

Department of Economics and Finance

Mathematical Finance

 Portfolio Optimization using CVaR

Supervisor: Student:

Papi Marco Simone Forghieri
 170261

2013-14

	
 2

Abstract

In this thesis we perform the optimization of a selected portfolio by minimizing the

measure of risk defined as Conditional Value at Risk (CVaR). The method described

is very robust, and allows us to calculate the optimal asset weights while

simultaneously minimizing the CVaR and the Value at Risk (VaR).

The future return scenarios used in the portfolio optimization formula are sampled

from an estimated distribution, which is the best approximation of the historical

distribution of stocks returns. This estimation is conducted on a comparative level by

using a Normal distribution, t-Location Scale distribution, and Generalized

Hyperbolic distribution. By comparing the results of the portfolio optimization using

the different distributions, we provide both a graphical and a mathematical proof that

the Generalized Hyperbolic distribution delivers the best fit for the real distribution of

returns and is the most accurate in minimizing risk and calculating optimal weights.

	
 3

Table of Contents

Page

1. Introduction

4

2. Dataset

7

3. CVaR Algorithm

9

4. Generating Future Return Scenarios

17
4.1 Maximum-Likelihood Estimation (MLE)

17
 4.2 Normal Distribution

17
 4.3 T-Location Scale Distribution

23
 4.4 Generalized Hyperbolic Distribution

33

5. Goodness of Fit

39
 5.1 Anderson and Darling Test

 39
 5.2 Kolmogorov Distance Test

41
 5.3 L1 Test

41
 5.4 L2 Test

42
 5.5 Test Results

42

6. Portfolio Optimization

44

7. Conclusions

46

	
 4

1. Introduction

Measures of risk are a crucial part in portfolio optimization, in particular in order to

maintain a strict control of risk and expected losses. The numerous publicly known

cases of problems in handling risk, from both banks and companies, have raised

awareness on the importance of methods and measures to manage portfolio risk.

Markowitz was the first to address the portfolio selection problem (H. Markowitz,

1952) as a one-period static setting where maximizing expected return, subject to a

constraint on variance. In 2005, the mean-variance problem was solved in a dynamic

complete market setting (Bielecki et al., 2005).

The center of research then shifted towards risk measures that focus on the portfolio

losses that occur in the tail of the loss distribution, and quantile-based models have

become more and popular. One of the most widespread quantile-based risk measures

is the Value-at-Risk (VaR). The VaR refers to the worst expected loss at a target

horizon, according to a determined confidence level. This value is a quick and easy

measure that is frequently used to determine the stop-loss thresholds by traders, or to

evaluate risk-adjusted returns by companies (P. Jorion, 1996). The popularity of the

VaR was also determined by its inclusion in the Basel II Accords as a primary risk

gauge for banks’ exposure.

The Value at Risk concept lies however on the assumption that the loss distribution,

imagined as a function 	
 (where is the decision vector - defined by the

current portfolio - and is the vector of predicted future values), is distributed

according to a Normal distribution. This distribution though does not usually occur in

reality. In fact, the empirical distribution of the loss function is mainly

characterized by fatter tails than the Normal distribution. This difference between the

estimated and the observed distribution leads to biased results, making the VaR fail to

z = ƒ(x, y) x

y

z

	
 5

be coherent (P. Artzner et al., 1999). Another shortcoming of the VaR is the fact that

the measurement can be done with several legitimate methods, which yield very

different results (M. Pritsker, 1997) and make it very inconsistent and unreliable. The

measure itself is very limited, as it does not provide any information on the extent of

the losses that will be suffered beyond the VaR threshold. It only provides a lower

bound for losses, without distinguishing between situations in which losses may be

slightly or much higher than the threshold. In addition the VaR calculated with

scenarios is a non-convex non-smooth function, with multiple local extrema, which

make it a very unsuitable function for optimization models based on minimization.

For the reasons listed above, the VaR has been associated with an alternative measure

that aims at quantifying the losses that will be held when they exceed the VaR

threshold. This measure is called the Conditional Value at Risk (CVaR), and it is

defined as the weighted average of the VaR and of losses strictly exceeding the VaR.

Rockafellar and Uryasev were the first to visualize the CVaR concept and develop its

minimization formula (R. T. Rockafellar and S. Uryasev, 2000). They demonstrated

the effectiveness of CVaR through several case studies, including portfolio

optimization and options hedging. The CVaR was then found to have many

computational advantages over the VaR, while maintaining consistency with the VaR

by yielding the same results in cases where applied to Normal or elliptical

distributions (P. Embrechts et al., 2001). In these cases in fact, working with VaR,

CVaR, or minimum variance (H. Markowitz, 1952) is equivalent (R. T. Rockafellar

and S. Uryasev, 2000). Moreover, the fact that the CVaR function is convex, and its

minimization model can be condensed into a simple linear programming formula,

make it a widely used and studied area of research and development. On the other

side the VaR becomes a rather complex model when applied to more detailed

	
 6

distributions, making it unsuitable for environments such as the financial world,

where computational speed is a necessary condition for the applicability of a model.

For this reason, an efficient algorithm for VaR optimization in high-dimensional

settings is not yet available, despite the great efforts in research (J. V. Andersen and

D. Sornette, 1999; S. Basak and A. Shapiro, 2001; A. A. Gaivoronski and G. Pflug,

2000; C. Gourieroux et al., 2000; H. Grootweld and W. G. Hallerbach, 2000; R. Kast

et al., 1998; A. Puelz, 1999; D. Tasche, 1999).

Meanwhile, the CVaR has been studied as both a minimization problem with an

expected return constraint, and as a maximization of expected return with the CVaR

constraint (P. Krokhmal et al., 2002). Strategies for investigating the efficient frontier

between CVaR and return were considered as well. Moreover the concept was applied

to credit risk management of a portfolio of bonds (C. Andersson et al., 2000), and

extended to the concept of conditional drawdown-at-risk (CDaR) in the optimization

of portfolios with drawdown constraints (Checklov et al. - Press). Today’s currents in

the field flow towards models of CVaR in varying distribution with the simultaneous

drop of some of its assumptions. Although the CVaR is not yet a standard in finance,

it provides investors with a flexible and strong risk management tool, therefore it will

most likely plays a major role in portfolio optimization.

In this thesis we are going to use the original linear programming CVaR optimization

model studied by R.T. Rockafellar and S. Uryasev, 2000, focusing on the prediction

of future scenarios and their impact on its results.

	
 7

2. Dataset

The dataset used in this thesis consists in a sample of daily prices from 10 stocks

listed in the Nasdaq 100 market index. Prices are taken from the 17/05/2004 to the

16/05/2014, amounting to 2518 observations. The stocks chosen are taken from

different sectors and with different capitalizations in order to make the model more

generally applicable and effective in varying situations.

For the purpose of this work, stocks are taken from and compared to one single index

representing the market, allowing for the prediction of returns using the Normal

distribution, the Capital Asset Pricing Model while implementing a fitted t-location

scale distribution, and the hyperbolic distribution. Market returns are approximated by

the returns of the index in which the stocks are listed; in our case the Nasdaq 100

index was used.

The composition and the characteristics of the sample taken are listed in Table 2.1 and

Table 2.2.

 Min Max Mean Median

AAPL -0.6850 0.1302 0.0012 0.0013

CSCO -0.1769 0.1480 0.0001 0.0004

MSFT -0.1246 0.1706 0.0002 0

CMCSA -0.4179 0.2193 0.0002 0

WFM -0.6844 0.3166 -0.0003 0.0004

PFE -0.1182 0.0969 -0.0001 -0.0004

MAR -0.7029 0.1412 0.0001 0.0006

MNST -1.4835 0.2323 0.0005 0.0007

SBUX -0.6792 0.1687 0.0003 -0.0002

FISV -0.6946 0.1466 0.0002 0.0009

Table 2.1 – Sample statistics of the dataset, for daily prices.

	
 8

 Variance Standard Deviation Kurtosis Skewness

AAPL 0.0007 0.0268 174.9831 -6.7184

CSCO 0.0004 0.0197 13.8786 -0.4002

MSFT 0.0003 0.0171 14.1104 0.0064

CMCSA 0.0004 0.0211 72.5071 -3.0062

WFM 0.001 0.0321 158.0768 -6.9383

PFE 0.0002 0.0152 10.9353 -0.3874

MAR 0.0007 0.0258 222.9072 -8.0153

MNST 0.0023 0.0483 396.2292 -14.1807

SBUX 0.0006 0.0252 215.7112 -7.6391

FISV 0.0004 0.0212 465.5107 -14.0554

Table 2.2 – More sample statistics of the dataset, for daily prices.

From these statistics, we can already notice some characteristics of stock returns that

can help us predict their distribution. In particular, the mean returns approximate zero,

therefore we will expect the cumulative distribution functions to be intersecting the y-

axis at values around 50%. The negative values of skewness suggest that the

distributions are left-skewed, therefore we expect higher probabilities in the negative

returns tail compared to the positive returns tail. Moreover the values of kurtosis are

on average very high; therefore we will expect a leptokurtic behavior, meaning higher

probability around the mean and fatter tails.

We refer to Appendix 1.1 for the MatLab code related to the calculation of the sample

statistics.

	
 9

3. CVaR Algorithm

In this section we describe the algorithm used to calculate the CVaR and to find the

optimal weights by minimizing that value. The portfolio optimization is then solved

by using both a general scenario and a more specific one with constraints on expected

portfolio return and asset weights.

The first step of the CVaR calculation is to find the matrix of historical returns from

the matrix of historical prices. We consider logarithmic returns, which are the

preferred method for return calculations in finance (E. Eberlein, 2001), and will make

calculations simpler in later stages of the thesis. The general formula for logarithmic

returns is the following:

Here denotes the initial price of the security, whereas is the price in the next

period. We refer to Appendix 1.2 for the MatLab code related to the calculation of the

matrix of logarithmic returns.

We consider the loss function , where is the decision vector (represented by

our portfolio), and is a random vector (representing the future values of the items

in the portfolio). Suppose that belongs to a set of portfolios X that satisfies the

given requirements on short selling and expected return, while represents the

uncertainty of future returns. For each , the loss function can be seen as a

random variable characterized by a probability distribution induced by the

rlog = ln
Pi+1
Pi

!

"
#

$

%
&

Pi Pi+1

ƒ(x, y) x

y

x

y

x ƒ(x, y)

p(y)

	
 10

probability distribution of . This property of the CVaR algorithm is relevant to this

work. Since the different models used to derive the probability distribution of returns

have an impact on the final results, they will be discussed in the following chapter.

Let the portfolio of assets be constructed as 	
 where represents our

position in instrument such that:

	
 	
 	
 for	
 	
 	
 	
 	
 	
 with

The random returns is defined as the Rn-valued vector defined on a

given probability space (Ω, F, P), endowed with the σ-algebra of events F and the

probability measure P. Here is the future return of instrument , and it is

distributed according to the probability distribution	
 A ∈ F→ P(Y ∈ A) , having a

continuous density function . As long as is continuous, also the probability

density function of is continuous, allowing for the use of simpler methods for

the minimization, see Y. S. Kan and A. I. Kibzun, 1996 and S. Uryasev, 1995.

In order to simplify the presentation, let the portfolio consist of only two assets (Asset

1 and Asset 2). In this case, is the vector of positions of the two instruments

. Let be the vector of future returns y = (y1, y2) . Keep in mind that

includes a certain level of uncertainty, as it expresses either a prediction or

expectation of return calculated with future prices. The loss function will be

equal to the sum of the product between the weight and the relative return:

f (x, y) = x1y1 + x2y2 .	

y

x x = (x1,…, xn) x j

j

x j ≥ 0 j =1,…,n x j =1j=1

n
∑

y = (y1,…, yn)

yj j

p(y) p(y)

ƒ(x, y)

x

x = (x1, x2) y y

ƒ(x, y)

	
 11

Since, in our case, where more assets are included we have:

f (x, y) = −[x1y1 +…+ x2y2] 	
 .	
 	
 	
 	

Let us denote with the probability that does not exceed the threshold

, that is:

,

Where the integral is over Rn . By fixing , is a function of that

represents the cumulative distribution function for the loss associated with . This

function is fundamental for the definition of VaR and CVaR and, as stated above, we

assume that it is continuous with respect to .

When considering a general case with probability level , then we could see as the

function expressing the percentile of the loss distribution with confidence

level : by definition the VaR. In other words, the VaR is defined as the lowest value

such that :

.

We refer to Appendix 1.3 for the MatLab code related to the calculation of the VaR.

If exceeds the VaR (with threshold) then the expected loss, defined as

CVaR (denoted by), is expressed by:

Ψ(x,α) ƒ(x, y)

α

Ψ(x,α) = p(y)dy
f (x,y)≤α∫

x Ψ(x,α) α

x

α

β α

α(x,β)

β

Ψ(x,α(x,β)) = β

VaRβ =αβ (x) =min α ∈ R :Ψ(x,α) ≥ β}{

ƒ(x, y) α

Φβ (x)

	
 12

.

The presence of the VaR function in the CVaR formula makes the model complicated

and difficult to handle in the minimization; therefore the approach used in this work

handles with a simpler function for the CVaR expression:	

.

This function behaves exactly like the original CVaR function, as it is convex with

respect to , and the VaR is a minimum point of with respect to .

Moreover, minimizing , with respect to , yields the CVaR. In short, the

results are summarized in Theorem 1 of R. T. Rockafellar and S. Uryasev, 2000:

.

This statement can be proven by taking the derivative of the function with

respect to . The derivative equals . By setting it equal to

zero and solving for , we obtain that , which was the original

VaR equation. This means that by minimizing the function with respect to

both and , we simultaneously optimize the CVaR and calculate the

corresponding VaR.

We solve the problem using a linear programming approach. We consider a portfolio

Φβ (x) =
1

(1−β)
f (x, y)p(y)dy

f (x,y)>α (x,β)∫

Fβ (x,α) =α +
1

(1−β)
(f (x, y)−α)p(y)dy

f (x,y)>α∫

α Fβ (x,α) α

Fβ (x,α) α

Φβ (x) = Fβ (x,α(x,β)) =minα Fβ (x,α)

Fβ (x,α)

α 1+ (1−β)−1(Ψ(x,α)−1)

Ψ(x,α) Ψ(x,α) = β

Fβ (x,α)

x α

	
 13

composed of a finite number of assets, each with a finite sequence of historical data.

As seen above, the calculations of the CVaR and VaR require future values for each

asset, therefore by assuming that the future returns will follow a specific distribution

, a finite set of scenarios 	
 with	
 can be inferred from this

distribution. If the assumptions above are respected, the function can be

approximated with the function:

	

,

where
	

and if , while if .

	

The proof is available in R. T. Rockafellar and S. Uryasev, 2000.

In this case, since the function 	
 is linear with respect to , the problem can be

solved with linear programming techniques. We first replace the term

with auxiliary variables in the function , with the constraints:

 and . Then the minimization of the function 	
 is

equivalent to solving the LP problem:

min	
 	
 	
 subject to: , , .

This procedure yields the minimal CVaR (proof available in F. Andersson, H.

Mausser, D. Rosen, and S. Uryasev, 2000).

In this thesis we extend the constraints to expected portfolio return, and upper-lower

p(y) yj j =1,..., J

Fβ (x,α)

F
~
β (x,α) =α +ν (f (x, yj)− a)

+

j=1

J
∑

ν =
1

((1−β)J)
[t]+ = t t > 0 [t]+ = 0 t ≤ 0

f (x, y) x

(f (x, yj)−α)
+

zj F
~
(x,α)

zj ≥ f (x, yj)−α zj ≥ 0 F
~
(x,α)

α +ν zjj=1

J
∑ x ∈ X zj ≥ f (x, yj)−α zj ≥ 0

	
 14

bound for the stock weights. In order to implement the minimization, we construct

matrices of constraint	
 A , b , Aeq and beq .

To create A , first consider a general column vector of stock weights, where each

weight is calculated as 1
n

, where n is the total number of assets, so that each stock has

the same weight in the portfolio and the sum of the weights equals 1. Then we set in

cell n+1 the VaR of the portfolio; the reasons for this will be explained later.

Subsequently we construct the matrix A , which is expressed as follows:

A =

µ1 µ2 ! µn 0
−1 0 ! 0 0
0 −1 " 0
" −1 0 0
0 ! 0 −1 0
1 0 ! 0 0
0 1 " 0
" 1 0 0
0 ! 0 1 0

"

#

$
$
$
$
$
$
$
$
$
$
$$

%

&

'
'
'
'
'
'
'
'
'
'
''
.

Where the first row represent the set of stock average returns µ1,µ2,!,µn , which are

followed by the negative of an n×n identity matrix and an n×n identity matrix

below. The two identity matrices represent the coefficients of weights in order to

apply the upper bound and lower bound for the portfolio weights.

Then we construct the column vector b , which is equal to:

	
 15

b =

−Er
−LB
!
!

−LB
UB
!
!
UB

"

#

$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'
.

The first component represents the negative of the expected portfolio return Er ,

which allows for the constraint on the expected portfolio return. Then it is followed

by a column vector with length n 	
 where each cell equals the negative of the lower

bound LB for the weights; below another n column vector that contains the upper

bound	
 UB . Consequently we find the column vector Aeq and beq 	
 composed as:

Aeq =

1
!
1
0

!

"

#
#
#
#

$

%

&
&
&
&

 and beq = 1() .

Where Aeq is an n×1 column vector of ones with an added zero cell below, and beq

is equal to 1.

After defining these matrices, we can minimize the function with the

following constraints:

A ⋅w ≤ b 	
 	
 	
 and Aeq ⋅w = beq .

α +ν zjj=1

J
∑

	
 16

The solution is the CVaR, and a vector w of optimal weights.

In case the objective is to only minimize the CVaR without setting any limit on upper

or lower bound for weights or on expected return, the computations remain

unchanged, with the only difference that the matrix A and b are not used as

constraints in the minimization.

We refer to Appendix 1.4 for the MatLab code on the CVaR algorithm and

calculation of optimal weights, with and without the constraints.

	
 17

4. Generating Future Return Scenarios

In this section we use the Maximum-Likelihood Estimation method in order to

estimate future scenarios for the stocks’ returns. This method is generally defined in

the first part, and then applied to the Normal, t-location scale, and generalized

hyperbolic distributions.

4.1 Maximum-Likelihood Estimation (MLE)

The Maximum-Likelihood Estimation (MLE) is a method that estimates the

parameters of a statistical model. Starting from the set of observed data, the MLE is a

method that, given the statistical model of interest, finds the parameters of that

distribution that maximize the likelihood function (J.W. Harris and H. Stocker, 1998).

The likelihood function L(θ | x) is a function of the parameter values, given the

observed data, which equals the probability of the observed data, given those

parameter values:

L(θ | x) = P(x |θ) .

Suppose we have an independent and identically distributed sample of returns

y1, y2, y3,!, yn . The probability density function of the historical returns f0 (y) is

unknown, but we assume that it belongs to a certain class of parametric distributions,

denotes as f0 (y |θ) 	
 such that	
 f0 (y) = f0 (y |θ0) . Where θ0 is the vector of true

parameters.

The MLE aims at finding a vector of parameters θ
∧

 that is a good approximation of

	
 18

the true vector of θ0 . The first step is to find the joint density function of the

independent and identically distributed sample:

f (y1, y2,!, yn |θ) = f (y1 |θ)× f (y2 |θ)×!× f (yn |θ) .

Then we use the joint density function to calculate the likelihood by considering a

function of the parameters θ with given y1, y2, y3,!, yn :

L(θ | y1, y2,!, yn) = f (y1, y2,!, yn |θ) = f (yi |θ)
i=1

n

∏
.

To simplify the calculations in this thesis we use a modification of the likelihood

function that is obtained by taking the logarithm of both sides in the previous

equation. The new function is called the log-likelihood:

logL(θ | y1, y2,!, yn) = log f (yi |θ)
i=1

n

∏
.

Since the logarithm is a monotonically increasing function, then it reaches the

maximum point at the same point of the original function. This means that in

likelihood maximization problems, the likelihood function can be substituted with the

log-likelihood without altering the results. The property of the logarithm allows us to

express the logarithm of a product as the sum of logarithms:

	
 19

logL(θ | y1, y2,!, yn) = log f (yi |θ)
i=1

n

∏ = log f (y i |θ)
i=1

n

∑
.

This feature makes the calculations much easier, since the maximization problems

often require to take the derivative, and taking the derivative of a sum is always easier

than taking the derivative of a product.

The MLE is therefore a key method for our purposes, since it provides us with the

opportunity to generalize a set of historical stocks returns data into a given

distribution, that will subsequently be used as a basis to sample random returns

coherent with that distribution, which represent the predicted returns.

Historical data of asset returns follow complex distributions, and in order to provide

better fit for the historical observations, three different models for predicting the

future returns are considered: The Normal distribution, the t-Location Scale

distribution and the Generalized Hyperbolic distribution.

4.2 Normal Distribution

The Normal or Gaussian distribution is a very common distribution in natural and

social sciences. Its central role in statistics comes from the Central Limit Theorem,

which states that under some basic assumptions, the mean of a large pool of

independent random variables is normally distributed. As a fundamental distribution

in mathematics, we have applied it to forecasting returns. The general formula for the

probability density function (PDF) of the Normal distribution is:

.

f (x,µ,σ)

f (x,µ,σ) = 1
σ 2π

e
−
(x−µ)2

2σ 2

	
 20

In our case is the mean return, and is the standard deviation of returns.

The cumulative distribution function (CDF) of a Normal, which represents the

probability that a scenario is lower than or equal to the value at which the cumulative

distribution function is calculated, can be written as:

.

The CDF can also be expressed as the integral, between and , of the probability

density function . This means that we can write as:

	

or

.	

As shown in the second expression, the solution of the integral cannot be represented

by elementary functions, therefore we have to include a special function named the

error function :

.

We refer to Appendix 1.5 for the MatLab code on the construction of the cumulative

µ σ

FN (x)

FN (x) = P(X ≤ x)

−∞ x

f (x,µ,σ) FN (x)

FN (x) = f (x,µ,σ)
−∞

x
∫ =

e
−
(x−µ)2

2σ 2

σ 2π−∞

x
∫

FN (x) =
1
2
1+ erf x −µ

σ 2
"

#
$

%

&
'

(

)
*

+

,
-

erf (x)

erf (x) = 1
π

e−t
2

dt
−x

x
∫

	
 21

distribution function for the Normal distribution.

For the purpose of this work, we use matrix notation in order to construct the model

and implement it in the MatLab environment. We started with a matrix of logarithmic

returns as follows:

.

The first necessary assumption is that the returns for each stock are normally

distributed in the form:

.

The future values of stock i 	
 can then be predicted by summing the average return µi

and a factor N that accounts for the standard deviation. To comply with the model,

the factor N 	
 has to be normally distributed. Therefore the general formula is:

yi
j = µi + N 	
 where N ~ N(µ,σ 2) .

To obtain the factor N we first decomposed the variance-covariance matrix into

y1
.
.
.
yn

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

≈

y1
1 . . . y1

n

. . . .

. . .

. . . .
yn
1 . . . yn

n

!

"

#
#
#
#
#
##

$

%

&
&
&
&
&
&&

y1
.
.
.
yn

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

≈

N(µ1,σ1
2)

.

.

.
N(µ2,σ 2

2)

	
 22

product of matrix 	
 and its transpose , using the Cholesky decomposition as

follows:

.

Then we multiply the matrix for a vector of independent standard Normal random

variables . Hence, to generate the scenario j for the asset returns, we use the

following representation:

,

Where zj denotes a sample of n random numbers from the standard Normal

distribution. We refer to Appendix 1.6 for the MatLab Code on the generation of

return scenarios using the Normal distribution.

By doing simple statistics it is however easy to realize that the Normal distribution

cannot perfectly approximate the historical distribution of returns (J. Y. Campbell, A.

W. Lo, and A. C. MacKinlay, 1997). In fact the values of skewness and kurtosis for

the Normal distribution are both equal to 0, while the real values shown in Table 1.2

are on average very far from 0. Moreover in Figure 4.2.1 the distribution of market

Σ ΣT

σ1
2 . . . σ1n
. . . .
. . .
. . . .
σ1n . . . σ n

2

!

"

#
#
#
#
#
##

$

%

&
&
&
&
&
&&

= ΣΣT

Σ

z

y1
j

.

.

.
yn
j

!

"

#
#
#
#
#
##

$

%

&
&
&
&
&
&&

=

µ1
.
.
.
µn

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

+Σ

z1
j

.

.

.
zn
j

!

"

#
#
#
#
#
##

$

%

&
&
&
&
&
&&

	
 23

returns of the Nasdaq 100 index it is plotted against the fitted Normal distribution.

The graphical representation stresses the impossibility of the Normal distribution to fit

higher values around the mean and the fatter tails, therefore a different distribution

should be applied.

Figure 4.2.1 – Plot of the Nasdaq 100 returns against the fitted Normal distribution.

4.3 T-Location Scale Distribution

The t-location scale is a more complex distribution than the Gaussian, since it

includes in addition to the expected return and standard deviation , a parameter

 expressing the degrees of freedom. This parameter determines the shape of the

distribution around the mean and the tails. For high values of , we have higher

probabilities around the mean, while for lower ones, we have higher probabilities

around the tails. Moreover, when the degrees of freedom go to infinity, the t-location

µ σ

ν

ν

	
 24

scale is exactly equal to the Normal distribution. Thanks to the listed properties, the t-

location scale distribution is preferred in cases of leptokurtosis, as expressed by the

distribution of returns in our case (H. Rinne, 2010).

We denote the probability density function as , expressed by the formula:

,

Where Γ(n) is the Gamma function. In case n belongs to the set of integers, then the

Gamma function is simply a variation of the factorial function, where the argument is

n−1 . Therefore it is summarized in the expression:

Γ(n) = (n−1)!

However, if n is a complex number with a positive real part, then it is expressed as

the integral:

Γ(n) = xn−1e−x dx
0

∞

∫ .

Since the t-location scale includes the gamma function, the cumulative distribution

function (CDF) cannot be explicitly found by taking the integral of the probability

density function above, but it can be approximated by analyzing the probability

density function (PDF). The t-location scale distribution is in fact a broad expression

T (x,µ,σ ,ν)

T (x,µ,σ ,ν) =
Γ
ν +1
2

"

#
$

%

&
'

σ νπΓ
v
2
"

#
$
%

&
'

ν +
x −µ
σ

"

#
$

%

&
'
2

v

)

*

+
+
+
+

,

-

.

.

.

.

−
ν+1
2

"

#
$

%

&
'

	
 25

that includes the Student t-distribution. Therefore if we consider a random variable

distributed according to the t-location scale distribution with parameters , , and

; then is distributed according to a Student t-distribution with degrees of

freedom, that is:

⎟
⎠

⎞
⎜
⎝

⎛ −
=

σ
µ

σ
νσµ

yPDFyT tStudent
1),,,(.

This property allows us to approximate the CDF of the t-location scale by using the

CDF of the Student t-distribution with argument . In short:

()∫∫∫
−

∞−∞−∞−
=⎟

⎠

⎞
⎜
⎝

⎛ −
= σ

µ

σ
µ

σ
νσµ

x

tStudent

x

tStudent

x
zdzPDFdyyPDFdyyT 1),,,(

Or equivalently, we can express it as a relationship between the cumulative

distribution functions:

FtStud
y−µ
σ

"

#
$

%

&
'= FtLoc (y)

Here F stands for the CDF.

We refer to Appendix 1.7 for the MatLab code related to the calculation of the

cumulative distribution function for the t-location scale distribution.

To predict the future values of the stocks returns, we have to analyze the probability

density function formula of the t-Location scale distribution. All the variables in the

equation are known, apart from the number of degrees of freedom , which has to be

x

µ σ

ν x −µ
σ

ν

x −µ
σ

ν

	
 26

estimated. This estimation complicates the procedure, making the model slower and

unsuitable for the purpose of this work. Moreover, another limitation is brought by the

presence of the Gamma function . The argument in the gamma function is in

our case a linear combination of the degrees of freedom , and since the degrees of

freedom can only be greater than or equal to zero, we can isolate the gamma function

in the first quadrant of the Cartesian plane when plotted in a graph with on the x-

axis and Γ(ν) on the y-axis (as in Figure 4.3.1).

Figure 4.3.1 – Plot of the Gamma function on the first quadrant of the

Cartesian plane.

The chart shows the values of the gamma function plotted over the degrees of

freedom. We can see that the value of the function quickly goes to infinity as the

degrees of freedom rise, making the t-location scale equal to the Normal distribution.

This downside, added to the limitations on the definiteness of the kurtosis, make this

approach unsuitable (from the numerical and computational storage viewpoint) for a

multivariate version of the scalar t-location scale distribution.

Γ(n) n

ν

ν

Γ(n)

	
 27

We have therefore constructed a new model based on a classical financial theory: the

Capital Asset Pricing Model (CAPM) (W.F. Sharpe, 1964). The CAPM tries to

combine concepts from portfolio valuation and market equilibrium in order to

construct a formula for the pricing of assets based on their risk, and therefore provide

a tool to measure and to price risk. We consider a model based on the direct

relationship between risk and return, where the risk is considered as the sum of

systematic and unsystematic risk. The CAPM however assumes that the unsystematic

risk, which can be diversified by using the correlations between assets in a portfolio,

is not relevant; while systematic risk is the only risk present in a well-diversified

portfolio and is measured with . The CAPM formula is:

Where is the expected return on security i = 1, 2, … , n, which is equal to the

sum of the risk-free rate , plus the product of the market sensitivity times the

equity risk premium , all summed to an error term . In our case, the

market is taken to be the index Nasdaq 100, while the risk-free rate corresponds the

short-term U.S. Government bonds, as they are highly rated and in line with the

market for the stocks chosen. The coefficient, which represents the sensitivity of

security i returns to the market returns, has obtained by a simple linear regression

between the historical returns of security i and the market returns. For every asset

return, the slope coefficient of the line obtained is described by . Appendix 1.8

includes the MatLab code used for the computation of .

β

E(Ri) = Rf +βi[E(Rm)− Rf]+εi

E(Ri)

Rf βi

E(Rm)− Rf εi

βi

βi

βi

	
 28

The error term is instead a predicted value of the error term. To remain in line with

the assumption on the t-location scale distribution of returns, we assume that the error

terms { iε }i are independent random variables on the same probability space

following:

)(itStudentii T νσε = ,	

Where)(itStudentT ν 	
 describes a t-Student distributed random variable with i	
 degrees

of freedom. They are also assumed to be independent of the market index return. The

value is estimated by fitting a t-location scale to the distribution of historical

residuals. The value of the error used to forecast scenarios for the expected returns of

security i can be generated with a random process following the t-Location Scale

distribution with estimated parameters. We refer to Appendix 1.9 for the MatLab code

related to the calculation of the error .

The expected value of the returns of the market is calculated with the same method as

the error term. With all the variables needed, we can simply follow the CAPM

formula and calculate the expected returns of security following a t-location scale

distribution.

We refer to Appendix 1.10 for the MatLab code to predict scenarios coherent with the

t-Locations Scale distribution using the CAPM model.

One of the major issues related to the use of the CAPM model is the correlation

between the predicted returns and the error term. In fact it would mean that the model,

with the current structure and variables is not explaining the behavior of returns in a

complete way. Part of the influence of returns would in fact be captured by the error

term itself. For this reason we tested the model evaluating the covariances and

εi

ν

εi

i

	
 29

correlations between the error term of stock i with the respective predicted returns.

The covarainces are listed in Table 4.3.1, while the correlations are listed in Table

4.3.2.

Covariance between and predicted returns

*1.0e-04
AAPL 0.0054

CSCO -0.0676

MSFT -0.0146

CMCSA 0.0155

WFM 0.0489

PFE 0.0556

MAR -0.0232

MNST 0.1105

SBUX 0.0555

FISV 0.0010

Table 4.3.1 – Covariances between the error term and predicted returns.

Correlation between and predicted returns

AAPL 0.0010

CSCO -0.0242

MSFT -0.0070

CMCSA 0.0049

WFM 0.0067

PFE -0.0125

MAR 0.0142

MNST 0.0066

SBUX 0.0118

FISV 0.0003

Table 4.3.2 – Correlations between the error term and the predicted returns.

εi

εi

εi

	
 30

As shown in Table 4.3.1, the results obtained exhibit almost null covariances,

displaying that the model is constructed in an effective way. Moreover, the

correlations in Table 4.3.2 are quite low, meaning that the model is not biased by a

relationship between the error terms and the predicted returns. We refer to Appendix

1.11 for the MatLab code on the calculations of the covariance and correlation vector.

Moreover, an important test is on the independence of the error terms, defined in

statistics as: autocorrelation. This property has been tested by applying the Durbin-

Watson test. This test provides a value p∈ [0,1] , such that if the value is close to 0

we reject the null hypothesis of no autocorrelation, in case it is close to 1 we have a

proof of no autocorrelation. The test results are listed in Table 4.3.3.

Correlation between and predicted returns

AAPL 0.0139

CSCO 0.4598

MSFT 0.3235

CMCSA 0.4902

WFM 0.7301

PFE 0.0711

MAR 0.1362

MNST 0.1395

SBUX 0.1926

FISV 0.1808

Table 4.3.3 – Results of the Durbin-Watson test.

The results of the test are relatively low, showing that the error terms exhibit clear

signs of autocorrelation. Even if the estimation is robust, this property may negatively

affect our results.

εi

	
 31

We also realize that the CAPM imposes some strict assumptions, which in some cases

may have to be relaxed. Therefore we computed the estimation of returns through the

decomposition of the t-location scale into a Student-t distribution (as explained

above), which allowed us to avoid using the CAPM. Appendix 1.12 contains the

MatLab code for the calculation of returns as explained above.

Below, in Figure 4.3.2, we represent the distribution of market returns (Nasdaq 100)

against the fitted t-location scale distribution.

Figure 4.3.2 – Plot of the market returns distribution against the t-location scale

distribution.

Figure 4.3.2 shows that the t-location scale fit represents a much more precise

approximation of the real data. In terms of sample statistics, the values of skewness

and kurtosis for the t-location scale are obtained by considering the skewness of the

Student-t distribution. The skewness is 0 for degrees of freedom ν > 3 ; otherwise it is

	
 32

undefined. In this statistic the t-location scale does not provide a better approximation

than the Normal distribution, therefore it does not capture the asymmetry of the peak

in the dataset. The kurtosis instead equals 6
ν − 4

 for ν > 4 , ∞ for 4 ≥ν > 2 , and for

all other values of ν it is undefined. The plot of the value of the kurtosis over the

different degrees of freedom for the case where ν > 4 are represented in Figure 4.3.3.

Figure 4.3.3 – Plot of the kurtosis value against the number of degrees of freedom,

for the case ν > 4 .

As we can see the from Figure 4.3.3 the values of kurtosis in the specific interval of

degrees of freedom, range from infinity to zero, providing a much better

approximation for the real values.

The sample statistics discussed above demonstrate our hypothesis that the t-location

scale better approximates the real distribution in the peak around the mean, thanks to

the possibility to have positive kurtosis.

	
 33

In Figure 4.3.4 the comparison between the Normal distribution and the t-location

scale is shown, emphasizing the advantage of using the t-location scale.

Figure 4.3.4 – Plot of the market returns against both the fitted Normal distribution

(in red) and the fitted t-location scale (in blue).

Unfortunately, even if the t-location scale follows the empirical distribution of real

data much more closely and accurately than the Normal distribution, some

characteristics of the empirical distribution are still not well approximated. In fact, by

comparing the indices of skewness of the t-location scale against the real values, we

observe that the results are very different, meaning that the probability values around

the tails are not well estimated; therefore a different distribution should be considered.

4.4 Generalized Hyperbolic Distribution

The Generalized Hyperbolic distribution (GH) was first introduced in 1977 by

Barndorff-Nielsen to represent a mathematical model for the movement of sand dunes

	
 34

(O. Barndorff-Nielsen, 1977). This distribution is a very broad form, which can itself

represent various distributions, one of which is the t-location scale. Moreover its

characteristic semi-heavy tails allow it to model samples such as financial market

returns, where the probability in the tails is not well captured by the Normal

distribution or t-location scale (K. Prause, 1999).

The probability density function of the generalized hyperbolic distribution is defined

by the expression:

,

Where is a shape factor whose value has to be greater than 0. The skewness is

determined by the absolute value of which has to satisfies the condition .

The parameter is a location parameter. characterizes the specific

subclasses, and is the main influencer of the tail sizes; while is a scaling factor.

Moreover the norming constant a(λ,α,β,δ,µ) 	
 takes the following form:

.

The function represents the third kind modified Bessel function with index	
 ,

which in practice is a linear combination of the first kind and second kind modified

Bessel functions (M. Abramowitz and I. A. Stegun, 1964).

dGH (λ,α,β ,δ,µ) (x) = a(λ,α,β,δ,µ)(δ
2 + (x −µ)2)

2λ−1
4

"

#
$

%

&
'
eβ (x−µ) ×K

λ−
1
2

(α δ 2 + (x −µ)2)

α

β 0 ≤ β <α

µ ∈ R λ ∈ R

δ > 0

a(λ,α,β,δ,µ) = (α 2 −β 2)
λ
2

2πα
λ−
1
2

"

#
$

%

&
'
δλKλ (δ α 2 −β 2)

Kλ λ

	
 35

The generalized hyperbolic distribution strictly depends on the Generalized Inverse

Gaussian Distribution (GIG), in fact its sample statistics contain values derived from

it. By taking , then the expected value, or mean of the GH is equal to:

,	

or

.

While the variance of the GH is:

,	

or, equivalently

.

In order to predict scenarios from a GH distribution that accounts for the correlation

between assets, we accounted for the multivariate model by applying the CAPM (as

for the t-location scale). To then approximate the single asset returns, we estimate the

market returns with the two approximation techniques described below.

The first approximation (Option 1) method is based on the construction of a strictly

increasing function h(x;u) = FGH (x)−u that determines the difference between the

cumulative distribution function of the portfolio GH distribution and a given random

number u uniformly distributed between 0 and 1. Then we find a numerical

approximation x(u) for the unique solution of h(x;u) = 0 , in order to obtain the value

δ α 2 +β 2 =ζ

E(GH) = µ + βδ
2

ζ
Kλ+1(ζ)
Kλ (ζ)

E(GH) = µ +βE(GIG)

VAR(GH) = δ
2

ζ
Kλ+1(ζ)
Kλ (ζ)

+β 2
δ 4

ζ 2
Kλ+2 (ζ)
Kλ (ζ)

−
K 2

λ+1(ζ)
K 2

λ (ζ)
"

#
$

%

&
'

VAR(GH) = E(GIG)+β 2Var(GIG)

	
 36

a random number extracted by the GH	
 distribution.	
 The function can be expressed

as:

udxxduxh
x

GH −= ∫ ∞−)();(),,,,(µδβαλ .

The integral yields the GH cumulative distribution function. Appendix 1.13 presents

the MatLab code for the computation of the cumulative distribution function for the

GH distribution.

The second approximation (Option 2) method consists in the application of the

Newton-Raphson algorithm to approximate the (unique) root of a strictly monotonic

and differentiable function through an iterative process. The iterative procedure

follows the scheme:

⎪
⎩

⎪
⎨

⎧

ʹ′
−=+

)(
)(

,,

1

1

k

k
kk

xf
xfxx

givenx

.

In our case uxFuxhxf uGH −==)();()(,	
 and the derivative is simply the GH

probability density function. Hence, the iterative process becomes:

⎪
⎩

⎪
⎨

⎧

−
−=+)(

)(
,,

),,,,(
1

1

kGH

kGH
kk xd

uxFxx

givenx

µδβαλ .

	

	
 37

Here x1 represents a starting point for the iterative process, which is given by the user

and is an approximation of the root of the function that is known in advance. This is

the first point where the iteration starts, so the closer it is to the real value, the faster

the algorithm will be in reaching the solution. Figure 4.4.1 below provides a graphical

explanation of the functioning of the Newton-Raphson method.

Figure 4.4.1 – Approximation using the Newton-Raphson method.

Since the density function is strictly positive, then suppose we are referring to the

CDF in Figure 4.4.1, and assume we start the Newton-Raphson iteration at a point x1

greater than the solution x . In this case the value of FGH (xu)−u is equal to u1 −u ,

which is a positive number since u1 > u . Therefore we are subtracting a positive

quantity from x1 , meaning that the next iteration will start from a point 2x̂ such that

12ˆ xxx << . If the iteration goes on, the value of the quantity subtracted decreases

until it reaches 0, which is exactly the solution x .

	
 38

Suppose instead we start from a value x2 lower than x . In this case the value of

FGH (xu)−u is negative since u > u2 , hence we are subtracting a negative quantity

(adding) to x2 . Again if the iteration goes on, the value of the quantity added

decreases until it reaches 0, which is exactly the solution x .

We refer to Appendix 1.14 for the MatLab code on the generation of scenarios from a

Generalized Hyperbolic distribution using the two procedures (Option 1 and Option

2) discussed above. Moreover we refer to Appendix 1.15 for the Matlab code on the

generation of stocks returns based on the two methods discussed above, using the

CAPM.

The results of the Hyperbolic Distribution are much closer to the real values,

especially for the values in the tails. This distribution provides a good fit for the real

data, which will allow for more accurate predictions and estimations of the CVaR.

In Figure 4.4.2, the Generalized Hyperbolic distribution is plotted against the

distribution of returns of the market (Nasdaq 100).

Figure 4.4.2 – Plot of the fitted GH distribution against the market return distribution

	
 39

5. Goodness of Fit

To assess whether the above considered distributions represent a good approximation

of real data, and in order to measure their effectiveness in modeling all the

characteristics of the empirical distribution of asset returns, we have compared the

empirical distribution with the estimated distribution applying some discrepancy

measures.

5.1 Anderson & Darling Test

This statistical test for goodness of the fit is particularly important in our analysis for

its intrinsic characteristics (T. W. Anderson and D. A. Darling, 1952). The Anderson

& Darling test for any distribution is expressed by:

AD =max
x∈R

Femp(x)−Fest (x)
Fest (x)(1−Fest (x))

,

where Femp(x) is the empirical CDF and Fest (x) is the estimated CDF. The effect of

the factor Fest (x)(1−Fest (x)) at the denominator in AD can be deduced by Figure

5.1.1 below.

	
 40

Figure 5.1.1 – Plot of the Fest (x)(1−Fest (x)) factor at the denominator of the

Anderson & Darling test formula, where Fest (x) is on the x-axis and the value of the

factor on the y-axis.

From Figure 5.1 we can see that the function expressing the total value of the factor

(on the y-axis) has a global maximum when the estimated CDF Fest (x) (on the x-axis)

is at 0.5, meaning that we are at the mean point µ of the distribution. Then as we

move towards the tails of the distribution (e.g. when the CDF approaches 0 and 1), the

value of the function decreases to zero. This means that the Anderson & Darling test

divides the absolute difference Femp(x)−Fest (x) 	
 for greater values when it is around

the mean, and for smaller values when it is around the tails, in this way emphasizing

the Anderson & Darling test result on the distribution’s tails (S. R. Hurst, E. Platen,

and S. T. Rachev, 1995). Thanks to this property, the Anderson & Darling test is a

widely used statistical tool to accurately measure the error of distributions that exhibit

specifically fat tails (M. A. Stephens, 1974).

	
 41

We refer to appendix 1.16 for the MatLab code on the application of the Anderson &

Darling test.

5.2 Kolmogorov Distance

The Kolmogorov distance is defined as the supremum of the absolute difference

between the predicted and the empirical cumulative distribution functions. The

Kolmogorov distance is expressed in mathematical terms as:

)()(sup xFxFKD estemp
Rx

−=
∈

This function assigns a quantity to the distance between the predicted and empirical

CDF, allowing to quantify the goodness of fit.

We refer to Appendix 1.17 for the MatLab code on the Kolmogorov distance test.

5.3 L1 Distance

The L1 distance is another estimator of the goodness of fit, and is defined as the sum

of the absolute difference between the predicted and the empirical cumulative

distribution functions evaluated at a given set of points {xi}i . Precisely, we have:

L1= Femp(xi)−Fest (xi)i∑ .

We refer to Appendix 1.18 for the MatLab code on the L1 distance test.

	
 42

5.4 L2 Distance

The L2 distance, also called the Euclidean distance, is a similar measure to the L1

distance, and is calculated as the square root of the squared deviation between the

predicted and the empirical cumulative distribution functions. The L2 distance is

expressed by:

L2 = Femp(xi)−Fest (xi)i∑
2
.

We refer to Appendix 1.19 for the MatLab code on the L2 distance test.

5.5 Estimated Results

We ran each of the distance measures on the market index (Nasdaq 100), since it can

be considered a representative proxy for the market and of our portfolio. The results

are listed in Table 5.5.1.

 Normal t-Location Scale
Generalized
Hyperbolic

Anderson &
Darling

7.6099 0.1679 0.0309

Kolmogorov
Distance

0.0284 0.0093 0.0081

L1
Distance

29.3731 7.6295 6.5530

L2
Distance

0.6920 0.1846 0.1587

Table 5.5.1 – Test results for the market index (Nasdaq 100).

	
 43

We estimated the returns using the Normal distribution, t-location scale and the

generalized hyperbolic. The results are very different, and their significance is

discussed below.

As expected, the values of the distance measures under the Normal distribution are

substantially higher than the values obtained for other distributions, in every test. The

fact that returns do not follow a Normal distribution is clear, even from the graphical

comparison between the probability density function of historical returns and the

fitted Normal distribution in Figure 4.2.1. However, this serves as a measure to

quantify the error caused by the use of this distribution as a predictor of future returns.

The t-location scale scores are much lower than the Normal distribution, meaning that

it is a more accurate predictor. However, the values are still slightly higher than the

hyperbolic distribution in all tests apart for the Anderson & Darling test, where the t-

location scale is still much higher. This result clearly proves our expectations,

meaning that the t-location scale is a valid estimator for the values around the mean,

but a poor predictor when the distribution is around the tails.

The hyperbolic distribution definitely yields satisfactory results, as the error measures

are low for each test.

	
 44

6. Portfolio Optimization

In this section we apply the portfolio optimization algorithm defined in Section 3 to

the representative portfolio selected from the Nasdaq 100 index, with the objective to

find the optimal asset weights that minimize risk.

The portfolio optimization was applied to our dataset (described in Section 1), and the

results using the minimization of CVaR formula are listed in Table 6.1.

 Weight

AAPL 0.0456

CSCO 0.1030

MSFT 0.2589

CMCSA 0.0058

WFM 0.0286

PFE 0.5400

MAR -0.0675

MNST 0.0156

SBUX 0.0317

FISV 0.0382

Table 6.1 – List of weights resulting from the minimization of CVaR.

The value of the CVaR obtained is 0.0311.

To parallel the methods of predictions and evaluate their effect on portfolio

optimization, we compared the expected returns of the portfolio following the

different distributions with real returns of the month after the stock prices were

reported. Our expectations from the test results of Section 5.5 suggest that the best

approximation should be provided by the hyperbolic distribution, followed by the t-

location scale, and lastly by the Normal distribution. The empirical results are listed in

Table 6.2.

	
 45

 Expected Return

Real data 0.0012

Normal 0.0002

t-Location Scale -0.0035

Hyperbolic 0.0021

Table 6.2 – Expected returns of the portfolio using different distributions

The results do not completely match our expectations, in fact the distribution

providing the greater distance from the real data is the t-location scale, while we

expected it to be the Normal distribution. We believe this is due to the autocorrelation

that the error terms exhibit, and may yield biased results. Moreover the lack of data

for the future prices comparison may negatively affect our results. In fact we had the

possibility to take only 19 real return observations after the original dataset, making

the computations subject to very high standard deviations. In our case the average

standard deviation of the dataset is calculated to be around 0.0091, which is a very

high value compared to the values of the expected returns.

However, we consider the results to be effective in explaining the dominance of the

hyperbolic distribution in comparison with the other two methods.

	
 46

7. Conclusions

This thesis has provided an in depth comparison between the Normal distribution, t-

location scale and generalized hyperbolic distribution in their application to portfolio

optimization and evaluation of risk. The distributions’ efficacy is measured through

the use of various tests, which show a clear predominance in terms of accuracy and

precision for the generalized hyperbolic distribution. Particular importance is given to

the Anderson & Darling test (Section 5.1), since it emphasizes the error on the tails,

which is on of the most particular features that the empirical distribution of stock

returns exhibit.

Moreover, by comparing the expected returns resulting from the minimization of

CVaR using different distributions, the hyperbolic distribution yields far more precise

estimates in the calculation of risk. Even if the dataset expected returns is limited, we

believe that the results are representative since the distributions estimated allow for

the generalization of our results. Therefore, it is clear that the hyperbolic distribution

provides investors with accurate predictions, allowing for lower uncertainty on the

measurements and more efficient portfolio optimization.

	
 47

References

Markowitz, H. (1952). "Portfolio Selection." The Journal of Finance, 7.1: 77-91.

Bielecki, T.R., Jin, H., Pliska, S.R. and Zhou, X.Y. (2005). “Continuous-time-mean-variance
portfolio selection with bankruptcy prohibition.” Mathematical Finance, 15: 213-244.

Jorion, P. (1996). “Risk2: Measuring Risk in a Value at Risk.” Financial Analysts Journal 52
(6): 47.

Artzner, P., Delbaen, F., Eber, J., and Heath, D. (1999). “Coherent measure
of risk.” Mathematical Finance, 9 (3): 203–228.

Pritsker, M. (1997). “Evaluating Value at Risk Methodologies.” Journal of Financial
Services, 12 (2/3): 201-242.

Uryasev, S. (2000). “Conditional Value-at-Risk: Optimization Algorithms and Applications.”
Financial Engineering News, 14.

Rockafellar, R. T. and Uryasev, S. (2000). “Optimization of Conditional Value-at-Risk.”
Journal of Risk, 2: 21–41.

Rockafellar, R. T. and Uryasev, S. (2001). “Conditional Value-at-Risk for General Loss
Distributions.” University of Florida.

Embrechts, P., Frey, R., Furrer, H. (2001). “Stochastic Processes in Insurance and Finance.”
In: Handbook of Statistics, vol. 19 “Stochastic Processes: Theory and Methods”, Elsevier
Science: 365-412.

Andersen, J.V. and Sornette, D. (1999). “Have Your Cake and Eat it Too: Increasing Returns
While Lowering Large Risk!” University of California.

Basak, S. and Shapiro, A. (2001) “Value-at-risk based risk management: optimal policies and
asset prices.” Review of Financial Studies 14: 371-405.

Gaivoronski, A.A. and Pflug, G. (2004/05). “Value-at-risk in portfolio optimization:
Properties and computational approach.” Journal of Risk 7: 1-31.

Gaivoronski, A.A. and Pflug, G. (2000). “Finding optimal portfolio with constraints on value-
at-risk.”

Gourieroux, C., Laurent, J.P. and Scaillet, O. (2000). “Sensitivity Analysis of Value at Risk.”
Journal of Empirical Finance 7: 225–245.

Grootweld, H. and Hallerbach, W.G. (2000). “Upgrading VaR from Diagnostic Metric to
Decision Variable: A Wise Thing to Do?” Erasmus Center for Financial Research.

Kast, R., Luciano, E., and Peccati, L. (1998). “VaR and Optimization: 2nd International
Workshop on Preferences and Decisions.”

Puelz, A. (1999). “Value-at-Risk Based Portfolio Optimization.” Southern Methodist
University.

	
 48

Tasche, D. (1999). “Risk Contributions and Performance Measurement.” University of
Technology.

Krokhmal, P., Palmquist, J. and Uryasev, S. (2002). “Portfolio optimization with conditional
Value-at-Risk criterion” Journal of Risk 4 (2): 99-14.

Andersson, F., Mausser, H., Rosen, D. and Uryasev, S. (2000). “Credit risk optimization with
condition value- at-risk.” Mathematical Programming, Series B: 99-9.

Checklov, A., Uryasev, S. and Zabarankin, M. (2003). “Portfolio optimization with
drawdown constraints.” University of Florida.

Eberlein, E. (2001). “Application of generalized hyperbolic Lévy motions to finance.” In:
“Lévy Processes: Theory and Applications” O.E. Barndorff-Nielsen, T. Mikosch, and
Resnick, S. Birkhäuser Verlag: 319–337.

Kan, Y.S. and Kibzun, A.I. (1996). “Stochastic Programming Problems with Probability and
Quantile Functions.” John Wiley & Sons: 316.

Uryasev, S. (1995). “Derivatives of Probability Functions and Some Applications.” Annals of
Operations Research vol. 56: 287–311.

Harris, J.W. and Stocker, H. (1998). “Handbook of Mathematics and Computational
Science.” Springer-Verlag.

Campbell J.Y., Lo A.W., MacKinlay C.A., Adamek P., Viceira L.M. (1997). “The
Econometrics of Financial Markets.” Princeton University Press.

Rinne, H. (2010). “Location-scale Distributions”. Justus–Liebig–University.

Barndorff-Nielsen, O. (1977). “Exponentially decreasing distributions for the logarithm of
particle size.” Proceedings of the Royal Society of London, Series A, Mathematical and
Physical Sciences 353: 401–409.

Abramowitz, M. and Stegun, I.A. (1968). “Handbook of Mathematical Functions.” Dover
Publications.

Prause, K. (1999). “The Generalized Hyperbolic Model: Estimation, Financial Derivative,
and Risk Measures.” Albert-Ludwigs University.

Anderson, T. W. and Darling, D. A. (1952). “Asymptotic theory of certain ‘goodness-of-fit’
criteria based on stochastic processes.” Annals of Mathematical Statistics 23: 193–212.

Hurst, S.R., Platen, E. and Rachev, S.T. (1995). “A Comparison of Subordinated Asset
Pricing Models.” Australian National University.

Stephens, M. A. (1974). “EDF Statistics for Goodness of Fit and Some Comparisons.”
Journal of the American Statistical Association 69: 730–737.

	
 49

Appendix – MatLab codes

Appendix 1.1

MatLab code on the calculation of sample statistics for the dataset.

function [ExpRet,Variance,StDev,Skewness,Kurtosis,VarCov] =
SampleStat(rStocks)

%This function generates the sample statistics for a matrix of prices
%Insert: pStocks - matrix of prices, each stock has a column of
prices.

n=0;
m=0;
j=size(rStocks,2);

%Expected Return
for n=1:j
 ExpRet(1,n)=mean(rStocks(:,n));
end

%Variance
for n=1:j
 Variance(1,n)=var(rStocks(:,n));
end

%Standard Deviation
for n=1:j
 StDev(1,n)=std(rStocks(:,n));
end

%Skewness
for n=1:j
 Skewness(1,n)=skewness(rStocks(:,n));
end

%Kurtosis
for n=1:j
 Kurtosis(1,n)=kurtosis(rStocks(:,n));
end

%Variance-Covariance Matrix
VarCov=cov(rStocks);

end

Appendix 1.2

MatLab code for the calculation of logarithmic returns.

function [rStocks,rMarket] = logr(pStocks,pMarket)

	
 50

%This function yields the matrix of logarithmic returns from the
matrix of
%prices of stocks and market prices
% Insert:
% . pStocks - matrix of prices of stocks. Stocks are listed in
rows,
% so each column is a column of prices from the latest to the
oldest
% price
% . pMarket - column vector of prices of the market index

i=size(pStocks,1);
j=size(pStocks,2);

rStocks=zeros(i-1,j);
rMarket=zeros(i-1,1);

for n=1:j
 for m=1:(i-1)
 rStocks(m,n)=log(pStocks(m,n)/pStocks(m+1,n));
 end
end

for m=1:(i-1)
 rMarket(m,1)=log(pMarket(m,1)/pMarket(m+1,1));
end

end

Appendix 1.3

MatLab code on the calculation of the Value at Risk of the portfolio.

function [VaR,portVaR] = VaRfunction(rStocks,p,w)

%VaRfunction - This function yields a vector with the corresponding
Value
%at Risk of every stock in the portfolio
% Input:
% . rStocks - matrix of returns of stocks (columns of returns for
every
% stock)
% . p - probability level
% . w - weight vector (column vector)
% Output:
% . VaR - column vector with Value at Risk of stock 1 in cell 1...
% . portVar - Value at Risk of the portfolio with weights equal to
w
% if w is null, then the weights are assigned with equal
proportion to
% every asset.

[i,j]=size(rStocks);

for n=1:j

	
 51

 VaR(n,1)=quantile(rStocks(:,n),p);
end

if isempty(w)
 w=[(1/j)*ones(1,j)]';
end
portVaR=quantile(rStocks*w,p);

end

Appendix 1.4

MatLab code on the calculation of Conditional Value at Risk and optimal portfolio

weights.

function [CVaR,w]=CVaRfunction(r, Er, b, UB, LB)

%CVaR - this function finds the Conditional Value at Risk of each
asset in
%a given portfolio.
% INPUT:
% . r - matrix of returns
% . b - probability level (0.9<b<1)
% . LB - lowest bound for each stock weight (-1<LB<1)
% . UB - upper bound for each stock weight (-1<UB<1)
% always UB>LB
% . Er - target portfolio return (-1<Er<1)
% OUTPUT:
% . CVaR - is the Conditional Value at Risk for the portfolio
% . w - the optimal weights for each asset

[i, j]=size(r);
w0=[(1/j)*ones(1,j)];
VaR=quantile(r*w0',b);
w0=[w0 VaR];

% objective function
n=1:j;
Rfunction=@(w) w(j+1)+(1/i)*(1/(1-b))*sum(max(-w(n)*r(:,n)'-
w(j+1),0));

if isempty(Er),isempty(UB),isempty(LB)
 % matrices
 Aeq=[ones(1,j) 0];
 beq=[1];

 % minimize the risk function
 [w,CVaR]=fmincon(Rfunction,w0,[],[],Aeq,beq);

else
 % matrices
 A=[-mean(r) 0; -eye(j) zeros(j,1); eye(j) zeros(j,1)];
 b=[-Er -LB*ones(1,j) UB*ones(1,j)]';
 Aeq=[ones(1,j) 0];
 beq=[1];

	
 52

 % minimize the risk function considering the constraints on w and
Er
 [w,CVaR]=fmincon(Rfunction,w0,A,b,Aeq,beq,LB,UB,[]);
end

end

Appendix 1.5

MatLab code on the computation of the cumulative distribution function for the

Normal distribution.

function [Fncap] = ncdf(rStocks)

%ncdf - Normal Cumulative Distribution Function, yields the matrix
composed
%as such:
%In cell 1,1 of Fn there is the probability that the return is lower
than
%or equal to the return in cell 1,1 of rStocks, if returns follow a
normal
%distribution
% INPUT:
% . rStocks - matrix of stocks returns
% OUTPUT:
% . Fncap - matrix of cumulative distribution function

[i,j]=size(rStocks);

for n=1:j
 A=fitdist(rStocks(:,n),'Normal');
 for m=1:i
 Fncap(m,n)=normcdf(rStocks(m,n),A.mu,A.sigma);
 end
end

end

Appendix 1.6

MatLab code on the prediction of returns using the Normal distribution.

function [Fncap] = ncdf(rStocks)

%ncdf - Normal Cumulative Distribution Function, yields the matrix
composed
%as such:
%In cell 1,1 of Fn there is the probability that the return is lower
than

	
 53

%or equal to the return in cell 1,1 of rStocks, if returns follow a
normal
%distribution
% INPUT:
% . rStocks - matrix of stocks returns
% OUTPUT:
% . Fncap - matrix of cumulative distribution function

[i,j]=size(rStocks);

for n=1:j
 A=fitdist(rStocks(:,n),'Normal');
 for m=1:i
 Fncap(m,n)=normcdf(rStocks(m,n),A.mu,A.sigma);
 end
end

end

Appendix 1.7

MatLab code on the calculation of the cumulative distribution function for the t-

location scale distribution.

function [Ftcap] = tlocCDF(rStocks)

%tloccdf - t-Location Scale Cumulative Distribution Function, yields
the
%matrix composed as such:
%In cell m,n of Ftloc there is the probability that the return is
lower
%than or equal t the return in cell m,n of rStocks, if returns follow
a
%t-Location Scale distribution
% INPUT:
% . rStocks - matrix of stocks returns
% OUTPUT:
% . Ftcap - matrix of cumulative distribution function

[i,j]=size(rStocks);

for n=1:j
 A=fitdist(rStocks(:,n),'tLocationScale');
 for m=1:i
 Ftcap(m,n)=tcdf((rStocks(m,n)-A.mu)/A.sigma,A.nu);
 end
end

plot(sort(rStocks),sort(Ftcap));

end

	
 54

Appendix 1.8

MatLab code on the calculation of .

function [beta] = beta(rStocks,rMarket)

%This function generates a column vector that contains the betas of
all
%stocks. eg. The beta of stock 1 is in cell (1,1) while beta stock2
is in cell
%2,1...
% INPUT:
% . rStocks - matrix of stocks returns
% . rMarket - column vector of returns of the market
% OUTPUT:
% . beta - column vector of stocks betas

n=0;
j=size(rStocks,2);

for n=1:j
 beta(n,1)=regress(rStocks(:,n),rMarket);
end

end

Appendix 1.9

MatLab code on the calculation of the error .

function [e] = err(rStocks,rMarket,beta,Rf)

%err - this function generates the error values for the CAPM formula
from a
%process following an fitted t-Location Scale Distribution.
% INPUT:
% . rStocks - matrix of stocks returns
% . rMarket - matrix of market returns
% . beta - column vector of stocks betas
% . Rf - risk free rate
% OUTPUT:
% . e - matrix of error terms for each stock

[i,j]=size(rStocks);
e=zeros(i,j);
n=1;

for n=1:j
 e(:,n)=rStocks(:,n)-Rf-beta(n,1)*(rMarket-Rf);
end

end

βi

εi

	
 55

Appendix 1.10

MatLab code on the prediction of scenarios coherent with the t-Locations Scale

distribution using the CAPM model.

function [rbarStocks] = exprStocks(rMarket,beta,Rf,e)

%exprStocks - This function creates the matrix of predicted returns
following the CAPM
%model.
% INPUT:
% . rMarket - matrix of market returns
% . beta - vector of stocks betas
% . Rf - risk free rete of return
% . e - error matrix
% OUTPUT:
% . rbarStocks - matrix of predicted stocks returns following a
% t-Location Scale

[i,j]=size(e);
dMarket=fitdist(rMarket,'tLocationScale');

for n=1:j
 dErr=fitdist(e(:,n),'tLocationScale');
 for m=1:i
 rbarStocks(m,n)=Rf+beta(n,1)*(random(dMarket)-
Rf)+random(dErr);
 end
end

end

Appendix 1.11

MatLab code on the computation of the vector of covariance between the error terms

and the predicted returns.

function [CovER,Cor] = cov_error_ret(rbarStocks,e)

%cov_error_ret - yields the vector of covariances between the error
term
%and the predicted stocks returns.
% INPUT:
% . rbarStocks - matrix of predicted stock retruns
% . e - matrix of error terms
% OUTPUT:
% . CovER - column vector with the covariances between the error
% and the stocks returns

	
 56

% . Cor – column vector of correlations

[i,j]=size(rbarStocks);

for n=1:j
 A=cov(rbarStocks(:,n)',e(:,n)');
 if n>=2
 CovER=[CovER; A(1,2)];
 else
 CovER=A(1,2);
 end
end

for i=1:j
 Cor(i,1)=corr(rbarStocks(:,i),e(:,i));
end

end

Appendix 1.12

MatLab code on the prediction of scenarios coherent with the t-location scale

distribution, without using the CAPM.

function [rbarStocks_tloc] = tlocscale(rStocks)

%tlocscale - function that predicts stocks returns, assuming that
they
%follow a t-Location Scale distribution
% INPUT:
% . rStocks - matrix of stocks returns
% OUTPUT:
% . rbarStocks - matrix of predicted stocks returns

[i,j]=size(rStocks);

for n=1:j
 A=fitdist(rStocks(:,n),'tLocationScale');
 for m=1:i
 rbarStocks_tloc(m,n)=A.mu+A.sigma*trnd(A.nu);
 end
end

end

Appendix 1.13

MatLab code for the generation of the CDF of the GH distribution:

function [Fgh] = ghcdf(rStocks)

	
 57

%This function generates the CDF for the hyperbolic distribution.
% INPUT:
% . rStocks
% OUTPUT:
% . Fgh - CDF

[i,j]=size(rStocks);

% Create the cumulative distribution function for the Hyperbolic
% distribution
for n=1:j
 [p] = gh_density(rStocks(:,n),'hyperbolic');
 for m=1:i
 Fgh(m,n)=feval(@hyperbolic_distribution,rStocks(m,n),-10,p);
 disp(m);
 end

end

end

Appendix 1.14

MatLab code on the prediction of scenarios from the generalized hyperbolic

distribution using either the first method (Option 1) or the Newton-Raphson method

(Option 2).

function [X,Err] = hyp_random_gen(N,p,opt)

%hyp_random_gen - generates random scenarios from a generalized
hyperbolic
%distribution with defined parameters.
% INPUT:
% . N - number of scenarios that the function has to generate
% . p - structure varaible containing the parameters mu, alpha,
beta,
% delta, lambda of the GH distribution
% . opt - user choice of method 1 or 2
% OUTPUT:
% . X - number coherent with the hyperbolic distribution
% . Err - distance from the real value and the predicted one

u=rand(N,1);

if(opt==1)
 for i=1:1:N
 fun=@(x)(hyperbolic_distribution(x,-10,p)-u(i));
 X(i)=fzero(fun,0);
 Err(i)=hyperbolic_distribution(X(i),-10,p)-u(i);
 disp(i);
 end
else
 for i=1:1:N
 X(i)=0;

	
 58

 for j=1:1:100
 X(i)=X(i)-(hyperbolic_distribution(X(i),-10,p)-
u(i))/hyperbolic_density(X(i),p.mu,p.alpha,p.beta,p.delta,p.lambda);
 end
 Err(i)=hyperbolic_distribution(X(i),-10,p)-u(i);
 disp(i);
 end

end

Appendix 1.15

MatLab code for the calculation of the predicted stocks returns following a hyperbolic

distribution, using the CAPM model:

function [rStocks_hyp] = rS_hyp(rM_hyp,beta,Rf,e,opt)

%exprStocks - This function creates the matrix of predicted returns
following the CAPM
%model.
% INPUT:
% . rM_hyp - matrix of market returns
% . beta - vector of stocks betas
% . Rf - risk free rete of return
% . e - error matrix
% . opt - option 1 or 2 for the prediction.
% OUTPUT:
% . rbarStocks - matrix of predicted stocks returns following a
% t-Location Scale

[i,j]=size(e);

for n=1:j
 [p_e]=gh_density(e(:,n),'hyperbolic');
 [e_hyp]=hyp_random_gen(i,p_e,opt)';
 for m=1:i
 rStocks_hyp(m,n)=Rf+beta(n,1)*(rM_hyp(m,:)-Rf)+e_hyp(m,:);
 end
end

end

Appendix 1.16

MatLab code on the application of the Anderson & Darling test.

function [AD] = AndersonDarling(Femp,Fcap)

%AndersonDarling - this function gives the result of the Anderson-
Darling
%test

	
 59

% INPUT:
% . Femp - cumulative distribution matrix of the historical stock
% returns
% . Fcap - cumulative distribution matrix of the predicted stock
% returns
% OUTPUT:
% . AD - matrix result of the Anderson-Darling test

i=length(Femp);

for n=1:i
 AD(n)=abs(Femp(n)-Fcap(n))/sqrt(Fcap(n)*(1-Fcap(n)));
end

AD=max(AD);

end

Appendix 1.17

MatLab code on the computation of the Kolmogorov distance.

function [KD] = Kolmogorov(Femp,Fcap)

%Kolmogorov - this function yields the result of the Kolmogorov
distance
% INPUT:
% . Femp - cumulative distribution matrix of the historical stocks
% returns
% . Fcap - cumulative distribution matrix of the predicted stocks
% returns
% OUTPUT:
% . KD - matrix result of the Kolmogorov test

[i,j]=size(Femp);

for n=1:i
 for m=1:j
 KDm(n,m)=abs(Fcap(n,m)-Femp(n,m));
 end
end

for n=1:j
 KD(1,n)=max(KDm(:,n));
end

end

Appendix 1.18

MatLab code on the computation of the L1 distance.

	
 60

function [L1] = L1dist(Femp,Fcap)

%L1dist - this function yields the result of the L1 distance
% INPUT:
% . Femp - cumulative distribution matrix of the historical stocks
% returns
% . Fcap - cumulative distribution matrix of the predicted stocks
% returns
% OUTPUT:
% . L1 - matrix result of the L1 distance test

[i,j]=size(Femp);

for n=1:j
 L1(1,n)=sum(abs(Fcap(:,n)-Femp(:,n)));
end

end

Appendix 1.19

MatLab code on the computation of the L2 distance.

function [L2] = L2dist(Femp,Fcap)

%L1dist - this function yields the result of the L1 distance
% INPUT:
% . Femp - cumulative distribution matrix of the historical stocks
% returns
% . Fcap - cumulative distribution matrix of the predicted stocks
% returns
% OUTPUT:
% . L2 - matrix result of the L2 distance test

[i,j]=size(Femp);

for n=1:j
 L2(1,n)=sqrt(sum(abs(Fcap(:,n)-Femp(:,n)).^(2)));
end

end

	

