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Abstract

This thesis is about a continuous time dynamic model for the eco-
nomic exploitation of natural resources such as fish stocks essentially
due to Clark (2010). To study this bioeconomic model, I first develop
from the mathematical field of optimal control theory a set of necessary
conditions for optimality known as Pontryagin’s maximum principle.
Applying this tool to the bioeconomic model, I can compare the model’s
predictions to those of a baseline scenario characterized by unregulated
access to the resource, and I find that in the latter case the equilibrium
level of the resource is lower. Finally, I study the policy implications
of this result, presenting and analyzing different types of regulation for
the fishing industry such as input controls, which restrict fishing gear,
output controls, which limit fishing effort, taxes, and quotas.

The main contribution of this work is to develop a dynamic bioe-
conomic model in a more rigorous optimal control formulation, and to
analyze different forms of regulations in the framework of the model.
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1 Introduction

An important and common problem in economics is how to manage assets,
meaning anything that produces economic value and can be owned or con-
trolled in some way. A first categorization of assets that has important impli-
cations from an accounting perspective is, as usual, between tangible and in-
tangible ones since intangible assets other than financial assets are very hard
to define and evaluate. From an economic perspective, however, a perhaps
more meaningful division is between renewable and non-renewable assets. It is
fairly difficult to characterize what a renewable asset truly is: since it is an
asset, it must provide economic value, meaning that it cannot be in infinite
supply, and it must be possible to exclude, at least under some circumstances,
others from its use; since it is renewable, it must be naturally replaced.

The key elements in this definition are (i) the natural occurring process
that replaces the resource and (ii) the economic nature of the resource. For
example, sunlight and wind are indeed renewable, but they are also in infi-
nite supply: what is in finite supply is the equipment necessary to produce,
store and channel electricity from solar and wind power. Oxygen and fresh
water are also renewable, and it can no longer be safely assumed that they
are in infinite supply or that the access to water cannot be restricted, and they
should therefore be considered as renewable assets. However, it looks foolish
as well as criminal to put a price on water or air and limit access to these vital
resources.

Finally, the last sizable category that could and does, in fact, fit the char-
acteristics of renewable assets are living biological organisms (other than hu-
mans), since all natural species are indeed renewable and some plants and
animals have a long history of economic exploitation. The discipline that
studies how to optimally manage these assets is called “Bioeconomics” and
is the subject matter of this thesis. For clarity, I collect the remarks from the
above discussion in the following two tentative definitions.

Definition 1 (Renewable asset). A renewable asset is an asset that can be natu-
rally replaced. Examples of renewable assets are biological systems such as forests,
marine and freshwater resources, grasslands and deserts, and wildlife populations.
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1. INTRODUCTION

Definition 2 (Bioeconomics). Bioeconomics, a field at the interplay of economics
and biology, is the discipline that aims at developing a theory of optimal management
of renewable assets.

While they are fairly restrictive and can certainly be improved, these
working definitions manage to exemplify the economic nature of the prob-
lem: at least on a first reading, renewable resources are just another class,
although fairly peculiar, of assets, and their management is subject to sim-
ilar economic incentives and constraints. The definitions, however, give no
information on whether the issue of managing renewable resources is also a
relevant one, meaning that even serious mismanagement of the assets does
not severely affect society as a whole.

To give an idea of the magnitude of the problem, just considering one
type of renewable assets, namely marine and freshwater resources, in the Eu-
ropean Union alone about 85 000 and 116 000 employees work, respectively,
in the fishing and fish processing industry; moreover, these two sectors pro-
duced economic value for about EUR 3.5 billion and EUR 30 billion in 2013.
Equally importantly, in some European coastal communities fisheries are the
main employer accounting for more than half of local jobs (European Com-
mission 2014a). These few figures about fisheries may seem minor compared
to EU level employment or GDP, but they do not convey the complete story:
fish as a source of protein are an important component of a healthy diet, and
as part of the marine ecosystem are one of the drivers for the “blue economy”
that generates about 5.6 million jobs with an economic value of about EUR
495 billion per year (European Commission 2014b).

If renewable assets are indeed highly valuable to society, then it remains
the question of how to optimally manage them. Continuing with the fish-
ery example, the European Union, recognizing the importance of the fishing
industry, tackles this issue with “Regulation (EU) No 1380/2013” and “Reg-
ulation (EU) 2015/812” of the European Parliament and of the Council that
lay down the legal principles behind the “Common Fisheries Policy (CFP).”
Quoting from these regulations, the CFP

should ensure that fishing and aquaculture activities contribute
to long-term environmental, economic, and social sustainability
[. . . ] should contribute to increased productivity, to a fair stan-
dard of living for the fisheries sector including small-scale fish-
eries, and to stable markets, and it should ensure the availabil-
ity of food supplies and that they reach consumers at reasonable
prices

In the above quotation, the emphasis is on the economic and environmental
sustainability of the fishery policy, which is a fundamental and widely shared
principle by managers of renewable resources.
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Sustainability, which for the moment I do not try to define precisely, con-
veys the idea that exploitation of a natural resource cannot occur without
bounds of any sort much like it happened in the past. A classical example of
unsustainable harvesting is represented by the so called “tragedy of the com-
mons:” while it is individually rational to harvest as much as possible from
a common resource, such a behavior is not socially optimal and may lead to
the depletion of the resource if it is not stopped in time. Fueled by a growing
global demand and improvements in harvesting technology, a development
along the lines of the tragedy of the commons seemed to be the norm for re-
newable assets just until the recent past, when resource managers began to
implement new regulations that tried to limit the furious competition for a
dwindling resource.

These few lines about over-harvesting of natural resources stress also the
very import role of time for the bioeconomic problem. If harvesters do not
have the luxury to postpone their harvesting decision to a more favorable
moment, for example when fish stocks have reproduced, then the final out-
come will probably be close to the tragedy of the commons, with a depleted
natural population and many harvesters forced to quit their jobs. But what
if they can instead more or less freely allocate their harvesting decision in
time? What is the “optimal” strategy in this case? And is it also a “sustain-
able” strategy?

To answer these questions in a general way, managers and harvesters
cannot phrase the problem exclusively in static terms but should explicitly
consider its dynamic dimension. Recalling the economic nature of renewable
assets, the problem “should ideally be cast in capital-theoretic terms” (Clark
and Munro 1975), where the capital stock is nothing else but the natural pop-
ulation that, like traditional capital, can yield a sustainable consumption flow
through time. Hence, the objective becomes to find the optimal harvesting
policy which, in turn, determines the optimal response of the population
since, under perfect information, the harvest path (or investment in the case
of traditional capital) entirely characterizes the law of motion of the capital
stock. As it is for the rest of capital theory when no strategic interactions
are present, the management of renewable resources is essentially a problem
in the area of mathematics called optimal control theory, about which I will
speak at length later on in the thesis.

Proceeding in this way it remains, however, to define in what sense the
harvesting policy so chosen should be optimal and sustainable. From the
point of view of harvesters, a harvesting policy that maximizes present value
profits, the harvesting decision being an inter-temporal one, is an easy candi-
date for optimality; it is also a sustainable one if it does not lead to depletion
of the natural population. An easy way to check sustainability of a policy
is to compare it with what I have so far called the tragedy of the commons,
because, as in the fishery example, this is the natural outcome of unregulated
open access resource exploitation. As it turns out and is intuitively true, the
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1. INTRODUCTION

equilibrium population level when harvesters can carefully weight the fu-
ture against the present by picking an harvest path that maximizes their dis-
counted profits is always higher than the one under unregulated open access
resource exploitation. Moreover, profitability under the first set of conditions
is much higher than under the second one.

These results are, in turn, a sort of theoretical justification for regulating
renewable assets: if managers want to maximize social welfare, then they
can certainly not forgo economic profitability coupled with resource preser-
vation. To achieve their objective managers have at their disposal a wide
array of instruments, from taxes to fixed quotas of harvest, from controls
on harvesting techniques to a ceiling on the maximum amount of harvest.
More practically, if not to achieve the highest possible social welfare from the
resource, it is certainly desirable not to reach the tragedy of the commons
equilibrium, and between the aforementioned tools the most effective one
to this end has proved to be some form of restricted access to the harvest-
ing grounds. By limiting the number of harvesters and curtailing their effort,
managers can align the incentive of harvesters towards a more long-run hori-
zon avoiding the very short run competition for a depleted resource.

Finally, the structure of this thesis is similar to the order in which I have
thus far proposed the core topics in this introduction. Hence, in Chapter 2 I
present the field of bioeconomics, its objectives and its main tools; I also in-
troduce different models that are common in the literature and discuss why
they may or may not be appropriate. First, I examine models that focus ex-
clusively on the biological aspects of renewable assets and completely ne-
glect the economic implications, then others that combine the two sides of
the problem but do so only in a static way, and finally at the end of the chap-
ter I arrive to explain a dynamic bioeconomic model in three different forms.

To study this dynamic bioeconomic model, in Chapter 3 I introduce the
field of optimal control theory, briefly discuss its connection with calculus of
variation, and present the key ideas behind (part of) the theory. The main re-
sults of this chapter are the proof of a reduced version of a necessary optimal-
ity condition known as Pontryagin’s maximum principle, and two theorems
for the existence of optimal controls.

Having developed the necessary tools, in Chapter 4 I apply them to the
study of the dynamic bioeconomic model for the case of a single price-taker
firm. I re-derive in an alternative way a famous result due to Clark and
Munro (1975) known as the “Golden rule” of bioeconomics for its similar-
ity with the golden rule in capital theory.

Finally, in Chapter 5 I present the past and current effort at regulation of
fisheries as an example of a renewable resource, and discuss why they may
or may not be successful. To study the suitability of different regulations, I
first introduce a definition of a social optimal population level, with an un-
regulated open access resource as baseline scenario, and then look at if and
how different forms of regulation can modify the incentives for harvesters
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in such a way as to reach the social optimal population level. In Chapter 6 I
conclude.

When writing the thesis, I used the book of Clark: “Mathematical Bioeco-
nomics” like a sort of handbook for the modeling part as the choice and order
of the topics treated in this thesis show. As Clark does, the models presented
are, while simple, general enough in scope to include many sorts of renew-
able assets such as fisheries, forestry, and other wildlife populations. The
focus is, however, always on fish stocks for many reasons: they are one of the
renewable assets with the longest history of commercial harvesting; they are
a widespread and economically important resource; they are also a challeng-
ing problem since their distribution in space is not fixed as it is for trees, and
at least some species are mobile enough that their sustainable exploitation
requires international agreements. Notwithstanding the last point, this addi-
tional complexity of the fishery problem is not present in this thesis, because
as I mentioned before, this work aims at presenting few results that should
hold qualitatively true for a general renewable asset, and because the subject
matter is already mathematically complicated in its basic form. In this spirit,
I also do not consider more realistic models such as multi-species models,
growth and aging models, predator-prey models, etc.

To conclude, in this work my main contribution is the effort to develop the
dynamic bioeconomic model of Chapter 2 in a more rigorous optimal control
formulation, and to analyze different forms of regulations in the setting of
the model.
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2 Bioeconomics

In this chapter I begin to study the bioeconomic problem of managing re-
newable assets. In Sections 2.1 - 2.2 I introduce the necessary terminology
and tools from the fields of biology and economics. In Sec. 2.3 I define differ-
ent optimality concepts that resource managers could follow, and finally in
Sec. 2.4 I present a general dynamic bioeconomic model that is the focus of
this work.

2.1 The bioeconomic problem

Bioeconomics is a field at the interplay of economics and biology that aims at
developing a theory of how to “best” exploit renewable assets such as forests,
wildlife populations, and marine and freshwater resources, where the “best”
way is a mixture of economics, biological, and possibly ethical considera-
tions. The main ingredients of a bioeconomic model are on the biological
side the dynamics of the exploited population, e.g., how the natural popu-
lation grows and how it responds to harvesting, and on the economic side the
dynamics of the economic system of reference, e.g., the general price level,
the degree of competition in the market, or the time preference of economic
agents.

Following Clark (2010), a basic population model consists of a simple
differential equation (2.1) that captures the population harvesting dynamics
plus some non-negativity constraints (2.2) on the population and harvesting
rate

dy
dt

= G(y(t))− h(t), y(0) = y0 (2.1)

y(t) ≥ 0, 0 ≤ h(t) ≤ h̄ (2.2)

where t ∈ [0, T] is a time index with T possibly infinite, y : [0, T]→ [0,+∞] is
the population level at time t, G(y) is some function that describes the growth
rate of the population when no harvesting occurs, and h : [0, T] → [0, h̄] is
the harvesting rate at time t with h̄ the maximum harvesting rate. Hereafter,
whenever it is clear from the context I drop the time variable t to simplify
notation.
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2.1. The bioeconomic problem
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FIGURE 2.1: Plot of logistic function y(t) = K/(1 + ce−rt)

The simplest functional form for G(y) that characterizes population dy-
namics and does not lead to unbounded growth is probably the logistic equa-
tion due to Verhulst

G(y(t)) =
dy
dt

= ry(t)
(

1− y(t)
K

)
(2.3)

with solution

y(t) =
K

1 + ce−rt with c =
K− y0

y0
(2.4)

where r is the intrinsic growth rate of the population and K is the carrying
capacity of the environment where the population lives. The introduction of
this carrying capacity term K represents an important improvement over the
exponential growth model ẏ(t) = rt, the dot denoting the time derivative of
the population, because it bounds the growth of the system to some sort of
natural threshold determined by the finite amount of resources available to
the population. As Figure 2.1 shows, although the system may temporarily
exceed the carrying capacity K if the initial population level y0 is above K,
the population level will eventually stabilize at the carrying capacity, which
in this sense represents the long-term equilibrium of the system when no
harvesting occurs. More generally, many functions that are suited to model
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2. BIOECONOMICS

population growth are solutions of the generalized logistic equation

dy
dt

= ryα

[
1−

( y
K

)β
]γ

(2.5)

where α, β, γ are positive real numbers whose biological significance depends
on the modeled population, and r, K have the same interpretation as before:
the logistic equation (2.3) is a particular case of Eq. (2.5) with α = β = γ = 1
(Tsoularis and Wallace 2002). As with the logistic function, a population that
behaves according to a generalized logistic function asymptotically reaches
its carrying capacity K

lim
t→∞

y(t) = K (2.6)

attaining maximum growth rate at the point

yinf =

(
1 +

βγ

α

)− 1
β

K (2.7)

provided that y0 < yinf. Finally, the point of maximum relative growth rate
(dy/dt)(1/y) is given by the following expression

yrel =

(
1 +

βγ

α− 1

)− 1
β

K (2.8)

if y0 < yrel. For the logistic model of Eq. (2.3), the points of maximum abso-
lute and relative growth rate are yinf = K/2 and yrel = 0.

The logistic framework introduced thus far, while allowing to mathemat-
ically model natural populations, ignores any harvesting decisions from pri-
vate firms or public institutions. As outlined in the introduction, the bioeco-
nomic question of managing renewable assets is essentially a problem in cap-
ital theory, and as such economic incentives and constraints shape harvest-
ing policies. Adopting terminology from fishery bioeconomics, the choices of
harvesters can be cast both in terms of harvest h(t) or “effort” E(t), where the
unit of measure of the latter are, for fisheries, “Standard Vessel Units (SVU),”
and the problem is perfectly equivalent under both formulations since to each
effort level corresponds a harvest rate.

To formalize this relationship, Schaefer (1954) developed its famous equa-
tion

h(t) = qE(t)y(t) (2.9)

where q is called the catchability coefficient and represents the proportion of
the stock of the resource y(t) harvested per unit of effort. According to this
equation, for a given effort level E the harvest is directly proportional to the
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2.2. The Schaefer brake and depensation

current population level y with q the constant of proportionality, or alter-
natively the fraction h/y of harvested population relative to total is directly
proportional to the exerted effort E.

While Eq. (2.9) models a possible relationship between the “catch” or har-
vest h, the population level y, and the harvest level E, it alone cannot explain
why harvesters would choose an effort level E1 rather than E2 or E3. Obvi-
ously, the price level and the cost of effort matter when deciding how much
to harvest, and for firms a simple profit function is of the type

Π(y, h) = Ph− cE = Ph− h
c

qy
= [P− c(y)]h (2.10)

Π(y, E) = Ph− cE = PqEy− cE = [Pqy− c]E (2.11)

with P the price of the harvested resource, c some constant marginal cost,
and c(y) := c/(qy). As I mentioned before, Eqs. (2.10) and (2.11) are per-
fectly equivalent since using the Schaefer equation (2.9) and as long as y > 0,
I can always pass from effort E to harvest h according to convenience. The
interpretation of the two equations are fairly straightforward, revenues for
price-taker firms being simply the harvest times its price and costs being pro-
portional to the effort level E.

2.2 The Schaefer brake and depensation

While the Schaefer equation seems a very convenient tool to model the catch-
effort relationship, a caveat of Eq. (2.9) is that, since the level of effort E mod-
els how difficult it is for the harvester to screen a natural resource, Eq. (2.9)
implicitly assumes that the population is always distributed uniformly over
its living area. This assumption may not be reasonable if members of a popu-
lation are able to move to a new and “better” foraging area, whereby I intend
an area more abundant in food or other resources necessary to the survival
of the population, when their old one has decreased in quality because of
exogenous, such as natural predation and harvesting, or endogenous fac-
tors such as increased competition for food. More generally, according to the
“Ideal free distribution” theory, if animals are aware of the resource concen-
tration of each foraging area, are free to move between patches of resources,
and can ideally pick the best one, then the distribution of the population be-
tween patches will be proportional to their resource concentration (Fretwell
and Calver 1969). In the fishing industry, for example, Eq. (2.9) may not al-
ways hold, since harvesting by fishermen is seldom at random and instead
targets the spots with the highest density of fish, which in turn are free to
move to better patches. Hence, an “improved” form of the Schaefer equation
is

h = qρ(y)E (2.12)
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FIGURE 2.2: Depensatory growth

where ρ(y) denotes the average concentration of the population in some
patch when the overall stock level is y.

Furthermore, another implication of the Schaefer catch equation (2.9) is
that no extinction of the population is possible since it is not economically
profitable: the profits from harvesting are

Π(y, h) = P(h)h− cE =

[
P(h)− c

qy

]
h (2.13)

and they become infinitely negative as the population stock approaches zero,
meaning that a natural “brake” on harvesting exists for low level of the pop-
ulation. In reality, however, many species have been commercially harvested
to extinction suggesting that there might exist a “threshold” which is not
present in the simple models introduced thus far and below which popula-
tion dynamics G(y) change. This idea lead to the concept of “depensation,”
which according to Liermann and Hilborn (2001) I define as follows.

Definition 3 (Depensation). A population’s dynamics are depensatory if the per-
capita rate of growth decreases as the population density decreases to low levels. De-
noting by g(y) the per-capita rate of growth, depensation occurs whenever ġ(y) > 0
where

g(y) =
ẏ
y
=

G(y)
y
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FIGURE 2.3: Critical depensation

and G(y) is the natural growth rate of the population.

Hence, to have depensation at low level of the population y the growth
function G(y) cannot be convex, since

ġ(y(t)) =
ÿ(t)y(t)− ẏ(t)2

y(t)2 =
ÿ(t)
y(t)
− g(y(t))2

and ġ(y) can be positive only if ÿ(t) > 0 as Fig. 2.2 shows for the curve
Gd(y) when the stock is low (non-convexity to right of the black dashed line).
A practical implication of depensation is that since when population is low
enough the per-capita growth rate does not kick up, then it may take quite
some time before the stock can recover.

While depensation per se does not imply the extinction of the stock, for
some populations once a critical value is reached there is no possibility of
recovery. As Fig. 2.3 shows, if the stock falls below the threshold ymin, then
the growth rate Gcd(y) becomes negative eventually leading the population
to extinction.

Definition 4 (Critical depensation). Critical depensation in a population occurs
when the per-capita growth rate becomes negative at low levels of the stock.

Finally, in view of the above discussion, it may seem doubtful to keep
using the standard Schaefer equation (2.9) and the same logistic functional
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2. BIOECONOMICS

form for the growth function G(y) that does not allow depensatory dynam-
ics. While depensation is indeed a serious problem, there is no way at the
moment to know if a population exhibits depensation before it occurs, mean-
ing that a model that incorporates depensation is potentially as wrong as a
model that does not. Hence, to keep the basic model as simple as possible,
I continue assuming throughout the text a logistic growth function, and, al-
ways for convenience, I continue using the standard Schaefer equation (2.9)
instead of the modified one (2.12).

2.3 Optimality in bioeconomics

Bionomic equilibrium

With the economic and biological dynamics at hand, it should be time to
try defining what is the “optimum” that resource managers in bioeconomics
should try to achieve, but before attempting this task I recall here an impor-
tant point from Chapter 1. As the chapter briefly explains, renewable assets
have traditionally been in a condition of unregulated open access, and in this
case economic theory predicts that as long as the industry is profitable, the
cost of entry is low enough, and incumbent firms cannot credibly deter en-
try, new firms will enter the market until revenues from harvesting are just
enough to cover costs. From Eq. (2.10), economic profits are zero if

Π(h, y) = 0 ⇐⇒
[

P− c
qy

]
h = 0 =⇒ yBE =

c
Pq

(2.14)

leading to the following equilibrium concept due to Gordon (1954).

Definition 5 (BE). The “Bionomic equilibrium (BE)” of a harvestable resource is
the harvesting rate hBE such that for any h′ > hBE harvesting becomes no longer
economically profitable.

In principle, bionomic equilibrium is not necessarily the worst outcome
from the point of view of preservation of the natural resource: as Eq. (2.14)
shows, unless prices P are high enough for a long period, costs c are low, or
the catchability q of the population is high, the equilibrium level yBE may be
considerably far away from depletion of the population. In practice, how-
ever, for resource managers the bionomic equilibrium is a fairly bad state of
affairs since the population stock yBE is typically much lower than its sus-
tainable level. Furthermore, as the theory shows, bionomic equilibrium is
also a sort of natural and ”unavoidable” outcome for renewable assets and
especially fish stocks, since the conditions of initial high profitability and un-
regulated free entry have historically been the norm rather than the excep-
tion. Hence, avoiding the pitfalls of bionomic equilibrium seems like a truly
daunting task for resource managers, but not all hope is lost for at least two
reasons:
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2.3. Optimality in bioeconomics

1. clearly, if the assumption of unregulated open access to the resource
fail, then the prediction of bionomic equilibrium no longer holds;

2. more importantly, the BE concept does not take into account the dy-
namic dimension of the problem. If economic agents are not forced to a
scramble competition and can instead plan ahead, their harvesting de-
cision and corresponding population level may be very different from
the ones under bionomic equilibrium.

Maximum sustained yield

A first candidate for optimality is the widely used “Maximum sustained
yield (MSY),” which ignores the market value of the harvested resources, and
simply looks at the highest harvest rate h that may be sustained indefinitely
without depleting the population.

Definition 6 (MSY). The “Maximum sustained yield (MSY)” for a harvestable
resource is the largest harvest rate hMSY that can be sustained over an indefinite
period and does not lead to depletion of the resource.

As usual when looking for an interior maximum, at the MSY the first
order necessary condition G′(yMSY) = 0 must hold true: if h < G(yMSY)
then it is always possible to increase the harvesting to some h1 with h < h1 ≤
G(yMSY) without depleting the population; if instead harvesting continues at
a rate h2 > hMSY then this strategy will ultimately extinguish the population
as y(t) → 0 for large t. In Fig. 2.4 I plot the MSY for the logistic growth
function (2.3) which is

hMSY =
K
2

(2.15)

and is just a particular case of the generalized logistic equation given by (2.7)

hMSY =

(
1 +

βγ

α

)− 1
β

K (2.16)

as remarked before.
As the figure shows for the logistic case, a first caveat of the MSY is that

the optimal harvest rate hMSY is an unstable equilibrium: inaccurate esti-
mates of the population may produce an “optimal” harvest rate h′ > hMSY
which actually leads to over-harvesting of the resource stock and possibly to
its extinction. A second caveat of the MSY approach is that it ignores the eco-
nomic nature of the problem: what if firms (or the government) extract “too
much,” but still less than the MSY level, of some resource leading to sup-
ply in excess of demand? Evidently, it is sub-optimal to over-supply some
commodity and a bioeconomics optimality concept must at least take into
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FIGURE 2.4: MSY with logistic growth

account the market value of the harvested resource. Finally, its last caveat
is that, like the BE, it does not take into account the dynamic nature of the
problem.

Maximum economic yield

Alternatively to the MSY, an approach that explicitly considers the economic
aspect of the problem is to proceed as in Eq. (2.14)

Π(y, h) = Ph− cE =

[
P− c

qy

]
h = [P− c(y)]h (2.17)

with ẏ = G(y)− h (2.18)

and look for a population level y∗ and harvest rate h∗ that maximizes eco-
nomic profits without causing to stock depletion. Imposing the steady state
condition ẏ = 0 and substituting h∗ = G(y) in the profit equation yields

Π(y, h) = Ph− cE =

[
P− c

qy

]
G(y) = [P− c(y)]G(y) (2.19)

suggesting that the population level y∗ that maximizes Eq. (2.19) is a sort of
“sustainable” economic equilibrium, which leads to the following definition.

Definition 7 (MEY). The “Maximum economic yield (MEY)” is the population
level yMEY at which harvesting is sustainable, meaning that it does not lead to de-
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2.3. Optimality in bioeconomics

pletion of the stock, and that maximizes economic profits of the form

Π(y, h) =
[

P− c
qy

]
h (2.20)

Looking at Eq. (2.19), the first and second order condition for an interior
maximum are

d
dy

Π(y) = −c′(y)G(y) + [P− c(y)]G′(y) = 0

d2

dy2 Π(y) = − [P− c(y)] G′′(y)− G(y)c′′(y)− 2G′(y)c′(y) < 0

Assuming a logistic growth function, G(y) = ry(1− y/K), the MEY is

G′(yMEY)−
c′(yMEY)G(yMEY)

[P− c(yMEY)]
= 0 (2.21)

since the second order condition is d2Π(y)/dy2 = −2Pr/K < 0 and P >
c(yMEY).

While it may appear that the maximum economic yield strikes the right
balance between preservation of the natural resource and economic prof-
itability, the MEY concept, like the BE and MSY, ignores the very important
dynamic dimension of the bioeconomic problem, both from a biological and
economic perspective.

A dynamic model

If a static model, even if grounded in sound biological and economic theory,
is lacking (but may be a good approximation in some cases) because it ignores
the time dimension of the problem, a model that is dynamic both from a
biological and economic standpoint could be a viable alternative.

On the economic side, time dynamics are in terms of profits or utility:
recalling the capital-theoretic formulation of renewable assets, before acting
(e.g., consuming, investing), rational economic agents must formulate a plan
that specifies their decisions up to the relevant (possibly infinite) final time
horizon T. As usual, agents discount the future generally preferring present
rewards to future ones, leading to a present value computation that in the
case of a harvesting firms reads

PV(Π) =
∫ T

0
e−δtΠ(y(t), h(t))dt

where δ ∈ [0,+∞) is the instantaneous discount rate that if close to 0 implies
no “impatience” for consumption, e−δt is the continuous time discount factor,
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and Π(y(t), h(t)) are the instantaneous profits from harvesting. In this for-
mulation the harvester should choose, if it exists, a harvesting strategy h∗(t)
that maximizes the present value of its (certain) future profits.

On the biological side, since firms must specify at each point in time their
harvesting decision h(t), they must carefully exploit population dynamics
G(y(t)) because if they harvest too much today, the population growth ẏ(t)
may become negative leading to depletion of the stock.

To recap, unlike the MSY, BE, or MEY, this dynamic formulation consid-
ers, at least theoretically, (i) both the biological and economic side of the prob-
lem and (ii) the need to continuously adjust harvesting strategy h(t) due to
feedback effects with the population level y(t).

2.4 Three dynamic bioeconomic models

If the dynamic model is the one that better captures the main aspects of the
bioeconomic problem, various market structures may lead ceteris paribus to
very different outcomes both from an economic and biological standpoint.
While the in the rest of the thesis I focus mainly on a the case of a single firm
operating under conditions of perfect competition (or better when the firm is
a price taker), for the sake of completeness I present here three possible cases:
(i) perfect competition, (ii) monopoly, and (iii) social planner.

Perfect competition Under perfect competition, the bioeconomic model be-
comes

Πd
c =

∫ T

0
e−δtΠ(y(t), h(t))dt =

∫ T

0
e−δt[P− c(y(t))]h(t)dt (2.22)

ẏ(t) = ry(t)
(

1− y(t)
K

)
− h(t) (2.23)

y(t) ≥ 0, y(0) = y0 0 ≤ h(t) ≤ h̄ (2.24)

with y(0) = y0 and as usual the aim of the economic agent is to maximize
Eq. (2.22) subject to the constraints (2.23) - (2.24). The profit function under
perfect competition is equal to Eq. (2.10) with the same considerations.

Monopoly Under a monopolistic regime, the bioeconomic model becomes

Πd
m =

∫ T

0
e−δt[P(h(t))− c(y(t))]h(t)dt (2.25)

where P(h) is the inverse demand function P(Q) evaluated at the harvest
level h, and the maximization of Πd

m is subject to the constraints (2.23)-(2.24)
as under perfect competition.
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2.4. Three dynamic bioeconomic models

Social planner With the social planner, the bioeconomic model becomes

Πd
s =

∫ T

0
e−δt[U(h(t))− c(y(t))h(t)]dt with U(h) =

∫ h

0
P(Q) dQ (2.26)

where U(h) is the social utility of consumption and U(h)− c(y)h is the asso-
ciated consumer surplus. As in the previous cases, the maximization of Πd

s
with respect to h is subject to the same constraints (2.23)-(2.24).

The interpretation of U(h) and of the associated consumer surplus is
linked to the inverse demand function P(Q): assuming P(Q) as downward-
sloping and abstracting from the formal microeconomic derivation of a de-
mand correspondence, a possible interpretation of P(·) is as the aggregation
of the willingness-to-pay of a continuum of consumers with unit demand.
At any price P = P(Q) for some quantity Q, the marginal consumer with
valuation v = P(Q) will buy the good and retain zero surplus since he is
paying exactly his valuation of the good, but also all the consumers with val-
uations v′ = P(Q′) for any 0 < Q′ < Q will buy the good and get instead
a positive surplus v′ − P > 0. Hence, in the consumer surplus expression
U(h)− c(y)h, U(h) measures exactly how much surplus consumers receive
from the harvested resource if they could acquire the good at zero cost, while
c(y)h measures the costs of providing the good, remembering from Eq. (2.10)
that c(y)h = hc/(qy) = cE, i.e., c(y)h is exactly how much effort a harvester
must exert under constant marginal costs.

Finally, to ease notation I summarize all three bioeconomic models as

max
h

∫ T

0
e−δt [M(h(t))− c(y(t))h(t)] dt (2.27)

ẏ(t) = ry(t)
(

1− y(t)
K

)
− h(t) (2.28)

y(t) ≥ 0, y(0) = y0 0 ≤ h(t) ≤ h̄ (2.29)

where M(h) = Ph for the perfect competition case, M(h) = P(h)h for the
monopolist, and M(h) = U(h) for the social planner. As a concluding re-
mark to this section, I must add that contrary to many models in economics I
consider a finite horizon T for the maximization problem, reason being that a
finite T greatly simplifies the theory developed in Chapter 3, and that for all
practical purposes it suffices to consider a long enough (but not necessarily
infinite) time period.
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3 Control Theory

In this chapter I present the necessary tools from the field of optimal control
theory to study the dynamic bioeconomic model of Chapter 2. In Sec. 3.1
I introduce preliminary definitions and cast the bioeconomic problem in a
precise optimal control theoretic formulation. In Sec. 3.2 I state and prove a
reduced version of a necessary condition for optimality known as the Pon-
tryagin’s maximum principle, and in Sec. 3.3 I present two theorems for the
existence of optimal controls.

3.1 Optimal control formulation

For the bioeconomic model of Chapter 2, the mathematical field of control
theory allows to find, under suitable assumptions, necessary and sufficient
conditions for the optimal harvesting strategy h∗(·), if it exists. In some gen-
erality a typical optimal control problem in Bolza form is

max
u(·)

J(u(·)) =
∫ t1

t0

L(t, x(t), u(t)) dt + K(t1, x(t1)) (3.1)

ẋ(t) = f (t, x(t), u(t)) (3.2)

where L : [t0, t1] ×Rn × U → R is the running cost, K(t1, x(t1)) : [t0, t1] ×
Rn → R is the terminal cost, f : [t0, t1]×Rn ×U → Rn is the state equation,
J : U → R is the performance index with U some function space, and U is a
closed subset of Rm. The function u : [t0, t1] → U ⊆ Rm is the control of the
system and x : [t0, t1]→ Rn is the state with given initial condition x(t0) = x0
and free terminal condition x(t1).

Two important special cases of the Bolza problem are the Lagrange form,
where the terminal cost K(t1, x(t1)) ≡ 0, and the Mayer form, where the run-
ning cost L(t, x, u) ≡ 0. These three formulations are all equivalent, since to
go from a Bolza problem to a Lagrange one, assuming that all the derivatives
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3.1. Optimal control formulation

that appear in what follows exist, I can write

K(t1, x(t1)) = K(t0, x(t0)) +
∫ t1

t0

d
dt

K(t, x(t)) dt

= K(t0, x(t0)) +
∫ t1

t0

Kt(t, x(t)) + Kx(t, x(t))ẋ(t) dt

= K(t0, x(t0)) +
∫ t1

t0

Kt(t, x(t)) + Kx(t, x(t)) f (t, x(t), u(t)) dt

and, because K(t0, x(t0)) is a constant that does not depend on u and does
not affect the maximization problem, denoting by

L̃(t, x, u) = L(t, x, u) + Kt(t, x) + Kx(t, x) f (t, x, u) (3.3)

I can replace the original running cost L(t, x, u) in Eq. 3.1 with the modified
running cost L̃(t, x, u) yielding a problem with no terminal cost K(t1, x(t1)).
Similarly, to go from the Lagrange form to the Mayer form, I can define a new
vector-valued state variable x(t)′ = (x1(t), x2(t))′ ∈ Rn+1 as

ẋ(t) =
(

ẋ1(t)
ẋ2(t)

)
=

(
f (t, x(t), u(t))
L(t, x(t), u(t))

)
=: g(t, x(t), u(t)) (3.4)

with initial conditions x(t0) = (x1(t0), x2(t0))′ = (x0, 0)′. In this formulation
the performance index of the system is

φ(x(t1)) = x21 := x2(t1) = J(u(·)) =
∫ t1

t0

L(t, x(t), u(t)) dt

The Mayer form is especially convenient for deriving the necessary con-
ditions for optimality of Sec. 3.2, but to develop a meaningful theory I must
first introduce some preliminary definitions and results. Hence, following
Liberzon (2012) I begin my brief voyage in the field of optimal control theory
with a precise definition of control strategy and control set.

Definition 8 (Control function). A control u is a piecewise continuous function
u : [t0, t1] → U. I denote by UPC[t0, t1] the set of all piecewise continuous control
functions.

Lemma 1 (Control set). The class UPC[t0, t1] has the following property: if u(·) ∈
UPC[t0, t1], vi ∈ U for i = 1, 2, . . . , m and τi − hi < t ≤ τi are non-overlapping
intervals intersecting [t0, t1], then ũ(·) ∈ UPC[t0, t1]

ũ(t) =

{
vi if τi − hi < t ≤ τi

u(t) if t ∈ [t0, t1] and /∈ ⋃i(τi − hi, τi]
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Proof. Since the function u : [t0, t1] → U is piecewise continuous, then the
sum u(t) + ṽi(t), where ṽi(t) : [t0, t1]→ U is a piecewise continuous function
such that

ṽi(t) =

{
vi − u(t) if τi − hi < t ≤ τi

0 else

ũ(t) =
m

∑
i=1

ṽi(t) + u(t)

is also piecewise continuous and belongs to UPC[t0, t1]. Hence, being the sum
of piecewise continuous functions, ũ(t) also belongs to UPC[t0, t1].

The first issue in deriving an optimality condition is that problem (3.1) -
(3.2) needs to be well posed, meaning that for every admissible control u(t)
and initial conditions (t0, x0) the state equation (3.2) needs to have a unique
solution x(t) over some time interval [t0, t1].

Definition 9 (Well posed system). An optimal control problem in Lagrange form
is well posed if for every admissible control u(t) and initial conditions (t0, x0) the
state equation (3.2) has a unique global solution x(t).

For example, the following theorem, whose proof can be found in Hale
(2009), with the accompanying definition provides sufficient conditions to
have a well-posed system.

Theorem 1. If f (t, x, u) is continuous in t and u and C1 in x, fx(t, x, u) is contin-
uous in t and u, then there exists a unique local solution to Eq. (3.2). If in addition
the solution x(t) = x(t; t0, x0, u) is bounded for each t such that x(t) exists, then
the problem (3.1) - (3.2) is well-posed.

Definition 10 (State function). For a control u(t) defined on [t0, t1], the solu-
tion x(t) of the differential equation ẋ(t) = g(t, x(t), u(t)) with initial condition
x(t0) = x0 is called state, trajectory or response to the control u(t) and initial con-
dition x0.

While the aim of this chapter is to develop the necessary techniques from
optimal control theory, the main objective of this thesis is to apply them to
the bioeconomic model of Eqs. (2.27) - (2.29). As remarked before, it is nota-
tionally more convenient to state and prove the necessary conditions for an
optimal control in Mayer form rather than in Lagrange or Bolza form. Hence,
going back to the bioeconomic model of Eqs. (2.27) - (2.29)

max
h

∫ T

0
e−δt [M(h(t))− c(y(t))h(t)] dt (3.5)

ẏ(t) = ry(t)
(

1− y(t)
K

)
− h(t) (3.6)

y(t) ≥ 0, y(0) = y0 0 ≤ h(t) ≤ h̄ (3.7)
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in Mayer form (ignoring the non-negativity constraints) it becomes

ẋ(t) =
(

ẏ(t)
ż(t)

)
= g(t, x(t), u(t)) (3.8)

where

g(t, x, u) =
(

f (x, u)
L(t, x, u)

)
=

(
ry(1− y/K)− u

e−δt (M(u)− c(y)u)

)
(3.9)

where y is the population level and x = (y, z)′ ∈ R2 as in Eq. (3.4). The
control is the harvesting rate u ≡ h; the set U is the interval [0, h̄] of max-
imum harvesting effort, and the time interval [t0, t1] is [0, T] with T fixed.
It is clear from this formulation that f (x, u), L(t, x, u) and g(t, x, u) respect
the continuity assumptions of Theorem 1 and since by Lemma 2 the solution
y(t; t0, x0, u) to Eq. (3.6) is also bounded, then the state equation (3.8) admits
a unique global solution.

Lemma 2. Let u(t) be an admissible control and y(t; u) the solution to ẏ(t) =
G(y(t))− u(t), where G(y) is the logistic equation (2.3). Then y(t; u) is bounded.

Proof. The solution y(t; u) is bounded below by the non-negativity constraint
y(t) ≥ 0. Since

y(t; u) = y0 +
∫ t

0
G(y(s)) ds−

∫ t

0
u(s) ds ≤ x0 +

∫ t

0
G(y(s)) ds = y(t; 0)

then y(t; u) is also bounded from above because

y(t; u) ≤ y(t; 0) =
y0K

y0 + (K− y0) exp−rt ≤ max{y0, K}

3.2 Pontryagin’s maximum principle

Preliminary results

The main result of this section is a set of necessary conditions for the opti-
mal control problem in Mayer form called “Pontryagin’s maximum principle
(PMP)”, and the key ideas in the proof are from the field of calculus of varia-
tions, now a part of the more general optimal control theory.

In classical calculus of variations the objective is to maximize a functional
of the form

J(y) =
∫ t1

t0

L(t, y(t), ẏ(t)) dt (3.10)
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without any state equation (3.2) or control u(t). It is clear from this formula-
tion that the calculus of variation problem is also an optimal control one by
defining u := ẏ and

J(u) =
∫ t1

t0

L(t, y(t), u(t)) dt with ẏ(t) = u(t) (3.11)

Before approaching the maximization of Eq. (3.10), I must define what is a
“maximum” y∗ ∈ K of the functional J : K → R whereK ⊆ Y and Y is some
vector space where all the y functions live: for example, in the optimal control
case by Def. 8 the vector space Y is the class of all piecewise continuous
functions. As it is the case for a multivariable function f : Rn → R, for the
functional J both the notions of local and global maximum are possible and
to make sense of them I must equip the space Y with a norm ‖·‖. The norm
in turn induces the concept of distance or metric between two elements y1, y2
of Y , d(y1, y2) := ‖y1 − y2‖. I refer to the Appendix A for a more precise
discussion.

Finally, for the optimal control case where Y = UPC[t0, t1] the norm I use
is

‖u‖∞ = sup
t0≤t≤t1

|u(t)|

and I have the following definition of a strong local (and global) maximum.

Definition 11 (Local and global maximum). A function y∗ ∈ Y is a local max-
imum of J over Y if there exists a ε > 0 such that J(y∗) ≥ J(y) for all y ∈ Y
satisfying ‖y− y∗‖∞ < ε. If J(y∗) ≥ J(y) holds for all y ∈ Y then y∗ is a global
maximum.

Returning to the calculus of variations problem of Eq. (3.10), the main
intuition is that if y∗ is a maximum (global or local), then for any small “per-
turbation” yε of y∗ the value of J(·) should not change much. The strategy is
similar to the multivariate case f : D ⊂ Rn → R with D an open set: let x∗

be a local maximum of f , d ∈ Rn some arbitrary direction, and ε(d) be such
that x∗ + εd is still in D for all 0 ≤ ε < ε(v). Then calling g(ε) := f (x∗ + εd)
and assuming f differentiable, it must be that

lim
ε↓0

g(ε)− g(0)
ε

=
d
dε

g(ε)|ε=0 ≤ 0 (3.12)

since g(ε) ≤ g(0) = f (x∗) and f (x∗) is a local maximum. Hence, follow-
ing Fleming and Rishel (2012), the same argument yields a similar necessary
condition for the maximum of a functional J for the case of a “general” per-
turbation of the type uε = ζ(ε) for some function ζ.
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3.2. Pontryagin’s maximum principle

Theorem 2 (Conditions for a maximum). Let u∗ ∈ K be a maximum of the
functional J : K ⊆ Y → R. Define a mapping ζ : [0, η]→ K such that ζ(0) = u∗.
If the composite function f (ε) = J(ζ(ε)) is differentiable, then

d
dε

J(ζ(ε))|ε=0 ≤ 0

Proof. By the same reasoning as in Eq. (3.12) it must be that

d
dε

J(ζ(ε))|ε=0 =
d
dε

f (ε)|ε=0 ≤ 0

Through the machinery introduced so far plus the Fundamental lemma
of calculus of variations, Euler and Lagrange developed their celebrated first-
order necessary condition for optimality in calculus of variations

Ly(t, y(t), ẏ(t)) =
d
dt

Lẏ(t, y(t), ẏ(t))

which, however, does not directly apply to the optimal control problem (3.1)
- (3.2). The main reason for this complication is that while in calculus of vari-
ations directly perturbing the trajectory y(t) is a good strategy, in the more
general framework of optimal control I do not know a priori if the perturbed
trajectory yε(t) is still a solution of the state equation (3.2) and, even if it is, it
may be very difficult to characterize which class of perturbations produces a
well posed problem. Hence, a better strategy is to perturb instead first the con-
trol u(t) and then study the perturbed state xε(t) in terms of the perturbed
control uε(t). To this end, I introduce the following definition of a perturbed
control.

Definition 12 (Strong variation of a control). Let u(t) be a control and v a fixed
element of U. For τ ∈ (t0, t1] the control uε

uε(t) =

{
v if τ − ε < t ≤ τ

u(t) else in [t0, t1]

is called a strong variation of the control u. The perturbed control uε(t) is still in the
control set by Lemma 1.

Proof of the PMP

With the notion of strong variation of a control at hand, following Fleming
and Rishel (2012) I split in several lemmas the proof of the Pontryagin’s max-
imum principle for the general Mayer form system of Eq. (3.4).

• In Lemma 3 I study the perturbed state xε(t)
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• In Lemma 4 I introduce the carefully chosen adjoint variable p(t)

• In Lemma 5 I look at the value of the functional J(uε)

Collecting all these results will finally yield the Pontryagin’s maximum prin-
ciple in the formulation of Theorem 4 for the fixed time, free endpoint problem.

Lemma 3. If xε are solutions of Eq. (3.4) corresponding to the strong variation uε

of Def. 12 with the same initial condition xε(t0) = x0, then

xε(t) = x(t) + εδx(t) + o(t, ε)

where δx(t) = 0 if t0 ≤ t < τ and

δx(t) = g(τ, x(τ), v)− g(τ, x(τ), u(τ)) +
∫ t

τ
gx(s, x(s), u(s))δx(s) ds

if τ ≤ t ≤ t1. The term o(t, ε) denotes a function such that o(t, ε) → 0 as ε → 0
for all t.

Proof. Let x(t) be the solution to the state equation ẋ(t) = g(t, x(t), u(t))
with control u(t) and xε(t) be the solution to ẋε(t) = g(t, xε(t), uε(t)) with
respect to the strong variation uε(t) of the original control u(t). By Def. 12
uε(t) = u(t) if t ∈ [t0, τ − ε] and therefore xε(t) = x(t). Hence, the claim is
true with δx(t) = 0 for t0 ≤ t < τ.

For τ ≤ t ≤ t1 taking a first-order Taylor expansion around t = τ of x(t)
I have

x(τ − ε) = x(τ)− ẋ(τ)ε + o(τ, ε)

and rearranging terms and using ẋ(t) = g(t, x(t), u(t)) gives

x(τ) = x(τ − ε) + g(τ, x(τ), u(τ))ε + o(τ, ε) (3.13)

Taking again a first-order Taylor expansion around t = τ− ε of the perturbed
response xε(t) yields

xε(τ) = xε(τ − ε) + ẋε(τ − ε)ε + o(τ, ε)

where ẋε denotes the right-sided derivative. Since at t = τ − ε the solution
xε(t) is equal to the unperturbed solution x(t) by construction of uε(t), then
I have

xε(τ) = x(τ − ε) + g(τ − ε, x(τ − ε), v)ε + o(τ, ε) (3.14)

Finally a new first-order Taylor expansion of g(τ − ε, x(τ − ε), v)ε around
x(τ) gives

g(τ − ε, x(τ − ε), v)ε = g(τ, x(τ), v)ε + gx(τ, x(τ), v)[x(τ − ε)+ (3.15)
− x(τ)]ε + o(|x(t)− x(τ)|)ε
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where the last two terms of Eq. (3.15) are of higher order and can be omitted
in a linear approximation. Hence, substituting Eq. (3.15) into Eq. (3.14) I have

xε(τ) = x(τ − ε) + g(τ, x(τ), v)ε + o(τ, ε)

and using Eq. (3.13) it yields

xε(τ)− x(τ) = [g(τ, x(τ), v)− g(τ, x(τ), u(τ))] ε + o(τ, ε) (3.16)

and denoting ζτ(v) := g(τ, x(τ), v)− g(τ, x(τ), u(τ)) gives

xε(τ)− x(τ) = ζτ(v)ε + o(τ, ε) (3.17)

Writing

xε(t) = x(t) + δx(t)ε + o(t, ε) (3.18)

for some function δx : [τ, t1] → R2, I know from Eq. (3.17) that δx(τ) exists
and δx(τ) = ζτ(v). Passing to the state equation (3.4) in integral form for the
perturbed response xε(t) yields

xε(t) = xε(τ) +
∫ t

τ
g(s, xε(s), u(s)) ds

and differentiating both sides of this equation with respect to ε at ε = 0 and
from Eq. (3.18) with t = τ, I obtain

d
dε

xε(t)|ε=0 = δx(τ) +
∫ t

τ
gx(s, xε(s), u(s))

d
dε

xε(s)|ε=0 ds

Using the fact that the derivative of xε(t) with respect to ε at ε = 0 is just
δx(t) and that δx(τ) = ζτ(v), then for τ ≤ t ≤ t1 I have

d
dε

xε(t)|ε=0 = δx(t) = ζτ(v) +
∫ t

τ
gx(s, x(s), u(s))δx(s) ds

or equivalently

δx(t) = g(τ, x(τ), v)− g(τ, x(τ), u(τ)) +
∫ t

τ
gx(s, x(s), u(s))δx(s) ds

Theorem 3 (Adjoint equation). Let A(t) be a n × n matrix,y0 a n-dimensional
vector, and b(t) a n-dimensional vector of piecewise continuous functions defined on
an interval [t0, t1]. If τ ∈ [t0, t1], then there exists a unique piecewise continuously
differentiable solution of the differential equation

ẏ(t) = A(t)y(t) + b(t)

on [t0, t1] which satisfies the condition y(τ) = y0.
The differential equation ṗ(t) = −A(t)p(t) is called the adjoint differential

equation of ẏ(t) = A(t)y(t) + b(t)
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3. CONTROL THEORY

Lemma 4. If y(t) is a solution of ẏ(t) = A(t)y(t) + b(t) and p(t) a solution of its
adjoint equation, then for any two τ1, τ2

p(τ2)
′y(τ2)− p(τ1)

′y(τ1) =
∫ τ2

τ1

p(t)′b(t) dt

Proof. By the product rule

d
dt
(

p(t)′y(t)
)
= −p(t)′A(t)y(t) + p(t)′A(t)y(t) + p(t)′b(t)

and integrating from τ1 to τ2

p(τ2)
′y(τ2)− p(τ1)

′y(τ1) =
∫ τ2

τ1

p(t)′b(t) dt

Lemma 5. For 0 ≤ ε ≤ η let

J(uε) =
∫ t1

t0

L(t, xε(t), uε(t)) dt =: φ(xε(t1))

where uε(t) is a perturbed control as in Def. 12, and let p(t) be the solution of the
adjoint equation ṗ(t)′ = −p(t)′gx(t, x(t), u(t)) with boundary condition p(t1)

′ =
−φx(xε(t1)). Then

d
dε

J(uε)|ε=0 = −p(τ)′[g(τ, x(τ), v)− g(τ, x(τ), u(τ))]

Proof. By Lemma 4 with y(t) = δx(t), a(t) = g(t, x(t), v) − g(t, x(t), u(t)),
b(t) = 0 and τ1 = τ and τ2 = t1, I have that

p(t1)
′δx(t1)− p(τ)′δx(τ) =

∫ t1

τ
p(t)′b(t) dt = 0

=⇒ φx(xε(t1))δx(t1) = −p(τ)′[g(τ, x(τ), v)− g(τ, x(τ), u(τ))]

since p(t1) = −φx(xε(t1)) and Lemma 3. Finally, since J(uε) = φ(xε(t1)) by
the chain rule

d
dε

J(uε)|ε=0 = φx(xε(t1))
d
dε

xε(t1) = φx(xε(t1))δx(t1)

= −p(τ)′[g(τ, x(τ), v)− g(τ, x(τ), u(τ))]

where the penultimate equality is because of Lemma 3.

Finally, to simplify notation, I redefine the adjoint as p̃(t) = −p(t) and I
introduce the Hamiltonian defined as

H(t, x(t), u(t), p(t)) := 〈 p̃(t), g(t, x(t), u(t))〉 = p̃(t)′g(t, x(t), u(t)) (3.19)

where 〈·, ·〉 denotes the dot product. Using the Hamiltonian, at last I can state
the Pontryagin’s maximum principle for the fixed time - free endpoint case
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Theorem 4 (PMP). Let H(t, x(t), u(t), p(t)) = 〈p(t), g(t, x(t), u(t))〉 be the
Hamiltonian for the Mayer problem 3.4. If u∗ is an optimal control with x∗ its
response, then

H(t, x∗(t), u∗(t), p(t)) ≥ H(t, x∗(t), v, p(t)) (3.20)

for each v ∈ U and t ∈ (t0, t1], where p(t) is the solution of

ṗ(t)′ = −Hx(t, x∗(t), u∗(t), p(t)) (3.21)

with boundary condition

p(t1)
′ = φx(x(t1)) (3.22)

Proof. By Lemma 5

d
dε

J(uε)|ε=0 = −p(t)′[g(t, x∗(t), v)− g(t, x∗(t), u∗(t))]

and by Theorem 2 if u∗ is a maximizer, then it must be that

d
dε

J(uε)|ε=0 ≤ 0 =⇒ −p(t)′[g(t, x∗(t), v)− g(t, x∗(t), u∗(t))] ≤ 0

and recalling that in the Hamiltonian definition (3.19) I inverted the sign of
the adjoint p̃(t) = −p(t) it yields

H(t, x∗(t), u∗(t), p(t)) ≥ H(t, x∗(t), v, p(t))

Recalling that g(t, x(t), u(t))′ = ( f (t, x(t), u(t)), L(t, x(t), u(t)))′, to pass
from the Mayer to the Lagrange form I have

gx(t, x(t), u(t)) =
(

fx1(t, x(t), u(t)) fx2(t, x(t), u(t))
Lx1(t, x(t), u(t)) Lx2(t, x(t), u(t))

)
=

(
fx1(t, x(t), u(t)) 0
Lx1(t, x(t), u(t)) 0

)
and therefore (

ṗ1(t)
ṗ2(t)

)′
= −

(
p1(t)
p2(t)

)′ ( fx1(t, x(t), u(t)) 0
Lx1(t, x(t), u(t)) 0

)

with end conditions(
p1(t)
p2(t)

)′
= φx(x(t1)) =

(
dx21

dx1
,

dx21

dx2

)
= (0, 1)
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3. CONTROL THEORY

Then it must be that p2(t) = 1 for t ∈ (t0, t1] and rewriting the Hamiltonian
(3.19) as

H(t, x(t), u(t), p(t)) = p(t) f (t, x(t), u(t)) + L(t, x(t), u(t))

and collecting the previous remarks it gives the following version of Theorem
4.

Corollary 1 (PMP - Lagrange). The Hamiltonian for the Lagrange problem (3.1) -
(3.2) is

H(t, x(t), u(t), p(t)) = L(t, x(t), u(t)) + p(t) f (t, x(t), u(t)) (3.23)

If u∗ is an optimal control for the problem, then

H(t, x∗(t), u∗(t), p(t)) ≥ H(t, x∗(t), v, p(t)) (3.24)

for each v ∈ U and t ∈ (t0, t1], where p(t) is the solution of

ṗ(t) = −Hx(t, x∗(t), u∗(t), p(t)) (3.25)

with boundary condition

p(t1) = 0 (3.26)

The adjoint as shadow price

Using the PMP in the form of Corollary 1 for the Lagrange problem (3.1) -
(3.2), let

V(t, x) =
∫ t1

t
L(s, x(s), u(s)) ds (3.27)

=
∫ t1

t
L(s, x(s), u(s)) + p(s) f (s, x(s), u(s))− p(s)ẋ(s) ds (3.28)

since ẋ = f (t, x, u). Integrating by parts the term p(s)ẋ(s) yields∫ t1

t
p(s)ẋ(s) ds = p(t1)x(t1)− p(t)x(t)−

∫ t1

t
ṗ(s)x(s) ds (3.29)

= −p(t)x(t)−
∫ t1

t
ṗ(s)x(s) ds (3.30)

because p(t1) = 0 by Eq. 3.26 of the PMP. Differentiating Eq. (3.27) with
respect to x and bringing the derivative inside the integral I have

∂V(t, x)
∂x

=

(∫ t1

t
Lx(s, x(s), u(s)) + p(s) fx(s, x(s), u(s)) + ṗ(s) ds

)
+ p(t)

=

(∫ t1

t
Hx(s, x(s), u(s), p(s)) + ṗ(s) ds

)
+ p(t)
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and by Eq. 3.25 of the PMP the last integrand is zero. Hence, the marginal
contribution of the state x to the performance index of the system V is exactly
equal to the adjoint p

∂V(t, x)
∂x

= p(t) (3.31)

or, in economic terms, the adjoint p is the shadow price of the asset x, which
for the bioeconomic problem (3.8) is the resource to be harvested.

3.3 Existence theorems

While the Pontryagin’s maximum principle provides a set of necessary con-
ditions for optimality, in some optimal control problems a maximizer u∗ of
the functional J may not exist. The following theorem assures that under a
convexity assumption at least an optimal control exists.

Theorem 5 (Filippov). Consider the problem 3.1 - 3.2. Assume that at least a
successful control exists, and that successful responses satisfy a bound: |x(t)| ≤ M
for all admissible controls. If the set of points ( f , L) = {( f (t, x, u), L(t, x, u))|u ∈
U} is a convex set, then there exists an optimal control in the class Um[t0, t1] = {u :
[t0, t1]→ U|u measurable}.
Proof. See Fleming and Rishel (2012).

This last theorem is, however, not applicable to the general bioeconomic
model of Eqs. (2.27) - (2.28). While at least a successful control exists in the
form of u(t) ≡ 0 and the state x(t) is bounded, the set ( f , L) may not be con-
vex as I show below. For all u ∈ U, the set ( f , L) has the following structure
for the bioeconomic model

( f , L) =
(

f (t, x, u)
L(t, x, u)

)
=

(
ry(1− y/K)− u

e−δt (M(u)− c(y)u)

)
=

(
α− u

βM(u) + γu

)
(3.32)

where x = (y, z)′ as in Eq. (3.8), and α := ry(1− y/K), β := e−δt and γ :=
−e−δtc(y) do not depend on u. If M(u) is not a linear function, then this
set may very well fail to be convex as it is the case with M(u) = P(u)u and
P(u) = a− bu a simple linear demand function. If, however, M(u) is a linear
function such as in the perfect competition case with M(u) = Pu, then the
set ( f , L) becomes

( f , L) =
{

v : v =

(
α− u

βu

)
for u ∈ U

}
(3.33)

where α := ry(1− y/K) and β := e−δt[P − c(y)] do not depend on u. The
set in Eq. (3.33) is indeed convex and therefore Theorem 5 guarantees the
existence of an optimal control for the linear case.
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3. CONTROL THEORY

Another approach to an existence theorem which does not need a convex-
ity assumption is to focus on a smaller class of controls than UPC[t0, t1]. Fol-
lowing Macki and Strauss (1982), to prove a “restricted” existence theorem
I consider the set of measurable functions u : [t0, t1] → U having Lipschitz
constant λ as control class leading to the following definition.

Definition 13 (Lipschitz control class). Uλ[t0, t1] is the set of all controls that are
measurable functions u : [t0, t1]→ U having Lipschitz constant λ.

I state below a key result from real analysis that I use in the proof of the
existence of an optimal control u∗ ∈ Uλ[t0, t1] for problem 3.1 - 3.2. I refer to
the Sec. A.1 of the Appendix for a precise definition of the terms used in the
statement of the theorem.

Theorem 6 (Arzelà-Ascoli). If a sequence of real-valued functions { fn : R→ R}
is uniformly bounded and equicontinuous, then there exists a subsequence { fnk} that
converges uniformly.

Proof. See Rudin (1964).

Finally, before stating and proving in some generality Theorem 7 I intro-
duce the following compactness lemma.

Lemma 6. The Lipschitz control set Uλ[t0, t1] is a compact subset of C[t0, t1] in the
sup norm ‖·‖∞.

Proof. By definition of Uλ[t0, t1] any sequence {un(t)} ⊂ Uλ[t0, t1] is uni-
formly bounded and equicontinuous and by the Arzelà-Ascoli theorem there
exists a subsequence {unk} that converges uniformly to some u. Since unk →
u uniformly, for every ε > 0 and t ∈ [t0, t1] there exists a N such that if
nk ≥ N, then ‖u(t)− unk(t)‖∞ ≤ ε/2. Moreover, by Lipschitz continuity of
unk for every τ1, τ2 ∈ [t0, t1] it follows that ‖unk(τ1)− unk(τ2)‖∞ ≤ λ|τ1 − τ2|.
Finally,

‖u(τ1)− u(τ2)‖∞ ≤ ‖u(τ1)− unk(τ1)‖∞ + ‖unk(τ1)− unk(τ2)‖∞ +

+ ‖unk(τ2)− u(τ2)‖∞

<
ε

2
+ λ|τ1 − τ2|+

ε

2
= ε + λ|τ1 − τ2|

and since this is true for every ε > 0, then u is Lipschitz continuous; fur-
thermore, since u is the pointwise limit of measurable functions it is also
measurable. Hence, u ∈ Uλ[t0, t1] and the space Uλ[t0, t1] is compact.

Theorem 7 (Restricted existence theorem). Consider the problem 3.1 - 3.2. As-
sume that at least an admissible control exists, and that successful responses satisfy a
bound: |x(t)| ≤ M for all u(t) ∈ Uλ[t0, t1]. If f (t, x(t), u(t)) and L(t, x(t), u(t))
are continuous, then there exists an optimal control.
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Proof. Since |x(t)| ≤ M for any admissible control and L(t, x, u) is continuous
on the compact set K := [t0, t1]× [−M, M]×U, then L(K) ⊂ R is compact
and therefore bounded. Hence, L(t, x(t), u(t)) is uniformly bounded for any
admissible control u ∈ Uλ[t0, t1] and

|J(u)| =
∣∣∣∣∫ t1

t0

L(t, x(t), u(t)) dt
∣∣∣∣ ≤ ∫ t1

t0

|L(t, x(t), u(t))| dt ≤ B∆T

where ∆T = t1 − t0 and B is the uniform bound of L(t, x(t), u(t)) for all
admissible controls. Since J(u) is also bounded, then the infimum of J(u)
is finite, and so there exists a minimizing sequence {un(t)} in Uλ[t0, t1] such
that

lim
n→∞

J(un) ↓ c := inf
u∈Uλ[t0,t1]

J(u), un(·) defined on [t0, τ(n)]

with associated response {xn(t)}. Since the sequence {un} is in Uλ[t0, t1] and
this class is uniformly bounded and equicontinuous by definition, then also
{un} is uniformly bounded and equicontinuous. Hence, by the Arzelà–Ascoli
theorem there exists a subsequence {unk}, with associated response xnk , that
converges uniformly to some u∗ with u∗ ∈ Uλ[t0, t1] by Lemma 6. If also the
associated sequence of responses {xnk} is uniformly convergent to some x∗,
then passing to limits (re-labeling unk as uk and xnk as xk) I obtain the claim

inf J(u) = lim
k

J(uk) = lim
k

∫ t1

t0

L(t, xk(t), uk(t)) dt

=
∫ t1

t0

lim
k

L(t, xk(t), uk(t)) dt =
∫ t1

t0

L(t, x∗(t), u∗(t)) dt = J(u∗)

and for the state dynamics

x∗(t) = lim
k

xk(t) = x0 + lim
k

t∫
0

f (s, xk(s), uk(s))ds

= x0 +

t∫
0

lim
k

f (s, xk(s), uk(s))ds = x0 +

t∫
0

f (s, x∗(s), u∗(s))ds

where I switch limits and integrals thanks to uniform convergence of xk and
uk, and continuity of L and f .

If instead the associated sequence of response is not uniformly conver-
gent, another application of Theorem 6 produces the claim as follows. Keep-
ing the re-labeled xk, uk, since f (t, xk(t), uk(t)) is continuous on the compact
set [t0, t1]× [−M, M]×U and ẋk(t) = f (t, xk(t), uk(t)), then {|ẋk(t)|} is uni-
formly bounded and so is the sequence {xk(t)}. By the Mean Value theorem
for any τ1, τ2 in [t0, t1] there exists a τ∗ in (τ1, τ2) such that |xk(τ1)− xk(τ2)| =
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|ẋk(τ
∗)||τ1 − τ2|. Since the sequence |ẋk(t)| ≤ K, then |xk(τ1) − xk(τ2)| ≤

K|τ1− τ2| and therefore {xk} is equicontinuous. Hence, by the Arzelà–Ascoli
theorem there exists a subsequence {xkl}, hereafter {xl}, that converges uni-
formly to some x̄. But since to xl corresponds a ul , which is a sub-sequence
of the original convergent sub-sequence uk, then also ul will be a uniformly
convergent subsequence. Hence, the claim follows as above.

It is clear from Eqs. (2.27) - (2.28) that the bioeconomic model satisfies
the assumptions of Theorem 7: f (t, x(t), u(t)) and L(t, x(t), u(t)), as defined
implicitly in the Mayer form of Eq. (3.8), are clearly continuous; at least an
admissible control exists, namely u(t) ≡ 0 for t ∈ [0, T], and all successful
responses x(t) satisfy a bound because of Lemma 2.
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4 An application of the maximum
principle

In this chapter I apply the tools of optimal control theory developed in Chap-
ter 3 to study the dynamic bioeconomic model of Sec. 2.4 for the case of a
single price taker firm where the linearity of the problem allows an analyti-
cal solution. Coupled with the existence result of the Chapter 3, in Sec. 4.1 I
derive necessary conditions for an optimal control, and in Sec. 4.2 I analyze
the sensitivity of the solution with respect to the various parameters.

4.1 Analysis of a dynamic bioeconomic model

Following Liberzon (2012), I re-write in Mayer form the bioeconomic model
of Eqs. (2.22) - (2.23) for the case of a single price-taker firm with a logistic
growth function G(y) = ry(1− y/K) as

ẋ(t) = f (x(t)) + g(t, x(t))u(t) (4.1)

where u ≡ h ∈ U = [0, h̄] is the new control, x = (y, z)′ ∈ R2 is the new state
with

ẏ(t) = ry(t)
(

1− y(t)
K

)
− u(t)

ż(t) = e−δt [P− c(y(t))] u(t)

and

f (x) =
(

ry(1− y/K)
0

)
g(t, x) =

( −1
e−δt (p− c(y))

)
To simplify calculations, I assume that the instantaneous discount rate δ is
equal to zero, implying that there is no explicit time dependence in g, that is
g(t, x) ≡ g(x). Finally, Eq. 4.1 shows that the bioeconomic model belongs to
a special class of problems that are affine in the control of the form

ẋ = f (x) + g(x)u (4.2)
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4. AN APPLICATION OF THE MAXIMUM PRINCIPLE

for a general state x ∈ Rn and control u ∈ U ⊂ R, and in this case an
application of the maximum principle is especially simple. The Hamiltonian
H(t, x, u, p) : [t0, t1]×Rn ×R×Rn → R for Eq. 4.2 is

H(t, x, u, p) = 〈p, f (x) + g(x)u〉 (4.3)

the adjoint equation is

ṗ(t) = −Hx(t, x(t), u(t), p(t))′ = − fx(x(t))′p(t)− gx(x(t))′p(t)u(t) (4.4)

and the maximum condition from Theorem 4 is

max
u∈U
H(t, x∗(t), u, p(t)) = 〈p(t), f (x∗(t))〉+ 〈p(t), g(x∗(t))〉 u (4.5)

Denoting ϕ(t) = 〈p(t), g(x∗(t))〉 and recalling that for the bioeconomic prob-
lem U = [0, h̄], the maximization in Eq. (4.5) leads to the following candidate
optimal control

u∗(t) =


h̄ if ϕ(t) > 0
0 if ϕ(t) < 0
? if ϕ(t) = 0

(4.6)

Some of the interesting features of this control u∗ are that (i) it switches value
according to the function ϕ(t) called the switching function, and (ii) it attains
the two extremes 0 and h̄ of the set U where it belongs switching abruptly
between them according to ϕ(t). Forgetting for the moment the case ϕ(t) =
0, I have the following definition.

Definition 14 (Bang-bang control). A control strategy u ∈ UPC[t0, t1] is called
bang-bang if u(t) ∈ U0 for all t ∈ [t0, t1], where U0 is the set of all the extreme
values of U and defined as

U0 = {u0 ∈ U|u0 is not a strict convex combination of points of U} (4.7)

Nevertheless, when ϕ(t) = 0 the maximum principle gives no indication
to what could be the value of u∗ in Eq. (4.6): if the switching function vanishes
for a finite length of time τ1 < t < τ2, then the optimal control in that interval
is no longer bang-bang and is instead called singular. Hence, the question
becomes how to approach this last case.

Definition 15 (Singular control). Let u∗(t) ∈ UPC[t0, t1] satisfy the conditions
of the PMP, x∗(t) be the its response, and p(t) the solution to the adjoint equation.
Then the strategy u∗ is called singular over an open interval I if the first-order con-
dition Hu(t, x∗(t), u∗(t), p(t)) = 0 holds for t ∈ I and the matrix of second-order
partial derivatives Huu(t, x∗(t), u∗(t), p(t)) is singular on I. If u∗ is a singular
control, the associated response x∗ is called a singular arc.
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Following Schättler and Ledzewicz (2012), if ϕ(t) vanishes over some
time interval (τ1, τ2), then also its derivative(s) must vanish

ϕ(t) = 〈p(t), g(x∗(t))〉 = 0 (4.8)

and

ϕ̇(t) = 〈 ṗ(t), g(x∗(t))〉+ 〈p(t), gx(x∗(t))ẋ∗(t)〉
= −

〈
fx(x∗(t))′p(t), g(x∗(t))

〉
−
〈

gx(x∗(t))′p(t), g(x∗(t))
〉

u∗(t)
+ 〈p(t), gx(x∗(t)) f (x∗(t))〉+ 〈p(t), gx(x∗(t))g(x∗(t))〉 u∗(t)
= 〈p(t), gx(x∗(t)) f (x∗(t))− fx(x∗(t))g(x∗(t))〉 = 0 (4.9)

The vector field gx(x∗) f (x∗)− fx(x∗)g(x∗) in the last expression is called the
Lie bracket and defined as

[ f , g](x) := gx(x) f (x)− fx(x)g(x)

and plays an important role in assessing whether the control u will be singu-
lar or not. Extending the above calculation for a general vector field h(x(t))
it yields

d
dt
〈p(t), h(x(t))〉 = 〈p(t), [ f , h](x(t))〉+ 〈p(t), [g, h](x(t))〉 u(t) (4.10)

and rewriting Eq. (4.9) using the Lie bracket [ f , g](x), for ϕ(t) to vanish over
an interval (τ1, τ2) it must be that

ϕ(t) = 〈p(t), g(x∗(t))〉 = 0 (4.11)
ϕ̇(t) = 〈p(t), [ f , g](x∗(t))〉 = 0 (4.12)

along the optimal trajectory x∗(t). Using Eqs. (4.11) - (4.12) to rule out the
existence of a singular control, it is enough that g(x∗(t)) and [ f , g](x∗(t))
span R2 since p(t) 6= (0, 0)′ and the 0-vector is the unique element of R2 that
could be orthogonal to two linearly independent vectors in R2.

For the bioeconomic model the adjoint is p(t) = (λ(t), λ0(t))′ ∈ R2 with
equation

ṗ(t) =

(
− cu(t)

qy2(t) − rλ(t) + 2r
K λ(t)y(t)

0

)
(4.13)

and the switching function is

ϕ(t) = [P− c(y(t))]− λ(t) (4.14)

Similarly, the matrix M ∈ R2×2 whose first and second column are g and
[ f , g] is

M =

(
−1 r

K (K− 2y(t))(
− c

qy(t) + P
)

cr(K−y(t))
Kqy(t)

)
(4.15)
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and its determinant is

det(M) =
r

Kq
(−KPq + 2Pqy(t)− c) (4.16)

To have g(x∗(t)) and [ f , g](x∗(t)) linearly dependent along the optimal tra-
jectory x∗(t) the determinant of M must be zero and this is true if and only
if

y∗(t) =
K
2
+

c
2Pq

(4.17)

The meaning of this last equation is that if a singular control exists, then its
singular arc must be as in Eq. (4.17) but I still have to find at least a candidate
singular control. A way to proceed is to look once again at the switching
function: using Eq. (4.10) the second derivative of the switching function is

ϕ̈(t) = 〈p(t), [ f , [ f , g]](x∗(t))〉+ 〈p(t), [g, [ f , g]](x∗(t))〉 u∗(t) (4.18)

and since ϕ̈(t) = 0, then a candidate singular control is

usin = −〈p, [ f , [ f , g]](x∗)〉
〈p, [g, [ f , g]](x∗)〉 (4.19)

if (i) 〈p, [g, [ f , g]](x∗)〉 6= 0 and (ii) the control is admissible, that is u ∈ U.
Neglecting for the moment the admissibility of the control, the following the-
orem gives a necessary condition for a singular control.

Theorem 8 (Generalized Legendre-Clebsch condition). If u∗(t) is an optimal
control with response x∗(t) for the maximization problem (4.2) and u∗(t) is singular
on an open interval I ⊂ [t0, t1], then there exists an adjoint p(t) with the property
that

〈p(t), [g, [ f , g]](x∗(t))〉 = ∂

∂u
d2

dt2Hu(t, x∗(t), u∗(t), p(t))

=
∂

∂u
d2

dt2 ϕ(t) ≥ 0 for all t ∈ I

For the bioeconomic system (4.1), the term 〈p(t), [g, [ f , g]](x∗(t))〉 is

〈p(t), [g, [ f , g]](x∗(t))〉 = 2cr
Kqy(t)

+
2r
K

λ(t) (4.20)

and because along the singular arc x∗(t) the switching function vanishes,
p− c(y∗(t)) = λ(t), then Eq. (4.20) becomes

〈p(t), [g, [ f , g]](x∗(t))〉 = 2P
K

r > 0 (4.21)
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which is strictly positive. Hence, I can conclude that the control (4.19) sat-
isfies the necessary Legendre-Clebsch condition and has a non-zero denom-
inator. To finally compute the singular control usin and check whether it is
admissible, I can simplify its expression if the vector fields [ f , g] and [g, [ f , g]]
form a basis of R2, meaning that for some functions a(x) and b(x) I have

[ f , [ f , g]](x∗) = a(x∗)[ f , g](x∗) + b(x∗)[g, [ f , g]](x∗) (4.22)

In this case the numerator of Eq. (4.19) becomes

〈p, [ f , [ f , g]](x∗)〉 = a(x∗) 〈p, [ f , g](x∗)〉+ b(x∗) 〈p, [g, [ f , g]](x∗)〉
= b(x∗) 〈p, [g, [ f , g]](x∗)〉

because 〈p(t), [ f , g](x∗(t))〉 = ϕ̇(t) = 0 from Eq. (4.12), and the singular
control is

usin = −b(x∗) 〈p, [g, [ f , g]](x∗)〉
〈p, [g, [ f , g]](x∗)〉 = −b(x∗) (4.23)

For this bioeconomic model, it is indeed the case that [ f , g] and [g, [ f , g]] are
a basis of R2 since their matrix

N =

[
[ f , g], [g, [ f , g]]

]
=

(
r
K (K− 2y(t)) 2r

K
cr(K−y(t))

Kqy(t)
2cr

Kqy(t)

)

has rank 2 because its determinant

det(N) = −2cr2

K2q

is never zero. Therefore, I can write [ f , [ f , g]] as a linear combination of [ f , g]
and [g, [ f , g]] as in Eq. (4.22) with

a(x(t)) = a(y(t), z(t)) = a(y(t)) = −r +
2r
K

y(t)

b(x(t)) = b(y(t), z(t)) = b(y(t)) = − r
K
(K− y(t)) y(t)

and the singular control in feedback form is

usin(t) = −b(x∗(t)) =
r
K
(K− y∗(t)) y∗(t) (4.24)

or, noting that y∗(t) = K/2 + c/(2pq) along the singular arc

usin(t) =
Kr
4
− c2r

4KP2q2 =
r

4KP2q2

(
K2P2q2 − c2) (4.25)
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and from this last expression the singular control usin is admissible if√
KPq

(
KPq− 4Pq

r
h̄
)
< c < KPq (4.26)

The economic interpretations of these bounds is that costs cannot be too high
compared to the profitability of the resource, which positively relates to the
carrying capacity K of the environment, the price level P, and the catchability
coefficient q, nor can they be too low otherwise there is no need for a singular
control.

To recap, I know that for the bioeconomic problem (4.1) an optimal control
u∗ must exist because of Theorem 5 albeit in the bigger class of measurable
functions Um[t0, t1] ⊃ UPC[t0, t1]. The Pontryagin’s maximum principle and
the generalized Legendre-Clebsch condition give, respectively for the bang-
bang and singular case, a set of necessary conditions that the optimal control
must satisfy

u∗(t) =


h̄ if ϕ(t) > 0
usin(t) if ϕ(t) = 0
0 if ϕ(t) < 0

(4.27)

This last case usin(t), which is true only if a singular control exists, is es-
pecially relevant from a bioeconomic standpoint that Clark (2010) calls the
corresponding singular arc y∗(t) the “Golden rule.” In its general formula-
tion, which I treat in Sec. A.2 of the Appendix, the “Golden rule” is defined
implicitly by

δ = G′(y∗(t))− G(y∗(t))c′(y∗(t))
P− c(y∗(t))

(4.28)

or explicitly, for the logistic case G(y) = ry(1− y/K), as

yg := y∗(t) =
K
4

( c
PqK

+ 1− δ

r

)
+

√(
c

PqK
+ 1− δ

r

)2

+
8cδ

PqKr

 (4.29)

that is the same as the singular arc in Eq. (4.17) if the instantaneous discount
rate δ is equal to zero, which I assumed at the beginning of the section to ease
computations.

The name “Golden rule” is because of the similarity of Eq. (4.28) with
the standard condition in economic theory that the marginal productivity of
capital should be equal to its cost, i.e., the interest rate. To see the correspon-
dence, since in the bioeconomic model the objective rate of discount, i.e., the
interest rate, is equal to the subjective rate of discount δ, and assuming that
c = 0, Eq. (4.28) becomes

δ = G′(y∗(t)) (4.30)
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meaning that the marginal productivity of the renewable asset is exactly
equal to its opportunity costs. The extra term in Eq. (4.28) is a “stock effect”
caused by the increased costs of harvesting c(y) = c/(qy) for a decreased
population.

The importance of discounting

More than simplifying calculations, the instantaneous discount rate δ has
a very important economic meaning in the golden rule. What happens if,
like in the bionomic equilibrium, entry in a particular resource extraction
industry is almost costless? A reasonable consequence of free-entry is that
harvesters will care almost exclusively about the present, since they do not
expect to reap any economically significant future profits when free entry
is possible, or in other worlds they will tend to heavily discount the future
δ→ +∞. Hence, letting δ→ +∞ in the golden rule Eq. (4.28)

lim
δ→+∞

δ = +∞ = G′(yg)−
c′(yg)G(yg)

P− c(yg)
=

r
K
(K− 2yg) +

r
K

c
q(yg)2

yg(K− yg)

P− c
qyg

=
r
K
(K− 2yg) +

cr
K

K− yg

Pqyg − c

and since the population y(·) is bounded, the only way for the golden rule
expression to grow unbounded is that the last term goes to +∞, and therefore

cr
K

K− yg

Pqyg − c
→ +∞ ⇐⇒ Pqyg − c→ 0 =⇒ yg →

c
Pq

= yBE (4.31)

where yBE is the bionomic equilibrium from Eq. (2.14). Hence, under free
entry and a high discount rate δ the dynamic bioeconomic model for the per-
fect competition case is qualitatively similar to the standard bionomic equi-
librium.

4.2 Comparative statics

While for the logistic growth model, G(y) = ry(1− y/K), the golden rule Eq.
(4.28) has an explicit solution and therefore I can directly compute compara-
tive statics using Eq. (4.29), for a different form of the growth function G(y)
an explicit expression for the golden rule may not exist and I need to use the
Implicit function theorem.

Theorem 9 (Implicit Function Theorem). Let f : Rn+m → Rm be a continuously
differentiable function and (a, b) a point in Rn+m such that f (a, b) = 0. If the
matrix [∂ fi/∂yj]ij evaluated at (a, b) is invertible, then there exists an open set U

39



4. AN APPLICATION OF THE MAXIMUM PRINCIPLE

containing a, an open set V containing b, and a unique continuously differentiable
function g : U → V such that

{(x, g(x))|x ∈ U} = {(x, y) ∈ U ×V| f (x, y) = 0}

Hereafter, I use Theorem 9 to study the dependence of the golden rule
solution yg on the instantaneous discount factor δ.

Lemma 7. Let G(y) be a generalized logistic function as in Eq. (2.5)

G(y) = ryα

[
1−

( y
K

)β
]γ

(4.32)

Then for some values of the parameters α, β, γ, the golden rule population level yg,
where yg is a solution of Eq. (4.28), is a decreasing function of the instantaneous
discount factor δ.

Proof. From the golden rule equation, I define a function F(δ, y) : R2 → R

F(δ, y) = G′(y)− c′(y)G(y)
P− c(y)

− δ (4.33)

with F(δ, yg) = 0. The partial derivative Fδ(δ, y) of F(δ, y) with respect to δ is

Fδ(δ, y) = −1 < 0 (4.34)

and the partial derivative Fy(δ, y) of F(δ, y) with respect to y is

Fy(δ, y) = G′′(y)− [c′′(y)G(y) + c′(y)G′(y)](P− c(y))
(P− c(y))2 +

− c′(y)2G(y)
(P− c(y))2 (4.35)

Assuming the sufficient condition G′′(y) < 0 for the population not to dis-
play depensation as defined in Sec. 2.2, the first term of Eq. (4.35) is negative.
The third term is also positive (respectively negative if I consider the − sign
in front) since G(y) > 0 for 0 < y < K. Finally, the numerator second term
for a generalized logistic function is

c′′(y)G(y) + c′(y)G′(y) =

=
cr

Kβγq

(
Kβ − yβ

)γ−1 [
(2− α)Kβ + (α + βγ− 2)yβ

]
yα−3

and for 0 < y < K, I have two possible cases for the second term of Eq. (4.35)
to be positive: (i) the part (α + βγ− 2) is zero and 0 < α < 2, which is the
case for the logistic function where α = β = γ = 1, and therefore the whole
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sum is positive; (ii) the part (α + βγ− 2) is nonzero and for the whole sum
to be positive it must be that

y >

(
α− 2

α + βγ− 2

) 1
β

K (4.36)

The second term is positive (respectively negative if I consider the − sign in
front) because for profits Π(y, h) = [P− c(y)]h to be positive the condition
P > c(y) must hold. Hence, F(δ, y) satisfies the hypotheses of Theorem 9 and
in an open set near the solution yg I have

dy
dδ

= − Fδ(δ, y)
Fy(δ, y)

< 0

since Fy(δ, y) is the sum of three negative terms and Fδ(δ, y) < 0.

Finally, recalling that the bionomic equilibrium Eq. (2.14) is the limiting
case of the golden rule as δ → +∞, Lemma 7 implies that the golden rule
population level yg is higher than the bionomic equilibrium yBE yielding the
following proposition.

Proposition 1. The golden rule population yg is higher than the bionomic equilib-
rium yBE

yg > yBE

For the sake of completeness I also compute the sensitivity of the golden
rule equilibrium yg to small changes in price P. As one would expect, it turns
out that in equilibrium higher prices imply a lower level of the population.

Proposition 2. Let G(y) be a generalized logistic function as in Eq. (2.5)

G(y) = ryα

[
1−

( y
K

)β
]γ

(4.37)

Then for some values of the parameters α, β, γ, the golden rule population level yg,
where yg is a decreasing function of the price level.

Proof. Proceeding as in Lemma 7, from the golden rule equation I define a
function F(P, y) : R2 → R

F(P, y) = G′(y)− c′(y)G(y)
P− c(y)

− δ

with F(P, yg) = 0 for any price P, and yg a solution of Eq. (4.28). The partial
derivative FP(P, y) of F(P, y) with respect to P is

FP(P, y) =
c′(y)G(y)
(P− c(y))2 < 0
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since c′(y) = −c/(qy2) is negative and G(y) is positive for any 0 < y <
K (and this is the case for the golden rule solution). The partial derivative
Fy(P, y) of F(P, y) with respect to y is

Fy(P, y) = G′′(y)− [c′′(y)G(y) + c′(y)G′(y)](P− c(y))
(P− c(y))2 +

− c′(y)2G(y)
(P− c(y))2 (4.38)

which is the same as in Lemma 7 and is negative under the same assump-
tions. Hence, F(P, y) satisfies the hypotheses of Theorem 9 and therefore in
an open set near the solution yg

dy
dP

= −FP(P, y)
Fy(P, y)

< 0

since Fy(P, y) is the sum of three negative terms and FP(P, y) < 0.
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5 Regulation of a bioeconomic system

In this chapter I study the effect of regulation on the bioeconomic system. In
Sec. 5.1 I present a brief story of regulation of renewable assets, especially
fisheries, and in Sec. 5.2 I define a notion of social optimality that , according
to the model, should be the objective of resource managers. In Sec. 5.3 I out-
line the role of fixed costs, which I have thus far ignored, how they change
the model and how they could be relevant from a policy perspective. Finally,
in Sec. 5.4 I analyze the effect of different regulations on harvesting, and why
they may or may not be effective.

5.1 A brief history of regulation

Before tackling the problem of regulating a fishery in the setting of the bioe-
conomic model so far developed, following Anderson and Seijo (2011) I pro-
pose here a brief history of the regulation introduced in the U.S. to shed some
light on the main issues of modern commercial fisheries.

Until the end of the 20th century, in the U.S. fisheries were entirely open
access but for the nominal cost of a fishing permit, required mainly for record
keeping by the government, since at the time it was unthinkable to limit
access to what was considered terra nullius and not subject to any form of
sovereignty. Free entry and the apparently endless bounty of the sea at-
tracted, in turn, an ever increasing number of fisherman that, as the bionomic
equilibrium predicts, lead to over-harvesting and depletion of the fish popu-
lation. Recognizing the dangers of such dynamics, the managers of the fish-
eries started to regulate fishing by putting restrictions either on inputs or
output.

Definition 16 (Input controls). Input controls are measures designed to curtail
fishing effort, such as closing access to fisheries, restricting gear and methods, or
limiting fishing area or season.

Definition 17 (Output controls). Output controls are measure designed to manage
the overall catch by fishermen. They include setting total allowable catch (TAC),
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which is the amount of fish that may be harvested by the entire fleet in a given fishing
season, bycatch limits, meaning the amount of non-target species taken, or bag limits,
meaning the number of fish that may be landed in a day.

While input controls alone may seem effective to well manage a fishery
and were historically the first ones deployed, they introduced in the fishing
industry perverse incentives that were incompatible with the preservation of
the stock, employment, and the overall welfare of society. If an input control
were to limit the horsepower of boats, then fishermen would use secondary
boats to empty their catch and continue fishing. If instead managers were to
limit the fishing season, then fishermen would look for ways to increase their
fishing effort in the shorter time period.

At some point this game between managers, which sought to prevent
over-harvesting through increasingly restrictive regulations, and fishermen,
which sought to sidestep managers’ controls, developed into a true “race for
the fish:” in a shorter and shorter fishing season, fishermen had to harvest as
much as possible since whatever they did not it was for others to claim. This
race generated in turn at least two unintended and negative consequences
(other than continue depletion of the fish stock): the development of excess
capacity and a general disregard for safety measures by fishermen that tried
to take advantage of the very short fishing window they had available, work-
ing conditions notwithstanding. Finally, to try to end the race for the fish the
focus began to shift from keeping access to the fishery open but with input
controls in place, to limit the number of new entrants to the fishery through a
new form of output controls called “Dedicated access privileges,” which the
US Commission on Ocean Policy (2004) defines as

Definition 18 (Dedicated access privilege). A dedicated access privilege is a form
of output control that grants to a fisherman or other entity the privilege to harvest a
given fraction of the total allowable catch.

Very important examples of dedicated access privilege are “Individual
fishing quotas (IFQs)”, which allow a fishermen to catch a specified quota of
the TAC, and “Individual transferable quotas (ITQs)”, which are IFQs that
the owner can sell or transfer to other fishermen. Broadly speaking, with a
personal quota TAC-based scheme in place fishermen can harvest up to their
assigned quota at their leisure, and once each quota has been fished and the
TAC reached, managers close the fishery for the rest of the season.

Hence, dedicated access privilege seem to be the right tools that could end
the race for the fish by aligning managers’ and fishermen’s interests: since
their quota is fixed, fishermen no longer have an incentive to game the system
by developing excess capacity to catch a lot of fish early on, and can instead
focus on reducing costs and selling high quality fish at the best possible price
to boost their profits.
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5.2. Social optimality in the model

5.2 Social optimality in the model

Sec. 5.1 outlined the main challenges when regulating resource exploitation,
but while the need for regulation is evident from the collapse of many mod-
ern day fisheries, I still have not clearly defined what should be the objec-
tive(s) of the regulator. Should a manager only prevent the depletion of
the population perhaps at the expense of economic profitability, or should
it carefully weight the needs of all the stakeholders and strive for a common
sustainable harvest policy? And if yes, where is the right balance between
harvesting, preservation of the natural resource, and society at large?

Recalling the discussion in Sec. 2.3, a principle of optimality must care-
fully balance between preservation of the natural resource and economic ef-
ficiency. In this regard, managers should not excessively rely on the MSY and
MEY because they either neglect the economic implications of harvesting de-
cisions or they simply do not consider the dynamic nature of the problem.
Hence, Sec. 2.3 presented the dynamic bioeconomic model as the preferable
alternative, and for this reason I identify the golden rule solution of Eq. (4.28)
for the case of a single price taker firm as my optimality concept.

This choice may seem somewhat subpar given that the standard way to
assess socially optimality in economics is to look at the social planner of Eq.
(2.26) and its welfare function. There are, however, at least two major diffi-
culties with the social planner approach: first, the nonlinearity of Eq. (2.26)
does not allow an analytical solution as in the case of perfect competition;
and second, there is no immediate way to compare a time-dependent optimal
control u∗(t) and response x∗(t) with the static bionomic equilibrium with-
out introducing any type of long-term behavior of the system and analyzing
its convergence. Picking the golden rule as a socially optimal equilibrium
permits to sidestep these issues, since it has an analytic form in Eq. (4.28) or
(4.29), and, at least for the logistic growth function G(y) = ry(1− y/K), has
a constant solution yg.

Furthermore, if agents are enough forward looking, meaning their instan-
taneous discount factor δ is close to zero, and the time horizon T is long
enough, then even in the setting of perfect competition there can be no over-
harvesting of natural resources without severely affecting future profits, and
profit maximization coupled with species’ preservation seems to me as close
as to what a social planner should strive to obtain. Hence, I have the follow-
ing definition.

Definition 19 (“Social optimum”). I define an equilibrium E as socially optimal
if its population level yE is the same as the one under the golden rule

δ = G′(yg)−
G(yg)c′(yg)

P− c(yg)
(5.1)

where yg is the golden rule stock level.
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A caveat of this approach is that to considerably simplify the problem I
have thus far omitted from my analysis any kind of fixed costs an harvester
may face. On theoretical grounds, my choice is justified assuming that capital
is perfectly “malleable,” meaning that there exists no “constraint upon its
disinvestment” (Clark, Clarke, and Munro 1979). Since, however, assets are
never in practice perfectly malleable, and it is actually far more common for
an investment decision to be quasi-irreversible, in the next section I briefly
consider what are the effects of capital on harvesting.

5.3 The role of capital costs

If capital costs are not perfectly malleable, then they could have different
effects depending on the type of access, open or restricted, to the natural
resource. Under a restricted access scheme, e.g., an IFQ, fishermen do not
have to compete for a common resource up to a zero profit lower bound, and
their optimization problem of Eqs. (2.22) - (2.23) changes as follows

max
h,I

∫ T

0
e−δt ([P− c(y(t))] h(t)− c f I(t)

)
dt (5.2)

ẏ(t) = ry(t)
(

1− y(t)
K

)
− h(t) (5.3)

κ̇(t) = I(t)− γκ(t) (5.4)
y(t) ≥ 0, I(t) ≥ 0, 0 ≤ h(t) ≤ κ(t)qy(t) (5.5)

where I(t) is the non-negative investment decision and additional control, c f
is the cost of investing, and κ(t) is the capital stock and additional state. The
law of motion of capital, Eq. (5.4), takes the usual form of investment minus
depreciated capital, with γ the depreciation rate. Finally, using Eq. (2.9) to
rewrite the constraint 0 ≤ h(t) ≤ κ(t)qy(t) as 0 ≤ E(t) ≤ κ(t), it should
be clear that in this new capital-based formulation the ceiling on effort (or
harvesting) is no longer exogenous but instead determined by the available
capital stock κ(t). The rest is unchanged from Eqs. (2.22) - (2.23).

The main prediction of the extended model is that, under completely non-
malleable assets, the fishery goes through two different phases: a short run
period, when an initial high profitability leads to development of excess ca-
pacity (from a long run perspective) and when only operating costs matter,
and a long run period with a new optimal equilibrium that is biological sus-
tainable and incorporates both operating and capital costs, and where excess
assets have depreciated (Clark, Clarke, and Munro 1979).

Similarly, if access to the fishery is not restricted and is instead open, over-
capacity develops in response to the initial high profitability and of the “race
for the fish” that follows. As Sec. 5.1 shows, when fishermen have to compete
with one another for a dwindling resource in a short fishing season, they try
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to deploy as much as capacity as they can to harvest as much as possible.
While individually rational, this scramble competition is obviously econom-
ically inefficient and causes a perhaps significant welfare loss for society as a
whole.

Hence, according to the model over-capacity, especially in the short run
(the model predicts, at least for restricted access fishery, a long-run equilib-
rium with no excess capacity), is certainly problem for resource preservation,
but only as a consequence of the “race for the fish.” The natural (and a bit
simplistic) conclusion is that if managers succeed in halting the race, then
fishermen will no longer have an incentive to over-invest in capacity com-
pared to what they need for a sustainable harvest. Still, it remains open the
question of what to do with the existing over-capacity and I will briefly talk
about it when discussing IFQs and ITQs in Subsec. 5.4

5.4 Regulation in the model

Open access unregulated harvesting

Having defined the “social optimum,” I begin my analysis by considering
the case of an open access unregulated harvesting industry. As in Subsec. 2.3,
when there is no restriction on the number of participants to harvest and
entrance costs are negligible, the prediction of the model is bionomic equilib-
rium. Is bionomic equilibrium yBE optimal according to Definition 19? The
first easy way to compare yBE with the golden rule solution yg is to look at
the extremes. Recalling that the bionomic equilibrium is the limit case of the
golden rule when agents infinitely discount the future from Eq. (4.31)

yg → yBE =
c

Pq
as δ→ +∞ (5.6)

I compare Eq. (5.6) with the no discounting case, δ = 0, of Eq. (4.17) which I
report below

yg∗ =
K
2
+

c
2Pq

(5.7)

Looking at Eqs. (5.6) - (5.7) I can immediately conclude that the bionomic
equilibrium is suboptimal since yg > yBE as long as KPq > c which is one of
the assumptions for the admissibility of the singular control usin in Chapter 4.
To proceed more generally, I can use Proposition 1 to conclude that an open
access unregulated fishery always reaches a suboptimal equilibrium from a
social standpoint.

Open access with input controls

Recalling the discussion in Sec. 5.1, the next step from a completely open
access unregulated fishery has historically been to put input controls in place.

47



5. REGULATION OF A BIOECONOMIC SYSTEM

−6 −4 −2 0 2 4 6
Profits Π

4

6

8

yBE

12

14

16

18

P
op

.
y

Input controls and bionomic eq.

Eff. E
Eff. E′

FIGURE 5.1: Effect of input controls on bionomic eq.

To analyze the effect of one such type of input control, namely restrictions on
gears and fishing methods, I proceed with a simple graphical analysis using
Fig. 5.1. I assume that before managers introduce input controls the fishery is
at bionomic equilibrium yBE with zero economic profits for fishermen. I also
assume that to harvest at bionomic equilibrium fishermen are using an effort
level E ≡ EBE which is close to the maximum effort Ē, so that, once the new
regulation reduces the maximum effort Ē, and corresponding harvest level
h̄, to Ē′ and h̄′, the bionomic effort level is no longer feasible, Ē′ < EBE < Ē.
In Fig. 5.1 the old effort level determines the blue curve: it is upward sloping
because, for the same level of effort, profits Π are an increasing function of
the fish density qy

Π(y, h) = Ph− cE(t) = (Pqy− c) E (5.8)

where h = qyE in the Schaefer catch equation. Eq. (5.8) also shows that
since fishermen can no longer exert efforts greater than Ē′, then for the same
level of stock they will reap lower profits, causing in Fig. 5.1 a shift from the
old effort curve (in blue) to a new effort curve (in green). Finally, under the
assumptions of the model, I predict the following dynamics:

1. Once input controls are in place, the stock does not recover immedi-
ately from yBE to y′ > yBE. Since in the short run the stock cannot
increase very much and effort is curtailed at Ē′, profits will fall from
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the bionomic level ΠBE to Π′ < ΠBE = 0. In Fig. 5.1 there is a shift from
the blue to the green curve along the horizontal dotted arrow.

2. At some time depending on the population growth function G(y) the
stock will begin to recover if overall effort is still below Ē′. In Fig. 5.1
the “equilibrium path” is moving along the green curve following the
diagonal arrow.

3. If the stock continues to recover along the green curve, then in the
medium to long run the population will stabilize around a new equi-
librium level y′E. Since the objective of the input controls were to cease
over-harvesting, the new stock level y′E should be higher than yBE (and
new profits Π′ > ΠBE = 0). But then, if entrance to the fishery is still
open, the bioeconomic system will tend once again towards bionomic
equilibrium since the newfound profitability will attract new entrants
until economic profits are driven down to zero and the stock level to
yBE.

Hence, in the framework of the above analysis, for input controls to suc-
ceed it must be that (i) fishermen do not find any way to raise their effort
levels above Ē′, and that (ii) entrance to the fishery cannot be completely
open. In reality, however, fishermen have always found ways to legally cir-
cumvent regulations that limits fishing effort as Sec. 5.1 explains: for exam-
ple, if fishing boats could not exceed a given length, then fishermen in some
cases increased the width of boats. Even more unpractical is the proposal
to impose restrictions both on inputs and on access to the fishery: often, re-
source intensive industries are the main employers in rural areas, and, as the
model shows, present (certain) pain for future (uncertain) gain is simply not
an appealing (and sometimes affordable) message in this case.

To recap, input controls in an open access fishery do not seem to be a
solution to the over-harvesting problem: as I show in Subsec. 5.4, harvesting
in a completely open access and unregulated fishery is suboptimal according
to Def. 19, but input controls seem as either ineffective if implemented alone,
or as politically unfeasible if coupled with restrictions on access.

Open access with taxes

In this subsection I still consider the case of an open access fishery, but instead
of more traditional input or output controls I examine the effect of taxes.
According to Defs. 16 - 17, taxes are, strictly speaking, neither an input nor
an output control. The government could in principle impose them both on
inputs, such as a tax on boats or fishing gear, or on output, such as a tax
on harvest, with the declared intent of managing either effort or total catch.
Since here I am considering a tax on harvested fish I would probably include
it in the output controls category.
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Going back to the model of an open access fishery, if the government were
to impose a tax τ on all harvesters, profits would become

Π(y, h, τ) =

[
(P− τ)− c

qy

]
h (5.9)

Since access to the fishery is still open, fishermen will continue to enter until
economic profitability is driven down to zero leading to a modified after-tax
bionomic equilibrium

yBE =
c

q(P− τ)
(5.10)

As before, I use Definition 19 to compare the new bionomic equilibrium (5.10)
to the extreme case of the golden rule (5.7) when δ = 0. For a social optimum
to exist, it must be that yBE = yg or

K
2
+

c
2Pq

=
c

q(P− τ)
(5.11)

and solving for the tax τ yields

τ∗ =
P (KPq− c)

KPq + c
(5.12)

which is positive since KPq > c by assumption. While τ∗ is the optimal
tax on harvesting for the extreme case when forward-looking agents value
the future as much as the present, for a more general result I can use either
Proposition 2, recalling that the bionomic equilibrium is the limit case of the
golden rule for δ→ +∞, or proceed directly as follows.

Defining a new price level P′ := P− τ the after-tax bionomic equilibrium
(5.10) becomes

yBE =
c

q(P− τ)
=

c
qP′

(5.13)

with

d
dP

yBE(P) = − c
qP2 < 0 (5.14)

and since yBE is a decreasing function of the price, if prices decreases from P
to P′, then the after-tax bionomic equilibrium will increase from yBE to y′BE
and get closer to the golden rule solution yg, which is an equilibrium level
bigger than yBE by Proposition 1. Hence, the qualitative result from the above
discussion is that to approximate the golden rule solution the tax rate τ must
be positive. To get a more quantitative result, in the case of the golden rule
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solution with logistic growth G(y) = ry(1− y/K) I can actually compute the
optimal tax rate τ∗ using Eqs. (4.29) and (5.10)

K
4

−δ

r
+

√(
−δ

r
+ 1 +

c
KPq

)2

+
8δc

KPqr
+ 1 +

c
KPq

 =
c

q (P− τ)
(5.15)

and solving for τ.
A big difficult of the tax argument is that the optimal tax could depend

on a lot of parameters, six for the general case of Eq. (5.15), that managers
need to precisely estimate. Moreover, while in the model those parame-
ters are time-invariant, in practice a bioeconomic system is much more non-
autonomous in nature: prices, costs and future expectations change as do
the natural growth rate and the carrying capacity of the fishery. Hence, it is
unlikely that managers could truly compute an optimal tax, but the quali-
tative result that taxes are an effective instrument for steering harvest levels
towards the social optimal equilibrium is still an important conclusion.

Dedicated access privileges

In this subsection I consider the case of a fishery where managers have im-
plemented some form of dedicated access privileges. Since, according to Def.
18, they generally consist in granting of a fixed number of quotas to eligible
participants, I can assume that after managers distribute quotas access to the
fishery becomes restricted. In particular, in what follows I assume that man-
agers are introducing an IFQ or ITQ.

The first issue when setting up a quota system is what should be the total
allowable catch of the fishery. According to the optimality concept of Def.
19, the fairly obvious answer is that if fishermen harvest at the TAC then the
corresponding population level must be the golden rule equilibrium level yg.
Denoting the TAC as Q̄ and imposing the equilibrium condition ẏ = 0 it must
be

ẏg = G(yg)− Q̄ = 0 =⇒ Q̄ = G(yg) (5.16)

The second issue is, for a given quota distribution, if fishermen respond
optimally to the IFQ or ITQ. Since access to the fishery is no longer free, the
prediction of zero economic profits at bionomic equilibrium does no longer
hold. Assuming for the sake of simplicity that there are N harvesters with
the same cost structure and same quota Q = Q̄/N, the optimization problem
for anyone of the N firms becomes close to the one of the single price taker
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firm of Eqs. (2.22) - (2.23), namely

max
h

∫ T

0
e−δt[P− c(y(t))]h(t)dt (5.17)

ẏ(t) = ry(t)
(

1− y(t)
K

)
− Nh(t) (5.18)

y(t) ≥ 0, y(0) = y0 0 ≤ h(t) ≤ Q ≡ Q̄
N

(5.19)

Proceeding in the same way as in Chapter 4 with the same assumption of a
zero discount rate, δ = 0, the Hamiltonian for the problem in Lagrange form,
which is linear in the control, and the switching function are

H(t, y, h, λ) = [P− c(y)]h + λ [G(y)− Nh] (5.20)
ϕ(t) = [P− c(y(t))]− λ(t) (5.21)

leading to a similar combination of bang-bang and singular controls as in Eq.
(4.27)

h∗(t) =


Q if ϕ(t) > 0
hsin if ϕ(t) = 0
0 if ϕ(t) < 0

(5.22)

As expected, for the N harvesters problem the singular arc and control are
equal, respectively, to the golden rule and to a fraction of the singular control
for the one firm case of Eqs. (4.17) and (4.24)

y∗(t) = yg =
K
2
+

c
2pq

(5.23)

hsin(t) =
1
N

r
K
(K− y∗(t)) y∗(t) =

Kr
4N
− c2r

4KNP2q2 (5.24)

Hence, according to the model fishermen respond optimally since the quota
system succeeds in steering their harvesting towards the golden rule solution
which is the social optimum according to Def. 19

Finally, the third issue for a dedicated access privilege plan (IFQ or ITQ)
is how to efficiently allocate the quotas between participants. Should man-
agers simply grant quotas or rather sell them to fishermen? Since a natural
resource like a fishery should, after all, accrue to all society, freely granting
quotas appears to be a give away a valuable public asset with no return for
the collectivity, but harvesters would naturally oppose to pay for something
that they used to freely exploit. Currently, there is no clear answer in practice.

If quotas are sold, then it remains to determine what should be their
value: should their price maximize revenues for the government while avoid-
ing depletion of the fish stock, or should it achieve some other objective? In
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the setting of the N harvester IFQ problem of Eqs. (5.17) - (5.19), if quotas
are sold at some price F, then the present value profits for a single harvester
become

PV(Π) =
∫ T

0
e−δt[P− c(y(t))]h(t)dt− F (5.25)

and the maximization does not change. If the government wants to maximize
revenues from quotas it could charge a F such that when fishermen follow
the optimal harvesting policy h∗ with population response y∗ their profits
are barely positive, but while perhaps theoretically sound, this strategy is
practically unfeasible. Alternatively, the government could set up an auction
for quotas, or freely allocate a portion of quotas to eligible fishermen and
auction or sell the rest.

If quotas are sold and are transferable as it is the case with an ITQ system,
then, assuming that quotas are indeed exchanged on a more or less regular
basis, their value should be the market price. While facilitating the price dis-
covery both by managers (that can look at quota prices in similar markets
before setting up a quota scheme in the fishery they manage) and fishermen,
an ITQ system can also foster innovation in harvesting technology by fisher-
men. For example, fishermen in an ITQ have an incentive to invest in cost
reduction more than they would do in an IFQ since they can not only harvest
the same quota at a lower cost, but, if they find it profitable, can also expand
their quota by buying from high marginal cost fishermen.

If quotas instead are not sold, then the question becomes how to dis-
tribute them between eligible fishermen. In this case, quotas are usually as-
signed on the basis of some sort of track record of active members of the fish-
ery in the years just before the IFQ (or ITQ), but such an assignment strategy
is not without trouble. If fishermen, both incumbent and entrant, can antici-
pate such a policy, then they have an incentive to fish even more in the hope
of a larger future quota, leading to a more severe over-harvesting problem
that can possibly nullify the effect of an IFQ (Clark 2006). In practice, this
expectation issue is a serious problem because managers usually lack the po-
litical power to enforce the selling of quotas to fishermen that are accustomed
to have a (financially) free access to the resource.

A possible solution to this conundrum could be to implement a double
regime of ITQs (or IFQs) and taxes. Its first benefit is that, while no one likes
taxes, public opinion could be much more sensitive (and supportive) of the
problem of no taxation for a natural asset rather than to the technical issue of
setting an appropriate price for IFQs. A second advantage of a double sys-
tem is that, even if quotas are freely given away, fishermen should not have
an incentive to invest in over-capacity since excessive gains could be taxed
away. Moreover, managers could use revenues from taxes to compensate, at
least partially, fishermen excluded from the quota system, according to a sort
of Kaldor-Hicks efficiency principle. If coupled with some mandatory buy-
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back program, it is perhaps possible that this monetary compensation could
be enough to offset a large fraction of the losses of the ineligible fishermen
that deployed excessive capacity for the reasons outlined in Sec. 5.3. Finally,
the combination of ITQs with taxes could reduce the estimation problem for
taxes outlined in Subsec. 5.4, since to the estimate the TAC and then the ITQs
managers need only to model the biological population and can safely ignore
prices, costs, discount factors, etc.
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6 Conclusion

The bioeconomic task of managing renewable assets such as forests, fish
stocks, or grasslands is surely becoming a necessity rather than a “luxury
affordable only by rich nations” if humanity is to learn from its past and
finally look for a sustainable growth path (Clark 2010). The problem is eco-
nomic in nature, renewable assets being just another form of capital capable
of generating consumption flows, and economic theory should suggest pos-
sible solutions.

Unfortunately, the prevalent economic incentives and constraints push
firms towards unsustainable harvest levels that risk depleting and ultimately
extinguishing the exploited populations. In the literature, such a dynamic
is called bionomic equilibrium, and, especially for fisheries, it is a far too
common state of affairs: attracted by the initial high profitability of a natural
resource, harvesters continue entering the industry until economic profits for
entrant firms are driven down to zero, and the population close to depletion.
It is widespread because an open access unregulated resource, which is a
necessary condition for bionomic equilibrium to occur, has traditionally been
the case for fisheries and other renewable assets.

Resource managers can and should introduce regulations to avoid the
bionomic equilibrium outcome, but what objective should they strive for?
They could, for example, wish to implement the “Maximum sustained yield
(MSY),” meaning the highest harvest rate which can be sustained over an
indefinite period and which does not lead to depletion of the population.
But the MSY has at least one major deficiency because it ignores the economic
rationale behind harvesting such as prices and cost of harvesting completely.

Alternatively to the MSY, managers could look at the “Maximum eco-
nomic yield (MEY),” meaning the highest sustainable rate that maximizes
economic profits. Compared to the MSY, the MEY does explicitly consider
economic incentives, but, like the MSY, it neglects the fundamental dynamic
nature of the problem. When deciding harvest levels, economic agents select
an entire harvest path that stretches into the future and that may or may not
be optimal depending on the response of the exploited population. Hence,
rather than the MSY or MEY, managers should adopt a dynamic bioeconomic
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model of harvesting as benchmark for their decisions.
For the above reasons, following Clark (2010) in this thesis I focus mainly

on a linear dynamic bioeconomic model of a single price taker firm. Through
the tools of optimal control theory, I first derive an existence result for an
optimal harvest level, and henceforth, thanks to the Pontryagin’s maximum
principle, necessary conditions for the optimal harvest and population level.
The first important result is the so called modified golden rule which asserts
that the marginal productivity of a renewable asset is exactly equal to its op-
portunity cost minus a “stock effect,” and is the best population equilibrium
that a single profit maximizer firm wants to achieve.

The second important result is that the golden rule solution always has
a higher population stock than the bionomic equilibrium, implying that the
latter is suboptimal with important consequences for policy. In fact, if man-
agers want to escape from the trap of bionomic equilibrium and enact re-
source preservation coupled with economic efficiency, then the golden rule
seems a good compromise, and it is indeed what I define as a social optimum.

To achieve the golden rule solution I consider different types of regula-
tions: input and output controls, which mean respectively restrictions on
effort and total catch, taxes and quotas. What I find is that, in the model,
classical input and output controls alone cannot prevent a bioeconomic sys-
tem from reaching bionomic equilibrium, since they do not manage to signif-
icantly modify harvesters’ economic incentives.

Taxes seem a good instrument, because they succeed in implementing
the golden rule solution even if managers do not limit access to the resource.
However, to be effective they rely on the precise estimation of a large number
of potentially time-varying parameters, where even a minor mistake could
determine under- or over-harvesting situations that could cause, respectively,
large economic losses to private firms or depletion of the resource stock.

Like taxes, quotas, or more specifically “Individual fishing quotas (IFQs)”
and “Individual transferable quotas (ITQs)” manage to steer harvesting to-
wards the golden rule solution, but, unlike taxes, they rely only on the right
biological modeling of the population to determine the total allowable catch,
thus reducing the magnitude of the estimation problem. However, quotas are
controversial because there is no right way to implement them, since, unlike
taxes, quotas restrict access to the resource, and, especially in fisheries, firms
are strongly opposed to buying the right to harvest when access to the re-
source had traditionally been unrestricted. Furthermore, if quotas are freely
granted, there is no way to compensate, at least partially, losers from the pol-
icy. A possible solution is to implement a double regime of taxes and quotas,
where the revenue from taxes could in part offset the losses of ineligible par-
ticipants to the quota system.
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A Appendix

A.1 Mathematical definitions

Definition 20 (Norm). A norm on a vector space V is a function ‖·‖ : V → R

satisfying the following properties: for all a ∈ R and u, v ∈ V

‖av‖ = |a| ‖v‖
‖u + v‖ ≤ ‖u‖+ ‖v‖
‖v‖ = 0 ⇐⇒ v = 0

Definition 21 (Metric space). A metric space is a pair (X, ρ) where X is a set and
ρ : X× X → R is a function such that for all x, y, z ∈ X

ρ(x, y) ≥ 0
ρ(x, x) = 0 ⇐⇒ x = 0
ρ(x, y) = ρ(y, x)
ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

Definition 22 (Lipschitz continuity). A function f : X → Y with (X, dX) and
(Y, dY) two metric spaces is Lipschitz continuous with constant λ if dX(x1, x2) ≤
λdY( f (x1), f (x2)) for all x1, x2 ∈ X .

Definition 23 (Equicontinuity). A family of functions F = { f : X → Y} with
(X, dX) and (Y, dY) two metric spaces is equicontinuous at x0 ∈ X if for all ε > 0
there exists a δ > 0 such that dY( f (x0), f (x)) < ε for all f ∈ F and all x such that
dX(x0, x) < δ. F is equicontinuous if it is equicontinuous at every point x ∈ X.

Definition 24 (Uniform boundedness). A family of functions F = { f : X →
R} is uniformly bounded if there exists a number M such that | f (x)| ≤ M for all
f ∈ F and all x ∈ X.

Definition 25 (Uniform convergence). A sequence of real-valued functions { fn :
X → R} converges uniformly to a limit f : X → R if for every ε > 0, there exists a
natural number N such that for all x ∈ X all n ≥ N it is true that | fn(x)− f (x)| <
ε.
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Definition 26 (Compactness). A space K is compact if each of its open covers
contains a finite subcover. An open cover of K is a sequence of open sets Ai such that
K ⊂ ⋃i∈I Ai.

A.2 Golden rule

Recalling the discussion in Sec. 4.1, for the general case with δ ≥ 0 the bioe-
conomic model (4.1) in Mayer form is

ẋ(t) = f (x(t)) + g(t, x(t))u(t)

and using the familiar conditions ϕ(t) = 0 and ϕ̇(t) = 0 it yields

ϕ(t) = 〈p(t), g(t, x∗(t))〉 = 0 (A.1)
ϕ̇(t) = 〈p(t), [ f , g](x∗(t))〉+ 〈p(t), gt(t, x∗(t))〉 = 0 (A.2)

since as in Eq. (4.9)

ϕ̇(t) = 〈 ṗ(t), g(t, x∗(t))〉+ 〈p(t), gx(t, x∗(t))ẋ∗(t) + gt(t, x∗(t))〉
= −

〈
fx(x∗(t))′p(t), g(t, x∗(t))

〉
−
〈

gx(t, x∗(t))′p, g(t, x∗(t))
〉

u∗(t)
+ 〈p(t), gt(t, x∗(t))〉+ 〈p(t), gx(t, x∗(t)) f (x∗(t))〉
+ 〈p(t), gx(t, x∗(t))g(t, x∗(t))〉 u∗(t)
= 〈p(t), gx(t, x∗(t)) f (x∗(t))− fx(x∗(t))g(t, x∗(t))〉+ 〈p(t), gt(t, x∗(t))〉

where the extra term 〈p, gt(t, x∗)〉 is because of the explicit time dependence
of g. Therefore, proceeding in the same way as in Eqs. (4.11) - (4.15), to have a
singular control the vector fields g and [ f , g] + gt must be linearly dependent.
Hence, the matrix M ∈ R2×2 whose first and second column are, respectively,
g and [ f , g] + gt must have a zero determinant

M =

( −1 G(y∗(t))
[P− c(y∗(t))]e−δt −G(y∗(t))c′(y∗(t))e−δt − δe−δt[P− c(y∗(t))]

)
where its determinant is given by the following expression

det(M) = G(y∗(t))e−δtc′(y∗(t)) + δe−δt[p− c(y∗(t))]

− G′(y∗(t))e−δt[p− c(y∗(t))]

The condition det(M) = 0 implies that the state y∗(t) along the singular arc
must satisfy the following implicit equation

δ = G′(y∗(t))− G(y∗(t))c′(y∗(t))
P− c(y∗(t))

(A.3)
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and, recalling that as Clark (2010) I assumed a logistic growth function G(y) =
ry(1− y/K), the explicit solution of Eq. (A.3) is

y∗(t) =
K
4

( c
PqK

+ 1− δ

r

)
+

√(
c

PqK
+ 1− δ

r

)2

+
8cδ

PqKr

 (A.4)

which is exactly the modified “Golden rule” of Eq. 4.29.
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List of Symbols and Abbrev.

c Marginal costs per unit of effort

c(y) Cost function per unit of harvest

δ Instantaneous discount rate

E(t) Effort level

Ē Maximum effort level

G(y) Logistic growth function

h(t) Harvesting rate at time t

h̄ Maximum harvesting rate

K Carrying capacity of the population

P(·) Price level or inverse demand function

Q Individual quota in an IFQ or ITQ

q Catchability coefficient

Q̄ TAC level

r Intrinsic growth rate of the population

τ Tax on harvesting

U(h) Social utility of consumption

y(t) Population level at time t

yBE Bionomic equilibrium population level

yg Golden rule population level
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Mathematical Symbols

Uλ[t0, t1] Class of functions in Um[t0, t1] with Lipschitz constant λ

Um[t0, t1] Class of measurable functions u : [t0, t1]→ U

UPC[t0, t1] Class of all piecewise continuous functions u : [t0, t1]→ U

p(t) Adjoint variable in PMP

U Control set

u(t) Control function in optimal control formulation

uε(t) Strong variation of a control

x(t) State function in optimal control formulation

xε(t) Response to a perturbed control

Acronyms

BE Bionomic Equilibrium

CFP Common Fisheries Policy

IFQ Individual fishing quota

ITQ Individual transferable quota

MEY Maximum economic yield

MSY Maximum sustained yield

PMP Pontryagin’s maximum principle

TAC Total allowable catch
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