

Department of Economics and Finance Chair: Econometric Theory

Stochastic volatility with High-

Frequency Data
Analysis of the EuroStoxx index and applications with Julia language

Supervisor

Prof. Giuseppe Ragusa

Candidate

Raffaele Balzano

666241

Co-supervisor

Prof. Pierpaolo Benigno

Academic year 2015-2016

2

3

ai miei genitori, a mia sorella

a Marta

ai miei amici e a tutte le persone

che ho incontrato lungo il mio cammino

che mi hanno dato la forza di guardare sempre avanti

4

5

CONTENTS

1. Introduction .. 7

2. Literature overview ... 10

2.1 Non-stochastic volatility models. .. 11

2.1.1 ARCH class models. ... 11

2.1.2 Implied Standard Deviation Models. ... 14

2.2 Stochastic volatility models. .. 15

2.2.1 Discrete time models. ... 16

2.2.2 Continuous time models. .. 20

3. High frequency data .. 24

3.1 Data handling .. 24

3.1.1 Data Cleaning .. 24

3.1.2 Missing data .. 26

3.1.3 Data synchronization ... 28

3.1.4 Market microstructure noise .. 28

3.1.5 Ticks frequency effect ... 30

3.1.6 Intraday patterns ... 30

3.2 Econometrics of High Frequency Data .. 30

4. Volatility in High Frequency Data framework ... 32

4.1 Some definitions.. 32

4.1.1 Terminology. ... 32

4.1.2 Martingales, local martingales, semi-martingales .. 33

4.1.3 Quadratic variation (QV) ... 34

4.2 Models for volatility .. 37

4.2.1 Equally spaced time interval ... 37

4.2.2 Irregular time space .. 38

4.2.3 Microstructure noise effect ... 39

4.3 Parameters estimation .. 40

4.3.1 Maximum likelihood estimator with microstructure bias 41

4.3.2 Realized kernel estimator .. 42

6

4.3.3 Bipower variation .. 43

4.3.4 Two Stage Realized Variance ... 45

4.3.5 Realized range-based variance .. 46

5. Applications ... 48

5.1 Preliminary adjustments ... 48

5.1.1 Dates handling ... 50

5.1.2 Data cleaning ... 51

5.1.3 Data modelling .. 51

5.2 Data analysis .. 53

5.2.1 Returns series .. 53

5.2.2 Volatility measures .. 54

5.2.3 Assessing self-predictive power .. 58

5.3 Application – trading the V2X ... 62

5.4 Application – VaR .. 65

5.4.1 1-day horizon ... 66

5.4.2 10-days horizon ... 68

6. Conclusions ... 70

A. Code .. 72

B. Bibliography .. 94

7

1. INTRODUCTION

This paper’s objective is to compare two different volatility frameworks, that are

stochastic and non-stochastic (traditional) volatility. Volatility is an essential factor of

modern finance theory and modelling, but it cannot be observed. Stochastic volatility

provides a framework for the estimation of the time varying volatility. It responds to the

need of more complex models in a rapidly changing financial environment. It requires,

also, higher computational efforts and solid theory behind. Sometimes the coefficients’

estimation is not feasible, and “non-traditional” estimation methods are required. The

diffusion of stochastic volatility rose with the improvement of CPUs’ computational

power and the availability of high-frequency data. High-Frequency Data (HFD) can be

used to build more efficient estimators. Data involved is observed at very high-

frequencies, usually from few seconds to 30 minutes. It implies that specific methods to

handle this huge quantity of data are necessary in order to avoid excessive computational

efforts and waste of time. In this thesis the Julia programming language is used, which is

very useful in big data analysis. The dataset contains high-frequency (less than one-

minute frequency) observations of the EUROSTOXX index. Intra-daily data have been

collected to build a daily estimator for the daily unobservable variance process. The aim

is to use these estimators to produce (and forecast) a proxy for the volatility of the

underlying asset, and use it for trading and risk management purposes.

Stochastic volatility models are typically computationally intensive, still there are

several reasons to prefer them to the traditional models (constant volatility or GARCH

class). They better fit empirical data, or, as it will be shown, they can be used to

standardize daily returns, to obtain a Normal (0,1) distribution. 4 main models are

analysed, that are Realized Variance computed with 1-minute frequency (RV1), Realized

Variance computed at 5-minutes frequency (RV5), BiPower Variation (BPV) and Two

Scales Realized Variance (TSRV). These four estimators are the best representatives for

the stochastic variance class of estimators. The first two (RV1, RV5) are the plain

estimators for the Quadratic Variation (QV) process, that is, the asymptotic estimator of

the unobservable volatility process. Two main bias usually affect RV, which are intraday

jumps and market microstructure bias. BPV and TSRV try to clean these biases out.

8

A statistical analysis is then conducted on these variables. Since the aim is to find

a good proxy for volatility, which should be able to be “self-forecastable”, the analysis is

focused on the assessment of the forecasting ability of these variables. Forecasts are

implemented with a rolling window procedure. The underlying stochastic process is

supposed to follow an AR specification, and, at each forecast horizon, previous one-year

observations are used to infer the parameters of the AR model. These parameters are

applied to the latest available observations in order to produce a one-step-ahead forecast.

Repeating the procedure at all times, a time series array of forecast is produced, and it is

then compared with the realized value in order to assess the degree of error. It is

introduced also the Heterogeneous AR (HAR) model, which is built with the RV1 moving

averages at 1-day, 5-days, 20-days. These horizons correspond respectively to 1-day, 1-

week and 1-month trading period. HAR estimator is useful to disentangle the short,

medium and long term influence of the variance process. Empirically, this model has

higher self-forecasting capacity.

A first application of stochastic volatility is a trading strategy involving the

VSTOXX index, that expresses the implied volatility of the EUROSTOXX index. The

square root processes of stochastic volatility variables are very similar to that of the

VSTOXX. Since they can be used as good proxies for VSTOXX due to the relevant

adjusted R-squared, and since they have a significant self-predicting power, it should be

possible to make forecasts about the future level of VSTOXX. These models are then

compared with a benchmark momentum strategy, that consists into buying the VSTOXX

if the index level has risen, and selling otherwise. The preliminary results show that

negative returns are achieved using both kind of variables (but RV performs better), due

to the unpredictable peaks which frequently occur through the time series. A second

strategy consists into adding a mean-reversion momentum signal, to be followed

regardless to the value forecasted using the model. With this second method it is possible

to achieve positive returns, which only in the case of RV1 estimators are greater than the

benchmark strategy.

The last application is a VaR back-testing analysis, comparing a traditional

EWMA and stochastic volatility models. The comparison is conducted for a parametric

and a Monte Carlo simulation framework, both at 1-day and 10-days horizons. VaR loss

9

level is set to 1%. Models are compared by looking at the exceptions percentage, that is

the percentage of times where realized loss is greater than the forecasted VaR. The more

this ratio is close to the selected quantile, the better the model is. The parametric model

assumes a certain distribution for the standardized time series, and then a certain quantile

loss of returns. Theory says that standardizing future daily returns with stochastic

variables should account for the leptokurtic bias, and a Normal distribution should be

obtained. Empirical evidence shows that the quantile level is not reached, but RV

performs better than EWMA. Monte Carlo simulations demonstrate that it is possible to

achieve better results with stochastic volatility, if higher-kurtosis distributions for the

innovations terms are specified. Using Student-t and the Laplace distributions, indeed,

allows to obtain exceptions level very close to the prudential quantile, and much more

efficient than traditional methods.

10

2. LITERATURE OVERVIEW

 Over the last decades, literature attempted to develop models to describe assets’

returns. A relevant field of research is the identification of the main drivers of returns. It

is a widely diffused belief that assets’ volatility plays a crucial role in returns composition.

At time, it does not exist a theoretical standard model. There are, still, some empirical and

theoretical features that are widely accepted. Volatility is time varying, and it manifests

clustering phenomena. Even if the most of economic models deal with the assumption of

a constant volatility, empirical results show that actually large changes are followed by

large changes, and small changes tend to be followed by small changes (Mandelbrot,

1963), meaning that volatility is time varying and for long periods it stays almost at the

same level. This concept is related to the mean reversion phenomenon, namely the

attitude of an observed process to come back to its mean level, after a shock has occurred.

Figure (1) show how volatility empirically follows these rules.

0

5

10

15

20

25

30

35

40

45

50

PX_LAST

11

Figure 1a,1b. VIX index between 1990-2006, and between 2007-2016. Source: Bloomberg.

The charts show the level of the VIX (Chicago Board of Exchange Volatility Index),

which indicates the 30-day market’s expectation of volatility, measured through the

implied volatility of plain options on the S&P 100 index. It shows clearly that there are

times where volatility stays high for long periods, probably due to shocks that occurred

on financial or real market, after which it slowly decreases to its long-term level. The next

paragraphs will show the difference between the most common used classes of models:

stochastic and non-stochastic.

2.1 Non-stochastic volatility models.

2.1.1 ARCH class models.

The evidence of the phenomena discussed above inspired the development of

classes of models that allowed for changes in volatility levels through time. Engle (1982)

and Bollerslev (1986) gave important contributions to the time-varying volatility

framework with the introduction, respectively, of ARCH and GARCH models, which

impose a heteroskedastic (non-constant) structure to volatility. Variance is supposed to

be a function of all variables available (observable) until time of analysis: vt = f(It-1), with

It-1 denoting the information set available until then.

0
10
20
30
40
50
60
70
80
90

PX_LAST

12

Let the return of an asset at time t be Rt (it can be considered as the excess return,

that is the return in excess to risk-free rate). It is possible to define the return process as

follows:

2.1

𝑅𝑡 = 𝑚𝑡 + 𝜉𝑡 , 𝑤𝑖𝑡ℎ 𝜉𝑡 = √𝑣𝑡 ∙ 𝜀𝑡

where εt is a Gaussian White Noise with mean zero and unit variance, mt and vt denote

the first and the second conditional moments, respectively:

𝑚𝑡 = 𝐸𝑡−1[𝑅𝑡] , 𝑣𝑡 = 𝐸𝑡−1[𝑅𝑡 − 𝑚𝑡]2

and ξt hence represents the error term of the mean process. Moreover, using this

notation, it follows that:

2.2

𝐸𝑡−1[𝑅𝑡] = 𝐸𝑡−1[𝑚𝑡 + √𝑣𝑡𝜀𝑡] = 𝑚𝑡 + √𝑣𝑡 𝐸𝑡−1[𝜀𝑡] = 𝑚𝑡

2.3

𝑉𝑎𝑟𝑡−1[𝑅𝑡] = 𝑉𝑎𝑟𝑡−1[𝑚𝑡 + √𝑣𝑡𝜀𝑡] = 𝑣𝑡 𝑉𝑎𝑟𝑡−1[𝜀𝑡] = 𝑣𝑡

where the term vt goes outside both operators since it is a function of information available

at time t, thus deterministic.

It is not worth to precise that the “conditional” property of the moments lies in the

fact that they are computed using the information available until time t. This is pointed

out by the subscript of the expectation operator, which can be also written, as 𝐸𝑡−1[𝑋𝑡] =

𝐸[𝑋𝑡−1|𝐼𝑡−1] . Unconditional moments can be expressed as: 𝜇 = 𝐸[𝑅𝑡] and 𝜎2 =

𝐸[𝑅𝑡 − 𝜇]2 . Therewith, ARCH class of models have by construction heteroskedastic

conditional volatility, even if this may not exclude a constant unconditional volatility.

Sometimes it is possible to define the variance as the expectation of the squared

returns, namely 𝐸𝑡[𝑅𝑡
2], assuming that returns have zero mean, or re-scaling the returns

vector to have a new zero-mean variable: �̃�𝑡 = 𝑅𝑡 − 𝑚𝑡 . This assumption has more

support with higher frequency data, where the expected change in returns is negligible.

13

Coming back to return process, equation (1) states that the realization of the asset’s

return is made-up by a deterministic component, that is its mean, plus a risky component

linked to the unobservable volatility of the asset, which is stochastic since the εt is a

random variable. It is possible to impose the conditional variance to follow an

AutoRegressive (AR) process:

2.4

𝑣𝑡 = 𝑎0 + 𝑎1𝑅𝑡−1
2 + ⋯ + 𝑎𝑞𝑅𝑡−𝑞

2

It is clear that vt is a function of past data. Actually, in Engle’s paper, the logarithm of vt

is used, but the formulation (4) will be analysed more in detail in the stochastic volatility

paragraphs.

Bollerslev (1986) and Taylor (1986) proposed (independently) an extension of the

conditional variance that accounted also for lagged values of itself, namely the

Generalized ARCH (GARCH):

2.5

𝑣𝑡 = 𝑎0 + 𝑎1𝑅𝑡−1
2 + ⋯ + 𝑎𝑞𝑅𝑡−𝑞

2 + +𝑏1𝑣𝑡−1 + ⋯ + 𝑏𝑝𝑣𝑡−𝑝

𝑤𝑖𝑡ℎ 𝑎0 > 0; 𝑎𝑖, 𝑏𝑖 > 0 𝑓𝑜𝑟 𝑖 = 1, … , max(𝑞, 𝑝)

A feature of the GARCH model is that it is able to capture the clustering effect, by testing

how much the lag-variables parameters are close to 1.

Literature is abundant of different version of ARCH-like models, there are so

many that it may be confusing to analyse all of them. Hull (2012) suggested an interesting

and simple formulation to monitor the daily volatility, widely used for risk management

purpose:

2.6

𝑣𝑡 = 𝜆 𝑉𝜆 + 𝑎 𝑟𝑡−1
2 + 𝑏 𝑣𝑡−1

2

where rt denotes the log-return at time t: 𝑟𝑡 = ln (𝑅𝑡/𝑅𝑡−1), and Vλ is the long term

volatility (the one that the process is supposed to converge toward). The particularity is

that, since λ, a, b are weights given to those variables, it must be true that λ + a + b =1.

Now, calling w = λ Vλ, then it is possible to re-write the model as:

14

2.7

𝑣𝑡 = 𝑤 + 𝑎 𝑟𝑡−1
2 + 𝑏 𝑣𝑡−1

2

that is the formulation of a GARCH (1,1). Then, it is possible to estimate the parameters

w, a, b and use the property discussed above to find the long-term variance:

{
�̂� = 𝑙 𝑉𝑙

𝑙 = 1 − �̂� − �̂�
 → 𝑉𝑡 =

�̂�

1 − �̂� − �̂�

 Another important reason of the wide use of ARCH-class models, is that, by

assuming a distribution for the error terms ξt, it is possible to estimate the parameters by

maximum likelihood procedure.

ARCH class of models tend to fit quite well data when lower frequencies are

analysed. When high frequency data are used these models show some limits, both

because volatility may follow intraday patterns and because there may be noise within

the trades due to market microstructure.

2.1.2 Implied Standard Deviation Models.

 From Black-Scholes formula, the price of plain call and put options is a function

of stock prices, strike prices, risk-free rate, time and volatility. Since prices of exchanged

options are available, it is possible to reverse engineering the Black-Scholes equation to

find the volatility value in line with the option prices. Volatility obtained through this

method is called implied volatility, and represents the market’s expectation about future

volatility. Assuming that markets are price-efficient, prices must reflect all information

and discounted expectations about future variables. This is also the principle at the base

of VIX index calculation. Due to its immediacy, it is very common to use implied

volatility as a proxy for near-term volatility. There are several drawbacks in using implied

volatility. There may exist risk premia embedded in implied volatility that could deviate

from the actual valuation of the option’s price, which lead to biases in the measurement

of expected future level of volatility. There may exist unknown variables that are not

priced, whose price is erroneously embedded in implied volatility.

15

2.2 Stochastic volatility models.

The models so far described were characterized by time-varying but deterministic

variance. Stochastic-volatility models, instead, introduce “randomness” elements in

modelling the variance. Variance is supposed to follow a general stochastic process, {V},

that is a series of stochastic variables indexed by time: V1, V2, … Vt, … VT. Each random

variable Vt, characterized by a probability density function, and, together with the other

“members” of the process, by a joint probability density function. In real world just a

realization of the process is observed.

Since 80’s, many authors proposed models where variance was imposed to follow

a stochastic process. Stochastic volatility models allow for the presence of shocks in both

prices and volatility. Volatility is a function of a certain set of variables σt = f(Kt), where

Kt is an unobserved latent process, and f(∙) is an increasing function whose codomain is

the set of non-negative real numbers. Kt may follow a particular process, such as an

ARMA(p,q), a Random Walk, or even a continuous time process, such a Brownian

Motion. One of the first adopter of these models structure was P. K. Clark, who analysed

the price of traded securities and introduced the concept of “subordinated process” (Clark

1973). Instead of referring to a price process as the sequence of random variables

𝑃1, 𝑃2, … , 𝑃𝑇, with t = 1,2,…,T representing the discrete time at which the realizations of

the price comes, Clark assumes that time itself follows a particular stochastic process,

whose t is a realization. Hence, t is the realization of a stochastic process, call it {τ}, with

positive increments: τi > τj for i > j. The process P(τt) can be thought as the realization of

the quoted price on a trading platform: trades do not happen at periodic intervals of time,

but their frequency depends on the activity of buying and selling of operator at market

microstructure level. Literature developed several techniques for handling stochastic

volatility. The following paragraphs will provide a first insight towards these models,

while in the fourth chapter high-frequency stochastic volatility models will be discussed.

16

2.2.1 Discrete time models.

 A first sub-class of models are discrete time ones. Taylor (1982) provided oe of

the first formulation of discrete time model, namely the product process. He started from

an expression of returns similar to (1):

2.8

𝑟𝑡 = 𝐸[𝑟𝑡] + 𝜎𝑡𝑢𝑡

where rt is the log-return ln(Rt/Rt-1), σt and ut are two independent stochastic processes

such that: σt is strictly positive, {u} follows an ARMA(1,1) process with mean zero and

unit variance, σt and us independent for each t and s. If the assumption on the stationarity

of {σ} {u} holds, then also {r} is stationary. These properties imply in primis that:

𝐶𝑜𝑣(𝜎𝑡, 𝑢𝑠) = 𝐸[𝜎𝑡𝑢𝑡] − 𝐸[𝜎𝑡]𝐸[𝑢𝑠] = 0 → 𝐸[𝜎𝑡𝑢𝑡] = 𝐸[𝜎𝑡]𝐸[𝑢𝑠]

which implies:

2.9

𝐸[𝑟𝑡 − 𝐸[𝑟𝑡]] = 𝐸[𝜎𝑡𝑢𝑡] = 𝐸[𝜎𝑡]𝐸[𝑢𝑠] = 0

2.10

𝐸[𝑟𝑡 − 𝐸[𝑟𝑡]]2 = 𝐸[𝜎𝑡𝑢𝑡]2 = 𝐸[𝜎𝑡]2𝐸[𝑢𝑠]2 = 𝐸[𝜎𝑡]2

The variance of returns is the expected value of the squared term σt, and thus the expected

variance. The process {σ} is assumed to be modelled as:

2.11

𝜎𝑡 = 𝑒ℎ𝑡/2

where ht can be a generic non-zero mean Gaussian linear process. In this particular case

it is an AR (1) process:

2.12

ℎ𝑡 = 𝑎0 + 𝑎1ℎ𝑡−1 + 𝜀𝑡

where εt is Gaussian White Noise with mean zero and variance σε
 2. The term εt is exactly

the element that distinguish stochastic and non-stochastic models (for example, the one

17

described in equation (4)). This implies that the logarithm of variance is modelled as an

AR (1):

ln (𝜎𝑡) = ℎ𝑡/2 → ln (𝜎𝑡
2) = ℎ𝑡

2.13

ln (𝜎𝑡
2) = 𝑎0 + 𝑎1ln (𝜎𝑡−1

2) + 𝜀𝑡

In case ut is also normal, the process (8) take the name of log-Normal stochastic volatility

model. The main advantage of using a log-model is that it ensures non-negative values

for variance.

 Let now analyse some statistical properties of the variance process (13). Its

expected value is:

𝐸[ln 𝜎𝑡
2] = 𝐸[𝑎0 + 𝑎1 ln 𝜎𝑡−1

2 + 𝜀𝑡]

= 𝑎0 + 𝑎1𝐸[ln 𝜎𝑡−1
2]

that, by recursively substituting, becomes:

= (∑ 𝑎0𝑎1
𝑖

𝑛−1

𝑖=0

) + 𝑎1
𝑛𝐸[ln 𝜎𝑡−𝑛

2]

Assuming that |a1|<1, which means that the series is stationary, when n→∞ the last part

of the equation goes to zero, while the first part converges to the sum of a geometric

series:

=
𝑎0

1 − 𝑎1
= 𝛼

Literature often do not agree with the assumption that n goes to infinity, but rather

prefer to bound the process within a finite time space. It is possible to specify an initial

time t0, at which the process starts, and then the above expression becomes

= (∑ 𝑎0𝑎1
𝑖

𝑁=𝑡−𝑡0

𝑖=0

) + 𝑎1
𝑁𝐸[ln 𝜎0

2]

18

Supposing that σ0 is a known value, then the expected value of (13), conditioned on σ0,

becomes

= 𝑎0

1 − 𝑎1
𝑁+1

1 − 𝑎1
+ 𝑎1

𝑁 ln 𝜎0
2

The variance of (13), knowing that σt
2 and εt are uncorrelated, is:

𝑉𝑎𝑟[ln 𝜎𝑡
2] = 𝑉𝑎𝑟[𝑎0 + 𝑎1 ln 𝜎𝑡−1

2 + 𝜀𝑡]

= 𝑉𝑎𝑟[𝑎1 ln 𝜎𝑡−1
2 + 𝜀𝑡]

= 𝑎1
2𝑉𝑎𝑟[ln 𝜎𝑡−1

2] + 𝑉𝑎𝑟[𝜀𝑡]

= 𝑎1
2𝑉𝑎𝑟[ln 𝜎𝑡−1

2] + 𝜎𝜀
2

Then, as above, by iteratively substituting:

=
𝜎𝜀

2

1 − 𝑎1
2 = 𝛽2

Since the series is stationary, these moments are the same at each lag. The covariance and

the autocorrelation of the series are:

𝐶𝑜𝑣(ln 𝜎𝑡
2 , ln 𝜎𝑡−ℎ

2) = 𝐶𝑜𝑣 (∑ 𝑎1
𝑖

ℎ−1

𝑖=0

(𝑎0 + 𝜀𝑡−𝑖) + 𝑎1
ℎ ln 𝜎𝑡−ℎ

2 , ln 𝜎𝑡−ℎ
2)

= 𝐶𝑜𝑣(𝑎1
ℎ ln 𝜎𝑡−ℎ

2 , ln 𝜎𝑡−ℎ
2)

= 𝑎1
ℎ𝑉𝑎𝑟(ln 𝜎𝑡−ℎ

2) = 𝑎1
ℎ𝛽2

𝜌(ln 𝜎𝑡
2 , ln 𝜎𝑡−ℎ

2) =
𝐶𝑜𝑣(ln 𝜎𝑡

2 , ln 𝜎𝑡−ℎ
2)

𝑉𝑎𝑟(ln 𝜎𝑡
2)

=
𝑎1

ℎ𝛽2

𝛽2
= 𝑎1

ℎ

From equation (13) since εt is normally distributed, also ln 𝜎𝑡
2 is normally distributed,

with mean 𝛼 and variance 𝛽2:

ln 𝜎𝑡
2 ~𝑁(𝛼, 𝛽2)

19

and then:

ln 𝜎𝑡 =
1

2
ln 𝜎𝑡

2 ~𝑁(
𝛼

2
,
𝛽2

4
)

There are, now, sufficient elements to calculate moments of rt. Re-writing 𝑟𝑡 = 𝑢𝑡𝑒ln 𝜎𝑡

and combining equation (9) with the properties of the Normal distribution ut, it follows

that even moments of rt are all zeros. In general, the n-th moment is:

𝐸[𝑟𝑡 − 𝐸[𝑟𝑡]]
𝑛

= 𝐸[𝑢𝑡]𝑛𝐸[𝜎𝑡]𝑛 = 𝐸[𝑢𝑡]𝑛𝐸[𝑒𝑛 ln 𝜎𝑡]

= 𝐸[𝑢𝑡]𝑛𝑒𝑛𝛼/2+
1
2

𝑛2𝛽2/4

thus, variance equals:

= 𝑒𝛼+𝛽2/2

and, kurtosis is:

= 𝑘𝑢𝑟𝑡(𝑢𝑡)
𝐸[(𝜎𝑡)4]

𝐸[(𝜎𝑡)2]2

= 3
𝑒2𝛼+2𝛽2

𝑒(𝛼+𝛽2/2)2
= 3𝑒𝛽2

which, for β2 positive, is greater than the kurtosis of a standard Normal distribution. The

log-model accounts also for fatter tails of the returns distribution, as empirical results

confirm.

Inference with common statistic tools, i.e. by maximum likelihood, is infeasible.

There is not a closed-form solution for the likelihood function. The density of rt is:

𝐶𝐷𝐹(𝑟𝑡) = ∫ 𝑃𝐷𝐹(𝑟𝑡|𝜎𝑡
2)

+∞

−∞

∗ 𝑃𝐷𝐹(𝜎𝑡
2|𝛼, 𝛽2)𝑑𝜎𝑡

2

where PDF(rt) is a Normal density function, and PDF(σt
2) is a LogNormal density

function. Therefore, the integral has no closed-form, and it can be evaluated only

numerically, through simulations. There are alternative tools used to make inference in

stochastic volatility framework, and they will be the subject of the next chapter.

20

2.2.2 Continuous time models.

 Continuous time models define the diffusion law both for asset’s price and for

asset’s volatility. The most common approach is to use a Brownian Motion as law of

diffusion. In the simplest case, the risky part of return of equation (1) is given by:

2.14

𝑀𝑡 = ∫ 𝜎𝑠 𝑑𝑤𝑠

𝑡

0

that is, a stochastic integral where wt is a Brownian Motion process. A Brownian Motion

{w}, or Wiener Process, is a stochastic process defined on a continuous time space with

the properties:

- 𝑤(𝑡 + ∆𝑡) − 𝑤(𝑡) is Normal distributed with mean zero and variance ∆t;

- Its increments are independent;

- It is a martingale, in the sense that future realization does not depend at all on past

observations, but only on current one. Mt is a martingale if also the square root of

the integrated variance, 𝐸[√∫ 𝜎𝑠
2𝑡

0
𝑑𝑠], is a finite quantity.

The Brownian Motion can be thought as a Random Walk model in a continuous time

space. A widely used formulation for the Brownian motion is: 𝑑𝑤 = 𝜀√𝑑𝑡. Equation (14)

has a particular appeal in financial modelling, since, taking the square of the Mt process,

knowing that 𝑑𝑤 ∙ 𝑑𝑤 = 𝑑𝑡, it yields:

𝐼𝑉 = ∫ 𝜎𝑠
2 𝑑𝑠

𝑡

0

which takes the name of integrated volatility. The integrated volatility can be thought as

the sum all the spot, i.e. instantaneous, variances over time. As pointed out by Barndorff-

Nielsen and Shephard (2004), the integrated volatility can be estimated through the

quadratic process of returns, which will be deepened in the following chapters. This

21

estimate, in theory, is much more accurate when the time intervals of observations tend

to zero, that is with high-frequency data.

 Hull and White (1987) were pioneers of continuous time stochastic volatility.

They started from Black-Scholes-Merton diffusion process, used in option pricing, where

variance process was the solution to the differential equations:

2.15

𝑑𝑆𝑡 = 𝜑(𝑆, 𝜎, 𝑡) 𝑆𝑡 𝑑𝑡 + 𝜎𝑡 𝑆𝑡 𝑑𝑤

𝑑𝜎𝑡
2 = 𝜇(𝜎, 𝑡) 𝜎𝑡

2 𝑑𝑡 + 𝜔 𝜎𝑡
2 𝑑𝑧

where dw and dz are Brownian Motion processes with a correlation ρ, and the drift rate φ

becomes the risk-free rate in a risk-neutral framework. The correlation between shocks in

variance and shocks in prices, makes the model closer to reality. Empirically, financial

markets, especially equity markets, show high volatility when high change in price occurs

(e.g. after a dividend announcement). The parameter μ can be set such to take into account

mean-reverting phenomenon. It is the case of Heston (1993) or Melino and Turnbull

(1990), who proposed a continuous-time version of the Taylor logarithmic stochastic

volatility. The second equation of (15) is, indeed, replaced by:

2.16

𝑑 ln 𝜎𝑡 = 𝜇 ∙ (𝑣 − ln 𝜎𝑡) 𝑑𝑡 + 𝜔 𝑑𝑧

such that volatility is ensured to be positive, and tends to its long-term level v. The

solution to this stochastic differential equation, expresses the value assumed by ln(σt). It

is equal to:

2.17

ln 𝜎𝑡 = ∫ 𝜇(𝑣 − ln 𝜎𝑠) 𝑑𝑠
𝑡

0

+ ∫ 𝜔 𝑑𝑧𝑠

𝑡

0

ln 𝜎𝑡 = 𝑣 + (ln 𝜎0 − 𝑣)𝑒−𝜇𝑡 + 𝜔 ∫ 𝑒−𝜇(𝑡−𝑠) 𝑑𝑧𝑠

𝑡

0

Conditional moments are:

22

𝐸[ln 𝜎𝑡 | ln 𝜎0 = 𝑘0] = 𝐸[𝑣 + (ln 𝜎0 − 𝑣)𝑒−𝜇𝑡 + 𝜔 ∫ 𝑒−𝜇(𝑡−𝑠) 𝑑𝑧𝑠

𝑡

0

]

= 𝑣 + (ln 𝜎0 − 𝑣)𝑒−𝜇𝑡

𝑉𝑎𝑟[ln 𝜎𝑡 | ln 𝜎0 = 𝑘0] = 𝑉𝑎𝑟[𝜔 ∫ 𝑒−𝜇(𝑡−𝑠) 𝑑𝑧𝑠

𝑡

0

]

= 𝐸[𝜔 ∫ 𝑒−𝜇(𝑡−𝑠) 𝑑𝑧𝑠

𝑡

0

]2

By Itô’s isometry, which states that 𝐸[∫ 𝑋𝑠 𝑑𝑧𝑠
𝑡

0
]2 = 𝐸[∫ 𝑋𝑠

2 𝑑𝑠
𝑡

0
], it yields:

= 𝜔2𝐸[∫ 𝑒−2𝜇(𝑡−𝑠) 𝑑𝑠
𝑡

0

] =
𝜔2

2𝜇
(1 − 𝑒−2𝜇𝑡)

Equation (17) is also denoted as Itô Process or stochastic integral form. The volatility

process shown in (16) and (17) follows an Ornstein-Uhlenbeck process, also called

Gauss-Markov process, which has the following properties:

- it is stationary, meaning that the multivariate distribution of the process at

different lags do not change:

𝑃(ln 𝜎𝑡 , ln 𝜎𝑡−1 , … , ln 𝜎𝑡−𝑠) = 𝑃(ln 𝜎𝑡−ℎ , ln 𝜎𝑡−ℎ−1 , … , ln 𝜎𝑡−ℎ−𝑠 , Ɐ ℎ > 0

- it is Gaussian, meaning that the multivariate distribution of the process is normally

distributed;

- it is Markovian, meaning that the distribution of future variables depends just on

the most recent distribution and not by the older ones:

𝑃(ln 𝜎𝑡+1 | ln 𝜎𝑡 , … , ln 𝜎𝑡−𝑠) = 𝑃(ln 𝜎𝑡+1| ln 𝜎𝑡) Ɐ 𝑠 > 0

- it is continuous in probability, meaning that the distribution of adjacent variables

in time is almost the same:

𝑃(|ln 𝜎𝑡 − ln 𝜎𝑡−∆| > 𝜀) → 0, 𝑎𝑠 ∆→ 0, Ɐ𝜀 > 0

- it is mean-reverting toward the long-term average v, with a rate given by μ.

 Other widely used continuous time models are the Heston (1993) model, where

the processes followed by the volatility is:

𝑑𝜎𝑡
2 = 𝜇(𝑣 − 𝜎𝑡

2) 𝑑𝑡 + 𝜔 𝜎𝑡 𝑑𝑧

23

and the jump diffusion, introduced by Bates (1996). The last model accounts for

discontinuous change in diffusion process both of the asset and the volatility structure. It

reflects the impact of news or significant shocks in financial market, whose intensity

cannot be explained just by Brownian Motion. Bates added to the Brownian Motion

diffusion process, another diffusion term modelled on a Poisson distribution, ktdqt, which

is function of the annual frequency of jumps and the percentage jump, kt, given a jump

has occurred. Moreover, qt is a counting process with intensity λt, such that 𝑃(𝑑𝑞𝑡 = 1) =

𝜆𝑡𝑑𝑡. The asset’s stochastic differential equation become:

𝑑𝑆𝑡 = 𝜑𝑡 𝑆𝑡 𝑑𝑡 + 𝜎𝑡 𝑆𝑡 𝑑𝑤 + 𝑘𝑡 𝑆𝑡 𝑑𝑞𝑡

This, in practice, makes computations harder, but empirical tests have shown that jump

diffusion models make slight improvement to the time series analysis of prices.

24

3. HIGH FREQUENCY DATA

 This chapter will be focused on the main features of high-frequency data (HFD).

HFD can enhance the standard tools of estimation, since they provide a better

approximation of continuous-time processes. As Clark (1973) states, the use of HFD

necessarily implies to deal with stochastic time space of observation. There are also some

practical issues to take into account in analysing HFD.

3.1 Data handling

The current development of infrastructure technology system and the increase of

computing power, has made possible for trading venues to collect data at the minimum

time interval, i.e. at every tick. Such a huge availability of data presents issues regarding

the process of gathering information, and raw data cannot be used as are.

3.1.1 Data Cleaning

Falkenberry (2002) indicated that HFD collecting process may present errors of

“transcription”, and the frequency of these inaccuracies rises as the frequency of data

becomes higher. There may exist at least two kind of errors. There are “human-driven”

errors, which can be unintentional, e.g. typos, or intentional, e.g. an algorithmic trading

strategies which post and immediately cancel massive amounts of orders, usually at non-

reasonable prices, thus creating noise and false quotes. There are non-human errors, those

created by the electronic infrastructure and by the gathering data process. Typical

examples are errors of transposition or the loss of some part of the data, such as the

decimal part. However, in practice it may be difficult to determine whether a suspicious

observation is an error or not, or to identify the cause of the outliers. For instance, it may

happen, analysing some minute-by-minute data, to find a minute return of 1%, which may

sound relatively high. There could be several reasons for this sudden change in price, it

25

may be due to errors as much as an unexpected announcement that has been absorbed by

market. It is important to analyse the outliers, and possibly to look for the cause.

A first naïve technique of outliers’ recognition is based on return magnitude. This

involves to define a certain threshold of returns. If exceeded, the observation is labelled

as “suspicious” and eventually discharged. The problem is the right choice of the

threshold. It has to depend on the frequency of data, but not in a linear manner. It is

foregone that the threshold for daily return should be bigger than an hourly return, but not

in a linear way. There may be intraday patterns during a trading day where the price may

vary more than the resulting daily return, which is computed just on the opening and

closing prices. For instance, the probability of an hourly return exceeding the 10% is

higher than the probability of a daily return exceeding the 80% (10% times 8 hours). In

formulas: 𝑃(𝑟 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) < 𝑃(𝑟/𝑡 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑/𝑡) . A rapid way to determine

thresholds is to choose an appropriate quantile of returns. It can be set the threshold such

that the probability of encountering a greater observation is, for example, 99.99%. It ca

be added a fixed amount of basis points, whose amount depends on the frequency of data,

and then discharge all observation greater than the obtained value.

Another possible solution, that does not involve the use of thresholds, is to find

adjacent sequences of anomalous returns with opposite sign. Supposing there is a mistake

in the price sequence, it is reasonable to expect that the next observation will turn back to

the correct level. The return sequence should display an anomalous value followed by

another anomaly of almost the same intensity but different sign. Problems may arise when

these errors come in sequences, since it becomes hard to distinguish errors from a

temporarily jump of price.

Brownlees and Gallo (2006) propose a detection technique, which relies on the

statistical properties of neighbouring prices. An outlier is identified if it exceeds the

distance from the trimmed mean of a neighbourhood of k prices by three standard

deviations, plus a parameter γ which accounts for a lower bound in case of non-changing

quotes. Trimmed moments are computed by selecting the k previous and the k following

prices. Observation are outliers if:

|𝑝𝑡 − 𝑝�̅�(𝑘)| > 3𝜎𝑡(𝑘) + 𝛾

26

with 𝑝�̅�(𝑘) and 𝜎𝑡(𝑘) denoting the trigged mean and standard deviation. The choice of k

must be inducted by the frequency of data. Authors conclude their paper stating that it is

necessarily a graphical analysis of the suspicious data. Using the standard deviation in

presence of outliers may bias the results, since measure like mean and standard deviation

suffer for the presence of outliers. Sometimes it is better to recur to the median value. In

the formula above, the standard deviation can be replaced by the median, with an

opportunely calibrated parameter. A similar approach is to use the median absolute

deviation (MAD), which is the median of the absolute deviation from the daily median.

Hellerstein (2008) proposes to consider as outliers those observations which, standardized,

exceed 2.9652 x MAD, that roughly corresponds to two standard deviations of a Normal

distribution.

Other studies, such as Chung, Van Ness and Van Ness (2004), show how the price

level has an important effect in the “mis-classification” of non-outliers. For low priced

securities even a relative small change in price is able to produce a significant return. For

example, a 1$ security which rise to 1.5$ had a 50% return, and it is not unlikely to happen.

The threshold of returns has to take into account also the effect on low priced securities.

Finally, it is possible to use machine-learning techniques to combine all these

algorithms for the search of outliers. For example, the AdaBoost algorithm, may be

efficient in presence of many “weak learners”, i.e. not efficient classifiers, where a unique

“strong learner” is built up by giving appropriate weights to the former ones.

3.1.2 Missing data

It is very frequent to collect HFD with some missing value, especially if collected

by small providers or on illiquid markets. Usually these missing data are labelled with a

“NA” value, which may cause significant issue in data analysis. Missing data may be

caused also by low trading activity. A first immediate approach is to fill up the missing

price between two available ones, by interpolating the missing values with an average of

available prices, weighted by time. The price at time t, with observations available at ti

and ti+1 is:

27

�̇�𝑡 = (1 − 𝜔)𝑝𝑖 + 𝜔𝑝𝑡+𝑖 → �̇�𝑡 = 𝑝𝑖 + 𝜔(𝑝𝑡+1 − 𝑝𝑡)

𝑤𝑖𝑡ℎ 𝑡𝑖 < 𝑡 < 𝑡𝑖+1, 𝑎𝑛𝑑 𝜔 =
𝑡 − 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖

This method is invariant in mean, since produces information that are linear combination

of available data, but not in variance. Adding observations with value within the range

already measured, a new set of variable is created, but with less “dispersion”. The longer

the interval of data is, the more intra-pattern informations are excluded, and the more

variance is underestimated. Forgetting for a while of Brownian Motions and price patterns,

if a time interval [0, T] is divided into n subset of equal length ∆t, it is true that

𝑣𝑎𝑟∆𝑡(𝑃) = ∆𝑡2𝑣𝑎𝑟𝑇(𝑃) =
1

𝑛2
𝑣𝑎𝑟𝑇(𝑃)

where, var∆t is the variance over the small interval of time ∆t, while varT is the variance

over the whole period with just observation at time zero and time T. It means that the

variance computed adding interpolated observation is smaller than the variance computed

with just the initial values. A possible solution could be to impose that the price between

two observations move proportionally to the square of the time elapsed:

�̇�𝑡 = 𝑝𝑖 + √𝜔(𝑝𝑡+1 − 𝑝𝑡)

This interpolation method implies to renounce to the mean “insensibility” of the

interpolation process. According to the object of the analysis, if the mean or the variance,

it is preferable to use one interpolation method or the other. The interpolation method

necessarily increases the serial correlation between price sequences. Possible drawbacks

are the risk that the autocorrelation series tends to the unit, with problems of stationarity

and linear estimation.

Another common issue is the data aggregation when passing to lower frequencies.

This procedure necessarily implies a loss in data dispersion (loss of intra-period patterns),

which translates into lower variance. This is consistent with the inequality P(r > threshold)

< P(r/t > threshold/t) presented above. Data aggregation necessarily means loss of

information.

28

In conclusion, there is the trade-off between reducing the frequency of

observations and have more treatable data in computational terms, at the cost of losing

intra-period information, or maintain high frequency data that needs higher computational

efforts and may present noise or biases.

3.1.3 Data synchronization

In the previous chapter it has been discussed how, at higher frequencies,

observations happen at irregular interval of time. It becomes hard to analyse together two

price processes whose realizations happen at different timing. A first solution is to take

just observation with same timing: {t} = {ti}∩{tj}. Problems arise with more processes at

time, where there is the risk of losing a significant number of information. This is the case

of illiquid markets or high frequencies observations. In the latter case, the time set can be

seen as a continuous space, thus it becomes hard to take just the common values without

the risk of creating gaps. The best scenario would be to create a minimum common

discrete interval of time, and then fill each point with an observation. Missing points may

be filled with procedures described in the previous paragraph.

3.1.4 Market microstructure noise

When dealing with HFD a common issue is the noise embedded in market

microstructure. Each trading platform consist in a trading book, which collects all the

orders entered into the system by traders, divided into bid orders (orders to buy) and ask

orders (orders to sell). Each trader can submit a limit order, that is an order of buying or

selling at a specified price; if there is a counterparty, then the order is immediately

executed, otherwise it stays in the book, alongside the other unfulfilled orders. When an

order arrives, it is executed at first the “best-quoted” order, which is the highest bid within

the trading book for a sell order (hit), and the lowest ask for a buy order (lift). If more

traders put the same quote, it is executed firstly the oldest one (price time priority). When

a trader puts a limit order that can immediately be executed, it is filled until the price is

still favourable and the quantity is satisfied. The non-executed part of the order stays in

29

the book until an opposite order comes. Traders can submit also market orders, which are

executed immediately, whatever the price. This is the main reason of the presence of noise

in data. If the trading book is not very liquid, that is when quantities are low and the

difference of adjacent quotes is significant relatively to orders arrival, then a sufficient

high quantity market-order may significantly shift the last observed (last traded) price.

Then, market participants may fill again the resulting gap of quotes with new quotes,

restoring the “fair” price of the security. This phenomenon was labelled by Roll (1984)

as the bid-ask bounce. This situation may happen for several reasons: perhaps who made

the market order does not care to hit less favourable quotes, or perhaps there may be tricky

algorithms that may cause this situation. It is emblematic the case of the flash crash,

where on 6th May 2010, within a couple of hours, a misleading algorithm caused the

S&P500 to lose about 9%, which soon recovered almost all the losses.

Market microstructure noise emphasize the trade-off about the optimal frequency

of data to use. If higher frequencies data structure contains irrational patterns, the results

of estimation may be biased, depending on the impact of this noise. On the other side,

only by mean of HFD, the estimation of continuous-time processes is possible. In

conclusion, if possible, market microstructure noise should not be taken into account,

since it does not reflect the fair price of the traded security. Some data provider, usually,

provide information of the mid quote, which may be reasonably better proxy for data

analysis.

Market microstructure noise is one of the main drawback of using HFD. Literature

proposes different solutions. Aït-Sahalia, Mykland and Zhang (2005a) propose to not care

about the noise at very high frequency. Other authors, instead, propose to use alternative

robust estimators or techniques, such as the pre-averaging (Jacod et al., 2009), multiscale

(Zhang, 2006; Aït-Sahalia et al., 2005b) and the realized kernel estimator (Barndorff-

Nielsen et al., 2008).

30

3.1.5 Ticks frequency effect

 Falkenberry (2002) notes how parameters of filtration methods need to be adapted

to the several securities, according to the ticks’ frequency. He showed that stocks with

higher ticks’ frequency, which reveal to be those with higher market capitalization and

volume, are more subject to errors. This implies that securities with higher tick frequency

need a filtering algorithm that focuses on speed of calculation, since the number of

observation is much higher. Securities exchanged at lower frequency, on the other side,

allow for more tolerance in price movement, due to the greater time between adjacent

ticks.

3.1.6 Intraday patterns

 Typically, the daily volume and the ticks’ frequency, for exchanged securities in

regulated markets, show a U-shaped pattern, meaning that the most of transaction happens

at the beginning and at the end of the trading day. This effect is more marked in securities

with higher ticks’ frequency, probably because, at opening, traders “discount” all

overnight information received during the non-trading hours, while at closing, they prefer

to close some open positions. This may explain why this effect is more marked with

higher market cap firms, since they are probably multinational company and thus they are

affected to news and shocks from other part of the world. This implies higher level of

volatility at the beginning and at the end of a trading day, which requires setting the

filtering algorithm such to take into consideration this possibility of higher change in price

during these hours.

3.2 Econometrics of High Frequency Data

 Having HFD in econometrics is a big advantage, since it is possible to use sample

observations to produce accurate estimations of true parameters, through asymptotic

theory.

31

 At higher frequencies, the structure and the behaviour of data may be significantly

different. Engle and Russel (2004) showed how, at higher frequencies, correlation

structure assumes more relevance. Analysing data at microstructure level makes possible

to notice a substantial negative autocorrelation between quotes, due to the bid-ask bounce

effect. Moreover, positive correlation is found at higher lags, due to traders behaviour that

prefer to split the order in small quantities, to have a lower impact on the price.

 An important application of HFD involves the volatility estimation. In models

presented in the first chapter, volatility is treated as a hidden variable to be modelled as a

particular stochastic processes. When time between observations tend to zero, it is almost

sure that the instantaneous volatility can be captured, or, at least, a close proxy may be

computed.

32

4. VOLATILITY IN HIGH FREQUENCY DATA FRAMEWORK

The model that will be studied is the continuous time process:

4.1

𝑑𝑝𝜏𝑡
= 𝜇𝜏𝑡

𝑑𝑡 + 𝜎𝜏𝑡
𝑑𝑊𝜏𝑡

whose solution is:

𝑝𝜏𝑡
= Μ𝜏𝑡

+ ∫ 𝜎𝑠𝑑𝑊𝑠

𝜏𝑡

𝜏0

with {p} the log-price, {μ} a generic function denoting the drift rate, {M} its integrated

value, and {σ} the spot volatility of the log-price. The time space {τ} is itself a random

variable. Assuming that {μ} and {σ} are independent from the Brownian Motion {W}, the

log-price instantaneous difference, i.e. the instantaneous return, distributes as:

𝑑𝑝𝜏𝑡
= 𝑟𝛿𝑡

~𝑁(𝜇𝛿𝑡
, 𝜎𝛿𝑡

2)

𝑤𝑖𝑡ℎ 𝜇𝛿𝑡
= ∫ 𝜇𝑡𝑑𝑠

𝜏𝑡

𝜏𝑡−1

, 𝜎𝛿𝑡

2 = ∫ 𝜎𝑡
2𝑑𝑠

𝜏𝑡

𝜏𝑡−1

The daily drift component μ can be consistently estimated with just opening and closing

day quotes. It can be also assumed, without loss of generality, to be constant or even zero.

The daily σ component is unobservable.

4.1 Some definitions

4.1.1 Terminology.

 To avoid confusion and abuse of terminology, the basic framework will now be

provided once for all. Since the time space analysed is irregular, it will be denoted as the

process {τ}. The analysis will be conducted on intraday data, on the h-th trading day. Each

33

day will be characterized by a starting time 0 and an ending time T. The trading day will

be divided into the smallest possible time interval, coincident with the time-stamp of the

dataset, i.e. the time of available observations. Since the time space is a random process,

the interval of time {δ} is also random. The time space within the trading day is divided

into n “irregular” sub-interval. Loosely speaking, if the time intervals were all equal, then

it would be true that δ=T/n. Putting all together:

𝑡𝑖𝑚𝑒 𝑠𝑝𝑎𝑐𝑒 𝑜𝑛 𝑡ℎ𝑒 ℎ𝑡ℎ 𝑑𝑎𝑦: {𝜏(ℎ, 𝑡)} = {0 = 𝜏0
ℎ, 𝜏1

ℎ , … , 𝜏𝑛
ℎ = 𝑇ℎ}

= {𝜏𝑡
ℎ}, 𝑡 = 0, 1, … , 𝑛

𝑇ℎ = ∑ 𝛿𝑡
ℎ

𝑛

𝑡=1

𝑝0
ℎ 𝑝1

ℎ 𝑝𝑡
ℎ 𝑝𝑛

ℎ

0 = 𝜏0
ℎ 𝜏1

ℎ … 𝜏𝑡
ℎ … 𝜏𝑛

ℎ = 𝑇

𝛿1
ℎ 𝛿2

ℎ 𝛿𝑡
ℎ 𝛿𝑛

ℎ

For the following treatment the index h will be dropped, unless confusing. Moreover, to

avoid too many subscripts, variables occurring at a specific time will be denoted as

follows:

𝑝𝜏𝑡
ℎ ≝ 𝑝ℎ+𝜏𝑡

: → 𝑝𝑡

4.1.2 Martingales, local martingales, semi-martingales

 A martingale Mt is a stochastic process such that the expected value of the future

outcomes, given the current set of observation, is equal to the current value:

Start day h End day h

34

𝐸[𝑀𝑡+𝑘|𝐼𝑡] = 𝑀𝑡, 𝑘 ≥ 0

The random walk theory is a common example of martingale. The Brownian Motion is

another example of a martingale. From stochastic calculus, the integral of a bounded

process {X} whose integrand term is a martingale, e.g. a Brownian Motion, is itself a

martingale:

𝑀𝑡 = ∫ 𝑋𝑠𝑑𝑊𝑠

𝑡

0

 A local martingale, loosely speaking, is a stochastic process that is locally a

martingale, meaning that there exist a series of time, called stopping time, subset of the

whole time space, where the process behaves as a martingale. Finally, a semi-martingale

is a composition of a local martingale {M} and a finite variation process {A}:

𝑆𝑀𝑡 = 𝑀𝑡 + 𝐴𝑡

The classic Itô’s formulation of log-price process (4.1) is an example of semi-martingale,

with {A}=μ dt and {M}=σ dW.

4.1.3 Quadratic variation (QV)

 By Doob’s decomposition theorem, given a martingale process {M}, its quadratic

variation ⟨M⟩ is the unique increasing process such that ⟨M⟩0=0 and the process {M2-⟨M⟩}

is still a martingale. For a continuous-time semi-martingale process {X}, such as log-price

processes, the quadratic variation assumes the form of:

〈𝑋〉𝑡 = 𝑋𝑡
2 − 2 ∫ 𝑋𝑠𝑑𝑋𝑠

𝑡

0

The QV process may also be defined on the discrete time space τ, and, in this case, this

variable takes the name of realized variance. Thanks to Protter (2004) developments, it

can be shown that:

𝑅𝑉𝑡 ≝ 〈𝑋〉𝑡
𝜏 = ∑ (𝑋𝑠 − 𝑋𝑠−1)2

0<𝑠<𝑡

35

〈𝑋〉𝑡 = p − lim
sup{𝛿}→0

 〈𝑋〉𝑡
𝜏

⇒ 𝑄𝑉 = 𝑝 − lim 𝑅𝑉

Loosely speaking, the QV process can be considered as the squared process of a variable.

Recalling the equation (4.1) for a continuous time stochastic process for the security log-

price:

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡

by squaring both side of equation, it yields to:

(𝑑𝑝𝑡)2 = 𝜇𝑡
2𝑑𝑡2 + 𝜎𝑡

2𝑑𝑊2 + 2𝜇𝑡𝜎𝑡𝑑𝑡𝑑𝑊𝑡

and recalling by Itô’s calculus that dt2 and dtdW tend to zero faster than dW2, which is of

order dt, the first and the third term of the equation can be dropped as tend to zero, and it

is left that:

(𝑑𝑝𝑡)2 = 𝜎𝑡
2𝑑𝑡

Integrating both part, it becomes true that:

∫ (𝑑𝑝𝑠)2
𝑡

0

= ∫ 𝜎𝑠
2𝑑𝑠

𝑡

0

and, recalling that the integral is the limit of the sum as the integrand term tend to zero:

lim
sup{𝛿}→0

∑ (𝑝𝑡+𝛿𝑡
− 𝑝𝑡)

2

𝑡∈{𝜏}

= ∫ 𝜎𝑠
2𝑑𝑠

𝑡

0

lim
sup{𝛿}→0

 〈𝑝〉𝑡
𝜏 = ∫ 𝜎𝑠

2𝑑𝑠
𝑡

0

QVt = IVt

which implies that the integrated volatility is equal to the quadratic variation, and

therefore, it can be estimated consistently with RV and HFD. The power of QV is that it

provides a consistent estimator of true (integrated) variance without knowing the

behaviour of μ or σ. The IV can be seen as a part of the return process. Indeed, the solution

to the differential equation can be written as:

36

𝑝𝑇 − 𝑝0 = 𝑟𝑇 = ∫ 𝜇𝑡𝑑𝑡
𝑇

0

+ ∫ 𝜎𝑡

𝑇

0

𝑑𝑊𝑡

Recalling that dpt is equal to the t-th return, QV process (and also IV) can be estimated

by the daily sum of the squared high-frequency returns.

 Barndorff-Nielsen and Shephard (2002) defined an asymptotic distribution for the

daily QV process, as the time interval δ tend to zero, i.e. the number of subsamples n goes

to infinity:

√𝑛 (∑ 𝑟𝑡
2

𝑇

𝑡

− ∫ 𝜎𝑠
2𝑑𝑠

𝑇

0

)
𝑑
→ 𝑁 (0, 2𝛿 ∫ 𝜎𝑠

4𝑑𝑠
𝑡

0

)

→ √𝑛
𝑅𝑉ℎ − 𝐼𝑉ℎ

√2𝐼𝑄ℎ

𝑑
→ 𝑁(0, 1)

The integral ∫ 𝜎𝑠
4𝑑𝑠

𝑡

𝑡−1
 is the integrated quarticity (IQ), which is not observable. The

authors showed that the realized quarticity (RQ) estimator is consistent for the IQ:

𝑅𝑄𝑡 =
1

3
𝑛𝛿−1 ∑ 𝑟𝑡

4

𝑇

𝑡

𝑑
→ 𝐼𝑄ℎ

and the sampled asymptotic distribution becomes:

∑ 𝑟𝛿𝑡

2𝑇
𝑡 − ∫ 𝜎𝑠

2𝑑𝑠
𝑇

0

√2
3

∑ 𝑟𝛿𝑡

4𝑇
𝑡

= √𝑛
𝑅𝑉ℎ − 𝐼𝑉ℎ

√2𝑅𝑄ℎ

𝑑
→ 𝑁(0, 1)

Better results in terms of efficiency, even in small samples, may be obtained by using the

approximated estimator:

ln 𝑅𝑉ℎ − ln 𝐼𝑉ℎ

√
2𝑅𝑄ℎ

(𝑅𝑉ℎ)2

37

4.2 Models for volatility

4.2.1 Equally spaced time interval

 The availability of HFD improved substantially the analysis of econometrics

models. If the assumption of a regular time space holds, then it is possible to divide the

price path in interval of equal length ∆t=T/n. Assuming that the log-price follows the

process (4.1):

𝑑𝑝𝑡 = 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡

then the log difference is normally distributed:

∆𝑝𝑡~𝑁(𝜇∆𝑡, 𝜎2∆𝑡)

and, by maximum likelihood estimation, it yields:

�̂� =
∑ ∆𝑝𝑡

𝑛∆𝑡
=

∑ ∆𝑝𝑡

𝑇
=

𝑝𝑡 − 𝑝0

𝑇

�̂�2 =
∑(∆𝑝𝑡 − ∆𝑝̅̅̅̅)2

𝑛∆𝑡

or, alternatively, the unbiased estimator for variance is:

�̂�2 =
∑(∆𝑝𝑡 − ∆𝑝̅̅̅̅)2

(𝑛 − 1)∆𝑡

If the log-price is standardized:

𝑧𝑡 =
∆𝑝𝑡 − ∆𝑝̅̅̅̅

𝜎√∆𝑡
~𝑁(0,1)

∑𝑧𝑡
2~𝜒𝑛−1

2

the unbiased estimator for the variance can be written as:

�̂�2 =
∑ 𝑧𝑡

2

(𝑛 − 1)∆𝑡
∙

𝜎2∆𝑡

𝜎2∆𝑡
=

𝜎2

𝑛 − 1
∙ (

∆𝑝𝑡 − ∆𝑝̅̅̅̅

𝜎√∆𝑡
)

2

=
𝜎2

𝑛 − 1
𝜒𝑛−1

2

and the moments of this estimator are

38

𝐸[�̂�2] =
𝜎2

𝑛 − 1
𝐸[𝜒𝑛−1

2] =
𝜎2

𝑛 − 1
(𝑛 − 1) = 𝜎2

𝑉𝑎𝑟[�̂�2] =
𝜎4

(𝑛 − 1)2
𝑉𝑎𝑟[𝜒𝑛−1

2] =
𝜎4

(𝑛 − 1)2
2(𝑛 − 1) =

2𝜎4

𝑛 − 1

which shows that the estimator is consistent and unbiased as n tend to infinity. The

asymptotic distribution for the variance estimator is:

√𝑛 − 1(�̂�2 − 𝜎2)
𝑑
→ 𝑁(0, 2𝜎4)

It is possible, without loss of generality, to express the variance as sum of squared

observations, as a centred distribution. Indeed:

�̂�2 =
∑(∆𝑝𝑡 − ∆𝑝̅̅̅̅)2

𝑛∆𝑡
=

∑(∆𝑝𝑡
2 + ∆𝑝̅̅̅̅ 2 − 2∆𝑝𝑡∆𝑝̅̅̅̅)

𝑛∆𝑡
=

∑(∆𝑝𝑡
2) − 𝑛∆𝑝̅̅̅̅ 2

𝑛∆𝑡
= 𝜎𝑐𝑒𝑛𝑡𝑟𝑒𝑑

2 −
∆𝑝̅̅̅̅ 2

∆𝑡

where the last term tends to zero as the interval become smaller. At high frequency, the

centred asymptotic distribution is the same as a non-centred one. It can be argued also

that tick returns are so small that the mean is almost zero, or negligible.

4.2.2 Irregular time space

 Daley and Vere-Jones (1988) defined the point processes as those processes where

the time of trades is a sequence of non-decreasing random variable, and, at any time point,

the number of trades behave as a random variable. This process seems to fit reasonably

well the continuous time price process. Engle and Russel (1998) gave an example on how

to model the stochastic process of time. They introduced the autoregressive conditional

duration model (ACD), with the duration, δt, being the interval of time between two

consecutives orders arrival. The duration is a stochastic process, supposed to follow a

GARCH-like model. This found application in Engle (2000), who proposed the Ultra

High-Frequency GARCH model, where the variance over this small time interval is:

𝑣𝛿𝑡
2 = 𝑉𝑎𝑟𝑡(𝑟𝑡|𝛿𝑡)

and then the variance of the unit period, that is what really matters, is:

39

𝜎𝑡
2 ≝ 𝑉𝑎𝑟𝑡 (

𝑟𝑡

√𝛿𝑡

|𝛿𝑡) =
𝑣𝛿𝑡

2

𝛿𝑡
 ⇒ 𝑣𝛿𝑡

2 = 𝛿𝑡𝜎𝑡
2

which is supposed to follow a GARCH (1,1) process. The interval of time between the

observations may be modelled as follows:

𝛿𝑡 = 𝜓𝑡𝜀𝑡

with {ψ} denoting a stochastic process following a generic GARCH distribution. If the

ACD process for the arrival times is supposed to be exogenous from price-volatility

process, it is possible to estimate duration at first, and then estimate through MLE the

GARCH volatility model, conditional on the previous results. This procedure may still

result inefficient. Having defined another stochastic process implies to deal with more

complex likelihood formulation.

4.2.3 Microstructure noise effect

 In the presence of market microstructure noise, according to Hansen and Lunde

(2006) the RV estimator for IV is biased, depending on the degree of noise. The observed

price is:

𝑝𝑡
∗ = 𝑝𝑡 + 𝜀𝑡, 𝜀𝑡~𝑁(0, 𝜎𝜀

2)

and, thus, is expected that:

𝐸[𝑅𝑉𝑡
∗] = 𝐸[∑𝑟𝑠

∗2]

= 𝐸[∑(𝑟𝑠 + 𝜀𝑠 − 𝜀𝑠−1)2]

= 𝐼𝑉𝑡 + 2𝑛𝜎𝜀
2

This result implies that, as n approaches to infinity (or the interval tend to zero) the

estimator for IV diverges linearly in n. This is the reason why in literature is preferred the

use of sparse sampling, that is the use of 1-30 minutes data frequency, unless there exists

an efficient estimator that takes into account the presence of microstructure noise (as, for

example, in Andersen, Bollerslev and Diebold, 2008). The sparse sampling procedure

reduce the information set available and thus a less precise estimate of instantaneous

volatility may result.

40

4.3 Parameters estimation

 As discussed, stochastic volatility models introduce a distribution process also for

variance. There are at least two multivariate processes characterized by their particular

distribution, that are the price process and the variance process. In high frequency

framework also time can be stochastic. This means that the classical method of estimation

by maximum likelihood is infeasible, since it would be necessary to deal with several

“layers” of distributions and conditional distributions, which do not allow for a closed-

form of the likelihood function.

 In literature there are several alternative to the SV parameter estimation

procedures, for instance the GMM approach. Andersen and Sorensen (1996) gave the first

approach toward this issue, by expressing the parameters in terms of population

conditional moments, and then substituting the expectation operator with the sample

moments. Ruiz (1994), proposed the estimation through Quasi-MLE, which uses a

simplified formulation of the likelihood function in order to produce an estimation of the

latent variables. Empirical evidence shows that the distribution of innovations if far from

normality, in the better case it has fatter tails, if not even asymmetric. The QMLE impose

a Gaussian distribution to innovation, which makes computations lighter. This

simplification may be applied only if fourth moment of the innovations’ distribution is

finite, but works very well even if the true distribution is not Normal. The QMLE, under

the latter assumption, is a consistent estimator, although not efficient.

 With the development of computing power, there have been developed estimation

procedure that rely on simulations. For instance, Monte Carlo (MC) simulation methods

hae been widely adopted. Since it is not feasible to have a closed-form for the moments

of complex distributions, it is possible to simulate the patterns of these distributions and

then compute the sample moments on the generated observations. Jacquier, Polson and

Rossi (1994), were early adopters of simulations methods using Bayesian analysis. Their

studies were used by Chib, Nardari and Shephard (2002) to develop the Markov Chain

41

Monte Carlo (MCMC) simulation methods for volatility estimation. MCMC approach

consists into the application of particular algorithms (Gibbs sampling, Metropolis-

Hasting) that generate independent samples of a stochastic process, i.e. Markov Chains,

and then use simulation method to estimate the parameters of interest. This allows

independent draws from complicated posterior distributions of the interested variables,

for example volatility and parameters in a stochastic volatility framework.

4.3.1 Maximum likelihood estimator with microstructure bias

 The markovian property of log-prices allows certain simplification in likelihood

function. Using Bayesian probability and Markov distributions properties, the probability

of the observation set {pt} occurring is:

𝑃(𝑝𝑛, … , 𝑝0; 𝜃) = 𝑃(𝑝𝑛|𝑝𝑛−1, … , 𝑝0; 𝜃) ∙ 𝑃(𝑝𝑛−1, … , 𝑝0; 𝜃)

= 𝑃(𝑝𝑛|𝑝𝑛−1; 𝜃) ∙ 𝑃(𝑝𝑛−1, … , 𝑝0; 𝜃)

= 𝑃(𝑝𝑛|𝑝𝑛−1; 𝜃) ∙ … ∙ 𝑃(𝑝0; 𝜃)

and the likelihood function is:

ℒ(𝜃) = ln 𝑃(𝑝0; 𝜃) + ∑ ln 𝑃(𝑝𝑖|𝑝𝑖−1; 𝜃)

𝑛

𝑖=1

which does not have a closed-form solution.

 Aït-Sahalia, Mykland and Zhang (2005a) gave a practical approach of estimation

through MLE in presence of market microstructure noise. Let the noisy log-price be the

correct price plus some error term:

𝑝𝑡
∗ = 𝑝𝑡 + 𝜀𝑡, 𝜀𝑡~𝑁(0, 𝜎𝜀

2) 𝑖𝑖𝑑

Then returns are defined as the difference of log-prices:

𝑟𝑡 = 𝑝𝑡 − 𝑝𝑡−∆𝑡, 𝑟𝑡~𝑁(0, 𝜎𝑟
2∆𝑡)

with rt independent from the noise εt. Substituting the previous equality the observed

return is:

42

𝑟𝑡
∗ = 𝑝𝑡

∗ − 𝑝𝑡−∆𝑡
∗

= 𝑝𝑡 + 𝜀𝑡 − 𝑝𝑡−∆𝑡 − 𝜀𝑡−∆𝑡

= 𝑟𝑡 + 𝜀𝑡 − 𝜀𝑡−∆𝑡

whose moments of interest are:

𝑉𝑎𝑟(𝑟𝑡
∗) = 𝜎𝑟

2∆𝑡 + 2𝜎𝜀
2

𝐶𝑜𝑣(𝑟𝑡
∗, 𝑟𝑡−∆𝑡

∗) = −𝜎𝜀
2

Observed returns can be rewritten as a MA (1) process:

𝑟𝑡
∗ = 𝑢𝑡 + 𝜃𝑢𝑡−∆𝑡, 𝑢𝑡~𝑁(0, 𝜎𝑢

2)

whose moments are:

𝑉𝑎𝑟(𝑟𝑡
∗) = 𝜎𝑢

2(1 + 𝜃2)

𝐶𝑜𝑣(𝑟𝑡
∗, 𝑟𝑡−∆𝑡

∗) = 𝜃𝜎𝑢
2

which can be easily estimated through MLE procedure. Now, equating the previous

equations, it is possible to use the latter estimated parameters to find an estimation for the

variance of returns and innovations:

𝜎𝜀
2̂ = −𝜃𝜎𝑢

2̂

𝜎𝑟
2̂ =

𝜎𝑢
2̂(1 + 𝜃2) − 2𝜎𝜀

2̂

∆𝑡
=

𝜎𝑢
2̂(1 − 𝜃)

2

∆𝑡

4.3.2 Realized kernel estimator

 Kernel estimators are non-parametric class of functions, which allow to fit a

distribution starting from observed data. The simplest case consists into fitting the

distribution as a sum of sinusoidal curves with equal height and width. Barndorff-Nielsen,

Hansen, Lunde and Shephard (2008) proposed a kernel estimator (“flat-top”) as an

alternative to the MLE. The latter is not consistent and not unbiased in high-frequency

framework. This is true in particular when is imposed a long-memory autocorrelation

structure, both in the noisy errors and returns. The estimator proposed by the authors is:

43

𝑅𝐾 = 𝛾0 + ∑ 𝑘 (
ℎ − 1

𝐻
) (𝛾ℎ + 𝛾−ℎ)

𝐻

ℎ=1

𝑤𝑖𝑡ℎ ℎ = −𝐻, … , −1, 0, 1, … , 𝐻

with

𝛾ℎ = ∑(𝑝𝑡 − 𝑝𝑡−∆𝑡)(𝑝𝑡−ℎ − 𝑝𝑡−ℎ−1)

= ∑𝑟𝑡𝑟𝑡−ℎ

denoting the realized auto-covariance, and k(x) representing a weighting function defined

on a domain space x∈ [0,1] with k(0)=1, k(1)=0. The authors chose the Tuckey-Hanning

kernel function:

𝑘(𝑥) = sin2(𝜋/2(1 − 𝑥)2)

The ideal bandwidth H* is a function both of realized variance and realized quarticity.

The authors showed also that this kernel estimator is robust to market microstructure noise

and irregularly spaced observations.

4.3.3 Bipower variation

 Barndorff-Nielsen and Shephard (2003) introduced the Realized Bipower

Variation (BPV) estimator as a robust estimator in case of jump processes in volatility

structure. If the underlying model is characterized by jumps, that are discrepancy in price

due to news or announcements, the QV process do not converge to the IV. Let the process

be:

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + 𝜖𝑡𝑑𝑞𝑡

whose solution is

𝑝𝑡 − 𝑝0 = 𝑟0→𝑡 = ∫ 𝜇𝑠𝑑𝑠
𝑡

0

+ ∫ 𝜎𝑠𝑑𝑊𝑠

𝑡

0

+ 𝑘𝑡𝑁0→𝑡

44

with {k} iid random process, {q} a Poisson process and N its integral, denoting the number

of jumps occurred during the interval of time. As the time interval tend to zero, it is

possible to demonstrate that the QV process equals:

𝑄𝑉𝑡 = 𝐼𝑉𝑡 + 𝐽𝑉𝑡

with

𝐽𝑉𝑡 = ∑ 𝑘𝑗
2

𝑗<𝑡

Authors proposed to estimate IV through the BPV, defined as

𝐵𝑃𝑉𝑡(𝑝, 𝑞) = p − lim
sup{𝛿}→0

𝛿1−
𝑝+𝑞

2 ∑|𝑟𝜏𝑖
|

𝑟
|𝑟𝜏𝑖−1

|
𝑠

𝑡

𝑖=2

In general, it is expected that

𝐵𝑃𝑉𝑡(𝑝, 𝑞) = 𝜇𝑝𝜇𝑞 ∫ 𝜎𝑢
𝑝+𝑞𝑑𝑢

𝑡

0

𝜇𝑥 = 𝐸[|𝑢|𝑥] = 2𝑥/2
Γ (

x + 1
2)

Γ(1/2)
, 𝑢~𝑁(0, 1)

which, in the particular case of p=q=1, it yields to the following result:

𝜋

2
∑|𝑟𝜏𝑖

||𝑟𝜏𝑖−1
|

𝑡

𝑖=2

=
𝜋

2
𝐵𝑃𝑉𝑡

𝑝
→ 𝐼𝑉𝑡

which is a consistent estimator for IV and robust to the presence of jumps. The reason is

that jumps occur just a limited number of times during the observed period. The number

of contiguous jumps tends to zero in probability as the time interval goes to zero, and

consequently these terms have negligible impact on the limit probability. BPV is a robust

estimator, but not efficient, since RV has still less variance. Similarly, it is possible to

estimate the IQ with the quadpower variation:

𝑄𝑃𝑉𝑡 = 𝛿−1 ∑ ∏|𝑟𝑖−𝑗|

3

𝑗=0

𝑡

𝑖=4

𝑝
→

4

𝜋2
𝐼𝑄𝑡

45

This is useful to make inference about the continuous property of prices. The standardized

bipower variation is:

𝑍𝐵𝑃𝑉 =
𝛿−

1
2(𝜇1

−2𝐵𝑃𝑉𝑡 − 𝑅𝑉𝑡)

√𝜇1
−4𝑄𝑉𝑃𝑡

𝑑
→ 𝑁(0, 𝜐)

which, for significantly negative values, rejects the null hypothesis of a continuous

sample path, in favour of a discrete-jump process.

4.3.4 Two Stage Realized Variance

In presence of market microstructure bias, the QV process of observed “dirty”

prices is consistent and asymptotically normal estimator also for the quantity 2𝑛𝐸[𝜀2],

rather than the only volatility process. Aït-Sahalia, Mykland and Zhang (2005b) proposed

the Two Stage Realized Variance (TSRV) estimator to overcome this problem. They

started from the fact that the biased estimator yields to:

〈𝑟∗〉𝑡 → 〈𝑟〉𝑡 + 2𝑛𝐸[𝜀2] + 𝑂(4)

Using a sparse sampling procedure allows to reduce the magnitude of the second element

of this equation (the microstructure noise). If, for example, observations are sampled at

1-second interval, then a better estimator can be obtained by sampling at 5-seconds

interval, for each of the possible 5-seconds windows, and then averaging those estimators.

In formulas:

〈𝑟∗〉𝑡
𝑎𝑣𝑔

=
1

𝐾
∑〈𝑟∗〉𝑡

𝑘

𝐾

𝑘=1

with K denoting the sampling interval, e.g. 5, and the term into summation is the RV

estimator computed on the grid of length K starting at k. Since the bias term can be

consistently estimated through:

𝐸[𝜀2]̂ =
1

2𝑛
〈𝑟∗〉𝑡

46

this implies that, denoting with �̅� the average length of the grids,:

〈𝑟∗〉𝑡
𝑎𝑣𝑔

= 〈𝑟〉𝑡 + 2�̅�𝐸[𝜀2] + 𝑂(4)

〈𝑟〉𝑡
𝑇𝑆𝑅𝑉 = 〈𝑟∗〉𝑡

𝑎𝑣𝑔
−

�̅�

𝑛
〈𝑟∗〉𝑡

which is the unbiased estimator for the QV process.

4.3.5 Realized range-based variance

Methods of estimation that made use of ranges, rather than returns, were pioneered

by Parkinson (1980). The very contribution came from Alizadeh, Brandt and Diebold

(2002), who showed that these estimators are more efficient than RV. The advantages of

the range estimators are that they have less variability (since, by construction, is a measure

of data aggregation), are more robust to microstructure noise, and their logarithm is

normally distributed. They are built using just the variation of the interested variable, i.e.

log-prices, over a certain period of analysis, e.g. a trading day, ignoring all the intraday

observations. Formally the range estimator for the h-th day proposed by the authors is:

𝑅𝑔𝑉ℎ = sup
h−1≤t≤h

𝑝𝑡
ℎ − inf

h−1≤t≤h
𝑝𝑡

ℎ

It is the difference between the high and low quote for the selected interval. Those data

are also available on the main financial newspapers. A property of this estimator is that it

is more efficient than RV and makes computations lighter, but there is a substantial loss

of information. There is always the trade-off between sampling at higher frequencies and

have more information, or have less information with less noise. Sometimes in literature

is widely used the log of this estimator. The estimator proposed by Parkinson (1980), in

absence of the drift component in price diffusion is:

𝜎ℎ
2̂ =

1

4 ln 2
∑ (𝑅𝑔𝑉∆𝑡)2

ℎ

∆𝑡∈(ℎ−1;ℎ]

and then it is possible to use this estimator in an AR(p) model to forecast the future

realization of variance. Rogers and Satchell (1991) improved this formulation introducing

47

both the drift diffusion term and information about opening and closing prices. They

found that this estimator is more efficient.

A possible drawback is that these estimators are sensible to outliers. To overcome

this issue, a feasible solution is to use the range quantiles, that is to consider determined

quantiles of the observation set instead of the lowest and highest observation during the

time period.

48

5. APPLICATIONS

This chapter will be focused on the application of stochastic volatility models to

a high-frequency database containing the observations for the EUROSTOXX index levels.

The analysis covers the period from 2011 to 2015, at irregular intra-minutes frequencies,

for a total of 4.598.132 rows. All computations have been done with Julia language.

Figures (2) show some extracts of the database.

5.1 Preliminary adjustments

Some adjustments were necessary to handle this huge amount of data. Some

extracts of the database are shown if figures (2). Figure (2a) is an extract of weekly prices,

while figure (2b) is a one-minute extract where possible outliers can be noticed. Figure

(2c) plots the time series of observed high-frequency returns. Figure (2d) shows a table

of the data analysed.

49

50

Figure 2. Extracts of the database. Respectively, weekly sample pattern, one-minute sample pattern, time series of
high-frequency returns, sample table of the dataset.

5.1.1 Dates handling

It is necessary to collect the date and time array into the language-specific type.

In Julia it is sufficient to merge the Date string and the Time string of the dataset, and the

convert them into a DateTime type, specifying the correct formatting. Since intraday time

is expressed in GMT time, which means that observed trading hours vary depending on

winter or summer time period, dates are converted into local time. It is sufficient to add

the GMT offset (hours offset) to the intraday time. This allows to save time for cleaning

operations.

Dates operations require much more computing power, respect real number

operations. Julia language has few and basic functions which may be applied to Date and

DateTime type, compared to other programming languages. It does not account for time

serialization, i.e. it does not provide the identifier number to dates. The code written for

this analysis accounts also for data conversion. Since the final objective is to produce a

minute-by-minute time series of prices, dates are converted in number such that each

point of this date-time array measures the minutes elapsed from a given starting time. The

first observation is selected as the time-zero point. It is then possible to save the

51

information of this serialized-time array, along with the identity of the first starting point.

Passing from String type to real type (precisely, to Float64 or even UInt32) allows to

reduce the loading time necessary to open the file for future analysis, and it requires less

memory usage, either in terms of storage requirements and local memory.

5.1.2 Data cleaning

Cleaning operations need to be applied either on Time array and on Prices. As

figure (2) shows, there are some observations which are reported but they do not belong

to normal trading hours. Only observations between 9:00 am and 17:30 pm are considered

in this analysis, the other will be discarded. It is rather simply to make comparison

operations in Julia. The only problem is that, since it does not provide an intraday-time

type (time without the day), it is necessary to create an array of DateTime, starting from

intraday observations, pretending they happen on a same fixed day. Once outliers are

detected, the corresponding prices also are deleted from the dataset.

Regarding price cleaning, since the dataset is composed of index observations,

which is less sensible to all those errors described in the previous chapters, no further

operations need to be done. Index data are given by the weighted sum of its component,

which means that whenever an error occurs on one of the underlying stocks, it is simply

averaged by the other components’ price, thus reducing drastically the entity of the bias

and the probability of encountering an error in the index price. The same reasoning applies

to market microstructure bias.

5.1.3 Data modelling

In order to compute stochastic volatility measures, it is preferable to create an

equally spaced time grid. RV can be computed using heterogeneously-spaced

observations, but, as also confirmed by literature, sparse sampling is more efficient. The

algorithm used in this analysis is built on the following steps. A DateTime array of the

equally-spaced times is created, and then a price is assigned to each one of this point. The

52

price assigned in correspondence of a given point is the price occurring at the nearest

previous observation, thus the last observed price at that point. The position of the wanted

observation is determined by comparing each point of the homogeneous-spaced time grid

with the whole heterogeneous dates array. The corresponding price is simply the price on

the whole price array, at the positions given by the previous step. Appling the “normal”

algorithm which finds for the last DateTime less than a given point on the time grid, for

all elements of this time grid array, would require a huge computation effort and amount

of time. The @time macro built in Julia allows to understand the time elapsed for the

computation of a routine, and the allocated memory. The standard procedure requires, in

the best of the cases, about 0,86 seconds each 100 points of the time grid, with memory

allocation of more than 63 MB. Since there are 536.550 points on the time grid, the time

necessary to run the code would be about 4.614 seconds, that is 1 hour and 20 minutes.

Even using the serialized time array, the benefits in reducing the time are very small,

elapsed time passes to 0,683 per 100 points (1 hour for whole array). The algorithm

developed in this thesis, instead, is able to perform the same computations, on first 100

points) in about 0,0015 seconds and just 17 KB allocated, for a total of 8 seconds on the

total array. It is possible to reduce further the elapsed time by using sparse matrices, to a

total of 0,19 seconds for the whole array, and a total of 84 MB allocated. Once positions

are found, there are still “missing slots” to fill, which are the one that are left blank when

non-adjacent minutes observations are encountered. These spaces are filled with the most

recent price at that time.

Creating a uniform time grid allows to make computations easier, both because

number of observations is reduced, and because the position of a given observation in

time is well defined. The latter result implies computational efforts savings, since it is

possible to make operations without the need of intraday times. The resulting price matrix

has the following form:

𝐷𝑎𝑡𝑒𝑠

𝐼𝑛𝑡𝑟𝑎𝑑𝑎𝑦 𝑡𝑖𝑚𝑒

53

It is possible to work on this matrix to compute variables of interest. RV at 1-minute

frequency (RV1) is computed by summing the squared returns, column-by-column. For

purpose of analysis, also 5-minute RV (RV5) is computed, which is derived from the

price matrix, where only rows which are multiple of 5 are considered. TSRV is obtained

by applying the previous computation to the five 5-minutes rolling windows series of RV,

then averaged and cleaned from the bias term. BPV is obtained simply by summing the

adjacent product series of returns.

5.2 Data analysis

5.2.1 Returns series

As largely discussed in literature, return distribution is not normal, but shows

fatter tails. The distribution has more kurtosis the higher the frequencies are.

Figure 3: Normalized returns density.

54

Figure (3) shows the density of returns normalized using the sample standard deviation,

compared with a Normal (0,1) distribution. It is clear that returns are distributed almost

totally around the mean, with very few, but significant extremes (there are 396 normalized

observations which are greater than 10 in absolute value). With daily frequency,

normalized return has almost normal distribution. One of the peculiarity of RV is that:

𝑟𝑡+1

√𝑅𝑉𝑡+1

𝑑
→ 𝑁(0,1)

the resulting density assumes the form seen in figure (4), that is very close to a Normal

(0,1), at least it is closer than the other one.

Figure 4: Comparison between normalized return with, respectively, sample standard deviation and RV. In red, Normal
(0,1) is displayed.

This is a very important result, because it allows to make more accurate inference. It can

be useful, for example, for risk management purposes, in evaluating the quantiles of

future realizations of returns.

5.2.2 Volatility measures

In the following section statistical properties of some selected volatility measures

will be analysed. The variables considered are RV1, RV5, BPV and TSRV. These last

55

two in particular are chosen since they respond to specific issues of realized variance,

respectively jumps and microstructure noise.

Before comparing these four variable, a premise is necessary. RV computed using

all available prices has not been included, since it is “too noisy”. As stated in previous

chapters, sparse sampling procedure yields to better results, as shown in following tables

and figures. The choice of one and five minutes is inducted mainly by literature, and

because these frequencies are the most representative of the category of high-frequency

sampled observations. Looking at figure (5), it is clear that RV1 has the highest

explanatory power, in terms of adjusted R-squared of a regression of the variable on its

lags. The number of lags are determined by BIC procedure. RV5 seems to be a good

representative of lower sampling frequencies, since adjusted R-squared is similar to that

of the following sampling minutes.

Sampling frequency

(minutes)

Adj. R-squared of

𝑹𝑽𝒕~[𝟏 𝑹𝑽𝒕−𝒍𝒂𝒈]

Adj. R-squared of

√𝑹𝑽𝒕~[𝟏 √𝑹𝑽𝒕−𝒍𝒂𝒈]

0 0,091 0,192

1 0,609 0,642

2 0,585 0,624

3 0,540 0,587

4 0,487 0,554

5 0,476 0,546

6 0,468 0,535

7 0,441 0,521

8 0,441 0,526

9 0,467 0,534

10 0,479 0,543

Figure 5: Sparse sampling results for RV. 𝑅𝑉𝑡−𝑙𝑎𝑔 is a matrix whose columns are the lags of RV. The number of lags is

given by BIC procedure.

From figure (6) it is possible to notice that BPV has the least number and

magnitude of “peaks”, confirming the fact that this estimator aims to reduce jump bias in

return series. Figure (7) shows the relation between each stochastic variable with its first

lag. Combined with results obtained in figure (8), which shows the autocorrelation

56

function, it is interesting to notice how strong and persistent is the relation between two

adjacent observations, and it seems to stay stable after about 10 lags. Considered the

results here analysed, RV1 and BPV seem to be the variables with the highest relation

with their lags. These results translate into good chance of obtaining reasonable forecasts,

with a simple AR(p) model of the daily stochastic variables. Figure (8) and (9) illustrates

how this explanatory/predicting power is enhanced if square root process is used. Both

the autocorrelation of square root process stays always higher than the normal process,

and adjusted R-squared increases.

Figure 6: Plot of the stochastic variables time series.

57

Figure 7: Scatter plot of stochastic variables on their first lag.

Figure 8: Autocorrelation function at first 30 lags both for normal process and its square root.

58

Variable
Adj. R-squared of

𝑹𝑽𝒕~[𝟏 𝑹𝑽𝒕−𝒍𝒂𝒈]

Adj. R-squared of

√𝑹𝑽𝒕~[𝟏 √𝑹𝑽𝒕−𝒍𝒂𝒈]

RV1 0,6092 0,6417

RV5 0,4756 0,5463

BPV 0,6341 0,6848

TSRV 0,4395 0,5190

Figure 9: Adjusted R-squared of a regression of the stochastic variables into a constant and its lag. On the left
column the analysis is conducted on simple variables, on the right column it is on the square root of those variables.

5.2.3 Assessing self-predictive power

Since the autocorrelations are significant, it is reasonably to assess the predicting

ability of the variables on future realizations of themselves. The predicted variables are

computed using rolling windows of one year. On each of these rolling windows, the

coefficients of a regression of an AR (3) model with constant are computed, and then they

are applied to the most recent observations in order to produce the one-step-ahead

forecasts. To compare results across the different models, the rule of the squared error is

applied. It consists into evaluating the sum of the squared deviations of the forecasts from

the realized values. The analysis is conducted both on the normal series and on their

square root. Figure (10) and (11) represent the time series of forecasted values. The first

set of series is the normal one, while the second series is the square root process. It appears

that forecasted values act as smoothing operators, since they are not able to forecast the

unpredictable peaks of the realized variables. The most efficient, indeed, is the BPV, since

peaks are more difficult to encounter. Figure (12) summarize those results. In both cases,

it appears as BPV and RV1 are the most efficient “self-estimators”.

59

Figure 10: Rolling window forecasts of the stochastic variables vs actual realized observations.

60

Figure 11: Rolling window forecasts of the square root stochastic variables vs actual realized observations.

61

Variable SSE SSE(n) Sign

RV1 4,99E-06 0,137935 57,8%

RV5 9,31E-06 0,189187 56,2%

BPV 2,85E-06 0,110936 58,4%

TSRV 7,00E-06 0,164934 56,6%

√RV1 0,006945 4,38471 57,6%

√RV5 0,010317 5,39894 55,7%

√BPV 0,004821 3,66814 59,0%

√TSRV 0,009152 5,08072 56,6%

Figure 12: Explanatory power of stochastic variables. The analysis is conducted with a rolling window forecast. SSE
stands for sum of squared errors, that are the difference between the forecasted and the observed variables. SSE(n)
are the normalized errors, that are SSE divided by the mean of the absolute errors. Sign is the percentage of correct
predicted movements, in terms of up or down movement.

 The last words of this paragraph are worth to introduce a useful model which uses

RV variables to construct a proxy for the stochastic variance. It is the Heterogeneous

AutoRegressive (HAR) estimator, suggested by Corsi (2009), defined as follows:

𝐻𝐴𝑅 − 𝑅𝑉𝑡 = 𝛽𝑑𝑅𝑉𝑡
1 + 𝛽𝑤𝑅𝑉𝑡

5 + 𝛽𝑚𝑅𝑉𝑡
20

with:

𝑅𝑉𝑡
ℎ =

1

ℎ
∑ 𝑅𝑉𝑡−𝑖

ℎ

𝑖=1

The letters d, w and m are often used instead of the number indexes, since they represent,

respectively, the daily, weekly and monthly moving average of RV. The HAR-RV may

be a very powerful proxy for the variance process. Its utility emerges if it is considered

that in a simple AR (3) process, an adjusted R-squared of 80% is obtained. This model

seems to better capture the different horizons effects, by disentangling RV process into

its weekly and monthly moving averages. It accounts in part also for mean reversion, if

the monthly mean is close to this value.

The following section will show how to use stochastic volatility measures for

financial purposes.

62

5.3 Application – trading the V2X

The first application shown in this thesis is a trading application. The object is to

trade the VSTOXX index, whose ticker is V2X, that is the volatility index for the

EUROSTOXX index. It works similarly to VIX index for the S&P500, thus it shows the

volatility of the Euro-area implied from hedged at-the-money options. Figure (13) plots

the level of V2X index versus the RV1. It is clear that RV is a good proxy for volatility

perceived on the financial market. This is more accentuated with the square root process.

Figure (14) shows that a linear relation between the index and the stochastic volatility

variables, at contemporaneous time, may exist. These variables may be used as good

proxies for the true volatility. Combining this with the results obtained in the previous

chapters, about the autocorrelation strength, it may be possible to forecast the level, or at

least the direction of movement, of the V2X index. Figure (15) and (16) summarizes the

results as far discussed. This led to the confirmation that square root process best fits the

forecast model.

Figure 13: V2X index vs RV1 and square root process for RV1.

63

Figure 14: Scatter plots of V2X vs RV1 and BPV, and their square root process. It is possible to infer that a linear relation
between these variables may exist.

Explanatory

variable
V2X ~ Xt V2X ~ ln(Xt) V2X ~ √Xt

RV1 0,5610 0,5812 0,6851

BPV 0,5024 0,5937 0,6868

RV5 0,4939 0,5335 0,6227

TSRV 0,4733 0,4728 0,6034

HAR 0,8248 0,8258 0,8746

Figure 15: Same-time relation between the V2X and the selected stochastic variables. On the rows, the explanatory
variables are pointed out, while the column indicates the regression specific function applied to those variables. Cells
indicate the adjusted R-squared of these regressions.

64

Explanatory

variable
V2Xt ~ Xt-1 V2Xt ~ √Xt-1

V2Xt ~

√Xt-1, √Xt-2

RV1 0,5430 0,6603 0,7284

BPV 0,4848 0,6595 0,7081

RV5 0,4759 0,5998 0,6940

TSRV 0,4554 0,5810 0,6819

HAR 0,8042 0,8501 -

Figure 16: Same analysis of the previous table, but on the first lag of the explanatory variables. HAR model has been
analyzed only on the first lag and not also the second, since it already contains previous lag information.

The trading strategy followed is to forecast through an AR model the level of RV1,

which was shown to have the higher adjusted R-squared with the V2X index, and then

use the sign of this forecast as a trading signal (buy or sell) for the V2X. Results are

computed assuming that is possible to buy or sell one contract of V2X at the price given

by its level, without considering any transaction costs. Returns are computed as if on each

day 1$ is invested, and at the end of the day the position is closed. The next day another

contract of 1$ is traded (the proceeds are not reinvested to avoid timing biases). Figure

(17) displays the result of this strategy. The benchmark strategy consists into trading the

V2X depending on its previous behaviour, thus buy if it has risen, sell otherwise. The

strategies involving stochastic volatility consist into forecasting the index with √RV, and

then buy if a growth is foreseen, sell otherwise. The last strategy adds to the previous a

momentum component, which accounts for mean reversion. If the level of the V2X has

risen too much in percentage terms, it is possible to sell the index, in order to benefits

from its mean-reverting behaviour. More in detail, if in the previous two days the level of

the index rose by a certain threshold, regardless from the forecast, the strategy is to sell

the index. The choice of a threshold is not so trivial. Selecting different levels, even close

each other, leads to very different results. Thus the results displayed here are the mean of

these strategies with threshold set to all values between 10% and 30% with 1% increment.

It appears that using a rule to select the threshold, which consist into selecting only

thresholds with the highest percentage of adjacent opposite sign, the subset of found

thresholds is able to give always a positive return, with a mean (across thresholds) of

38,42% during the overall period.

65

Strategy 1
same sign

ratio

overall

return

V2X 46,21% -223,14%

RV1 48,86% -31,41%

√RV1 48,86% -45,13%

HAR 48,23% -100,32%

Strategy 2

(momentum)

overall

return

annualized

return

V2X 1,75% 0,56%

RV1 32,78% 9,58%

√RV1 19,26% 5,85%

HAR 14,60% 4,50%

BPV -68,41% -31,06%

√BPV -76,99% -37,76%

Figure 17: These two tables shows the results of the strategy. In the first table only the simple forecasting signal is
used, while in the second table is applied also the mean-reverting momentum. “Same sign ratio” is the percentage of
time of correct direction (up, down) forecast.

5.4 Application – VaR

The second application consist into computing the VaR capital requirement,

comparing stochastic variance measures and a traditional volatility model, the EWMA.

Parametric models and Monte Carlo simulation, both at 1-day and 10-days horizons are

applied. The benchmark model is the EWMA, which, as stated in Hull (2012), is widely

used for risk management purposes, due to its efficiency and light computational efforts.

The EWMA model is described recursively, as follows:

𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑟𝑡−1
2

with parameter λ set equal to 0.94, as discusses in Hull (2012). The investigation is

conducted as an ex-post analysis, to back-test the different methods used.

 For the parametric model, it is assumed that the standardized returns distribute as

a Normal (0,1). As discussed in the previous paragraphs, the empirical distribution of

returns divided by stochastic volatility is roughly similar to a Standard Normal, thus it is

reasonable to expect that the confidence interval for future returns is [𝑟𝑡+1 − 𝛼�̂�𝑡+1,

𝑟𝑡+1 + 𝛼�̂�𝑡+1], with α as the prudential quantile of a Normal (0,1) distribution. Since the

analysis is conducted for a 99% VaR, the α parameter is set to 2.326. The next-period

66

volatility, in the case of stochastic variables, is computed through a rolling window AR

process forecast.

 For the Monte Carlo simulations, the model simulated is the following:

𝑟𝑡+1 = 𝑑𝑝𝑡+1 = 𝜀𝑡+1�̂�𝑡+1

with an implied drift rate of zero, and the volatility proxy forecasted through a rolling

window AR model of the stochastic variables, as explained above.

5.4.1 1-day horizon

Figure (18) shows the results for the parametric model. Exceptions and capital

requirement are displayed. Exceptions are the ratio of days where the prudential capital

was not sufficient to cover the daily loss occurred. Since the VaR is set to a 99% level, a

correctly specified model should observe about 1% of exceptions. If exceptions are too

much, then the model is underestimating the risk. If exceptions are less the 1%, then it

overstates the risk, and the capital required is excessive. The average capital required is

simply the average capital that should be set as reserve by prudential regulation. It is equal

to the average daily VaR estimated by the model, and is indicated as a percentage of the

total capital invested. It can be thought as the average daily return loss with 99%

confidence. It emerges that none of the models is able to catch the required quantile. RV1

performs as the EWMA, but requires less capital.

Variable exceptions

average capital

required

EWMA 1,89% 2,50%

RV1 1,89% 2,44%

BPV 3,40% 2,11%

HAR 3,03% 2,32%

Figure 18: Results for the parametric model at 1-day horizon.

 Figure (19) shows the results for Monte Carlo simulations for RV1. The

simulations are run by drawing ε from different distributions, and then compared. In the

67

first simulation ε is drawn from a Normal (0,1) distribution. Results show how this

specification does not improve the analysis. The Normal distribution seems to not catch

the probability of extreme bad events to happen. Modelling ε as a Normal distribution,

underestimates the probability of extremes, which empirically happens more frequently.

A solution is to model ε as a Student-t distribution or as a Laplace distribution, since they

have fatter tails. The choice of the Student-t degrees of freedom, v, is derived in two ways:

the first method derives it by maximum likelihood, the second method finds the parameter

such that the kurtosis of the resulting Student-t distribution matches the empirical kurtosis

of returns. Empirical excess kurtosis is observed to be about 2.51, which implies a degree

of freedom parameter of 6.39. The Laplace distribution has been selected due to its

similarity with empirical return distribution, including the excess kurtosis, which is of 3

units. The results are clearly in favour of the matched Student-t and Laplace distributions

for the ε distribution, since provide always exceptions ratio closer to the 1% level. It can

be noticed as results are better than parametric models, clearly in favour of stochastic

models. Better results are obtained if the forecast is conducted on the normal (non “square

root”) process, that is forecasting RV and then taking the square root, rather than applying

directly the forecast analysis to the square root process.

Variable ε Normal
ε Student-t

(fitted)

ε Student-t

(kurtosis

matched)

ε Laplace

RV1 (forecast of RV) 1,89% 1,39% 0,63% 0,76%

RV1 (forecast of √RV) 2,40% 1,64% 1,13% 1,39%

BPV (forecast of BPV) 3,28% 2,14% 1,13% 1,51%

BPV (forecast of √BPV) 4,29% 2,52% 1,39% 1,64%

HAR (forecast of HAR) 2,90% 1,89% 0,76% 1,39%

HAR (forecast of √HAR) 3,15% 2,02% 1,01% 1,13%

Figure 19: Results for the Monte Carlo simulations at 1-day horizon.

68

5.4.2 10-days horizon

This last paragraph, shows results at a 10-days horizon. For the parametric model,

the 10-days EWMA volatility is simply the daily volatility multiplied by square root of

10, since it is supposed to remain constant. For the stochastic variables, the volatility over

the 10 days is found by forecasting the volatility for each day of the 10-day period. In

formulas:

𝜎𝑡,10𝑑 = √∑ 𝑅𝑉1𝑡+𝑖

10

𝑖=1

with RV1t+i given by an AR rolling window forecast of:

𝑅𝑉1𝑡+𝑖 ~ [1 𝑅𝑉𝑡 𝑅𝑉𝑡−1]

The daily RV process is estimated through each 10s of the following days, and then is

summed. Figure (20) displays the results. EWMA, on average, is closer to the 1% level,

and stochastic volatility measures requires less capital. RV1 is both correct in terms of

exceptions, and requires an average capital very close to EWMA level. The (average)

capital here required is the capital over a window of 10 days, that is the average loss

expected within 10 days with 99% confidence.

Variable exceptions

average capital

required

EWMA 1,79% 7,88%

RV1 1,28% 7,89%

BPV 2,68% 6,85%

HAR 2,04% 7,40%

Figure 20: Results for the parametric model at 10-days horizon.

For the Monte Carlo simulations, the procedure consists, in each simulation, into

drawing 10 different returns for each of the following 10 days, and then summing results

over this window. Results with Monte Carlo simulation are better than parametric model,

especially for ε drawn from matched Student-t and Laplace distribution.

69

Variable ε Normal
ε Student-t

(fitted)

ε Student-t

(kurtosis

matched)

ε Laplace

RV1 (forecast of RV) 1,28% 0,77% 0,64% 0,77%

RV1 (forecast of √RV) 2,04% 0,89% 0,64% 1,15%

BPV (forecast of BPV) 2,55% 1,66% 1,02% 1,66%

BPV (forecast of √BPV) 3,57% 2,42% 1,40% 2,42%

HAR (forecast of HAR) 2,04% 1,53% 0,51% 1,79%

HAR (forecast of √HAR) 2,17% 1,79% 0,51% 2,04%

Figure 21: Results for the Monte Carlo simulations at 10-days horizon.

70

6. CONCLUSIONS

The analysis conducted so far, allows to understand the benefits of using

stochastic volatility models, over traditional models. As shown, these models seem to fit

better the unobservable volatility process, which drives returns of financial assets. They

provide good proxies to use in volatility models.

It was shown how stochastic models have long memory processes. The AR model

seem to fit quite well the empirical returns, with significant coefficients for the first lags.

The autocorrelation function seems to slowly decay until about the 10th lag, over which

is remain stable, still different from zero. This effect is more pronounced as the square

root process is analysed. The square root process for the AR model, provides better

adjusted R-squared, and better forecasts. It does not imply that the square root process is

a better proxy for the true volatility process, especially for empirical application purposes.

It may emphasize the magnitude of peaks. This effect can be noticed in the VaR

application, where normal processes behave always better than their square root

counterpart.

The best proxies appeared to be RV1 and BPV. The former is the best

representative of RV category, compared at different sampling horizons, both in terms of

self-predicting ability and explanatory power for the volatility process. The latter reduces

the magnitude of observed peaks, which translates into better self-predicting power. The

HAR-RV model, finally, seems to be able to enhance self-forecasting ability of RV1.

In assessing the ability of fitting the true variance process, these models have been

tested with the V2X index, which designate the short term implied volatility for

EUROSTOXX. It emerged that RV1, BPV and HAR produced good adjusted R-squared

both at same-time and at one-lag analysis. This should mean that those variables may be

used to forecast the future level of the index, and thus a trading strategy may be built

using stochastic volatility. A rolling window forecast was used to predict the one-step-

ahead V2X level, and the signs of these movements were used as signal to buy or to sell

the index. Preliminary results were against any kind of strategy, but adding a momentum

component to this strategy allowed to produce positive returns. Stochastic volatility

models, in particular RV1, are able to beat the benchmark model, built upon the previous

71

V2X level. Even if square root processes seem to better catch the movements of the V2X,

the highest returns from this strategy are obtained through forecasting the “normal” level

of stochastic variables, and then applying the square root to those results (instead of

conducting the forecasting process directly on the square root variables).

The last application has been a VaR at 1% level back-testing. Models compared

were the traditional EWMA and stochastic volatility models RV1, BPV, HAR. The

EWMA is the model that performs better on average, since exceptions are closer to the

1% level. The RV1 is the only stochastic model that achieved better results than EWMA,

both at 1-day and 10-days horizons. It would be expected that, since standardized (with

stochastic volatility variables) returns distributes close to a Standard Normal distribution,

the number of exceptions was close to 1%. The level, instead, remains close but higher in

all cases, maybe because the sample size was not big enough, or because it has been

underestimated the probability of extreme events to happen. The Monte Carlo simulation

method was established in order to account for this issue. Results have been clearly

improved by generating the returns patterns with higher kurtosis. In the specific case, a

matched-kurtosis Student-t and a Laplace distributions were used. These generating

processes for returns allow to obtain closer level for exceptions, both at 1-day and 10-

days horizons.

It can be finally confirmed the efficiency of stochastic volatility models over

traditional ones. It is true that they require higher computational efforts, but, with an

efficient software and an efficient code, the computing time can be drastically reduced

and compared to traditional methods. The use of Julia language improves significantly

the management of these big data. It can be a powerful tool, but it need to be developed

and integrated with more advanced functions and packages. Stochastic volatility models

seem to provide more accurate estimates of the true volatility process, principally because

they try to exploit all the possible information available through HFD. This confirms the

theory that big data are useful to better understand the behaviour and the true nature of

certain stochastic processes, and maybe forecast their probable future realizations.

72

A. CODE

Loading data
In [1]:

#Pkg.update()

using DataFrames, Distributions, Optim, JuMP, PyPlot, Gadfly;

In [2]:

#loading cleaned data of eurostoxx.

data=readtable("/home/juser/julia-gdrive/eustoxxclean.csv.gz",eltypes=

[Float64,UTF8String]);

#data of serialized time (number format). It was created in a previous

 code and the saved.

data1=readtable("/home/juser/julia-gdrive/date_min_num.csv.gz");

In [3]:

price_all=Array{Float64}(data[:price]);

datetimem_num=Array{Int64}(data1[:time_minute]);

datetimem_once=union(datetimem_num,datetimem_num);

In [4]:

#this was the code used to create the serialized time vector. Once cre

ated that vector there is no

#need to re-run this old code

#datetime_str=Array{UTF8String}(data[:datetime]);

#datetimem_str=map(x->x[1:16],datetime_str); #just minutes

#datetime=DateTime(datetime_str,"y-m-dTHH:MM:SS.sss");

#datetimem=DateTime(datetimem_str,"y-m-dTHH:MM");

#date=Date(datetime);

#date_once=union(date,date);

#datetimem_once=union(datetimem,datetimem);

#date_0=datetimem[1]; #2011-01-03 09:00

#datetimem_num=map(x->(x-date_0)/60000,datetimem); #this is the distan

ce (in minutes) from the observation 0

#datetimem_num_int=map(Int,datetimem_num);

#datetimem_num_once=union(datetimem_num_int,datetimem_num_int);

In [5]:

#re-creating the old date array (in dates type)

date_0=DateTime(2011,01,03,09);

73

date_all=date_0+map(Dates.Minute,datetimem_once); #use datetimem_num f

or all dates

date_once=union(Date(date_all),Date(date_all));

In []:

Creating the grid

 time-grid

In [6]:

#this function creates a time grid of equally spaced 1 minutes time

#(just for 1 day, just for trading hours 9:00-17:30)

function create_timegrid(time::Date,start::AbstractString="T09:00:00",

finish::AbstractString="T17:30:00")

 st=DateTime(string(time,start));

 fi=DateTime(string(time,finish));

 return collect(st:Dates.Minute(1):fi)

end

Out[6]:

create_timegrid (generic function with 3 methods)

In [7]:

grid_length=(17-9)*60+30+1;

tgrid=Array{DateTime}(grid_length*length(date_once));

In [8]:

#filling the vector

for i=1:length(date_once)

 tgrid[(1:grid_length)+grid_length*(i-1)]=create_timegrid(date_once

[i]);

end

In [9]:

#time grid in minutes

tgrid_num=map(Int,map(x->Int(x-date_0)/60000,tgrid));

 finding position

In [10]:

#this code does the following:

- takes the difference of datetimes (in numeric form)

- non-zero elements are where time has changed, thus we need the pos

ition of time before changement

- using sparse matrix to identify non-zero elements improve speed

- rowvals takes the position of non-zero element of the sparse matri

x

74

@time pos=rowvals(sparsevec(diff(datetimem_num)));

 0.197149 seconds (134.33 k allocations: 83.849 MB, 12.97% gc time)

In [11]:

#"pos" points the position of the observed_last_price for each date-ti

me element in "datetimem_once"

pos=[1;pos]; #adding the first element because there is nothing before

 9:00 on the first day

#double check:

#length(pos)==length(datetimem_once);

 filling the missing points

In [12]:

#which are missing observations?

#"there are $(length(tgrid_num)-length(datetimem_once)) missing observ

ation to fill"

In [13]:

#missing minutes

missing_min=setdiff(tgrid_num,datetimem_once);

#missing minutes position

missing_min_pos=map(x->find(tgrid_num.==x)[1],missing_min); # the "[1]

" is to access to the array given by find();

In [14]:

#inserting the previous observation

for miss_pos in missing_min_pos

 insert!(pos,miss_pos,pos[miss_pos-1]);

end

In [15]:

#double check:

#length(pos)==length(tgrid_num)

 creating price grid

In [16]:

price_grid=Array{Float64}(price_all[pos]);

 dividing in days

In [17]:

ndays=length(date_once);

price_mat=Array{Float64}(grid_length,ndays);

75

price_mat=reshape(price_grid,grid_length,ndays);

 return grid

In [18]:

#this function is an apply-like function that applies a function to th

e columns of a matrix

function map_colwise(func::Function,data::Array{Float64,2})

 final_nrow=length(func(data[:,1]));

 ncol=size(data,2);

 func_data=Array{Float64,2}(final_nrow,ncol)

 for col=1:ncol

 func_data[:,col]=func(data[:,col]);

 end

 return func_data

end

Out[18]:

map_colwise (generic function with 1 method)

In [19]:

#1-minute return over the price mat

ret_1m=map_colwise(x->diff(log(x)),price_mat);

In [20]:

#return over x minutes interval, given a matrix of prices

function ret_xmin(price::Array{Float64,2},min::Int)

 grid_length=size(price,1);

 price_xmin=price[1:min:grid_length,:];

 ret_mat=map_colwise(x->diff(log(x)),price_xmin);

 return ret_mat

end

Out[20]:

ret_xmin (generic function with 1 method)

In [21]:

#1-minute return over the price mat

ret_5m=ret_xmin(price_mat,5);

In []:

Stochastic variance variables

preliminary functions
In [22]:

#function for the AR(p) coefficients calculation

function x_lag(x::Array{Float64},p::Real,constant::Bool=true)

 #the function picks the time series and divide it into its lag

 #it assumes that more recent observations are at the end

76

 #it returns X_0, the array of latest observations, and X_lag, the

matrix of lags

 p+=1;

 l=length(x);

 X=Array{Float64}(l-p+1,p);

 for i=1:p

 X[:,i]=x[(p:end)-i+1];

 end

 X_0=X[:,1];

 if constant==true

 X_lag=[ones(l-p+1,1) X[:,2:end]];

 else

 X_lag=X[:,2:end];

 end

 return X_0, X_lag

end

Out[22]:

x_lag (generic function with 2 methods)

In [23]:

function loglike(y::Array{Float64},x::Array{Float64},beta::Array{Float

64};sigma2::Real=1.0,result::ASCIIString="llbic")

 #this function computes loglikelihood and bic

 n,p=size(x);

 u=y-x*beta;

 dist=Normal(0,√sigma2);

 contributions=logpdf(dist,u);

 loglikelihood=sum(contributions);

 bic=-2*loglikelihood+log(n)*p;

 if result=="ll"

 out=loglikelihood

 elseif result=="bic"

 out=bic

 else

 out=loglikelihood,bic

 end

 return out

end

Out[23]:

loglike (generic function with 1 method)

In [24]:

#this function return the best lag, chosen by BIC.

function best_p(X::Array{Float64})

 l=length(X);

 p_opt=floor(0.02*l);

77

 P=Int(max(3,min(10,p_opt))); #minimum 3 lags, maximum 10 lags

 bic=Array{Float64,1}(P);

 for p=1:P

 y,x=x_lag(X,p);

 β=x\y;

 bic[p]=loglike(y,x,β,result="bic");

 end

 pp=find(bic.==minimum(bic));

 return pp

end

Out[24]:

best_p (generic function with 1 method)

In [25]:

function R²(y::Array{Float64},x::Array{Float64},β::Array{Float64};adju

sted::Bool=true)

 n,p=size(x);

 res=y-x*β;

 ydev=y-mean(y);

 R2=1-res'res/ydev'ydev;

 adjR2=1-(1-R2)*(n-1)/(n-p-1);

 if adjusted==true

 return adjR2[:]

 else

 return R2[:]

 end

end

Out[25]:

R² (generic function with 1 method)

In [26]:

#creating the type linReg to avoid excessive creation of variables.

#for now, it is sufficient to access to the beta coefficients and R sq

uared

type linReg

 β::Array{Float64}

 R2::Float64

 R2adj::Float64

end

function linearOLS(y::Array{Float64}, x=[]; constant::Bool=true, p::Re

al=4)

 #if just the y is specified, then linearOLS constructs an AR(p) mo

del

 #if also x is provided, is the case of simple OLS

78

 if x==[]

 y,x=x_lag(y,p,false)

 end

 sy=length(y);

 if typeof(x)==Array{Float64,1}

 n=length(x);

 p=1;

 else

 n,p=size(x);

 end

 if n!=sy

 error("vectors must have same length")

 end

 if constant==true

 x=[ones(sy,1) x];

 end

 β=x\y;

 #standard errors of betas => o=homosk. e=heterosk.

 #u=y-xβ;

 #σ2=u'u/(n-length(β)-1);

 #VCo=σ2*inv(x'x);

 #ux=u'x;

 #VCe=(x'x)\ux'ux/(x'x);

 #seo=diag(VCo);

 #see=diag(VCe);

 u=y-x*β;

 ydev=y-mean(y);

 R2=1-u'u/ydev'ydev;

 R2adj=1-(1-R2)*(n-1)/(n-p-1);

 return linReg(β,R2[1],R2adj[1])

end

Out[26]:

linearOLS (generic function with 2 methods)

stochastic variables
In [27]:

79

#squared returns

ret_sq=ret_1m.^2;

#absolute returns

ret_abs=abs(ret_1m);

#RV from grid

RV_1m=sum(ret_sq,1)';

RV_5m=sum(ret_5m.^2,1)';

#BPV

ret_bpv=ret_abs[1:end-1,:].*ret_abs[2:end,:];

BPV=π/2*sum(ret_bpv,1)';

#TSRV

#it needs n n-minutes-return RVs. Choose 5 minutes

ret5mRV=zeros(5,size(price_mat,2)); #this will be the array containing

 on each row a time series of RV on a possible 5 min interval

grid5m_length=Array{Int8}(5); #this is the size of the grid for each p

ossible 5 min interval

for i=1:5

 ret5m=ret_xmin(price_mat[1:end-i+1,:],5);

 ret5mRV[i,:]=sum(ret5m.^2,1);

 grid5m_length[i]=size(ret5m,1);

end

RV_tsrv=mean(ret5mRV,1)'; #this is still biased

avg_length=mean(grid5m_length);

microstr_bias=avg_length/grid_length*RV_1m; #it should be RV of sparse

 data, but also 1 minute grid should work well;

TSRV=RV_tsrv-microstr_bias; #bias is removed;

In [28]:

#RV using all prices available

function RV_daily(date_day::Union{Int64,Date},dates_all::Union{Array{I

nt64},Array{Date,1}},price_all::Array{Float64,1})

 #this function calculates the RV for the specific day, indicated b

y date_day

 #it starts from the whole array of dates and prices

 pos=find(dates_all.==date_day);

 price_day=price_all[pos];

 ret_day=diff(log(price_day)); #no matters if they need to be chang

ed of sign, since they will be squared

80

 RV=ret_day'ret_day; #sum of squares

 return RV[1] #[1] is used to convert Array->scalar

end

RV=map(x->RV_daily(x,Date(date_all),price_all),date_once);

In [29]:

HAR-RV

function period_mean(data::Array{Float64},period::Int64)

 #it's a simply moving average

 l=length(data);

 data_out=Array{Float64}(l-period+1);

 [data_out[i]=mean(data[(1:period)+i-1]) for i=1:l-period+1];

 return data_out

end

RVw=period_mean(RV_1m,5); #weekly mean

RVm=period_mean(RV_1m,20); #monthly mean

maxl=length(RVm);

HAR=[RV_1m[end-maxl+1:end] RVw[end-maxl+1:end] RVm];

In []:

Statistical properties
In [30]:

#whole time series

ret_vec=ret_1m[:]; #all the returns on the same vector, no matter of t

he day

ret_norm=(ret_vec-mean(ret_vec))./√var(ret_vec); #standardized returns

 using standard deviation;

In [31]:

#daily time series of returns

ret_day=(log(price_mat[end,:])-log(price_mat[1,:]))[:];

ret_day_norm=(ret_day-mean(ret_day))/√var(ret_day); #standardized retu

rns using standard deviation;

ret_day_norm_rv=ret_day./√RV_1m; #standardized returns using RV;

In []:

Forecast analysis
In [32]:

#obsolete function

function forecast_AR_rolling(data_all::Array{Float64},date_all::Array

{Date}=date_once;starting_date::Date=Date(2012,01,01))

81

 #this function creates a rolling window of 1 year (256 observatio

n)

 #then compute β_ols and makes the forecast for the next trading da

y of the variable

 ld=length(data_all);

 idx=findlast(date_all.<starting_date); #from here, 1 step ahead fo

recasts will start

 forecasts=Array{Float64,1}(ld-idx);

 for i=idx:ld-1

 data_window=data_all[i-255:i];

 β=linearOLS(data_window).β

 lb=length(β)-1;

 forecasts[i-idx+1]=([1;data_window[end-lb+1:end]]'β)[1];

 end

 return forecasts

end

Out[32]:

forecast_AR_rolling (generic function with 2 methods)

In [33]:

function forecast_rolling(y::Array{Float64},x::Array{Float64};

 date_begin::Date=Date(2012,01,01),date_all::Array{Date}=date_once,

window_length::Int64=256)

 #this function does the following:

 # it returns the array forecasts which cointains the forecasts at

time t

 # the forecast for time t is made as follows:

 # - take window of 256 observations from (t-255-2:t-2) for x and

window (t-255-1:t-1) for y

 # - makes a regression between those two variables, catch the bet

a

 # - uses this beta on x_t-1 to have a forecast for y_t

 idx=length(date_all)-findlast(date_all.<date_begin); #out of sampl

e array length

 forecasts=Array{Float64,1}(idx);

82

 for i=1:idx

 #out of sample window goes from (end-idx+1) to end

 x_wind=[ones(window_length) x[(end-window_length+1:end)-idx+i-

2,:]]; #x is taken one lag before y

 y_wind=y[(end-window_length+1:end)-idx+i-1];

 β=x_wind\y_wind;

 forecasts[i]=([1 x[end-idx+i-1,:]]*β)[1];

 end

 return forecasts

end

Out[33]:

forecast_rolling (generic function with 1 method)

In []:

example of analysis
In [34]:

#self-predicting ability

p=max(best_p(HAR),3);p=p[1];

HAR_lm=linearOLS(HAR,p=p);

HAR_lm.R2adj;

In []:

Predicting the VSTOXX
In [35]:

datav=readtable("/home/juser/julia-gdrive/sx5e.csv"

 ,eltypes=[UTF8String,Float64,Int64,Float64,Float64,Flo

at64,Float64,Int64]

);

In [36]:

date_v=reverse(Date(datav[:Date],"d/m/y"));

volume_ind=reverse(datav[:SX5E_PX_VOLUME]); #volume field on bloomberg

 of the EU STOXX index;

volume_fut=reverse(datav[:VG1_PX_VOLUME]); #volume of the nearest futu

re;

v2x=reverse(datav[:V2X]); #VIX index on the EU STOXX;

datav2=Array{Float64}([volume_ind volume_fut v2x]);

In [37]:

first=findfirst(date_v.==date_once[1])[1];

last=findlast(date_v.==date_once[end])[1];

83

datav2=datav2[first:last,:];

date_v=date_v[first:last,:];

In [38]:

#finding missing dates

missing_date=setdiff(date_once,date_v);

missing_date_pos=map(x->findlast(date_once.<x),missing_date);

In [39]:

function insertrow(data,idx::Int64,ins)

 #add row after idx

 d=[data[1:idx,:]; ins; data[idx+1:end,:]];

end

Out[39]:

insertrow (generic function with 1 method)

In [40]:

for pos in missing_date_pos

 datav2=insertrow(datav2,pos,datav2[pos,:]);

 date_v=insertrow(date_v,pos,date_once[pos+1]);

end

In [41]:

volume_ind=datav2[:,1];

volume_fut=datav2[:,2];

v2x=datav2[:,3];

v2x_ret=diff(log(v2x));

In []:

regression - same time
In [42]:

#regression analysis

#res vector contains the adj R2 of regression of v2x on x, log(x), √x

x=RV_1m; #<----change this variables for other results;

res=[

 linearOLS(v2x,x).R2adj;

 linearOLS(v2x,log(x)).R2adj;

 linearOLS(v2x,√x).R2adj

];

#res;

In [43]:

#HAR framework - same time

lhar=size(HAR)[1];

reg_v_har=linearOLS(v2x[end-lhar+1:end],√(HAR)); #<----change the func

tion for other results

#reg_v_har.R2adj;

84

In []:

predicting power - regression on first lag
In [44]:

x=RV_1m; a=[]; #<----change the x for other results;

#tested regressions: v2x_t -> x_(t-1) ; v2x_t -> √x_(t-1) ; v2x_t -> √

x_(t-1) √x_(t-2)

#reg_lag cointains adj. R2 of these regressions

yy=v2x[2:end];

xx=x[1:end-1];

reg_lag=linearOLS(yy,xx);

push!(a,reg_lag.R2adj);

xx=√x[1:end-1];

reg_lag=linearOLS(yy,xx);

push!(a,reg_lag.R2adj);

yy=v2x[3:end];

xx=√[x[2:end-1] x[1:end-2]];

reg_lag=linearOLS(yy,xx);

push!(a,reg_lag.R2adj);

#reg_lag;

In [45]:

#HAR

yy=v2x[end-lhar+2:end];

xx=√HAR[1:end-1,:]; #<----change the function for other results

reg_lag=linearOLS(yy,xx);

#reg_lag.R2adj;

In [46]:

#AR of just v2x

reg_AR=linearOLS(v2x,p=1);

#reg_AR.R2adj;

In []:

assessing predicting power
In [47]:

function forecast_analysis(y::Array{Float64},x::Array{Float64};window_

length::Int64=256,date_begin::Date=Date(2012,01,01))

 #this function takes as input:

 # - y -> the array o be forecasted

 # - x -> the explanatory variable

85

 #and it produces a rolling window forecast for y, from x matrix. r

esulting output are:

 # - yf -> the realized price array

 # - xf -> the forecasted price array (using rolling window for

ecast)

 # - ret -> the return time series of a strategy which consist i

nto buying if the predicted price should rise

 # - sign -> the percentage of time of same sign of movement (rea

lized vs forecasted price)

 # - ssdiff -> sum of squared difference between forecast and reali

zed price

 forecasted_price=forecast_rolling(y,x,window_length=window_length,

date_begin=date_begin);

 realized_price=y[end-length(forecasted_price)+1:end];

 forecast_difference=realized_price-forecasted_price;

 ssq_difference=sum(forecast_difference.^2);

 forecasted_ret=diff(log(forecasted_price));

 realized_ret=diff(log(realized_price));

 caught_sign=sum(sign(realized_ret).==sign(forecasted_ret))/length

(realized_ret);

 strategy_ret=realized_ret.*sign(forecasted_ret);

 dict=Dict(:xf=>forecasted_price,:yf=>realized_price,:ret=>strategy

_ret,:sign=>caught_sign,:ssdiff=>ssq_difference);

 return dict

end

Out[47]:

forecast_analysis (generic function with 1 method)

In [48]:

f=forecast_analysis(v2x[2:end],v2x[1:end-1],window_length=255) #need t

o reduce the window length or to start from a later date;

In [49]:

#to compute the overall return of the strategy use the following code

s:

- 1$ invested at beginning and proceeds reinvested

ov_ret=cumprod(f[:ret]+1);

- 1$ invested on each day and no proceeds reinvested

86

ov_ret=sum(f[:ret]);

In [50]:

#return with 10% threshold

a=f[:yf];

b=f[:xf];

ra=diff(log(a));

rb=diff(log(b));

tdret=((ra[1:end-1]+ra[2:end]).>0.1)*1; #two days return trigger: true

 if previous two days returns sum is above +10%

pos=find(tdret)+1; #this is the position on the ret array of the day w

hose same day + previous day return is >10%

sra=sign(ra);

srb=sign(rb);

srb[pos+1]=-1.0; #sell the next day the trigger occurred

sum(ra.*srb);

In [51]:

#choose length=236 for HAR, 255 for other, or change date

f=forecast_analysis(v2x,RV_1m,window_length=236); #<----change here va

riable

predicted=f[:yf];

realized=f[:xf];

ret_p=diff(log(predicted));

ret_r=diff(log(realized));

sra=sign(ret_p);

srb=sign(ret_r);

#this is the average return of choosing as thresholds all levels betwe

en 0.1:0.01:0.3

tot_ret=[];

for i=0.1:0.01:0.3

 tdret=((ret_p[1:end-1]+ret_p[2:end]).>i)*1;

 pos=find(tdret)+1;

 srb=sign(ret_r);

 srb[pos+1]=-1.0;

 tot_ret=push!(tot_ret,sum(ret_p.*srb))

end

#mean(tot_ret)

In [52]:

#choosing specific thresholds

87

#choose only those which have higher % of adjacent negative return aft

er peaks

yret=yret=diff(log(forecast_analysis(v2x,RV_1m,window_length=236)[:y

f]));

prev_ret_sum=yret[1:end-2]+yret[2:end-1];

next_ret=yret[3:end];

seq=[prev_ret_sum next_ret];

seq70=[]; #70 since only if % is > then 70% are selected

for i in collect(0.08:0.01:0.29)

 pos=find(prev_ret_sum.>i);

 a=seq[pos,:];

 pneg=sum(a[:,2].<0)/length(pos);

 #@printf("%0.2f => %0.2f\n",i,pneg)

 if pneg>0.7

 push!(seq70,i)

 end

end

#seq70

In [53]:

#testing

f=forecast_analysis(v2x,RV_1m);

a=f[:yf];

b=f[:xf];

ra=diff(log(a));

rb=diff(log(b));

sra=sign(ra);

srb=sign(rb);

s=[];

for i in seq70

 tdret=((ra[1:end-1]+ra[2:end]).>i)*1;

 pos=find(tdret)+1;

 srb=sign(rb);

 srb[pos+1]=-1.0;

 s=push!(s,sum(ra.*srb))

end

#mean(s)

In []:

VaR computation
In [54]:

88

#analysis will start on 01/01/2012

idx_beg=findfirst(date_once.>=Date(2012,01,01));

idx_end=length(date_once)-idx_beg;

In [55]:

#benchmark: constant volatility

price_day=price_mat[end,:][:]; #closing price

ret_day=[0;diff(log(price_day))];

cvol=√var(ret_day); #(constant volatility) daily standard deviation of

 returns;

In [56]:

#normailization with SV

nretRV=ret_day./√RV_1m;

#quantile(nretRV[:],0.01)

#kurtosis(nretRV) # excess kurtosis is near zero, in effect distribute

s as normal

#skewness(nretRV)

#mean(nretRV)

#;

In [57]:

#quantile(ret_day_norm,0.01)

#quantile(nretRV[:],0.01)

In []:

variables
In [58]:

#EWMA

var_is=var(ret_day[1:idx_beg-1]); #variance until 01/01/2012

λ=0.94;

var_ewma=Array{Float64}(idx_end+1); var_ewma[1]=λ*var_is+(1-λ)*ret_day

[idx_beg-1]^2;

[var_ewma[i]=λ*var_ewma[i-1]+(1-λ)*ret_day[idx_beg+i-2]^2 for i=2:idx_

end+1];

var_ewma;

In [59]:

#SV variables

#RV

y,x=x_lag(RV_1m,2,false);

var_rv=forecast_rolling(y,x,window_length=252);

#BPV

y,x=x_lag(BPV,2,false);

89

var_bpv=forecast_rolling(y,x,window_length=252);

#HAR

y=HAR[2:end,:]; x=HAR[1:end-1,:];

var_har=forecast_rolling(y,x,window_length=234); #maybe change the dat

e of beginning;

In []:

parametric model 1-day
In [60]:

sd=√[var_ewma var_rv var_bpv var_har]; #<--- it is possible to not us

e the square root

realized_ret=ret_day[idx_beg:end];

q=quantile(Normal(),0.01);

var_loss=sd*q; #<--- if square root was not u

sed in line 1, then square root "sd"

exceptions=repmat(realized_ret,1,4).<var_loss;

exc=sum(exceptions,1)/length(realized_ret);

In [61]:

#var_loss is the daily capital put as reserve

mean(-var_loss,1);

In []:

MC simulations 1-day
In [62]:

#simulated path: r_t = dp_t = ϵ_t ̂σ_t

#this code computes MC simulation with ϵ distributed as Normal, Studen

t-t, Laplace.

#to change variable change the first line of code

#to use the square root process use second line and not the first, and

 viceversa

#the matrix tot_paths contains all possible simulations (on its rows),

 on a given day (on columns)

#it is possible to change also the number of lags included for forecas

t (the second input of x_lag())

y,x=x_lag(RV_1m,2,false); var_rv=forecast_rolling(y,x,window_length=25

2); sd_rv=√var_rv;

#y,x=x_lag(√RV_1m,2,false); sd_rv=forecast_rolling(y,x,window_length=2

52);

realized_price=price_day[idx_beg:end];

90

realized_price_diff=diff(price_day)[end-idx_end:end];

npaths=10000;

ϵ~Normal(0,1)

tot_paths=repmat(sd_rv',npaths).*randn(npaths,length(sd_rv));

var_loss=map_colwise(x->quantile(x,0.01),tot_paths)[:];

exceptions=realized_ret.<var_loss;

r1=sum(exceptions)/length(realized_ret);

ϵ~Student-t, maximum likelihood

opt=optimize(v->-sum(logpdf(TDist(v),ret_day_norm)),1.0,10.0); v_est=o

pt.minimum;

ϵ=rand(TDist(v_est),npaths,length(sd_rv));

tot_paths=repmat(sd_rv',npaths).*ϵ;

var_loss=map_colwise(x->quantile(x,0.01),tot_paths)[:];

exceptions=realized_ret.<var_loss;

r2=sum(exceptions)/length(realized_ret);

ϵ~Student-t, matched kurtosis

ret_k=kurtosis(ret_day); v=6/ret_k+4;

ϵ=rand(TDist(v),npaths,length(sd_rv));

tot_paths=repmat(sd_rv',npaths).*ϵ;

var_loss=map_colwise(x->quantile(x,0.01),tot_paths)[:];

exceptions=realized_ret.<var_loss;

r3=sum(exceptions)/length(realized_ret);

ϵ~Laplace

lap_par=fit(Laplace,ret_day_norm); b_lap=params(lap_par)[2];

ϵ=rand(Laplace(lap_par),npaths,length(sd_rv));

tot_paths=repmat(sd_rv',npaths).*ϵ;

var_loss=map_colwise(x->quantile(x,0.01),tot_paths)[:];

exceptions=realized_ret.<var_loss;

r4=sum(exceptions)/length(realized_ret);

#exceptions results

[r1;r2;r3;r4];

In []:

parametric model 10-days
In [63]:

#expected ewma: today's ewma

sd_ewma_10=√var_ewma*√10;

In [64]:

#RV

91

var_rv_1_10=zeros(length(sd_rv),10);

for i=1:10 #forecast horizons

 y,x=x_lag(RV_1m,1+i,false);

 x=x[:,i:end];

 var_rv_1_10[:,i]=forecast_rolling(y,x,window_length=245); #it coul

d be also used window_length=256-i

end

sd_rv_10=sqrt(sum(var_rv_1_10,2));

#BPV

var_bpv_1_10=zeros(length(sd_rv),10);

for i=1:10

 y,x=x_lag(BPV,1+i,false);

 x=x[:,i:end];

 var_bpv_1_10[:,i]=forecast_rolling(y,x,window_length=245);

end

sd_bpv_10=sqrt(sum(var_bpv_1_10,2));

#HAR

var_har_1_10=zeros(length(sd_rv),10);

for i=1:10

 y,x=x_lag(HAR,1+i,false);

 x=x[:,i:end];

 var_har_1_10[:,i]=forecast_rolling(y,x,window_length=235);

end

var_har_1_10[var_har_1_10.<0]=0; #sometimes forecasted value are negat

ive;

sd_har_10=sqrt(sum(var_har_1_10,2));

In []:

In [65]:

sds=[sd_ewma_10 sd_rv_10 sd_bpv_10 sd_har_10][1:end-9,:]; #erasing las

t 10 obs since we don't have realized ones

realized_ret_10=[sum(realized_ret[(1:10)+i-1]) for i=1:length(realized

_ret)-10+1];

var_loss=sds*q;

exceptions=repmat(realized_ret_10,1,4).<var_loss;

exc=sum(exceptions,1)/length(realized_ret_10);

In [66]:

mean(-var_loss,1);

MC simulations 10-days
In [67]:

92

#this simulation uses values taken from previous computation, that is

the forecasted values

#for each 10s window of days. Then, in each window, is derived the sto

chastic variable for each day,

#which is multiplied by a 10000x10 matrix of random errors. In order t

o simulate returns on each day

#these returns are then summed, and the quantile for each of these win

dows is taken

l10d=size(var_rv_1_10[1:end-9,:],1); #latest 10 observations don't hav

e the observed counterparty

x=√var_rv_1_10; #<----change this value for other results

var_loss=zeros(l10d)

for i=1:l10d

 next10d=x[i,:];

 tot_paths=sum(repmat(next10d,npaths).*randn(npaths,10),2);

 var_loss[i]=quantile(tot_paths[:],0.01);

end

exceptions=realized_ret_10.<var_loss;

r1=sum(exceptions)/length(realized_ret_10);

var_loss=zeros(l10d)

for i=1:l10d

 next10d=x[i,:];

 tot_paths=sum(repmat(next10d,npaths).*rand(TDist(v_est),npaths,1

0),2);

 var_loss[i]=quantile(tot_paths[:],0.01);

end

exceptions=realized_ret_10.<var_loss;

r2=sum(exceptions)/length(realized_ret_10);

var_loss=zeros(l10d)

for i=1:l10d

 next10d=x[i,:];

 tot_paths=sum(repmat(next10d,npaths).*rand(TDist(v),npaths,10),2);

 var_loss[i]=quantile(tot_paths[:],0.01);

end

exceptions=realized_ret_10.<var_loss;

r3=sum(exceptions)/length(realized_ret_10);

var_loss=zeros(l10d)

for i=1:l10d

93

 next10d=x[i,:];

 tot_paths=sum(repmat(next10d,npaths).*rand(Laplace(lap_par),npath

s,10),2);

 var_loss[i]=quantile(tot_paths[:],0.01);

end

exceptions=realized_ret_10.<var_loss;

r4=sum(exceptions)/length(realized_ret_10);

[r1;r2;r3;r4];

In []:

94

B. BIBLIOGRAPHY

Aït-Sahalia, Y., Mykland, P., Zhang, L., 2005a. How often to sample a continuous-time

process in the presence of market microstructure noise. Review of Financial

Studies, 18, 351–416.

Aït-Sahalia Y., Mykland P., Zhang L., 2005b. A tale of two time scales: determining

integrated volatility with noisy high-frequency data. Journal of the American

Statistical Association, 100, 1394-1411.

Alizadeh, S., Brandt, M., Diebold, F., 2002. Range-based estimation of stochastic

volatility models. Journal of Finance, 57, 1047-1091.

Andersen, T. G, Bollerslev, T., Diebold, F., 2008. Parametric and nonparametric

measurement of volatility. Cambridge, MA.: National Bureau of Economic

Research.

Andersen, T. G., Sørensen, B.E., 1996. GMM estimation of a stochastic volatility model:

A Monte Carlo study. Journal of Business & Economic Statistics, 14, 328-352.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N., 2004. Regular and

modified kernel-based estimators of integrated variance: the case with

independent noise. OFRC Working Papers Series 2004fe20, Oxford Financial

Research Centre.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N., 2008. Designing

realized kernels to measure the ex-post variation of equity prices in the presence

of noise. Econometrica, 76, 1481-1536.

Barndorff-Nielsen, O. E., Shephard, N., 2002. Econometric analysis of realised volatility

and its use in estimating stochastic volatility models. Journal of the Royal

Statistical Society, Series B 64, 253-280.

95

Barndorff-Nielsen, O. E., Shephard, N., 2003. Power and bipower variation with

stochastic volatility and jumps. Economics Series Working Papers 2003-W18,

University of Oxford, Department of Economics.

Barndorff-Nielsen, O. E. and Shephard, N., 2004. Econometric analysis of realized

covariance: high frequency based covariance, regression and correlation in

financial economics. Econometrica, 72 885-925.

Bates, D. S., 1996. Jumps and stochastic volatility: exchange rate processes implicit in

deutsche mark options. Review of Financial Studies, Society for Financial Studies,

9, 69-107.

Bauwens, L., Hautsch, N., 2006. Modelling financial high frequency data using point

processes. Discussion Papers 2006080, Université catholique de Louvain, Centre

for Operations Research and Econometrics (CORE).

Blair, B. J., Poon, S.-H., Taylor, S. J., 2001. Forecasting S&P 100 volatility: the

incremental information content of implied volatilities and high frequency index

returns. Journal of Econometrics, 105, 5-26.

Bollerslev, T., 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal

of Econometrics, 31, 307-327.

Brownlees, C. T., Gallo, G. M., 2006. Financial econometric analysis at ultra-high

frequency: data handling concerns. Universita` degli Studi di Firenze

Dipartimento di Statistica ‘Giuseppe Parenti’. Econometrics Working Papers

Archive (2006/03).

Campbell, J. Y., Lo, A. W., MacKinlay, A.C., Whitelaw, R. F., 1998. The econometrics

of financial markets. Cambridge University Press, 2(04), 559-562.

Chib, S., Nardari, F., Shephard, N., 2002. Markov chain Monte Carlo methods for

stochastic volatility models. Journal of Econometrics, 108, 281-316.

Christensen, K., Podolskij, M., 2007. Realized range-based estimation of integrated

variance. Journal of Econometrics, 141, 323-349.

96

Chung, K., Van Ness, B., Van Ness, R., 2004. Trading costs and quote clustering on the

NYSE and NASDAQ after decimalization. Journal of Financial Research, 27, 309-

328.

Clark, P. K., 1973. A subordinated stochastic process model with finite variance for

speculative prices. Econometrica, 41, 135-155.

Corsi, F., 2009. A simple approximate long memory model of realized volatility. Journal

of Financial Econometrics, 7, 174-196.

Daley, D.J, Vere-Jones, D. (1988). An Introduction to the theory of point processes.

Springer, New York.

Doob, J. L., 1942. The Brownian movement and stochastic equations. Annals of Math,

43, 351-369.

Engle, R. F., 1982. Autoregressive Conditional Heteroskedasticity with estimates of

variance of United Kingdom inflation. Econometrica, 50, 987-1008.

Engle, R. F., 2000. The econometrics of ultra-high frequency data, Econometrica, 68, 1-

22.

Engle, R. F., Russell, J.R., 1998. Autoregressive Conditional Duration: a new model for

irregularly spaced transaction data. Econometrica, 66, 1127-1162.

Engle, R. F., Patton, A. J., 2001. What good is a volatility model? Quantitative Finance,

Taylor & Francis Journals, 1, 237-245.

Falkenberry, T.N., 2002. High frequency data filtering: a review of the issues associated

with maintaining and cleaning a high frequency financial database. Technical

report, Tick Data, Inc.

Granger, C.W.J., Poon, S.-H., 2003. Forecasting volatility in finnancial markets. Journal

of Economic Literature, 41, 478-539.

ap Gwilym, O., Sutcliffe, C., 1999. High-frequency financial market data: sources,

applications and market microstructure. Risk Books, London.

Hamilton, J. D., 1994. Times series analysis. Princeton University Press.

97

Hansen, P. R., Lunde, A., 2006. Realized variance and IID market microstructure noise.

Econometric Society 2004 North American Summer Meetings 526, Econometric

Society.

Harvey, A. C., Ruiz, E., Shephard, N., 1994. Multivariate stochastic variance models.

The Review of Economic Studies, 61, 247-264.

Hellerstein, J. M., 2008. Quantitative data cleaning for large databases. Report for

United Nations Economic Commission for Europe. Berkley, CA: EECS Computer

Science Division.

Heston, S. L., 1993. A closed-form solution for options with stochastic volatility with

applications to bond and currency options. The Review of Financial Studies, 6,

327-343.

Hull, J. C., 2012. Risk management and financial institutions. Wiley finance

Hull, J. C., White, A. D., 1987. The pricing of options on assets with stochastic volatilities.

Journal of Finance, 42, 281-300.

Jacod, J., Shiryaev, A. N., 2003. Limit theorems for stochastic processes. Springer-Verlag,

New York.

Jacod, J., Li, Y., Mykland, P., Podolskij, M., Vetter, M., 2009. Microstructure noise in

the continuous case: the pre-averaging approach. Stochastic Process and their

Applications, 119, 2249-2276.

Jacquier, E., Polson, N. G., Rossi, P. E., 1994. Bayesian analysis of stochastic volatility

models. Journal of Business and Economic Statistics, 12, 371-417.

Mandelbrot, B. B., 1963. The variation of certain speculative prices, The Journal of

Business 36, 394-419.

Melino, A., Turnbull, S.M., 1990. Pricing foreign currency options with stochastic

volatility. Journal of Econometrics, 45, 239-265.

Øksendal, B., 2000. Stochastic Differential Equations: An Introduction with Applications.

Springer-Verlag.

98

Parkinson, M., 1980. The extreme value method for estimating the variance of the rate of

return. Journal of Business, 53, 61-65.

Protter, P., 2004. Stochastic Integration and Differential Equations. Springer-Verlag.

Rogers, L., Satchell, S., 1991. Estimating variance from high, low and closing prices.

Annals of Applied Probability, 1, 504-512.

Roll, R., 1984. A simple implicit measure of the effective bid-ask spread in an efficient

market. Journal of Finance, 39, 1127-1139.

Ruiz, E., 1994. Quasi-maximum likelihood estimation of stochastic volatility models.

Journal of Econometrics, 63, 289-306.

Taylor, S. J., 1982. Financial returns modelled by the product of two stochastic processes

- a study of daily sugar prices 1961–79. Time series analysis: theory and practice,1,

203-226.

Taylor, S. J., 1986. Modelling financial time series. Wiley.

99

SUMMARY

Volatility estimation has a crucial role in modern finance theory, since is an

essential input in many models (option pricing, risk management, returns modelling). It

is a well-known fact that variance is time varying, but the volatility process cannot be

identified, since what is observed is just a realization of this latent variable. In order to

estimate volatility, two kinds of models have been developed in literature, that are

stochastic and non-stochastic (traditional) models. The formers attempt to describe

volatility as a stochastic function of its lags, while the latters provide a deterministic

specification for this process. Obviously, stochastic volatility (SV) models require higher

computational efforts, but they allow for more complex models building. They can be

used, for example, to model more accurate option hedging strategies, or to simulate more

realistic return patterns. The availability of high-frequency data (HFD) has made possible

more accurate procedures for parameters’ estimation. It is possible to estimate the latent

daily volatility process through the observed high-frequency returns, and use this time

series as a proxy of volatility into financial models. HFD still need particular handling

procedure, such as outliers cleaning or sparse sampling, i.e. sampling prices at fixed time

intervals. In this paper, lastly, two applications are discussed, using data on

EUROSTOXX index, a broad index for the EURO zone. The first is a trading strategy on

the VSTOOXX (V2X), that is the volatility index of the EUROSTOXX. The second is a

VaR analysis on a portfolio exclusively composed of the EUROSTOXX index.

Let the price of a security at a given time be 𝑃𝑡 and its natural logarithm expressed

as 𝑝𝑡, then return over the previous interval of time, computed as the difference of log-

prices is 𝑟𝑡 = 𝑑𝑝𝑡. A widely diffused belief is that returns are function of their long term

mean 𝜇 and their (unobserved) variance process 𝜎𝑡. In differential terms it means that:

𝑟𝑡 = 𝑑𝑝𝑡 = 𝜇 𝑑𝑡 + 𝜎𝑡𝑑𝑧𝑡 (1)

where 𝑧𝑡 is a Brownian Motion, that is a continuous stochastic process such that its

increments are iid normally distributed with mean zero and variance dt. The discrete-time

version of equation (1) is 𝑟𝑡 = 𝜇 + 𝜎𝑡𝑧𝑡. The first models that accounted for time varying

volatility were introduced by Engle (1982) and Bollerslev (1986) with, respectively,

ARCH (AutoRegressive Conditional Heteroskedasticity) and GARCH (Generalised

ARCH). In ARCH models, the variance, conditional on the available information set and

100

on an initial value 𝜎0, is imposed to be a linear function of lagged squared returns, thus is

heteroskedastic. In GARCH models variance is function also of its lags. A tipical GARCH

formulation is the following:

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑝𝑟𝑡−𝑝

2𝑃
𝑝=1 + ∑ 𝛽𝑞𝜎𝑡−𝑞

2𝑄
𝑞=1 (2)

where 𝜔, 𝛼, 𝛽 are constant parameters that can be estimated through maximum likelihood.

In ARCH class of models, the variance is still a deterministic function of known variables.

With the availability of HFD and the improvement of computational power, SV

models has assumed an important role in finance modelling. They allow to estimate more

accurately the evolution of the true volatility process. In SV models, also the variance is

a stochastic process, e.g.:

𝑑𝜎𝑡
2 = 𝛼0 𝜎𝑡

2 𝑑𝑡 + 𝛼1 𝜎𝑡
2 𝑑𝑤𝑡 (3)

where 𝛼0, 𝛼1 are constant parameters, while 𝑤𝑡 is a Brownian Motion that may be

correlated with the 𝑧𝑡 process described in equation (1). Non-stochastic volatility models

can be estimated through maximum likelihood estimator (MLE) procedure, where the

parameters of the model are those values which maximize the likelihood function, i.e. the

probability of observing that specific sample. In SV models, since innovations terms are

not normally distributed, the MLE may result not robust or even not consistent.

Sometimes it is infeasible or even impossible to find a closed-form solution for the MLE

problem, since, because of the multivariate distribution’s complexity, the likelihood

function may result too difficult to evaluate. Some authors have developed

approximations for the likelihood function that lead to reasonable results. The Quasi-

MLE procedure, assumes that innovations are iid Normally distributed, such that a

simplified version of the likelihood function can be obtained. Another widely used

method consists into generating the distribution by repeated random sampling, and then

computing moments of these simulated patterns. Monte Carlo (MC) methods, for

example, are algorithms where random errors from a specific probability distribution are

generated, obtaining several possible outcomes for the variable being simulated. With the

application of Bayesian statistics, Markov Chain MC (MCMC) methods can be used to

simulate the posterior density for parameters of stochastic volatility models (Chib,

Greenberg, 1995). They allow to find an invariant, i.e. constant, density of the transition

kernel, that is the conditional distribution function representing the evolution process

101

through time of the simulated variable. The transition kernel is, indeed, iterated a large

number of times, until the distribution of the simulated observations reaches a stationary

(invariant) state. The resulting invariant density is the posterior distribution from which

samples are desired.

HFD can be used to enhance estimations of the volatility process. The solution of

the differential equation (1), assuming, without loss of generality, that the mean return is

zero, can be expressed as:

𝑟0,𝑇 = 𝑝𝑇 − 𝑝0 = ∫ 𝜎𝑡𝑑𝑧𝑡

𝑇

0

(4)

These processes are also called Ornstein-Uhlenbeck, or Gauss-Markov. They have

Normal and stationary (multivariate) distribution, meaning that the multivariate

distribution does not depend on time, and they are Markovian, which means that the

density function of future realizations does not depend on past values. Now, let τ be the

unequally-spaced time set of observations, δ the stochastic process of time intervals, and

𝑟𝛿𝑡
the return over the t-th interval, then the Quadratic Variation process of p is defined as:

〈𝑝〉𝑡 = ∫ (𝑑𝑝𝑠)2𝑡

0
= lim

sup{𝛿}→0
∑ (𝑝𝑡+𝛿𝑡

− 𝑝𝑡)
2

𝑡∈𝜏 = lim
sup{𝛿}→0

∑ 𝑟𝛿𝑡

2
𝑡∈𝜏 .

Since:

- the Brownian Motion term 𝑧𝑡 is a martingale, (which implies that the log-price

process is a semi-martingale);

- according to stochastic calculus, if 𝑀𝑡 is a semi-martingale, and X an

integrable variable, then 〈∫ 𝑋 𝑑𝑀〉 = ∫ 𝑋2𝑑〈𝑀〉;

- the QV of a Brownian Motion is equal to the elapsed time: 〈𝑧〉𝑡 = 𝑡;

the QV of the price process is equal to:

〈𝑝〉𝑡 = 〈∫ 𝑑𝑝𝑠

𝑡

0

〉 = 〈∫ 𝜎𝑠𝑑𝑧𝑠

𝑡

0

〉 = ∫ 𝜎𝑠
2𝑑𝑠

𝑡

0

where the last term is called Integrated Variance (IV), and is exactly the latent variance

process that stochastic volatility models attempt to estimate. The IV process is still

unobservable, but the QV process can be consistently estimated through the Realized

Variance (RV) estimator. RV is the sample counterpart of QV, and is the sum of squared

observed returns. Since 𝑄𝑉𝑡 = lim
sup{𝛿}→0

𝑅𝑉𝑡, and since time interval of HFD is close to

zero, RV computed with HFD is a consistent estimator for both the QV and IV process.

102

The RV estimator has nice properties, such as the asymptotic normality: √𝑛
𝑅V−𝐼V

√2𝐼Q

𝑑
→ 𝑁(0, 1), with n denoting the sample size and IQ the Integrated Quarticity, namely

∫ 𝜎𝑠
4𝑑𝑠

𝑡

0
. IQ is also an unobservable variable, but it can be easily estimated with the

Realized Quarticity (RQ) estimator, where 𝑅𝑄𝑡 =
1

3
𝑛𝛿−1 ∑ 𝑟𝑡

4𝑇
𝑡 , which yields to

√𝑛
𝑅𝑉−𝐼V

√2𝑅Q

𝑑
→ 𝑁(0, 1).

RV may still be affected from biases. In presence of microstructure noise, RV is

estimating IV plus the variance of the error terms, that are the difference between real and

observed price. Aït-Sahalia et al. (2005b) used the Two Stage Realized Variance (TSRV)

estimator, which is constructed by averaging all the possible RV estimators obtained with

a sparse sampling procedure on lower-frequency intervals (e.g. 5 minutes), and then

subtracting the estimator of the microstructure error: 〈𝑟〉𝑡
𝑇𝑆𝑅𝑉 = 〈𝑟∗〉𝑡

𝑎𝑣𝑔
−

�̅�

𝑛
〈𝑟∗〉𝑡. This

estimator is robust to microstructure noise, thus it is suggested for tick-by-tick analysis of

traded securities. RV may suffer also from the presence of jumps. Jumps can be thought

as those relevant variations in price due to news or announcements. It is necessary to add

the jump stochastic component to the price process to avoid model mis-specification. This

procedure implies that RV is estimating the sum of IV and the Jump Variation process

(JV), that is the sum of squared jumps. Barndorff-Nielsen and Shephard (2003)

introduced the realized Bipower Variation (BPV) estimator, expressed as the sum of

products of adjacent returns, taken in absolute value: 𝐵𝑃𝑉𝑡 = ∑ |𝑟𝑖||𝑟𝑖−1|𝑡
𝑖=2 . The

estimator
𝜋

2
𝐵𝑃𝑉𝑡

𝑝
→ 𝐼𝑉𝑡 is then consistent for IV, since the probability of two consecutive

jumps is about zero. The Range-based Variance (RgV) is another important estimator for

IV. It is built with intra-period information (open, close, high and low quotes) and has the

advantage of reducing the data sample, still maintaining core statistical properties. This

variable is more efficient than the other estimators, in the sense that presents less variance.

Parkinson (1980) initially proposed a formulation for it: 𝜎ℎ
2̂ =

1

4 ln 2
∑ (𝑅𝑔𝑉∆𝑡)2ℎ

∆𝑡∈(ℎ−1;ℎ] ,

with 𝑅𝑔𝑉∆𝑡 denoting the difference between high and low quotes on the interval Δt, over

the h-th day. Since this estimator is sensible to te presence of outliers, careful data

103

cleaning operation are required, or other quantile levels may be considered instead of high

and low quotes.

A feature of HFD is the irregular time spacing of observations, since data is

gathered as trades occur (which obviously happen at irregular intervals). Therefore, time

can be represented, according to Daley and Vere-Jones (1988) as a point process, that is

a time set where the time interval is a sequence of non-decreasing random variables.

Models such as the autoregressive conditional duration (ACD) introduced by Engle and

Russel (1998), aim to describe this feature by modelling the interval of time as a

differential stochastic equation (similar to that of volatility). If the ACD process is

supposed to be exogenous from the price-volatility process, it is possible to estimate

duration at first, and then, conditional on these results, estimate the volatility parameters.

Even if this procedure is theoretically correct, empirically, better results are obtained with

the sparse sampling method, which implies to sample observations from a lower-

frequency equally-spaced time set.

Dealing with HFD is still not trivial. They may present errors deriving from the

information gathering process (such as missing quotes), or from market microstructure

inefficiencies (such as temporarily lack of liquidity that implies unreasonable quotes

displayed). Outliers’ detection techniques are involved to clean data from possible wrong

unreasonable prices. Browlees and Gallo (2006), for instance, suggest to mark outliers

those observations which exceed the trimmed mean of a neighbourhood of k prices by

three (trimmed) standard deviations plus a parameter γ (that depends on data frequency).

Trimmed moments of a neighbourhood of k prices are computed using previous and

following k observations: 𝑚𝑘 𝑡(𝑝) = ∑ 𝑝𝑡+𝑖
𝑘
𝑖=−𝑘 and 𝜎𝑘 𝑡(𝑝) = ∑ (𝑝𝑡+𝑖−𝑘𝑚𝑡(𝑝))

2𝑘
𝑖=−𝑘 .

The rule is to evaluate whether |𝑝𝑡 − 𝑚𝑘 𝑡(𝑝)| > 3 𝜎𝑘 𝑡(𝑝) + 𝛾. Another issue of HFD is

the missing of data, which is typical of less liquid markets. A common solution is to fill

the missing position with the latest available observation, which may be technically

correct if no trades had occurred during that time window. Or, the missing value can be

substituted by a weighted average of the closer (previous and following) available quotes.

The choice of the filling method should be a careful operation, since it may have

repercussions on the statistical structure of data. Sometimes sparse sampled observations

may improve estimations. Data aggregation necessarily implies loss of information, but

104

the gain in terms of robustness of estimators and lightening of computations is relevant.

For instance, microstructure noise, which arises when the observed price fluctuates

because of bid-ask spread, can be considerably reduced at 1-minute frequency.

This paper’s analysis is conducted on the EUROSTOXX index, which is the main

stock index of the Euro-zone. Observations starts from 2011, at irregular intra-minutes

frequencies (15 seconds), for a total of 4.598.132 rows. All computations have been done

with Julia language. Figure (1) shows an extract of tick-by-tick pattern of the

EUROSTOXX index, while figure (2) shows a one-minute extract of one minute. As can

be seen, the price stays almost to the same level, and eventually has some “jumps”, that

can be due to effectively price change or due to errors. Figure (3) plots the relative returns

over the entire dataset. Stochastic volatility variables have been computed by creating an

equally spaced time and price grid of 1-minute length. The algorithm written for this

thesis, which makes use of time serialization and sparse matrix operations, allows to

complete the sparse sampling operation in just 0,19 seconds (about 40'000x faster than a

normal procedure), with just 84 MB of memory allocated (about 3'000x smaller than a

normal procedure). The analysis is then conducted on RV at 1-minute frequency (RV1),

RV at 5-minutes frequency (RV5), BPV, TSRV. Figure (4) shows the standardized return,

compared with a Normal (0,1) distribution.

Figure 1. Weekly price pattern.

105

Figure 222. One-minute price pattern.

Figure 3. Returns time series.

Figure 4. Standardized returns vs Normal (0,1)

106

The choice of one and five minute for RV is inducted mainly by literature, and

because these frequencies are the most representative of the category of high-frequency

sampled observations. Figure (5) summarizes the reason of this choice. RV1 has the

highest explanatory power, in terms of adjusted R-squared of a regression of the variable

on its lags (the number of lags are determined by BIC procedure). RV5 seems to be a

good representative of lower sampling frequencies, since adjusted R-squared is similar to

that of the following sampling minutes. The aim of this analysis is to assess the predicting

power of stochastic volatility, this is the reasons why RV1 and RV5 have been chosen.

Sampling frequency

(minutes)
tick 1 2 3 4 5 6 7 8 9 10

Adj. R-squared of

𝑅𝑉𝑡~[1 𝑅𝑉𝑡−𝑙𝑎𝑔]
0,091 0,609 0,585 0,54 0,487 0,476 0,468 0,441 0,441 0,467 0,479

Adj. R-squared of

√𝑅𝑉𝑡~[1 √𝑅𝑉𝑡−𝑙𝑎𝑔]
0,192 0,642 0,624 0,587 0,554 0,546 0,535 0,521 0,526 0,534 0,543

Figure 5. RV statistics at different sampling intervals.

Figure (6) shows the time series of RV, RV1 and RV5. Figure (7) shows

autocorrelation functions and the time series of some of the analysed variables (RV1,

BPV). It is interesting to note how correlation on the first lags is significant, and decays

very slowly over time.

Figure 6. Time series of RV at different sampling horizons (tick-by-tick, one-minute, five-minutes).

107

Figure 7. Autocorrelation function of RV1 and BPV, both on the normal and on the square root process.

The analysed stochastic volatility processes show a discrete predicting power. In

this paper this predicting power is assessed to forecast future movements of the VSTOXX

(V2X) index, to evaluate if it is possible to build a trading strategy that involves stochastic

volatility. The V2X shows the level of the implied volatility of hedged at-the-money

options on the EUROSTOXX. Another estimator is then introduced, that is the

Heterogeneous AR (HAR), defined as the sum of RV’s moving averages at one day, one

week (5 observations) and one month (20 observations). This model seems to better

capture the different horizons effects, by disentangling RV process into its weekly and

monthly moving averages. Figure (8) shows results of regressions with V2X index.

Explanatory

variable
RV1 BPV RV5 TSRV HAR

V2Xt ~ Xt-1 0,543 0,4848 0,4759 0,4554 0,8042

V2Xt ~ √Xt-1 0,6603 0,6595 0,5998 0,581 0,8501

V2Xt ~ √Xt-1, √Xt-2 0,7284 0,7081 0,694 0,6819 -

Figure 8. Adjusted R-square of a regression of V2X and the stochastic volatility variables. The first column indicates
the regression run.

There is evidence that stochastic volatility can be used to predict at least the

direction of next-day V2X, thus two trading strategies have been built. The first strategy

consists into predicting the next-day movement of V2X, whit an AR rolling window

forecast of one year, and then buying if an increase is expected, or selling otherwise. It is

assumed that the price of one traded contract is equal to the level of the index, with no

transaction costs. Only one contract at time is traded, and the position is rolled each day

(as if 1$ is invested on each day, without reinvesting). The second strategy adds to the

previous a momentum component, which accounts for mean reversion. If the level of the

108

V2X, over the previous two days, has risen by a certain percentage threshold, then the

index is sold, regardless from the forecast. Since the choice of the thresholds leads to

different results, figure (9) displays the average return setting the threshold to all values

between 10% and 30%, with 1% increment. Results show that, using stochastic volatility,

on average, is possible to achieve better returns respect to a benchmark strategy (which

involves the use of the only V2X lagged value).

Strategy-1
same sign

ratio

overall

return

V2X (lag) 46,21% -223,14%

RV1 48,86% -31,41%

√RV1 48,86% -45,13%

HAR 48,23% -100,32%

Strategy-2 with

momentum

overall

return

annualized

return

V2X (lag) 1,75% 0,56%

RV1 32,78% 9,58%

√RV1 19,26% 5,85%

HAR 14,60% 4,50%

Figure 9. Different strategies to trade the V2X index. The same sign ratio is the ratio of predicted on realized returns’
signs. The first column of both tables is the variable used to forecast.

The last application is a VaR backtesting analysis with stochastic volatility. The

benchmark model, the EWMA, is compared against RV1, BPV and HAR. EWMA model,

described recursively as 𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑟𝑡−1
2 , has been chosen since it is widely

used in risk management, due to its efficacy and simplicity. The parameter λ is set to 0.94,

following Hull (2012) notation. These variables are compared in parametric and Monte

Carlo simulation methods, both at 1-day and 10-days horizons. For the parametric model,

it is assumed that standardized returns distribute as a Normal (0,1). Since the standardized

(with stochastic volatility) returns empirically distribute as a Normal (0,1), it is reasonable

to expect that the confidence interval for the future return is [𝑟𝑡+1 − 𝛼�̂�𝑡+1, 𝑟𝑡+1 +

𝛼�̂�𝑡+1] , where α, set to 2.326, is the prudential quantile (99-th) of a Normal (0,1)

distribution. The next-period volatility, in the case of stochastic variables, is computed

through an AR process rolling window forecast. The 10-days EWMA volatility is the

daily volatility multiplied by square root of 10 (is assumed to remain constant), while for

stochastic variables the volatility over each 10s of days is computed by summing the

forecasted variances obtained by direct forecast: 𝜎𝑡,10𝑑 = √∑ 𝑅𝑉1𝑡+𝑖
10
𝑖=1 , with RV given

by a forecast of 𝑅𝑉1𝑡+𝑖 ~ [1 𝑅𝑉1𝑡 𝑅𝑉1𝑡−1]. Figure (10) shows results of the parametric

analysis. The exceptions column indicates the percentage of time that the estimated VaR

109

was not sufficient to cover the loss occurred (the more this value is near to 1%, the better

the model is), while the average capital required column describes the average capital

put as reserve, that is the daily expected VaR loss.

 1 day 10 days

Variable exceptions
average capital

required
exceptions

average capital

required

EWMA 1,89% 2,50% 1,79% 7,88%

RV1 1,89% 2,44% 1,28% 7,89%

BPV 3,40% 2,11% 2,68% 6,85%

HAR 3,03% 2,32% 2,04% 7,40%

Figure 10. Parametric VaR analysis on 1-day (left) and 10-days (right) horizons.

None of the models is able to perfectly match the required quantile, but RV

performs better than the EWMA, since on 1-day it reaches the same exceptions level

requiring less capital, while in the 10-days case exceptions occurrence is closer to 1% still

requiring same capital than EWMA.

The simulated model for the Monte Carlo methods is: 𝑟𝑡+1 = 𝑑𝑝𝑡+1 = 𝜀𝑡+1�̂�𝑡+1,

with an implied drift rate of zero, and the volatility proxy forecasted through an AR model

(rolling window) of the stochastic variables. Simulations are run by drawing ε from a

Normal (0,1), Student-t and Laplace distributions. The choice of the latters derives from

the fact that, since empirical returns have high kurtosis, drawing from a Normal

distribution may underestimate the probability of extreme events to happen. Student-t and

Laplace, indeed, have higher kurtosis (Laplace’s shape is also closer to that of empirical

returns). The choice of the Student-t degrees of freedom is derived in two ways: by

maximum likelihood and by finding the degree-of-freedom parameter such that the

kurtosis of the resulting Student-t distribution matches the empirical kurtosis of returns.

Empirical excess kurtosis is observed to be about 2.51, which implies a degree of freedom

parameter of 6.39. Parameters of Laplace distribution are chosen by maximum likelihood.

Figure (11) shows exceptions rate at 1-day and 10-days. Results shows how matched

Student-t and Laplace distributions for ε simulations, perform better. They are even better

than parametric models.

110

 1 day 10 days

 ε

Variable
N(0,1) t (MLE)

t

(match)
Laplace N(0,1) t (MLE)

t

(match)
Laplace

RV1 1,89% 1,39% 0,63% 0,76% 1,28% 0,77% 0,64% 0,77%

BPV 3,28% 2,14% 1,13% 1,51% 2,55% 1,66% 1,02% 1,66%

HAR 2,90% 1,89% 0,76% 1,39% 2,04% 1,53% 0,51% 1,79%

Figure 11. Exceptions rate using stochastic variables in Monte Carlo simulations, with ε drawn from different
distributions. Parameters of t (MLE) and Laplace distributions are found by MLE. Parameters of t (matched) are
found by matching empirical kurtosis.

These results confirm the fact that stochastic variables may provide better insight

for the estimation of the volatility process. The higher computation efforts they require

are balanced by more accurate estimations. Stochastic volatility models seem to provide

more accurate estimates of the true volatility process, principally because they try to

exploit all the possible information available through HFD. This confirms the theory that

big data are useful to better understand the behaviour and the true nature of certain

stochastic processes, and maybe forecast their probable future realizations.

Last few words will be spent on the Julia language. This language is very similar

to modern languages such as Matlab or R, but has the advantage that is much faster,

comparably to C++. It has been developed relative recently, thus in some cases is still not

complete (it does not have an “nice” interface, or some important functions or packages

are missing). However, if the aim of the analysis is to deal with huge amount of data, it

can be very helpful thanks to its fastness and versatility. If coding is not a pain, this

language may give many satisfactions to a person who has to analyse many data and

requires a powerful language.

