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Abstract

The following work analyzes the reasons and implications of the use of Bayesian
VAR, as a model with shrinkage estimators, in short-run macroeconomic fore-
casting. As well the BVAR model performance relative to benchmark cases is
assessed and the proposition on the suitable value of the shrinkage parameter is
made. The beginning is devoted to the description of the shrinkage methods in
general forecasting setting. Then the features of macroeconomic forecasting are
introduced and two competitive models are described. Finally we make a per-
formance comparison and conclusions on the use of BVAR in macro forecasting,
suggesting further improvements.



Introduction

The following work first concentrates on the description, contextualization and
application assessment of the Bayesian vector autoregression approach to the
parametric forecasting modelling problem in the scope of macroeconomic fore-
casting. The use of the abovementioned method permits to both incorporate
the macroeconomic theory in the model and still get all the advantages of the
flexibility of non-structural models (models that don’t try to mimic the func-
tioning of the economy). The forecasting model in the presented work aims
to find differences in the predictions of three main macroeconomic variables:
inflation (measured with the CPI), GDP in constant prices and the short term
interest rate for the Italian economy.
Chapter 2 is devoted to the description of the shrinkage models used in forecast-
ing. This chapter describes the evolution of the shrinkage methods through the
description of three different shrinkage estimation models developed throughout
the last half a century. The first model to be described is Ridge regression; then
move on to the case of Lasso regression and conclude with the introduction of
Bayesian method in the context of the use of shrinkage.
Chapter 3 briefly summarizes the peculiarities of the application of the general
forecasting problem to the case of macroeconomic forecasting and then describe
two competing methods, namely DFM (dynamic factor model) and Bayesian
vector autoregression. The similarities and differences between two models are
highlighted and suppositions on the eventual relative performance are made.
Chapter 4 deals with the numerical analysis. We will first describe the data and
the precise specifications of the model used in the further analysis. Then we
perform the tests of relative performance with regards to different benchmark
models and draw conclusions on the applicability and possible improvements of
the method.
The essence of the Bayesian approach in the regression parameters estimation
is that of weighted average between the prior (the value of the parameter be-
fore the estimation was made) and the estimates obtained with the regression.
More interestingly, the Bayesian approach permits us to work not only with
the point estimates but also directly with the distributions. In such a set-
ting a prior distribution should be specified which then would be ”updated”
with the new data to provide us the posterior distribution. This method per-
mits us to obtain estimates using an expanding window of the data using the
Kalman filter, that is a technique to recalculate the parameters of the model
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(in this case update the prior with the newly estimated parameters) without
the need to rerun the regression on the data that have already been used in
the estimation process. Summing up the abovementioned, the application of
the Bayesian method potentially has a lot of improvements over the standard
models concerning theoretical base (usage of the distributions instead of the
mean-standard error framework) as well as the practical issues.
In our analysis we empirically confirms the ties between the choice of the shrink-
age parameter and the degree of predictability (versus theory that macro vari-
ables are MDS i.e. expected value of a variable conditional on the past is equal
to the lagged value of this variable ) of different variables of interest, which
persists over different forecasting horizons. We find out that even a simply con-
figured BVAR estimated with a medium dataset outperforms benchmark models
for some forecasting horizons, performing relatively better for longer ones. We
then present an empirical application of a conditional predictive ability test, de-
scribing its implications and results. We conclude with stressing the directions
of change and improvement on the path of using Bayesian VAR as a model with
shrinkage characteristics that particularly fits the macroeconomic environment.
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Chapter 1

Regularization

In the following chapter we will discuss the advantages of Bayesian method in
terms of its use of regularization. First we define the notion of regularization
used in econometrics, we describe its use and, eventually explain the path un-
dertaken by the development and application of the concept. In particular, after
defining regularization, we discuss the particularities of its use in the Ridge re-
gression, followed by the LASSO case, finalized by the Bayesian method.
Traditional regression tries to find optimal estimates of beta by minimizing the
loss (MSE in our case). Thus it solves the following problem:

β̂ = arg min
β

(Y −Xβ)′(Y −Xβ) (1)

Which yields the estimate:

β̂∗ = (X ′X)−1X ′Y (2)

The possible problem that could arise concerns invertibility of the X ′X matrix.
In fact this matrix is not invertible for the case when X does not have a full
rank. While theoretically impossible apart from the case of true perfect multi-
collinearity, in practice this problem could arise if the imperfect multicollinearity
is present (when in form of a correlation matrix X ′X is not nearly a unit ma-
trix). In such case the behavior of estimation and prediction outcomes might
cause the estimates of the variance and the coefficient values be excessively high
in certain cases (Hoerl and Kennard 1970). Thus, in the case of ”kitchen sink”
regressions with thousands of observations for each one of thousands of regres-
sors, an attempt to run a regression is predisposed to fail1.
The problem at hand is also related with the risk of overfitting added to the
forecasting performance even in absence of the singularity problem. Overfitting
derives from the lack of information needed to make a forecast that, being ex-
trapolated out of sample, would take a reasonable value not overly influenced

1Even if the modern computational techniques permit to bypass the problem of imperfect
multicollinearity, the benefits of using techniques that cope with the problem stretch beyond
elimination of those difficulties, as we will see
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by the propensity of the model to predict also the error term is the coefficient
estimates.
There is a possible remedy (at least partial) to all of these problems, a process
called regularization. In the essence regularization is a way of setting restrictions
on the parameters of the regression. The initial reasons for this, as has been
mentioned before, are the diminution of the possibility for multicollinearity and
the lowering of the mean squared forecasting error, which positively depends on
the quantity of the parameters to be estimated2. The following transformation
of Mean Squared Forecasting Error formula helps to understand the influence
of regularization on the forecasting performance:

MSFE = σ2
ε +Bias2(f̂(z)) + V ar(f̂(z))

where σ2
ε is the variance of the forecasting error that cannot be influenced by

the change of parameters or use of regularization and is usually assumed to
take a certain value following econometric theory; Bias2(f̂(z)) is the squared
bias of the forecast or, assuming OLS assumptions hold, the squared difference
between estimates from the given model and OLS; V ar(f̂(z)) is the variance of
the forecast. Further on we will analyse the influence of regularization on the
last two components on the MSFE.
The constraints put on the parameters take on the following form:

k(β) ≤ K

while the loss function modifies in order to accommodate for the constraints
through the use of the Lagrange multipliers, thus imposing a penalty on the
loss:

β̂ = arg min
β

(Y −Xβ)′(Y −Xβ) + λ(K − k(β))

where k(β) = β′Aβ. The solution is:

β̂∗ = (X ′X + λA)−1X ′Y

Thus, we are now facing the choice of A and λ.
The imposition of A and λ as the parameters defining constraints on β estimates
has a number of properties regarding the performance of the model in terms of
forecasting. As a base we take the MSFE. The performance of the forecast is
determined by several components, one being the variance of the error term
which could not be influenced neither by the choice of the model nor by the
imposition of the constraints, the second component being dependent on the
bias in the estimation of the coefficients and the other being determined by
the variance in the coefficient estimates. While producing unbiased estimates,
OLS method might result in an excessive variance of the parameter estimates,
not considering the possibility of misspecification (in which the influence on the
bias might be more complex). The problem is of extreme importance in the
case of a large number of predictors included in the model since the variance

2The implicit assumption of the paper is that we operate with the MSE loss
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increases as the number of included regressors grows. Regularization, or putting
constraints on the parameters helps reduce their variance thus helping improve
the forecasting abilities of the model. Of course the gain on the side of the
variance comes at a cost. Introduction of constraints inevitably introduces bias
in the estimates, unless λ is equal to zero which would reduce the model to OLS.
The new model, which regularizes the coefficient has now two new variables to
be determined: λ and A. Let’s condition our future elaborations first on the
choice of A and then describe the consequences and particularities for any choice
of λ, eventually trying to give a meaningful interpretation also to the latter.

1.1 Ridge regularization

When the matrix A is set to be the unit matrix I, the regression takes on
the form of Ridge regression. One of the immediate effects of applying the
regularization is that sum of the matrices X ′X + λI is now invertible even
if X ′X by itself is not (the case of multicollinearity). Thus the use of the
restrictions helps ”regularize” the parameter estimation procedure into one with
less prior requirements of ”good behavior” of the data. Precisely the avoidance
of multicollinearity problems was the initial intention of the Ridge regression.
After having chosen A we should proceed to the evaluation of the parameter
α. Ridge regression leaves this parameter to be defined by the econometrician.
First, let’s understand what is the essence of α. For simplicity we assume that
values of this parameter are the same for all the coefficients’ constraints (the
vector of λ consisting of the same constants), so we will speak as if there was a
unique value. We start from noting that, if we set λ equal to zero, we obtain a
regular OLS regression. As we increase the parameter the more restrictive the
conditions on the β will become. To see this we can run the same regressions
for different values of λ and see the corresponding effect on the coefficients (see
Figure 1.1).
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Figure 1.1: Example of the coefficient estimate path for different values of λ

5



An increase in λ results in the eventual diminution in the absolute values
of the all coefficients’ estimates apart from the intercept, while the intercept
itself approaches the mean value of the variable being predicted. Thus we can
conclude that higher values of λ correspond to tighter restrictions on the param-
eters. This observation corresponds to the theory, which defines λ as a shrinkage
operator. Such a notation refers to the fact that λ influences the degree to which
we want to enforce the regularizing restrictions on the coefficient estimates. The
desire to constraint coefficients to be closer to zero would correspond to impo-
sition of higher λ. In the limit case, if λ tends to infinity, the coefficients are
constrained to be equal to zero(which is still never reached due to the typology
of the constraint).
We can see the overall influence of the change in the parameter on the bias and
the coefficient estimate variance on the the following figure.

Figure 1.2: Bias versus variance tradeoff over λ

Ways of finding the optimal λ, i.e. such that would optimize the trade-off be-
tween the coefficient variance and estimate bias in the framework of assessment
of the forecasting performance of the model, are in practice based on compu-
tational techniques. The common approach is to bootstrap the optimal value
of λ following pseudo out-of-sample forecast assessment and using it for further
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forecasting.
The important conclusion from Ridge regression is a mathematical proof of the
fact that a λ exists such that E[L2

f (λ)] > E[L2
f (0)] where L2

f (λ) is the loss
associated with a given level of λ. That is, with a certain value of restric-
tion parameter we are guaranteed to have a lower variance of the loss which,
as we have shown before reduces the MSFE and improves forecasting perfor-
mance. As stated in Hoerl and Kennard (1970), Marquardt (1970) the use
of biased/shrinkage estimators in practical problems with nonorthogonal data
presents a huge improvement in terms of MSE since the variance of the esti-
mates is significantly reduced. Other advantages include the ability to work
with less than full rank data matrices (when rank of X ′X is not full) which,
as we will see further on, is yet another important aspect of shrinkage estimators.

1.2 LASSO regression

Let us now step away from the case when the matrix A, as one of the parameters
of the regularization, is set to an identity matrix, to simplify the analysis. First
we start with the general differences between the two models and, eventually,
reconstruct the reasoning behind the need for these developments.
The first difference between Lasso and Ridge models is the penalty term in-
cluded in the general expression to be minimized. While in the Ridge regression
the restrictions are put on the squared values of the parameters, Lasso puts
restrictions on the absolute values of the parameters:

β̂ = arg min
β

N∑
i=1

(yi −
∑
j

βjxij)
2 subject to

∑
j

|βj | ≤ t

As we have seen before, as the shrinkage parameter λ tends to infinity, the es-
timates of β in the Ridge case are shrunk towards zero. However the procedure
does not permit to set them to zero directly even if the eventual values come out
to be very small. The shortcoming of the Ridge model is addressed in Lasso.
Due to linearity of the constraint on the coefficients, Lasso has a much higher
probability for estimated coefficients to be directly equal to zero, which hap-
pens when the regressor under consideration has a sufficiently low predictive
ability. The intuition to explain such model performance could be easily ex-
tracted from the Figure 1.3, representing the constrained minimization problem
for both Ridge and Lasso cases.
As we see, the difference in the form of the constraints, which are colored in
black, helps visualize why the probability of setting a coefficient precisely equal
to zero is much higher in case of Lasso with respect to Ridge, where the con-
straint imposed precludes this outcome. Such peculiarity permits to feed Lasso
regressions with data having a large quantity of the variables directly and let
the model perform predictor selection by itself. The result of the regression
will be a set of estimates for the coefficient of the variables that were found
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Figure 1.3: Ridge vs Lasso estimation frameworks

relevant in predicting the dependent variable while the coefficients for the ir-
relevant variables would be equal to zero. Data rich environments, especially
those with the number of variables exceeding the quantity of observations, can
benefit extensively from the Lasso setting, regarding both the variable selection
problem and the potential presence of multicollinearity.
Let us move on to the choice description of the influence of the shrinkage pa-
rameter in Lasso regression. The eventual optimal forecasts solve the following
equation:

β̂lasso = arg min
β

[
(β̂olsi − βi)2 + λ|βi|

]
Again, λ plays the role of the shrinkage parameter, with higher values corre-
sponding to the imposition of tighter restrictions on the minimized function.
We can see the development path of different coefficients with different values
of λ. The X-axis corresponds to the inverse of the value of λ.

The importance of Lasso model, as we see it from Figure 1.4, is that some
estimated coefficients are set directly to zero for sufficiently high values of the
shrinkage parameter. Thus, Lasso permits us to achieve two objectives at the
same time: assess the parameters of the model to be used in forecasting and to
perform the model selection whose results could be used in some other model or
for theoretical purposes. Having discussed the benefits and specialities of Lasso,
it is time to move to the case of Bayesian methods.

1.3 Bayesian shrinkage

In the previous two sections we have seen two different though logically similar
techniques to impose restrictions on the estimated coefficients. Both methods’
final effect is of curbing the estimates towards zero, or shrinking, which gave rise
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Figure 1.4: Ridge vs Lasso estimation frameworks

to the use of the notion. The passage from the imposition of the restriction on
the target function to the derivation of the optimal estimates of the coefficients
(under MSE) is easy to trace and understand. The presence of a single tun-
ing parameter(or vector of parameters), λ, which regulates the tightness of the
restrictions, and, consequently, the degree of shrinkage of the parameters, has
two opposite arguments. The understanding of the model and the comparative
evaluation remains simple, however the degree of customization or adjustment
does not stretch too much further from the regular OLS estimation. Having ar-
gued for the case of usefulness of the shrinkage estimators as the ones producing
biased but better performing estimates, we propose the Bayesian procedure for
the shrinkage estimation.
Bayesian method requires introduction. The theory of Bayesian estimation is
based on the concept underlying the Bayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)

The idea of obtaining the probability of event A (the Y, or the variable to be
predicted) conditional on event B (the X, or the data used in the regression)
could be stretched from the case of probabilities of singular events to the density
functions of the given variable. The resulting equality has the following form:

π(θ|z) =
pZ(z|θ)π(θ)∫

θ
pZ(z|θ)π(θ)dθ
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In words, we can obtain the posterior distribution for a set of parameters θ of
a given model, from the specification of the model for the data(the likelihood
function), pZ(z|θ), the marginal likelihood of the data, that lies in the denomi-
nator of the formula, and the prior distribution of the parameters, π(θ).
It is important to trace the differences in the imposition of information in the
three models. The first two exercise a direct constraint on the estimates, which
transform also in the constraint on the parameter variances. In the Bayesian
case the imposition of the restricting information is done through the prior,
which is a joint distribution of the parameters of the model. Thus we can ex-
plicitly introduce our shrinkage targets as in terms of the mean, so in terms of
the variance. Having this in mind, we proceed with theoretical elaborations.
The target function of interest takes on the following form:

r(π, f) =

∫
z

(∫
θ

{∫
y

L(f(z), y)pY (y|z, θ)dy
}
π(θ|z)dθ

)
m(z)dz

In case we have y ∼ N(Xβ, V ) and a prior on β is normal: β ∼ N(β0,Σ0),
the marginal distribution of X does not depend on β and V is known (for
simplicity), the posterior is β|Y,X ∼ N(β̃,Σ) where

β̃ = (X ′V −1X + Σ−10 )−1X ′V −1Xβ̂ + (X ′V −1X + Σ−10 )−1Σ−10 β0

Σ = X ′V −1X + Σ−10

Where β̂ = (X ′V −1X)−1X ′V −1y is the Generalised Least Squares estima-
tor. Here we can notice the similarity between the shrinkage concept and the
Bayesian implementation. The coefficient estimates are curbed towards the prior
values as expressed by mean and variance-covariance matrix. Thus, the degree
of shrinkage of β estimates depends both on the prior expected value and the
degree of our belief in the prior as expressed by the Σ0 matrix. Following intu-
ition, there might even be a direct relationship between Bayesian method and
Ridge/Lasso implementations. In fact, for example, setting V = σ2I, β0 = 0
and Σ0 = τ2I results in the same outcomes as of Ridge regression (λ = σ2/τ2):

β̃ = (σ−2X ′X+τ−2I)−1σ−2X ′X(σ−2X ′X)−1σ−2X ′y = (X ′X+
σ2

τ2
I)−1X ′Y = β̂ridge

Concentrating on forecasting, the minimization under MSE loss and normally
distributed priors gives us the following result:

E(yT+1|z) =
Tτ2

Tτ2 + σ2
ȳT +

σ2

Tτ2 + σ2
µ0

Where τ2 is the variance of the prior, µ0 is the prior mean (assuming the prior
is distributed normally with the stated parameters). As we see, the forecast of
variable is a weighted average of the prior mean and the sample mean, whether
weights depend on the quantity of the data available, T , the variance of the
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sample data, σ2, and the diffusion, or variance of the prior, τ2. For a given
set of data the first two parameters determining the degree of shrinkage (since
the sample mean, that is the forecast for the OLS is shrunk to the prior mean)
can not be determined by the forecaster. However τ2, can be adjusted. We can
think of it as of the credibility of the prior. The lower we set it, i.e. the more
sure we are that the prior reflects the true value of the parameter, the closer
the resulting estimated forecast will be to the prior mean.
Thus we conclude the chapter with the important parallel in mind: all of the
abovementioned methods, using different means, perform the same task of re-
ducing variance of the estimates while introducing bias. This tradeoff presents
a possibility of improvement of the forecasting performance and, as well, car-
ries a number of useful features, such as dealing with overfitting, controlling for
stability of the estimates and permitting to deal with underidentified models.
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Chapter 2

Macroeconomic forecasting

There exist several major points upon which we could judge upon the differ-
ence of forecasting methods in macroeconomics. First one is the loss function
upon which the forecasting performance assessment is made. In the practical
applications we do not have too much difference from the regular forecasting
setting, even if there might be sufficient ground for introducing less popular al-
ternatives. The most commonly used measure is the Mean Squared Forecasting
Error (MSFE). 1

The second issue at hand is the specificity of the data. While there are plenty
of economic variables that are updated on a monthly basis (inflation) and some
even have a less-than-daily frequency (interest rates, exchange rates), many
major economic variables (GDP and components) have trimestral frequencies.
Thus, supposing the trimestral data availability, the effective data span turns
out to be not than long. For example in Europe 2, where the accounting pro-
cesses converged only around the 1990s, in the best cases are able to provide
no more than 100 observations. This problem of short data span (which was
even more acute in earlier years) drags under the light the problem of underi-
dentification. Richly specified models are deemed to suffer from that problem
in macroeconomic environment. Because of this all the models are deemed to
search for a solution and somehow extract the most information without creat-
ing the predisposition to excessive forecasting outcomes.
The third issue is the macroeconomic theory explanation of the processes under-
lying macroeconomic evolution and data generation. There exists a huge array
of macroeconomic models that try to mimic the structure of the economy, thus
pretending to approximate the true framework of the interactions in the system.
Their initial reason was the assessment of causal and linking relationships be-

1We will not concentrate on this issue in our analysis but it should be mentioned that
macroeconomic forecasting, as a major issue affecting economic policy, investment decisions
and many other fields has plenty of ground for introducing non-symmetric, non-quadratic and
other types of loss functions (for example over-valuation of GDP might be more harmful than
undervaluation)

2In this paper we use data on Italy in the forecasting assessment
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tween major economic variables and components. Then attempts were made to
extrapolate this reasoning into the forecasting realm. Most of them had shown
relative poor performance but some (DSGE models) successfully function and
are currently used in important economic institutions (e.g. Boivin and Giannoni
(2006)).
However there is a thick line between the forecasting and structural analy-
sis. Another theory (which also had good practical approval) states that many
economic processes (usually the logged differences of the variables) follow the
Random Walk model (with or without drift):

Yt+1 = β0 + Yt + εt+1

In this setting the forecasting problem reduces to extrapolating the behavior of
the last period on the next period and the specification of the distribution of
the error term. Seemingly simple, this model is hard to beat in practice (es-
pecially for the slowly changing variables, such as inflation), especially in the
short run that is defined as a timespan of up to four periods/trimesters ahead.
Such theoretical approach, proven by the practice, presents a valuable source
of information which, as we will see, will be used in order to implement better
forecasting.
In the rest of this chapter we will discuss and compare two approaches in macroe-
conomic forecasting: Bayesian vector autoregression (BVAR) and dynamic fac-
tor models (DFM). The issue at hand concerning the selection of the model
type is to manage to incorporate most of the useful information for forecasting
purposes without loss of the precision in the estimates and avoiding overfitting.
The problem for both regular OLS and VAR that try include many regressors
is the apparition of nonorthogonality issues and the physical impossibility to
solve for coefficients in when the number of coefficients exceeds the data span.
The two techniques address differently the problems of macroeconomic forecast-
ing although both of them possess classical forecasting model features, such as
combination of the structural approach (which might also be almost absent)
and purely forecasting oriented methods, that aim for no other purpose but
predicting the future values. The comparison follows.

2.1 Dynamic factor models

The general expression of dynamic factor models goes as following:

Xt = λ(L)ft + εt

ft = Ψ(L)ft + ηt−1

Where ft are the latent factors following a dynamic path (the quantity of factors
is much lower than the quantity of the variables in the set of data); L is the lag
operator, while λ(L) and Ψ(L) stand for the matrices of respective coefficients
for the lagged variables. The theoretical essence of the following equations is
the idea that much of the variation in the macroeconomic variables could be
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explained through the interaction of a small group of latent factors, and thus
predictions can be modelled using the factors directly, which provides certain
benefits described further on.
The actual reason for the use of this type of models is that in the case the
factors are known and the respective assumptions are made on the distribution
of the error terms η and ε, the forecaster can reduce the dimensions of the model
from one assessing coefficients for all the regressors available to the one having
to assess only the coefficients for the factors while still using data for all the
variables. This manipulation permits to reduce the variance of the forecast thus
improving upon the case with all the regressors included directly in the model.
It is important to note that although the dynamic factor model seemingly does
not represent by itself a variation on the topic of models with shrinkage, in
the reality it does perform the functions similar to those intended for shrinkage
estimators. The first point to mention is the ability to obtain consistent forecasts
when the number of variables is higher than the length of the time series. Such a
problem arises acutely when using VAR, where the number of coefficients rises
proportionally to the square of the number of variables included. In case of
DMF the eventual regression for the variable of interest will include only the
factors, their lags and the lags of the variable of interest.

Yt+1 = α(L)Ft + δ(L)Tt

Thus with the increase in the lag order the resulting number of coefficients to
be estimated rises proportionally to the square of only the quantity of factors
(considering that Yt is a vector of the variables of interest), while rising linearly
with lag order of regressants pf interest. In this perspective the use of factors
acts as the regularization procedure in the Ridge and Lasso regressions, allowing
to bypass the irregularity (insufficiency or multicollinearity) of the data under
consideration.
The Dynamic Factor approach has a number of advantages and possible short-
comings. Among the negative aspects we could list the possibility of excessive
reduction of information due to the fact of using factors. The insufficient num-
ber of factors included might result in underconsideration of some important
components managing the underlying processes and eventually lead to poor
forecasting performance. The same argument could be seem also from the op-
posite perspective. The act of information reduction (extraction from the data
using factors) could be of beneficial influence due to discarding the influence
of shocks to the realizations of the singular variables. Thus, the proper factor
usage should grasp the dynamics of latent factors (the most important processes
governing the realizations of the observable variables) and contribute positively
to the forecasting performance especially in case of aggregate variables, such as
GDP.
Important to remember is that usage of factors is a purely forecasting related
instrument. While attempted to be rationalized and brought under theoretical
explanation, factor usage is practically assessed with the actual performance of
the models using it, which show robust effective forecasting (e.g. Ng and Boivin
(2005), Bernanke, Boivin and Eliasz (2005))
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Moreover, factors could be used also as auxiliary variables in many types of
the models, e.g. Factor Augmented Vector Autoregressions (FAVAR) and Dy-
namic Standard General Equilibrium models (DSGE). Being flexible and non-
constrictive in its use, dynamic factor framework presents a substantial space
for improvements, especially in macroeconomic forecasting.

2.2 Bayesian VAR

The alternative to the use of dynamic factor models is the use of Bayesian
approach in the estimation of vector autoregressions. Vector Autoregression
(VAR) approach has gained extensive application in the macroeconomic set-
ting. First, VAR models allow to incorporate interactions of all the variables
at the same time thus being logical from the structural point of view (even if
chaotic from the theoretical perspective). Second, vector autoregressions have
a developed set to instruments which permits to analyse the structural shock
consequences and perform scenario analysis (forecasting conditional on fixing
the value of certain variables).
The advantage of the Bayesian approach is the absence of the requirement of
the limitations on the quantity of the coefficients to be estimated. This problem
is resolved through use of prior information that acts as a regularization param-
eter for the estimation procedure and thus permits to use all the available data
to the full extent (unlike DFM that tries to extract the common root of the data
generating processes which results very costly in case of misspecification of the
factors).
One of the other advantages of the BVAR is that it permits to incorporate the
economic theory in the model, which is undertaken by the setting of a specific
prior on the data. One of the most popular and theoretically elaborated is the
Minessota prior first introduced in Litterman(1979). The essence of the Min-
nesota prior is using the random walk as the prior for all the VAR equations.
Following the idea of Litterman, there is a fair reason to suppose that macroeco-
nomic processes do not follow any kind of predictable path, that is are random.
Using this supposition as the point of departure, the BVAR adjusts the coeffi-
cients in such a way to concord with the data observed, with the tightness of
the prior regulated by the shrinkage parameter. The tightness of the prior is
autoregulated with regards to the obsolescence of the data, setting the more
distant lag prior variances (or the tightness) to be lower and lower.

V ar(Al)ij =


π1
l2

for i = j

π1π2
l2

(
σi
σj

)2

for i 6= j

Where the variance of elements of the matrix of the autoregressive coefficients
Al, is dependent on the lag length l, parameter characterizing the tightness of
the prior with respect to the random walk (shrinkage towards random walk) π1,
and parameter π2 which regulates the tightness of priors on cross-variable ef-
fects. Such a setting permits to impose stricter priors on the data laying too far
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in time from the forecasting date, which allows to model the fact that influence
of the data on the variables fades away with passage of time.
Other advantage of the Bayesian approach is that the result of the optimization
is not the point estimates of the coefficients which thus results in the produc-
tion of point forecasts, but the distributions of the coefficients which eventually
results in the production of the distribution of the forecasted variable. Density
forecasting has a number of advantages over point forecasting since many more
forecasting estimation procedures can be undertaken in the former case, not
to mention that point forecasts themselves could be easily obtained from the
predictive distribution.
Yet another radical difference between the Bayesian approach to the estimation
problem and the frequentist approach (approach of maximizing the likelihood
of observing the given data realization considering that model specification is
known) is that the former explicitly addresses the uncertainty resulting from
researchers’ inexact knowledge of the ”true” specification of the model, as put
in Doan, Litterman Sims (1983). Thus Bayesian framework and the usage of
shrinkage ought to be regarded not as the attempts to find a seemingly better
answer with the wrong means but rather to address the inherent and ineradica-
ble imperfection of pure frequentist inference.
Having discussed and compared different models that are related to the concept
of shrinkage (and the respective effects of its usage) in the view of the forecast-
ing problem in macroeconomic context, we now explore further our model of
interest - Bayesian VAR.
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Chapter 3

BVAR in macroeconomic
forecasting

This chapter will entail the analysis of the application of the Bayesian vector
autoregression to the problem of the forecasting of three major macroeconomic
variables: GDP, inflation and short term interest rate, using the data for Italy.
We begin by describing the model and its specifications. Then we briefly de-
scribe the data used in the regression coefficient evaluation and eventually pro-
ceed with the analytical part. Analysis will consist of the comparison of the
model forecasting performance relative to several benchmark models using the
unconditional and conditional specifications of the forecasting ability test de-
scribed in Giacomini and White (2006). Next step will consider the analysis of
the sensitivity of the forecasting performance of the BVAR model to the choice
of the shrinkage parameter λ and propositions will be made on account of the
λ choice implications.
The choice of the target variables we mention before is common in the macroe-
conomic setting since they present the main anchors of the reasoning about the
performance of the economy. Moreover there is another interesting point of view
regarding such choice. Each variable has quite different dynamics and thus by
represents a different degree of inherent predictability and different decisions
applied in the forecasting reasoning. As we see in the Appendix A, the degree
of sensitivity and the dispersion of the variables is quite variant. In the absence
of excessive economic shocks log difference in Gross National Product might
seem the least erratic but in the time of strong instant shock it’s reaction is
most excessive. Instead inflation seems to have stronger persistence in the face
of the shock, which reflects its slow-to-adjust nature. Short run interest rate,
being the closest to be affected by the monetary policy and tied to the interest
rate on main refinancing operations, exhibits quite heterogeneous behavior over
time, however, without large consistent swings from the trend (several trends
identifiable over the period).
We will use these perspective as one of the plains of our description of the model
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performance, using, the unique setting of the model for modelling all the three
variables. Such approach should permit us to note the structural differences
and perfection the adjustment from the holistic perspective.
We first describe the specificities of the model used in our computations and
then describe the data used in the model. Second, we analyse the choice of
the shrinkage parameter, coordinating ourselves with the eventual measures
of the forecasting performance and while also trying to grasp the underlying
relationship between the inherent features of the processes governing the data
generation and the eventual optimal levels of the shrinkage parameter. We make
use of the visualization of the relationship and try to elaborate on the idea and
framework behind the use of shrinkage in forecasting. Third, we will compare
the performance of the model with different benchmarks: its predecessor, ordi-
nary vector autoregression, and the typical standard models with low quantity
of parameters (ARIMA, Random Walk).

3.1 Description of the model and the data

The model used in the analysis is Bayesian vector autoregression, which uses the
Minnesota prior as the prior for the regression coefficients. Following macroe-
conomic theory it assumes the distribution of all the coefficients to be normal
and centered in zero, apart from coefficients that stand for the lagged value of
the regressant, which are centered on 1 (thus imposing random walk behavior
prior). Even though our analysis presents the case of a conjugate prior1, we will
estimate the posterior using a sampling procedure, the Gibbs sampler. Even
though it presents a simplification, usage of this method leaves space for im-
provement, usage of different priors and different assumptions on the likelihood
function (which is normal in our case). The essence of the procedure is that by
drawing samples from the underlying distributions we obtain a sample distribu-
tion of the posterior upon which we directly perform the analysis.
The list of the data used in the regression is given in Appendix B. In short, the
major macroeconomic statistics, describing the structure of the economy (i.e.
short run interest rate, CPI, GDP, consumption, investment, net exports and
the decomposition of the latter GDP components) are used in combination with
several other indices describing the overall economy. All the data have quarterly
frequency and span from the first quarter of 1995 till the first quarter of 2014
included.
The following approach is used: first 41− h observations are used in the initial
regression and the further observations are used to evaluate the performance of
the model for the forecast horizon h from 1 to 8 periods. Then, using the rolling
window of the data, we recompute the regression, adding each time a new layer
of the observations (while subtracting the last one) and again compare the re-
sulting forecasts with the pseudo out-of-sample data for h periods ahead. Such

1A conjugate prior is one with which there is a closed-form formula for the computation
of the posterior given the choice of the likelihood function
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procedure results in obtainment of an array of matrices of forecasting errors for
different forecasting horizons over different models. These results are further
used in the evaluation of forecasting performance.

3.2 Sensitivity analysis. Choice of λ

Having decided on the choice of the prior distribution for the parameters of
the regression, we now need to turn to the determining of the optimal level
of the shrinkage coefficient, λ. First, let us observe the development of mean
squared forecasting error (which we will use to assess the predictive performance
of the model) for forecasts of different variables for different forecasting periods
over different values of λ (Appendix C). As we can see, the optimal values of
λ vary highly for different forecasting periods and different variables. Even if
there there are only two variables of interest and a unique forecasting horizon
is specified, an empirical choice of λ presents a difficulty. In our case we need
to select such parameter value that would be suitable for different variables and
forecasting horizons. Econometric theory does not possess a framework which
solves the general problem of finding optimal shrinkage coefficients. Instead,
numerical techniques, such as cross-validation are used in practice to find the
best suiting parameter. Cross-validation implies finding the optimal values of
the parameter for different subsamples of data and then averaging to obtain a
unique value.
We, however, try to select the best value of the coefficient based on our empirical
analysis of the forecasting error behavior, while coordinating our reasoning with
the specificities of the processes governing the data viewed from the economic
perspective.
First observation that comes into play is that for the forecasting of GNP, the
model performance changes significantly with the change in λ only for the cases
of longer forecasting horizons (marks on top of the plots show the specific fore-
casting horizon). Moreover we cannot observe stable optimal value thus pre-
suming better long term forecasts could be made with even higher values of the
parameter. Since lower values of the parameter correspond to tighter restriction
towards the prior, we conclude that the BVAR benefits a lot in the long term
from a greater use of the structural part (the information extracted from the
data).
Looking at the inflation we note the same phenomenon of the increase of the
forecasting performance for the higher values of λ i.e. lesser shrinkage towards
the prior. The effect is even more accentuated and is easily noted also for shorter
forecasting horizons, starting to be visually relevant for horizons including and
longer than 1 year.
The interest rate forecasting response presents an interesting case as well. We
can observe that there is a stable optimal position around the λ value of 0.005
which is to a certain degree independent from the forecasting horizon length
(even though it is more pronounced for longer horizons). The fact that opti-
mal shrinkage level is tighter for the short term interest rate coincides with the
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reasoning about its fast-to-adjust manner and thus lesser inherent predictabil-
ity. Therefore random walk forecast should perform relatively better for this
variable and respectively more accounted for when shrinking towards it in the
BVAR with the given prior.
For the sake of consistency of the analysis we choose one value of λ to be used
in further comparison tests against other models. For this sake we computed an
average of the optimal values over all the forecasting horizons and variables giv-
ing equal weight to each of the entries (which of course could be easily adjusted
in light of the forecasting horizon and variable of interest choice). The value for
λ we calculate is 0.18375. Next we will look at the comparative performance of
the BVAR model.

3.3 Comparison of performance

In the comparison of forecasting performance one should first choose the param-
eter to be used as a proxy for the ability of the model to fulfil the forecasting
objective. In our case we will use the mean squared forecasting error. After hav-
ing computed the squared forecasting errors for the BVAR and the benchmark
models (small specification VAR, ARIMA, random walk), we use the Giacomini
and White approach for predictive ability evaluation and perform the test for
the difference in MSFE of different forecasting models for given forecasting hori-
zons.
First, a short description of the test is needed to ground the reasons for fur-
ther inference. The peculiarity of the forecasting test described in Giacomini
and White (2006) is in its ability to assess the performance of the forecast in
the case of possible misspecification of any kind due to the fact that it does
not try to compare the unconditional performance of two models 2 but rather
concentrates on the comparison of the estimates provided by given models with
the given information set from which parameter estimates are made. Thus both
forecasting models and the estimation procedures are taken into consideration
in the test. Important to note is that the pure model comparison (testing the
hypothetical performance of two models) would fail in the case of the use of
shrinkage estimators since this procedure produces biased estimates.
A particular stress is made on the use of rolling window forecasts which sim-
plifies the analysis to bounded data frame forecasts. Using such approach we
obtain the h period ahead forecasts using the window of size 41− h where h is
ranging from 1 to 8. The reasons for using different window sizes allows us to
obtain equal ranges of pseudo out-of-sample forecasts for different forecasting
horizons so that we obtain commensurate data for the forecasting ability test.
The loss function choice did not present good reasons to be considered in deep
and thus the standard Mean Squared Error is used as the test statistic.

2Here by the models we mean the dependence structure. Even presuming the knowledge
of the true structure, two models are difficult to compare since the ”true” coefficients of the
models are unknown and are only assessed using a finite sample of data
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The null hypothesis, given the MSE loss and information set Gt is

H0 : E[(Yt+h − f̂1,t,h)2 − (Yt+h − f̂2,t,h)2|Gt] = 0

where f̂i,t,h is the h period ahead forecast produced at t for model i.
The first test we make is the unconditional test for the difference in means of the
squared forecasting error (as assuming an empty information set Gt). Results
of this test are presented in Appendix D.
The relative performance against random walk model and VAR model show
quite significant improvements in forecasting GNP for forecasting horizons ex-
ceeding one year. This confirms the idea that GNP has to exhibit more struc-
tural predictability for longer forecasting horizons. However, the performance
is not that good with comparison to ARMA model. In our comparison we did
not use constant values of the parameters of ARMA model (the lag length and
the moving average term) while those were instead automatically determined
considering the information criteria for each individual case. Instead the pa-
rameters of BVAR (lambda, lag length = 5) were held constant, which could
explain the relative performance obtained.
What concerns inflation, we again observe an improvement over the VAR and
random walk with the use of Bayesian VAR. The best performance lies in the
mid of our horizon span, which should be due to the choice of particular shrink-
age parameter and thus could be adjusted as well to perform even better for
other forecasting horizons.
The picture of interest rate forecasting is quite mixed. Bayesian VAR showed
relatively good performance for the horizons of up to one year in comparison
with all the three other models and exhibited much worse performance for the
larger horizons. To our view the reason is again the choice of λ since, as we’ve
seen, the influence on interest rate forecasting performance is quite pronounced
and consistent (with an optimal value ranging around 0.05 rather then 0.18 as
used in our case).
Next issue of our analysis is the test of conditional performance of the models.
We perform the test using the wald statistic testing the joint hypothesis of the
influence of the test function, where the test function, following Stinchcombe
and White (1998) is chosen to be the matrix of the respective model errors
spanning over a chosen quantity of prediction errors. In our case we span the
vector over 8 periods (prediction errors from t to t − 7). We thus perform the

regression of (Yt+h− f̂1,t,h)2− (Yt+h− f̂2,t,h)2 on the difference of the prediction

errors (Yt−i − f̂1,t−i)2 − (Yt−i − f̂2,t−i)2 for i = 0:7 and the intercept.
Next we test the hypothesis of the joint influence of the in-sample prediction per-
formance on the forecasting performance. The results of the test are presented
in Appendix E. As we see, it is hard to notice a pattern in the predictability
of model performance over difference forecasting horizons. However sometimes
relative model performance is found to be correlated with the values of the dif-
ference in the predicted squared errors (e.g. inflation for the first 4 quarters
ahead in case of comparison of BVAR with RW and ARMA or GNP 7 and 8
period ahead in case of comparison with RW). Thus, according to the results of
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this test, sometimes it is possible to expect different relative model forecasting
performance given its in-sample performance history. We will now look in one
of those cases more closely (one for which null of unpredictability is rejected).
We choose the case of comparison of BVAR and RW for 5 period ahead inflation
forecasts.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.0000 0.0000 0.14 0.887

f.fit1 0.3017 0.2201 1.37 0.182
f.fit2 0.0290 0.2396 0.12 0.905
f.fit3 0.2391 0.1635 1.46 0.155
f.fit4 0.0507 0.0907 0.56 0.581
f.fit5 0.4895 0.8593 0.57 0.574
f.fit6 0.0898 0.2703 0.33 0.742
f.fit7 -0.1781 0.6703 -0.27 0.792
f.fit8 -0.4219 0.6378 -0.66 0.514

Table 3.1: test for conditional predictive ability, BVAR vs RW, 5 period ahead,
inflation

As we see, according to the regression results, the worse relative performance
of BVAR for last 6 predicted periods will, on average, signify the worse 5 pe-
riod ahead forecast. However, the opposite could be said about the relation of
prediction error 7 and 8 periods earlier than the last period observation. By
themselves the coefficients are not seen to be significantly different from zero,
which is largely due to the fact of short data span available to be used for as-
sessment. However, this method could represent a useful additional tool for the
decision on the use of particular forecasting model.

3.4 Conclusions

As we have described before, the use of the shrinkage methods in macroeconomic
forecasting represents a very useful tool to handle specificity of the data (short
span, overparametrisation of the models). The use of Bayesian VAR, beyond
coping with the data scale difficulties, permits the incorporation of economic the-
ory in the modelling of the forecasting problem, which inevitably improves upon
usage of purely frequentist methods since the adjustment of BVAR (shrinkage
parameter) nests also the case of absolutely diffuse prior ( which is a reduction
to the frequentist case).
As we can observe from the relative performance analysis, BVAR outperforms
small scale VAR by a most of the times for most forecasting horizon settings
and as well manages to compete with the random walk model, which proves
the potential of this model to be a useful macroeconomic forecasting tool. The
comparison with ARMA model does not show relatively better performance,
but the fact of usage of single shrinkage parameter for the forecasting of all
the variables over all the forecasting horizons should be taken in the account.
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As well, the possibility of adding different and more comprehensive data in the
BVAR model should be considered in view of its automatic coping with over-
parametrization using the prior.
A more elaborate approach, including thorough analysis and specification of
the prior imposed on the coefficients, coupled with inclusion of more data in
the regression could constitute a significant improvement to the performance
of Bayesian VAR described in our simple case. Moreover the relationship be-
tween the prior imposition/adjustment and the inherent data-generating pro-
cesses should be examined and incorporated in modelling framework.
The importance of BVAR as the shrinkage estimation model in general cannot
be neglected, giving due to its flexibility and ability to cope with difficulties
arousing in the specific environment of the macroeconomic forecasting problem.
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Appendix A

Variables of interest
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Appendix B

list of variables

variable description
1. GNPK Gross National Product
2. IMPK Imports of Goods and Services
3. IMPBEN Imports of Goods
4. CFIN Final National Consumption
5. CFAM Consumption of Resident Families
6. CFTER Consumption of the Families on the Economic Territory
7. CODUZ Private Consumption of Durable Goods
8. CNDZ Private Consumption of Non-Durable Goods
9. COSERZ Private Consumption of Services

10. INFLV Total Fixed Investment
11. INVMAC Investment in Machinery and Equipment
12. INVTRASP Investment in Means of Transport
13. INVCOSTR Investment in Construction
14. EXPK Export of Goods and Services
15. EXPBEN Export of Goods
16. IPCOSTR Industrial Production index in Construction Sector
17. OCCERV Employment in Services
18. CPIIT Consumer Price Index
19. X3MBOT average of 3-month government bond (BOT)
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Appendix C

Choice of λ
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Appendix D

Test of predictive ability
results

period ahead 1 2 3 4 5 6 7 8
GNP 0.87 0.90 0.42 0.17 0.81 0.30 0.25 0.19

inflation 0.26 0.04 0.01 0.02 0.00 0.04 0.05 0.51
interest rate 0.25 0.18 0.06 0.09 0.45 0.67 0.71 0.75

Table D.1: p-value, BVAR vs RW

1 2 3 4 5 6 7 8
GNP 0.81 0.36 0.18 0.12 0.13 0.07 0.04 0.03

inflation 0.29 0.14 0.04 0.07 0.13 0.11 0.06 0.13
interest rate 0.05 0.00 0.02 0.19 0.30 0.82 0.80 0.78

Table D.2: p-value, BVAR vs VAR

1 2 3 4 5 6 7 8
GNP 0.60 0.29 0.21 0.35 0.95 0.71 0.63 0.97

inflation 0.84 1.00 0.63 0.43 0.70 0.87 0.74 0.83
interest rate 0.28 0.20 0.05 0.10 0.53 0.71 0.70 0.72

Table D.3: p-value, BVAR vs ARMA
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Appendix E

Conditional test results

period ahead 1 2 3 4 5 6 7 8
GNP 1.00 1.00 1.00 0.97 1.00 0.91 0.00 0.00

inflation 0.01 0.01 0.00 0.10 0.00 0.85 0.83 1.00
interest rate 0.98 0.99 0.94 0.04 0.00 0.95 0.07 0.13

Table E.1: p-value, joint test of the coefficients for prediction error difference,
BVAR vs RW

period ahead 1 2 3 4 5 6 7 8
GNP 0.10 0.03 0.94 0.93 0.94 0.98 0.97 0.97

inflation 0.90 0.96 0.91 0.79 0.92 0.97 0.97 1.00
interest rate 0.98 0.01 0.75 0.98 0.99 0.99 0.54 0.97

Table E.2: p-value, joint test of the coefficients for prediction error difference,
BVAR vs VAR

period ahead 1 2 3 4 5 6 7 8
GNP 1.00 1.00 0.28 0.99 0.95 1.00 0.89 0.00

inflation 0.00 0.35 0.05 0.01 1.00 1.00 0.00 0.98
interest rate 0.83 0.97 0.92 0.84 0.15 0.98 0.50 0.59

Table E.3: p-value, joint test of the coefficients for prediction error difference,
BVAR vs ARMA
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