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1. INTRODUCTION 

This paper’s objective is to compare two different volatility frameworks, that are 

stochastic and non-stochastic (traditional) volatility. Volatility is an essential factor of 

modern finance theory and modelling, but it cannot be observed. Stochastic volatility 

provides a framework for the estimation of the time varying volatility. It responds to the 

need of more complex models in a rapidly changing financial environment. It requires, 

also, higher computational efforts and solid theory behind. Sometimes the coefficients’ 

estimation is not feasible, and “non-traditional” estimation methods are required. The 

diffusion of stochastic volatility rose with the improvement of CPUs’ computational 

power and the availability of high-frequency data. High-Frequency Data (HFD) can be 

used to build more efficient estimators. Data involved is observed at very high-

frequencies, usually from few seconds to 30 minutes. It implies that specific methods to 

handle this huge quantity of data are necessary in order to avoid excessive computational 

efforts and waste of time. In this thesis the Julia programming language is used, which is 

very useful in big data analysis. The dataset contains high-frequency (less than one-

minute frequency) observations of the EUROSTOXX index. Intra-daily data have been 

collected to build a daily estimator for the daily unobservable variance process. The aim 

is to use these estimators to produce (and forecast) a proxy for the volatility of the 

underlying asset, and use it for trading and risk management purposes. 

Stochastic volatility models are typically computationally intensive, still there are 

several reasons to prefer them to the traditional models (constant volatility or GARCH 

class). They better fit empirical data, or, as it will be shown, they can be used to 

standardize daily returns, to obtain a Normal (0,1) distribution. 4 main models are 

analysed, that are Realized Variance computed with 1-minute frequency (RV1), Realized 

Variance computed at 5-minutes frequency (RV5), BiPower Variation (BPV) and Two 

Scales Realized Variance (TSRV). These four estimators are the best representatives for 

the stochastic variance class of estimators. The first two (RV1, RV5) are the plain 

estimators for the Quadratic Variation (QV) process, that is, the asymptotic estimator of 

the unobservable volatility process. Two main bias usually affect RV, which are intraday 

jumps and market microstructure bias. BPV and TSRV try to clean these biases out. 
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A statistical analysis is then conducted on these variables. Since the aim is to find 

a good proxy for volatility, which should be able to be “self-forecastable”, the analysis is 

focused on the assessment of the forecasting ability of these variables. Forecasts are 

implemented with a rolling window procedure. The underlying stochastic process is 

supposed to follow an AR specification, and, at each forecast horizon, previous one-year 

observations are used to infer the parameters of the AR model. These parameters are 

applied to the latest available observations in order to produce a one-step-ahead forecast. 

Repeating the procedure at all times, a time series array of forecast is produced, and it is 

then compared with the realized value in order to assess the degree of error. It is 

introduced also the Heterogeneous AR (HAR) model, which is built with the RV1 moving 

averages at 1-day, 5-days, 20-days. These horizons correspond respectively to 1-day, 1-

week and 1-month trading period. HAR estimator is useful to disentangle the short, 

medium and long term influence of the variance process. Empirically, this model has 

higher self-forecasting capacity. 

A first application of stochastic volatility is a trading strategy involving the 

VSTOXX index, that expresses the implied volatility of the EUROSTOXX index. The 

square root processes of stochastic volatility variables are very similar to that of the 

VSTOXX. Since they can be used as good proxies for VSTOXX due to the relevant 

adjusted R-squared, and since they have a significant self-predicting power, it should be 

possible to make forecasts about the future level of VSTOXX. These models are then 

compared with a benchmark momentum strategy, that consists into buying the VSTOXX 

if the index level has risen, and selling otherwise. The preliminary results show that 

negative returns are achieved using both kind of variables (but RV performs better), due 

to the unpredictable peaks which frequently occur through the time series. A second 

strategy consists into adding a mean-reversion momentum signal, to be followed 

regardless to the value forecasted using the model. With this second method it is possible 

to achieve positive returns, which only in the case of RV1 estimators are greater than the 

benchmark strategy. 

The last application is a VaR back-testing analysis, comparing a traditional 

EWMA and stochastic volatility models. The comparison is conducted for a parametric 

and a Monte Carlo simulation framework, both at 1-day and 10-days horizons. VaR loss 
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level is set to 1%. Models are compared by looking at the exceptions percentage, that is 

the percentage of times where realized loss is greater than the forecasted VaR. The more 

this ratio is close to the selected quantile, the better the model is. The parametric model 

assumes a certain distribution for the standardized time series, and then a certain quantile 

loss of returns. Theory says that standardizing future daily returns with stochastic 

variables should account for the leptokurtic bias, and a Normal distribution should be 

obtained. Empirical evidence shows that the quantile level is not reached, but RV 

performs better than EWMA. Monte Carlo simulations demonstrate that it is possible to 

achieve better results with stochastic volatility, if higher-kurtosis distributions for the 

innovations terms are specified. Using Student-t and the Laplace distributions, indeed, 

allows to obtain exceptions level very close to the prudential quantile, and much more 

efficient than traditional methods.  
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2. LITERATURE OVERVIEW 

 

 Over the last decades, literature attempted to develop models to describe assets’ 

returns. A relevant field of research is the identification of the main drivers of returns. It 

is a widely diffused belief that assets’ volatility plays a crucial role in returns composition. 

At time, it does not exist a theoretical standard model. There are, still, some empirical and 

theoretical features that are widely accepted. Volatility is time varying, and it manifests 

clustering phenomena. Even if the most of economic models deal with the assumption of 

a constant volatility, empirical results show that actually large changes are followed by 

large changes, and small changes tend to be followed by small changes (Mandelbrot, 

1963), meaning that volatility is time varying and for long periods it stays almost at the 

same level. This concept is related to the mean reversion phenomenon, namely the 

attitude of an observed process to come back to its mean level, after a shock has occurred. 

Figure (1) show how volatility empirically follows these rules. 
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Figure 1a,1b. VIX index between 1990-2006, and between 2007-2016. Source: Bloomberg. 

The charts show the level of the VIX (Chicago Board of Exchange Volatility Index), 

which indicates the 30-day market’s expectation of volatility, measured through the 

implied volatility of plain options on the S&P 100 index. It shows clearly that there are 

times where volatility stays high for long periods, probably due to shocks that occurred 

on financial or real market, after which it slowly decreases to its long-term level. The next 

paragraphs will show the difference between the most common used classes of models: 

stochastic and non-stochastic. 

  

2.1 Non-stochastic volatility models. 

2.1.1 ARCH class models. 

The evidence of the phenomena discussed above inspired the development of 

classes of models that allowed for changes in volatility levels through time. Engle (1982) 

and Bollerslev (1986) gave important contributions to the time-varying volatility 

framework with the introduction, respectively, of ARCH and GARCH models, which 

impose a heteroskedastic (non-constant) structure to volatility. Variance is supposed to 

be a function of all variables available (observable) until time of analysis: vt = f(It-1), with 

It-1 denoting the information set available until then. 
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Let the return of an asset at time t be Rt (it can be considered as the excess return, 

that is the return in excess to risk-free rate). It is possible to define the return process as 

follows: 

2.1 

𝑅𝑡 = 𝑚𝑡 + 𝜉𝑡 , 𝑤𝑖𝑡ℎ 𝜉𝑡 = √𝑣𝑡 ∙ 𝜀𝑡 

where εt is a Gaussian White Noise with mean zero and unit variance, mt and vt denote 

the first and the second conditional moments, respectively: 

𝑚𝑡 = 𝐸𝑡−1[𝑅𝑡] ,      𝑣𝑡 = 𝐸𝑡−1[𝑅𝑡 − 𝑚𝑡]2 

and ξt hence represents the error term of the mean process. Moreover, using this 

notation, it follows that: 

2.2 

𝐸𝑡−1[𝑅𝑡] = 𝐸𝑡−1[𝑚𝑡 + √𝑣𝑡𝜀𝑡] = 𝑚𝑡 + √𝑣𝑡 𝐸𝑡−1[𝜀𝑡] = 𝑚𝑡 

2.3 

𝑉𝑎𝑟𝑡−1[𝑅𝑡] = 𝑉𝑎𝑟𝑡−1[𝑚𝑡 + √𝑣𝑡𝜀𝑡] = 𝑣𝑡  𝑉𝑎𝑟𝑡−1[𝜀𝑡] = 𝑣𝑡 

 

where the term vt goes outside both operators since it is a function of information available 

at time t, thus deterministic. 

It is not worth to precise that the “conditional” property of the moments lies in the 

fact that they are computed using the information available until time t. This is pointed 

out by the subscript of the expectation operator, which can be also written, as 𝐸𝑡−1[𝑋𝑡] =

𝐸[𝑋𝑡−1|𝐼𝑡−1] . Unconditional moments can be expressed as: 𝜇 = 𝐸[𝑅𝑡]  and 𝜎2 =

𝐸[𝑅𝑡 − 𝜇]2 . Therewith, ARCH class of models have by construction heteroskedastic 

conditional volatility, even if this may not exclude a constant unconditional volatility. 

Sometimes it is possible to define the variance as the expectation of the squared 

returns, namely 𝐸𝑡[𝑅𝑡
2], assuming that returns have zero mean, or re-scaling the returns 

vector to have a new zero-mean variable:  𝑅̃𝑡 = 𝑅𝑡 − 𝑚𝑡 . This assumption has more 

support with higher frequency data, where the expected change in returns is negligible. 
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Coming back to return process, equation (1) states that the realization of the asset’s 

return is made-up by a deterministic component, that is its mean, plus a risky component 

linked to the unobservable volatility of the asset, which is stochastic since the εt is a 

random variable. It is possible to impose the conditional variance to follow an 

AutoRegressive (AR) process: 

2.4 

𝑣𝑡 = 𝑎0 + 𝑎1𝑅𝑡−1
2 + ⋯ + 𝑎𝑞𝑅𝑡−𝑞

2  

It is clear that vt is a function of past data. Actually, in Engle’s paper, the logarithm of vt 

is used, but the formulation (4) will be analysed more in detail in the stochastic volatility 

paragraphs. 

Bollerslev (1986) and Taylor (1986) proposed (independently) an extension of the 

conditional variance that accounted also for lagged values of itself, namely the 

Generalized ARCH (GARCH): 

2.5 

𝑣𝑡 = 𝑎0 + 𝑎1𝑅𝑡−1
2 + ⋯ + 𝑎𝑞𝑅𝑡−𝑞

2 + +𝑏1𝑣𝑡−1 + ⋯ + 𝑏𝑝𝑣𝑡−𝑝 

𝑤𝑖𝑡ℎ 𝑎0 > 0; 𝑎𝑖, 𝑏𝑖 > 0 𝑓𝑜𝑟 𝑖 = 1, … , max(𝑞, 𝑝) 

A feature of the GARCH model is that it is able to capture the clustering effect, by testing 

how much the lag-variables parameters are close to 1. 

Literature is abundant of different version of ARCH-like models, there are so 

many that it may be confusing to analyse all of them. Hull (2012) suggested an interesting 

and simple formulation to monitor the daily volatility, widely used for risk management 

purpose: 

2.6 

𝑣𝑡 = 𝜆 𝑉𝜆 + 𝑎 𝑟𝑡−1
2 + 𝑏 𝑣𝑡−1

2  

where rt denotes the log-return at time t: 𝑟𝑡 = ln (𝑅𝑡/𝑅𝑡−1), and Vλ is the long term 

volatility (the one that the process is supposed to converge toward). The particularity is 

that, since λ, a, b are weights given to those variables, it must be true that λ + a + b =1. 

Now, calling w = λ Vλ, then it is possible to re-write the model as: 
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2.7 

𝑣𝑡 = 𝑤 + 𝑎 𝑟𝑡−1
2 + 𝑏 𝑣𝑡−1

2  

that is the formulation of a GARCH (1,1). Then, it is possible to estimate the parameters 

w, a, b and use the property discussed above to find the long-term variance: 

{
𝑤̂ = 𝑙 𝑉𝑙

𝑙 = 1 − 𝑎̂ − 𝑏̂
  →   𝑉𝑡 =

𝑤̂

1 − 𝑎̂ − 𝑏̂
 

 Another important reason of the wide use of ARCH-class models, is that, by 

assuming a distribution for the error terms ξt, it is possible to estimate the parameters by 

maximum likelihood procedure. 

ARCH class of models tend to fit quite well data when lower frequencies are 

analysed. When high frequency data are used these models show some limits, both 

because volatility may follow intraday patterns and because there may be noise within 

the trades due to market microstructure. 

 

2.1.2 Implied Standard Deviation Models. 

 From Black-Scholes formula, the price of plain call and put options is a function 

of stock prices, strike prices, risk-free rate, time and volatility. Since prices of exchanged 

options are available, it is possible to reverse engineering the Black-Scholes equation to 

find the volatility value in line with the option prices. Volatility obtained through this 

method is called implied volatility, and represents the market’s expectation about future 

volatility. Assuming that markets are price-efficient, prices must reflect all information 

and discounted expectations about future variables. This is also the principle at the base 

of VIX index calculation. Due to its immediacy, it is very common to use implied 

volatility as a proxy for near-term volatility. There are several drawbacks in using implied 

volatility. There may exist risk premia embedded in implied volatility that could deviate 

from the actual valuation of the option’s price, which lead to biases in the measurement 

of expected future level of volatility. There may exist unknown variables that are not 

priced, whose price is erroneously embedded in implied volatility. 
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2.2 Stochastic volatility models. 

The models so far described were characterized by time-varying but deterministic 

variance. Stochastic-volatility models, instead, introduce “randomness” elements in 

modelling the variance. Variance is supposed to follow a general stochastic process, {V}, 

that is a series of stochastic variables indexed by time: V1, V2, … Vt, … VT. Each random 

variable Vt, characterized by a probability density function, and, together with the other 

“members” of the process, by a joint probability density function. In real world just a 

realization of the process is observed. 

Since 80’s, many authors proposed models where variance was imposed to follow 

a stochastic process. Stochastic volatility models allow for the presence of shocks in both 

prices and volatility. Volatility is a function of a certain set of variables σt = f(Kt), where 

Kt is an unobserved latent process, and f(∙) is an increasing function whose codomain is 

the set of non-negative real numbers. Kt may follow a particular process, such as an 

ARMA(p,q), a Random Walk, or even a continuous time process, such a Brownian 

Motion. One of the first adopter of these models structure was P. K. Clark, who analysed 

the price of traded securities and introduced the concept of “subordinated process” (Clark 

1973). Instead of referring to a price process as the sequence of random variables 

𝑃1, 𝑃2, … , 𝑃𝑇, with t = 1,2,…,T representing the discrete time at which the realizations of 

the price comes, Clark assumes that time itself follows a particular stochastic process, 

whose t is a realization. Hence, t is the realization of a stochastic process, call it {τ}, with 

positive increments: τi > τj for i > j. The process P(τt) can be thought as the realization of 

the quoted price on a trading platform: trades do not happen at periodic intervals of time, 

but their frequency depends on the activity of buying and selling of operator at market 

microstructure level. Literature developed several techniques for handling stochastic 

volatility. The following paragraphs will provide a first insight towards these models, 

while in the fourth chapter high-frequency stochastic volatility models will be discussed. 
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2.2.1 Discrete time models. 

 A first sub-class of models are discrete time ones. Taylor (1982) provided oe of 

the first formulation of discrete time model, namely the product process. He started from 

an expression of returns similar to (1): 

2.8 

𝑟𝑡 = 𝐸[𝑟𝑡] + 𝜎𝑡𝑢𝑡 

where rt is the log-return ln(Rt/Rt-1), σt  and ut are two independent stochastic processes 

such that: σt is strictly positive, {u} follows an ARMA(1,1) process with mean zero and 

unit variance, σt  and us independent for each t and s. If the assumption on the stationarity 

of {σ} {u} holds, then also {r} is stationary. These properties imply in primis that:  

𝐶𝑜𝑣(𝜎𝑡, 𝑢𝑠) = 𝐸[𝜎𝑡𝑢𝑡] − 𝐸[𝜎𝑡]𝐸[𝑢𝑠] = 0 →  𝐸[𝜎𝑡𝑢𝑡] = 𝐸[𝜎𝑡]𝐸[𝑢𝑠] 

which implies: 

2.9 

𝐸[𝑟𝑡 − 𝐸[𝑟𝑡]] = 𝐸[𝜎𝑡𝑢𝑡] = 𝐸[𝜎𝑡]𝐸[𝑢𝑠] = 0 

2.10 

𝐸[𝑟𝑡 − 𝐸[𝑟𝑡]]2 = 𝐸[𝜎𝑡𝑢𝑡]2 = 𝐸[𝜎𝑡]2𝐸[𝑢𝑠]2 = 𝐸[𝜎𝑡]2 

The variance of returns is the expected value of the squared term σt, and thus the expected 

variance. The process {σ} is assumed to be modelled as: 

2.11 

𝜎𝑡 = 𝑒ℎ𝑡/2 

where ht can be a generic non-zero mean Gaussian linear process. In this particular case 

it is an AR (1) process: 

2.12 

ℎ𝑡 = 𝑎0 + 𝑎1ℎ𝑡−1 + 𝜀𝑡 

where εt is Gaussian White Noise with mean zero and variance σε
 2. The term εt is exactly 

the element that distinguish stochastic and non-stochastic models (for example, the one 
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described in equation (4)). This implies that the logarithm of variance is modelled as an 

AR (1): 

ln (𝜎𝑡) = ℎ𝑡/2 → ln (𝜎𝑡
2) = ℎ𝑡 

2.13 

ln (𝜎𝑡
2) = 𝑎0 + 𝑎1ln (𝜎𝑡−1

2 ) + 𝜀𝑡 

In case ut is also normal, the process (8) take the name of log-Normal stochastic volatility 

model. The main advantage of using a log-model is that it ensures non-negative values 

for variance. 

 Let now analyse some statistical properties of the variance process (13). Its 

expected value is: 

𝐸[ln 𝜎𝑡
2] = 𝐸[𝑎0 + 𝑎1 ln 𝜎𝑡−1

2 + 𝜀𝑡] 

= 𝑎0 + 𝑎1𝐸[ln 𝜎𝑡−1
2 ] 

that, by recursively substituting, becomes: 

= (∑ 𝑎0𝑎1
𝑖

𝑛−1

𝑖=0

) + 𝑎1
𝑛𝐸[ln 𝜎𝑡−𝑛

2 ] 

Assuming that |a1|<1, which means that the series is stationary, when n→∞ the last part 

of the equation goes to zero, while the first part converges to the sum of a geometric 

series: 

=
𝑎0

1 − 𝑎1
= 𝛼 

Literature often do not agree with the assumption that n goes to infinity, but rather 

prefer to bound the process within a finite time space. It is possible to specify an initial 

time t0, at which the process starts, and then the above expression becomes 

= ( ∑ 𝑎0𝑎1
𝑖

𝑁=𝑡−𝑡0

𝑖=0

) + 𝑎1
𝑁𝐸[ln 𝜎0

2] 
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Supposing that σ0 is a known value, then the expected value of (13), conditioned on σ0, 

becomes 

= 𝑎0

1 − 𝑎1
𝑁+1

1 − 𝑎1
+ 𝑎1

𝑁 ln 𝜎0
2 

The variance of (13), knowing that σt
2 and εt are uncorrelated, is: 

𝑉𝑎𝑟[ln 𝜎𝑡
2] = 𝑉𝑎𝑟[𝑎0 + 𝑎1 ln 𝜎𝑡−1

2 + 𝜀𝑡] 

= 𝑉𝑎𝑟[𝑎1 ln 𝜎𝑡−1
2 + 𝜀𝑡] 

= 𝑎1
2𝑉𝑎𝑟[ln 𝜎𝑡−1

2 ] + 𝑉𝑎𝑟[𝜀𝑡] 

= 𝑎1
2𝑉𝑎𝑟[ln 𝜎𝑡−1

2 ] + 𝜎𝜀
2 

Then, as above, by iteratively substituting: 

=
𝜎𝜀

2

1 − 𝑎1
2 = 𝛽2 

Since the series is stationary, these moments are the same at each lag. The covariance and 

the autocorrelation of the series are: 

𝐶𝑜𝑣(ln 𝜎𝑡
2 , ln 𝜎𝑡−ℎ

2 ) = 𝐶𝑜𝑣 (∑ 𝑎1
𝑖

ℎ−1

𝑖=0

(𝑎0 + 𝜀𝑡−𝑖) + 𝑎1
ℎ ln 𝜎𝑡−ℎ

2 , ln 𝜎𝑡−ℎ
2 ) 

= 𝐶𝑜𝑣(𝑎1
ℎ ln 𝜎𝑡−ℎ

2 , ln 𝜎𝑡−ℎ
2 ) 

= 𝑎1
ℎ𝑉𝑎𝑟(ln 𝜎𝑡−ℎ

2 ) = 𝑎1
ℎ𝛽2 

𝜌(ln 𝜎𝑡
2 , ln 𝜎𝑡−ℎ

2 ) =
𝐶𝑜𝑣(ln 𝜎𝑡

2 , ln 𝜎𝑡−ℎ
2 )

𝑉𝑎𝑟(ln 𝜎𝑡
2)

 

=
𝑎1

ℎ𝛽2

𝛽2
= 𝑎1

ℎ 

From equation (13) since εt is normally distributed, also ln 𝜎𝑡
2 is normally distributed, 

with mean 𝛼 and variance 𝛽2: 

ln 𝜎𝑡
2 ~𝑁(𝛼, 𝛽2) 
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and then: 

ln 𝜎𝑡 =
1

2
ln 𝜎𝑡

2 ~𝑁(
𝛼

2
,
𝛽2

4
) 

There are, now, sufficient elements to calculate moments of rt. Re-writing 𝑟𝑡 = 𝑢𝑡𝑒ln 𝜎𝑡 

and combining equation (9) with the properties of the Normal distribution ut, it follows 

that even moments of rt are all zeros. In general, the n-th moment is: 

𝐸[𝑟𝑡 − 𝐸[𝑟𝑡]]
𝑛

= 𝐸[𝑢𝑡]𝑛𝐸[𝜎𝑡]𝑛 = 𝐸[𝑢𝑡]𝑛𝐸[𝑒𝑛 ln 𝜎𝑡] 

= 𝐸[𝑢𝑡]𝑛𝑒𝑛𝛼/2+
1
2

𝑛2𝛽2/4
 

thus, variance equals: 

= 𝑒𝛼+𝛽2/2 

and, kurtosis is: 

= 𝑘𝑢𝑟𝑡(𝑢𝑡)
𝐸[(𝜎𝑡)4]

𝐸[(𝜎𝑡)2]2
 

= 3
𝑒2𝛼+2𝛽2

𝑒(𝛼+𝛽2/2)2
= 3𝑒𝛽2

 

which, for β2 positive, is greater than the kurtosis of a standard Normal distribution. The 

log-model accounts also for fatter tails of the returns distribution, as empirical results 

confirm. 

Inference with common statistic tools, i.e. by maximum likelihood, is infeasible. 

There is not a closed-form solution for the likelihood function. The density of rt is: 

𝐶𝐷𝐹(𝑟𝑡) = ∫ 𝑃𝐷𝐹(𝑟𝑡|𝜎𝑡
2)

+∞

−∞

∗ 𝑃𝐷𝐹(𝜎𝑡
2|𝛼, 𝛽2)𝑑𝜎𝑡

2 

where PDF(rt) is a Normal density function, and PDF(σt
2) is a LogNormal density 

function. Therefore, the integral has no closed-form, and it can be evaluated only 

numerically, through simulations. There are alternative tools used to make inference in 

stochastic volatility framework, and they will be the subject of the next chapter. 
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2.2.2 Continuous time models. 

 Continuous time models define the diffusion law both for asset’s price and for 

asset’s volatility. The most common approach is to use a Brownian Motion as law of 

diffusion. In the simplest case, the risky part of return of equation (1) is given by: 

2.14 

𝑀𝑡 = ∫ 𝜎𝑠 𝑑𝑤𝑠

𝑡

0

 

that is, a stochastic integral where wt is a Brownian Motion process. A Brownian Motion 

{w}, or Wiener Process, is a stochastic process defined on a continuous time space with 

the properties: 

- 𝑤(𝑡 + ∆𝑡) − 𝑤(𝑡) is Normal distributed with mean zero and variance ∆t; 

- Its increments are independent; 

- It is a martingale, in the sense that future realization does not depend at all on past 

observations, but only on current one. Mt is a martingale if also the square root of 

the integrated variance, 𝐸[√∫ 𝜎𝑠
2𝑡

0
𝑑𝑠], is a finite quantity. 

The Brownian Motion can be thought as a Random Walk model in a continuous time 

space. A widely used formulation for the Brownian motion is: 𝑑𝑤 = 𝜀√𝑑𝑡. Equation (14) 

has a particular appeal in financial modelling, since, taking the square of the Mt process, 

knowing that 𝑑𝑤 ∙ 𝑑𝑤 = 𝑑𝑡, it yields: 

𝐼𝑉 = ∫ 𝜎𝑠
2 𝑑𝑠

𝑡

0

 

which takes the name of integrated volatility. The integrated volatility can be thought as 

the sum all the spot, i.e. instantaneous, variances over time. As pointed out by Barndorff-

Nielsen and Shephard (2004), the integrated volatility can be estimated through the 

quadratic process of returns, which will be deepened in the following chapters. This 
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estimate, in theory, is much more accurate when the time intervals of observations tend 

to zero, that is with high-frequency data. 

 Hull and White (1987) were pioneers of continuous time stochastic volatility. 

They started from Black-Scholes-Merton diffusion process, used in option pricing, where 

variance process was the solution to the differential equations: 

2.15 

𝑑𝑆𝑡 = 𝜑(𝑆, 𝜎, 𝑡) 𝑆𝑡 𝑑𝑡 + 𝜎𝑡 𝑆𝑡 𝑑𝑤 

𝑑𝜎𝑡
2 = 𝜇(𝜎, 𝑡) 𝜎𝑡

2 𝑑𝑡 + 𝜔 𝜎𝑡
2 𝑑𝑧 

where dw and dz are Brownian Motion processes with a correlation ρ, and the drift rate φ 

becomes the risk-free rate in a risk-neutral framework. The correlation between shocks in 

variance and shocks in prices, makes the model closer to reality. Empirically, financial 

markets, especially equity markets, show high volatility when high change in price occurs 

(e.g. after a dividend announcement). The parameter μ can be set such to take into account 

mean-reverting phenomenon. It is the case of Heston (1993) or Melino and Turnbull 

(1990), who proposed a continuous-time version of the Taylor logarithmic stochastic 

volatility. The second equation of (15) is, indeed, replaced by: 

2.16 

𝑑 ln 𝜎𝑡 = 𝜇 ∙ (𝑣 − ln 𝜎𝑡) 𝑑𝑡 + 𝜔 𝑑𝑧 

 

such that volatility is ensured to be positive, and tends to its long-term level v. The 

solution to this stochastic differential equation, expresses the value assumed by ln(σt). It 

is equal to: 

2.17 

ln 𝜎𝑡 = ∫ 𝜇(𝑣 − ln 𝜎𝑠) 𝑑𝑠 
𝑡

0

+ ∫ 𝜔 𝑑𝑧𝑠

𝑡

0

 

ln 𝜎𝑡 = 𝑣 + (ln 𝜎0 − 𝑣)𝑒−𝜇𝑡 + 𝜔 ∫ 𝑒−𝜇(𝑡−𝑠)  𝑑𝑧𝑠

𝑡

0

 

Conditional moments are: 
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𝐸[ln 𝜎𝑡 | ln 𝜎0 = 𝑘0] = 𝐸[𝑣 + (ln 𝜎0 − 𝑣)𝑒−𝜇𝑡 + 𝜔 ∫ 𝑒−𝜇(𝑡−𝑠)  𝑑𝑧𝑠

𝑡

0

] 

= 𝑣 + (ln 𝜎0 − 𝑣)𝑒−𝜇𝑡 

𝑉𝑎𝑟[ln 𝜎𝑡 | ln 𝜎0 = 𝑘0] = 𝑉𝑎𝑟[𝜔 ∫ 𝑒−𝜇(𝑡−𝑠)  𝑑𝑧𝑠

𝑡

0

] 

= 𝐸[𝜔 ∫ 𝑒−𝜇(𝑡−𝑠)  𝑑𝑧𝑠

𝑡

0

]2 

By Itô’s isometry, which states that 𝐸[∫ 𝑋𝑠  𝑑𝑧𝑠
𝑡

0
]2 = 𝐸[∫ 𝑋𝑠

2 𝑑𝑠
𝑡

0
], it yields: 

= 𝜔2𝐸[∫ 𝑒−2𝜇(𝑡−𝑠)  𝑑𝑠
𝑡

0

] =
𝜔2

2𝜇
(1 − 𝑒−2𝜇𝑡)  

Equation (17) is also denoted as Itô Process or stochastic integral form. The volatility 

process shown in (16) and (17) follows an Ornstein-Uhlenbeck process, also called 

Gauss-Markov process, which has the following properties: 

- it is stationary, meaning that the multivariate distribution of the process at 

different lags do not change: 

𝑃(ln 𝜎𝑡 , ln 𝜎𝑡−1 , … , ln 𝜎𝑡−𝑠) =  𝑃(ln 𝜎𝑡−ℎ , ln 𝜎𝑡−ℎ−1 , … , ln 𝜎𝑡−ℎ−𝑠  , Ɐ ℎ > 0  

- it is Gaussian, meaning that the multivariate distribution of the process is normally 

distributed; 

- it is Markovian, meaning that the distribution of future variables depends just on 

the most recent distribution and not by the older ones: 

𝑃(ln 𝜎𝑡+1 | ln 𝜎𝑡 , … , ln 𝜎𝑡−𝑠) = 𝑃(ln 𝜎𝑡+1| ln 𝜎𝑡) Ɐ 𝑠 > 0 

- it is continuous in probability, meaning that the distribution of adjacent variables 

in time is almost the same: 

𝑃( |ln 𝜎𝑡  − ln 𝜎𝑡−∆| > 𝜀) → 0, 𝑎𝑠 ∆→ 0, Ɐ𝜀 > 0 

- it is mean-reverting toward the long-term average v, with a rate given by μ. 

 Other widely used continuous time models are the Heston (1993) model, where 

the processes followed by the volatility is: 

𝑑𝜎𝑡
2 = 𝜇(𝑣 − 𝜎𝑡

2) 𝑑𝑡 + 𝜔 𝜎𝑡 𝑑𝑧 
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and the jump diffusion, introduced by Bates (1996). The last model accounts for 

discontinuous change in diffusion process both of the asset and the volatility structure. It 

reflects the impact of news or significant shocks in financial market, whose intensity 

cannot be explained just by Brownian Motion. Bates added to the Brownian Motion 

diffusion process, another diffusion term modelled on a Poisson distribution, ktdqt, which 

is function of the annual frequency of jumps and the percentage jump, kt, given a jump 

has occurred. Moreover, qt is a counting process with intensity λt, such that 𝑃(𝑑𝑞𝑡 = 1) =

𝜆𝑡𝑑𝑡. The asset’s stochastic differential equation become: 

𝑑𝑆𝑡 = 𝜑𝑡 𝑆𝑡 𝑑𝑡 + 𝜎𝑡 𝑆𝑡 𝑑𝑤 + 𝑘𝑡 𝑆𝑡 𝑑𝑞𝑡 

This, in practice, makes computations harder, but empirical tests have shown that jump 

diffusion models make slight improvement to the time series analysis of prices. 
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3. HIGH FREQUENCY DATA 

 This chapter will be focused on the main features of high-frequency data (HFD). 

HFD can enhance the standard tools of estimation, since they provide a better 

approximation of continuous-time processes. As Clark (1973) states, the use of HFD 

necessarily implies to deal with stochastic time space of observation. There are also some 

practical issues to take into account in analysing HFD. 

 

 

3.1 Data handling 

The current development of infrastructure technology system and the increase of 

computing power, has made possible for trading venues to collect data at the minimum 

time interval, i.e. at every tick. Such a huge availability of data presents issues regarding 

the process of gathering information, and raw data cannot be used as are. 

 

3.1.1 Data Cleaning 

Falkenberry (2002) indicated that HFD collecting process may present errors of 

“transcription”, and the frequency of these inaccuracies rises as the frequency of data 

becomes higher. There may exist at least two kind of errors. There are “human-driven” 

errors, which can be unintentional, e.g. typos, or intentional, e.g. an algorithmic trading 

strategies which post and immediately cancel massive amounts of orders, usually at non-

reasonable prices, thus creating noise and false quotes. There are non-human errors, those 

created by the electronic infrastructure and by the gathering data process. Typical 

examples are errors of transposition or the loss of some part of the data, such as the 

decimal part. However, in practice it may be difficult to determine whether a suspicious 

observation is an error or not, or to identify the cause of the outliers. For instance, it may 

happen, analysing some minute-by-minute data, to find a minute return of 1%, which may 

sound relatively high. There could be several reasons for this sudden change in price, it 
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may be due to errors as much as an unexpected announcement that has been absorbed by 

market. It is important to analyse the outliers, and possibly to look for the cause. 

A first naïve technique of outliers’ recognition is based on return magnitude. This 

involves to define a certain threshold of returns. If exceeded, the observation is labelled 

as “suspicious” and eventually discharged. The problem is the right choice of the 

threshold. It has to depend on the frequency of data, but not in a linear manner. It is 

foregone that the threshold for daily return should be bigger than an hourly return, but not 

in a linear way. There may be intraday patterns during a trading day where the price may 

vary more than the resulting daily return, which is computed just on the opening and 

closing prices. For instance, the probability of an hourly return exceeding the 10% is 

higher than the probability of a daily return exceeding the 80% (10% times 8 hours). In 

formulas: 𝑃(𝑟 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) < 𝑃(𝑟/𝑡 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑/𝑡) . A rapid way to determine 

thresholds is to choose an appropriate quantile of returns. It can be set the threshold such 

that the probability of encountering a greater observation is, for example, 99.99%. It ca 

be added a fixed amount of basis points, whose amount depends on the frequency of data, 

and then discharge all observation greater than the obtained value. 

Another possible solution, that does not involve the use of thresholds, is to find 

adjacent sequences of anomalous returns with opposite sign. Supposing there is a mistake 

in the price sequence, it is reasonable to expect that the next observation will turn back to 

the correct level. The return sequence should display an anomalous value followed by 

another anomaly of almost the same intensity but different sign. Problems may arise when 

these errors come in sequences, since it becomes hard to distinguish errors from a 

temporarily jump of price. 

Brownlees and Gallo (2006) propose a detection technique, which relies on the 

statistical properties of neighbouring prices. An outlier is identified if it exceeds the 

distance from the trimmed mean of a neighbourhood of k prices by three standard 

deviations, plus a parameter γ which accounts for a lower bound in case of non-changing 

quotes. Trimmed moments are computed by selecting the k previous and the k following 

prices. Observation are outliers if: 

|𝑝𝑡 − 𝑝𝑡̅(𝑘)| > 3𝜎𝑡(𝑘) + 𝛾 
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with 𝑝𝑡̅(𝑘) and 𝜎𝑡(𝑘) denoting the trigged mean and standard deviation. The choice of k 

must be inducted by the frequency of data. Authors conclude their paper stating that it is 

necessarily a graphical analysis of the suspicious data. Using the standard deviation in 

presence of outliers may bias the results, since measure like mean and standard deviation 

suffer for the presence of outliers. Sometimes it is better to recur to the median value. In 

the formula above, the standard deviation can be replaced by the median, with an 

opportunely calibrated parameter. A similar approach is to use the median absolute 

deviation (MAD), which is the median of the absolute deviation from the daily median. 

Hellerstein (2008) proposes to consider as outliers those observations which, standardized, 

exceed 2.9652 x MAD, that roughly corresponds to two standard deviations of a Normal 

distribution. 

Other studies, such as Chung, Van Ness and Van Ness (2004), show how the price 

level has an important effect in the “mis-classification” of non-outliers. For low priced 

securities even a relative small change in price is able to produce a significant return. For 

example, a 1$ security which rise to 1.5$ had a 50% return, and it is not unlikely to happen. 

The threshold of returns has to take into account also the effect on low priced securities. 

Finally, it is possible to use machine-learning techniques to combine all these 

algorithms for the search of outliers. For example, the AdaBoost algorithm, may be 

efficient in presence of many “weak learners”, i.e. not efficient classifiers, where a unique 

“strong learner” is built up by giving appropriate weights to the former ones. 

 

3.1.2 Missing data 

It is very frequent to collect HFD with some missing value, especially if collected 

by small providers or on illiquid markets. Usually these missing data are labelled with a 

“NA” value, which may cause significant issue in data analysis. Missing data may be 

caused also by low trading activity. A first immediate approach is to fill up the missing 

price between two available ones, by interpolating the missing values with an average of 

available prices, weighted by time. The price at time t, with observations available at ti 

and ti+1 is: 
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𝑝̇𝑡 = (1 − 𝜔)𝑝𝑖 + 𝜔𝑝𝑡+𝑖       →      𝑝̇𝑡 = 𝑝𝑖 + 𝜔(𝑝𝑡+1 − 𝑝𝑡) 

𝑤𝑖𝑡ℎ 𝑡𝑖 < 𝑡 < 𝑡𝑖+1,     𝑎𝑛𝑑     𝜔 =
𝑡 − 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖
 

This method is invariant in mean, since produces information that are linear combination 

of available data, but not in variance. Adding observations with value within the range 

already measured, a new set of variable is created, but with less “dispersion”. The longer 

the interval of data is, the more intra-pattern informations are excluded, and the more 

variance is underestimated. Forgetting for a while of Brownian Motions and price patterns, 

if a time interval [0, T] is divided into n subset of equal length ∆t, it is true that  

𝑣𝑎𝑟∆𝑡(𝑃) = ∆𝑡2𝑣𝑎𝑟𝑇(𝑃) =
1

𝑛2
𝑣𝑎𝑟𝑇(𝑃) 

where, var∆t is the variance over the small interval of time ∆t, while varT is the variance 

over the whole period with just observation at time zero and time T. It means that the 

variance computed adding interpolated observation is smaller than the variance computed 

with just the initial values. A possible solution could be to impose that the price between 

two observations move proportionally to the square of the time elapsed: 

𝑝̇𝑡 = 𝑝𝑖 + √𝜔(𝑝𝑡+1 − 𝑝𝑡) 

This interpolation method implies to renounce to the mean “insensibility” of the 

interpolation process. According to the object of the analysis, if the mean or the variance, 

it is preferable to use one interpolation method or the other. The interpolation method 

necessarily increases the serial correlation between price sequences. Possible drawbacks 

are the risk that the autocorrelation series tends to the unit, with problems of stationarity 

and linear estimation. 

Another common issue is the data aggregation when passing to lower frequencies. 

This procedure necessarily implies a loss in data dispersion (loss of intra-period patterns), 

which translates into lower variance. This is consistent with the inequality P(r > threshold) 

< P(r/t > threshold/t) presented above. Data aggregation necessarily means loss of 

information. 
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In conclusion, there is the trade-off between reducing the frequency of 

observations and have more treatable data in computational terms, at the cost of losing 

intra-period information, or maintain high frequency data that needs higher computational 

efforts and may present noise or biases. 

 

3.1.3 Data synchronization 

In the previous chapter it has been discussed how, at higher frequencies, 

observations happen at irregular interval of time. It becomes hard to analyse together two 

price processes whose realizations happen at different timing. A first solution is to take 

just observation with same timing: {t} = {ti}∩{tj}. Problems arise with more processes at 

time, where there is the risk of losing a significant number of information. This is the case 

of illiquid markets or high frequencies observations. In the latter case, the time set can be 

seen as a continuous space, thus it becomes hard to take just the common values without 

the risk of creating gaps. The best scenario would be to create a minimum common 

discrete interval of time, and then fill each point with an observation. Missing points may 

be filled with procedures described in the previous paragraph. 

 

3.1.4 Market microstructure noise 

When dealing with HFD a common issue is the noise embedded in market 

microstructure. Each trading platform consist in a trading book, which collects all the 

orders entered into the system by traders, divided into bid orders (orders to buy) and ask 

orders (orders to sell). Each trader can submit a limit order, that is an order of buying or 

selling at a specified price; if there is a counterparty, then the order is immediately 

executed, otherwise it stays in the book, alongside the other unfulfilled orders. When an 

order arrives, it is executed at first the “best-quoted” order, which is the highest bid within 

the trading book for a sell order (hit), and the lowest ask for a buy order (lift). If more 

traders put the same quote, it is executed firstly the oldest one (price time priority). When 

a trader puts a limit order that can immediately be executed, it is filled until the price is 

still favourable and the quantity is satisfied. The non-executed part of the order stays in 
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the book until an opposite order comes. Traders can submit also market orders, which are 

executed immediately, whatever the price. This is the main reason of the presence of noise 

in data. If the trading book is not very liquid, that is when quantities are low and the 

difference of adjacent quotes is significant relatively to orders arrival, then a sufficient 

high quantity market-order may significantly shift the last observed (last traded) price. 

Then, market participants may fill again the resulting gap of quotes with new quotes, 

restoring the “fair” price of the security. This phenomenon was labelled by Roll (1984) 

as the bid-ask bounce. This situation may happen for several reasons: perhaps who made 

the market order does not care to hit less favourable quotes, or perhaps there may be tricky 

algorithms that may cause this situation. It is emblematic the case of the flash crash, 

where on 6th May 2010, within a couple of hours, a misleading algorithm caused the 

S&P500 to lose about 9%, which soon recovered almost all the losses. 

Market microstructure noise emphasize the trade-off about the optimal frequency 

of data to use. If higher frequencies data structure contains irrational patterns, the results 

of estimation may be biased, depending on the impact of this noise. On the other side, 

only by mean of HFD, the estimation of continuous-time processes is possible. In 

conclusion, if possible, market microstructure noise should not be taken into account, 

since it does not reflect the fair price of the traded security. Some data provider, usually, 

provide information of the mid quote, which may be reasonably better proxy for data 

analysis. 

Market microstructure noise is one of the main drawback of using HFD. Literature 

proposes different solutions. Aït-Sahalia, Mykland and Zhang (2005a) propose to not care 

about the noise at very high frequency. Other authors, instead, propose to use alternative 

robust estimators or techniques, such as the pre-averaging (Jacod et al., 2009), multiscale 

(Zhang, 2006; Aït-Sahalia et al., 2005b) and the realized kernel estimator (Barndorff-

Nielsen et al., 2008). 
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3.1.5 Ticks frequency effect 

 Falkenberry (2002) notes how parameters of filtration methods need to be adapted 

to the several securities, according to the ticks’ frequency. He showed that stocks with 

higher ticks’ frequency, which reveal to be those with higher market capitalization and 

volume, are more subject to errors. This implies that securities with higher tick frequency 

need a filtering algorithm that focuses on speed of calculation, since the number of 

observation is much higher. Securities exchanged at lower frequency, on the other side, 

allow for more tolerance in price movement, due to the greater time between adjacent 

ticks. 

 

3.1.6 Intraday patterns 

 Typically, the daily volume and the ticks’ frequency, for exchanged securities in 

regulated markets, show a U-shaped pattern, meaning that the most of transaction happens 

at the beginning and at the end of the trading day. This effect is more marked in securities 

with higher ticks’ frequency, probably because, at opening, traders “discount” all 

overnight information received during the non-trading hours, while at closing, they prefer 

to close some open positions. This may explain why this effect is more marked with 

higher market cap firms, since they are probably multinational company and thus they are 

affected to news and shocks from other part of the world. This implies higher level of 

volatility at the beginning and at the end of a trading day, which requires setting the 

filtering algorithm such to take into consideration this possibility of higher change in price 

during these hours. 

 

 

3.2 Econometrics of High Frequency Data 

 Having HFD in econometrics is a big advantage, since it is possible to use sample 

observations to produce accurate estimations of true parameters, through asymptotic 

theory.  
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 At higher frequencies, the structure and the behaviour of data may be significantly 

different. Engle and Russel (2004) showed how, at higher frequencies, correlation 

structure assumes more relevance. Analysing data at microstructure level makes possible 

to notice a substantial negative autocorrelation between quotes, due to the bid-ask bounce 

effect. Moreover, positive correlation is found at higher lags, due to traders behaviour that 

prefer to split the order in small quantities, to have a lower impact on the price. 

 An important application of HFD involves the volatility estimation. In models 

presented in the first chapter, volatility is treated as a hidden variable to be modelled as a 

particular stochastic processes. When time between observations tend to zero, it is almost 

sure that the instantaneous volatility can be captured, or, at least, a close proxy may be 

computed. 
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4. VOLATILITY IN HIGH FREQUENCY DATA FRAMEWORK 

The model that will be studied is the continuous time process: 

4.1 

𝑑𝑝𝜏𝑡
= 𝜇𝜏𝑡

𝑑𝑡 + 𝜎𝜏𝑡
𝑑𝑊𝜏𝑡

 

whose solution is: 

𝑝𝜏𝑡
= Μ𝜏𝑡

+ ∫ 𝜎𝑠𝑑𝑊𝑠

𝜏𝑡

𝜏0

 

with {p} the log-price, {μ} a generic function denoting the drift rate, {M} its integrated 

value, and {σ} the spot volatility of the log-price. The time space {τ} is itself a random 

variable. Assuming that {μ} and {σ} are independent from the Brownian Motion {W}, the 

log-price instantaneous difference, i.e. the instantaneous return, distributes as: 

𝑑𝑝𝜏𝑡
= 𝑟𝛿𝑡

~𝑁(𝜇𝛿𝑡
, 𝜎𝛿𝑡

2 ) 

𝑤𝑖𝑡ℎ   𝜇𝛿𝑡
= ∫ 𝜇𝑡𝑑𝑠

𝜏𝑡

𝜏𝑡−1

,      𝜎𝛿𝑡

2 = ∫ 𝜎𝑡
2𝑑𝑠

𝜏𝑡

𝜏𝑡−1

 

The daily drift component μ can be consistently estimated with just opening and closing 

day quotes. It can be also assumed, without loss of generality, to be constant or even zero. 

The daily σ component is unobservable. 

 

 

4.1 Some definitions 

 

4.1.1 Terminology. 

 To avoid confusion and abuse of terminology, the basic framework will now be 

provided once for all. Since the time space analysed is irregular, it will be denoted as the 

process {τ}. The analysis will be conducted on intraday data, on the h-th trading day. Each 
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day will be characterized by a starting time 0 and an ending time T. The trading day will 

be divided into the smallest possible time interval, coincident with the time-stamp of the 

dataset, i.e. the time of available observations. Since the time space is a random process, 

the interval of time {δ} is also random. The time space within the trading day is divided 

into n “irregular” sub-interval. Loosely speaking, if the time intervals were all equal, then 

it would be true that δ=T/n. Putting all together: 

𝑡𝑖𝑚𝑒 𝑠𝑝𝑎𝑐𝑒 𝑜𝑛 𝑡ℎ𝑒 ℎ𝑡ℎ  𝑑𝑎𝑦: {𝜏(ℎ, 𝑡)} = {0 = 𝜏0
ℎ, 𝜏1

ℎ , … , 𝜏𝑛
ℎ = 𝑇ℎ} 

= {𝜏𝑡
ℎ}, 𝑡 = 0, 1, … , 𝑛 

𝑇ℎ = ∑ 𝛿𝑡
ℎ

𝑛

𝑡=1

 

 

𝑝0
ℎ 𝑝1

ℎ    𝑝𝑡
ℎ    𝑝𝑛

ℎ 

          

0 = 𝜏0
ℎ 𝜏1

ℎ  …  𝜏𝑡
ℎ  …  𝜏𝑛

ℎ = 𝑇 

 

𝛿1
ℎ 𝛿2

ℎ  𝛿𝑡
ℎ  𝛿𝑛

ℎ 

 

For the following treatment the index h will be dropped, unless confusing. Moreover, to 

avoid too many subscripts, variables occurring at a specific time will be denoted as 

follows: 

𝑝𝜏𝑡
ℎ ≝ 𝑝ℎ+𝜏𝑡

: → 𝑝𝑡 

 

4.1.2 Martingales, local martingales, semi-martingales 

 A martingale Mt is a stochastic process such that the expected value of the future 

outcomes, given the current set of observation, is equal to the current value: 

Start day h End day h 
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𝐸[𝑀𝑡+𝑘|𝐼𝑡] = 𝑀𝑡,      𝑘 ≥ 0 

The random walk theory is a common example of martingale. The Brownian Motion is 

another example of a martingale. From stochastic calculus, the integral of a bounded 

process {X} whose integrand term is a martingale, e.g. a Brownian Motion, is itself a 

martingale: 

𝑀𝑡 = ∫ 𝑋𝑠𝑑𝑊𝑠

𝑡

0

 

 A local martingale, loosely speaking, is a stochastic process that is locally a 

martingale, meaning that there exist a series of time, called stopping time, subset of the 

whole time space, where the process behaves as a martingale. Finally, a semi-martingale 

is a composition of a local martingale {M} and a finite variation process {A}: 

𝑆𝑀𝑡 = 𝑀𝑡 + 𝐴𝑡 

The classic Itô’s formulation of log-price process (4.1) is an example of semi-martingale, 

with {A}=μ dt and {M}=σ dW. 

 

4.1.3 Quadratic variation (QV) 

 By Doob’s decomposition theorem, given a martingale process {M}, its quadratic 

variation ⟨M⟩ is the unique increasing process such that ⟨M⟩0=0 and the process {M2-⟨M⟩} 

is still a martingale. For a continuous-time semi-martingale process {X}, such as log-price 

processes, the quadratic variation assumes the form of: 

〈𝑋〉𝑡 = 𝑋𝑡
2 − 2 ∫ 𝑋𝑠𝑑𝑋𝑠

𝑡

0

 

The QV process may also be defined on the discrete time space τ, and, in this case, this 

variable takes the name of realized variance. Thanks to Protter (2004) developments, it 

can be shown that: 

𝑅𝑉𝑡 ≝ 〈𝑋〉𝑡
𝜏 = ∑ (𝑋𝑠 − 𝑋𝑠−1)2

0<𝑠<𝑡
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〈𝑋〉𝑡 = p − lim
sup{𝛿}→0

 〈𝑋〉𝑡
𝜏 

⇒ 𝑄𝑉 = 𝑝 − lim 𝑅𝑉 

Loosely speaking, the QV process can be considered as the squared process of a variable. 

Recalling the equation (4.1) for a continuous time stochastic process for the security log-

price: 

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 

by squaring both side of equation, it yields to: 

(𝑑𝑝𝑡)2 = 𝜇𝑡
2𝑑𝑡2 + 𝜎𝑡

2𝑑𝑊2 + 2𝜇𝑡𝜎𝑡𝑑𝑡𝑑𝑊𝑡 

and recalling by Itô’s calculus that dt2 and dtdW tend to zero faster than dW2, which is of 

order dt, the first and the third term of the equation can be dropped as tend to zero, and it 

is left that: 

(𝑑𝑝𝑡)2 = 𝜎𝑡
2𝑑𝑡 

Integrating both part, it becomes true that: 

∫ (𝑑𝑝𝑠)2
𝑡

0

= ∫ 𝜎𝑠
2𝑑𝑠

𝑡

0

 

and, recalling that the integral is the limit of the sum as the integrand term tend to zero: 

lim
sup{𝛿}→0

∑ (𝑝𝑡+𝛿𝑡
− 𝑝𝑡)

2

𝑡∈{𝜏}

= ∫ 𝜎𝑠
2𝑑𝑠

𝑡

0

lim
sup{𝛿}→0

 〈𝑝〉𝑡
𝜏 = ∫ 𝜎𝑠

2𝑑𝑠
𝑡

0

QVt = IVt

 

which implies that the integrated volatility is equal to the quadratic variation, and 

therefore, it can be estimated consistently with RV and HFD. The power of QV is that it 

provides a consistent estimator of true (integrated) variance without knowing the 

behaviour of μ or σ. The IV can be seen as a part of the return process. Indeed, the solution 

to the differential equation can be written as: 
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𝑝𝑇 − 𝑝0 = 𝑟𝑇 = ∫ 𝜇𝑡𝑑𝑡
𝑇

0

+ ∫ 𝜎𝑡

𝑇

0

𝑑𝑊𝑡 

Recalling that dpt is equal to the t-th return, QV process (and also IV) can be estimated 

by the daily sum of the squared high-frequency returns. 

 Barndorff-Nielsen and Shephard (2002) defined an asymptotic distribution for the 

daily QV process, as the time interval δ tend to zero, i.e. the number of subsamples n goes 

to infinity: 

√𝑛 (∑ 𝑟𝑡
2

𝑇

𝑡

− ∫ 𝜎𝑠
2𝑑𝑠

𝑇

0

)
𝑑
→  𝑁 (0, 2𝛿 ∫ 𝜎𝑠

4𝑑𝑠
𝑡

0

) 

→ √𝑛
𝑅𝑉ℎ − 𝐼𝑉ℎ 

√2𝐼𝑄ℎ

𝑑
→  𝑁(0, 1) 

The integral ∫ 𝜎𝑠
4𝑑𝑠

𝑡

𝑡−1
 is the integrated quarticity (IQ), which is not observable. The 

authors showed that the realized quarticity (RQ) estimator is consistent for the IQ: 

𝑅𝑄𝑡 =
1

3
𝑛𝛿−1 ∑ 𝑟𝑡

4

𝑇

𝑡

𝑑
→  𝐼𝑄ℎ 

and the sampled asymptotic distribution becomes: 

∑ 𝑟𝛿𝑡

2𝑇
𝑡 − ∫ 𝜎𝑠

2𝑑𝑠
𝑇

0
 

√2
3

∑ 𝑟𝛿𝑡

4𝑇
𝑡

= √𝑛
𝑅𝑉ℎ − 𝐼𝑉ℎ

√2𝑅𝑄ℎ
 

𝑑
→  𝑁(0, 1) 

Better results in terms of efficiency, even in small samples, may be obtained by using the 

approximated estimator: 

ln 𝑅𝑉ℎ − ln 𝐼𝑉ℎ 

√
2𝑅𝑄ℎ

(𝑅𝑉ℎ)2
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4.2 Models for volatility 

4.2.1 Equally spaced time interval 

 The availability of HFD improved substantially the analysis of econometrics 

models. If the assumption of a regular time space holds, then it is possible to divide the 

price path in interval of equal length ∆t=T/n. Assuming that the log-price follows the 

process (4.1): 

𝑑𝑝𝑡 = 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 

then the log difference is normally distributed: 

∆𝑝𝑡~𝑁(𝜇∆𝑡, 𝜎2∆𝑡) 

and, by maximum likelihood estimation, it yields: 

𝜇̂ =
∑ ∆𝑝𝑡

𝑛∆𝑡
=

∑ ∆𝑝𝑡

𝑇
=

𝑝𝑡 − 𝑝0

𝑇
 

𝜎̂2 =
∑(∆𝑝𝑡 − ∆𝑝̅̅̅̅ )2

𝑛∆𝑡
 

or, alternatively, the unbiased estimator for variance is: 

𝜎̂2 =
∑(∆𝑝𝑡 − ∆𝑝̅̅̅̅ )2

(𝑛 − 1)∆𝑡
 

If the log-price is standardized: 

𝑧𝑡 =
∆𝑝𝑡 − ∆𝑝̅̅̅̅

𝜎√∆𝑡
~𝑁(0,1) 

∑𝑧𝑡
2~𝜒𝑛−1

2  

the unbiased estimator for the variance can be written as: 

𝜎̂2 =
∑ 𝑧𝑡

2

(𝑛 − 1)∆𝑡
∙

𝜎2∆𝑡

𝜎2∆𝑡
=

𝜎2

𝑛 − 1
∙ (

∆𝑝𝑡 − ∆𝑝̅̅̅̅

𝜎√∆𝑡
)

2

=
𝜎2

𝑛 − 1
𝜒𝑛−1

2  

and the moments of this estimator are 
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𝐸[𝜎̂2] =
𝜎2

𝑛 − 1
𝐸[𝜒𝑛−1

2 ] =
𝜎2

𝑛 − 1
(𝑛 − 1) = 𝜎2 

𝑉𝑎𝑟[𝜎̂2] =
𝜎4

(𝑛 − 1)2
𝑉𝑎𝑟[𝜒𝑛−1

2 ] =
𝜎4

(𝑛 − 1)2
2(𝑛 − 1) =

2𝜎4

𝑛 − 1
 

which shows that the estimator is consistent and unbiased as n tend to infinity. The 

asymptotic distribution for the variance estimator is: 

√𝑛 − 1(𝜎̂2 − 𝜎2)
𝑑
→ 𝑁(0, 2𝜎4) 

It is possible, without loss of generality, to express the variance as sum of squared 

observations, as a centred distribution. Indeed: 

𝜎̂2 =
∑(∆𝑝𝑡 − ∆𝑝̅̅̅̅ )2

𝑛∆𝑡
=

∑(∆𝑝𝑡
2 + ∆𝑝̅̅̅̅ 2 − 2∆𝑝𝑡∆𝑝̅̅̅̅ )

𝑛∆𝑡
=

∑(∆𝑝𝑡
2) − 𝑛∆𝑝̅̅̅̅ 2

𝑛∆𝑡
= 𝜎𝑐𝑒𝑛𝑡𝑟𝑒𝑑

2 −
∆𝑝̅̅̅̅ 2

∆𝑡
 

where the last term tends to zero as the interval become smaller. At high frequency, the 

centred asymptotic distribution is the same as a non-centred one. It can be argued also 

that tick returns are so small that the mean is almost zero, or negligible. 

 

4.2.2 Irregular time space 

 Daley and Vere-Jones (1988) defined the point processes as those processes where 

the time of trades is a sequence of non-decreasing random variable, and, at any time point, 

the number of trades behave as a random variable. This process seems to fit reasonably 

well the continuous time price process. Engle and Russel (1998) gave an example on how 

to model the stochastic process of time. They introduced the autoregressive conditional 

duration model (ACD), with the duration, δt, being the interval of time between two 

consecutives orders arrival. The duration is a stochastic process, supposed to follow a 

GARCH-like model. This found application in Engle (2000), who proposed the Ultra 

High-Frequency GARCH model, where the variance over this small time interval is: 

𝑣𝛿𝑡
2 = 𝑉𝑎𝑟𝑡(𝑟𝑡|𝛿𝑡) 

and then the variance of the unit period, that is what really matters, is: 
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𝜎𝑡
2 ≝ 𝑉𝑎𝑟𝑡 (

𝑟𝑡

√𝛿𝑡

|𝛿𝑡) =
𝑣𝛿𝑡

2

𝛿𝑡
   ⇒    𝑣𝛿𝑡

2 = 𝛿𝑡𝜎𝑡
2 

which is supposed to follow a GARCH (1,1) process. The interval of time between the 

observations may be modelled as follows: 

𝛿𝑡 = 𝜓𝑡𝜀𝑡 

with {ψ} denoting a stochastic process following a generic GARCH distribution. If the 

ACD process for the arrival times is supposed to be exogenous from price-volatility 

process, it is possible to estimate duration at first, and then estimate through MLE the 

GARCH volatility model, conditional on the previous results. This procedure may still 

result inefficient. Having defined another stochastic process implies to deal with more 

complex likelihood formulation. 

 

4.2.3 Microstructure noise effect 

 In the presence of market microstructure noise, according to Hansen and Lunde 

(2006) the RV estimator for IV is biased, depending on the degree of noise. The observed 

price is: 

𝑝𝑡
∗ = 𝑝𝑡 + 𝜀𝑡,     𝜀𝑡~𝑁(0, 𝜎𝜀

2) 

and, thus, is expected that: 

𝐸[𝑅𝑉𝑡
∗] = 𝐸[∑𝑟𝑠

∗2]

= 𝐸[∑(𝑟𝑠 + 𝜀𝑠 − 𝜀𝑠−1)2]

= 𝐼𝑉𝑡 + 2𝑛𝜎𝜀
2

 

This result implies that, as n approaches to infinity (or the interval tend to zero) the 

estimator for IV diverges linearly in n. This is the reason why in literature is preferred the 

use of sparse sampling, that is the use of 1-30 minutes data frequency, unless there exists 

an efficient estimator that takes into account the presence of microstructure noise (as, for 

example, in Andersen, Bollerslev and Diebold, 2008). The sparse sampling procedure 

reduce the information set available and thus a less precise estimate of instantaneous 

volatility may result. 
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4.3 Parameters estimation 

 As discussed, stochastic volatility models introduce a distribution process also for 

variance. There are at least two multivariate processes characterized by their particular 

distribution, that are the price process and the variance process. In high frequency 

framework also time can be stochastic. This means that the classical method of estimation 

by maximum likelihood is infeasible, since it would be necessary to deal with several 

“layers” of distributions and conditional distributions, which do not allow for a closed-

form of the likelihood function.  

 In literature there are several alternative to the SV parameter estimation 

procedures, for instance the GMM approach. Andersen and Sorensen (1996) gave the first 

approach toward this issue, by expressing the parameters in terms of population 

conditional moments, and then substituting the expectation operator with the sample 

moments. Ruiz (1994), proposed the estimation through Quasi-MLE, which uses a 

simplified formulation of the likelihood function in order to produce an estimation of the 

latent variables. Empirical evidence shows that the distribution of innovations if far from 

normality, in the better case it has fatter tails, if not even asymmetric. The QMLE impose 

a Gaussian distribution to innovation, which makes computations lighter. This 

simplification may be applied only if fourth moment of the innovations’ distribution is 

finite, but works very well even if the true distribution is not Normal. The QMLE, under 

the latter assumption, is a consistent estimator, although not efficient. 

 With the development of computing power, there have been developed estimation 

procedure that rely on simulations. For instance, Monte Carlo (MC) simulation methods 

hae been widely adopted. Since it is not feasible to have a closed-form for the moments 

of complex distributions, it is possible to simulate the patterns of these distributions and 

then compute the sample moments on the generated observations. Jacquier, Polson and 

Rossi (1994), were early adopters of simulations methods using Bayesian analysis. Their 

studies were used by Chib, Nardari and Shephard (2002) to develop the Markov Chain 
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Monte Carlo (MCMC) simulation methods for volatility estimation. MCMC approach 

consists into the application of particular algorithms (Gibbs sampling, Metropolis-

Hasting) that generate independent samples of a stochastic process, i.e. Markov Chains, 

and then use simulation method to estimate the parameters of interest. This allows 

independent draws from complicated posterior distributions of the interested variables, 

for example volatility and parameters in a stochastic volatility framework. 

 

4.3.1 Maximum likelihood estimator with microstructure bias 

 The markovian property of log-prices allows certain simplification in likelihood 

function. Using Bayesian probability and Markov distributions properties, the probability 

of the observation set {pt} occurring is: 

𝑃(𝑝𝑛, … , 𝑝0; 𝜃) = 𝑃(𝑝𝑛|𝑝𝑛−1, … , 𝑝0; 𝜃) ∙ 𝑃(𝑝𝑛−1, … , 𝑝0; 𝜃)

= 𝑃(𝑝𝑛|𝑝𝑛−1; 𝜃) ∙ 𝑃(𝑝𝑛−1, … , 𝑝0; 𝜃)

= 𝑃(𝑝𝑛|𝑝𝑛−1; 𝜃) ∙ … ∙ 𝑃(𝑝0; 𝜃)
 

and the likelihood function is: 

ℒ(𝜃) = ln 𝑃(𝑝0; 𝜃) + ∑ ln 𝑃(𝑝𝑖|𝑝𝑖−1; 𝜃)

𝑛

𝑖=1

 

which does not have a closed-form solution. 

 Aït-Sahalia, Mykland and Zhang (2005a) gave a practical approach of estimation 

through MLE in presence of market microstructure noise. Let the noisy log-price be the 

correct price plus some error term: 

𝑝𝑡
∗ = 𝑝𝑡 + 𝜀𝑡,      𝜀𝑡~𝑁(0, 𝜎𝜀

2) 𝑖𝑖𝑑 

Then returns are defined as the difference of log-prices: 

𝑟𝑡 = 𝑝𝑡 − 𝑝𝑡−∆𝑡,      𝑟𝑡~𝑁(0, 𝜎𝑟
2∆𝑡) 

with rt independent from the noise εt. Substituting the previous equality the observed 

return is: 
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𝑟𝑡
∗ = 𝑝𝑡

∗ − 𝑝𝑡−∆𝑡
∗

= 𝑝𝑡 + 𝜀𝑡 − 𝑝𝑡−∆𝑡 − 𝜀𝑡−∆𝑡

= 𝑟𝑡 + 𝜀𝑡 − 𝜀𝑡−∆𝑡

 

whose moments of interest are: 

𝑉𝑎𝑟(𝑟𝑡
∗) = 𝜎𝑟

2∆𝑡 + 2𝜎𝜀
2 

𝐶𝑜𝑣(𝑟𝑡
∗, 𝑟𝑡−∆𝑡

∗ ) = −𝜎𝜀
2 

Observed returns can be rewritten as a MA (1) process: 

𝑟𝑡
∗ = 𝑢𝑡 + 𝜃𝑢𝑡−∆𝑡,      𝑢𝑡~𝑁(0, 𝜎𝑢

2) 

whose moments are: 

𝑉𝑎𝑟(𝑟𝑡
∗) = 𝜎𝑢

2(1 + 𝜃2) 

𝐶𝑜𝑣(𝑟𝑡
∗, 𝑟𝑡−∆𝑡

∗ ) = 𝜃𝜎𝑢
2 

which can be easily estimated through MLE procedure. Now, equating the previous 

equations, it is possible to use the latter estimated parameters to find an estimation for the 

variance of returns and innovations: 

𝜎𝜀
2̂ = −𝜃𝜎𝑢

2̂ 

𝜎𝑟
2̂ =

𝜎𝑢
2̂(1 + 𝜃2) − 2𝜎𝜀

2̂

∆𝑡
=

𝜎𝑢
2̂(1 − 𝜃)

2

∆𝑡
 

 

4.3.2 Realized kernel estimator 

 Kernel estimators are non-parametric class of functions, which allow to fit a 

distribution starting from observed data. The simplest case consists into fitting the 

distribution as a sum of sinusoidal curves with equal height and width. Barndorff-Nielsen, 

Hansen, Lunde and Shephard (2008) proposed a kernel estimator (“flat-top”) as an 

alternative to the MLE. The latter is not consistent and not unbiased in high-frequency 

framework. This is true in particular when is imposed a long-memory autocorrelation 

structure, both in the noisy errors and returns. The estimator proposed by the authors is: 
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𝑅𝐾 = 𝛾0 + ∑ 𝑘 (
ℎ − 1

𝐻
) (𝛾ℎ + 𝛾−ℎ)

𝐻

ℎ=1

 

𝑤𝑖𝑡ℎ     ℎ = −𝐻, … , −1, 0, 1, … , 𝐻 

with 

𝛾ℎ = ∑(𝑝𝑡 − 𝑝𝑡−∆𝑡)(𝑝𝑡−ℎ − 𝑝𝑡−ℎ−1)

= ∑𝑟𝑡𝑟𝑡−ℎ  

denoting the realized auto-covariance, and k(x) representing a weighting function defined 

on a domain space x∈ [0,1] with k(0)=1, k(1)=0. The authors chose the Tuckey-Hanning 

kernel function: 

𝑘(𝑥) = sin2(𝜋/2(1 − 𝑥)2 ) 

The ideal bandwidth H* is a function both of realized variance and realized quarticity. 

The authors showed also that this kernel estimator is robust to market microstructure noise 

and irregularly spaced observations. 

 

4.3.3 Bipower variation 

 Barndorff-Nielsen and Shephard (2003) introduced the Realized Bipower 

Variation (BPV) estimator as a robust estimator in case of jump processes in volatility 

structure. If the underlying model is characterized by jumps, that are discrepancy in price 

due to news or announcements, the QV process do not converge to the IV. Let the process 

be: 

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + 𝜖𝑡𝑑𝑞𝑡 

whose solution is 

𝑝𝑡 − 𝑝0 = 𝑟0→𝑡 = ∫ 𝜇𝑠𝑑𝑠
𝑡

0

+ ∫ 𝜎𝑠𝑑𝑊𝑠

𝑡

0

+ 𝑘𝑡𝑁0→𝑡 



44 
 

with {k} iid random process, {q} a Poisson process and N its integral, denoting the number 

of jumps occurred during the interval of time. As the time interval tend to zero, it is 

possible to demonstrate that the QV process equals: 

𝑄𝑉𝑡 = 𝐼𝑉𝑡 + 𝐽𝑉𝑡 

with 

𝐽𝑉𝑡 = ∑ 𝑘𝑗
2

𝑗<𝑡

 

Authors proposed to estimate IV through the BPV, defined as 

𝐵𝑃𝑉𝑡(𝑝, 𝑞) = p − lim
sup{𝛿}→0

𝛿1−
𝑝+𝑞

2 ∑|𝑟𝜏𝑖
|

𝑟
|𝑟𝜏𝑖−1

|
𝑠

𝑡

𝑖=2

 

In general, it is expected that 

𝐵𝑃𝑉𝑡(𝑝, 𝑞) = 𝜇𝑝𝜇𝑞 ∫ 𝜎𝑢
𝑝+𝑞𝑑𝑢

𝑡

0

 

𝜇𝑥 = 𝐸[|𝑢|𝑥] = 2𝑥/2
Γ (

x + 1
2 )

Γ(1/2)
,      𝑢~𝑁(0, 1) 

which, in the particular case of p=q=1, it yields to the following result: 

𝜋

2
∑|𝑟𝜏𝑖

||𝑟𝜏𝑖−1
|

𝑡

𝑖=2

=
𝜋

2
𝐵𝑃𝑉𝑡

𝑝
→ 𝐼𝑉𝑡 

which is a consistent estimator for IV and robust to the presence of jumps. The reason is 

that jumps occur just a limited number of times during the observed period. The number 

of contiguous jumps tends to zero in probability as the time interval goes to zero, and 

consequently these terms have negligible impact on the limit probability. BPV is a robust 

estimator, but not efficient, since RV has still less variance. Similarly, it is possible to 

estimate the IQ with the quadpower variation: 

𝑄𝑃𝑉𝑡 = 𝛿−1 ∑ ∏|𝑟𝑖−𝑗|

3

𝑗=0

𝑡

𝑖=4

𝑝
→

4

𝜋2
𝐼𝑄𝑡 
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This is useful to make inference about the continuous property of prices. The standardized 

bipower variation is: 

𝑍𝐵𝑃𝑉 =
𝛿−

1
2(𝜇1

−2𝐵𝑃𝑉𝑡 − 𝑅𝑉𝑡)

√𝜇1
−4𝑄𝑉𝑃𝑡

 
𝑑
→  𝑁(0, 𝜐) 

which, for significantly negative values, rejects the null hypothesis of a continuous 

sample path, in favour of a discrete-jump process. 

 

4.3.4 Two Stage Realized Variance 

In presence of market microstructure bias, the QV process of observed “dirty” 

prices is consistent and asymptotically normal estimator also for the quantity 2𝑛𝐸[𝜀2], 

rather than the only volatility process. Aït-Sahalia, Mykland and Zhang (2005b) proposed 

the Two Stage Realized Variance (TSRV) estimator to overcome this problem. They 

started from the fact that the biased estimator yields to: 

〈𝑟∗〉𝑡 → 〈𝑟〉𝑡 + 2𝑛𝐸[𝜀2] + 𝑂(4) 

Using a sparse sampling procedure allows to reduce the magnitude of the second element 

of this equation (the microstructure noise). If, for example, observations are sampled at 

1-second interval, then a better estimator can be obtained by sampling at 5-seconds 

interval, for each of the possible 5-seconds windows, and then averaging those estimators. 

In formulas: 

〈𝑟∗〉𝑡
𝑎𝑣𝑔

=
1

𝐾
∑〈𝑟∗〉𝑡

𝑘

𝐾

𝑘=1

 

with K denoting the sampling interval, e.g. 5, and the term into summation is the RV 

estimator computed on the grid of length K starting at k. Since the bias term can be 

consistently estimated through: 

𝐸[𝜀2]̂ =
1

2𝑛
〈𝑟∗〉𝑡 
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this implies that, denoting with 𝑛̅ the average length of the grids,: 

〈𝑟∗〉𝑡
𝑎𝑣𝑔

= 〈𝑟〉𝑡 + 2𝑛̅𝐸[𝜀2] + 𝑂(4) 

〈𝑟〉𝑡
𝑇𝑆𝑅𝑉 = 〈𝑟∗〉𝑡

𝑎𝑣𝑔
−

𝑛̅

𝑛
〈𝑟∗〉𝑡 

which is the unbiased estimator for the QV process. 

 

4.3.5 Realized range-based variance 

Methods of estimation that made use of ranges, rather than returns, were pioneered 

by Parkinson (1980). The very contribution came from Alizadeh, Brandt and Diebold 

(2002), who showed that these estimators are more efficient than RV. The advantages of 

the range estimators are that they have less variability (since, by construction, is a measure 

of data aggregation), are more robust to microstructure noise, and their logarithm is 

normally distributed. They are built using just the variation of the interested variable, i.e. 

log-prices, over a certain period of analysis, e.g. a trading day, ignoring all the intraday 

observations. Formally the range estimator for the h-th day proposed by the authors is: 

𝑅𝑔𝑉ℎ = sup
h−1≤t≤h

𝑝𝑡
ℎ − inf

h−1≤t≤h
𝑝𝑡

ℎ 

It is the difference between the high and low quote for the selected interval. Those data 

are also available on the main financial newspapers. A property of this estimator is that it 

is more efficient than RV and makes computations lighter, but there is a substantial loss 

of information. There is always the trade-off between sampling at higher frequencies and 

have more information, or have less information with less noise. Sometimes in literature 

is widely used the log of this estimator. The estimator proposed by Parkinson (1980), in 

absence of the drift component in price diffusion is: 

𝜎ℎ
2̂ =

1

4 ln 2
∑ (𝑅𝑔𝑉∆𝑡)2

ℎ

∆𝑡∈(ℎ−1;ℎ] 

 

and then it is possible to use this estimator in an AR(p) model to forecast the future 

realization of variance. Rogers and Satchell (1991) improved this formulation introducing 
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both the drift diffusion term and information about opening and closing prices. They 

found that this estimator is more efficient. 

A possible drawback is that these estimators are sensible to outliers. To overcome 

this issue, a feasible solution is to use the range quantiles, that is to consider determined 

quantiles of the observation set instead of the lowest and highest observation during the 

time period. 
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5. APPLICATIONS 

This chapter will be focused on the application of stochastic volatility models to 

a high-frequency database containing the observations for the EUROSTOXX index levels. 

The analysis covers the period from 2011 to 2015, at irregular intra-minutes frequencies, 

for a total of 4.598.132 rows. All computations have been done with Julia language. 

Figures (2) show some extracts of the database. 

 

 

5.1 Preliminary adjustments 

Some adjustments were necessary to handle this huge amount of data. Some 

extracts of the database are shown if figures (2). Figure (2a) is an extract of weekly prices, 

while figure (2b) is a one-minute extract where possible outliers can be noticed. Figure 

(2c) plots the time series of observed high-frequency returns. Figure (2d) shows a table 

of the data analysed. 
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Figure 2. Extracts of the database. Respectively, weekly sample pattern, one-minute sample pattern, time series of 
high-frequency returns, sample table of the dataset. 

 

5.1.1 Dates handling 

It is necessary to collect the date and time array into the language-specific type. 

In Julia it is sufficient to merge the Date string and the Time string of the dataset, and the 

convert them into a DateTime type, specifying the correct formatting. Since intraday time 

is expressed in GMT time, which means that observed trading hours vary depending on 

winter or summer time period, dates are converted into local time. It is sufficient to add 

the GMT offset (hours offset) to the intraday time. This allows to save time for cleaning 

operations. 

Dates operations require much more computing power, respect real number 

operations. Julia language has few and basic functions which may be applied to Date and 

DateTime type, compared to other programming languages. It does not account for time 

serialization, i.e. it does not provide the identifier number to dates. The code written for 

this analysis accounts also for data conversion. Since the final objective is to produce a 

minute-by-minute time series of prices, dates are converted in number such that each 

point of this date-time array measures the minutes elapsed from a given starting time. The 

first observation is selected as the time-zero point. It is then possible to save the 
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information of this serialized-time array, along with the identity of the first starting point. 

Passing from String type to real type (precisely, to Float64 or even UInt32) allows to 

reduce the loading time necessary to open the file for future analysis, and it requires less 

memory usage, either in terms of storage requirements and local memory. 

 

5.1.2 Data cleaning 

Cleaning operations need to be applied either on Time array and on Prices. As 

figure (2) shows, there are some observations which are reported but they do not belong 

to normal trading hours. Only observations between 9:00 am and 17:30 pm are considered 

in this analysis, the other will be discarded. It is rather simply to make comparison 

operations in Julia. The only problem is that, since it does not provide an intraday-time 

type (time without the day), it is necessary to create an array of DateTime, starting from 

intraday observations, pretending they happen on a same fixed day. Once outliers are 

detected, the corresponding prices also are deleted from the dataset. 

Regarding price cleaning, since the dataset is composed of index observations, 

which is less sensible to all those errors described in the previous chapters, no further 

operations need to be done. Index data are given by the weighted sum of its component, 

which means that whenever an error occurs on one of the underlying stocks, it is simply 

averaged by the other components’ price, thus reducing drastically the entity of the bias 

and the probability of encountering an error in the index price. The same reasoning applies 

to market microstructure bias. 

 

5.1.3 Data modelling 

In order to compute stochastic volatility measures, it is preferable to create an 

equally spaced time grid. RV can be computed using heterogeneously-spaced 

observations, but, as also confirmed by literature, sparse sampling is more efficient. The 

algorithm used in this analysis is built on the following steps. A DateTime array of the 

equally-spaced times is created, and then a price is assigned to each one of this point. The 
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price assigned in correspondence of a given point is the price occurring at the nearest 

previous observation, thus the last observed price at that point. The position of the wanted 

observation is determined by comparing each point of the homogeneous-spaced time grid 

with the whole heterogeneous dates array. The corresponding price is simply the price on 

the whole price array, at the positions given by the previous step. Appling the “normal” 

algorithm which finds for the last DateTime less than a given point on the time grid, for 

all elements of this time grid array, would require a huge computation effort and amount 

of time. The @time macro built in Julia allows to understand the time elapsed for the 

computation of a routine, and the allocated memory. The standard procedure requires, in 

the best of the cases, about 0,86 seconds each 100 points of the time grid, with memory 

allocation of more than 63 MB. Since there are 536.550 points on the time grid, the time 

necessary to run the code would be about 4.614 seconds, that is 1 hour and 20 minutes. 

Even using the serialized time array, the benefits in reducing the time are very small, 

elapsed time passes to 0,683 per 100 points (1 hour for whole array). The algorithm 

developed in this thesis, instead, is able to perform the same computations, on first 100 

points) in about 0,0015 seconds and just 17 KB allocated, for a total of 8 seconds on the 

total array. It is possible to reduce further the elapsed time by using sparse matrices, to a 

total of 0,19 seconds for the whole array, and a total of 84 MB allocated. Once positions 

are found, there are still “missing slots” to fill, which are the one that are left blank when 

non-adjacent minutes observations are encountered. These spaces are filled with the most 

recent price at that time. 

Creating a uniform time grid allows to make computations easier, both because 

number of observations is reduced, and because the position of a given observation in 

time is well defined. The latter result implies computational efforts savings, since it is 

possible to make operations without the need of intraday times. The resulting price matrix 

has the following form: 

 

𝐷𝑎𝑡𝑒𝑠 

𝐼𝑛𝑡𝑟𝑎𝑑𝑎𝑦 𝑡𝑖𝑚𝑒 
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It is possible to work on this matrix to compute variables of interest. RV at 1-minute 

frequency (RV1) is computed by summing the squared returns, column-by-column. For 

purpose of analysis, also 5-minute RV (RV5) is computed, which is derived from the 

price matrix, where only rows which are multiple of 5 are considered. TSRV is obtained 

by applying the previous computation to the five 5-minutes rolling windows series of RV, 

then averaged and cleaned from the bias term. BPV is obtained simply by summing the 

adjacent product series of returns. 

 

 

5.2 Data analysis 

5.2.1 Returns series 

As largely discussed in literature, return distribution is not normal, but shows 

fatter tails. The distribution has more kurtosis the higher the frequencies are. 

 

Figure 3: Normalized returns density. 
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Figure (3) shows the density of returns normalized using the sample standard deviation, 

compared with a Normal (0,1) distribution. It is clear that returns are distributed almost 

totally around the mean, with very few, but significant extremes (there are 396 normalized 

observations which are greater than 10 in absolute value). With daily frequency, 

normalized return has almost normal distribution. One of the peculiarity of RV is that: 

𝑟𝑡+1

√𝑅𝑉𝑡+1

 
𝑑
→  𝑁(0,1) 

the resulting density assumes the form seen in figure (4), that is very close to a Normal 

(0,1), at least it is closer than the other one.  

 

Figure 4: Comparison between normalized return with, respectively, sample standard deviation and RV. In red, Normal 
(0,1) is displayed. 

This is a very important result, because it allows to make more accurate inference. It can 

be useful, for example, for risk management purposes, in evaluating the quantiles of 

future realizations of returns. 

 

5.2.2 Volatility measures 

In the following section statistical properties of some selected volatility measures 

will be analysed. The variables considered are RV1, RV5, BPV and TSRV. These last 
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two in particular are chosen since they respond to specific issues of realized variance, 

respectively jumps and microstructure noise. 

Before comparing these four variable, a premise is necessary. RV computed using 

all available prices has not been included, since it is “too noisy”. As stated in previous 

chapters, sparse sampling procedure yields to better results, as shown in following tables 

and figures. The choice of one and five minutes is inducted mainly by literature, and 

because these frequencies are the most representative of the category of high-frequency 

sampled observations. Looking at figure (5), it is clear that RV1 has the highest 

explanatory power, in terms of adjusted R-squared of a regression of the variable on its 

lags. The number of lags are determined by BIC procedure. RV5 seems to be a good 

representative of lower sampling frequencies, since adjusted R-squared is similar to that 

of the following sampling minutes. 

Sampling frequency 

(minutes) 

Adj. R-squared of 

𝑹𝑽𝒕~[𝟏 𝑹𝑽𝒕−𝒍𝒂𝒈] 

Adj. R-squared of 

√𝑹𝑽𝒕~[𝟏 √𝑹𝑽𝒕−𝒍𝒂𝒈 ] 

0 0,091 0,192 

1 0,609 0,642 

2 0,585 0,624 

3 0,540 0,587 

4 0,487 0,554 

5 0,476 0,546 

6 0,468 0,535 

7 0,441 0,521 

8 0,441 0,526 

9 0,467 0,534 

10 0,479 0,543 

Figure 5: Sparse sampling results for RV. 𝑅𝑉𝑡−𝑙𝑎𝑔 is a matrix whose columns are the lags of RV. The number of lags is 

given by BIC procedure. 

From figure (6) it is possible to notice that BPV has the least number and 

magnitude of “peaks”, confirming the fact that this estimator aims to reduce jump bias in 

return series. Figure (7) shows the relation between each stochastic variable with its first 

lag. Combined with results obtained in figure (8), which shows the autocorrelation 
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function, it is interesting to notice how strong and persistent is the relation between two 

adjacent observations, and it seems to stay stable after about 10 lags. Considered the 

results here analysed, RV1 and BPV seem to be the variables with the highest relation 

with their lags. These results translate into good chance of obtaining reasonable forecasts, 

with a simple AR(p) model of the daily stochastic variables. Figure (8) and (9) illustrates 

how this explanatory/predicting power is enhanced if square root process is used. Both 

the autocorrelation of square root process stays always higher than the normal process, 

and adjusted R-squared increases. 

 

Figure 6: Plot of the stochastic variables time series. 



57 
 

 

Figure 7: Scatter plot of stochastic variables on their first lag. 

Figure 8: Autocorrelation function at first 30 lags both for normal process and its square root. 
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Variable 
Adj. R-squared of 

𝑹𝑽𝒕~[𝟏 𝑹𝑽𝒕−𝒍𝒂𝒈] 

Adj. R-squared of 

√𝑹𝑽𝒕~[𝟏 √𝑹𝑽𝒕−𝒍𝒂𝒈 ] 

RV1 0,6092 0,6417 

RV5 0,4756 0,5463 

BPV 0,6341 0,6848 

TSRV 0,4395 0,5190 

Figure 9: Adjusted R-squared of a regression of the stochastic variables into a constant and its lag. On the left 
column the analysis is conducted on simple variables, on the right column it is on the square root of those variables. 

 

 

5.2.3 Assessing self-predictive power 

Since the autocorrelations are significant, it is reasonably to assess the predicting 

ability of the variables on future realizations of themselves. The predicted variables are 

computed using rolling windows of one year. On each of these rolling windows, the 

coefficients of a regression of an AR (3) model with constant are computed, and then they 

are applied to the most recent observations in order to produce the one-step-ahead 

forecasts. To compare results across the different models, the rule of the squared error is 

applied. It consists into evaluating the sum of the squared deviations of the forecasts from 

the realized values. The analysis is conducted both on the normal series and on their 

square root. Figure (10) and (11) represent the time series of forecasted values. The first 

set of series is the normal one, while the second series is the square root process. It appears 

that forecasted values act as smoothing operators, since they are not able to forecast the 

unpredictable peaks of the realized variables. The most efficient, indeed, is the BPV, since 

peaks are more difficult to encounter. Figure (12) summarize those results. In both cases, 

it appears as BPV and RV1 are the most efficient “self-estimators”. 
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Figure 10: Rolling window forecasts of the stochastic variables vs actual realized observations. 
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Figure 11: Rolling window forecasts of the square root stochastic variables vs actual realized observations. 
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Variable SSE SSE(n) Sign 

RV1 4,99E-06 0,137935 57,8% 

RV5 9,31E-06 0,189187 56,2% 

BPV 2,85E-06 0,110936 58,4% 

TSRV 7,00E-06 0,164934 56,6% 

√RV1 0,006945 4,38471 57,6% 

√RV5 0,010317 5,39894 55,7% 

√BPV 0,004821 3,66814 59,0% 

√TSRV 0,009152 5,08072 56,6% 

Figure 12: Explanatory power of stochastic variables. The analysis is conducted with a rolling window forecast. SSE 
stands for sum of squared errors, that are the difference between the forecasted and the observed variables. SSE(n) 
are the normalized errors, that are SSE divided by the mean of the absolute errors. Sign is the percentage of correct 
predicted movements, in terms of up or down movement. 

 The last words of this paragraph are worth to introduce a useful model which uses 

RV variables to construct a proxy for the stochastic variance. It is the Heterogeneous 

AutoRegressive (HAR) estimator, suggested by Corsi (2009), defined as follows: 

𝐻𝐴𝑅 − 𝑅𝑉𝑡 = 𝛽𝑑𝑅𝑉𝑡
1 + 𝛽𝑤𝑅𝑉𝑡

5 + 𝛽𝑚𝑅𝑉𝑡
20 

with: 

𝑅𝑉𝑡
ℎ =

1

ℎ
∑ 𝑅𝑉𝑡−𝑖

ℎ

𝑖=1

 

The letters d, w and m are often used instead of the number indexes, since they represent, 

respectively, the daily, weekly and monthly moving average of RV. The HAR-RV may 

be a very powerful proxy for the variance process. Its utility emerges if it is considered 

that in a simple AR (3) process, an adjusted R-squared of 80% is obtained. This model 

seems to better capture the different horizons effects, by disentangling RV process into 

its weekly and monthly moving averages. It accounts in part also for mean reversion, if 

the monthly mean is close to this value. 

The following section will show how to use stochastic volatility measures for 

financial purposes. 
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5.3 Application – trading the V2X 

The first application shown in this thesis is a trading application. The object is to 

trade the VSTOXX index, whose ticker is V2X, that is the volatility index for the 

EUROSTOXX index. It works similarly to VIX index for the S&P500, thus it shows the 

volatility of the Euro-area implied from hedged at-the-money options. Figure (13) plots 

the level of V2X index versus the RV1. It is clear that RV is a good proxy for volatility 

perceived on the financial market. This is more accentuated with the square root process. 

Figure (14) shows that a linear relation between the index and the stochastic volatility 

variables, at contemporaneous time, may exist. These variables may be used as good 

proxies for the true volatility. Combining this with the results obtained in the previous 

chapters, about the autocorrelation strength, it may be possible to forecast the level, or at 

least the direction of movement, of the V2X index. Figure (15) and (16) summarizes the 

results as far discussed. This led to the confirmation that square root process best fits the 

forecast model. 

 

Figure 13: V2X index vs RV1 and square root process for RV1. 
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Figure 14: Scatter plots of V2X vs RV1 and BPV, and their square root process. It is possible to infer that a linear relation 
between these variables may exist. 

 

Explanatory 

variable 
V2X ~ Xt V2X ~ ln(Xt) V2X ~ √Xt 

RV1 0,5610 0,5812 0,6851 

BPV 0,5024 0,5937 0,6868 

RV5 0,4939 0,5335 0,6227 

TSRV 0,4733 0,4728 0,6034 

HAR 0,8248 0,8258 0,8746 

Figure 15: Same-time relation between the V2X and the selected stochastic variables. On the rows, the explanatory 
variables are pointed out, while the column indicates the regression specific function applied to those variables. Cells 
indicate the adjusted R-squared of these regressions. 
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Explanatory 

variable 
V2Xt ~ Xt-1 V2Xt ~ √Xt-1 

V2Xt ~     

√Xt-1, √Xt-2 

RV1 0,5430 0,6603 0,7284 

BPV 0,4848 0,6595 0,7081 

RV5 0,4759 0,5998 0,6940 

TSRV 0,4554 0,5810 0,6819 

HAR 0,8042 0,8501 - 

Figure 16: Same analysis of the previous table, but on the first lag of the explanatory variables. HAR model has been 
analyzed only on the first lag and not also the second, since it already contains previous lag information. 

The trading strategy followed is to forecast through an AR model the level of RV1, 

which was shown to have the higher adjusted R-squared with the V2X index, and then 

use the sign of this forecast as a trading signal (buy or sell) for the V2X. Results are 

computed assuming that is possible to buy or sell one contract of V2X at the price given 

by its level, without considering any transaction costs. Returns are computed as if on each 

day 1$ is invested, and at the end of the day the position is closed. The next day another 

contract of 1$ is traded (the proceeds are not reinvested to avoid timing biases). Figure 

(17) displays the result of this strategy. The benchmark strategy consists into trading the 

V2X depending on its previous behaviour, thus buy if it has risen, sell otherwise. The 

strategies involving stochastic volatility consist into forecasting the index with √RV, and 

then buy if a growth is foreseen, sell otherwise. The last strategy adds to the previous a 

momentum component, which accounts for mean reversion. If the level of the V2X has 

risen too much in percentage terms, it is possible to sell the index, in order to benefits 

from its mean-reverting behaviour. More in detail, if in the previous two days the level of 

the index rose by a certain threshold, regardless from the forecast, the strategy is to sell 

the index. The choice of a threshold is not so trivial. Selecting different levels, even close 

each other, leads to very different results. Thus the results displayed here are the mean of 

these strategies with threshold set to all values between 10% and 30% with 1% increment. 

It appears that using a rule to select the threshold, which consist into selecting only 

thresholds with the highest percentage of adjacent opposite sign, the subset of found 

thresholds is able to give always a positive return, with a mean (across thresholds) of 

38,42% during the overall period.  
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Strategy 1 
same sign 

ratio 

overall 

return 

V2X 46,21% -223,14% 

RV1 48,86% -31,41% 

√RV1 48,86% -45,13% 

HAR 48,23% -100,32% 
 

Strategy 2 

(momentum) 

overall 

return 

annualized 

return 

V2X 1,75% 0,56% 

RV1 32,78% 9,58% 

√RV1 19,26% 5,85% 

HAR 14,60% 4,50% 

BPV -68,41% -31,06% 

√BPV -76,99% -37,76% 
 

Figure 17: These two tables shows the results of the strategy. In the first table only the simple forecasting signal is 
used, while in the second table is applied also the mean-reverting momentum. “Same sign ratio” is the percentage of 
time of correct direction (up, down) forecast. 

 

 

5.4 Application – VaR 

The second application consist into computing the VaR capital requirement, 

comparing stochastic variance measures and a traditional volatility model, the EWMA. 

Parametric models and Monte Carlo simulation, both at 1-day and 10-days horizons are 

applied. The benchmark model is the EWMA, which, as stated in Hull (2012), is widely 

used for risk management purposes, due to its efficiency and light computational efforts. 

The EWMA model is described recursively, as follows: 

𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑟𝑡−1
2  

with parameter λ set equal to 0.94, as discusses in Hull (2012). The investigation is 

conducted as an ex-post analysis, to back-test the different methods used. 

 For the parametric model, it is assumed that the standardized returns distribute as 

a Normal (0,1). As discussed in the previous paragraphs, the empirical distribution of 

returns divided by stochastic volatility is roughly similar to a Standard Normal, thus it is 

reasonable to expect that the confidence interval for future returns is [𝑟𝑡+1 − 𝛼𝜎̂𝑡+1,

𝑟𝑡+1 + 𝛼𝜎̂𝑡+1 ], with α as the prudential quantile of a Normal (0,1) distribution. Since the 

analysis is conducted for a 99% VaR, the α parameter is set to 2.326. The next-period 
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volatility, in the case of stochastic variables, is computed through a rolling window AR 

process forecast. 

 For the Monte Carlo simulations, the model simulated is the following: 

𝑟𝑡+1 = 𝑑𝑝𝑡+1 = 𝜀𝑡+1𝜎̂𝑡+1 

with an implied drift rate of zero, and the volatility proxy forecasted through a rolling 

window AR model of the stochastic variables, as explained above. 

 

5.4.1 1-day horizon 

Figure (18) shows the results for the parametric model. Exceptions and capital 

requirement are displayed. Exceptions are the ratio of days where the prudential capital 

was not sufficient to cover the daily loss occurred. Since the VaR is set to a 99% level, a 

correctly specified model should observe about 1% of exceptions. If exceptions are too 

much, then the model is underestimating the risk. If exceptions are less the 1%, then it 

overstates the risk, and the capital required is excessive. The average capital required is 

simply the average capital that should be set as reserve by prudential regulation. It is equal 

to the average daily VaR estimated by the model, and is indicated as a percentage of the 

total capital invested. It can be thought as the average daily return loss with 99% 

confidence. It emerges that none of the models is able to catch the required quantile. RV1 

performs as the EWMA, but requires less capital. 

Variable exceptions 

average capital 

required 

EWMA 1,89% 2,50% 

RV1 1,89% 2,44% 

BPV 3,40% 2,11% 

HAR 3,03% 2,32% 

Figure 18: Results for the parametric model at 1-day horizon. 

 Figure (19) shows the results for Monte Carlo simulations for RV1. The 

simulations are run by drawing ε from different distributions, and then compared. In the 



67 
 

first simulation ε is drawn from a Normal (0,1) distribution. Results show how this 

specification does not improve the analysis. The Normal distribution seems to not catch 

the probability of extreme bad events to happen. Modelling ε as a Normal distribution, 

underestimates the probability of extremes, which empirically happens more frequently. 

A solution is to model ε as a Student-t distribution or as a Laplace distribution, since they 

have fatter tails. The choice of the Student-t degrees of freedom, v, is derived in two ways: 

the first method derives it by maximum likelihood, the second method finds the parameter 

such that the kurtosis of the resulting Student-t distribution matches the empirical kurtosis 

of returns. Empirical excess kurtosis is observed to be about 2.51, which implies a degree 

of freedom parameter of 6.39. The Laplace distribution has been selected due to its 

similarity with empirical return distribution, including the excess kurtosis, which is of 3 

units. The results are clearly in favour of the matched Student-t and Laplace distributions 

for the ε distribution, since provide always exceptions ratio closer to the 1% level. It can 

be noticed as results are better than parametric models, clearly in favour of stochastic 

models. Better results are obtained if the forecast is conducted on the normal (non “square 

root”) process, that is forecasting RV and then taking the square root, rather than applying 

directly the forecast analysis to the square root process. 

Variable ε Normal 
ε Student-t 

(fitted) 

ε Student-t 

(kurtosis 

matched) 

ε Laplace 

RV1 (forecast of RV) 1,89% 1,39% 0,63% 0,76% 

RV1 (forecast of √RV) 2,40% 1,64% 1,13% 1,39% 

BPV (forecast of BPV) 3,28% 2,14% 1,13% 1,51% 

BPV (forecast of √BPV) 4,29% 2,52% 1,39% 1,64% 

HAR (forecast of HAR) 2,90% 1,89% 0,76% 1,39% 

HAR (forecast of √HAR) 3,15% 2,02% 1,01% 1,13% 

Figure 19: Results for the Monte Carlo simulations at 1-day horizon. 
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5.4.2 10-days horizon 

This last paragraph, shows results at a 10-days horizon. For the parametric model, 

the 10-days EWMA volatility is simply the daily volatility multiplied by square root of 

10, since it is supposed to remain constant. For the stochastic variables, the volatility over 

the 10 days is found by forecasting the volatility for each day of the 10-day period. In 

formulas: 

𝜎𝑡,10𝑑 = √∑ 𝑅𝑉1𝑡+𝑖

10

𝑖=1

 

with RV1t+i given by an AR rolling window forecast of: 

𝑅𝑉1𝑡+𝑖 ~ [1 𝑅𝑉𝑡 𝑅𝑉𝑡−1] 

The daily RV process is estimated through each 10s of the following days, and then is 

summed. Figure (20) displays the results. EWMA, on average, is closer to the 1% level, 

and stochastic volatility measures requires less capital. RV1 is both correct in terms of 

exceptions, and requires an average capital very close to EWMA level.  The (average) 

capital here required is the capital over a window of 10 days, that is the average loss 

expected within 10 days with 99% confidence. 

Variable exceptions 

average capital 

required 

EWMA 1,79% 7,88% 

RV1 1,28% 7,89% 

BPV 2,68% 6,85% 

HAR 2,04% 7,40% 

Figure 20: Results for the parametric model at 10-days horizon. 

For the Monte Carlo simulations, the procedure consists, in each simulation, into 

drawing 10 different returns for each of the following 10 days, and then summing results 

over this window. Results with Monte Carlo simulation are better than parametric model, 

especially for ε drawn from matched Student-t and Laplace distribution. 



69 
 

Variable ε Normal 
ε Student-t 

(fitted) 

ε Student-t 

(kurtosis 

matched) 

ε Laplace 

RV1 (forecast of RV) 1,28% 0,77% 0,64% 0,77% 

RV1 (forecast of √RV) 2,04% 0,89% 0,64% 1,15% 

BPV (forecast of BPV) 2,55% 1,66% 1,02% 1,66% 

BPV (forecast of √BPV) 3,57% 2,42% 1,40% 2,42% 

HAR (forecast of HAR) 2,04% 1,53% 0,51% 1,79% 

HAR (forecast of √HAR) 2,17% 1,79% 0,51% 2,04% 

Figure 21: Results for the Monte Carlo simulations at 10-days horizon. 
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6. CONCLUSIONS 

The analysis conducted so far, allows to understand the benefits of using 

stochastic volatility models, over traditional models. As shown, these models seem to fit 

better the unobservable volatility process, which drives returns of financial assets. They 

provide good proxies to use in volatility models.  

It was shown how stochastic models have long memory processes. The AR model 

seem to fit quite well the empirical returns, with significant coefficients for the first lags. 

The autocorrelation function seems to slowly decay until about the 10th lag, over which 

is remain stable, still different from zero. This effect is more pronounced as the square 

root process is analysed. The square root process for the AR model, provides better 

adjusted R-squared, and better forecasts. It does not imply that the square root process is 

a better proxy for the true volatility process, especially for empirical application purposes. 

It may emphasize the magnitude of peaks. This effect can be noticed in the VaR 

application, where normal processes behave always better than their square root 

counterpart. 

The best proxies appeared to be RV1 and BPV. The former is the best 

representative of RV category, compared at different sampling horizons, both in terms of 

self-predicting ability and explanatory power for the volatility process. The latter reduces 

the magnitude of observed peaks, which translates into better self-predicting power. The 

HAR-RV model, finally, seems to be able to enhance self-forecasting ability of RV1. 

In assessing the ability of fitting the true variance process, these models have been 

tested with the V2X index, which designate the short term implied volatility for 

EUROSTOXX. It emerged that RV1, BPV and HAR produced good adjusted R-squared 

both at same-time and at one-lag analysis. This should mean that those variables may be 

used to forecast the future level of the index, and thus a trading strategy may be built 

using stochastic volatility. A rolling window forecast was used to predict the one-step-

ahead V2X level, and the signs of these movements were used as signal to buy or to sell 

the index. Preliminary results were against any kind of strategy, but adding a momentum 

component to this strategy allowed to produce positive returns. Stochastic volatility 

models, in particular RV1, are able to beat the benchmark model, built upon the previous 
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V2X level. Even if square root processes seem to better catch the movements of the V2X, 

the highest returns from this strategy are obtained through forecasting the “normal” level 

of stochastic variables, and then applying the square root to those results (instead of 

conducting the forecasting process directly on the square root variables). 

The last application has been a VaR at 1% level back-testing. Models compared 

were the traditional EWMA and stochastic volatility models RV1, BPV, HAR. The 

EWMA is the model that performs better on average, since exceptions are closer to the 

1% level. The RV1 is the only stochastic model that achieved better results than EWMA, 

both at 1-day and 10-days horizons. It would be expected that, since standardized (with 

stochastic volatility variables) returns distributes close to a Standard Normal distribution, 

the number of exceptions was close to 1%. The level, instead, remains close but higher in 

all cases, maybe because the sample size was not big enough, or because it has been 

underestimated the probability of extreme events to happen. The Monte Carlo simulation 

method was established in order to account for this issue. Results have been clearly 

improved by generating the returns patterns with higher kurtosis. In the specific case, a 

matched-kurtosis Student-t and a Laplace distributions were used. These generating 

processes for returns allow to obtain closer level for exceptions, both at 1-day and 10-

days horizons. 

It can be finally confirmed the efficiency of stochastic volatility models over 

traditional ones. It is true that they require higher computational efforts, but, with an 

efficient software and an efficient code, the computing time can be drastically reduced 

and compared to traditional methods. The use of Julia language improves significantly 

the management of these big data. It can be a powerful tool, but it need to be developed 

and integrated with more advanced functions and packages. Stochastic volatility models 

seem to provide more accurate estimates of the true volatility process, principally because 

they try to exploit all the possible information available through HFD. This confirms the 

theory that big data are useful to better understand the behaviour and the true nature of 

certain stochastic processes, and maybe forecast their probable future realizations. 
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A. CODE  

Loading data 
In [1]: 

#Pkg.update() 

using DataFrames, Distributions, Optim, JuMP, PyPlot, Gadfly; 

In [2]: 

#loading cleaned data of eurostoxx. 

data=readtable("/home/juser/julia-gdrive/eustoxxclean.csv.gz",eltypes=

[Float64,UTF8String]); 

 

#data of serialized time (number format). It was created in a previous

 code and the saved. 

data1=readtable("/home/juser/julia-gdrive/date_min_num.csv.gz"); 

In [3]: 

price_all=Array{Float64}(data[:price]); 

 

datetimem_num=Array{Int64}(data1[:time_minute]); 

datetimem_once=union(datetimem_num,datetimem_num); 

In [4]: 

#this was the code used to create the serialized time vector. Once cre

ated that vector there is no 

#need to re-run this old code 

 

 

#datetime_str=Array{UTF8String}(data[:datetime]); 

#datetimem_str=map(x->x[1:16],datetime_str); #just minutes 

 

#datetime=DateTime(datetime_str,"y-m-dTHH:MM:SS.sss"); 

#datetimem=DateTime(datetimem_str,"y-m-dTHH:MM"); 

#date=Date(datetime); 

 

#date_once=union(date,date); 

#datetimem_once=union(datetimem,datetimem); 

 

#date_0=datetimem[1]; #2011-01-03 09:00 

#datetimem_num=map(x->(x-date_0)/60000,datetimem); #this is the distan

ce (in minutes) from the observation 0 

#datetimem_num_int=map(Int,datetimem_num); 

#datetimem_num_once=union(datetimem_num_int,datetimem_num_int); 

In [5]: 

#re-creating the old date array (in dates type) 

date_0=DateTime(2011,01,03,09); 
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date_all=date_0+map(Dates.Minute,datetimem_once); #use datetimem_num f

or all dates 

date_once=union(Date(date_all),Date(date_all)); 

In [ ]: 

Creating the grid 

 time-grid 

In [6]: 

#this function creates a time grid of equally spaced 1 minutes time 

#(just for 1 day, just for trading hours 9:00-17:30) 

 

function create_timegrid(time::Date,start::AbstractString="T09:00:00",

finish::AbstractString="T17:30:00") 

    st=DateTime(string(time,start)); 

    fi=DateTime(string(time,finish)); 

    return collect(st:Dates.Minute(1):fi) 

end 

Out[6]: 

create_timegrid (generic function with 3 methods) 

In [7]: 

grid_length=(17-9)*60+30+1; 

tgrid=Array{DateTime}(grid_length*length(date_once)); 

In [8]: 

#filling the vector 

for i=1:length(date_once) 

    tgrid[(1:grid_length)+grid_length*(i-1)]=create_timegrid(date_once

[i]); 

end 

In [9]: 

#time grid in minutes 

tgrid_num=map(Int,map(x->Int(x-date_0)/60000,tgrid)); 

 finding position 

In [10]: 

#this code does the following: 

# - takes the difference of datetimes (in numeric form) 

# - non-zero elements are where time has changed, thus we need the pos

ition of time before changement 

# - using sparse matrix to identify non-zero elements improve speed 

# - rowvals takes the position of non-zero element of the sparse matri

x 
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@time pos=rowvals(sparsevec(diff(datetimem_num))); 

  0.197149 seconds (134.33 k allocations: 83.849 MB, 12.97% gc time) 

In [11]: 

#"pos" points the position of the observed_last_price for each date-ti

me element in "datetimem_once" 

pos=[1;pos]; #adding the first element because there is nothing before

 9:00 on the first day 

 

#double check: 

#length(pos)==length(datetimem_once); 

 filling the missing points 

In [12]: 

#which are missing observations? 

#"there are $(length(tgrid_num)-length(datetimem_once)) missing observ

ation to fill" 

In [13]: 

#missing minutes 

missing_min=setdiff(tgrid_num,datetimem_once); 

#missing minutes position 

missing_min_pos=map(x->find(tgrid_num.==x)[1],missing_min); # the "[1]

" is to access to the array given by find(); 

In [14]: 

#inserting the previous observation 

for miss_pos in missing_min_pos 

    insert!(pos,miss_pos,pos[miss_pos-1]); 

end 

In [15]: 

#double check: 

#length(pos)==length(tgrid_num) 

 creating price grid 

In [16]: 

price_grid=Array{Float64}(price_all[pos]); 

 dividing in days 

In [17]: 

ndays=length(date_once); 

price_mat=Array{Float64}(grid_length,ndays); 
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price_mat=reshape(price_grid,grid_length,ndays); 

 return grid 

In [18]: 

#this function is an apply-like function that applies a function to th

e columns of a matrix 

function map_colwise(func::Function,data::Array{Float64,2}) 

    final_nrow=length(func(data[:,1])); 

    ncol=size(data,2); 

    func_data=Array{Float64,2}(final_nrow,ncol) 

    for col=1:ncol 

        func_data[:,col]=func(data[:,col]); 

    end 

    return func_data 

end 

Out[18]: 

map_colwise (generic function with 1 method) 

In [19]: 

#1-minute return over the price mat 

ret_1m=map_colwise(x->diff(log(x)),price_mat); 

In [20]: 

#return over x minutes interval, given a matrix of prices 

function ret_xmin(price::Array{Float64,2},min::Int) 

    grid_length=size(price,1); 

    price_xmin=price[1:min:grid_length,:]; 

    ret_mat=map_colwise(x->diff(log(x)),price_xmin); 

    return ret_mat 

end 

Out[20]: 

ret_xmin (generic function with 1 method) 

In [21]: 

#1-minute return over the price mat 

ret_5m=ret_xmin(price_mat,5); 

In [ ]: 

Stochastic variance variables 

preliminary functions 
In [22]: 

#function for the AR(p) coefficients calculation 

function x_lag(x::Array{Float64},p::Real,constant::Bool=true) 

    #the function picks the time series and divide it into its lag 

    #it assumes that more recent observations are at the end 
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    #it returns X_0, the array of latest observations, and X_lag, the 

matrix of lags 

    p+=1; 

    l=length(x); 

    X=Array{Float64}(l-p+1,p); 

    for i=1:p 

        X[:,i]=x[(p:end)-i+1]; 

    end 

    X_0=X[:,1]; 

    if constant==true 

        X_lag=[ones(l-p+1,1) X[:,2:end]]; 

    else 

        X_lag=X[:,2:end]; 

    end 

    return X_0, X_lag  

end 

Out[22]: 

x_lag (generic function with 2 methods) 

In [23]: 

function loglike(y::Array{Float64},x::Array{Float64},beta::Array{Float

64};sigma2::Real=1.0,result::ASCIIString="llbic") 

    #this function computes loglikelihood and bic 

    n,p=size(x); 

    u=y-x*beta; 

    dist=Normal(0,√sigma2); 

    contributions=logpdf(dist,u); 

    loglikelihood=sum(contributions); 

    bic=-2*loglikelihood+log(n)*p; 

    if result=="ll" 

        out=loglikelihood 

    elseif result=="bic" 

        out=bic 

    else 

        out=loglikelihood,bic 

    end 

    return out 

end 

Out[23]: 

loglike (generic function with 1 method) 

In [24]: 

#this function return the best lag, chosen by BIC. 

function best_p(X::Array{Float64}) 

    l=length(X); 

    p_opt=floor(0.02*l); 
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    P=Int(max(3,min(10,p_opt))); #minimum 3 lags, maximum 10 lags 

    bic=Array{Float64,1}(P); 

    for p=1:P 

        y,x=x_lag(X,p); 

        β=x\y; 

        bic[p]=loglike(y,x,β,result="bic"); 

    end 

    pp=find(bic.==minimum(bic)); 

    return pp 

end 

Out[24]: 

best_p (generic function with 1 method) 

In [25]: 

function R²(y::Array{Float64},x::Array{Float64},β::Array{Float64};adju

sted::Bool=true) 

    n,p=size(x); 

    res=y-x*β; 

    ydev=y-mean(y); 

    R2=1-res'res/ydev'ydev; 

    adjR2=1-(1-R2)*(n-1)/(n-p-1); 

    if adjusted==true 

        return adjR2[:] 

    else 

        return R2[:] 

    end 

end 

Out[25]: 

R² (generic function with 1 method) 

In [26]: 

#creating the type linReg to avoid excessive creation of variables. 

#for now, it is sufficient to access to the beta coefficients and R sq

uared 

type linReg 

    β::Array{Float64} 

    R2::Float64 

    R2adj::Float64 

end 

 

function linearOLS(y::Array{Float64}, x=[]; constant::Bool=true, p::Re

al=4) 

    #if just the y is specified, then linearOLS constructs an AR(p) mo

del 

    #if also x is provided, is the case of simple OLS 
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    if x==[] 

        y,x=x_lag(y,p,false) 

    end 

     

    sy=length(y); 

     

    if typeof(x)==Array{Float64,1} 

        n=length(x); 

        p=1; 

    else 

        n,p=size(x); 

    end 

     

    if n!=sy 

        error("vectors must have same length") 

    end 

     

    if constant==true 

        x=[ones(sy,1) x]; 

    end 

     

    β=x\y; 

     

    #standard errors of betas => o=homosk. e=heterosk. 

    #u=y-xβ; 

    #σ2=u'u/(n-length(β)-1); 

    #VCo=σ2*inv(x'x); 

    #ux=u'x; 

    #VCe=(x'x)\ux'ux/(x'x); 

    #seo=diag(VCo); 

    #see=diag(VCe); 

     

    u=y-x*β; 

    ydev=y-mean(y); 

    R2=1-u'u/ydev'ydev; 

    R2adj=1-(1-R2)*(n-1)/(n-p-1); 

     

    return linReg(β,R2[1],R2adj[1]) 

end 

Out[26]: 

linearOLS (generic function with 2 methods) 

stochastic variables 
In [27]: 
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#squared returns 

ret_sq=ret_1m.^2; 

#absolute returns 

ret_abs=abs(ret_1m); 

 

 

#RV from grid 

RV_1m=sum(ret_sq,1)'; 

 

RV_5m=sum(ret_5m.^2,1)'; 

 

 

#BPV 

ret_bpv=ret_abs[1:end-1,:].*ret_abs[2:end,:]; 

BPV=π/2*sum(ret_bpv,1)'; 

 

 

#TSRV 

#it needs n n-minutes-return RVs. Choose 5 minutes 

ret5mRV=zeros(5,size(price_mat,2)); #this will be the array containing

 on each row a time series of RV on a possible 5 min interval 

grid5m_length=Array{Int8}(5); #this is the size of the grid for each p

ossible 5 min interval 

for i=1:5 

    ret5m=ret_xmin(price_mat[1:end-i+1,:],5); 

    ret5mRV[i,:]=sum(ret5m.^2,1); 

    grid5m_length[i]=size(ret5m,1); 

end 

RV_tsrv=mean(ret5mRV,1)'; #this is still biased 

avg_length=mean(grid5m_length); 

microstr_bias=avg_length/grid_length*RV_1m; #it should be RV of sparse

 data, but also 1 minute grid should work well; 

TSRV=RV_tsrv-microstr_bias; #bias is removed; 

In [28]: 

#RV using all prices available 

function RV_daily(date_day::Union{Int64,Date},dates_all::Union{Array{I

nt64},Array{Date,1}},price_all::Array{Float64,1}) 

    #this function calculates the RV for the specific day, indicated b

y date_day 

    #it starts from the whole array of dates and prices 

    pos=find(dates_all.==date_day); 

    price_day=price_all[pos]; 

    ret_day=diff(log(price_day)); #no matters if they need to be chang

ed of sign, since they will be squared 
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    RV=ret_day'ret_day; #sum of squares 

    return RV[1]   #[1] is used to convert Array->scalar 

end 

 

RV=map(x->RV_daily(x,Date(date_all),price_all),date_once); 

In [29]: 

# HAR-RV 

function period_mean(data::Array{Float64},period::Int64) 

    #it's a simply moving average 

     

    l=length(data); 

    data_out=Array{Float64}(l-period+1); 

    [data_out[i]=mean(data[(1:period)+i-1]) for i=1:l-period+1]; 

    return data_out 

end 

 

RVw=period_mean(RV_1m,5); #weekly mean 

RVm=period_mean(RV_1m,20); #monthly mean 

maxl=length(RVm); 

HAR=[RV_1m[end-maxl+1:end] RVw[end-maxl+1:end] RVm]; 

In [ ]: 

Statistical properties 
In [30]: 

#whole time series 

ret_vec=ret_1m[:]; #all the returns on the same vector, no matter of t

he day 

ret_norm=(ret_vec-mean(ret_vec))./√var(ret_vec); #standardized returns

 using standard deviation; 

In [31]: 

#daily time series of returns 

ret_day=(log(price_mat[end,:])-log(price_mat[1,:]))[:]; 

ret_day_norm=(ret_day-mean(ret_day))/√var(ret_day); #standardized retu

rns using standard deviation; 

ret_day_norm_rv=ret_day./√RV_1m; #standardized returns using RV; 

In [ ]: 

Forecast analysis 
In [32]: 

#obsolete function 

function forecast_AR_rolling(data_all::Array{Float64},date_all::Array

{Date}=date_once;starting_date::Date=Date(2012,01,01)) 
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    #this function creates a rolling window of 1 year (256 observatio

n) 

    #then compute β_ols and makes the forecast for the next trading da

y of the variable 

     

    ld=length(data_all); 

    idx=findlast(date_all.<starting_date); #from here, 1 step ahead fo

recasts will start 

     

    forecasts=Array{Float64,1}(ld-idx); 

     

    for i=idx:ld-1 

         

        data_window=data_all[i-255:i]; 

        β=linearOLS(data_window).β 

        lb=length(β)-1;         

        forecasts[i-idx+1]=([1;data_window[end-lb+1:end]]'β)[1]; 

         

    end 

     

    return forecasts 

     

end 

Out[32]: 

forecast_AR_rolling (generic function with 2 methods) 

In [33]: 

function forecast_rolling(y::Array{Float64},x::Array{Float64}; 

    date_begin::Date=Date(2012,01,01),date_all::Array{Date}=date_once,

window_length::Int64=256) 

     

    #this function does the following: 

    # it returns the array forecasts which cointains the forecasts at 

time t 

    # the forecast for time t is made as follows: 

    # -  take window of 256 observations from (t-255-2:t-2) for x and 

window (t-255-1:t-1) for y 

    # -  makes a regression between those two variables, catch the bet

a 

    # -  uses this beta on x_t-1 to have a forecast for y_t 

     

    idx=length(date_all)-findlast(date_all.<date_begin); #out of sampl

e array length 

     

    forecasts=Array{Float64,1}(idx); 
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    for i=1:idx 

 

        #out of sample window goes from (end-idx+1) to end 

     

        x_wind=[ones(window_length) x[(end-window_length+1:end)-idx+i-

2,:]]; #x is taken one lag before y 

        y_wind=y[(end-window_length+1:end)-idx+i-1]; 

        β=x_wind\y_wind; 

        forecasts[i]=([1 x[end-idx+i-1,:]]*β)[1]; 

         

    end 

 

    return forecasts 

end 

Out[33]: 

forecast_rolling (generic function with 1 method) 

In [ ]: 

example of analysis 
In [34]: 

#self-predicting ability 

p=max(best_p(HAR),3);p=p[1]; 

HAR_lm=linearOLS(HAR,p=p); 

HAR_lm.R2adj; 

In [ ]: 

Predicting the VSTOXX 
In [35]: 

datav=readtable("/home/juser/julia-gdrive/sx5e.csv" 

                ,eltypes=[UTF8String,Float64,Int64,Float64,Float64,Flo

at64,Float64,Int64] 

                ); 

In [36]: 

date_v=reverse(Date(datav[:Date],"d/m/y")); 

volume_ind=reverse(datav[:SX5E_PX_VOLUME]); #volume field on bloomberg

 of the EU STOXX index; 

volume_fut=reverse(datav[:VG1_PX_VOLUME]); #volume of the nearest futu

re; 

v2x=reverse(datav[:V2X]); #VIX index on the EU STOXX; 

datav2=Array{Float64}([volume_ind volume_fut v2x]); 

In [37]: 

first=findfirst(date_v.==date_once[1])[1]; 

last=findlast(date_v.==date_once[end])[1]; 
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datav2=datav2[first:last,:]; 

date_v=date_v[first:last,:]; 

In [38]: 

#finding missing dates 

missing_date=setdiff(date_once,date_v); 

missing_date_pos=map(x->findlast(date_once.<x),missing_date); 

In [39]: 

function insertrow(data,idx::Int64,ins) 

    #add row after idx     

    d=[data[1:idx,:]; ins; data[idx+1:end,:]]; 

end 

Out[39]: 

insertrow (generic function with 1 method) 

In [40]: 

for pos in missing_date_pos 

    datav2=insertrow(datav2,pos,datav2[pos,:]); 

    date_v=insertrow(date_v,pos,date_once[pos+1]); 

end 

In [41]: 

volume_ind=datav2[:,1]; 

volume_fut=datav2[:,2]; 

v2x=datav2[:,3]; 

v2x_ret=diff(log(v2x)); 

In [ ]: 

regression - same time 
In [42]: 

#regression analysis 

#res vector contains the adj R2 of regression of v2x on x, log(x), √x 

x=RV_1m; #<----change this variables for other results; 

res=[ 

    linearOLS(v2x,x).R2adj; 

    linearOLS(v2x,log(x)).R2adj; 

    linearOLS(v2x,√x).R2adj 

]; 

#res; 

In [43]: 

#HAR framework - same time 

lhar=size(HAR)[1]; 

reg_v_har=linearOLS(v2x[end-lhar+1:end],√(HAR)); #<----change the func

tion for other results 

#reg_v_har.R2adj; 
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In [ ]: 

predicting power - regression on first lag 
In [44]: 

x=RV_1m; a=[]; #<----change the x for other results; 

#tested regressions: v2x_t -> x_(t-1) ; v2x_t -> √x_(t-1) ; v2x_t -> √

x_(t-1) √x_(t-2) 

#reg_lag cointains adj. R2 of these regressions 

 

yy=v2x[2:end]; 

xx=x[1:end-1]; 

reg_lag=linearOLS(yy,xx); 

push!(a,reg_lag.R2adj); 

 

xx=√x[1:end-1]; 

reg_lag=linearOLS(yy,xx); 

push!(a,reg_lag.R2adj); 

 

yy=v2x[3:end]; 

xx=√[x[2:end-1] x[1:end-2]]; 

reg_lag=linearOLS(yy,xx); 

push!(a,reg_lag.R2adj); 

 

#reg_lag; 

In [45]: 

#HAR 

yy=v2x[end-lhar+2:end]; 

xx=√HAR[1:end-1,:]; #<----change the function for other results 

reg_lag=linearOLS(yy,xx); 

#reg_lag.R2adj; 

In [46]: 

#AR of just v2x 

reg_AR=linearOLS(v2x,p=1); 

#reg_AR.R2adj; 

In [ ]: 

assessing predicting power 
In [47]: 

function forecast_analysis(y::Array{Float64},x::Array{Float64};window_

length::Int64=256,date_begin::Date=Date(2012,01,01)) 

     

    #this function takes as input: 

    # - y      -> the array o be forecasted 

    # - x      -> the explanatory variable 
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    #and it produces a rolling window forecast for y, from x matrix. r

esulting output are: 

    # - yf     -> the realized price array 

    # - xf     -> the forecasted price array (using rolling window for

ecast) 

    # - ret    -> the return time series of a strategy which consist i

nto buying if the predicted price should rise 

    # - sign   -> the percentage of time of same sign of movement (rea

lized vs forecasted price) 

    # - ssdiff -> sum of squared difference between forecast and reali

zed price 

     

     

    forecasted_price=forecast_rolling(y,x,window_length=window_length,

date_begin=date_begin); 

    realized_price=y[end-length(forecasted_price)+1:end]; 

    forecast_difference=realized_price-forecasted_price; 

    ssq_difference=sum(forecast_difference.^2); 

     

    forecasted_ret=diff(log(forecasted_price)); 

    realized_ret=diff(log(realized_price)); 

    caught_sign=sum(sign(realized_ret).==sign(forecasted_ret))/length

(realized_ret); 

     

    strategy_ret=realized_ret.*sign(forecasted_ret); 

     

    dict=Dict(:xf=>forecasted_price,:yf=>realized_price,:ret=>strategy

_ret,:sign=>caught_sign,:ssdiff=>ssq_difference); 

     

    return dict 

end 

Out[47]: 

forecast_analysis (generic function with 1 method) 

In [48]: 

f=forecast_analysis(v2x[2:end],v2x[1:end-1],window_length=255) #need t

o reduce the window length or to start from a later date; 

In [49]: 

#to compute the overall return of the strategy use the following code

s: 

 

# - 1$ invested at beginning and proceeds reinvested 

ov_ret=cumprod(f[:ret]+1); 

 

# - 1$ invested on each day and no proceeds reinvested 
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ov_ret=sum(f[:ret]); 

In [50]: 

#return with 10% threshold 

 

a=f[:yf]; 

b=f[:xf]; 

ra=diff(log(a)); 

rb=diff(log(b)); 

tdret=((ra[1:end-1]+ra[2:end]).>0.1)*1; #two days return trigger: true

 if previous two days returns sum is above +10% 

 

pos=find(tdret)+1; #this is the position on the ret array of the day w

hose same day + previous day return is >10%  

 

sra=sign(ra); 

srb=sign(rb); 

srb[pos+1]=-1.0; #sell the next day the trigger occurred 

sum(ra.*srb); 

In [51]: 

#choose length=236 for HAR, 255 for other, or change date 

f=forecast_analysis(v2x,RV_1m,window_length=236); #<----change here va

riable 

predicted=f[:yf]; 

realized=f[:xf]; 

ret_p=diff(log(predicted)); 

ret_r=diff(log(realized)); 

sra=sign(ret_p); 

srb=sign(ret_r); 

 

#this is the average return of choosing as thresholds all levels betwe

en 0.1:0.01:0.3 

tot_ret=[]; 

for i=0.1:0.01:0.3 

    tdret=((ret_p[1:end-1]+ret_p[2:end]).>i)*1; 

    pos=find(tdret)+1; 

    srb=sign(ret_r); 

    srb[pos+1]=-1.0; 

    tot_ret=push!(tot_ret,sum(ret_p.*srb)) 

end 

 

#mean(tot_ret) 

In [52]: 

#choosing specific thresholds 
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#choose only those which have higher % of adjacent negative return aft

er peaks  

 

yret=yret=diff(log(forecast_analysis(v2x,RV_1m,window_length=236)[:y

f])); 

prev_ret_sum=yret[1:end-2]+yret[2:end-1]; 

next_ret=yret[3:end]; 

seq=[prev_ret_sum next_ret]; 

seq70=[]; #70 since only if % is > then 70% are selected 

for i in collect(0.08:0.01:0.29) 

    pos=find(prev_ret_sum.>i); 

    a=seq[pos,:]; 

    pneg=sum(a[:,2].<0)/length(pos); 

    #@printf("%0.2f => %0.2f\n",i,pneg) 

    if pneg>0.7 

        push!(seq70,i) 

    end 

         

end 

 

#seq70 

In [53]: 

#testing 

f=forecast_analysis(v2x,RV_1m); 

a=f[:yf]; 

b=f[:xf]; 

ra=diff(log(a)); 

rb=diff(log(b)); 

sra=sign(ra); 

srb=sign(rb); 

s=[]; 

for i in seq70 

    tdret=((ra[1:end-1]+ra[2:end]).>i)*1; 

    pos=find(tdret)+1; 

    srb=sign(rb); 

    srb[pos+1]=-1.0; 

    s=push!(s,sum(ra.*srb)) 

end 

 

#mean(s) 

In [ ]: 

VaR computation 
In [54]: 
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#analysis will start on 01/01/2012 

idx_beg=findfirst(date_once.>=Date(2012,01,01)); 

idx_end=length(date_once)-idx_beg; 

In [55]: 

#benchmark: constant volatility 

price_day=price_mat[end,:][:]; #closing price 

ret_day=[0;diff(log(price_day))]; 

cvol=√var(ret_day); #(constant volatility) daily standard deviation of

 returns; 

In [56]: 

#normailization with SV 

nretRV=ret_day./√RV_1m; 

#quantile(nretRV[:],0.01) 

#kurtosis(nretRV) # excess kurtosis is near zero, in effect distribute

s as normal 

#skewness(nretRV) 

#mean(nretRV) 

#; 

In [57]: 

#quantile(ret_day_norm,0.01) 

#quantile(nretRV[:],0.01) 

In [ ]: 

variables 
In [58]: 

#EWMA 

 

var_is=var(ret_day[1:idx_beg-1]); #variance until 01/01/2012 

λ=0.94; 

var_ewma=Array{Float64}(idx_end+1); var_ewma[1]=λ*var_is+(1-λ)*ret_day

[idx_beg-1]^2; 

[var_ewma[i]=λ*var_ewma[i-1]+(1-λ)*ret_day[idx_beg+i-2]^2 for i=2:idx_

end+1]; 

var_ewma; 

In [59]: 

#SV variables  

 

#RV 

y,x=x_lag(RV_1m,2,false); 

var_rv=forecast_rolling(y,x,window_length=252); 

 

#BPV 

y,x=x_lag(BPV,2,false); 
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var_bpv=forecast_rolling(y,x,window_length=252); 

 

#HAR 

y=HAR[2:end,:]; x=HAR[1:end-1,:]; 

var_har=forecast_rolling(y,x,window_length=234); #maybe change the dat

e of beginning; 

In [ ]: 

parametric model 1-day 
In [60]: 

sd=√[var_ewma var_rv var_bpv var_har];  #<--- it is possible to not us

e the square root 

realized_ret=ret_day[idx_beg:end]; 

q=quantile(Normal(),0.01); 

var_loss=sd*q;                          #<--- if square root was not u

sed in line 1, then square root "sd" 

exceptions=repmat(realized_ret,1,4).<var_loss; 

 

exc=sum(exceptions,1)/length(realized_ret); 

In [61]: 

#var_loss is the daily capital put as reserve 

mean(-var_loss,1); 

In [ ]: 

MC simulations 1-day 
In [62]: 

#simulated path: r_t = dp_t = ϵ_t ̂σ_t 

 

#this code computes MC simulation with ϵ distributed as Normal, Studen

t-t, Laplace. 

#to change variable change the first line of code 

#to use the square root process use second line and not the first, and

 viceversa 

#the matrix tot_paths contains all possible simulations (on its rows),

 on a given day (on columns) 

#it is possible to change also the number of lags included for forecas

t (the second input of x_lag()) 

 

y,x=x_lag(RV_1m,2,false); var_rv=forecast_rolling(y,x,window_length=25

2); sd_rv=√var_rv; 

#y,x=x_lag(√RV_1m,2,false); sd_rv=forecast_rolling(y,x,window_length=2

52); 

 

realized_price=price_day[idx_beg:end]; 
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realized_price_diff=diff(price_day)[end-idx_end:end]; 

npaths=10000; 

 

# ϵ~Normal(0,1) 

tot_paths=repmat(sd_rv',npaths).*randn(npaths,length(sd_rv)); 

var_loss=map_colwise(x->quantile(x,0.01),tot_paths)[:]; 

exceptions=realized_ret.<var_loss; 

r1=sum(exceptions)/length(realized_ret); 

 

# ϵ~Student-t, maximum likelihood 

opt=optimize(v->-sum(logpdf(TDist(v),ret_day_norm)),1.0,10.0); v_est=o

pt.minimum; 

ϵ=rand(TDist(v_est),npaths,length(sd_rv)); 

tot_paths=repmat(sd_rv',npaths).*ϵ; 

var_loss=map_colwise(x->quantile(x,0.01),tot_paths)[:]; 

exceptions=realized_ret.<var_loss; 

r2=sum(exceptions)/length(realized_ret); 

 

# ϵ~Student-t, matched kurtosis 

ret_k=kurtosis(ret_day); v=6/ret_k+4; 

ϵ=rand(TDist(v),npaths,length(sd_rv)); 

tot_paths=repmat(sd_rv',npaths).*ϵ; 

var_loss=map_colwise(x->quantile(x,0.01),tot_paths)[:]; 

exceptions=realized_ret.<var_loss; 

r3=sum(exceptions)/length(realized_ret); 

 

# ϵ~Laplace 

lap_par=fit(Laplace,ret_day_norm); b_lap=params(lap_par)[2]; 

ϵ=rand(Laplace(lap_par),npaths,length(sd_rv)); 

tot_paths=repmat(sd_rv',npaths).*ϵ; 

var_loss=map_colwise(x->quantile(x,0.01),tot_paths)[:]; 

exceptions=realized_ret.<var_loss; 

r4=sum(exceptions)/length(realized_ret); 

 

#exceptions results 

[r1;r2;r3;r4]; 

In [ ]: 

parametric model 10-days 
In [63]: 

#expected ewma: today's ewma 

sd_ewma_10=√var_ewma*√10; 

In [64]: 

#RV 
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var_rv_1_10=zeros(length(sd_rv),10); 

for i=1:10 #forecast horizons 

    y,x=x_lag(RV_1m,1+i,false); 

    x=x[:,i:end]; 

    var_rv_1_10[:,i]=forecast_rolling(y,x,window_length=245); #it coul

d be also used window_length=256-i 

end 

sd_rv_10=sqrt(sum(var_rv_1_10,2)); 

 

#BPV 

var_bpv_1_10=zeros(length(sd_rv),10); 

for i=1:10 

    y,x=x_lag(BPV,1+i,false); 

    x=x[:,i:end]; 

    var_bpv_1_10[:,i]=forecast_rolling(y,x,window_length=245); 

end 

sd_bpv_10=sqrt(sum(var_bpv_1_10,2)); 

 

#HAR 

var_har_1_10=zeros(length(sd_rv),10); 

for i=1:10 

    y,x=x_lag(HAR,1+i,false); 

    x=x[:,i:end]; 

    var_har_1_10[:,i]=forecast_rolling(y,x,window_length=235); 

end 

var_har_1_10[var_har_1_10.<0]=0; #sometimes forecasted value are negat

ive; 

sd_har_10=sqrt(sum(var_har_1_10,2)); 

In [ ]: 

In [65]: 

sds=[sd_ewma_10 sd_rv_10 sd_bpv_10 sd_har_10][1:end-9,:]; #erasing las

t 10 obs since we don't have realized ones 

realized_ret_10=[sum(realized_ret[(1:10)+i-1]) for i=1:length(realized

_ret)-10+1]; 

var_loss=sds*q; 

exceptions=repmat(realized_ret_10,1,4).<var_loss; 

 

exc=sum(exceptions,1)/length(realized_ret_10); 

In [66]: 

mean(-var_loss,1); 

MC simulations 10-days 
In [67]: 
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#this simulation uses values taken from previous computation, that is 

the forecasted values  

#for each 10s window of days. Then, in each window, is derived the sto

chastic variable for each day, 

#which is multiplied by a 10000x10 matrix of random errors. In order t

o simulate returns on each day 

#these returns are then summed, and the quantile for each of these win

dows is taken 

 

 

l10d=size(var_rv_1_10[1:end-9,:],1); #latest 10 observations don't hav

e the observed counterparty 

x=√var_rv_1_10; #<----change this value for other results 

 

var_loss=zeros(l10d) 

for i=1:l10d 

    next10d=x[i,:]; 

    tot_paths=sum(repmat(next10d,npaths).*randn(npaths,10),2); 

    var_loss[i]=quantile(tot_paths[:],0.01); 

end 

exceptions=realized_ret_10.<var_loss; 

r1=sum(exceptions)/length(realized_ret_10); 

 

var_loss=zeros(l10d) 

for i=1:l10d 

    next10d=x[i,:]; 

    tot_paths=sum(repmat(next10d,npaths).*rand(TDist(v_est),npaths,1

0),2); 

    var_loss[i]=quantile(tot_paths[:],0.01); 

end 

exceptions=realized_ret_10.<var_loss; 

r2=sum(exceptions)/length(realized_ret_10); 

 

var_loss=zeros(l10d) 

for i=1:l10d 

    next10d=x[i,:]; 

    tot_paths=sum(repmat(next10d,npaths).*rand(TDist(v),npaths,10),2); 

    var_loss[i]=quantile(tot_paths[:],0.01); 

end 

exceptions=realized_ret_10.<var_loss; 

r3=sum(exceptions)/length(realized_ret_10); 

 

var_loss=zeros(l10d) 

for i=1:l10d 
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    next10d=x[i,:]; 

    tot_paths=sum(repmat(next10d,npaths).*rand(Laplace(lap_par),npath

s,10),2); 

    var_loss[i]=quantile(tot_paths[:],0.01); 

end 

exceptions=realized_ret_10.<var_loss; 

r4=sum(exceptions)/length(realized_ret_10); 

 

[r1;r2;r3;r4]; 

In [ ]: 
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SUMMARY 

Volatility estimation has a crucial role in modern finance theory, since is an 

essential input in many models (option pricing, risk management, returns modelling). It 

is a well-known fact that variance is time varying, but the volatility process cannot be 

identified, since what is observed is just a realization of this latent variable. In order to 

estimate volatility, two kinds of models have been developed in literature, that are 

stochastic and non-stochastic (traditional) models. The formers attempt to describe 

volatility as a stochastic function of its lags, while the latters provide a deterministic 

specification for this process. Obviously, stochastic volatility (SV) models require higher 

computational efforts, but they allow for more complex models building. They can be 

used, for example, to model more accurate option hedging strategies, or to simulate more 

realistic return patterns. The availability of high-frequency data (HFD) has made possible 

more accurate procedures for parameters’ estimation. It is possible to estimate the latent 

daily volatility process through the observed high-frequency returns, and use this time 

series as a proxy of volatility into financial models. HFD still need particular handling 

procedure, such as outliers cleaning or sparse sampling, i.e. sampling prices at fixed time 

intervals. In this paper, lastly, two applications are discussed, using data on 

EUROSTOXX index, a broad index for the EURO zone. The first is a trading strategy on 

the VSTOOXX (V2X), that is the volatility index of the EUROSTOXX. The second is a 

VaR analysis on a portfolio exclusively composed of the EUROSTOXX index. 

Let the price of a security at a given time be 𝑃𝑡 and its natural logarithm expressed 

as 𝑝𝑡, then return over the previous interval of time, computed as the difference of log-

prices is 𝑟𝑡 = 𝑑𝑝𝑡. A widely diffused belief is that returns are function of their long term 

mean 𝜇 and their (unobserved) variance process 𝜎𝑡. In differential terms it means that: 

𝑟𝑡 = 𝑑𝑝𝑡 = 𝜇 𝑑𝑡 + 𝜎𝑡𝑑𝑧𝑡 (1) 

where 𝑧𝑡  is a Brownian Motion, that is a continuous stochastic process such that its 

increments are iid normally distributed with mean zero and variance dt. The discrete-time 

version of equation (1) is 𝑟𝑡 = 𝜇 + 𝜎𝑡𝑧𝑡. The first models that accounted for time varying 

volatility were introduced by Engle (1982) and Bollerslev (1986) with, respectively, 

ARCH (AutoRegressive Conditional Heteroskedasticity) and GARCH (Generalised 

ARCH). In ARCH models, the variance, conditional on the available information set and 
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on an initial value 𝜎0, is imposed to be a linear function of lagged squared returns, thus is 

heteroskedastic. In GARCH models variance is function also of its lags. A tipical GARCH 

formulation is the following: 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑝𝑟𝑡−𝑝

2𝑃
𝑝=1 + ∑ 𝛽𝑞𝜎𝑡−𝑞

2𝑄
𝑞=1   (2) 

where 𝜔, 𝛼, 𝛽 are constant parameters that can be estimated through maximum likelihood. 

In ARCH class of models, the variance is still a deterministic function of known variables.  

With the availability of HFD and the improvement of computational power, SV 

models has assumed an important role in finance modelling. They allow to estimate more 

accurately the evolution of the true volatility process. In SV models, also the variance is 

a stochastic process, e.g.: 

𝑑𝜎𝑡
2 = 𝛼0 𝜎𝑡

2 𝑑𝑡 + 𝛼1 𝜎𝑡
2 𝑑𝑤𝑡 (3) 

where 𝛼0, 𝛼1  are constant parameters, while 𝑤𝑡  is a Brownian Motion that may be 

correlated with the 𝑧𝑡 process described in equation (1). Non-stochastic volatility models 

can be estimated through maximum likelihood estimator (MLE) procedure, where the 

parameters of the model are those values which maximize the likelihood function, i.e. the 

probability of observing that specific sample. In SV models, since innovations terms are 

not normally distributed, the MLE may result not robust or even not consistent. 

Sometimes it is infeasible or even impossible to find a closed-form solution for the MLE 

problem, since, because of the multivariate distribution’s complexity, the likelihood 

function may result too difficult to evaluate. Some authors have developed 

approximations for the likelihood function that lead to reasonable results. The Quasi-

MLE procedure, assumes that innovations are iid Normally distributed, such that a 

simplified version of the likelihood function can be obtained. Another widely used 

method consists into generating the distribution by repeated random sampling, and then 

computing moments of these simulated patterns. Monte Carlo (MC) methods, for 

example, are algorithms where random errors from a specific probability distribution are 

generated, obtaining several possible outcomes for the variable being simulated. With the 

application of Bayesian statistics, Markov Chain MC (MCMC) methods can be used to 

simulate the posterior density for parameters of stochastic volatility models (Chib, 

Greenberg, 1995). They allow to find an invariant, i.e. constant, density of the transition 

kernel, that is the conditional distribution function representing the evolution process 
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through time of the simulated variable. The transition kernel is, indeed, iterated a large 

number of times, until the distribution of the simulated observations reaches a stationary 

(invariant) state. The resulting invariant density is the posterior distribution from which 

samples are desired. 

HFD can be used to enhance estimations of the volatility process. The solution of 

the differential equation (1), assuming, without loss of generality, that the mean return is 

zero, can be expressed as: 

𝑟0,𝑇 = 𝑝𝑇 − 𝑝0 = ∫ 𝜎𝑡𝑑𝑧𝑡

𝑇

0

 
(4) 

These processes are also called Ornstein-Uhlenbeck, or Gauss-Markov. They have 

Normal and stationary (multivariate) distribution, meaning that the multivariate 

distribution does not depend on time, and they are Markovian, which means that the 

density function of future realizations does not depend on past values. Now, let τ be the 

unequally-spaced time set of observations, δ the stochastic process of time intervals, and 

𝑟𝛿𝑡
the return over the t-th interval, then the Quadratic Variation process of p is defined as: 

〈𝑝〉𝑡 = ∫ (𝑑𝑝𝑠)2𝑡

0
= lim

sup{𝛿}→0
∑ (𝑝𝑡+𝛿𝑡

− 𝑝𝑡)
2

𝑡∈𝜏 = lim
sup{𝛿}→0

∑ 𝑟𝛿𝑡

2
𝑡∈𝜏 . 

Since: 

- the Brownian Motion term 𝑧𝑡 is a martingale, (which implies that the log-price 

process is a semi-martingale); 

- according to stochastic calculus, if 𝑀𝑡  is a semi-martingale, and X an 

integrable variable, then 〈∫ 𝑋 𝑑𝑀〉 = ∫ 𝑋2𝑑〈𝑀〉; 

- the QV of a Brownian Motion is equal to the elapsed time: 〈𝑧〉𝑡 = 𝑡; 

the QV of the price process is equal to: 

〈𝑝〉𝑡 = 〈∫ 𝑑𝑝𝑠

𝑡

0

〉 = 〈∫ 𝜎𝑠𝑑𝑧𝑠

𝑡

0

〉 = ∫ 𝜎𝑠
2𝑑𝑠

𝑡

0

 

where the last term is called Integrated Variance (IV), and is exactly the latent variance 

process that stochastic volatility models attempt to estimate. The IV process is still 

unobservable, but the QV process can be consistently estimated through the Realized 

Variance (RV) estimator. RV is the sample counterpart of QV, and is the sum of squared 

observed returns. Since 𝑄𝑉𝑡 = lim
sup{𝛿}→0

𝑅𝑉𝑡, and since time interval of HFD is close to 

zero, RV computed with HFD is a consistent estimator for both the QV and IV process. 
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The RV estimator has nice properties, such as the asymptotic normality: √𝑛
𝑅V−𝐼V 

√2𝐼Q

𝑑
→  𝑁(0, 1), with n denoting the sample size and IQ the Integrated Quarticity, namely 

∫ 𝜎𝑠
4𝑑𝑠

𝑡

0
. IQ is also an unobservable variable, but it can be easily estimated with the 

Realized Quarticity (RQ) estimator, where 𝑅𝑄𝑡 =
1

3
𝑛𝛿−1 ∑ 𝑟𝑡

4𝑇
𝑡 , which yields to 

√𝑛
𝑅𝑉−𝐼V

√2𝑅Q
 

𝑑
→  𝑁(0, 1). 

RV may still be affected from biases. In presence of microstructure noise, RV is 

estimating IV plus the variance of the error terms, that are the difference between real and 

observed price. Aït-Sahalia et al. (2005b) used the Two Stage Realized Variance (TSRV) 

estimator, which is constructed by averaging all the possible RV estimators obtained with 

a sparse sampling procedure on lower-frequency intervals (e.g. 5 minutes), and then 

subtracting the estimator of the microstructure error: 〈𝑟〉𝑡
𝑇𝑆𝑅𝑉 = 〈𝑟∗〉𝑡

𝑎𝑣𝑔
−

𝑛̅

𝑛
〈𝑟∗〉𝑡. This 

estimator is robust to microstructure noise, thus it is suggested for tick-by-tick analysis of 

traded securities. RV may suffer also from the presence of jumps. Jumps can be thought 

as those relevant variations in price due to news or announcements. It is necessary to add 

the jump stochastic component to the price process to avoid model mis-specification. This 

procedure implies that RV is estimating the sum of IV and the Jump Variation process 

(JV), that is the sum of squared jumps. Barndorff-Nielsen and Shephard (2003) 

introduced the realized Bipower Variation (BPV) estimator, expressed as the sum of 

products of adjacent returns, taken in absolute value: 𝐵𝑃𝑉𝑡 = ∑ |𝑟𝑖||𝑟𝑖−1|𝑡
𝑖=2 . The 

estimator 
𝜋

2
𝐵𝑃𝑉𝑡

𝑝
→ 𝐼𝑉𝑡 is then consistent for IV, since the probability of two consecutive 

jumps is about zero. The Range-based Variance (RgV) is another important estimator for 

IV. It is built with intra-period information (open, close, high and low quotes) and has the 

advantage of reducing the data sample, still maintaining core statistical properties. This 

variable is more efficient than the other estimators, in the sense that presents less variance. 

Parkinson (1980) initially proposed a formulation for it: 𝜎ℎ
2̂ =

1

4 ln 2
∑ (𝑅𝑔𝑉∆𝑡)2ℎ

∆𝑡∈(ℎ−1;ℎ] , 

with 𝑅𝑔𝑉∆𝑡 denoting the difference between high and low quotes on the interval Δt, over 

the h-th day. Since this estimator is sensible to te presence of outliers, careful data 
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cleaning operation are required, or other quantile levels may be considered instead of high 

and low quotes. 

A feature of HFD is the irregular time spacing of observations, since data is 

gathered as trades occur (which obviously happen at irregular intervals). Therefore, time 

can be represented, according to Daley and Vere-Jones (1988) as a point process, that is 

a time set where the time interval is a sequence of non-decreasing random variables. 

Models such as the autoregressive conditional duration (ACD) introduced by Engle and 

Russel (1998), aim to describe this feature by modelling the interval of time as a 

differential stochastic equation (similar to that of volatility). If the ACD process is 

supposed to be exogenous from the price-volatility process, it is possible to estimate 

duration at first, and then, conditional on these results, estimate the volatility parameters. 

Even if this procedure is theoretically correct, empirically, better results are obtained with 

the sparse sampling method, which implies to sample observations from a lower-

frequency equally-spaced time set. 

Dealing with HFD is still not trivial. They may present errors deriving from the 

information gathering process (such as missing quotes), or from market microstructure 

inefficiencies (such as temporarily lack of liquidity that implies unreasonable quotes 

displayed). Outliers’ detection techniques are involved to clean data from possible wrong 

unreasonable prices. Browlees and Gallo (2006), for instance, suggest to mark outliers 

those observations which exceed the trimmed mean of a neighbourhood of k prices by 

three (trimmed) standard deviations plus a parameter γ (that depends on data frequency). 

Trimmed moments of a neighbourhood of k prices are computed using previous and 

following k observations: 𝑚𝑘 𝑡(𝑝) = ∑ 𝑝𝑡+𝑖
𝑘
𝑖=−𝑘  and 𝜎𝑘 𝑡(𝑝) = ∑ (𝑝𝑡+𝑖−𝑘𝑚𝑡(𝑝))

2𝑘
𝑖=−𝑘 . 

The rule is to evaluate whether |𝑝𝑡 − 𝑚𝑘 𝑡(𝑝)| > 3 𝜎𝑘 𝑡(𝑝) + 𝛾. Another issue of HFD is 

the missing of data, which is typical of less liquid markets. A common solution is to fill 

the missing position with the latest available observation, which may be technically 

correct if no trades had occurred during that time window. Or, the missing value can be 

substituted by a weighted average of the closer (previous and following) available quotes. 

The choice of the filling method should be a careful operation, since it may have 

repercussions on the statistical structure of data. Sometimes sparse sampled observations 

may improve estimations. Data aggregation necessarily implies loss of information, but 
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the gain in terms of robustness of estimators and lightening of computations is relevant. 

For instance, microstructure noise, which arises when the observed price fluctuates 

because of bid-ask spread, can be considerably reduced at 1-minute frequency. 

This paper’s analysis is conducted on the EUROSTOXX index, which is the main 

stock index of the Euro-zone. Observations starts from 2011, at irregular intra-minutes 

frequencies (15 seconds), for a total of 4.598.132 rows. All computations have been done 

with Julia language. Figure (1) shows an extract of tick-by-tick pattern of the 

EUROSTOXX index, while figure (2) shows a one-minute extract of one minute. As can 

be seen, the price stays almost to the same level, and eventually has some “jumps”, that 

can be due to effectively price change or due to errors. Figure (3) plots the relative returns 

over the entire dataset. Stochastic volatility variables have been computed by creating an 

equally spaced time and price grid of 1-minute length. The algorithm written for this 

thesis, which makes use of time serialization and sparse matrix operations, allows to 

complete the sparse sampling operation in just 0,19 seconds (about 40'000x faster than a 

normal procedure), with just 84 MB of memory allocated (about 3'000x smaller than a 

normal procedure). The analysis is then conducted on RV at 1-minute frequency (RV1), 

RV at 5-minutes frequency (RV5), BPV, TSRV. Figure (4) shows the standardized return, 

compared with a Normal (0,1) distribution. 

Figure 1. Weekly price pattern. 
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Figure 222. One-minute price pattern. 

Figure 3. Returns time series. 

 

Figure 4. Standardized returns vs Normal (0,1) 
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The choice of one and five minute for RV is inducted mainly by literature, and 

because these frequencies are the most representative of the category of high-frequency 

sampled observations. Figure (5) summarizes the reason of this choice. RV1 has the 

highest explanatory power, in terms of adjusted R-squared of a regression of the variable 

on its lags (the number of lags are determined by BIC procedure). RV5 seems to be a 

good representative of lower sampling frequencies, since adjusted R-squared is similar to 

that of the following sampling minutes. The aim of this analysis is to assess the predicting 

power of stochastic volatility, this is the reasons why RV1 and RV5 have been chosen. 

Sampling frequency 

(minutes) 
tick 1 2 3 4 5 6 7 8 9 10 

Adj. R-squared of 

𝑅𝑉𝑡~[1 𝑅𝑉𝑡−𝑙𝑎𝑔] 
0,091 0,609 0,585 0,54 0,487 0,476 0,468 0,441 0,441 0,467 0,479 

Adj. R-squared of 

√𝑅𝑉𝑡~[1 √𝑅𝑉𝑡−𝑙𝑎𝑔 ] 
0,192 0,642 0,624 0,587 0,554 0,546 0,535 0,521 0,526 0,534 0,543 

Figure 5. RV statistics at different sampling intervals. 

Figure (6) shows the time series of RV, RV1 and RV5. Figure (7) shows 

autocorrelation functions and the time series of some of the analysed variables (RV1, 

BPV). It is interesting to note how correlation on the first lags is significant, and decays 

very slowly over time. 

 

Figure 6. Time series of RV at different sampling horizons (tick-by-tick, one-minute, five-minutes). 
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Figure 7. Autocorrelation function of RV1 and BPV, both on the normal and on the square root process. 

The analysed stochastic volatility processes show a discrete predicting power. In 

this paper this predicting power is assessed to forecast future movements of the VSTOXX 

(V2X) index, to evaluate if it is possible to build a trading strategy that involves stochastic 

volatility. The V2X shows the level of the implied volatility of hedged at-the-money 

options on the EUROSTOXX. Another estimator is then introduced, that is the 

Heterogeneous AR (HAR), defined as the sum of RV’s moving averages at one day, one 

week (5 observations) and one month (20 observations). This model seems to better 

capture the different horizons effects, by disentangling RV process into its weekly and 

monthly moving averages. Figure (8) shows results of regressions with V2X index. 

Explanatory 

variable 
RV1 BPV RV5 TSRV HAR 

V2Xt ~ Xt-1 0,543 0,4848 0,4759 0,4554 0,8042 

V2Xt ~ √Xt-1 0,6603 0,6595 0,5998 0,581 0,8501 

V2Xt ~ √Xt-1, √Xt-2 0,7284 0,7081 0,694 0,6819 - 

Figure 8. Adjusted R-square of a regression of V2X and the stochastic volatility variables. The first column indicates 
the regression run. 

There is evidence that stochastic volatility can be used to predict at least the 

direction of next-day V2X, thus two trading strategies have been built. The first strategy 

consists into predicting the next-day movement of V2X, whit an AR rolling window 

forecast of one year, and then buying if an increase is expected, or selling otherwise. It is 

assumed that the price of one traded contract is equal to the level of the index, with no 

transaction costs. Only one contract at time is traded, and the position is rolled each day 

(as if 1$ is invested on each day, without reinvesting). The second strategy adds to the 

previous a momentum component, which accounts for mean reversion. If the level of the 
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V2X, over the previous two days, has risen by a certain percentage threshold, then the 

index is sold, regardless from the forecast. Since the choice of the thresholds leads to 

different results, figure (9) displays the average return setting the threshold to all values 

between 10% and 30%, with 1% increment. Results show that, using stochastic volatility, 

on average, is possible to achieve better returns respect to a benchmark strategy (which 

involves the use of the only V2X lagged value). 

Strategy-1 
same sign 

ratio 

overall 

return 

V2X (lag) 46,21% -223,14% 

RV1 48,86% -31,41% 

√RV1 48,86% -45,13% 

HAR 48,23% -100,32% 
 

Strategy-2 with 

momentum 

overall 

return 

annualized 

return 

V2X (lag) 1,75% 0,56% 

RV1 32,78% 9,58% 

√RV1 19,26% 5,85% 

HAR 14,60% 4,50% 
 

Figure 9. Different strategies to trade the V2X index. The same sign ratio is the ratio of predicted on realized returns’ 
signs. The first column of both tables is the variable used to forecast. 

The last application is a VaR backtesting analysis with stochastic volatility. The 

benchmark model, the EWMA, is compared against RV1, BPV and HAR. EWMA model, 

described recursively as 𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑟𝑡−1
2 , has been chosen since it is widely 

used in risk management, due to its efficacy and simplicity. The parameter λ is set to 0.94, 

following Hull (2012) notation. These variables are compared in parametric and Monte 

Carlo simulation methods, both at 1-day and 10-days horizons. For the parametric model, 

it is assumed that standardized returns distribute as a Normal (0,1). Since the standardized 

(with stochastic volatility) returns empirically distribute as a Normal (0,1), it is reasonable 

to expect that the confidence interval for the future return is [𝑟𝑡+1 − 𝛼𝜎̂𝑡+1, 𝑟𝑡+1 +

𝛼𝜎̂𝑡+1 ] , where α, set to 2.326, is the prudential quantile (99-th) of a Normal (0,1) 

distribution. The next-period volatility, in the case of stochastic variables, is computed 

through an AR process rolling window forecast. The 10-days EWMA volatility is the 

daily volatility multiplied by square root of 10 (is assumed to remain constant), while for 

stochastic variables the volatility over each 10s of days is computed by summing the 

forecasted variances obtained by direct forecast: 𝜎𝑡,10𝑑 = √∑ 𝑅𝑉1𝑡+𝑖
10
𝑖=1 , with RV given 

by a forecast of 𝑅𝑉1𝑡+𝑖 ~ [1 𝑅𝑉1𝑡 𝑅𝑉1𝑡−1]. Figure (10) shows results of the parametric 

analysis. The exceptions column indicates the percentage of time that the estimated VaR 
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was not sufficient to cover the loss occurred (the more this value is near to 1%, the better 

the model is), while the average capital required column describes the average capital 

put as reserve, that is the daily expected VaR loss. 

 1 day 10 days 

Variable exceptions 
average capital 

required 
exceptions 

average capital 

required 

EWMA 1,89% 2,50% 1,79% 7,88% 

RV1 1,89% 2,44% 1,28% 7,89% 

BPV 3,40% 2,11% 2,68% 6,85% 

HAR 3,03% 2,32% 2,04% 7,40% 

Figure 10. Parametric VaR analysis on 1-day (left) and 10-days (right) horizons. 

None of the models is able to perfectly match the required quantile, but RV 

performs better than the EWMA, since on 1-day it reaches the same exceptions level 

requiring less capital, while in the 10-days case exceptions occurrence is closer to 1% still 

requiring same capital than EWMA. 

The simulated model for the Monte Carlo methods is: 𝑟𝑡+1 = 𝑑𝑝𝑡+1 = 𝜀𝑡+1𝜎̂𝑡+1, 

with an implied drift rate of zero, and the volatility proxy forecasted through an AR model 

(rolling window) of the stochastic variables. Simulations are run by drawing ε from a 

Normal (0,1), Student-t and Laplace distributions. The choice of the latters derives from 

the fact that, since empirical returns have high kurtosis, drawing from a Normal 

distribution may underestimate the probability of extreme events to happen. Student-t and 

Laplace, indeed, have higher kurtosis (Laplace’s shape is also closer to that of empirical 

returns). The choice of the Student-t degrees of freedom is derived in two ways: by 

maximum likelihood and by finding the degree-of-freedom parameter such that the 

kurtosis of the resulting Student-t distribution matches the empirical kurtosis of returns. 

Empirical excess kurtosis is observed to be about 2.51, which implies a degree of freedom 

parameter of 6.39. Parameters of Laplace distribution are chosen by maximum likelihood. 

Figure (11) shows exceptions rate at 1-day and 10-days. Results shows how matched 

Student-t and Laplace distributions for ε simulations, perform better. They are even better 

than parametric models. 
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 1 day 10 days 

                 ε 

Variable 
N(0,1) t (MLE) 

t 

(match) 
Laplace N(0,1) t (MLE) 

t 

(match) 
Laplace 

RV1 1,89% 1,39% 0,63% 0,76% 1,28% 0,77% 0,64% 0,77% 

BPV 3,28% 2,14% 1,13% 1,51% 2,55% 1,66% 1,02% 1,66% 

HAR 2,90% 1,89% 0,76% 1,39% 2,04% 1,53% 0,51% 1,79% 

Figure 11. Exceptions rate using stochastic variables in Monte Carlo simulations, with ε drawn from different 
distributions. Parameters of t (MLE) and Laplace distributions are found by MLE. Parameters of t (matched) are 
found by matching empirical kurtosis. 

These results confirm the fact that stochastic variables may provide better insight 

for the estimation of the volatility process. The higher computation efforts they require 

are balanced by more accurate estimations. Stochastic volatility models seem to provide 

more accurate estimates of the true volatility process, principally because they try to 

exploit all the possible information available through HFD. This confirms the theory that 

big data are useful to better understand the behaviour and the true nature of certain 

stochastic processes, and maybe forecast their probable future realizations. 

Last few words will be spent on the Julia language. This language is very similar 

to modern languages such as Matlab or R, but has the advantage that is much faster, 

comparably to C++. It has been developed relative recently, thus in some cases is still not 

complete (it does not have an “nice” interface, or some important functions or packages 

are missing). However, if the aim of the analysis is to deal with huge amount of data, it 

can be very helpful thanks to its fastness and versatility. If coding is not a pain, this 

language may give many satisfactions to a person who has to analyse many data and 

requires a powerful language. 

 


