. For every asset 

return, the slope coefficient of the line obtained is described by . Appendix 1.8 

includes the MatLab code used for the computation of . 

β
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The error term  is instead a predicted value of the error term. To remain in line with 

the assumption on the t-location scale distribution of returns, we assume that the error 

terms { iε }i are independent random variables on the same probability space 

following: 

)( itStudentii T νσε = ,	
  

 

Where )( itStudentT ν 	
  describes a t-Student distributed random variable with i	
  degrees 

of freedom. They are also assumed to be independent of the market index return. The 

value is estimated by fitting a t-location scale to the distribution of historical 

residuals. The value of the error used to forecast scenarios for the expected returns of 

security i can be generated with a random process following the t-Location Scale 

distribution with estimated parameters. We refer to Appendix 1.9 for the MatLab code 

related to the calculation of the error . 

The expected value of the returns of the market is calculated with the same method as 

the error term. With all the variables needed, we can simply follow the CAPM 

formula and calculate the expected returns of security  following a t-location scale 

distribution.  

We refer to Appendix 1.10 for the MatLab code to predict scenarios coherent with the 

t-Locations Scale distribution using the CAPM model. 

One of the major issues related to the use of the CAPM model is the correlation 

between the predicted returns and the error term. In fact it would mean that the model, 

with the current structure and variables is not explaining the behavior of returns in a 

complete way. Part of the influence of returns would in fact be captured by the error 

term itself. For this reason we tested the model evaluating the covariances and 
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correlations between the error term  of stock i with the respective predicted returns. 

The covarainces are listed in Table 4.3.1, while the correlations are listed in Table 

4.3.2. 

 

Covariance between  and predicted returns 

*1.0e-04 
AAPL 0.0054 

CSCO -0.0676 

MSFT -0.0146 

CMCSA 0.0155 

WFM 0.0489 

PFE 0.0556 

MAR -0.0232 

MNST 0.1105 

SBUX 0.0555 

FISV 0.0010 

Table 4.3.1 – Covariances between the error term and predicted returns. 

 

Correlation between  and predicted returns 

 
AAPL     0.0010 

CSCO    -0.0242 

MSFT    -0.0070 

CMCSA     0.0049 

WFM     0.0067 

PFE    -0.0125 

MAR     0.0142 

MNST     0.0066 

SBUX     0.0118 

FISV     0.0003 

Table 4.3.2 – Correlations between the error term and the predicted returns. 

 

εi

εi

εi



	
   30 

As shown in Table 4.3.1, the results obtained exhibit almost null covariances, 

displaying that the model is constructed in an effective way. Moreover, the 

correlations in Table 4.3.2 are quite low, meaning that the model is not biased by a 

relationship between the error terms and the predicted returns. We refer to Appendix 

1.11 for the MatLab code on the calculations of the covariance and correlation vector. 

Moreover, an important test is on the independence of the error terms, defined in 

statistics as: autocorrelation. This property has been tested by applying the Durbin-

Watson test. This test provides a value p∈ [0,1] , such that if the value is close to 0 

we reject the null hypothesis of no autocorrelation, in case it is close to 1 we have a 

proof of no autocorrelation. The test results are listed in Table 4.3.3. 

 

Correlation between  and predicted returns 

 
AAPL     0.0139 

CSCO     0.4598 

MSFT     0.3235 

CMCSA     0.4902 

WFM     0.7301 

PFE     0.0711 

MAR     0.1362 

MNST     0.1395 

SBUX     0.1926 

FISV     0.1808 

Table 4.3.3 – Results of the Durbin-Watson test. 

 

The results of the test are relatively low, showing that the error terms exhibit clear 

signs of autocorrelation. Even if the estimation is robust, this property may negatively 

affect our results. 

εi
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We also realize that the CAPM imposes some strict assumptions, which in some cases 

may have to be relaxed. Therefore we computed the estimation of returns through the 

decomposition of the t-location scale into a Student-t distribution (as explained 

above), which allowed us to avoid using the CAPM. Appendix 1.12 contains the 

MatLab code for the calculation of returns as explained above. 

Below, in Figure 4.3.2, we represent the distribution of market returns (Nasdaq 100) 

against the fitted t-location scale distribution. 

 

 

Figure 4.3.2 – Plot of the market returns distribution against the t-location scale 

distribution. 

 

Figure 4.3.2 shows that the t-location scale fit represents a much more precise 

approximation of the real data. In terms of sample statistics, the values of skewness 

and kurtosis for the t-location scale are obtained by considering the skewness of the 

Student-t distribution. The skewness is 0 for degrees of freedom ν > 3 ; otherwise it is 
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undefined. In this statistic the t-location scale does not provide a better approximation 

than the Normal distribution, therefore it does not capture the asymmetry of the peak 

in the dataset. The kurtosis instead equals 6
ν − 4

 for ν > 4 , ∞  for 4 ≥ν > 2 , and for 

all other values of ν  it is undefined. The plot of the value of the kurtosis over the 

different degrees of freedom for the case where ν > 4  are represented in Figure 4.3.3.  

 

 

Figure 4.3.3 – Plot of the kurtosis value against the number of degrees of freedom, 

for the case ν > 4 . 

 

As we can see the from Figure 4.3.3 the values of kurtosis in the specific interval of 

degrees of freedom, range from infinity to zero, providing a much better 

approximation for the real values. 

The sample statistics discussed above demonstrate our hypothesis that the t-location 

scale better approximates the real distribution in the peak around the mean, thanks to 

the possibility to have positive kurtosis. 
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In Figure 4.3.4 the comparison between the Normal distribution and the t-location 

scale is shown, emphasizing the advantage of using the t-location scale. 

 

 

Figure 4.3.4 – Plot of the market returns against both the fitted Normal distribution 

(in red) and the fitted t-location scale (in blue). 

 

Unfortunately, even if the t-location scale follows the empirical distribution of real 

data much more closely and accurately than the Normal distribution, some 

characteristics of the empirical distribution are still not well approximated. In fact, by 

comparing the indices of skewness of the t-location scale against the real values, we 

observe that the results are very different, meaning that the probability values around 

the tails are not well estimated; therefore a different distribution should be considered. 

 

4.4 Generalized Hyperbolic Distribution 

The Generalized Hyperbolic distribution (GH) was first introduced in 1977 by 

Barndorff-Nielsen to represent a mathematical model for the movement of sand dunes 
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(O. Barndorff-Nielsen, 1977). This distribution is a very broad form, which can itself 

represent various distributions, one of which is the t-location scale. Moreover its 

characteristic semi-heavy tails allow it to model samples such as financial market 

returns, where the probability in the tails is not well captured by the Normal 

distribution or t-location scale (K. Prause, 1999). 

The probability density function of the generalized hyperbolic distribution is defined 

by the expression: 

 

, 

 

Where  is a shape factor whose value has to be greater than 0. The skewness is 

determined by the absolute value of  which has to satisfies the condition . 

The parameter  is a location parameter.  characterizes the specific 

subclasses, and is the main influencer of the tail sizes; while  is a scaling factor. 

Moreover the norming constant a(λ,α,β,δ,µ) 	
  takes the following form: 

 

. 

 

The function  represents the third kind modified Bessel function with index	
   , 

which in practice is a linear combination of the first kind and second kind modified 

Bessel functions (M. Abramowitz and I. A. Stegun, 1964). 
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The generalized hyperbolic distribution strictly depends on the Generalized Inverse 

Gaussian Distribution (GIG), in fact its sample statistics contain values derived from 

it. By taking , then the expected value, or mean of the GH is equal to: 

 

,	
  

or 

. 

 

While the variance of the GH is: 

 

,	
  

or, equivalently 

. 

 

In order to predict scenarios from a GH distribution that accounts for the correlation 

between assets, we accounted for the multivariate model by applying the CAPM (as 

for the t-location scale). To then approximate the single asset returns, we estimate the 

market returns with the two approximation techniques described below. 

The first approximation (Option 1) method is based on the construction of a strictly 

increasing function h(x;u) = FGH (x)−u  that determines the difference between the 

cumulative distribution function of the portfolio GH distribution and a given random 

number u  uniformly distributed between 0 and 1. Then we find a numerical 

approximation x(u)  for the unique solution of h(x;u) = 0 , in order to obtain the value 
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a random number extracted by the GH	
   distribution.	
  The function can be expressed 

as: 

  

udxxduxh
x

GH −= ∫ ∞− )();( ),,,,( µδβαλ . 

 

The integral yields the GH cumulative distribution function. Appendix 1.13 presents 

the MatLab code for the computation of the cumulative distribution function for the 

GH distribution. 

The second approximation (Option 2) method consists in the application of the 

Newton-Raphson algorithm to approximate the (unique) root of a strictly monotonic 

and differentiable function through an iterative process. The iterative procedure 

follows the scheme: 
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In our case uxFuxhxf uGH −== )();()( ,	
   and the derivative is simply the GH 

probability density function. Hence, the iterative process becomes: 
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Here x1  represents a starting point for the iterative process, which is given by the user 

and is an approximation of the root of the function that is known in advance. This is 

the first point where the iteration starts, so the closer it is to the real value, the faster 

the algorithm will be in reaching the solution. Figure 4.4.1 below provides a graphical 

explanation of the functioning of the Newton-Raphson method. 

 

 

Figure 4.4.1 – Approximation using the Newton-Raphson method. 

 

Since the density function is strictly positive, then suppose we are referring to the 

CDF in Figure 4.4.1, and assume we start the Newton-Raphson iteration at a point x1  

greater than the solution x . In this case the value of FGH (xu )−u  is equal to u1 −u , 

which is a positive number since u1 > u . Therefore we are subtracting a positive 

quantity from x1 , meaning that the next iteration will start from a point 2x̂  such that 

12ˆ xxx << . If the iteration goes on, the value of the quantity subtracted decreases 

until it reaches 0, which is exactly the solution x . 
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Suppose instead we start from a value x2  lower than x . In this case the value of 

FGH (xu )−u  is negative since u > u2 , hence we are subtracting a negative quantity 

(adding) to x2 . Again if the iteration goes on, the value of the quantity added 

decreases until it reaches 0, which is exactly the solution x . 

We refer to Appendix 1.14 for the MatLab code on the generation of scenarios from a 

Generalized Hyperbolic distribution using the two procedures (Option 1 and Option 

2) discussed above. Moreover we refer to Appendix 1.15 for the Matlab code on the 

generation of stocks returns based on the two methods discussed above, using the 

CAPM. 

The results of the Hyperbolic Distribution are much closer to the real values, 

especially for the values in the tails. This distribution provides a good fit for the real 

data, which will allow for more accurate predictions and estimations of the CVaR. 

In Figure 4.4.2, the Generalized Hyperbolic distribution is plotted against the 

distribution of returns of the market (Nasdaq 100). 

 

 

Figure 4.4.2 – Plot of the fitted GH distribution against the market return distribution 
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5. Goodness of Fit 

 
To assess whether the above considered distributions represent a good approximation 

of real data, and in order to measure their effectiveness in modeling all the 

characteristics of the empirical distribution of asset returns, we have compared the 

empirical distribution with the estimated distribution applying some discrepancy 

measures. 

 

5.1 Anderson & Darling Test 

This statistical test for goodness of the fit is particularly important in our analysis for 

its intrinsic characteristics (T. W. Anderson and D. A. Darling, 1952). The Anderson 

& Darling test for any distribution is expressed by: 

 

AD =max
x∈R

Femp(x)−Fest (x)
Fest (x)(1−Fest (x))

, 

 

where Femp(x)  is the empirical CDF and Fest (x)  is the estimated CDF.  The effect of 

the factor Fest (x)(1−Fest (x))  at the denominator in AD can be deduced by Figure 

5.1.1 below. 
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Figure 5.1.1 – Plot of the Fest (x)(1−Fest (x))  factor at the denominator of the 

Anderson & Darling test formula, where Fest (x)  is on the x-axis and the value of the 

factor on the y-axis. 

 

From Figure 5.1 we can see that the function expressing the total value of the factor 

(on the y-axis) has a global maximum when the estimated CDF Fest (x)  (on the x-axis) 

is at 0.5, meaning that we are at the mean point µ  of the distribution. Then as we 

move towards the tails of the distribution (e.g. when the CDF approaches 0 and 1), the 

value of the function decreases to zero. This means that the Anderson & Darling test 

divides the absolute difference Femp(x)−Fest (x) 	
  for greater values when it is around 

the mean, and for smaller values when it is around the tails, in this way emphasizing 

the Anderson & Darling test result on the distribution’s tails (S. R. Hurst, E. Platen, 

and S. T. Rachev, 1995). Thanks to this property, the Anderson & Darling test is a 

widely used statistical tool to accurately measure the error of distributions that exhibit 

specifically fat tails (M. A. Stephens, 1974). 
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We refer to appendix 1.16 for the MatLab code on the application of the Anderson & 

Darling test. 

 

5.2 Kolmogorov Distance 

The Kolmogorov distance is defined as the supremum of the absolute difference 

between the predicted and the empirical cumulative distribution functions. The 

Kolmogorov distance is expressed in mathematical terms as: 

 

)()(sup xFxFKD estemp
Rx

−=
∈

 

 

This function assigns a quantity to the distance between the predicted and empirical 

CDF, allowing to quantify the goodness of fit. 

We refer to Appendix 1.17 for the MatLab code on the Kolmogorov distance test. 

 

5.3 L1 Distance 

The L1 distance is another estimator of the goodness of fit, and is defined as the sum 

of the absolute difference between the predicted and the empirical cumulative 

distribution functions evaluated at a given set of points {xi}i . Precisely, we have: 

 

L1= Femp(xi )−Fest (xi )i∑ . 

 

We refer to Appendix 1.18 for the MatLab code on the L1 distance test. 
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5.4 L2 Distance 

The L2 distance, also called the Euclidean distance, is a similar measure to the L1 

distance, and is calculated as the square root of the squared deviation between the 

predicted and the empirical cumulative distribution functions. The L2 distance is 

expressed by: 

 

L2 = Femp(xi )−Fest (xi )i∑
2
. 

 

We refer to Appendix 1.19 for the MatLab code on the L2 distance test. 

 

5.5 Estimated Results 

We ran each of the distance measures on the market index (Nasdaq 100), since it can 

be considered a representative proxy for the market and of our portfolio. The results 

are listed in Table 5.5.1. 

 

 Normal t-Location Scale 
Generalized  
Hyperbolic 

Anderson & 
Darling 

7.6099 0.1679 0.0309 

Kolmogorov 
Distance 

0.0284 0.0093 0.0081 

L1  
Distance 

29.3731 7.6295 6.5530 

L2  
Distance 

0.6920 0.1846 0.1587 

 

Table 5.5.1 – Test results for the market index (Nasdaq 100). 
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We estimated the returns using the Normal distribution, t-location scale and the 

generalized hyperbolic. The results are very different, and their significance is 

discussed below. 

As expected, the values of the distance measures under the Normal distribution are 

substantially higher than the values obtained for other distributions, in every test. The 

fact that returns do not follow a Normal distribution is clear, even from the graphical 

comparison between the probability density function of historical returns and the 

fitted Normal distribution in Figure 4.2.1. However, this serves as a measure to 

quantify the error caused by the use of this distribution as a predictor of future returns. 

The t-location scale scores are much lower than the Normal distribution, meaning that 

it is a more accurate predictor. However, the values are still slightly higher than the 

hyperbolic distribution in all tests apart for the Anderson & Darling test, where the t-

location scale is still much higher. This result clearly proves our expectations, 

meaning that the t-location scale is a valid estimator for the values around the mean, 

but a poor predictor when the distribution is around the tails. 

The hyperbolic distribution definitely yields satisfactory results, as the error measures 

are low for each test.  
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6. Portfolio Optimization 

In this section we apply the portfolio optimization algorithm defined in Section 3 to 

the representative portfolio selected from the Nasdaq 100 index, with the objective to 

find the optimal asset weights that minimize risk. 

The portfolio optimization was applied to our dataset (described in Section 1), and the 

results using the minimization of CVaR formula are listed in Table 6.1. 

 

 Weight 

AAPL 0.0456 

CSCO 0.1030 

MSFT 0.2589 

CMCSA 0.0058 

WFM 0.0286 

PFE 0.5400 

MAR -0.0675 

MNST 0.0156 

SBUX 0.0317 

FISV 0.0382 
 

Table 6.1 – List of weights resulting from the minimization of CVaR. 

 

The value of the CVaR obtained is 0.0311. 

To parallel the methods of predictions and evaluate their effect on portfolio 

optimization, we compared the expected returns of the portfolio following the 

different distributions with real returns of the month after the stock prices were 

reported. Our expectations from the test results of Section 5.5 suggest that the best 

approximation should be provided by the hyperbolic distribution, followed by the t-

location scale, and lastly by the Normal distribution. The empirical results are listed in 

Table 6.2. 
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 Expected Return 

Real data 0.0012 

Normal 0.0002 

t-Location Scale -0.0035 

Hyperbolic 0.0021 

 

Table 6.2 – Expected returns of the portfolio using different distributions 

 

The results do not completely match our expectations, in fact the distribution 

providing the greater distance from the real data is the t-location scale, while we 

expected it to be the Normal distribution. We believe this is due to the autocorrelation 

that the error terms exhibit, and may yield biased results. Moreover the lack of data 

for the future prices comparison may negatively affect our results. In fact we had the 

possibility to take only 19 real return observations after the original dataset, making 

the computations subject to very high standard deviations. In our case the average 

standard deviation of the dataset is calculated to be around 0.0091, which is a very 

high value compared to the values of the expected returns. 

However, we consider the results to be effective in explaining the dominance of the 

hyperbolic distribution in comparison with the other two methods. 
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7. Conclusions 

 

This thesis has provided an in depth comparison between the Normal distribution, t-

location scale and generalized hyperbolic distribution in their application to portfolio 

optimization and evaluation of risk. The distributions’ efficacy is measured through 

the use of various tests, which show a clear predominance in terms of accuracy and 

precision for the generalized hyperbolic distribution. Particular importance is given to 

the Anderson & Darling test (Section 5.1), since it emphasizes the error on the tails, 

which is on of the most particular features that the empirical distribution of stock 

returns exhibit. 

Moreover, by comparing the expected returns resulting from the minimization of 

CVaR using different distributions, the hyperbolic distribution yields far more precise 

estimates in the calculation of risk. Even if the dataset expected returns is limited, we 

believe that the results are representative since the distributions estimated allow for 

the generalization of our results. Therefore, it is clear that the hyperbolic distribution 

provides investors with accurate predictions, allowing for lower uncertainty on the 

measurements and more efficient portfolio optimization. 
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Appendix – MatLab codes 

 

Appendix 1.1 

MatLab code on the calculation of sample statistics for the dataset. 

function [ ExpRet,Variance,StDev,Skewness,Kurtosis,VarCov ] = 
SampleStat( rStocks ) 
 
%This function generates the sample statistics for a matrix of prices 
%Insert: pStocks - matrix of prices, each stock has a column of 
prices. 
  
n=0; 
m=0; 
j=size(rStocks,2); 
  
%Expected Return 
for n=1:j 
    ExpRet(1,n)=mean(rStocks(:,n)); 
end 
  
%Variance 
for n=1:j 
    Variance(1,n)=var(rStocks(:,n)); 
end 
  
%Standard Deviation 
for n=1:j 
    StDev(1,n)=std(rStocks(:,n)); 
end 
  
%Skewness 
for n=1:j 
    Skewness(1,n)=skewness(rStocks(:,n)); 
end 
  
%Kurtosis 
for n=1:j 
    Kurtosis(1,n)=kurtosis(rStocks(:,n)); 
end 
  
%Variance-Covariance Matrix 
VarCov=cov(rStocks); 
  
end 
 
 

Appendix 1.2 

MatLab code for the calculation of logarithmic returns. 

function [ rStocks,rMarket ] = logr( pStocks,pMarket ) 
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%This function yields the matrix of logarithmic returns from the 
matrix of 
%prices of stocks and market prices 
%  Insert: 
%   . pStocks - matrix of prices of stocks. Stocks are listed in 
rows, 
%     so each column is a column of prices from the latest to the 
oldest 
%     price 
%   . pMarket - column vector of prices of the market index 
  
i=size(pStocks,1); 
j=size(pStocks,2); 
  
rStocks=zeros(i-1,j); 
rMarket=zeros(i-1,1); 
  
for n=1:j 
    for m=1:(i-1) 
        rStocks(m,n)=log(pStocks(m,n)/pStocks(m+1,n)); 
    end 
end 
  
for m=1:(i-1) 
    rMarket(m,1)=log(pMarket(m,1)/pMarket(m+1,1)); 
end 
  
     
end 
 
 

Appendix 1.3 

MatLab code on the calculation of the Value at Risk of the portfolio. 

function [ VaR,portVaR ] = VaRfunction( rStocks,p,w ) 
  
%VaRfunction - This function yields a vector with the corresponding 
Value 
%at Risk of every stock in the portfolio 
%   Input: 
%   . rStocks - matrix of returns of stocks (columns of returns for 
every 
%   stock) 
%   . p - probability level 
%   . w - weight vector (column vector) 
%   Output: 
%   . VaR - column vector with Value at Risk of stock 1 in cell 1... 
%   . portVar - Value at Risk of the portfolio with weights equal to 
w 
%     if w is null, then the weights are assigned with equal 
proportion to 
%     every asset. 
  
  
[i,j]=size(rStocks); 
  
for n=1:j 
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    VaR(n,1)=quantile(rStocks(:,n),p); 
end 
  
if isempty(w) 
    w=[(1/j)*ones(1,j)]'; 
end     
portVaR=quantile(rStocks*w,p); 
  
end 
 
 

Appendix 1.4 

MatLab code on the calculation of Conditional Value at Risk and optimal portfolio 

weights. 

function [CVaR,w]=CVaRfunction(r, Er, b, UB, LB) 
  
%CVaR - this function finds the Conditional Value at Risk of each 
asset in 
%a given portfolio. 
%   INPUT: 
%    . r - matrix of returns 
%    . b - probability level (0.9<b<1) 
%    . LB - lowest bound for each stock weight (-1<LB<1) 
%    . UB - upper bound for each stock weight (-1<UB<1) 
%       always  UB>LB 
%    . Er - target portfolio return (-1<Er<1) 
%   OUTPUT: 
%    . CVaR - is the Conditional Value at Risk for the portfolio 
%    . w - the optimal weights for each asset 
  
[i, j]=size(r); 
w0=[(1/j)*ones(1,j)]; 
VaR=quantile(r*w0',b); 
w0=[w0 VaR]; 
  
% objective function 
n=1:j; 
Rfunction=@(w) w(j+1)+(1/i)*(1/(1-b))*sum(max(-w(n)*r(:,n)'-
w(j+1),0)); 
  
if isempty(Er),isempty(UB),isempty(LB) 
    % matrices 
    Aeq=[ ones(1,j) 0]; 
    beq=[1]; 
     
    % minimize the risk function  
    [w,CVaR]=fmincon(Rfunction,w0,[],[],Aeq,beq); 
  
else 
    % matrices 
    A=[-mean(r) 0;  -eye(j) zeros(j,1); eye(j) zeros(j,1)]; 
    b=[-Er -LB*ones(1,j) UB*ones(1,j)]'; 
    Aeq=[ ones(1,j) 0]; 
    beq=[1]; 
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    % minimize the risk function considering the constraints on w and 
Er 
    [w,CVaR]=fmincon(Rfunction,w0,A,b,Aeq,beq,LB,UB,[]);     
end     
  
  
end 
 
 

Appendix 1.5 

MatLab code on the computation of the cumulative distribution function for the 

Normal distribution. 

function [ Fncap ] = ncdf( rStocks ) 
 
%ncdf - Normal Cumulative Distribution Function, yields the matrix 
composed 
%as such: 
%In cell 1,1 of Fn there is the probability that the return is lower 
than 
%or equal to the return in cell 1,1 of rStocks, if returns follow a 
normal 
%distribution 
%   INPUT: 
%    . rStocks - matrix of stocks returns 
%   OUTPUT: 
%    . Fncap - matrix of cumulative distribution function 
  
  
[i,j]=size(rStocks); 
  
for n=1:j 
    A=fitdist(rStocks(:,n),'Normal'); 
    for m=1:i 
        Fncap(m,n)=normcdf(rStocks(m,n),A.mu,A.sigma); 
    end 
end 
  
  
end 
 
 

Appendix 1.6 

MatLab code on the prediction of returns using the Normal distribution. 

function [ Fncap ] = ncdf( rStocks ) 
 
%ncdf - Normal Cumulative Distribution Function, yields the matrix 
composed 
%as such: 
%In cell 1,1 of Fn there is the probability that the return is lower 
than 



	
   53 

%or equal to the return in cell 1,1 of rStocks, if returns follow a 
normal 
%distribution 
%   INPUT: 
%    . rStocks - matrix of stocks returns 
%   OUTPUT: 
%    . Fncap - matrix of cumulative distribution function 
  
  
[i,j]=size(rStocks); 
  
for n=1:j 
    A=fitdist(rStocks(:,n),'Normal'); 
    for m=1:i 
        Fncap(m,n)=normcdf(rStocks(m,n),A.mu,A.sigma); 
    end 
end 
  
  
end 
 
 

Appendix 1.7 

MatLab code on the calculation of the cumulative distribution function for the t-

location scale distribution. 

function [ Ftcap ] = tlocCDF( rStocks ) 
  
%tloccdf - t-Location Scale Cumulative Distribution Function, yields 
the 
%matrix composed as such: 
%In cell m,n of Ftloc there is the probability that the return is 
lower 
%than or equal t the return in cell m,n of rStocks, if returns follow 
a 
%t-Location Scale distribution 
%   INPUT: 
%    . rStocks - matrix of stocks returns 
%   OUTPUT: 
%    . Ftcap - matrix of cumulative distribution function 
  
  
[i,j]=size(rStocks); 
  
for n=1:j 
    A=fitdist(rStocks(:,n),'tLocationScale'); 
    for m=1:i 
        Ftcap(m,n)=tcdf((rStocks(m,n)-A.mu)/A.sigma,A.nu); 
    end 
end 
  
plot(sort(rStocks),sort(Ftcap)); 
  
  
end 
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Appendix 1.8 

MatLab code on the calculation of . 

function [ beta ] = beta( rStocks,rMarket ) 
  
%This function generates a column vector that contains the betas of 
all 
%stocks. eg. The beta of stock 1 is in cell (1,1) while beta stock2 
is in cell 
%2,1... 
%   INPUT: 
%    . rStocks - matrix of stocks returns 
%    . rMarket - column vector of returns of the market 
%   OUTPUT: 
%    . beta - column vector of stocks betas 
  
n=0; 
j=size(rStocks,2); 
  
for n=1:j 
    beta(n,1)=regress(rStocks(:,n),rMarket); 
end 
  
  
end 
 

Appendix 1.9 

MatLab code on the calculation of the error . 

function [e] = err(rStocks,rMarket,beta,Rf) 
  
%err - this function generates the error values for the CAPM formula 
from a 
%process following an fitted t-Location Scale Distribution. 
%   INPUT:   
%    . rStocks - matrix of stocks returns 
%    . rMarket - matrix of market returns 
%    . beta - column vector of stocks betas 
%    . Rf - risk free rate 
%   OUTPUT: 
%    . e - matrix of error terms for each stock 
  
[i,j]=size(rStocks); 
e=zeros(i,j); 
n=1; 
  
for n=1:j 
    e(:,n)=rStocks(:,n)-Rf-beta(n,1)*(rMarket-Rf); 
end 
   
end 

βi

εi
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Appendix 1.10 

MatLab code on the prediction of scenarios coherent with the t-Locations Scale 

distribution using the CAPM model. 

function [ rbarStocks ] = exprStocks(rMarket,beta,Rf,e) 
 
%exprStocks - This function creates the matrix of predicted returns 
following the CAPM 
%model. 
%   INPUT: 
%    . rMarket - matrix of market returns 
%    . beta - vector of stocks betas 
%    . Rf - risk free rete of return 
%    . e - error matrix 
%   OUTPUT: 
%    . rbarStocks - matrix of predicted stocks returns following a 
%    t-Location Scale 
  
  
[i,j]=size(e); 
dMarket=fitdist(rMarket,'tLocationScale'); 
  
for n=1:j 
    dErr=fitdist(e(:,n),'tLocationScale'); 
    for m=1:i 
        rbarStocks(m,n)=Rf+beta(n,1)*(random(dMarket)-
Rf)+random(dErr);     
    end 
end 
  
  
end 
 
 

Appendix 1.11 

MatLab code on the computation of the vector of covariance between the error terms 

and the predicted returns. 

function [ CovER,Cor ] = cov_error_ret( rbarStocks,e ) 
  
%cov_error_ret - yields the vector of covariances between the error 
term 
%and the predicted stocks returns. 
%   INPUT: 
%    . rbarStocks - matrix of predicted stock retruns 
%    . e - matrix of error terms 
%   OUTPUT: 
%    . CovER - column vector with the covariances between the error 
%    and the stocks returns 
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%    . Cor – column vector of correlations 
  
[i,j]=size(rbarStocks); 
  
for n=1:j 
    A=cov(rbarStocks(:,n)',e(:,n)'); 
    if n>=2 
        CovER=[CovER; A(1,2)]; 
    else 
        CovER=A(1,2); 
    end 
end     
 
for i=1:j 
    Cor(i,1)=corr(rbarStocks(:,i),e(:,i)); 
end     
  
  
end 
  
 
 
Appendix 1.12 

MatLab code on the prediction of scenarios coherent with the t-location scale 

distribution, without using the CAPM. 

function [ rbarStocks_tloc ] = tlocscale( rStocks ) 
  
%tlocscale - function that predicts stocks returns, assuming that 
they 
%follow a t-Location Scale distribution 
%   INPUT: 
%    . rStocks - matrix of stocks returns 
%   OUTPUT: 
%    . rbarStocks - matrix of predicted stocks returns 
  
[i,j]=size(rStocks); 
  
for n=1:j 
    A=fitdist(rStocks(:,n),'tLocationScale'); 
    for m=1:i 
        rbarStocks_tloc(m,n)=A.mu+A.sigma*trnd(A.nu); 
    end 
end 
  
  
end 
 
  
 
Appendix 1.13 

MatLab code for the generation of the CDF of the GH distribution: 

function [ Fgh ] = ghcdf( rStocks ) 



	
   57 

%This function generates the CDF for the hyperbolic distribution. 
%   INPUT: 
% . rStocks 
%   OUTPUT: 
% . Fgh - CDF 
  
[i,j]=size(rStocks); 
  
% Create the cumulative distribution function for the Hyperbolic 
% distribution 
for n=1:j 
    [p] = gh_density(rStocks(:,n),'hyperbolic'); 
    for m=1:i 
        Fgh(m,n)=feval(@hyperbolic_distribution,rStocks(m,n),-10,p); 
        disp(m); 
    end 
     
end 
  
  
end 
  
 

Appendix 1.14 

MatLab code on the prediction of scenarios from the generalized hyperbolic 

distribution using either the first method (Option 1) or the Newton-Raphson method 

(Option 2). 

function [X,Err] = hyp_random_gen(N,p,opt) 
 
%hyp_random_gen - generates random scenarios from a generalized 
hyperbolic 
%distribution with defined parameters. 
%   INPUT: 
%    . N - number of scenarios that the function has to generate 
%    . p - structure varaible containing the parameters mu, alpha, 
beta, 
%    delta, lambda of the GH distribution 
%    . opt - user choice of method 1 or 2 
%   OUTPUT: 
%    . X - number coherent with the hyperbolic distribution 
%    . Err - distance from the real value and the predicted one 
  
u=rand(N,1); 
  
if(opt==1) 
    for i=1:1:N     
        fun=@(x)(hyperbolic_distribution(x,-10,p)-u(i)); 
        X(i)=fzero(fun,0); 
        Err(i)=hyperbolic_distribution(X(i),-10,p)-u(i); 
        disp(i);     
    end 
else  
    for i=1:1:N         
        X(i)=0;         
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        for j=1:1:100 
            X(i)=X(i)-(hyperbolic_distribution(X(i),-10,p)-
u(i))/hyperbolic_density(X(i),p.mu,p.alpha,p.beta,p.delta,p.lambda);             
        end             
        Err(i)=hyperbolic_distribution(X(i),-10,p)-u(i);         
        disp(i); 
    end 
     
     
end 
 
  
 
Appendix 1.15 

MatLab code for the calculation of the predicted stocks returns following a hyperbolic 

distribution, using the CAPM model: 

function [ rStocks_hyp ] = rS_hyp(rM_hyp,beta,Rf,e,opt) 
 
%exprStocks - This function creates the matrix of predicted returns 
following the CAPM 
%model. 
%   INPUT: 
%    . rM_hyp - matrix of market returns 
%    . beta - vector of stocks betas 
%    . Rf - risk free rete of return 
%    . e - error matrix 
%    . opt - option 1 or 2 for the prediction. 
%   OUTPUT: 
%    . rbarStocks - matrix of predicted stocks returns following a 
%    t-Location Scale 
  
[i,j]=size(e); 
  
for n=1:j 
    [p_e]=gh_density(e(:,n),'hyperbolic'); 
    [e_hyp]=hyp_random_gen(i,p_e,opt)'; 
    for m=1:i 
        rStocks_hyp(m,n)=Rf+beta(n,1)*(rM_hyp(m,:)-Rf)+e_hyp(m,:);     
    end 
end 
  
  
end 
 
 

Appendix 1.16 

MatLab code on the application of the Anderson & Darling test. 

function [ AD ] = AndersonDarling( Femp,Fcap ) 
  
%AndersonDarling - this function gives the result of the Anderson-
Darling 
%test 
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%   INPUT: 
%    . Femp - cumulative distribution matrix of the historical stock 
%    returns 
%    . Fcap - cumulative distribution matrix of the predicted stock 
%    returns 
%   OUTPUT: 
%    . AD - matrix result of the Anderson-Darling test 
  
i=length(Femp); 
  
for n=1:i 
    AD(n)=abs(Femp(n)-Fcap(n))/sqrt(Fcap(n)*(1-Fcap(n)));    
end 
  
AD=max(AD); 
  
  
end  
 
 

Appendix 1.17 

MatLab code on the computation of the Kolmogorov distance. 

function [ KD ] = Kolmogorov( Femp,Fcap ) 
  
%Kolmogorov - this function yields the result of the Kolmogorov 
distance 
%   INPUT: 
%    . Femp - cumulative distribution matrix of the historical stocks 
%    returns 
%    . Fcap - cumulative distribution matrix of the predicted stocks 
%    returns 
%   OUTPUT: 
%    . KD - matrix result of the Kolmogorov test 
  
[i,j]=size(Femp); 
  
for n=1:i 
    for m=1:j 
        KDm(n,m)=abs(Fcap(n,m)-Femp(n,m)); 
    end     
end 
         
for n=1:j 
    KD(1,n)=max(KDm(:,n)); 
end 
  
  
end 
  
 

Appendix 1.18 

MatLab code on the computation of the L1 distance. 
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function [ L1 ] = L1dist( Femp,Fcap ) 
  
%L1dist - this function yields the result of the L1 distance 
%   INPUT: 
%    . Femp - cumulative distribution matrix of the historical stocks 
%    returns 
%    . Fcap - cumulative distribution matrix of the predicted stocks 
%    returns 
%   OUTPUT: 
%    . L1 - matrix result of the L1 distance test 
  
[i,j]=size(Femp); 
  
for n=1:j 
    L1(1,n)=sum(abs(Fcap(:,n)-Femp(:,n))); 
end 
  
  
end 
  
 

Appendix 1.19 

MatLab code on the computation of the L2 distance. 

function [ L2 ] = L2dist( Femp,Fcap ) 
  
%L1dist - this function yields the result of the L1 distance 
%   INPUT: 
%    . Femp - cumulative distribution matrix of the historical stocks 
%    returns 
%    . Fcap - cumulative distribution matrix of the predicted stocks 
%    returns 
%   OUTPUT: 
%    . L2 - matrix result of the L2 distance test 
   
[i,j]=size(Femp); 
  
for n=1:j 
    L2(1,n)=sqrt(sum(abs(Fcap(:,n)-Femp(:,n)).^(2))); 
end 
  
  
end 
  
 
 

	
  
 


