
 

Department of Economics and Finance. Thesis in Mathematical Finance 

 

 

 

 

Option Pricing for the Electricity Market 

 

 

 

 

 

Candidate Alessandro Candino 

Matr. 181631 

Supervisor Professor Marco Papi 

 

Academic year 2015/2016 

 



1 
 

TABLE OF CONTENTS 

I. Abstract.…………………………………………………………………….....3 

II. Introduction 

- History  .................................................................................................................... 3 

- Increased risk with competition .............................................................................. 4 

- Work structure ......................................................................................................... 4 

Chapter 1 

1.1   The electricity market……………………………………………………………………6 

1.1.2   The set of constraints………………………………………………………………..6 

1.1.3   The history of the deregulation process……………………………………………..7 

1.1.4   Considerations……………………………………………………………………….8 

1.1.5   Market elements……………………………………………………………………..8 

1.2   The Italian case…………………………………………………………………………...9 

1.2.2   The Italian wholesale and retail market …………………………………………….11 

1.2.3   The overall level of efficiency in Italy……………………………………………...13 

1.2.4   The forward electricity market……………………………………………………...15 

1.2.5   The OTC market……………………………………………………………………15 

1.3   Electricity price volatility and risk management………………………………………...16 

1.3.2   Hedging Importance……………………………………………………………......17 

1.3.3   The different types of electricity derivatives………………………………………..17 

Chapter 2 

2.1   The Black-Scholes evaluation model…………………………………………………...23 

2.1.2    History of the Black-Scholes model……………………………………………….23 

2.1.3    The Black-Scholes-Merton differential equation………………………………….24 

2.2    Derivation of the Black-Scholes-Merton differential equation…………………………25 

2.2.2    Mathematical derivation by straightforward integration…………………………..28 

2.3    Critics to the Black-Scholes model……………………………………………………..32 

2.3.2    Testing for the normal distribution of returns………………………………………34 



2 
 

2.3.3    An insight on the volatility smile………………………………………………….40 

2.3.4    Testing for the volatility constancy……………………………………………......42 

2.4    Alternatives to the Black-Scholes model……………………………………………....44 

Chapter 3 

3.1   Three types of electricity power plants………………………………………………....46 

3.2   What is delta-hedging…………………………………………………………………..48 

3.2.2   The delta for a call option………………………………………………………….49 

3.3   The scenario of a hydroelectric power plant…………………………………………....50 

3.3.2 Delta-hedging strategy for volatility trading………………………………………...52 

3.4   Dynamic management of a hydroelectric power plant………………………………....54 

3.5   Conclusions…………………………………………………………………………….58 

References…………………………………………………………………………………..60 

Matlab Appendix…………………………………………………………………………...63 

 

 

 

 

 

 

 

 

 

 

 

  



3 
 

ABSTRACT 

The electricity industry has tended to be viewed as a natural monopoly in mostly every country 

after the Second World War, because of its importance for the national economy and society as 

a whole. The deregulation process, which started in Europe thanks to the ‘’European Electricity 

Directive’’ (1997) and in other OECD countries, was the inevitable result of the high demand for 

a restructuring of the electricity market in order to remove its inefficiencies. The physical 

characteristics of electricity and the liberalization process, which brought drastic changes to the 

ownership, competitiveness and regulation of the electricity industry, made this market jump into 

the financial one. In order to deal with risk exposures, volatility of prices and the instability of 

demand, the creation and trading of financial derivatives naturally started. 

The aim of this work is to understand the complex process behind the pricing of these derivatives, 

which mostly depends on the unique nature and complexity of electricity. 

INTRODUCTION 

HISTORY 

In 1989 the UK became the pioneer in privatizing the vertically integrated electricity industry. 

The English government was then followed by Norway and California in 1990 and 1996 

respectively, and soon after by many other countries. The process of deregulation started in order 

to introduce competition in a previously monopolistic industry: the electric utility service was 

disaggregated into its basic components, which were then offered for sale at different rates. 

Generation, transmission and distribution were therefore unbundled and the creation of a central 

independent body was the natural following step in almost every country. This body, usually 

called independent system operator or Power Exchange, is concerned with the matching of 

supply and demand, the maintenance of system security and reliability and the matching of 

generators’ bids with demand bids. Thanks to the unbundling of these different components, the 

market for electricity enlarged and spot electricity prices started to be traded on worldwide 

exchanges. Power Exchanges, for risk management and speculation purposes, established the 
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trade of futures and forwards contracts, which take into consideration the unique nature of 

electricity. First of all, electricity cannot be stored except at very high cost in batteries, thus, 

demand and supply must be continuously and instantaneously in balance. Moreover, the stages 

of electricity production are still considered to be natural monopolies because transmission and 

distribution involve large sunk capital costs and capital equipment, which leave no arbitrage 

opportunities. Lastly, electricity is subject to large seasonal fluctuations in demand and seasonal 

fluctuations in physical requirements for distributors. All these characteristics contribute to the 

volatility and to the exposure to risks of the whole electricity market.  

INCREASED RISK WITH COMPETITION 

The risks associated with the electricity market increased because of the introduction of 

competition. Before the liberalization, a vertically integrated state monopoly used to deal with 

fluctuations in demand by carrying excess capacity. With the new competitive setting the market 

had to face at least two new sources of risks: a more complex pricing structure and loop flows 

problems, which arise when independent producers introduce electricity within the transmission 

network. Therefore, if decentralized market provokes increased risks, it also has to provide ways 

to deal with it: the electricity market evolved so to give methods to reduce risks and to price risk 

so that it can be spread optimally among market participants. First of all, selling on the spot 

market offers normal returns because prices regress to the mean. Secondly, producers can sell 

long-term contracts with specified prices and adjustment clauses so that price fluctuations risks 

are reduced. Thirdly, producers can hedge spot market sales in futures market. Therefore, the 

application of financial derivatives to the electricity market can be a useful tool in order to reduce 

risks and achieve the Pareto efficiency among market players. 

WORK STRUCTURE 

The work is structured as follows: 

1) Chapter 1 deals with the deregulation process of the electricity market, its general 

elements and it provides an overview of the Italian case. Afterwards, the issue of risk 

management and some financial instruments to hedge it are taken into account. 
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2) Chapter 2 deals with the Black-Scholes evaluation model for options and the assumptions 

on which it relies. Afterwards, it focuses its attention on the reliability of two of the 

assumptions: normal returns and constant volatility. The analysis is provided through the 

Matlab environment (R15). 

3) Chapter 3 deals with the dynamic delta-hedging strategy of a hydroelectric power plant. 
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CHAPTER 1 

1.1 THE ELECTRICITY MARKET 

Many countries around the world have been restructuring their electricity markets with the 

purpose of liberalizing the electricity sector, but few have reached what could be called a 

competitive market. In fact, public ownership remains common in restructured electricity 

markets: in several OECD countries the state maintains its share both in networks and in power 

production. In order to reach a deep understanding it is important to take into consideration the 

set of constraints related to the electricity market and therefore highlight its deregulation process 

and development. 

1.1.2 THE SET OF CONSTRAINTS  

The constraints the restructuring process has to deal with have three different origins. First of all, 

the physical situation of a country sets the most important hurdle to overcome while deregulating 

the market. Every single state has to take into consideration the existence of indigenous power 

sources such as oil, gas, coal and therefore its dependence upon other countries on energy 

supplies. Moreover, the geographic distribution of demand, the market size and the degree of 

isolation of the country play an important role in the creation of competition. The second essential 

constraints to be considered are the macro-economic characteristics of each country. The 

availability of capital, the rate of demand grows and the level of economic development influence 

the financing options, the investment rate and the results that change in prices might have on 

final users. The last category of constraints is related to the socio-political environment of the 

energy system. As a matter of fact, the restructuring process success is the result of the interaction 

between formal and informal institution. Culture, property rights, sector legislation, the role of 

the state in the economy, the power of the central government all play fundamental roles in the 

shaping and in the feasibility of the restructuring process. 
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1.1.3 THE HISTORY OF THE DEREGULATION PROCESS  

The earliest introduction of the concepts of privatization and electricity market occurred in Chile. 

Thanks to the 1982 Electricity Act, amended during the dictatorship of Augusto Pinochet, the 

previous state owned electricity companies were acquired by huge private investors, who were 

able to gain improving rates of return on capital. The transparency and rationality on electricity 

pricing were the main factors contributing to the success of this revolutionary reform. Anyway a 

further improvement to this model was masterminded by the Argentinian president Carlos 

Menem and his Minister of Energy, Carlos Bastos. In fact, the massive Argentinian privatization 

program, done in order to reduce the huge losses of state owned companies, also nurtured the 

electricity sector. The attraction of massive private investments was the result of two main 

reforms: the regulation of market concentration and the improvement of payments structure that 

guaranteed system reliability. The result was that the decrepit generation assets were rehabilitated 

and the overall system expanded exponentially. These two forward-looking countries were then 

followed by other Latin America countries, which assisted by the World Bank, tried to create 

some deregulated hybrid market structures. The decisive event for the European and more 

developed countries was pursued in 1990 by Margaret Thatcher government, which privatized 

the UK electricity industry. After the appearance of the UK model, the deregulation process took 

place in Scandinavian countries, the Netherlands and other Commonwealth countries. As a 

consequence of the overall success, the EU drove the reform by amending the ‘’European 

Electricity Directive’’ (1997), with the intention of creating a European market and of reducing 

end-user prices. Also the USA, with the fundamental role played by the Federal Energy 

Regulatory Commission (FERC), implemented the deregulation process by introducing 

independent system operators (ISOs) and regional transmission organizations (RTOs). 

Even if the deregulation process had an overall success, due to the immaturity of the market 

design certain countries suffered by demand-supply gaps. The most notorious example is the 

Californian crisis of 2000 and 2001. The crisis occurred because of the market manipulation and 

illegal pipelines’ shutdown operated by the Texas energy company Enron. Energy traders, during 

days of peak demand, decreased supply by voluntarily shutting down power plants, in order to 
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artificially create a shortage. From April 2000 up to December 2000, wholesale prices rose by 

800%. Californian generators (Pacific Gas and Electric Company (PG&E) and Southern 

California Edison (SCE)) were forced to purchase electricity on the ‘’spot market’’, paying 

astronomical amounts, and were unable to raise the retail price. The government had in fact 

imposed price caps which in the end caused PG&E bankruptcy and SCE financial crisis. 

1.1.4 CONSIDERATIONS 

The Californian example shows how the inefficiency of the wholesale electricity market, the one 

allowing trade among generators, financial intermediaries and retailers both for current and 

future delivery of electricity, played a fundamental role. As a matter of fact, on the one hand the 

deregulation process caused several performance improvements in many countries around the 

world, by achieving cost and price reductions without reducing service quality. On the other 

hand, the creation of efficient wholesale and retail markets has encountered many difficulties 

also because of unexpected fluctuations in prices. Anyway, many problems that have emerged 

are now better understood by policymakers, who, with the help of financial markets, will 

eventually obtain an efficient market. 

1.1.5 MARKET ELEMENTS 

Electricity markets are run by Independent System Operators (ISOs) who are in charge of 

controlling the auction system. The auction market system consists of day-ahead negotiations, 

which establish daily the price for each hour of the following day, and real-time negotiations, 

which are computed every five minutes. Moreover, the ISOs is in charge of collecting the 

generators’ offers, which consist of generation levels and energy prices. Therefore, its final 

objective is to collect these offers and match them with energy bids, thus constructing the market 

supply and demand curves. Market operators are constantly aware of trades taking place within 

the market in order to maintain load and generation balance. The electricity commodities traded 

on the market are of two types: Power, which is the net electrical transfer rate calculated at a 

given moment and that is measured in megawatts (MW); and Energy, which is electricity that 

flows through a point for a given period of time and is measured in megawatt hours (MWh). In 
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addition to these two commodities, because of the restructuring of the electricity market, it is 

possible to trade electricity derivatives such as electricity options and futures. The main objective 

of these derivatives is to mitigate market risks and to let generators and load service entities build 

hedging strategies in order to decrease uncertainty and increase market efficiency. 

1.2 THE ITALIAN CASE 

Before the deregulation took place, the Italian electricity market was organized as a legal public 

monopoly, with a vertically integrated structure. The “Ente Nazionale Energia Elettrica” 

(ENEL), through the State concession, had the right and duty to pursue all electricity activities. 

In order to increase market efficiency, the necessary step was to introduce competition in: 

generation, regulatory mechanisms, supply to liberalized and captive customers and 

transmission. Therefore, thanks to Bersani’s law dated 16th March 1999, the historical operator 

ENEL was vertically separated. Barriers to entry in production and distribution were removed, 

generation, transmission and distribution were separated and a new market was created. During 

the first decade of 21st century, the Electricity Power Exchange (IPEX) was created and the main 

market players arose:  

- The National Transmission Network Manager “Gestore della Rete di Trasmissione 

Nazionale” (GRTN) 

- The Electricity Exchange Manager “Gestore del Mercato Elettrico” (GME) 

- Unique Buyer “Acquirente Unico” (AU) 

- The Network Owner “Terna S.p.A.” 

-  Electricity Producers 

In addition to the numerous market participants it is also important to highlight the different kind 

of components of the Spot Electricity Market within the Italian Power Exchange. As a matter of 

fact, the Spot Electricity Market consists of: 

       -   Day-Ahead Market (MGP) 

       -   Intra-Day Market (MI) 
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       -   Ancillary Services Market (MSD) 

Managed by the GME, the MGP is the “first” component and it represents the main arena for 

electricity trading. Contracts for the delivery of energy are made between sellers and buyers. The 

equilibrium price is calculated according to the standard supply-demand model. In fact, each 

buyer evaluates the volume of energy he will need to meet demand the following day, and how 

much he is willing to pay for this volume, hour by hour. On the other hand, each seller evaluates 

how much he can deliver and at what price, hour by hour. Therefore, the price is continuously 

adjusting to the equilibrium determined by supply and demand, which in turn depend on several 

factors such as: weather conditions, season, time and transmission capacity. The market hourly 

electricity price reflects the relentless change of these factors and can hence be described as a 

dynamic equilibrium price. For example, if transmission capacity gets constrained in order to 

react to bottlenecks occurring when large volumes of electricity have to be delivered, supply 

decreases and price increases thus reducing quantity demanded. 
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This dynamic equilibrium price and the various adjustment processes, which occur hour by hour 

in order to adjust the price to the competitive one, make the Italian market look like a perfectly 

competitive one. Anyway several country-specific factors have not been taken into account in 

the model, which only represents a simplified view of electricity pricing. 

In addition to this, it is important to highlight in the MGP the differentiation among three kinds 

of daily prices, which are dependent upon the level of electricity demanded hour by hour and 

during the whole day: baseload, peak load and off-peak. 

The ‘’second’’ component managed by the GME, is the Intra-Day market (MI). The MI 

supplements the day-ahead market and helps secure the necessary balance between supply and 

demand in the power market. Because of unpredictable event the electricity supplied to the 

market could be lower or higher. Therefore, at the intra-day market sellers and buyers can bring 

the market back to balance by real-time trading. 

Managed by Terna S.p.A., the ‘’third’’ component is the MSD. It represents the venue where 

Terna S.p.A. procures the resources that it requires for managing and monitoring the system 

relief of intra-zonal congestions, creation of energy reserve, real-time balancing. In the MSD, 

accepted offers are remunerated at the price offered by Terna, which acts as a central 

counterparty. On the other hand, GME is in charge of “organizing and economically managing 

the Electricity Market, under principles of neutrality, transparency, objectivity and competition 

between or among producers, as well as of economically managing an adequate availability of 

reserve capacity.” (GME) 

1.2.2 THE ITALIAN WHOLESALE AND RETAIL MARKET 

Since the beginning of deregulation, the Italian wholesale market has struggled to become a 

competitive market. Anyway in the last years there has been a significant improvement; the 

market share of the five largest operators has in fact decreased by 5%. Nowadays the market 

shares are divided as follows: 
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- ENEL (25%) 

- ENI (9%) 

- Edison (7.2%) 

- E.On (4.4%) 

- Edipower (4.6%) 

- Small-sized operators (32.3%) 

Comparing these data with the ones of 2011 it is possible to notice how all the five largest 

operators market shares decreased to the advantage of other small-sized producers, thus 

increasing competition within the market. Moreover, market integration with neighbour markets 

is improving, congestion management rules have been enhanced and Italy now represents one of 

the best interconnected systems in Europe. Nonetheless, the Italian electricity wholesale price is 

considerably higher than in other European countries, mainly due to the excessive reliance on 

gas fired plants, whose fundamental raw material wholesale price is far above the European 

average. Not only the wholesale market, but also the retail one was fostered by the deregulation 

process. Even if the standard offer market concentration has remained high, as ENEL provided 

85% of the total supply, the free market has seen an increasing competition. As a matter of fact, 

the three main operators (ENEL, ENI and Edison) had a combined market share of 34.3%, with 

ENEL playing the leading position (20.3%). With only two companies having a market share 

greater than 5%, the overall retail market competition is at a medium level, which represents a 

serious improvement with respect to 2011, where the joint market share of these three companies 

accounted for 49.6%. Since January 2007 consumers are able to choose their own supplier. Those 

who do not make any choice are by law assigned a default supplier, the local DSO (Distribution 

System Operator), which provides electricity according to a “standard offer’’. Nowadays the 

80% of households and small-medium enterprises are served on the base of this ‘’standard offer’’ 

while the others have to find an alternative supplier. If they are not able to find any suitable offer, 

the selection through an open auction of a Last Resort Supplier occurs. In the last years an 

independent data hub to support the switching process has been appointed. As a result of this 

deregulation measures, the switching rate of suppliers has been constantly increasing, thus 

benefiting competition. 
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1.2.3 THE OVERALL LEVEL OF EFFICIENCY IN ITALY 

Having taken into account the general features of the Italian wholesale and retail market it is now 

essential to understand the problems threatening their efficiency. The main problem within the 

Italian electricity market is that production is highly inefficient with respect to other European 

countries. Production in the last two decades has switched from the massive use of oil, which 

accounted for the 64% of Italian electricity production in 1994, to the use of natural gas, which 

accounted for 59,5% in 2015. This switch assured the electricity market not to suffer from the 

volatile and high prices of oil, while instead to rely on a more “secure” primary production factor, 

natural gas. Nonetheless, there still are some fundamental anomalies in the Italian electricity 

sector, which do not allow it to be an efficient one:  

- Lack of competition among producers 

- Italy is one of the largest electricity importer in the world (14% of total demand) 

- Natural gas has to be imported from above 

- Taxes, system and network costs accounts for about 50% of the electricity final price 

All these factors do not allow the Italian electricity market to be efficient and working as in other 

European countries. In fact, it is straightforward that the Italian electricity prices for household 

are among the highest in the Euro zone. 

 



14 
 

In any case, Italy has made some important steps to improve the electricity market efficiency. 

For example, it has nearly eliminated the oil reliance of electricity production. Moreover, in 2014 

the 44.5% of total domestic electricity production was generated by renewables. In addition, even 

if not all installed capacity was available for production, in 2014 the efficient net power capacity 

was 128 GW against an observed peak demand of 51.5 GW, thus assuring reliability and 

flexibility in generating capacity.  

In the last six years, the switch to natural gas, the significant increase in renewables and the 

enduring overcapacity conditions had a beneficial effect on prices, which declined by 

approximately 40% as the fig shows. 
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1.2.4 THE FORWARD ELECTRICITY MARKET 

In addition to the spot electricity market that was described before, the forward electricity market 

(MTE) is the venue where forward electricity contracts with delivery and withdrawal obligation 

are traded (GME). 

The forward electricity market is a medium term market in which demanders and suppliers can 

lock in energy prices and quantities for medium and longer periods. These contracts are settled 

with terms that are much longer than the hourly spot market and are therefore useful to reduce 

the risk of the volatility of the spot market prices. All the electricity market participants can trade 

in the MTE contracts of various types: peak load and base load contracts with different delivery 

periods, such as monthly, quarterly and yearly. The two main roles of the forward electricity 

market are first, to reduce problems in the bilateral contracting market, and second to improve 

the performance of the spot energy market, thus helping an efficient price formation. 

1.2.5 THE OTC MARKET 

The OTC (Over The Counter) contracts are the last mean for trading electricity securities and 

derivatives that have to be taken into account. These kind of contracts are stipulated outside the 

formal exchange market and consist of bilateral agreements negotiated through financial 

intermediaries. Generally, in the over the counter market dealers act as market makers by quoting 

prices and agreeing on the price, without other players being aware of the transaction. 

Nonetheless, these negotiations are subject to compatibility checks with transport and dispatch 

constraints, thus monitoring this less regulated market. 

The final purpose of the dealer networks trading on the OTC market is to first of all manage the 

financial risk related to these securities. Banks buy and sell derivatives in order to limit price 

volatility risk exposure of their clients, who generally are electricity producers that want to 

immunize against unexpected market prices. In addition to this, financial intermediaries gain on 

each occurred transaction on the electricity derivatives. As a matter of fact, banks have often 
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been criticized for conflict of interests, since they have an incentive to disclose unreliable 

information in order to stipulate as much contracts as possible.  

1.3 ELECTRICITY PRICE VOLATILITY AND RISK MANAGEMENT 

As it has already been highlighted spot electricity is a non-storable asset, thus it cannot be traded. 

Its price is calculated through a demand-offer equilibrium algorithm, which establishes the 

hourly clearing price for each of the six Italian market zones and then determines the Unique 

National Price (PUN), which is the average of the zonal prices weighted on the zones’ volumes.  

Spot prices are deeply influenced by volatility of demand and supply, seasonality, weather 

changes and many other factors, thus determining an hour by hour transformation. The electricity 

market does not have a precise model able to account for all these peculiarities and to exactly 

predict price movements. Therefore, market participants have to bear strong uncertainties and 

risks, which can only be overcome thanks to the shaping of electricity derivatives instruments. 

Producers are exposed to two main risks: not obtaining a sufficient remuneration of the capital 

invested because of the marginal spot prices and to bear losses in the fuels procurement. Sellers 

on the other hand, are exposed to two different kind of risks: the price could be unacceptable for 

final consumers, who are unwilling to accept prices related to the stock exchange movements, 

and to volume uncertainties caused by clients’ withdrawals. These are the reasons for which a 

liquid and transparent market for electricity financial derivatives could contribute to the 

efficiency enhancing of the Italian electricity market. 

Anyway the creation of an efficient derivatives market is dependent upon the overcoming of 

some important structural problems. First of all, the use of market power by some operators, who 

are able to significantly alter the value of futures contracts can undermine the derivatives utility. 

Secondly, the multiplicative effect of the positions taken on the financial market can alter the 

behavioural incentives on the spot market. Hence, strict regulation and monitoring of operators’ 

market power, and the duty of information diffusion imposed on market players with information 

advantages, should be established. Thus, liquidity, transparency and no information asymmetries 

could be guaranteed, and an efficient market for electricity derivatives could be assembled. 
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1.3.2 HEDGING IMPORTANCE 

In the last years the electricity retail market has experienced increasing competition and has 

moved away from administratively determined, cost based rates towards market driven prices. 

In the new setting of a competitive electricity market, price volatility has become the main 

problem to be faced by market players. In fact, the birth of electricity derivatives was the 

necessary step to create an efficient market. Generators, marketers, consumers can now hedge 

price risks through the purchase of derivatives, which in most cases do not imply the physical 

delivery and are used to manage seasonal price fluctuations and not daily ones. The risks arise 

because volatile inputs prices (gas, coal, oil) are coupled with relatively stable output price and 

firms are vulnerable to these fluctuations while entering into commercial operations. For 

example, if a marketer sells electricity on the base of fixed price contracts but at the same time 

he buys it on the spot market, which is subject to the inputs prices fluctuations, he could suffer 

from huge losses. Even if new risks arise because of speculators and naïve investors, the 

possibility of hedging through the use of derivatives remain of the utmost importance and also 

fundamental for the creation of an efficient market. 

1.3.3 THE DIFFERENT TYPES OF ELECTRICITY DERIVATIVES 

The New York Mercantile Exchange (NYMEX) introduced electricity derivatives in 1996. The 

trading of these derivatives is done both in formal exchanges and in over the counter markets. 

However an important distinction has to be stressed: while on the NYMEX and other formal 

exchanges only futures and options on futures are traded, on the OTC market also other kind of 

derivatives are sold and purchased, such as forward contracts, swaps, plain, vanilla and exotic 

options. 

 ELECTRICITY FORWARD CONTRACTS 

Electricity forward contracts consist of the obligation to purchase or sell a prearranged volume 

of electricity. In addition to the amount of electricity, the contract states the price (forward price) 

that has been established in advance, and the expiration time, which represents the time the 
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obligation will have to be satisfied. These kind of contracts are the primary instruments that both 

buyers and sellers use in order to neutralize price uncertainties, which are the main elements 

jeopardizing market efficiency and transparency. The party agreeing to buy electricity on a 

certain specified future time for a certain specified price assumes a long position; on the other 

hand the party agreeing to sell electricity at the same time and price assumes a short position. If 

the case of long position is considered, the payoff of a forward contract, which establishes the 

delivery of a unit of electricity at a future time T, is: 

𝑃𝑎𝑦𝑜𝑓𝑓 𝑜𝑓 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 = (𝑆𝑇 − 𝐹) 

 

where F is the delivery price and ST (settlement price) is the spot price of the asset at contract 

maturity. Anyway it is important to stress a distinction that arises because of the peculiar nature 

of electricity. Electricity value changes according to the time of delivery within a day. Electricity 

industry considers 16 hours, from 6:00 to 22:00, to be the ‘’peak-period’’. On the other hand 

22:00-6:00 is considered to be the “off-peak” period. Therefore, there are various kind of 

electricity forward contracts: ‘’peak-period’’ contracts, ‘’off-peak’’ contracts and “around-the-

clock” contracts, which include the 24 daily hours. Hence, the spot prices for electricity 

derivatives are calculated as an average of the hourly spot prices included in the different periods. 

For example, if an ‘’off-peak’’ contract has been stipulated, the long position party pays the 

agreed price K at T0 (initial time) and waits for the short position party to deliver the established 

MWh of electricity at time T (maturity time). The payoff of the forward contract can be evaluated 

by calculating the average of 22:00-6:00 spot prices of day T (ST). 

 ELECTRICITY FUTURE CONTRACTS 

On March, 1996 the NYMEX launched the first electricity derivatives. Other energy related 

derivatives, such as oil, gas, gasoline had already been introduced in 1980s. Therefore, the birth 

of electricity derivatives was the consistent step after the electricity market deregulation. 

A future contract is a standardized contract where all terms have been defined in advance: the 

delivery date, location, quality and quantity are defined by the market exchange and the only 
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variable that has to be negotiated is the price. These types of contract are very similar to the 

forward ones with the most notable difference being the delivery quantity specified in the 

contracts. As a matter of fact, the quantity of electricity to be delivered in futures is generally 

significantly smaller. In addition to this, futures are exclusively traded on organized commodity 

exchanges, thus conferring price transparency, lower monitoring and transaction costs (financial 

payments instead of physical delivery) and reduced credit risks (gains and losses of electricity 

futures are paid out daily, instead of being cumulated and paid out in a lump sum at maturity 

time). 

 ELECTRICITY SWAP CONTRACTS 

Electricity swaps are contracts that allow holders to purchase a given amount of electricity at a 

fixed price, irrespective of the floating electricity price over a specified period of time. On the 

other side, the holder could also receive a fixed price against paying a floating price. These kind 

of contracts are equivalent to a strip of forward contracts with multiple maturity dates and 

identical forward price for each date. Generally, they are established for a fixed amount of 

electricity pertained to a floating spot price at either a consumer’s or a generator’s location. These 

swaps provide hedging possibilities against price uncertainty for short to medium terms. 

 ELECTRICITY CALL AND PUT OPTIONS 

In the last two decades, with the emergence of the deregulated electricity market and the 

relentless arising of new techniques for risk management, electricity options have gained 

fundamental importance. These options are nowadays not only based on price attributes, but also 

on timing, location and volume. Options contracts cover different and various time maturities, 

but the most important ones are those, which cover time periods up to two years. 

A call option gives the option holder the right to buy a given amount of electricity by a certain 

date at a specified price. On the other hand a put option gives the option holder the right to sell a 

given amount of electricity by a certain date at a specified price. The date specified in the contract 

is called expiration date or maturity date, while the price is known as the strike price or exercise 

price. There are two types of options: American and European. The difference stems from the 
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fact that the American options allow the holder to exercise the option at any time, while the 

European ones allow the holder to exercise the option only on the expiration date.  The American 

ones account for the majority of traded options on exchanges. 

The payoff of plain call and put options is: 

                               𝑃𝑎𝑦𝑜𝑓𝑓 𝑜𝑓 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥(𝑆𝑇 − 𝐾, 0) 

𝑃𝑎𝑦𝑜𝑓𝑓 𝑜𝑓 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑢𝑡 𝑜𝑝𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥(𝐾 − 𝑆𝑇 , 0) 

where K is the strike price and St is the electricity spot price at time T. 

In general the underlying of electricity call and put options can be electricity futures, which are 

the most useful tool for power plants merchants and power marketers in order to hedge against 

price volatility and risk. Being call and put options such effective tools, they represent the most 

commonly traded derivatives over the counter. The evaluation model, which is used to provide 

the correct price of these derivatives is the Black-Scholes evaluation model. According to it, the 

general formula for a put option is: 

𝑃(𝑆, 𝑡) = 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(−𝑑2)−𝑆𝑡𝑁(−𝑑1) 

where K is the strike price, St is the underlying asset price, N represents the cumulative standard 

normal distribution and r is the interest rate. Alternatively the formula for a call option is: 

𝐶(𝑆, 𝑡) = 𝑆𝑡𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2). 

The in deep meaning of the various components will be analysed in the second chapter.  

Call and put options are generally used by generators, end users and marketers. Generators use 

put options in order to secure a minimum price for their electricity production: they not only 

avoid the risk of lower prices, but they can still benefit from increasing ones. For example, if the 

generator would like to receive at least $15/MWh he can purchase a put option paid up front. 

Therefore, if the electricity price goes above $15/MWh the generator would sell electricity on 

the spot market, otherwise he would exercise his put option, thus gaining $15/MWh for sure. 
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On the other side, end users can use call options in order to avoid the risk of higher prices. As a 

matter of fact, paying for a call option ensures the end user the possibility to exploit lower prices 

and a maximum ceiling price, thus reducing uncertainty. For example, if the end user would like 

to pay a maximum of $15/MWh he can purchase a call option paid up front. Therefore, if the 

electricity price goes below $15/MWh the end user would buy electricity on the spot market, 

otherwise he would exercise his call option, thus paying 15/MWh and no more. 
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Finally, marketers can exercise call and put options on exchanges or with other parties on behalf 

of end users or generators, or offer put and call options to generators and end users. 

 

 CALLABLE AND PUTABLE FORWARDS 

The last kind of derivatives with a single underlying are callable and puttable forwards. The 

callable forward contract implies that the contract holder longs one forward contract and shorts 

one call option agreeing upon the strike price with the purchaser. On the other side, the seller of 

the forward contract has the possibility to exercise the call option whenever the electricity price 

exceeds the strike price, thus annulling the forward contract at delivery time. The most notable 

example of this kind of contract is the interruptible supply contract thanks to which the purchaser 

gets an interruptible discount on the forward price. 

On the other hand, a puttable forward contract implies that the contract holder longs one forward 

contract and longs one put option agreeing upon the strike price with the seller that is the one 

holding the short positions. In this type of contract the purchaser can exercise the put option 

whenever the electricity price goes below the strike price, thus annulling the forward contract at 

delivery time. The most notable example of this kind of contract is the dispatchable independent 

power producer (IPP) supply contract, according to which the purchaser pays a capacity 

availability premium over the forward price. 

 

 OTHER DERIVATIVES 

There are several other electricity derivatives traded on exchanges and the OTC market in order 

to ensure efficiency and transparency. Some examples include path dependent options, 

derivatives with multiple underlyings, options with variable volume and options on options. 

Anyway these are behind the scope of this paper and therefore will not be analysed. 

In order to understand the pricing of electricity derivatives and in particular electricity options, 

it is important to discuss about the Black-Scholes model, which is the widely used one, and to 

verify whether more consistent pricing models are available.  
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CHAPTER 2 

2.1 THE BLACK-SCHOLES EVALUATION MODEL 

The Black-Scholes model is largely responsible for the birth of options market and options 

trading becoming increasingly popular in the last decades. As a matter of fact, with the 

development of this model, a standard method for pricing options and putting a fair value on 

them became available. Hence, options and other derivatives started to be seen as suitable 

financial instruments to be traded and thus became common on exchanges and OTC markets. 

2.1.2 HISTORY OF THE BLACK-SCHOLES MODEL 

The Black-Scholes formula was born in 1970, when Fischer Black, a mathematical physicist, and 

Myron Scholes, a professor of finance at Stanford University, wrote a paper titled “The Pricing 

of Options and Corporate Liabilities.” At the beginning, their paper was repeatedly rejected by 

economics journals, until in 1973 the Journal of Political Economy of Chicago University 

decided to publish it. According to Black and Scholes an option had a precise price, which could 

be calculated thanks to the equation provided in the paper. This equation became then knows as 

the Black-Scholes formula. A few months later, Robert Merton published “Theory of Rational 

Option Pricing", paper in which he introduced the term ‘’Black-Scholes option pricing formula’’ 

and he further developed and expanded this mathematical approach for option pricing. These 

three economists, even if surrounded by a great deal of skepticism, demonstrated that with the 

help of differential equations the true value of European call and put options could be evaluated. 

The contribution to modern financial theory of Black, Scholes and Merton was one of the most 

significant; as a matter of fact in 1997, two years after the death of Fischer Black, Myron Scholes 

and Robert Merton were awarded the Nobel Prize in Economics. 

After the recognition of the ground-breaking result they had achieved, the Black-Scholes model 

started to be widely used for the pricing of options. In fact, the main idea behind successful 
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trading and investing is to find assets that are either overpriced or underpriced. With the 

introduction of a correct price for options, option trading was no more considered to be too risky. 

On the contrary, options started to be seen as a way to create perfect hedging strategies in 

combination with the underlying asset. Therefore, both buyers and sellers, by repeatedly buying 

and selling options at the price set by the model, could break even (excluding commissions 

charged).   

2.1.3 THE BLACK–SCHOLES–MERTON DIFFERENTIAL EQUATION 

The Black-Scholes-Merton differential equation is an equation that must be satisfied by the price 

of any derivative dependent on a non-dividend paying stock. The idea is to set up a riskless 

portfolio with both a position in the derivative and in the stock. With no arbitrage opportunities 

the return of the portfolio is the risk-free interest rate, r. 

There are several underlying assumptions upon which the Black-Scholes model rely in order to 

be theoretically coherent: 

1) The price of the underlying asset (typically a stock) follows a geometric Brownian motion 

2) The µ and ơ are constant over the lifetime of the underlying security 

3) The short-selling of securities is allowed 

4) There are no dividends during the life of the derivative 

5) There are no transactions costs or taxes. All securities are perfectly divisible 

6) There are no riskless arbitrage opportunities. 

7) Security trading is continuous 

8) The risk-free rate of interest, r, is constant and the same for all maturities. 

In addition to the assumptions, numerous are the variables or inputs that are used in the model to 

calculate the fair value of an option: 

1) The current price of the underlying security ( St ) 

2) The strike price ( K ) 

3) The length of time until expiry ( т = T - t ) 
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4) The risk free interest rate during the period of the contract ( r ) 

5) The implied volatility of the underlying security ( ơ ) 

6) The cumulative distribution function of a standard normal variable ( N(x) or ɸ(x) ) 

2.2 DERIVATION OF THE BLACK–SCHOLES–MERTON DIFFERENTIAL EQUATION 

For the purpose of this work the derivation and some other important elements will be taken 

from: John C. Hull in “Options, Futures and other Derivatives”, Evan Turner “The Black-Scholes 

model and extensions”, Fabrice Douglas Rouah “Four Derivations of the Black-Scholes 

Formula”, Claudio Pacati “A proof of the Black and Scholes Formula” and Malik Magdon-Ismail 

“Computational Finance – The Martingale Measure and Pricing of Derivatives”. The analysis 

starts by stating four important definitions for the further derivation of the Black-Scholes 

formula. 

1) A stochastic process, W(t), for t ≥ 0, is a Brownian Motion if W0 = 0, and for all t and s, 

with s < t, 

                                                                         W(t) – W(s)                                                                                   

is continuous, has a normal distribution with variance t − s, and the distribution of W(t) − 

W(s) is independent of the behavior W(r) for r ≤ s. 

More generally, a variable z follows a Brownian motion (Wiener process) if it has two 

specific properties: 

- The change Δz during a small period of time Δt is Δz = ϵ√t where ϵ has a 

standardized normal distribution ɸ(0, 1). 

- The values of Δz for any two different short intervals of time, Δt, are independent. 

According to the first property, Δz itself is characterized by a normal distribution with 

mean = 0, standard deviation = √Δt and variance Δt.  

According to the second property, z follows a Markow process. A Markov process is a 

particular type of stochastic process where only the current value of a variable is relevant 
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for predicting the future. The past history of the variable and the way that the present has 

emerged from the past are irrelevant. 

2) The family X of random variables X(t) satisfies the stochastic differential equation 

(SDE), 

                                               𝑑𝑋(𝑡)  =  µ(𝑡, 𝑋(𝑡))𝑑𝑡 +  𝜎(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡)                                   (2.2)                              

               if for any t, 

                          𝑋(𝑡 + ℎ) −  𝑋(𝑡) −  ℎµ(𝑡, 𝑋(𝑡)) −  𝜎(𝑡, 𝑋(𝑡))(𝑊(𝑡 + ℎ) −  𝑊(𝑡))           (2.3) 

is a random variable with mean and variance which are O(h) and W(t) is a Brownian 

motion. 

3) A stochastic process S(t) is said to follow a Geometric Brownian Motion if it satisfies the 

stochastic differential equation 

                                                   𝑑𝑆(𝑡)  =  µ𝑆(𝑡) 𝑑𝑡 +  𝜎𝑆(𝑡) 𝑑𝑊(𝑡)                                 (2.4) 

              with µ and σ constants and W(t) a Brownian motion. 

4) An Ito Process, X(t), is a process that satisfies the stochastic differential equation 

                                            𝑑𝑋(𝑡)  =  µ(𝑡)𝑋(𝑡) 𝑑𝑡 +  𝜎(𝑡)𝑋(𝑡) 𝑑𝑊(𝑡)                           (2.5) 

The parameters µ and ơ are functions of the underlying variable X and time t. The expected 

drift rate and variance of an Ito process change over time. In a small time interval between 

t and Δt + t the variable changes from x to X + ΔX, where ΔX is dependent upon Δt and 

ϵ√Δt. 

5) A martingale is a zero-drift stochastic process. A variable θ follows a martingale if its 

process has the form 

                                                                                      𝑑𝜃 =  ơ𝑑𝑧                                                          (2.6) 

where dz is a Wiener process. The variable ơ may itself be stochastic. It can depend on θ 

and other stochastic variables. A martingale has the convenient property that its expected 

value at any future time is equal to its value today. This means that 
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                                                                      𝐸(𝜃(𝑇)) = 𝜃                                                        (2.7)    

where θ0 and θT denote the values of θ at times zero and T, respectively. 

Following this reasoning an equivalent martingale measure (Q) is a probability vector 

according to which 

                                                           𝑆(0) = 𝑒−𝑟т𝐸𝑄  [
𝑆𝑖(𝑇)

𝑆1(𝑇)
]                                              (2.8) 

The equivalent martingale measure (Q) is often referred to as the risk-neutral measure 

under the no arbitrage assumption.  

Having stated these five definitions it is possible to proceed with the Ito’s Lemma theorem. Let 

X(t) be an Ito process satisfying equation (2.2), and let f(x, t) be a twice-differentiable function; 

then f(X(t), t) is an Ito process, and 

                        𝑑(𝑓(𝑋(𝑡), 𝑡)) =
𝜕𝑓

𝜕𝑡
(𝑋(𝑡), 𝑡)𝑑𝑡 +

𝜕𝑓

𝜕𝑋(𝑡)
𝑑𝑋(𝑡) +

1

2

 𝜕2𝑓

𝜕𝑋2(𝑡)
𝑑𝑋2(𝑡)                (2.9) 

where 𝑑𝑋2(𝑡) is defined by 

                                                                                  𝑑𝑡2 = 0                                                                (2.10)  

                                                                             𝑑𝑡𝑑𝑊(𝑡) = 0                                                           (2.11)                                                       

                                                                             𝑑𝑊2(𝑡) = 𝑑𝑡                                                           (2.12)                              

Based on the fact that dt is infinitesimal it seems reasonable that dt2 = 0 and dtdW(t) = 0. In order 

to explain dW2(t) = dt it will be useful to examine a random walk on Z, giving an intuitive proof 

rather than a strict mathematical one. Imagine that a man takes a step of length 1 or -1 with equal 

probability at time t, where t is a natural number greater than 0. Let W(t) be the sum of steps from 

time t = 0 to t, then E[W(t)] = 0. Since there are t steps of length 1, W2(t) = t. Therefore, it seems 

reasonable that W(t) =  √t and that in Δt steps W(t) = √Δt. If Δt → 0, W2(t) ≈ ∆t, since the time 

increment and steps have become arbitrarily small. Equation (2.12) follows.  
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Having stated these four definitions, the time-t price C(St; K; T) of a European call option with 

strike price K and maturity equal to т = T - t on a non-dividend paying stock with spot price St 

and a constant volatility ơ when the rate of interest (r) is constant, can be expressed as  

  

                                              𝐶(𝑆(𝑡);  𝐾;  𝑇) =  𝑆(𝑡)ɸ(𝑑1) − 𝑒−𝑟т𝐾ɸ(𝑑2)                                (2.13) 

where 

                                                                𝑑1 =  
𝑙𝑛 

𝑆(𝑡)

𝐾
+(𝑟+

ơ2

2
)т

(ơ √т)
                                                        (2.14)                                                                                             

and 

                                                               𝑑2 =  𝑑1 −  ơ √т                                                        (2.15)                                                                                 

and  

                                                             ɸ(𝑦) =
1

√2ԥ
∫ 𝑒−

1

2
𝑡2 

𝑑𝑡     
𝑦

−∞
                                            (2.16)     

is the standard normal cumulative distribution function. 

2.2.2 MATHEMATICAL DERIVATION BY STRAIGHTFORWARD INTEGRATION 

A portfolio with two assets driven by stochastic differential equation is taken into account. It 

includes a risky stock S and a riskless bond B. 

                                                     𝑑𝑆𝑡 =  µ𝑆(𝑡)𝑑𝑡 + ơ𝑆(𝑡)𝑑𝑊(𝑡)                                          (2.17)                                                                    

                                                                     𝑑𝐵𝑡 =  𝑟(𝑡)𝐵(𝑡)𝑑𝑡                                                        (2.18) 

The value of the bond at time 0 is B0 = 1 and the one of the stock is S0. This model is valid under 

the previous stated assumptions. By Ito’s Lemma the value Vt of a derivative written on the stock 

follows the diffusion 

  𝑑𝑉(𝑡)  =
𝜕𝑉

𝜕𝑡
 𝑑𝑡 +  

𝜕𝑉

𝜕𝑆
 𝑑𝑆 +

1

2
 
( 𝜕2 𝑉)

𝜕𝑆2
 𝑑𝑆2                                                                           



29 
 

                =
𝜕𝑉

𝜕𝑡
 𝑑𝑡 +  

𝜕𝑉

𝜕𝑆
 𝑑𝑆 +

1

2
 
( 𝜕2 𝑉)

𝜕𝑆2
 ơ2𝑆2𝑑𝑡 

                 = ( 
𝜕𝑉

𝜕𝑡
  +  µ𝑆(𝑡)

𝜕𝑉

𝜕𝑆
  +

1

2
ơ2𝑆2(𝑡)

( 𝜕2 𝑉)

𝜕𝑆2
 𝑑𝑆2) 𝑑𝑡 + ( ơ𝑆(𝑡)

 𝜕𝑉

𝜕𝑆
) 𝑑𝑊(𝑡)     (2.19) 

The Ito’s Lemma is also used to derive the course followed by ln(S) if S follows the process 

described in equation (2.5). If 

𝐺 = ln(𝑆) 

Is defined. Since 

𝜕𝐺

𝜕𝑆
=  

1

𝑆
 ,                        

𝜕2𝐺

𝜕𝑆2
=  −

1

𝑆2
 ,                       

𝜕𝐺

𝜕𝑡
= 0 

It follows from equation (2.17) that the process followed by G is 

                                                               𝑑𝐺 = (µ −  
ơ2

2
) 𝑑𝑡 +  ơ𝑑𝑧                                                 (2.20) 

Since µ and ơ are constant the equation G = ln(S) follows a generalized Wiener process. It has a 

constant drift rate (µ - ơ2/2) and a constant variance rate ơ2. The change in ln(S) between time 0 

and some future time T is normally distributed with mean (µ - ơ2/2)T and variance ơ2T. Therefore, 

the stock price S a time T (ST) is defined as 

                                                      ln 𝑆(𝑇) ~ ɸ [𝑙𝑛𝑆(0) + (µ +  
ơ2

2
) 𝑇,  ơ2𝑇]                            (2.21) 

where S0 is the stock price at time 0. Equation (2.21) shows that ln(ST) is normally distributed. If 

the natural logarithm of a variable is normally distributed, the variable has normal distribution. 

Therefore, the stock price at time T, given its price today, follows a lognormal distribution and 

applying Ito’s Lemma it follows the process: 

                                                     𝑑𝑙𝑛𝑆(𝑡) = ( µ −  
ơ2

2
) 𝑑𝑡 +  ơ𝑑𝑊(𝑡)                                     (2.22)                                                         

hence 
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                                                                𝑆(𝑡) = 𝑆(0)𝑒
( µ− 

ơ2

2
) 𝑑𝑡+ ơ𝑊(𝑡)

                                           (2.23) 

On the other hand, applying Ito’s Lemma to the function ln(Bt) it can be seen that ln(Bt) follows 

the stochastic differential equation 

                                                                     𝑑𝑙𝑛 𝐵(𝑡) = 𝑟(𝑡)𝑑𝑡                                                          (2.24)                                                                    

Since B0 = 1, integrating from 0 to t the solution of the stochastic differential equation is 

                                                                     𝐵(𝑡) =  𝑒∫ 𝑟(𝑢)𝑑𝑢
𝑡

0                                                             (2.25) 

If interest rates are constant therefore rt=r and Bt= ert. Thus, integrating from t to T gives the 

solution 

                                                                    𝐵(𝑡, 𝑇) =  𝑒∫ 𝑟(𝑢)𝑑𝑢
𝑇

𝑡                                                         (2.26) 

and Bt,T = erт. 

Having stated the distributions of the processes it is possible to proceed with the straightforward 

integration. Considering an European call option price C(St, K, T) that is the discounted time-t 

expected value of (St – K) under the equivalent martingale measure Q, when interest rates are 

constant. The starting equation of the straightforward integration is the following  

   𝐶(𝑆(𝑡), 𝐾, 𝑇) =  𝑒−𝑟т𝐸𝑄[ (𝑆(𝑇) − 𝐾) ∣ ℱ(𝑡) ] =                                       

=  𝑒−𝑟т ∫ (𝑆(𝑇) − 𝐾)𝑑𝐹(𝑆(𝑇)) =      
∞

𝐾

 

                                                   = 𝑒−𝑟т ∫ 𝑆(𝑇)𝑑𝐹(𝑆(𝑇)) −  𝑒−𝑟т𝐾 ∫ 𝑑𝐹(𝑆(𝑇))
∞

𝐾

∞

𝐾

                 (2.27) 

To evaluate the two integrals, the results derived before are taken into account: the terminal stock 

price ST follows the lognormal distribution with mean lnSt + (r – ơ2/2)т and variance ơ2т, where 

т = T – t is the time to maturity. The first integral in the last line of equation (2.27) uses the 

conditional expectation of ST given that ST > K  



31 
 

                              ∫ 𝑆(𝑇)𝑑𝐹(𝑆(𝑇)) = 𝐸𝑄[ 𝑆(𝑇) ∣ 𝑆(𝑇) > 𝐾 ] = 𝐿(𝑆(𝑇))(𝐾)                    (2.28) 
∞

𝑘

 

where L(ST)K stands for the lognormal distribution and stems from the conditional expectation 

L(ST)K = E[ST∣ST>K]. It can be shown that the general conditional expectation is 

                                      𝐿(𝑥)(𝐾) =  𝑒
(µ+ 

ơ2

2
) 1

ơ
∫

1

√2ԥ
𝑒

(−
1
2

(
𝑦−(µ+ ơ2)

ơ
)

2

)

𝑑𝑦                            (2.29)
∞

𝑙𝑛𝐾

 

and therefore L(ST)K can be written as 

        𝐿(𝑆(𝑇))(𝐾) =  𝑒
(ln(𝑆(𝑇))+(𝑟− 

ơ2

2
)т+ 

ơ2т
2

)
𝑥ɸ (

−𝑙𝑛𝐾 + 𝑙𝑛𝑆(𝑡) + (𝑟 −  
ơ2

2
) т +  ơ2т

ơ√т
)              

                                                                   = 𝑆(𝑡)𝑒𝑟тɸ(𝑑1)                                                               (2.30) 

Hence, the first integral of equation (2.27) can be written as 

                                                                         𝑆(𝑡)ɸ(𝑑1)                                                                    (2.31) 

On the other hand, using the cumulative distribution function that states that 

                                                             𝐹𝑥(𝑥) =  ɸ (
𝑙𝑛𝑥 −  µ

ơ
)                                                        (2.32) 

 it can be shown that the second integral can be written 

   𝑒−𝑟т𝐾 ∫ 𝑑𝐹(𝑆(𝑇))
∞

𝐾

 =   𝑒−𝑟т𝐾[1 − 𝐹(𝐾)]                                                                                         

             =  𝑒−𝑟т𝐾 [1 −  ɸ (
𝑙𝑛𝐾 − 𝑙𝑛𝑆(𝑡) − (𝑟 −  

ơ2

2
) т

ơ√т
)]    

                                        =  𝑒−𝑟т𝐾 [1 −  ɸ(−𝑑2)]                                              



32 
 

                                            =  𝑒−𝑟т𝐾ɸ(𝑑2)                                                                                       (2.33) 

Combining the terms in equation (2.30) and equation (2.33) leads to the Black-Scholes formula 

for the European call price 

                                          𝐶(𝑆(𝑡);  𝐾;  𝑇) =  𝑆(𝑡)ɸ(𝑑1) − 𝑒−𝑟т𝐾ɸ(𝑑2)                                    (2.34) 

2.3 CRITICS TO THE BLACK-SCHOLES MODEL 

The main critics that has been moved to the Black-Scholes model are concerned with the 

assumptions on which the model itself relies. It is then important to analyze these assumptions 

and to evaluate the magnitude by which they affect the difference between option prices 

calculated with the Black-Scholes formula and the ones observed on the market. In fact, it is rare 

that the calculated value of an option comes out exactly equal to the price at which it is traded 

on exchanges. Therefore, the assumptions introduced at the beginning of Chapter 2 will be taken 

into account in order to spot the main flaws within the model. 

1) The volatility of stock prices, which is assumed to be constant over the lifetime of the 

underlying security, changes. Generally the volatility changes in unexplainable ways, but 

the change seems to be related with the changes in the price of the security. In fact, while 

an increase in the stock price is associated with a decrease in volatility, a decline in the 

stock price is associated with a significant increase in volatility. Moreover, since the 

volatility of a stock cannot be observed, it is estimated by making use of the movements 

in prices and the fact that they move in opposite directions. Considering that underlying 

securities prices change, the volatility also changes and cannot be assumed to constant 

over the lifetime of the security itself. These possible changes in volatility will generally 

increase the option values, therefore making the writing of such options less attractive. 

2) Borrowing and short-selling penalties are present on the market. Borrowing penalties 

mean that the rate at which an investor can borrow, even with securities as collateral, is 

higher than the rate at which he can lend. This affect the value of options: since they can 

provide leverage that can substitute for borrowing their value will generally slightly 

increase. On the other hand, short-selling penalties have more severe effects. Since the 
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only way for investors to sell stocks short on a downtick is to undergo the expenses of 

borrowing them, such as the cash payment of the collateral, which gives interests far 

below market rates, to the stock lender or the cash due to the broker. These short-selling 

penalties on stocks generally may cause option values to be mispriced and more precisely, 

since put-options can be considered equivalent to selling stock short, short selling of stock 

tends to increase put options prices. 

3) Transaction costs and taxes exist. First of all, brokerage charges on options or exchange 

memberships have to be generally paid and implicate a substantial burden on any potential 

profit on mispriced option. Nonetheless they represent a greater barrier for outside 

investors than for inside ones. Secondly, even if some investors do not pay taxes, the 

existence of taxes on dividends, capital gains, corporations and the presence of across 

countries different level of taxes, affects the option values. 

4) Dividends are an important component on the market. Dividends lower the value of call 

options and increase the value of put options, if there are no offsetting adjustments in 

option terms. Therefore, if dividends are paid on the market the early exercise of a call 

option becomes more likely and the opposite holds for true for put options. 

5) Security trading is not continuous. The existence of takeovers, not only settled ones but 

also possible ones, affects option values. If a takeover occurs the acquired firm options 

will become the acquiring firm options and the market value will therefore change. 

Moreover, if a takeover becomes possible the probability of the takeover occurrence itself 

will affect the option value. 

6) Not only the stock volatility changes over time but also the interest rate does. While the 

volatility can only be estimated, the interest rate can also be observed; thus being easier 

to take into account. In fact, when both interest and volatility change, some complicated 

adjustments can be made to the formula to take these effects into account. Anyway the 

way interest changes affect option values cannot be nearly compared to the effects of 

volatility changes. 

7) The price of the underlying asset does not follow a geometric Brownian motion and price 

returns are not normally distributed. This assumptions derives from the random walk 
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theory, which states that all price movements are random. Anyway, influences of various 

types, such as merger rumors and earnings surprises or sector, economic and political 

news, affect prices in a non-random manner. 

2.3.2 TESTING FOR THE NORMAL DISTRIBUTION OF RETURNS 

For the purpose of this work, the assumption that the underlying asset follows a geometric 

Brownian motion and more specifically that the price returns are normally distributed will be 

tested with data of the Italian electricity market, provided by Enel S.p.A. The data that are here 

taken into account represent the quarterly and yearly electricity prices of 2013, 2014 and 2015, 

which, as it has been described before, are traded starting from one year before the quarter or 

year of reference. The data consist of 253 observations for each of the three calendar years and 

of the twelve quarters. In order to give an insight of the trend of the price movements, the three 

calendar years prices are shown in the graph below.  

 

 

Hence, the analysis of these price movements can start. First of all, the returns for the fifteen set 

of data are calculated. The example of the three calendar years is here provided: 
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rcal2013 = diff(log(Cal2013IT_Power_base)) 

rcal2014 = diff(log(Cal2014IT_Power_base)) 

  rcal2015 = diff(log(Cal2015IT_Power_base)) 

 

Therefore, it is possible to provide an analysis of the returns through the most important statistical 

metrics: mean, standard deviation, skewness and kurtosis. The following table summarizes the 

results. 

 Mean Standard 

Deviation 

Skewness Kurtosis 

Returns_Quarter1_2013 -4.45e-04 0.0055 1.0582 12.2921 

Returns_Quarter2_2013 -4.94e-04 0.0054 0.0475 5.0830 

Returns_Quarter3_2013 -2.20e-04 0.0045 0.3802 5.7941 

Returns_Quarter4_2013 -4.33e-04 0.0040 0.2670 4.9028 

Returns _2013 -2.39e-04 0.0050 1.3466 13.8493    

Returns_Quarter1_2014 -2.13e-04 0.0042 0.3190 4.3301 

Returns_Quarter2_2014 -0.0010 0.0054 -0.7833 4.3468 

Returns_Quarter3_2014 -8.22e-04 0.0063 0.9041 13.4761 

Returns_Quarter4_2014 -6.27e-05 0.0059 0.5407 7.5900 

Returns _2014 -2.16e-04 0.0037 0.1600 3.9467 

Returns_Quarter1_2015 -6.19e-04 0.0061 0.2083 4.3011 

Returns_Quarter2_2015 -1.30e-04 0.0072 0.4362 5.6153 

Returns_Quarter3_2015 6.99e-05 0.0075 0.2581 5.2538 

Returns_Quarter4_2015 -5.60e-04 0.0072 -0.7570 8.5847 

Returns _2015 -7.83e-04 0.0052 0.1783 6.3183 
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As it possible to infer from the data the mean returns is always very close to zero, which could 

leave the possibility for the returns to be normally distributed. On the other hand, at first glance, 

that hypothesis should be rejected since, while the standard deviation is generally very close to 

0.5, except for some cases, the kurtosis is highly variable. Moreover, the returns are 

approximately always skewed on the right. Anyway, in order to assess whether the returns are 

normally distributed, a more precise analysis is needed. 

The three tests that have been chosen to check for the normality of price returns are the most 

reliable and precise ones. A brief description of the Shapiro-Wilk, the Jarque-Bera and the 

Anderson-Darling tests is now provided thanks to “Statistics Explained”, Perry R. Hinton. 

1) The Shapiro-Wilk test uses the null-hypothesis that a sample x1, …, xn comes from a 

normally distributed population. The SW test statistic is defined as 

𝑊 =  
(∑ 𝑥(𝑖)𝛼𝑖)𝑛

𝑖=1

∑ (𝑥𝑖
𝑛
𝑖=1 − �̄�)2 

  

where 

 x(i) is the ith order statistic 

 x̄ = (x1 + … + xn)/n is the sample mean 

 the constants αi are given by 

(𝛼1 , … , 𝛼𝑛) =  
𝑚𝑇𝑉−1

(𝑚𝑇𝑉−1𝑉−1𝑚)
1
2

 

where m = (m1, …, mn)T 

and m1, …, mn are the expected values of the order statistics of independent and 

identically distributed random variables sampled from the standard normal 

distribution, and V is the covariance matrix of these order statistics. 

Therefore, if W is below a predetermined threshold the null hypothesis may be 

rejected. Moreover, the test has been empirically demonstrated to be the best test 

for detecting normality departures. 



37 
 

2) The Jarque-Bera test is the most frequently used by econometricians. It is a goodness of 

fit test of whether sample data have kurtosis and skewness matching a normal distribution. 

The JB test statistic is defined as 

𝐽𝐵 = (
𝑛 − 𝑘 − 1

6
) (𝑆2 +  

1

4
(𝐶 − 3)2) 

where 

 n is the number of observations 

 S is the sample skewness, defined as 

𝑆 =  
µ3

ơ3
=  

1
𝑛

∑ (𝑥𝑖 − x̄)3 𝑛
𝑖=1

(
1
𝑛

∑ (𝑥𝑖 − x̄)2)𝑛
𝑖=1

3
2⁄
 

 C is the sample kurtosis, defined as 

𝐶 =  
µ4

ơ4
=  

1
𝑛

∑ (𝑥𝑖 − x̄)4 𝑛
𝑖=1

(
1
𝑛

∑ (𝑥𝑖 − x̄)2)𝑛
𝑖=1

2 

 x̄ is the sample mean 

 ơ2 is the variance 

 µ3 is the estimate of the third moment 

 µ4 is the estimate of the fourth moment 

           The JB statistic asymptotically has a chi-squared distribution with two degrees of       

freedom, therefore it can be used to test the hypothesis that the data come from a normal 

distribution. It is based on comparing how far the asymmetry and kurtosis measures 

diverge from the values typical of the normal distribution, thus stressing their importance. 

3) The Anderson-Darling test is used to test whether a sample of data comes from a 

population with a specific distribution. It is a modification of the Kolmogorov-Smirnov 

test and it is one of the most powerful statistical tools for detecting departures from 

normality since, differently from the KS test, it gives more weight to the tails. The AD 

test is defined as 

𝐴2 =  −𝑛 − 𝑆 
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where 

 n is the number of observations 

 S is defined as 

𝑆 =  ∑
2𝑖 − 1

𝑛
[ln(ɸ(𝑌𝑖)) + ln (1 − ɸ(𝑌𝑛+1−𝑖))]

𝑛

𝑖=1

 

 ɸ is the cumulative distribution function 

 Yi are the ordered data 

The critical values for the Anderson-Darling test are dependent on the specific distribution 

that is being tested. Even if the test is not as good as the Shapiro-Wilk, it represents a great 

improvement with respect to the Kolmogorov-Smirnov and other tests. 

The three tests, being of the uttermost importance, are applied to the electricity price returns with 

the Matlab environment (R15). The null hypothesis that the returns are normally distributed is 

being tested at the 5% confidence level and the results are the following: 

    

Jarque-Bera Shapiro-Wilk Anderson-Darling

Returns_Quarter1_2013 Reject Reject Reject

Returns_Quarter2_2013 Reject Reject Reject

Returns_Quarter3_2013 Reject Reject Reject

Returns_Quarter4_2013 Reject Reject Reject

Returns_2013 Reject Reject Reject

Returns_Quarter1_2014 Reject Reject Reject

Returns_Quarter2_2014 Reject Reject Reject

Returns_Quarter3_2014 Reject Reject Reject

Returns_Quarter4_2014 Reject Reject Reject

Returns_2014 Reject Reject Reject

Returns_Quarter1_2015 Reject Reject Reject

Returns_Quarter2_2015 Reject Reject Reject

Returns_Quarter3_2015 Reject Reject Reject

Returns_Quarter4_2015 Reject Reject Reject

Returns_2015 Reject Reject Reject

         The Matlab codes and calculations are provided in the appendix
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As it can be seen from the results the null hypothesis that the returns are normally distributed is 

rejected at the 5% significance level by the three tests, with no exception. A graphical insight 

can be given by comparing the returns of the three calendar years with a normal distribution: 
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Hence, it is possible to infer that the Black-Scholes assumption does not find a confirmation 

when real data are taken from the market and analyzed: the prices do not follow a geometric 

Brownian motion and the returns are not normally distributed. This happens because the model 

neglects to account that prices do have high variability, which is detectable in real electricity 

prices and which is the main determinant of the risk associated with financial assets. Moreover, 

a careful analysis of returns, shows the presence of heavy tails, which detects a high probability 

of large price movements that the model does not take into consideration. 

2.3.3 AN INSIGHT ON THE VOLATILITY SMILE 

Being one of the main flaws of the Black-Scholes model, the assumption that the volatility is 

constant over the lifetime of the security is now analyzed carefully. If the model were correct it 

would not be possible to observe any change in volatility, hence a flat implied volatility surface 

(the 3D graph of implied volatility against strike and maturity) would be present. The volatility 

surface is a function of strike, K, time to maturity, T, and is defined as 

𝐶(𝑆, 𝐾, 𝑇) = 𝐵𝑆(𝑆, 𝑇, 𝑟, 𝐾, ơ(𝐾, 𝑇)) 
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Where C(S, K, T) denotes the current market price of a call option with time to maturity T and 

strike K and BS is the Black-Scholes formula for pricing a call option. In other words, ơ(K, T) is 

the volatility that, when inserted into the formula, gives the current market price. Since the Black-

Scholes formula is continuous and increasing in ơ, there will always be a unique solution, ơ(K, 

T). Moreover, if the assumption were correct the volatility surface would be flat with ơ(K, T)= ơ 

for all K and T. In reality however, not only is the volatility not flat but it actually varies, often 

significantly, with time. 

The principal features of the volatility surface is that options with lower strikes tend to have 

higher implied volatilities. For a given maturity, T, this feature is often referred to as the volatility 

smile. The smile first appeared after the 1987 crash and was clearly connected in some way with 

the visceral shock of discovering, for the first time since 1929, that a giant market could drop by 

20%. For a given strike, K, the implied volatility can be either decreasing or increasing with time 

to maturity. Nonetheless, ơ(K, T) tends to converge to a constant as T → ∞, while for short-term 

options much higher volatilities are observed. The more an option is in-the-money or out-of-the-

money, the greater its implied volatility becomes. The relationship between an option implied 

volatility and strike price can be seen in the graph below. 
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2.3.4 TESTING FOR THE VOLATILITY CONSTANCY  

For the purpose of this work, the assumption that the volatility is constant over the lifetime of 

the underlying security will be tested with an extension of the data previously taken into account. 

The focus is now shifted on 113 call option prices related to years 2013, 2014 and 2015. The 

prices are based on a trading dataset provided by Enel S.p.A. The objective is to minimize the 

following functional: 

min
ơ>0

∑[𝐶𝐵𝑆(𝑆т𝑖
, т𝑖 , 𝑟, 𝐾𝑖 , ơ) −  𝐶𝑖

𝑂𝑏𝑠]

𝑖

2

 

where 

1) r is equal to 0 and constant over the three years 

2) CBS are the price estimated with the Black-Scholes formula 

3) CObs are the call option prices observed on the market 

The calibration procedure has been implemented in the Matlab environment (R15). Therefore, 

the following steps are carried out: 

1) A function that describes the sum of the squared differences between prices estimated 

with a constant volatility x and real market prices is created.  

2) The x minimizing this function is found 

3) The call options prices are calculated with the estimated volatility x.  

 

1) fun = @(x) sum((blsprice(PowerMWh, Strike, 0, DeltaTOriginale, x)-Premio).^2) 

2) xx = fmincon(fun,0.09,[],[],[],[],0,1)                     x = 0.0780      

3) ys = blsprice(PowerMWh, Strike, 0, DeltaTOriginale, xx) 

 

The prices calculated with the estimated constant volatility (ơ=0.078) and the ones really 

observed in the market are then plotted to show if some differences are present. 
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As can be seen from the graph, the prices estimated with the volatility minimizing the 

difference (ơ=0.078) are most of the times different from the real ones. The magnitude of the 

differences is described by: 

∑[𝐶𝐵𝑆(𝑆т𝑖
, т𝑖 , 𝑟, 𝐾𝑖 , 0.078) −  𝐶𝑖

𝑂𝑏𝑠]
2
 

The following box describes the Matlab code for the calculation of  the magnitude: 

SumDiff = sum((blsprice(PowerMWh, Strike, 0, DeltaTOriginale, 0.078)-Premio).^2) 
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The result turns out to be equal to 5.9465 which, considering the 113 observations is not too 

high. Unfortunately, the constant volatility does not give the desired results (estimated prices 

equal to observed prices). Hence, it can be inferred that the assumption, according to which 

the volatility is constant over the lifetime of the underlying security, is an unreliable one. As 

a matter of fact, by plotting the implied volatility trend over the three years analyzed, it is 

possible to see that the volatility has not negligible variability.  

 

2.4 ALTERNATIVES TO THE BLACK-SCHOLES MODEL 

In order to address the differences arising between the Black-Scholes model predictions and the 

real market price movements, alternatives to the Black-Scholes option pricing model have been 

formulated. One of the first efforts that was made to overcome the problems related to the 

volatility of the underlying prices, was the creation of the stochastic volatility model. This model 

is a two dimensional diffusion process that, not only considers the evolution of St, but also allows 
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volatility ơt to fluctuate over time. As a consequence, the returns are not normally distributed, 

follow a discontinuous pattern and are supposed to have possible large movements. Another 

framework that has been developed is the jump-diffusion model. According to this model the 

normal evolution of prices is based upon a diffusion process, whose walk is interrupted by jumps 

that represent rare events (related to the financial market and happening at random time 

intervals). These jumps in the normal evolution of prices have also been integrated in a more 

general stochastic process called Lèvy processes (Cheang-Chiarella, 2011). The Merton model 

represent one of the extensions following the jump-diffusion model; according to it the jumps 

follow a Gaussian distribution. The development of the stochastic volatility model and the jump 

diffusion model provided useful insights for traders and the financial world in general. In fact, 

they revised some of the wrongful assumptions behind the Black-Scholes model, trying to give 

more precise estimates for option prices with the help of some more advanced mathematics and 

less relaxed assumptions. Nonetheless, the evolution of option pricing formulas has not arrived 

to an end: the continuous creation of derivatives driven by financial engineers, requires the 

elaboration of new pricing models, whose starting point should be the just mentioned models. 
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CHAPTER 3 

3.1 THREE TYPES OF ELECTRICITY POWER PLANTS 

The main components of the electricity market have already been introduced in Chapter 1, where 

the difference among generation, transmission and distribution in the market place has been 

analyzed. The work now focuses its attention on the generation sector of the electricity market, 

thus introducing the difference between spark and dark spread (U.S. Energy Information 

Administration). The dark spread is defined as the theoretical gross margin of a coal-fired power 

plant from selling a unit of electricity having made use of the coal required to produce this unit 

of electricity. Therefore, it is the difference between the price received by a generator for 

electricity produced with coal and the cost of coal needed to produce that electricity. 

Mathematically the dark spread is given by the equation: 

Dark spread (
€

MWh
) = Power price (

€

MWh
) − [Coal cost (

€

ton
) + Tranport cost (

€

ton
)] ∗

Heat rate (
MMbtu
MWh

)

Heat content (
MMbtu

ton
)
 

where: 

1) Power price is the combination of off-peak and on-peak electricity prices, since the coal-

fired power plants run both during day and night 

2) Coal cost is the cost of purchasing coal through generally long-term contracts that are not 

publicly available 

3) Transport cost is the cost of bringing the coal to the power plant 

4) Heat rate is the measure of efficiency of the generating unit 

5) Heat content is how much heating capacity a ton of coal has 

On the other hand, the spark spread is defined as the theoretical gross margin of a gas-fired 

power plant from selling a unit of electricity, having made use of the gas required to produce 

this unit of electricity. Therefore, it is the difference between the price received by a generator 

for electricity produced with gas and the cost of gas needed to produce that electricity. 

Mathematically the spark spread is given by the equation: 
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Spark spread (
€

MWh
) = Power price (

€

MWh
) − [ Natural gas price (

€

MMbtu
) ∗ Heat rate (

MMbtu

MWh
)] 

Where the variables are defined as for the dark spread, with the exception of coal price that is 

replaced with the natural gas price, publicly available on the spot market. These two different 

kind of power plants, coal-fired and gas-fired, will be turned on if the spark spread or the dark 

spread are positive, thus assuring profits for the generator. 

The purpose of this chapter is to develop a hedging strategy for a hydroelectric power plant. 

Therefore, after having defined the coal and gas-fired plants, the hydropower one is taken into 

account. The hydroelectric power plants offer the lowest production cost with respect to all major 

fossil fuels and renewable energy sources. This cost advantage is possible thanks to the low 

maintenance, operations and fuel costs. The maintenance costs are spread over longer lifespans, 

since the power generating equipment used at these facilities can operate for long periods with 

no need of replacements or repairs. Moreover, the operational costs are the lowest compared to 

other energy sources. Finally the fuel costs are essentially negligible, since hydroelectric power 

derives from flowing water. This water stream comes from rivers or man-made installations, 

thanks to which water flows from high-level reservoirs down through a tunnel where turbines 

are placed. These turbines are able to extract the water kinetic energy and to convert it to 

mechanical energy, thus rotating at high speed. Finally, the generator converts the mechanical 

energy into electrical energy. The water flow and the vertical distance the water falls through, 

are the main determinants of the hydroelectric power generated. Hence, when these three type 

of plants are taken into account it can be said that the hydroelectric power plant is the best, if 

production costs only are considered. In fact, if a brief look is given to the equation for the dark 

and spark spreads, it is undeniable how the coal and natural gas costs play a determinant role in 

reducing profits from electricity production. On the other hand, water is essentially cost-free, so 

generators are free to decide to turn on the hydroelectric power plant and to produce just by 

having a look at the daily market potential gains. As a matter of fact, the market agents that are 

producers of electricity, have a natural long position with respect to the produced asset. 

Therefore, once they have decided to produce, since electricity is non storable, they will have to 

sell everything at every point in time, either on the spot market or at predetermined prices from 
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earlier agreements (earlier forward contracts). Very important is the concept of hedging for these 

producers: they have strong incentives to make investments in order to reduce the risk of price 

movements in the future. For example, by stipulating forward contracts, according to which 

electricity has to be delivered at a future date at a predetermined price, they reduce price 

uncertainties. 

3.2 WHAT IS DELTA-HEDGING 

According to modern option pricing theory it is possible to create financial portfolios with 

exactly the same payoff structure as the underlying derivative. The optimal hedging strategy for 

a hydropower plant involves the use of a set of products that replicate the cash flows generated 

by hydro production. In fact, risk-averse behavior makes producers prefer to hedge production, 

in order to reduce the risk of price fluctuations and capital market imperfections. To achieve an 

optimal result the producer has to be able to plan and price production so that it is possible to 

get an estimation of how sensitive production value is with respect to changes in value of the 

available forward and future contracts (Wallace and Fleten, 2009).  

Delta-hedging can be explained as the strategy that hedges the option that has already been sold, 

in order to create a riskless portfolio. The Greek letter delta (Δ) of a stock option is the ratio of 

the change in the price of the stock option to the change in the price of the underlying stock. It 

is the number of units of the stock we should hold for each option shorted in order to create a 

riskless portfolio (Options, Futures and other Derivatives, John C. Hull). In this case the 

underlying of reference is the electricity price. Therefore, the delta is simply the derivative of 

the option price with respect to the electricity price. As the electricity price changes, so does the 

delta and the hedger, in order to maintain a zero risk total position, must continuously sell or 

buy. By defining the price of the underlying (electricity) as S, and the value of the option to be 

hedged as V, the delta (Δ) is: 

∂V

∂S
=  Δ  
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Any change in the underlying price leads to a change in delta, if V does not depend linearly on 

S. The delta could also be seen as the slope of the curve that relates the option price to the 

electricity price. Hence, if the delta of a call option on the electricity price is 0.5, when the latter 

changes even by a small amount, the former price changes by 50% of that amount. The goal of 

delta hedging is to reach, thanks to a combination of transactions, a delta-neutral position (Δ=0), 

which means that the risk has been totally diversified.  

For the purpose of this work the delta-hedging strategy for a call option will be analyzed. 

Therefore, an insight on call options delta is provided. 

3.2.2 THE DELTA FOR A CALL OPTION 

Considering the electricity properties, a portfolio including forward contracts only could be 

created. Such a portfolio, once hedged, is insensitive to changes in electricity prices. 

Unfortunately the same does not apply for a portfolio including options. As a matter of fact, 

contrary to the forward contracts, the delta of an option is directly related to the electricity price. 

Thus, since the delta of the option constantly variates, the hedger’s position remains delta-neutral 

only for a short period of time. Hence, the delta position has to be rebalanced periodically. 

The concept of delta is closely related to the Black-Scholes model previously introduced. The 

delta of a call option can in fact be defined as: 

𝛥𝐶 =  
𝜕𝑉

𝜕𝑆
=  𝑒−𝑟т𝑁(𝑑1)      

where the parameters are the one previously defined in Chapter 2. Graphically the variation of 

delta with respect to price is defined as: 
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The formula gives the delta of a long position in one call option. The delta of a short position in 

one call option is -e-rтN(d1). Using delta hedging for a short position in a European call option 

involves maintaining a long position of e-rтN(d1) for each option sold (Options, Futures and other 

Derivatives, John C. Hull). Therefore, if an investor possesses a call option for electricity and 

the delta position of a call is positive, the strategic way to reach delta-neutrality is to bet on the 

underlying stock price to go up, selling part of the electricity that is not owned. Since, the 

electricity price and the call option value move in the same direction, the final purpose of the 

delta-hedging strategy is to determine the amount of electricity that has to be sold. The amount 

of electricity is defined in MWh and accordingly the delta-hedging strategy simply implies 

multiplying the delta position of the call option by the amount of MWh the contract is written 

upon. 

3.3 THE SCENARIO OF A HYDROELECTRIC POWER PLANT 

From now on, the analysis of this work is dedicated to the dynamic delta-hedging management 

of a hydroelectric power plant. Therefore, the scenario of this type of plant is introduced. As it 

was stated before, storing water to generate electricity is essentially cost-free. Without taking 
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into consideration the maintenance costs and focusing on the mere production process, it could 

be stated that the gross margin received by a hydroelectric power generator is: 

Gross Margin (
€

MWh
)  ≈  Power price (

€

MWh
) − Operational costs (

€

MWh
)  

where: 

1) Power price is the electricity spot price 

2) Operational costs are the hydroelectric power plant expenses that are incurred while 

operating the plant. The plant will be activated as long as the electricity price is higher 

than the costs of electricity production. 

Therefore, this type of plant could be seen as having a payoff similar to the one of a call option: 

 

 

where: 

1) K is the cost of producing electricity 

2) S is the electricity price 

3) Payoff is the gain the generator can extrapolate from the market 
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Therefore, there are two possible scenarios: 

1) if   𝑆 > 𝐾,   the generator sells today the electricity that he will produce in the future 

2) whereas, if   𝑆 < 𝐾, the generator sold electricity on the market that he is no more sure to 

be able to buy (produce) at K. Hence, he will buy electricity on the market. 

With these two kind of trading operations on the market, the generator is able to extract value. 

In fact, he continuously sells at a price S > K and buys at a price S < K. Therefore, given the 

implied volatility of traded options, the dynamic management of a hydroelectric power plant, 

with a reference cost (strike) K, can be done. The generator has two possible outcomes: 

1) he can either extract value with the “delta” dynamic management of the hydroelectric 

power plant 

2) or he can sell volatility on the market 

As a matter of fact, the option (hydroelectric power plant) implied volatility gives at t=0 a given 

value of the option. Nonetheless the realized volatility (volatility from t=0 up to T=Expiry), 

could give the generator real possibilities of extracting value. Therefore, after having introduced 

the general characteristics of delta-hedging in order to extract value, the delta-hedging strategy 

for volatility trading is explained. 

3.3.2 DELTA-HEDGING STRATEGY FOR VOLATILITY TRADING 

The delta-hedging strategy for volatility trading will now be considered. While continuous time 

hedging on the market is often assumed as possible, for the peculiarities of the electricity market, 

this work will base its analysis on the discrete time framework. More specifically, the hedging 

strategies applied will be daily based. The purpose of this strategy is to create a volatility 

arbitrage, which is defined as the profit to be made hedging options that are mispriced by the 

market, when your estimate of future actual volatility differs from that of the market as measured 

by the implied volatility (Natenberg, 1994). To be more precise, the volatility arbitrage is defined 

as: 

Volatility arbitrage = Implied volatility − Realized volatility  
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The implied volatility is a forward looking estimate of volatility implied from options market 

prices. This volatility is how the market currently prices call options thanks to the Black-Scholes 

model. In Matlab the implied volatility is calculated as follows: 

Implied volatility = blsimpv(Price, Strike, Rate, Time, Value) 

where: 

1) Price is the current price of the underlying asset 

2) Strike is the exercise price of the option 

3) Rate is the annualized, continuously compounded risk-free rate 

4) Time is the time to expiration of the option 

5) Value is the price of a European option from which the implied volatility of the 

underlying asset is derived 

On the other hand, the realized volatility is the observed volatility of price returns from the date 

of trade up to the expiry of the call option. This observed volatility can be found by daily 

applying the delta-hedging strategy to the plant and calculating the resulting volatility with 

“blsimpv”. In general, buying an option and selling the underlying asset results in a long 

volatility position, while selling an option and buying the underlying asset results in a short 

volatility position. A long volatility position will be profitable to the extent that the realized 

volatility on the underlying is ultimately higher than the implied volatility on the option at the 

time of the trade (Volatility arbitrage indices, Keith Loggie). Therefore, considering the dynamic 

delta-management of a hydroelectric power plant, the questions this chapter will try to answer 

are: 

1) Did the implied volatility price correctly the call options (plant production)? 

2) Does the dynamic delta-management of the hydroelectric power plant allow the generator 

to extract value from the market? 

3) Was it more convenient to sell volatility on the market? 
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3.4 DYNAMIC MANAGEMENT OF A HYDROELECTRIC POWER PLANT 

Since, as it has been stated before, the payoff of the hydroelectric power plant could be seen as 

the one of a call option, the data previously analyzed in Chapter 2 will be taken into account. 

Four different periods, extrapolated from Enel S.p.A. dataset, will be considered in order to set 

four different scenarios for a hydroelectric power plant. The data are the following: 

DateTrade Product MW Hours Premium(€) Expiry 

Power 

(€/MWh) Strike 

Implied 

Volatility 

Actual 

Volatility 

27/02/2013 Cal-2014 100 8760 0,828 12/12/2013 65,3 69 9,21% 6,53% 

22/01/2014 Cal-2015 50 8760 0,45 11/12/2014 57,85 60 5,65% 4,7% 

28/04/2014 Cal-2015 200 8760 0,89 11/12/2014 53,7 56 11% 11,29% 

24/07/2014 Cal-2015 50 8760 0,42 11/12/2014 53,45 56 9,8% 6,18% 

 

The different variables are explained as follows: 

1) DateTrade is the date at which the option has been traded 

2) Product is the calendar year to which the option refers 

3) MW is the amount of electricity subscribed in the call option 

4) Hours are the number of hours subscribed in the call option 

5) Expiry is the maturity of the call option 

6) Power (€/MWh) is the spot electricity price 

7) Strike is the exercise price of the call option 

8) Implied volatility is a forward looking estimate of volatility 

9) Actual volatility is the amount of randomness that “transpires” in the electricity price. For 

the purpose of this work, it is calculated as the observed volatility from fifty days before 

the date of trade up to the date itself. 



55 
 

Since the market has no perfect knowledge about the future, implied volatility and actual 

volatility will usually be different. If the generator thinks that his production (the premium of the 

call option) is underpriced, he should delta-hedge up to the expiry date in order to extract value. 

The choice now falls onto the volatility with which the dynamic management of the hydroelectric 

power plant has to be pursued. For the purpose of this work, delta-hedging has been done using 

the actual volatility.  

 APPLICATION 

- The dynamic delta-hedging strategy of the hydroelectric power plant is applied by 

calculating the delta with which the value of the portfolio is rebalanced daily. The Δa, 

where “a” stands for actual volatility, is the amount of underlying asset that has to be 

purchased on the spot market in order to rebalance the portfolio value. In Matlab it is 

calculated as follows: 

∆𝑎 =  𝑏𝑙𝑠𝑑𝑒𝑙𝑡𝑎( 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑆𝑝𝑜𝑡𝑃𝑟𝑖𝑐𝑒, 𝑆𝑡𝑟𝑖𝑘𝑒, 0, 𝑇𝑖𝑚𝑒𝐶ℎ𝑎𝑛𝑔𝑒, 𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦) 

where: 

1) ElectricitySpotPrice is a vector of changing electricity prices from the date of trade up to 

the expiry of the call option 

2) Strike is a vector of the call option strike price, which is kept constant 

3) 0 is the constant risk-free rate 

4) TimeChange is a vector of the (decreasing) time up to expiry 

5) ActualVolatility is a vector of the actual volatility, which is kept constant  

- Afterwards, the value extracted from the market is calculated as the sum of the cross 

product of the Δa daily differences and the electricity spot prices. In Matlab it is given by: 

 

𝑃𝑟𝑒𝑚𝑖𝑢𝑚 = 𝑠𝑢𝑚(𝑑𝑖𝑓𝑓(∆𝑎).∗ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑆𝑝𝑜𝑡𝑃𝑟𝑖𝑐𝑒) 

 

- The original premium, Vth(t) defined as the theoretical production value of the 

hydroelectric power plant calculated with the implied volatility is then compared to the 
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estimated premium, Va, defined as the production value of the hydroelectric power plant, 

using the dynamic delta-hedging strategy. The total value that can be extracted from the 

market from t=0 up to expiry is therefore defined as: 

𝑒𝑟𝑡0 ∫ 𝑑 (𝑒−𝑟𝑡(𝑉𝑡ℎ(𝑡) − 𝑉𝑎(𝑡))) =  𝑉𝑎(𝑇) − 𝑉𝑡ℎ(𝑇)
𝑇

𝑡0

 

- In conclusion, the realized volatility of the premium obtained through the delta-hedging 

strategy, can be calculated by the following: 

 

Realized Volatility =  blsimpv(ElectricityPrice, Strike, 0, Time, Premium) 

 

The results of the dynamic delta-management are shown in the following table: 

 

Scenario Original 

Premium (Vth) 

Estimated 

Premium (Va) 

Value Extracted 

(Va-Vth) 

Implied 

Volatility 

Realized 

Volatility 

Volatility 

Arbitrage 

1 0,828 0,6954 -0,1326 9,21% 8,54% 0,67% 

2 0,45 0,3725 -0,0775 5,65% 5,15% 0,5% 

3 0,89 0,3467 -0,5433 11% 6,66% 4,34% 

4 0,42 0,2074 -0,2126 9,8% 7,46% 2,34% 

 

RESULTS ANALYSIS 

As it can be inferred from the table, a generator owning a hydroelectric power plant could not 

extract any value from the market. In fact, the value extracted using the dynamic delta-

management of the plant in these four different periods, turned out to be always negative. Thus, 

it can be stated that rebalancing our options values by delta-hedging undervalues production. 

This might be either because only closing prices were analyzed, hence, the intra-day volatility 

was lost, or because the hedging strategy was options based. Moreover, in general, electricity 

option contracts, such as call options, are based on a forward looking estimate of volatility. 

Therefore, their value is generally overpriced because the market participants subscribing such 
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options, want to manage the risk of future events, even unlikely ones. As a matter of fact, they 

are willing to pay a premium price in order to be hedged against the risk deriving from electricity 

price volatility. On the other hand, the generator could also use the delta-hedging strategy based 

on his view of future volatility. The purpose of this strategy is to create a volatility arbitrage, 

which is defined as the profit to be made hedging options that are mispriced by the market. As a 

matter of fact, the results show that a volatility arbitrage was possible in each of the four 

scenarios. In order to extract value by selling volatility, the generator could, for example, sell 

variance swaps contracts. These financial derivatives market has grown exponentially in the last 

decade and nowadays these are among the most liquid derivatives contracts in over-the-counter 

markets. Anyway these type of contracts are behind the purpose of this work and they are left to 

further research. In conclusion, the questions addressed at the beginning of this chapter are 

answered. First of all, implied volatility was overpricing call options, since the premium realized 

with delta-hedging turned out to be lower than the original one in each of the four periods. 

Secondly, the dynamic delta-management of the hydroelectric power plant did not allow the 

generator to extract any value from the market. Lastly, there were possibilities to extract value 

by using delta-hedging strategies for volatility trading and to profit from volatility arbitrage. 



58 
 

3.5 CONCLUSIONS 

The analysis of this work began with the introduction of the deregulation process in the electricity 

market. The fundamental changes and the development phase that this market had to undergo 

literally struck market participants, who had to idealize and face problems never seen before. The 

history, the set of constraints and the general features of the electricity market were taken into 

account in order to give a better understanding of the changing nature of the market itself. The 

monopoly predominance was replaced by the continuous entrance and exit of competitors, who 

started to be identified as firms or ordinary people owning the necessary technology to enter the 

market. The increased number of market participants, fostered market efficiency also through the 

intervention of regulatory policies. Nonetheless, being electricity a non-storable asset and being 

spot prices deeply influenced by volatility of demand and supply, seasonality, weather changes 

and many other factors, the efficiency of the market encountered serious issues. Therefore, the 

necessary step was the creation of financial derivatives, which in most cases do not imply the 

physical delivery and are used to manage seasonal price fluctuations and not daily ones. The 

most important financial derivatives that have been mentioned are: forward, future, swap 

contracts, options and other more sophisticated instruments. Hence, to proceed with the analysis, 

an evaluation and pricing model was needed. As a matter of fact, the Black-Scholes option 

pricing model was taken into account even if two of its assumptions, the normal distribution of 

returns and the constancy of volatility over the lifetime of the underlying security, were proven 

not to be reflected on the real electricity market. Nonetheless, the Black-Scholes model is not 

only applied in real market pricing, but it is also useful to deal with hedging strategies for risk 

management. The delta-hedging strategy, which is one of the most important risk management 

hedging strategies, has been taken into account. This strategy, being a direct derivation of the 

Black-Scholes formula, has been applied to a hydroelectric power plant. The dynamic delta-

management of the plant has been applied, in order to understand whether it is more likely for a 

generator to extract value through the hedging strategy or through the volatility selling. Four 

different periods have been considered and the dynamic delta-hedging strategy of the 

hydroelectric power plant has been applied by calculating the delta with which the value of the 

portfolio is rebalanced daily. Each of the four periods showed that a generator owning a 
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hydroelectric power plant could not extract any value from the market by the dynamic delta-

hedging strategy. Nonetheless the realized volatility was lower than the option implied one, thus 

leaving to the generator and market participants, volatility arbitrage possibilities. 

This work has thus tried to provide a specific application of the Black-Scholes option pricing 

model. The flaws behind the model have been analyzed and an insight about the possible dynamic 

management of a hydroelectric power plant has been provided. 
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MATLAB APPENDIX 

Price returns  

rcal2013 = diff(log(Cal2013IT_Power_base)) 
rcal2014 = diff(log(Cal2014IT_Power_base)) 
rcal2015 = diff(log(Cal2015IT_Power_base)) 
rq12013 = diff(log(Q12013IT_Power_base)) 
rq22013 = diff(log(Q22013IT_Power_base)) 
rq32013 = diff(log(Q32013IT_Power_base)) 
rq42013 = diff(log(Q42013IT_Power_base)) 
rq12014 = diff(log(Q12014IT_Power_base)) 
rq22014 = diff(log(Q22014IT_Power_base)) 
rq32014 = diff(log(Q32014IT_Power_base)) 
rq42014 = diff(log(Q42014IT_Power_base)) 
rq12015 = diff(log(Q12015IT_Power_base)) 
rq22015 = diff(log(Q22015IT_Power_base)) 
rq32015 = diff(log(Q32015IT_Power_base)) 
rq42015 = diff(log(Q42015IT_Power_base)) 

 

Mean of returns 

murcal2013 = mean(rcal2013) 
murcal2014 = mean(rcal2014) 
murcal2015 = mean(rcal2015) 
murq12013 = mean(rq12013) 
murq22013 = mean(rq22013) 
murq32013 = mean(rq32013) 
murq42013 = mean(rq42013) 
murq12014 = mean(rq12014) 
murq22014 = mean(rq22014) 
murq32014 = mean(rq32014) 
murq42014 = mean(rq42014) 
murq12015 = mean(rq12015) 
murq22015 = mean(rq22015) 
murq32015 = mean(rq32015) 
murq42015 = mean(rq42015) 

Standard deviation 

sdrcal2013 = std(rcal2013) 
sdrcal2014 = std(rcal2014) 
sdrcal2015 = std(rcal2015) 
sdrq12013 = std(rq12013) 
sdrq22013 = std(rq22013) 
sdrq32013 = std(rq32013) 
sdrq42013 = std(rq42013) 
sdrq12014 = std(rq12014) 
sdrq22014 = std(rq22014) 
sdrq32014 = std(rq32014) 
sdrq42014 = std(rq42014) 
sdrq12015 = std(rq12015) 
sdrq22015 = std(rq22015) 
sdrq32015 = std(rq32015) 
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sdrq42015 = std(rq42015) 

 

 

Normalization of returns 

rn_2013=(rcal2013-murcal2013)./sdrcal2013 
rn_2014=(rcal2014-murcal2014)./sdrcal2014 
rn_2015=(rcal2015-murcal2015)./sdrcal2015 
rnq1_2013=(rq12013-murq12013)./sdrq12013 
rnq2_2013=(rq22013-murq22013)./sdrq22013 
rnq3_2013=(rq32013-murq32013)./sdrq32013 
rnq4_2013=(rq42013-murq42013)./sdrq42013 
rnq1_2014=(rq12014-murq12014)./sdrq12014 
rnq2_2014=(rq22014-murq22014)./sdrq22014 
rnq3_2014=(rq32014-murq32014)./sdrq32014 
rnq4_2014=(rq42014-murq42014)./sdrq42014 
rnq1_2015=(rq12015-murq12015)./sdrq12015 
rnq2_2015=(rq22015-murq22015)./sdrq22015 
rnq3_2015=(rq32015-murq32015)./sdrq32015 
rnq4_2015=(rq42015-murq42015)./sdrq42015 

 

Shapiro-Wilk test 

Shrcal2013 = swtest(rcal2013) 
Shrcal2014 = swtest(rcal2014) 
Shrcal2015 = swtest(rcal2015) 
Shrq12013 = swtest(rq12013) 
Shrq22013 = swtest(rq22013) 
Shrq32013 = swtest(rq32013) 
Shrq42013 = swtest(rq42013) 
Shrq12014 = swtest(rq12014) 
Shrq22014 = swtest(rq22014) 
Shrq32014 = swtest(rq32014) 
Shrq42014 = swtest(rq42014) 
Shrq12015 = swtest(rq12015) 
Shrq22015 = swtest(rq22015) 
Shrq32015 = swtest(rq32015) 
Shrq42015 = swtest(rq42015) 

 

Jarque-Bera test 

JBrcal2013 = jbtest(rn_2013) 
JBrcal2014 = jbtest(rn_2014) 
JBrcal2015 = jbtest(rn_2015) 
JBrq12013 = jbtest(rnq1_2013) 
JBrq22013 = jbtest(rnq2_2013) 
JBrq32013 = jbtest(rnq3_2013) 
JBrq42013 = jbtest(rnq4_2013) 
JBrq12014 = jbtest(rnq1_2014) 
JBrq22014 = jbtest(rnq2_2014) 
JBrq32014 = jbtest(rnq3_2014) 
JBrq42014 = jbtest(rnq4_2014) 
JBrq12015 = jbtest(rnq1_2015) 
JBrq22015 = jbtest(rnq2_2015) 
JBrq32015 = jbtest(rnq3_2015) 
JBrq42015 = jbtest(rnq4_2015) 
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Anderson-Darling test 

ADrcal2013 = adtest(rcal2013) 
ADrcal2014 = adtest(rcal2014) 
ADrcal2015 = adtest(rcal2015) 
ADrq12013 = adtest(rq12013) 
ADrq22013 = adtest(rq22013) 
ADrq32013 = adtest(rq32013) 
ADrq42013 = adtest(rq42013) 
ADrq12014 = adtest(rq12014) 
ADrq22014 = adtest(rq22014) 
ADrq32014 = adtest(rq32014) 
ADrq42014 = adtest(rq42014) 
ADrq12015 = adtest(rq12015) 
ADrq22015 = adtest(rq22015) 
ADrq32015 = adtest(rq32015) 
ADrq42015 = adtest(rq42015) 

 

Constant volatility test 

fun = @(x) sum((blsprice(PowerMWh, Strike, 0, DeltaTOriginale, x)-Premio).^2) 
xx = fmincon(fun,0.09,[],[],[],[],0,1) 
ys = blsprice(PowerMWh, Strike, 0, DeltaTOriginale, xx) 
figure 
hold on 
plot(Premio,'ko') 
plot(ys,'r*') 
legend('Real Prices','Estimated Prices') 
SumDiff = sum((blsprice(PowerMWh, Strike, 0, DeltaTOriginale, 0.078)-Premio).^2) 

 

 

Dynamic delta-management of a hydroelectric power plant 

 
RETURN2 = diff(log(PRICESTD2)) 
STD04 = std(RETURN2) 
VOLATILITY2 = STD04*sqrt(252) 
RETURN04 = diff(log(pricestd04)) 
STD04 = std(RETURN04) 
VOLATILITY_04 = STD04*sqrt(252) 
FFFF_1 = blsdelta(price1, strike1, 0, time1, VOLATILITY, 0) 
Delta1 = diff(FFFF_1) 
MONEY1 = DELTAS1.*price1 
MONEYSUM1 = sum(MONEY1) 
VOLCALC27 = blsimpv(65.3, 69, 0, 0.789041096, MONEYSUM1) 
FFFF_2 = blsdelta(ASSETPRICE_2, STRIKEFISSO_2, 0, TIMECHANGE_2, VOLATILITY2, 0) 
Delta2 = diff(FFFF_2) 
MONEY2 = DELTAS2.*ASSETPRICE_2 
MONEYSUM2 = sum(MONEY2) 
VOLcalc1 = blsimpv(57.85, 60, 0, 0.884931507, MONEYSUM2) 
RETURN28 = diff(log(pricestd28)) 
STD28 = std(RETURN28) 
VOLATILITY28 = STD28*sqrt(252) 
FFFF28 = blsdelta(ASSETPRICE28, STRIKEFISSO28, 0, TIMECHANGE28, VOLATILITY28, 0) 
Delta28 = diff(FFFF28) 
MONEY28 = DELTAS28.*ASSETPRICE28 
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MONEYSUM28 = sum(MONEY28) 
VOLcalc28 = blsimpv(53.7, 56, 0, 0.621917808, MONEYSUM28) 
RETURN24 = diff(log(PRICESTD24)) 
STD24 = std(RETURN24) 
VOLATILITY24 = STD24*sqrt(252) 
FFFF24 = blsdelta(ASSETPRICE24, STRIKEFISSO24, 0, TIMECHANGE24, VOLATILITY24, 0) 
Delta24 = diff(FFFF24) 
MONEY24 = DDELTAS24.*ASSETPRICE24 
MONEYSUM24 = sum(MONEY24) 
VOLcalc24 = blsimpv(53.45, 56, 0, 0.383561644, MONEYSUM24) 

 

 

 

 

 

 

 

 


