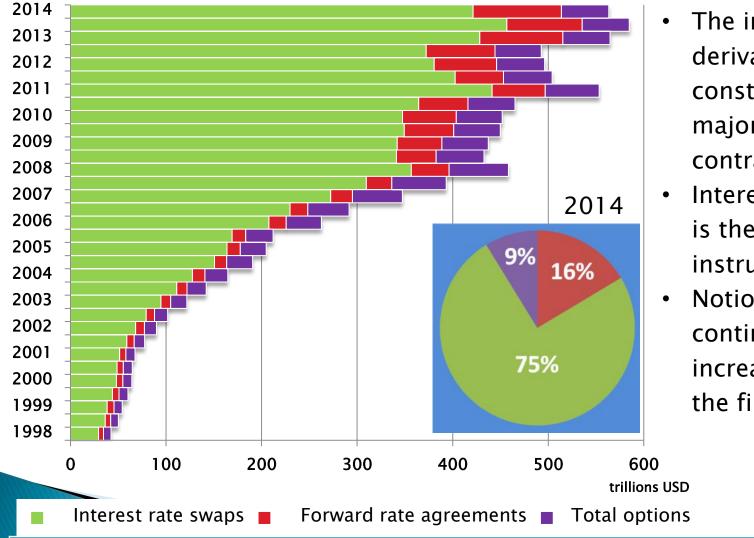



# The risk and use of derivatives.

EVIDENCE FROM EUROPEAN BANKING SECTOR.


SUPERVISOR
Prof. Pierpaolo Benigno
CO-SUPERVISOR
Prof. Nicola Borri

### OTC Derivatives gross market

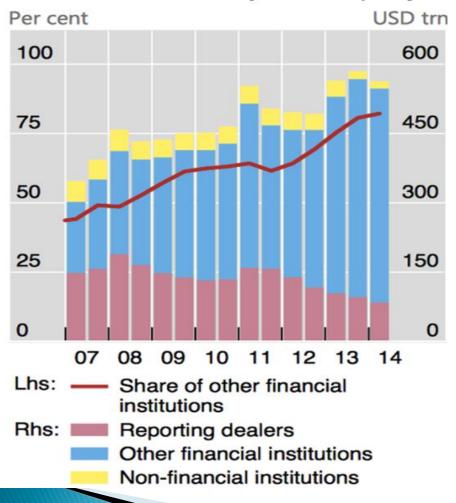


Source: Bank for International Settlements, Derivatives (http://www.bis.org/statistics/derstats.htm)

## Interest rate derivatives by instrument, nominal values 1998 - 2014



- The interest rate derivatives constitute the majority of the contracts
- is the most used instrument.
- Notional values continued to increase despite the financial crisis

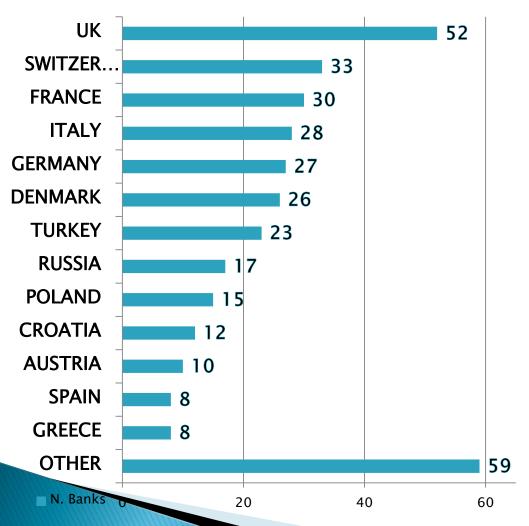

# Regional split for OTC derivatives, notional amount outstanding

| Derivatives <sup>1)</sup> |                                     |
|---------------------------|-------------------------------------|
| Market share              | Not. amount outstanding € trillions |
| Europe 44%                | 200                                 |
| North america 39%         | 181                                 |
| Asia 13%                  | 58                                  |
| 4% Rest of the world      | 18                                  |
|                           | 457                                 |

- Europe is key role player by market share
- Derivatives market have become an important part of the European financial services sector
- The use of derivatives by nonfinancial firms is very significant
- Non-financial companies use derivatives mainly for hedging
- To manage financial distress,
   variability of earnings and reduce
   exchange rate exposures

#### Interest rate derivatives 2007-2014

#### Notional amounts, by counterparty




- The major users of interest rate derivatives are financial institutions
- Non-financial companies constitute only a minor part
- Financial instruments now form an important share of total assets at most of the banks
- Participation in these markets had accounted for increasing share of bank revenues

Source: BIS Triennial Survey 2013

#### Research method

#### Sample: Number of banks by country



Systematic risk is measured by bank's beta

DataStream - reference index:

- STOXX Europe 600 Index
- STOXX Europe 50
- Multi-index approach

Bureau van Dijk's Bankscope database:

- Balance sheet data 261 banks
- Years 2000-2013

### The multivariate regression model

$$\beta_x = \alpha_0 + \alpha_1 DERIVMV_i + \alpha_2 LNMVASSET_i + \alpha_3 PB_i + \alpha_4 NIM_i$$
$$+ \alpha_5 LLRGR_i + \alpha_6 LTCD_i + \alpha_7 DE_i + \alpha_8 DIVP_i + \epsilon_i$$

| DERIVMV   | Total derivatives  Market value of assets                                                         |
|-----------|---------------------------------------------------------------------------------------------------|
| LNMVASSET | the natural logarithm of a bank's market value of total assets to control for the effect of size; |
| LLRGR     | Loan loss reserves to gross loans;                                                                |
| LTCD      | Loans to total customer deposits;                                                                 |
| DE        | debt-to-equity ratio;                                                                             |
| NIM       | Net interest margin;                                                                              |
| PB        | Price-to-book ratio;                                                                              |
| DIVP      | Dividend payout ratio                                                                             |

| Dependent      | Beta (β) | Beta (β) |  |
|----------------|----------|----------|--|
| variable       | DJSTOXX  | LocIndex |  |
| Intercent      | -1.0676  | 9523     |  |
| Intercept      | (-8.89)  | (-10.28) |  |
| DERIVMV        | .6168    | .5572    |  |
| DERIVIVIV      | (3.67)   | (4.13)   |  |
| LNMVAssets     | .1291    | .1220    |  |
| LINIVIVASSELS  | (16.50)  | (19.42)  |  |
| PriceBook      | .0480    | 0004     |  |
| FIICEBOOK      | (3.90)   | (-3.58)  |  |
| NIM            | 1.0835   | .9817    |  |
| INIIVI         | (4.34)   | (4.91)   |  |
| LLRGL          | 2.380    | .6293    |  |
| LLKUL          | (6.36)   | (2.12)   |  |
| LTCD           | 0509     | 1051     |  |
| LICD           | (-3.17)  | (-8.32)  |  |
| DebtEquity     | 00951    | 0053     |  |
| Debitequity    | (-4.64)  | (-3.30)  |  |
| DIVP           | 00025    | 0002     |  |
| DIVE           | (-3.77)  | (-4.29)  |  |
| Observations   | 1953     | 1950     |  |
| R <sup>2</sup> | 0.1941   | 0.2647   |  |

### Ordinary Least Squares (OLS)

- DERIMV is statistically significant using even different reference indexes
- The highest explanatory power  $(R^2 = 26,46\%) \mbox{ was obtained} \\ \mbox{using multi-index approach}$

#### Limitations:

The simple OLS estimation
 method does not take
 advantage of the panel
 structure of the data, but each
 observation is considered as
 independent

# Summary of regression results. Pooled OLS versus FE and RE

|                        | POLS                 | FE              | RE              | POLS                | FE              | RE              |
|------------------------|----------------------|-----------------|-----------------|---------------------|-----------------|-----------------|
| Dependent<br>variable  | Beta (β)<br>LocIndex | -               | -               | Beta (β)<br>DJSTOXX | -               | _               |
| DERIVMV                | .5572<br>(4.13)      | .8951<br>(4.83) | .8365<br>(5.01) | .5598<br>(3.34)     | .9157<br>(3.87) | .8170<br>(3.86) |
| Observations           | 1950                 | 1950            | 1950            | 1953                | 1953            | 1953            |
|                        |                      |                 |                 |                     |                 |                 |
| R <sup>2</sup> within  | -                    | 0.0669          | 0.0646          | -                   | 0.0784          | 0.0755          |
| R <sup>2</sup> between | _                    | 0.2097          | 0.2486          | _                   | 0.0784          | 0.2006          |
| R <sup>2</sup> overall | 0.2647               | 0.1979          | 0.2339          | 0.2022              | 0.1698          | 0.1782          |

#### $DERIVTA_{it} = \alpha_0 + \alpha_1 LNASSET_{it} + \alpha_2 DE_{it} + \alpha_3 LIQUID_{it} + \alpha_4 LTA_{it} + \epsilon_{it}$

| Labels  | Description                                            | Proxy for            | References                                                                        | Exp.<br>Sign |
|---------|--------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------|--------------|
| DERIVTA | Notional amount of derivatives divided by total assets | Derivatives<br>usage | Sinkey and Carter (2000)                                                          |              |
| LNASSET | Natural logarithm of total assets                      | Bank size            | Adkins, Carter, Simpson (2007) Sinkey and Carter (2000) Shiu, Moles, Shin (2008)  | (+)          |
| DE      | debt-to-equity ratio                                   | Leverage risk        | Sinkey and Carter (2000)                                                          | (+)          |
| LIQUID  | Liquid assets to total assets                          | Liquidity risk       | Ashraf ,Goddard, Yener (2005)<br>Li and Marinc (2013)<br>Sinkey and Carter (2000) | (-)          |
| LTA     | Loans to total assets                                  | Diversification      | Khasawneh and Hassan(2009)<br>Shiu, Moles, Shin (2008)                            | (-)          |

# Summary of regression results. Pooled OLS, FE and Random Effects

|               | POLS              | p-value | FE               | p-value | RE                | p-value |
|---------------|-------------------|---------|------------------|---------|-------------------|---------|
| Dep. variable | DERIVTA           |         | DERIVTA          |         | DERIVTA           |         |
| Intercept     | 1454<br>(-12.22)  | 0,000   | .0300<br>(1.18)  | 0.239   | 0692<br>(-3.51)   | 0.000   |
| LNASSET       | .01403<br>(20.14) | 0.000   | .00367<br>(2.30) | 0.022   | .0102<br>(8.60)   | 0.000   |
| LTA           | 1116<br>(-14.27)  | 0.000   | 06946<br>(-6.02) | 0.000   | 0836<br>(-8.19)   | 0.000   |
| DebtEquity    | .00263<br>(12.64) | 0.000   | .00083<br>(4.56) | 0.000   | .00104<br>( 5.80) | 0.000   |
| LIQUID        | 0038<br>(-0.37)   | 0.714   | 0800<br>( -8.44) | 0.000   | 0655<br>(-7.14)   | 0.000   |
| Observations  | 2708              |         | 2708             |         | 2708              |         |
| $R^2$ overall | 0.3373            |         | 0.2329           |         | 0.3052            |         |

### Thank You For your attention