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“L’ attesa era snervante. Erano tutti sulla stessa barca, o per meglio dire zattera, as-

pettando un segno, un cambiamento. Guardandosi attorno, era facile scorgere sotto

ombrelli e cappucci sguardi disperati, pieni di odio e rancore. Ma una luce si avvicinava,

fiacco, da una strada vicina. Ormai la luce era a pochi metri, e anche i più rancorosi si

dovettero rassegnare. Era arrivato. Il tram 19. ”

(Ginevra Candidi, Racconti)
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Abstract
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by Davide Viviano

During this study I analyzed Real-time data from the API service of the transportation

agency in Rome, ATAC SPA, integrated with static data in order to explore the effect

of several variables on bus travel time. The introduction of GPS tracers and the im-

provement of Automatic Vehicle Location Systems has hugely increased the amount of

real time information available. Unfortunately this information is not fully exploited to

improve the quality of the service. In this sense, the purpose of this study is to develop

useful real-time predictors of bus travel time capable to significantly outperform the one

actually in use. The results show an high performance of many different linear and non-

liner models trained on 20 000 observations collected within two weeks between April

and May 2016. Cross validation has been used as an unbiased way to test the models.

Furthermore, slack time at the end stops, number of stops to go through and distance

of the bus from arrival, turned to be the most important variables affecting bus travel

time.
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Chapter 1

Introduction

The large use of innovative technologies, such as GPS tracers on each bus, has increased

the amount of data available to transit companies. Whereas transport agencies have

made huge efforts in collective significant amount of data, this information has not been

particularly helpful in improving the quality of the service. Automatic Vehicle Location

(AVL) or Automatic Passenger Count(APC) are some examples of new technologies that

are still not particularly useful for operating strategies of transit companies.

In this sense, Atac SPA , the agency that controls the public trasportation system in

Rome, represents an interesting case. The AVL system in Rome covers almost all the

buses, metro and trains , reporting their geographic position in real-time. Furthermore,

the system provides data also on traffic conditions, on number of stops of each bus, on

the route, on the identity of the vehicle and others. Unfortunately, the large amount of

data still does not find any useful application. Real-time prediction of arrival time are

based only on the length of a route and on the average speed of the vehicle. In 2014,

the agency gave free access to the API service that provides all real-time information

collected by the AVL system. In addition, they published on-line the “General Transit

Feed Specification Level” containing all static transit information of the agency, includ-

ing scheduled time for each route at each stop and features of routes and trips. The

large amount of data at disposal makes this a case-study whose analysis can lead to

interesting results that can be implemented by other transit agencies.

The collection of data was possible thanks to the kind help of Kay System Italia s.r.l.

that provided a Server with a Intel Xeon Processor E5645 with 4-physical cores and

16-virtual CPUs for the whole period of the study. The analysis was done using the

1



2

computer language R, implemented with several packages that I will describe in the

next chapters.

1.1 Objective of the study

First, I will construct a predictor for arrival-time using different approaches using dif-

ferent loss functions. In fact, the low performance of the predictions provided by Atac

makes this a crucial topic. To test the predictor I will use both cross validation and out

of sample observations collected in different days.

Furthermore, given the large amount of variables we can control for, we will try to

find the variables most correlated with bus travel time. As I will show, many transit

agencies have studied real time data in order to find causal relationships with travel

time. This analysis will be useful in order to assess the impact of different operating

strategies on the quality of the service.

1.2 Transportation and Economics?

You may wonder - as my parents do - why a future economist should deal with trans-

portation problems. I will try to provide a short personal answer in order to tell why I

believe that this problem is particularly important for an economist.

Nowadays, massive amount of data flows on-line. Unfortunately it is usually difficult

to collect, to store or even to interpret these data. For this reason, computer science is

playing a growing role in economics, together with statistics. The use of data can be

a potential way to improve the understanding of complex phenomena. In fact, many

problems in finance, macroeconomics and microeconomics deal with data collection and

data analysis. Furthermore, it is my strong belief that data are particularly useful if

exploited to improve the macro or microcosm where we live. In this sense, in this thesis

I try to use the large flow of real-data from the AVL system in order to understand

how these data can be useful for the people in Rome. Similar techniques used in this

thesis can be applied in different fields of economics in order to find potential ways of

interpreting economic phenomena.
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1.3 Data Collection

In order to carry out this study I have collected data during two weeks between April

and May. The data were collected sending every 10 seconds a query to 26 different

stops uniformly distributed on Rome and receiving information about the route, the

identification number of the vehicle, the predicted waiting time, the distance in terms

of missing stops and other variables of all the buses directed to that stop. Every 10

seconds we received and saved between 80 and 250 observations, with a total of more

then 2 millions of observations. These data were then merged with other data sets to

obtain further features at disposal.

Whereas AVL data are available for the traffic service agency in Rome, APC data are

not available. On the other hand, the data collected from ATAC contain real-time infor-

mation controlling for bus stops, identification of the vehicle and route. The availability

of the whole dataset with scheduled time for each day , features of a route and many

other variables make this case interesting to understand how to evaluate the reliability

of a public traffic company. In the construction of the dataframe I extracted arrival

times and other variables. In the next chapters I will provide further details about the

data mining process.

1.4 Methodology

I will provide to the reader a brief enumeration of the steps followed during this work.

Any step will be described in details in the next sections.

1. Problem understanding. Identify potential strength and weaknesses of the public

transit system in Rome.

2. Data collection. Explore the most efficient way to collect data and implement the

process.

3. Data analysis. Analysis and exploration of the data collected , with particular

attention to missing values; merge of dataframes to obtain the final dataset.

4. Evaluation of forecast optimality under a general class of loss functions.

5. Modelling for prediction and inference. Construction of models and evaluation of

performance. Interpretation of the models.

6. Final considerations. Evaluation on the assumptions of the models and their weak-

nesses. Description of challenges for future research.
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1.5 Structure

In the next section I will provide a review of literature. In chapter 2 I will go through the

theoretical framework necessary to understand the empirical analysis. Chapter 3 will

describe the problem , focusing on the reliability of the transit service in Rome. Chapter

4 will be about the process of data collection and data mining. In chapter 5 I will discuss

the test for forecast optimality assuming a general class of losses. Chapter 6 will be about

the empirical analysis, in chapter 7 there are final conclusions, achievements and critical

points.

1.6 Background

1.6.1 Useful Concepts

Before entering in the details of the past literature , I will provide to the reader key

concepts for the understanding of this thesis:

1. Traffic signal priority is a system that coordinates along a specific route the traffic

lights in order to reduce stop time.

2. Automatic vehicle location is a system that provides to the user real-time data

regarding the location of buses and the expected arrival at specific stops.

3. Automatic passenger count is a system that counts the number of passengers on

the bus.

4. On-time-performance is a measure of schedule deviation.

5. A route is a constant path between two end-points and it has a specific identifica-

tion name.

6. Direction refers to the direction of the bus on a specific route and it can be either

inbound or outbound.

7. A trip is always on the same route with a specific direction.

8. Slack time is the time that a bus waits at the stop before leaving again.
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1.6.2 Transit Service Reliability

Transit service reliability is a key issue for transit agencies. Unreliable transit services

may increase passengers cost , have negative impact on the reputation of the company

and decrease the number of customers. Transit service reliability (TSR) typically relates

to on-time-performance and travel time variation and it has been defined in several ways

by the researchers. According to most of the literature TRS is defined as the ability

of the transit system to adhere to scheduled time. Abkowitz et Al. [1] defined TSR

as “the invariability of transit service attributes that affects the decisions of users and

operators”. For Strathman et al.[47] reliability depends mainly on delays and schedule

adherence. El Geneidy et al.[14] instead underlined four different aspects of reliabil-

ity:“high accessibility from the origin to the destination of the travel, high predictability

of waiting time, short in-vehicle time and low variance in run time.”

According to the Transit Cooperative Research Program[41] a key element in assess-

ing transit service reliability is travel time. Running time is defined as the time that

a bus takes to travel between two different points[14]. More broadly, Carrion et al. [6]

defined travel time as “the time elapsed when a traveler displaces between two spacial

positions”. Travel time is made of two different components, waiting time and in-vehicle

time. Waiting time may depend on both the behaviour of the passenger and the travel

system. Passengers who control the scheduled arrival time should have a lower expected

waiting time then passengers who do not check scheduled arrival time at the stop. This

is true if , on average, the probability of bus arrival increases as the time is closer to

scheduled time, as it should be. Distribution of time arrivals has been studied by many

researchers as a key issue in service reliability. The typical distribution that is used in

the literature is a skewed distribution , either a gamma or a lognormal distribution [6].

In fact, buses normally do not leave before scheduled time, while they may be late at

some stops. Another important topic affecting running time is slack time. Slack time

tend to be high if there are few vehicles on a particular route. By increasing the in-

vehicle time of passengers it may reduces the waiting time for other passengers. Some

studies have been carried out to find optimal solutions for slack time under different

operating strategies. Zhao et al.[52] found a slack time ratio of 25 per cent analyzing

Los Angeles County Data. According to the schedule of the transport agency in Rome

Atac, the only slack time is between end stops of a route. Finally, important attention

has been given to the double nature of travel time delay[6]. Delays may be predictable

and unpredictable. Predictable delays, if known by potential passengers , have not nega-

tive impact on the expected travel time. Some examples of predictable delays are traffic

during peak hours. Unpredictable waiting times have instead a huge impact on transit
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service reliability. They may be due to driver’s inexperience, mechanical problems of

the vehicle , unexpected traffic congestion, etc.

1.6.3 A review of previous research

Most of the research that I will describe in this subsection was aimed to improve ser-

vice quality of several travel agencies. Research in bus service reliability was initially

developed in many American cities, such as New York, Minneapolis and Portland. The

analysis on the metro of London represents an European example. Nowadays many

Chinese areas are showing increasing interest in this research field given the increasing

importance of public transportation in many Chinese regions. Perhaps, the large use of

Automatic Vehicle Location (AVL) and Automatic Passenger Count(APC) represents

challenging and useful instruments to analyze the service reliability of public transporta-

tion.

According to Diab et al.[11], the study of on-time-performance was developed following

different approaches. One was to study the frequency distribution of schedule devia-

tions, focusing on the absolute number of delays of buses. A second one, introduced

by Abkowitz et al.[1], consisted in obtaining indicators in service reliability, focusing on

travel time and schedule deviation. The availability of data to carry out empirical anal-

ysis was a major problem in the last two decades of the 20th century. In this sense, the

effectiveness of operating strategy has been tested using different simulation techniques.

With a Monte Carlo simulation, Senevirante et al.[45] studied the point to point travel

time in order to evaluate the sensitivity of operational changes on the quality of service

in terms of headway variation. The variables they considered were the number of time

stops, the passenger demand and the length of a route.

Henderson et al.[22] studied the service reliability of New York Subway looking at the

data collected between 1988 and 1990. They constructed a multinomial logistic model

with dependent variable the probability of deviation from schedule time and with inde-

pendent variables the number of routes merged, whether public schools were in session,

a crowding index and others. In 1993 Strathman et al.[47] studied the fixed route sys-

tem in Portland, Oregon using a multinomial logit model to understand the effects of

elements such as the number of passengers, the scheduled headway, the distance and the

experience of the driver on on-time-performance.

The introduction of AVL made it easier to collect real-time data. In 1999 Kalaputapu[29]

analyzed the AVL data from Tidewater regional Transit in Virginia on a single route,
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to identify a powerful predictive model for travel time. In doing so he proposed several

alternatives, comparing a neural network model to ARMA and ARIMA. In 2001 Kim-

pel[30] carried out a further analysis in Portland, looking at data from the public service

company Tri-Met. He constructed a model where the delay variation depends the accu-

mulated delay variation , the route type, the number of stops, the time of the day - peak

and off-peak hours - and others. Analysing the AVL data from Metro-Transit in Min-

nesota, El Geneidy et al.[14] built four different multivariate regression models looking

at the effects of passenger activities, peak-hours, driver experience and other variables

on running time deviation. Diab et al.[11] used linear regression models to identify

the effect of different operating strategies implemented by the Societè de Trasport de

Montreal between 2007 and 2011. Figliozzi et al.[2] studied the stop-to-stop travel time

to determine the recovery of the bus at each bus stop in case of delay. Controlling for

transit signal priority at the intersections , they showed an high variance of recovery

time among different stops. Finally, in 2015, Feng et al.[16] showed that stop location ,

signal delay and traffic condition have a significant impact on travel time.

1.6.4 Predictive models in past literature

In this section I will provide a brief overview of the most common models used in pre-

diction of bus travel time. For seek of brevity, I provided mathematical intuitions of few

models. In the next chapter I will discuss in a comprehensive way the models that I will

use, the main limitations and the selection criteria.

Prediction for bus arrival was first developed in 1999 by Kalaputapu[29], comparing

neural network (NN) to ARIMA and ARMA.

In general, neural network have been commonly used in the past literature. The large

use of Artificial Neural Network is due to their adaptive features and the facility to

operate with real-time data. The structure of NN is characterized by different nodes

that elaborates the imput variables and communicate to subsequent nodes new imput

variables. These imputs are weighted by minimizing a certain loss function. Lin et

al.[26] showed an high performance of NN analyzing data from Jinan, China and using

20 per cent of the data as test set. They constructed sub-ANN controlling for am/pm

peak hours and weekend due to the lack of traffic information.

Johar Amita et al.[3] used neural network to analyze real time data of the public transit

agency in Delhi, India. They used as imput variables accrued delays, dwell time and

distance in order to compute travel time between two points. The model outperformed

linear regression. Gurmu et al.[20] constructed ANN to analyze bus travel time with

GPS data from the public transportation system of Macae, Brazil, and they showed an
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higher performance of ANN compared to historical averages. Many other researchers

have have developed similar methods.

Lin et al.[25] described a Markov Chain model to predict delays of buses. Their model

considers recovery time as a key issue in travel time predictability and it assumed uni-

formly spaced bus stops. The model suggests a positive relationship between degree of

travel recovery and distance. In the next few lines I will provide a brief description of

the model:

P is defined as the one-step transition matrix of dimension N by N. It reports the

probabilities pi,j of a delay dj at stop k+1 conditional on a delay di at stop k.

p(k+1) = p(k)P where p(k) is a vector 1 by N with the current state of nature. 1 To

construct the predictor we substitute k times p(k) with p(k-1)P until we get:

p(k + 1) = p(0)P k. (1.1)

This result come from the fact that P is constant for any k.

Given dT as a sequence of possible delays, Et,k = p(0)PkdT , whereEt,k is the expected

delay at stop k at time t, p(0) is the known state of nature at the initial stop.

Similarly, many researchers have used a Kalman predictive algorithm. Kalman filter

is very similar to Markov chain predictors, with the difference that it recursively esti-

mates the error covariance matrix and the prediction. Kalman filter predicts the vector

y on a discrete time where:

yk = Ayk−1 +Buk + wk−1 (1.2)

and with a measurement error:

ηk = Hyk + ok (1.3)

where w, o are gaussian white noise 2.

A, H span Rn and , whereas they may depend on the state k, we assume to be constant

for seek of simplicity. The filter computes an a priori prediction error and a posterior

error based on ηk. The predictions are:

1An example can clearly illustrate this point: assume a current delay of two minutes at stop 0. Given
a vector d = [-100 -98 ... -94 ... -2 ... 100], p(0) = [0 0 ... 0 ... 1 ... 0], where the ith element of p(0)
equal to one corresponds to the ith element of d equal to the current delay(in this case -2).

2Gaussian white noise are indipendent normally distributed random variables with mean zero and
finite variance.
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a priori: ŷpr,k = Ayk−1 + Buk

a posteriori: ŷpo,k = ŷpr,k + K(ηk - Hŷpr,k)

where K weights the distance between the error measurement and its expectation. The

error is ε = ŷ − y and it can be both on the a priori and a posteriori prediction.

To find K, the Kalman filter minimized the sum of square residuals. In particular, P is

the a posterior error covariance matrix , where Pk =E[εkε
T
k ], with ε the a priori error

term.

By substituting K in P the algorithm solves for arg min trace(Pk).
3

In 2004 Shalaby et al.[46], used two distinct Kalman Filter Algorithms to predict the

travel time between two points and dwell time , based on expected number of passengers,

showing a better performance then historical average, regression and neural networks in

terms of error on a test set. In their analysis they used real-time data of the Toronto

public transport system. Similar algorithm has been used by Wang et al.[50] using data

from the city of Ynchun, China. 4

Chen et al.[9] used an autoregressive models in bus trajectory prediction, showing linear

correlation between future and past travel times and checking the convergency of the

coefficients. Their results reported unstable estimation for the first stops of a route.

An autoregressive model of order p , AR(p), is a model that describes the dependent

variables depending linearly on the sum of its previous p values and a stochastic term.

The general notation is

yt = α +
∑

1
pρp yt−p + ut (1.4)

ŷt is computed as the linear projection of yt onto Rp+1 spanned by the regression matrix

whose columns are the vector of ones, yt−1, yt−2, ..., yt−p. Ordinary least squares are

one possible way to estimate the regression coefficients. The problem of auto-regressive

models relies on the autocorrelation between observations at different time. Asymptodic

theory applies if certain conditions are satisfied. These conditions are stationarity, er-

godicity and mixingale. A time-serie is stationary if the joint distribution of observations

depends only on the lag time between these observations. The same applies to marginal

distributions: for a stationary time serie Zt , E[zt|T]=E[zt] and E[zt’ zt−j ]= γ(j) , de-

pending only on the lag j and not on t. Ergodicity means that as the lag between two

time windows tend to infinity, the joint distributions of the observations in each window

are indipendent. Finally, mixingale is a necessary condition that states that the sum of

the covariances between zt and zt−j ∀ j ∈ [1, ∞) converges. This property is necessary

to assume a finite variance of the serie. ARMA model adds an additional stochastic

3The trace of a matrix is the sum of the elements on the main diagonal. In this case it corresponds
to the sum of squared residuals.

4For a more comprehensive understanding of Kalman filter look at Bishop, G., Welch, G. (2001).
An introduction to the kalman filter.
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component where MA(q) identifies:

yt = ut + θ1 ut−1 + ... + θq ut−q (1.5)

.

where u is a white noise. An ARMA(p,q) is:

yt - ρ1yt−1 - ... - ρpyt−p = ut + θ1 ut−1 + ... + θq ut−q (1.6)

Usually an ARMA model is used when the stochastic error is thought to be persistent.

Jing-nan Wang et al.[49] used instead support vector machine analyzing real time data of

public transportation in Beijing, China. Support vector machine is a powerful techniques

developed during the 90s. The idea behind support vector machine is intuitive: it maps

the explanatory matrix onto an higher dimensional space to find linear boundaries in

this space. I will provide an example from a classification problem to better illustrate

the problem: suppose that we want to find circular boundaries to classify a certain

dependent variable using only two covariates. Any linear regression would not be able

to give this result because it can construct only a linear split between the observations. If

instead the X matrix is mapped onto R3, linear boundaries on a sphere would correspond

to circular boundaries on the 2-dimensional plane. In general, support vector machine

uses the Kernel-trick, to avoid the problem of choosing a specific transformation from a

set of infinite transformations. SVM minimizes a given loss function without imposing

a predetermined shape to the boundaries. Finally, in order to avoid overfitting , penalty

parameters are added. One of the main difficulty of SVM is to find the best tuning

parameters to obtain a strong predictor.



Chapter 2

Theoretical Framework

One of the most powerful concept in Econometrics and Applied Statistics is the con-

cept of regression. Regression consists in finding a general function f̂(x) that describes

a continuous output variable y conditional on an input matrix X. Regression is com-

monly used for different objectives. The first one is to assess causal relationship between

variables and , in this sense, the notion of ceteris paribus is crucial. A ceteris paribus

analysis consists in understanding what is the expected change in y given a marginal

increase of xp , keeping constant all other variables. It generally requires a simple and

understandable model to estimate partial effects of certain variables. The most com-

monly used is the linear model. Hypothesis testing on the coefficients are considered

powerful methods to test causal relationship conditional on certain assumptions.1 A

different “industry” of studies is prediction. The objective of a predictor is to minimize

the error on out-of-sample values of y, sometimes with no means of interpretation.

The most commonly used method to find the best regression function is to pick the

function that minimize a certain loss function from a given class of regressor. 2

This chapter is organized as follows: the first part is focused on general concepts regard-

ing model complexity and model selection. The second part explains the models used

in this thesis. The plots showed are built using specific sub-samples of the data set used

during the empirical analysis.

In the chapter I will use matrix notation where X ∈ <p , is a real valued random imput

vectors and Y ∈ < is a real valued random output variables.

1Note: Whereas variables may be correlated, this does not imply causal relationship.
2A loss function is a function that attributes a cost to the prediction error.

11
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2.1 A general overview

Any output variable can be described as:

Y = f(x) + ε (2.1)

Where f(x) is the true function and ε is a random noise. In estimating the output

variables you can use an infinite set of models. The broad description of a linear model

is:

Ŷ = SY (2.2)

Where (Sij) does not depend on yi. This is a very broad definition that considers a

large class of predictors. S is the projection matrix of Y. S = X(X’X)−1X’ for linear

regression, as I will show later.

The best regressor is the one that is able to best approximate the true function. Of

course, this is an hard task and a solution to this problem is to find the predictor that

most minimize a certain loss function from a given class of regressors. A common loss

function λ is a squared loss function.

Λ(Y - f̂(x)) = (Y - f̂(x))2 (2.3)

The main feature of the squared loss function is its symmetry where Λ(θ) = Λ(-θ).

Consequently, f̂ : X → < such that f̂ = argmin
f̂

E[Λ(f̂(Xi)− yi)].

The generic solution to this minimization problem with squared loss is[35]:

f̂(x) = E[Y |X] (2.4)

2.2 Predictive Power of a model

The mean squared error is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.5)
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Whereas the MSE is an easy concept and it is easy to compute, this does not correspond

to the true error. Before entering in further details I introduce the concept of overfitting

and underfitting. Underfitting means that the model that we derive do not capture

enough variance of in-sample observations. Underfitting may depend on the rigidity of

the models, on the number of covariates used in the regression or on many other factors

and it would lead to high MSE.

With overfittinng the f̂(x) captures also the in-sample random noise. Whereas the MSE

on the in-sample observation is almost zero, the MSE on new observations can be high,

leading to poor predictive power.

According to Efron[13], the true error can be decomposed into the sum of the MSE

and an optimism component that depends on the complexity of the model and on the

observation set.

2.2.1 The Bias-Variance trade off

Two important concepts in statistics are bias and variance. I will provide definitions

referring to the bias and variance of an estimator. Bias is the distance between the

expected value of the estimated function f̂(x) and the true function f(x). In general

bias is defined as: E[f̂(x) − f(x)]. Variance is defined as the average squared distance

between each prediction and the expected value of the prediction. Var(f̂(x)) =
1

n

∑n
i=1

(f̂(xi) - E[f̂(x)])2.

The bias-variance trade off is the following 3:

E[(Y − f̂(x))2] = E[(Y 2 + f̂(x)2 − 2Y f̂(x)]

= E[Y 2] + E[f̂(x)2]− 2E[Y f̂(x)]

= E[Y 2 − E[Y ]2] + E[Y ]2 + E[f̂(x)2 − E[f̂(x)2]] + E[f̂(x)2]− 2Y E[f̂(x)]

= σ2
ε + V ar(f̂(x)) + E[Y − E[f̂(x)]]2

(2.6)

The first term of the equation is random noise. The second term is the variance of the

estimator and the last term is the bias squared. Whereas the first term is an irreducible

error, the sum of the last two terms is the reducible error. We would like to reduce as

much as possible both the bias and the variance. Unfortunately , there is a trade off

between the two. In fact the higher the complexity of the model the lower the bias, but

the higher the variance. Intuitively, a more complex and ,consequently, flexible model,

is able to capture more in-sample information, but it generally requires to estimate more

parameters, increasing the error.

3 The result comes from: E[X2] - E[X]2 = Var(X).
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2.2.2 The complexity of the model

Complexity is a very broad and difficult concept in regression. A model is considered

more complex if it includes additional information from the sample observations. In

linear regression complexity usually relates to the number of covariates Xp included in

the model. The higher the number, the more the in-sample variance captured by the

predictor and the higher the complexity. The complexity of the model is related to the

effective degrees of freedom of the regression matrix. For linear regression, the number

of effective degrees of freedom corresponds to the number of variables to be estimated p

4. For a linear function this is the number of coefficients plus the intercept. 5

Degrees of freedom measure the complexity of the models by identifying the dimen-

sion of the sub-space spanned by the regression matrix. As we will see in the next few

sections, many selection criteria relies on this concept.

Unfortunately for many models the number of parameters to be estimated, is different

from the effective degrees of freedom. Ridge regression, smoothing splines, lasso and

many other models can have EDF different from DF. 6.

A more general definition of effective degrees of freedom is the trace of the matrix S.

This is a trivial result for a linear projection, while it is less intuitive for other models.

According to Hastie et al.[23] “when S is not a projection, trace(S) accumulates frac-

tional degrees of freedom for directions of y that are shrunk, but not entirely eliminated,

in computing µ”, where µ is the expected value of the output variable. It turns out that

trace(S)7 =
∑n

i=1 cov(ŷi, yi)/ σ
2.

2.2.3 Selection criteria

An intuitive measure that tells how much the model fit the observations is the R2. The

R2 is equal to the ratio between the estimated sum of squares over total sum of squares.

Intuitively it represents the percentage of in-sample variance captured by the model.

Although it is commonly used in the literature it has not theoretical justification relying

on asymptotic theory. Furthermore, any additional variable always increases the R2. For

4note: model degrees of freedom, equal to p must not be confused with residual degrees of freedom
equal to n − p, with p equals to the number of parameters estimated. See Janson, L., Fithian, W.,
Hastie, T. J. (2015). Effective degrees of freedom: a flawed metaphor. Biometrika, asv019 for a better
understanding.

5If we recall (2.2) , effective degrees of freedom for a linear regression corresponds to rank of matrix.
6E.g.: RR: β̂ = arg minβ (Y - Xβ)’(Y - X β) + λ β2, where λ introduce a penalty on the betas. In

this case the effective degrees of freedom are less then the covariates in the model because each variable
is shrinked towards zero.

7See the Appendix for a proof of this statement.
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this reason it is usually used the adjusted R2 , adjusted for the number of parameters

in the model:

Adjusted R2 = 1− (n−1)
(n−k−1)

∑n
i (yi−ŷi)2∑n
i (yi−ȳi)

(2.7)

The second term introduces a penalty for each additional parameter to be estimated.

An alternative measure of the deviation is the Mallows’s Cp:

Cp = MSE +
d

n
σ̂2 (2.8)

Where d is the effective degrees of freedom , n is the number of observations and σ

is noise variance. Cp is an unbiased estimator of the true error for OLS estimators,

assuming a normal distribution of the output variable, where the optimism parameter

is ω(µ,σ2) =2(p/n) σ2.8

The Aikake Criterion Information is very similar but more widely applicable.

Defining the loglikelhood function as loglik =
∑n

i=1log Pθ(yi)[40]:

AIC = − 2

N
loglik +

d

N
(2.9)

The AIC is not valid if the model is chosen adaptively and the effective degrees of freedom

d is less then the number of parameters estimated. In case of gaussian covariates, the

AIC coincides with the Cp.
9

2.2.4 Test and Training Set

A common method in statistics to validate a predictor is to divide data into a training and

test set. A training set is a random sub-sample of the observations, used for constructing

the estimator. The test set is the set of the remaining observations used to test the

model and to assess the out-of-sample error. Note that there is a trade-off: the more the

observations in the training set the lower the bias on the estimated of the MSPE(mean

squared prediction error). This is because the model is trained with more observations.

On the other hand, the higher the number of observations in the test set the lower the

variance of the out-of-sample prediction error. As economists say, there is no free-lunch.

8For a more comprehensive proof of this statement see Efron, B. (1986), How biased is the apparent
error rate of a prediction rule?. Journal of the American Statistical Association, 81(394), 461-470.

9There are many other selection criteria such as the BIC, but a more accurate description goes beyond
the scope of this thesis.
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2.2.5 Cross Validation

Cross validation is a well-known technique to validate a predictor. It does not require

any assumption. K-fold Cross Validation works in the following way: the data are

divided into k random folds of the same length. Each times it is constructed the model

using K-1 folds and the remaining fold is used as a test set. This process is repeated K

times, considering the out-of-sample error as the mean of the k different mean squared

prediction errors(MSPE) obtained on the k different folds.

Common features for K are either 5 or 10 folds. Generally, this number depends on the

number of observations in the dataset. In fact, a bigger K would reduce the bias of the

MSPE, but it would increase its variance and vice-versa. leave one out cross validation

consists in taking K = n, where n is the number of observations. In this case the MSPE

has the lowest possible bias, because almost all the observations are used to construct

the model, but it has an high variance, because all the models are strongly correlated

each other. LOOCV is very common in practice because it can be easily computed using

the following formula[18]:

GCV (f̂) =
1

N

∑
(yi − f̂(xi))

(1− trace(S)/N)
(2.10)

2.2.6 The right and the wrong way to do Cross-Validation

A common pitfall in doing cross validation is to choose the model and test it in two

different moments. I will provide an example from Hastie, Tibshirani and Friedman that

makes the point clear [18]. Suppose we have classification problem with 30 observations

and 1000 covariates independent on the class labels. Consider we use a stump, a tree

with a single split, to classify our observations. The argument against Cross Validation

is: “Fitting to the entire training set, we will find a predictor that splits the data very

well. If we do 5-fold cross-validation, this same predictor should split any 4/5ths and

1/5th of the data well too, and hence its cross-validation error will be small (much less

than 50 per cent) Thus CV does not give an accurate estimate of error.” Where does

this argument fails?

The pitfall is the following: choosing first the best stump and then test it , is incorrect

because the choice of the model is correlated with all the data. In this case the right

way of doing cross validation is to find the best stump on the 4 folds, test on the fifth,

store the MSE and repeat the process k times, every time finding a stump on different

folds and test it on a new fold. Hastie et al.[18] provided empirical evidence of it with

many simulations.
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2.2.7 The Bootstrap

Bootstrap consists in creating new samples by randomly picking with replacement ob-

servations from the initial sample, assuming perfect randomization. This methodology

permits to artificially increase the number of samples and to decrease the variance of

estimated statistics. It can be applied in several ways. Unfortunately the variance of

the statistics cannot be go beyond a certain threshold with bootstrapping. Another

common application is to use the standard deviation of the n statistics as an unbiased

estimator of the standard error of the estimator.

2.2.8 The Code

In my analysis I used cross validation to evaluate the performance of the model and I

bootstrap N times to get an estimate of the standard error of the MSPE. In this section

I provide the structure of the code that I used to cross validate with bootstrapping. The

MSPE is the mean of MSPE and the SE is the standard deviation of MSPE. The code

is written for parallel execution. For seek of brevity, I used some abbreviations from the

syntax of R; y refers to travel time in boot.dat. K is the number of folds

MSPE is:append

foreach i in 1:N

export Data, export k, call the libraries in the cores

ii = sample(rep(1:k, length = nrow(data)))

pred = vector of NA with length= nrow(data)

b = sample(nrow(data), repl=TRUE)

boot.dat = data[b,]

for j in 1:k

hold = (ii==j)

train = (ii!=j)

data.train = boot.dat[train,]

data.test = boot.dat[hold,]

find the best.model on data.train

model = best.model(y~ ., data= data.train)

pred[hold] = predict(model, newdata=data.test)

mspe = mean((y - pred)2)

print(mspe)
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2.3 Linear Regression

Linear regression assumes that E[Y|X] is linear in the imput covariates:

yi = β0 +

k∑
p=1

xp,iβp + ui (2.11)

Where y is the dependent variable, βp is the coefficient of the pth covariate, Xp is the

value of the covariate p for the ith observation and ui is the error term for the ith

observations with zero expected value.

Linear models were one of the first models developed in statistics and they are still very

powerful. In fact, they can outperform fancy flexible models in many circumstances. A

general definition of a linear model is:

g(x) =
k∑
p=0

Xpβp (2.12)

This is a broad definition and it can contains any basis expansion leading to polynomials

transformations, linear transformation on the covariates, dummies and interactions. In

fact, a linear model is linear in the parameters β. Note that , according to this definition,

β0 is the intercept and X0 is the ones vector. There are two main ways to estimate the

coefficients: Maximum Likelihood Estimation and Ordinary Least Squares. Whereas

MLE requires some assumptions on the distributions of the error term, OLS exploit the

concept of linear projection . OLS find the parameters by minimizing the sum of squared

residuals.

βOLS = argmin
β

(Y −Xβ)′(Y −Xβ) (2.13)

The solution to this problem is β = [E(X’X)] −1 E[X’Y] for the population. By the

analogy principle 10 β̂ = (X’X)−1(X’Y).

The geometric interpretation of this solution is the following: suppose we want to find

the closest point Ŷ in the column space of X, with rank(X) = p. That is, we want to

find ||Y - X β̂ || ≤ ||Y - X β || ∀ β ∈ <p. Because Ŷ is in the column space of X, it exists

Ŷ = X β̂ that is the linear projection of Y in the column space of X. By the orthogonal

10“The analogy principle for choosing an estimator says to turn the population problem into its sample
counterpart”, Wooldridge, Econometric Analysis of Cross Section and Panel Data.
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decomposition theorem, Y − Ŷ is orthogonal to each column of X. Consequently, if we

dot each component of this distance with Xp ∀p, we get a zero vector. X ′(Y − Ŷ ) = 0

→ X ′(Y −Xβ̂) = 0 → β̂ = (X ′X)−1(X ′Y ).

Note that the main assumption is that yi − ŷi = ui is orthogonal to xp,i for any p and

X’X is invertible. In general, the crucial assumption for linear regression is E[X’U] = 0.

We can prove that E[βOLS ] = β +E[X ′E[u|X]]. If the previous assumption is satisfied,

the estimator is an unbiased estimator for the true parameter ∀n observations in the

sample size, that is E[βOLS ] = β

Another important property for OLS , is consistency. Under the assumption of in-

vertibility of E[(X’X)] and finite second moment of X, the estimated beta converge in

probability to the true one as n goes to infinity.

Finally , according to the Markov-Gauss theorem βOLS is BLUE, best linear unbiased

estimator, under the assumption of homoskedasticity. 11

2.3.1 Test Statistic on the Coefficients

An important concept is testing the significance of the coefficients. Practically, we

want to test whether there is a certain correlation between Xp and Y, assuming as null

hypothesis βp = 0 and alternative hypothesis βp 6= 0. The t-statistic on the parameters

is β̂

SE(β̂)
, where the heteroskedastic robust standard error is:

SE(β̂) = (X ′X)−1(
n∑
i=1

u2
ix
′
ixi)(X

′X)−1 (2.14)

Testing the significance of the betas is a powerful tool to assess whether there might be

a certain correlation between the variables . However, the values of the betas and their

standard error depend also on the selection of the model. Furthermore, whereas the p-

value on the test might be very small, this does not prove causality. In fact, correlation

does not imply causality and the study of causal relationship require a more complex

understanding of the problem.

Finally, in case of homoskedastic standard error, the variance of the error is independent

of the output variables and the formula has a simpler formalization. The homoskedastic

error is usually smaller then the heteroskedastic one. R by default computes the ho-

moskedastic errors. To adjust for it I used the ase package written by prof. Giuseppe

Ragusa that contains the sandwich package.

11Unbiased estimator with lowest variance. Note that with homoskedasticity we assume that the
variance of the error term ui is indipendent on Xi. With heteroskedasticity we relax this assumption.
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2.4 Shrinkage Methods for Linear Regression

Shrinkage methods for linear regression add a penalty parameter on the estimated co-

efficients. What they do is to maximize a new objective function that depends not only

on β but also on the tuning parameter λ. Recalling (2.2) the tuning parameter reduces

the column space of the regression matrix S and it decreases the effective degrees of

freedom. Consequently shrinkage models have a lower complexity then common linear

models. The effect of this is a lower variance and an higher bias. The higher bias is

because the new β do not exploit all the in-sample information and it is different from

the OLS estimators. The lower variance is because the model is less flexible. When the

gain in terms of variance is higher then the loss in terms of bias, the shrinkage method

outperforms linear regression in terms of predictive power.

Ridge regression finds the beta by minimizing the following objective function:

βRidge = argmin
β

(Y −Xβ)′(Y −Xβ) + λβ2 → βRidge = (X ′X + λI)−1X ′Y (2.15)

This result was first developed to control for problems of singularity of the matrix X’X.

In fact, in case of many variables it may happen that two or more columns of the matrix

are linearly dependent leading to no OLS estimation. By using the singular value decom-

position of the matrix X = UDV’, where U and V are orthonormal matrices spanning

one the column and the other the row space of X and D is a diagonal matrix with entries

dj , using the formula EDF = trace(S) , with S = X(X’X + λ I) −1 X’ , it is possible to

show that EDF =
∑j

1
dj

dj+λ
. That is, EDF depends negatively on the size of lambda.

With λ=0 , βRidge = βOLS , with λ → ∞, β → 0

The main feature of ridge regression is that it shrinks towards zero all the parame-

ters but none of them is set equal to zero. This property comes from the nature of the

penalty component λ β2. 12 Consequently, to be able to select just some of the variables

in the covariate matrix X, the constrain is set to be linear, such that the new objective

function becomes:

βLasso = argmin
β

(Y −Xβ)′(Y −Xβ) + λ|β| (2.16)

Lasso regression is a valid alternative to many model selection. On the other hand it may

perform better or worse then ridge regression depending on the problem. Consequently

an alternative model is to weight by a certain coefficient α the two penalty parameters

12See Friedman, Tibshirani, Hastie, The elements of Statistical Learning, pag. 71 for a comprehensive
explanation of this point.
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such that:

βElNet = argmin
β

(Y −Xβ)′(Y −Xβ) + λ(α|β|+ (1− α)β2) (2.17)

Finally, note that the magnitude of the beta depends on the unit of measure. Con-

sequently the covariate matrix must be standardize to give to each variable the same

weight. The process of standardization consists in subtracting the mean and dividing

for the standard deviation. Dummies can be standardized in a more complex procedure.

2.4.1 How do you choose lambda?

A very difficult tool is to pick the best lambda to maximize the prediction power of

the model. This seems a very complex optimization problem that depends on how we

estimate the prediction power of the model. A common way to choose lambda is to use

cross validation, either K folds or leave one out (which is much less computing intensive,

given the formula 2.10). The procedure is the following: set lambda equal to a certain

sequence, large enough to find the optimal. You train your model on k−1 folds for each

lambda in the sequence, you make all the predictions and repeat the process k times.

Finally you pick the lambda in the sequence with the smallest MSPE. There are many

packages in R that do this for you. The one that I used is glmnet, setting sequences of

different size , between the order of 10−4 to 104 and with k = 5. An example of the

behaviour of the MSPE as a function of lambda is shown in the next two graphs:

Figure 2.1: Lasso: Cv with standardized and Non Standardized Covariates
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2.5 Stepwise

Before entering in the details of the algorithm I start from this useful definition of an

additive model to predict yi:

g(xi,θ) =
∑k

j=1 βjf(xi, γj) (2.18)

With θj = (βj , γj) . For a linear regression function f(xi, γj) = xj,i, while in other

cases such as basis expansion models the function can be much more complex. Given

Λ(yi, f(xi, θj)) a certain loss function we would like to solve:

θ = argmin
β,γ

n∑
i=1

Λ(yi,
k∑
j=1

βjf(xi, γj)) (2.19)

Unfortunately this is a very complex problem. There are many short-cuts to avoid this

impossible computation. An approximation can be done by fixing a certain function f

and use a stepwise algorithm. In this case the problem becomes:

θ = argmin
β,γ

n∑
i=1

Λ(yi, fj−1(xi) + βjf(xi, γj)) (2.20)

where fj = fj−1(xi) + βjf(xi, γj). This method can be applied to many different func-

tions. Stepwise can be both forward and backward. Backward finds a full model ex-

ploiting all the in-sample information, and then it drops information until it reach the

minimum of the loss function. Forward does the opposite, starts from an unconditional

prediction, and it adds parts of in-sample information until it reaches the minimum

error. The results may be different because the process depend on the order. Each time

the model finds the covariate that most minimizes the loss and it adds this covariate

to the model to recompute all the betas. 13 The algorithm that I used for stepwise

minimizes the AIC. The package that I used in R is named MASS.

2.6 Generalized Methods of Moments

GMM is a common practice to estimate parameters using moment conditions. For a

certain parameter vector θ0 ∈ Θ ⊂ Rp , and a set of iid random vectors wi ⊂ RL

a certain function g(wi, θ) satisfies E[g(wi, θ0)] = 0. The classic example is for linear

13It may be used a slower version named forward stagewise, that does not update the previous betas
to introduce a slower learning mechanism in the process.
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regression, for which each column of the covariates matrix is orthogonal to the error such

that the moment condition is E[X ′p(Y − Xθ)] = 0 for each covariate p in the column

space of X. With the analogy principle we substitute expectations with sample averages.

The GMM estimator minimizes a quadratic form of this function [51]

θGMM = argmin
θ

[
1

N

n∑
i=1

g(wi, θ)]
′W [

1

N

n∑
i=1

g(wi, θ)] (2.21)

With W L X L symmetric and positive defined weighting matrix. The main feature of a

GMM estimator is the efficiency. In fact the weighting matrix is chosen by minimizing

the variance of the estimator. It can be shown [51] that under the assumption of weakly

independence the best weighting matrix is

Ŵ = var(g(θ))−1 = E[g(θ)g(θ)′]−1 (2.22)

If moment condition are greater then the number of parameters, under the assumption

of iid, 1
N

∑n
1 g(wi, θ) converge to a normal distribution by the central limit theorem.

Consequently the objective function , product of two normals, converge to a chi-squared

distribution with k - p degrees of freedom. In this sense, data can be tested if they fit well

comparing the minimized value of the objective function under the null hypothesis that

it is equal to zero. A very high value (J statistic) would show that moments conditions

are wrongly specified and the model does not fit well the data. In chapter 5 J-test and

GMM will be extremelly useful to test the optimality of the prediction of Atac under

unknown loss function.

2.7 Basis Expansion and Local Regression

Basis expansion is a common method to go beyond linearity. Basis expansion for additive

models is based on the definition:

g(X) =
k∑
j=0

βjfj(X) (2.23)

In this chapter we will break the range of Xp in non-overlapping pieces and we will treat

fj(X) = I(oj ≤ Xp ≤ tj) , a function that depends on a given range of X. For seek of

brevity I will provide basic notions just about splines and smoothers.
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2.7.1 Splines

We define kj a knot on a point j on the range of Xk. Knots can be chosen arbitrarily

but they are commonly set at the percentiles of Xk. The more the knots the more the

flexibility. In a single covariate case, one of the easiest basis expansion is: 14

E[yi|x] = β0 + β1xi +
k∑
1

βj+1fj(xi) where fj(xi) = (xi − kj)+ (2.24)

This model consists in finding a linear regression between each piece of x within two

consequent knots. With a linear piecewise regression function the model is not differ-

entiable on the knots and it shows low flexibility. A more flexible model allows to fit

local polynomials such that fj(xi) = (xi − kj)
n
+, with E[yi|x] = β0 + β1xi + β2x

2
i +

... + βnx
n
i +

∑j
1 βj+nfj(xi) . The higher n the higher the flexibility. A cubic spline

fits cubic piecewise polynomials. Finally, natural cubic splines are cubic splines with

an additional constrain: linear function beyond the two extreme knots. Natural cubic

splines are function that solve the following objective function:

min
f

n∑
i=1

(yi − f(xi))
2 + λ

∫
(f ′′(t))2dt (2.25)

where lambda is the penalty parameter on the smoothness of the function, measured as

the integral of the squared second order derivative. If lambda is equal to zero the function

interpolates all the observations, while with lambda equal to infinity the argument is a

straight line because no second order derivative is tolerated. A smoothing spline is the

argument that solves this objective function- a natural cubic spline - and usually with

a knot on each observation. Note that smoothing splines belong to the class of ridge

regression and the way to compute the effective degrees is similar to the one showed in

the previous section.

Finally, the choice of the EDF - or in an equivalent way of the best λ - for the best

spline can be done using the same approach used for shrinkage methods in section 2.4.1.

Usually for smoothing splines LOOCV (2.10) is used due to the easiness in computing

the trace of the smoother regression matrix Sλ for any finite lambda. The package in R

that I used is splines.

14(xi − kj)+ = xi − kj if it is positive, zero otherwise.
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Figure 2.2: Smoothing Splines: examples with different lambdas

2.7.2 Kernel Smoothers

Suppose we use the following predictor:

f(x) =
1

Nk(x)

∑
j∈Nk(x)

yj where Nk(x) = i : ||x− xi|| < dk,x (2.26)

with dk,x equal to a certain distance k conditional on x, Nk(x) the number k of nearest

points to x within the distance, y and x are the dependent and independent variables.

This predictor is a K-nearest-neighbors: the prediction given a certain input variables

xj is equal to the average output variables of the observations i with xi within a certain

distance from xj . Whereas this prediction often works very well for classification prob-

lems, it may lead to a discontinuous and ugly f̂(x) for continuous output variables when

d is equal to a constant, especially when x has an high variance and the observations

are not enough to cover all the range. Consequently, instead of picking the observations

only within a certain bandwidth and weight all observations in this interval in the same

way, different weighting functions may lead to continuous and differentiable predictors.

We define Kh(xi, x) = W (
xj−x
h ) a local kernel. In (2.34) W (t) = 1 if |t| < 1, 0 otherwise,
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with t equal to the inside function of W. A different example is W (t) = 1−|t|2 if |t| < 1,

0 otherwise and so on. A locally weighted average solves:

f̂(x) = argmin
µ

n∑
i=1

Kh(xi, x)(yi − µ)2 (2.27)

While linear local fits solve:

β̂ = argmin
β

n∑
i=1

Kh(xi, x)(yi −Xβ)2 (2.28)

Polynomial fits or other functions may be used for Kernel Smoothers.

2.7.3 Course of Dimensionality

Course of dimensionality is a crucial problem for local regression (and classification).

Local regression fits a certain regression function estimated locally in a given bandwidth

of x. Suppose now that we want to move from one covariate case to a two covariate case.

Whereas in the first case the bandwidth is computed in one single dimension , in the

second case the bandwidth is in two dimensions and the distance is now the area within

a certain radius from the ith observation. With three covariates we move to a three

dimensional problem where the distance is within a certain 3 dimensional space and so

on. As the dimension of the covariate matrix X increases, the likelihood of finding a

certain number of observations in a p-dimensional bandwidth decreases exponentially.

The effect is that , by keeping Nk,x constant, we need to have much more observations

to obtain the same performance of the predictor.

Finally, a key point is to standardize the distance of each covariate to make each x

having the same weight. How to compute the distance for factors is an open question

that I will not discuss in this thesis.

2.8 Regression Tree

Trees are a way to represent observations by grouping them into rectangular spaces. The

idea is to find for each subset of observations the cluster that is able to minimize the

deviance within each cluster, weighted on the number of observation in the subset, or

in an equivalent way, to minimize the MSE. The MSE can be weighted for the number

of observations in each single rectangle in order to avoid trivial splits that will easily

lead to overfitting. Clusters are chosen by picking one single split on a certain covariate

xp. Going to my example of bus travel time, the first split showed in figure 2.3 is for
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(2.29)

Figure 2.3: Pruned tree on sub-sample of Data

the observations with a predicted waiting time from Atac 15 less then 293.5 seconds and

more then 293.5 for the other cluster. The algorithm to find the best tree is a stepwise

algorithm, that add splits until when the MSE cannot go beyond a certain treshold or

until when the size of a rectangle is small enough.

The general formula for a tree that minimizes the MSE with M partitions RM is the

following:

f̂(x) =

M∑
m=1

dmI(x ∈ RM ) with dm = ave(yi|xi ∈ Rm) (2.30)

I(x ∈ RM ) is equal to one if the observation belongs to the partition RM and zero

otherwise. Given the output covariate Xp for the jth observation and the split at s for

this variable, the objective function is:

min
s,p

[min
d1

∑
xi∈R1(j,s)

(yi − d1)2 + min
d2

∑
xi∈R2(j,s)

(yi − d2)2] (2.31)

This formula provides a formalization of the problem, where for each split, the algorithm

finds the minimum for a certain variable p above and below the threshold s of the sum

of the squared residual in each cluster, where the prediction d for each cluster is the

argument that minimizes the sum of squared residuals within the cluster. It is trivial to

show that d is the average in each subgroup of observations.

To avoid overfitting a common practice is to use prune backing. The idea is to grow

a large tree to reach the maximum complexity. Then to reduce the number of nodes

pruning back. A loss function with a new penalty parameter that depends on the

complexity of the tree is computed. We define Nm the number of observations in each

rectangle, |T | the number of terminal nodes in a certain tree, that is the number of

15The data showed are built by fixing C= 5 minutes. Go to chapter 4 for a clear explanation.



28

rectangles at the bottom of the tree and MSEm = 1
Nm

∑m
1 (yi − ȳ)2 ∀ yi ∈ Rm. The

objective function to minimize (cost-complexity criterion) is:

Cγ(T ) =

|T |∑
m=1

NmMSEm(T ) + γ|T | (2.32)

Gamma introduces a penalty parameter for the complexity of the model and the best

gamma can be choose adaptively using cross validation (also in this case the problem

becomes a generalized shrinkage regression). Tγ is each subtree within the overfitted

tree T0. The package in R that I used for tree is tree(no surprise!).

2.8.1 Bagging

Bagging is a common practice used not only for regression trees but also in many other

cases. Bagging exploits the concept of bootstrapping to reduce the variance of an esti-

mator. In fact, it picks with replacement n observation from the initial sample of size n

and builds a new tree on this sample. It does so several times and the final prediction

is the averaged prediction of each tree built on each new sample. By increasing the

number of trees it artificially increases the number of observation, with the assumption

of perfect randomization of the initial sample. Consequently, the new predictor has a

lower variance. Unfortunately, it can be shown that the reduction in variance cannot be

beyond a certain threshold. For this reason bagging should be done by compromising

the reduction in variance and the time cost in running the process.

2.8.2 Random Forest

It it likely that trees built on bootrastrapped samples are very similar each other. Say we

have 1000 observations with 30 covariates and one of this is particularly important for

a predictive model. We would expect that each tree will use this covariate in one of the

first splits and each tree will be similar each other. This similarity has a negative effect

on the reduction on the variance of the predictor. In fact, we would like to have unbiased

but different trees on each sample to have a great variability of predictions and a low

variance on the outcome. For this reason Random Forest adds an additional constrain.

For each split of each tree in each sample it randomly picks a subset of covariates and

it constrains the tree to use only that subset of covariates for the split. The random

choice is repeated for each split. The final result is a decrease in the correlation between

trees of different samples. The number of variables to pick from the p covariates may

vary but empirically it is usually used
√

(p). Also the number of trees may vary. The

package randomForest in R uses 500 trees as default.
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The out of bag MSE is a valid alternative to cross validation for any process that uses

bagging. Every time that you pick n observations with replacement from your initial

sample you leave on average 1/3 n observations in the initial sample. These observations

can be treated as a test set for the predictors built on the new sample. The out of bag

error rate consists in testing the trees that have not been trained on the k observations

and picking the mean squared error of the average of these k predictions. The process

is repeated for all the observations in the sample and the out of bag error rate is the

average of the mean squared errors. Note that the OOB error overestimates the real

mean squared prediction error because it uses only a subset of predictors. Furthermore,

the size of the positive bias of the OOB is usually greater then the one for the k-folds

CV MSPE.



Chapter 3

Description of the Problem

3.1 Transportation system in Rome

The agency ATAC is a company owned 100 per cent by the municipality of Rome. The

company manages, together with Roma TPL, all public transportation in Rome.

Atac owns more then 2700 bus, 165 tram, 30 filobus, 83 metropolitan trains and 88 trains

for normal railways. The transportation system has in total 377 lines. Of these 377, 326

are bus routes, 6 are trams, 11 are trains, 4 are metro(A,B,C) or metro deviations(B1),

30 are bus by night.

Figure 1 reports the metro system in Rome. There are in total three metro lines, named

A, B and C that cross the whole city, with a total length of 60 km. Metro B has a

deviated line, named B1 from stop Bologna to stop Jonio. The metro works all the

day from 5:30 am to 11:30 pm. On Friday and Saturday it works until 01:30 am. The

intra-city trains work from 5:30 am to 22:30 or 23:30 depending on the route.

The low accessibility of the transportation system is a key issue in Rome. Pinelli et

al.[33] carried out an interesting study about the accessibility of the transit system in

Rome using bus GPS traces. The researchers developed an agent based algorithm to

simulate human mobility in order to study the accessibility from different locations dur-

ing different hours of the day. According to their results, accessibility increases in the

vicinity of metro stations and it significantly changes during the time of the day, with a

peak at 8:00 am.

Given the poor extension of the metro lines, the bus system plays an important role

for the mobility within the city. In this sense, the distribution of the vehicles and the

number of routes are important for the accessibility to the transit system.

The main trade-off in the allocation of vehicles and routes is between passengers de-

mand, that may be not uniformly distributed on the territory, and accessibility from

30
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Figure 3.1: Metro Lines

all the points of the city. In fact, although the stops are uniformly distributed on the

territory, the number of vehicles in use may be different for different parts of the city.

3.2 Potential variables affecting on-time-performance in

Rome

As already showed in chapter one, on time performance may be affected by several vari-

ables. In the literature particular attention has been given to the deviation of travel

time from scheduled travel time as a measure of on-time-performance. In this sense,

traffic conditions, number of stops and number of intersection may increase travel time.

The number of passengers may affect boarding time with an indirect effect on travel

time.

Weather condition is a further variable related to travel time. Rain in Rome would

incentive the usage of car and it may increase the traffic. Moreover, it could cause

dangerous conditions in the streets, increasing the likelihood of accidents. Finally, rain

would decrease the speed of buses increasing the in-vehicle travel time.

Weather prediction can equally have an impact on traffic condition, increasing the num-

ber drivers with car.

Driver behaviour may be a further variable correlated with schedule deviation. Drivers

who do not respect scheduled departure from end stops of a route can cause unpre-

dictable delays.

Segment distance and accrued delay are further variables that can determine future

delays. Many authors noticed that delays at the upcoming stops depend on accrued
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delays at past stops. Bertini et al.[16] showed that as the segment distance between two

stops increases, the correlation between the delay at the two end-points of the segment

decreases due to schedule recovery.

3.3 Scheduled Arrivals

In the next section I will show some statistics about arrivals of buses. 1 In Rome, there

Figure 3.2: Mean Number of Arrivals per stop

are in total 8718 stops and 377 routes. The number of scheduled bus arrivals per day

varies depending on the day. In fact, Atac has not a dataset with a fixed number of

arrivals per each day of the week, but it has a different number of scheduled buses for

each day of the year. On the other hand, according to my analysis, this number mainly

depends on the day of the week and on holidays. In the previous graph I reported the

average number of bus arrivals on 400 random stops between April and May 2016. 2

The two different bars represent the number of bus arrivals per direction (inbound and

outbound). The inbound number of buses is more then the number of outbound. One

possible reason is because some routes have a unique direction and they are given the

value one. On the other hand, I cannot prove this statement. A second reason, which

seems less reasonable to me could be related to the fact that most of the buses may

perform the first and/or the last trip towards the center of the city, but there is neither

a proof nor available data for this statement.

1For a more accurate statistical description of the bus service go to the next chap-
ter. The following statistics are computed using the open data of Atac available at
http://www.agenziamobilita.roma.it/it/progetti/open-data/dataset.html.

2In this report 25th of April and the first of May, both holidays were not considered.
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Figure 3.3: Distribution of Travel time on 5,10,20,30 minutes prediction

3.4 Real-time prediction: Muoversi a Roma

Muoversi a Roma is the application of Atac that makes real-time predictions of bus

arrivals and compute the route from two given points of the city. To the extent of my

knowledge, prediction of bus arrivals use either an historical average of bus speed at

previous stops or actual speed of the vehicle and space distance. Figure 3.4 was printed

from a presentation done by Atac and it is the unique source that displays this informa-

tion. 3

In figure 3.3 I show the distribution of arrivals on 5, 10, 20, 30 minutes prediction

at 26 different stops uniformly distributed in Rome. The data have been collected be-

tween the 16th of April 2016 and the 5th of May 2016. A comprehensive description

of this data is in the next chapter. The prediction accuracy does vary according to the

predicted time distance. For each data set the prediction of Atac shows a performance

close to the in-sample perfomance of the ex-post mean of arrival time. The higher the

expected travel time distance , the higher both the variance of travel time and the MSE

of the prediction. One reason can be that more time may increase the likelihood of

external factors that affect the travel time.

3See: https://bitbucket.org/agenziamobilita/muoversi-a-roma/downloads/PresentazioneCercaPercorso.pdf
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Figure 3.4: Prediction of Atac

3.5 Atac Open Data

The real time data are available through an API system. It is possible to use many

different inputs to get several information. By specifying the route the system provides

information about the id of each stop in that route, the traffic condition at each stop and

other variables. With the id of the stop as input, the API report information regarding

the condition of the stop - if it is activated or not, if there is a footboard at the stop -

and the many values for each bus arrival predicted by the AVL system. The data are

in form of a dictionary. For each bus , it reports the identity of the vehicle, the route

of the vehicle, whether on the vehicle there is a cold air system and a system to buy

ticket on board, whether the vehicle is at the end stop in that moment, the departure

time from the end stop, a boolean value if the autobus is next to the stop , the number

of stops between the actual position of the bus and the stop, the predicted waiting time

both in minutes and seconds and a variable, named banda , that has no description but

should be related to the velocity of the trasmission of the signal.

Imput:Stop id

Boolean footboard

Bus Arrivals

Route id

Vehicle id

Boolean next to the stop

Number of stops missing

Boolean Air

Waiting time

Waiting time in second

Banda

Boolean MEB

Boolean Moby

Boolean at end stop

others

others
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Imput:Trip id

Stops

Stop id

Traffic Condition at Stop

Name of the Stop

others

others

Whereas these are the core variables, there are many other possible trees and combina-

tions of inputs and outputs.

3.5.1 Static Data

I will describe the data reporting information about static information of the bus service

system. The data frames available are the following:

• Calendar Dates:

– Service id: the id of the service (each service is unique for a given trip and

day).

– Date : the date in year, month, day.

– Boolean Exception: whether there is an exception of the service in that day.

• Stop Times:

– Trip Id: the id of the trip, that is unique for a given route and direction.

– Arrival Time: scheduled arrival time at a given stop for a given service.

– Departure Time: scheduled departure time at a given stop for a given service.

– Stop id: the specific id of the stop.

– Stop sequence: the sequence of the stop in the trip.

• Trips.

– Trip id.

– Service id: unique for a given date and trip.

– Direction id: direction of the trip.

– Shape id: shape that reports the geographic shape of the trip.

• Stops.

– Stop id.
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– Stop Name.

– Stop Latitude.

– Stop Longitude.

– Location Type: side of the location.

– Parent Station: weather the stop is in a bigger station.

• Shape id.

– Shape Latitude: the latitude of one of the points in the shape of a given trip.

– Shape Longitude: the latitude of one of the points in the shape of a given

trip.

– Shape Sequence: the position of the point in the shape.

• Routes

– Route Id.

– Route Type: type of the route (metro, bus, tram, etc.)

– others

In the next chapter I will describe how I merged these datasets to get further variables

and which kind of real time data I collected. Note that there are further static available.



Chapter 4

Description of the Data

The core part of this thesis relies on the collection of data. During the first weeks I

manually collected data with Python to understand the potential problems to deal with.

Then, I wrote a script in R to query 26 stops every ten seconds and to convert the Json

file in a nice matrix reporting all the variables of interest. The matrices were saved as

text files. I chose 26 stops because it was the optimal number of stops to make the

process run within the ten seconds. The process was in parallel on 15 cores(out of 16

available cores). The stops were uniformly distributed on the territory of Rome and

they were picked from 4 different trips of the following buses: 92 , direction inbound,

280 , direction inbound, 98, direction outbound, 671, direction outbound. The routes

through these 26 stops were in total 54. The period of data collection was between the

16th of April and the 5th of May 2016.

It is worth to mention two problems: bad connection to the server of Atac, treated using

an if statement in case of error; four different interruptions of the execution of the code

due to fatal errors, with reactivation of the machine few hours later. The second phase

Figure 4.1: The four routes analyzed
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Figure 4.2: CPU Usage

of this process was the construction of the final dataset from all the files. Each step is

carefully described in the next sections. The packages that I used were XMLRPC to

work with API and foreach, DoSNOW, parallel to implement a parallel execution of the

code in R.

4.1 The queries

The output was in form of a dictionary containing single elements, lists or other dictio-

naries. Furthermore, the structure of the Json file could change depending on peculiar

situations. The number of bus arrivals had a random length for each single query. Fi-

nally, traffic condition was the only variable that required a separate process. The loop

repeats the process every ten seconds for more then two weeks. For each k, it records

the time of the query and it shares this information with all the virtual cores. In each

core it is called in the library the XLMPRC package, it is saved the traffic function in

RAM and it is created an empty list s2 and this list is filled with the query on a certain

stop Si. The variables of interest for each query are inside the dictionary bus arrivals.

Each observation is saved as a vector of variables reporting information about each bus

arrival at each stop. The time of the query, the traffic condition and the id of Si is

appended to this vector. Finally all these vectors are appended by row to a matrix and

this matrix is appended to a final matrix.
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For k in 1:140000 do

Wait max(10 seconds - time of loop, 0)

try the token query

if token is error

wait five second and go to 1

time = actual month,day,hour,minute,second

finalobject is: do in parallel

Create and empty object: MATRIX = NULL

for each STOP

s2 = query on STOP

initialize the accumulator: set x equal to 1

while x is less then 1000

if is null the xth element of s2

exit the loop : x = 1001

take the values of the xth bus arrival of s2

Traffic Function(xth trip of s2 values)

xx = append STOP id, traffic, time, xth values

append by row xx to MATRIX

set x = x+1

bind all matrices by rows

write finalobject

Traffic Function is described in the appendix.

4.2 Construction of the Dataset

After the collection of Data, I was interested in predicting travel time between two given

points adjusting for problems of correlation between observations. The first dataset that

I constructed was a dataset with all the vehicles arrived at the 26 stops that I observed.

I extrapolated from each text file, all the observations having the dummy variable “next

to the stop” equal to one and I picked the same observation for same vehicle id, same

day, time window and stop id with smalles ex-ante prediction of Atac (usually between

ten and 0 seconds). In this sense I obtained all the actual arrival time at the 26 of each

vehicle with no doubled observations. For a comprehensive understanding of the process

see the code in the appendix.
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4.2.1 The process

The main concern during the process was to avoid overlapping for same time and same

vehicle. I will make this point clear with an example: if bus with id vehicle 44398, was

observed both when his distance from stop 123 was 3 km on Monday 16 of April at 12:00

am and in the same day at 12:10 with 2km distance from the same stop, then these two

observations perfectly overlap (one is “inside” the other). On the other hand, fixing the

distance to a constant - like picking all observations with expected time distance equal

to 300 seconds- hugely reduces the in-sample variance of the observations and decreases

the amount of information that we might be able to analyze. For this reason , to avoid

overlapping I did the following: after storing all the actual time of arrival for each bus

at each stop, I clustered all the arrivals of the same day, same hour, same vehicle, same

route and same stop of arrival. For example, in each cluster you can have all observations

of vehicles 1243 going to stop 111 on the 16th of April between 2 and 3 pm. For each

cluster I picked only one random observation. Then I merged the actual arrival data set

and this new data set controlling, for day, vehicle id, stop id and time window.1 Two

variables of this dataset were time of arrival, named time.x, and time at the moment of

the query called on the observation in the cluster , named time.y. From this new dataset

were dropped all the observations with time.x lower then time.y - observations wrongly

matched. For all duplicated observations with same identity of the vehicle, same stop

id, same trip id and same time.x, I picked the one with the highest time.y in order to

avoid duplicates in different time windows at the moment of the first query. Finally, for

all duplicated observations with same identity of the vehicle, same stop id, same trip id

and same time.y, I picked the one with the lowest time.x in order to avoid duplicates in

different time windows at the moment of the query on the arrival 2. With this process

I tried to drop mismatched observations. See figure 4.3 for the statistics of travel time.

4.2.2 Variables

Once the dataset was built, additional variables were created. In this process I used the

static datasets of Atac. The variables in the dataset were:

• id vehicle;

• id trip;

1See the appendix for a compehensive understanding of the procedure.
2Higher and lower time.x and time.y is intended in terms of the position in time: higher is after and

lower is before in time.
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Figure 4.3: Distribution Travel Time in DataSet

• id stop;

• boolean cold air on the bus;

• boolean stop activated;

• boolean moby and meb: buyable ticket on board of the vehicle;

• Cartels at the stop;

• factor banda: velocity of the transmission of the signal;

• boolean footboard at arrival stop;

• route id;

• traffic state at the stop of arrival and at the starting point;

• predicted waiting time in seconds from initial position;

• number of stops to pass through from initial position named “missing stops”;

• Boolean at end stop: whether the bus is at the end stop at the moment of the

query on the initial position;

• traveltime: difference in seconds between time.x and time.y plus predicted waiting

time in seconds from the final position of the bus to the stop; 3

• hour of the day: In which hour is the observation;

• day, specific day of the year;

• day of the week , 7 levels;

3Predicted waiting time was around 10 seconds.
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• Boolean direction, weather the bus goes inbound or outbound. 4

• Weather: weather during the day;

• Weather predicted: predicted weather for the next day. 5

4.2.3 Why picking only a sub-set of observations?

There could be many ways to analyze the data that I collected. What I did is not the

unique way and further research should be developed in this sense.

I define “time point” a unique vector on a given space and time and “time segment”

a finite continuous interval of time points. The endpoint of a time segment is always

a given stop. Travel time is the time difference between two endpoints of a given time

segment. My claim is that for same vehicles, the higher is the portion of time segment

shared between the two observations, the stronger the correlation on the travel time of

the two. I will not prove this result, but this is a trivial result if the two time segments

overlap for the same vehicle. In this case the two observations are the same.

More generally, the higher is the area of the intersection set of the two time segments for

same vehicles, the higher is the set of information in common between the two observa-

tions. The problem is that this set of information is over-counted because it is present

not one time but n times, for each vehicle with a same portion of travel time. This is a

problem of overlapping and to avoid it, I fixed a length C of a time segment, different for

each cluster, and I picked only one vehicle with each possible endpoint of a certain time

segment with the time segment length closer to C. By doing so each vehicle is detected

only once for a same time window. On the other hand, different time segment length

may present different features. For example, driver speed may have a low effect on short

trip and an higher effect on longer trip. To have enough variance in observed travel time

C was a random variable uniformly distributed between 3 and 39 minutes for different

clusters.

4.2.4 Critical points

The first critical point of this procedure is that buses in two different but subsequent

hours, say 12 am and 1 pm are not in the same cluster. This means that buses at the

4To compute this variable I used the latidude and longitude information for each stop and I matched
stop id, trip id and shape id by finding the shape containing the point with the smallest euclidean
distance from the stop.

5Both these variables were manually added. Further work should exploit API services for weather to
have better accuracy.
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Figure 4.4: Travel time Estimation

Figure 4.5: Overlapping

boundaries may be present in the data frame more then once. Moreover the data set has

only a subset of observations (around 20000) and strongly depends on the information

provided by Atac. Buses that do not work anymore but are still around the city with

the GPS system on, are detected as normal buses from the AVL system and this can

create a bias.

One further critical point is that for longer time travel, the set of shared informa-

tion between variables increases. In fact, same vehicles with different stops of arrivals

may share a certain portion of their time segment if the distance between the two stops
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is less then the travel time. This may reduce the out-of-sample prediction power of

the model and may create a certain bias for the Cross Validated MSPE. 6 A possi-

ble solution to this problem is to manually drop the observations with common time

segment length higher then a certain treshold. Alternatively to adjust for the bias on

the MSPE I can compute the MSPE on a test set obtained by running the process few

days later. Anyway, the stops have been chosen far away each other and only four routes

have many stops queried. Consequently few observations show a problem of overlapping.

Finally the last critical point regards the strong assumption of reliability of the real

time information provided by Atac. This assumption may be weak in some circum-

stances and further investigation seems necessary for future research.

6Because the train and test sets may share common information.



Chapter 5

Forecast Optimality under

Flexible Loss

In this chapter I will test the optimality of the forecast of Atac without imposing strict

restrictions on the shape of the loss function. Most of the literature only considers

the mean squared error as a loss function. The reasons are many: it is a symmetric

loss (negative and positive errors have the same weight), it is differentiable and easy to

minimize. But for this problem we want to relax the assumption of a symmetric loss.

In fact, whereas a predicted travel time shorter then the actual travel time of the bus

increases waiting time at the stop, it decreases the likelihood of loosing the bus when it

comes. On the other hand, a predicted travel time greater then actual travel time can

induce the consumer to go to the stop after the bus has already gone. In this sense, the

objective of this section is to estimate the loss function given the predictions and to test

the rationality of the forecasts, under a general class of losses.

The estimation of the loss unknown to us is done using generalized method on mo-

ments on the empirical data. The main references for this chapter are Elliot et al.[15]

and Patton et al.[31,32] . The description of GMM is in chapter 2. The package used in

R is gmm.

5.1 Generic Definition

A generic definition of loss function can be summarized by the following formula[15]:

Λi(ρ, α, θ) = [α+ (1− 2α)I(yi − f̂(xi) < 0)]|yi − f̂(xi)|ρ (5.1)
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where I(boolean) = 1 if true, 0 otherwise. The main assumption in this case is that

the loss depends on two parameters, ρ and α and f̂(X) = θ′X, conditional on a certain

information set. Whereas the restriction to a linear model may be strict in particular

circumstances, X is any subset in the information set. Although we may extend the

class of loss functions by estimating a loss on an higher number of parameters 1 this

description already contains many symmetric and asymmetric losses commonly used. A

further assumption is that the loss depends on the error term, that is Λ = Λ(e) where

e = Y − f̂(X). Whereas this is reasonable assumption for this problem, this is not

always the case. For example many researchers showed that losses for GDP prediction

may depend also on other parameters[32]. Finally, we will assume that our data are

weakly independent. 2

5.2 Estimation of the loss

As we might expect the mean difference between travel time and the prediction from

Atac is positive and equal to 110 seconds. In fact, as I will show in table 6.2 of the

next chapter, for each estimated additional minute of travel time corresponds , on aver-

age, slightly more then one minute, and the final prediction has a positive constant term.

Assuming that f̂ = θ′X, for some X in the information set, the forecaster is assumed to

find theta by solving:

argmin
θ

E[Λ(ρ0, α0, θ)] (5.2)

For given values of α, ρ.

The optimal forecast error[15] is the distance between the best forecast and the ac-

tual value. If f̂ is the linear projection of Y onto X, the optimal error is orthogonal to

each column of X, by the orthogonality decomposition theorem . This means that also

f̂ - a linear combination of the column of X - and the error ε are orthogonal.

Given a vector of parameters to estimate γ = (α, ρ), the conditional nature of mo-

ments conditions implies that E[wg(x̂, γ)] = 0 , ∀w ∈ W , where W is a vector of

instruments in the information set.

1Patton et al. showed that it was possible to do this by estimating the derivative of the loss for
theta using a smoothing spline with 3 knots, and then use GMM to find the values of each piecewise
polynomial.

2The way the dataset has been built allow for iid assumption. On the other hand the weakly indipen-
dence is a less strong assumption which is necessary and sufficient for this problem.
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Figure 5.1: Loss Function Estimated with Moment Conditions

To find the two parameters α and ρ, according to Elliot et al., we do not need the

whole information set, but we only need that the number of instruments k must be at

least as equal as the number of parameters p to estimate. Consequently we define :

λ(f̂ , y, γ) =
∂Λ(θ)

∂θ
,W = (1, f̂ ,Λ) (5.3)

Where the moment conditions are ∀w ∈W :

E[Wλ(f̂ , y, γ)] = 0 (5.4)

The orthogonality condition to λ holds for each instrument for the following reasons:

the derivative of the loss is always equal to zero , also when multiplied by a constant; it

is orthogonal to any w ∈ W ; any function is orthogonal to its derivative3.

To conclude by assuming α ∈ [0, 1], ρ ≥ 1, the system of functions to set to zero

becomes[15] :

E[h(γ,W )] = E[W (I(y − f̂(x) < 0)− α)]|yi − f̂(x)|ρ−1] = 0 (5.5)

The problem is solved by replacing expectations with sample averages.

3See Appendix for a proof of these three moment conditions.
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GMM 2 parameters GMM 1 parameter

alpha 0.350∗∗∗ 0.336∗∗∗

(0.003) (3.3e-03)

rho 1.000∗∗∗ 1.1
(0.000)

Observations 20,685 20,685
J-Test:
degrees of freedom is 1 2
Test E(g)=0
J-test 1.2966e+02 1.2964e+02
P-value 4.8700e-30 7.06e-29

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.1: Generalized Methods of Moments: Results

5.3 J-test and robustness of results

There are many ways to test the optimality of the loss. A first test we could per-

form[15,32] is the J-test. The main requirement is to have an over-identified model -

number of moments greater then number of parameters to estimate.

By defining m(γ) the objective function to minimize, m(γ0) = 0 under the null hy-

pothesis , where γ0 is the argument that minimizes the function. We can check whether

m̂(γ̂) is close enough to zero. 4

Jstat = N(
1

N

n∑
i=1

h(γ̂,W ))′V̂ (
1

N

n∑
i=1

h(γ̂,W ))→ χ2
k−p (5.6)

Where V is the best weighting matrix. Under the null hypothesis the J-statistic should

converge to zero, under the alternative it goes to infinity. A very high J-statistic may

signal underfitting of the model. The J-stat should be trivially equal to zero for in-

sample observations, while this result may be different for out-of-sample observations.

Given the results showed in table 5.1 the J-test rejects the hypothesis of optimality even

for in-sample observations. This means that either the moment conditions are wrongly

specified or the algorithm is not able to converge. This last statement seems the most

plausible. In fact, with a ρ equal to one the function at the kink is not differentiable.

Consequently to check the robustness of this result for α we run a second regression

setting ρ = 1.1 . The results for alpha are similar as shown in table 5.1. Whereas the

4See section 2 for a comprehensive understanding of the objective function for GMM.
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J-stat is still surprisingly high for in-sample observations, the alpha is less then 1/2 as

we might expect but seems to have an opposite behaviour against rho.

5.4 Quantile Test on Optimal Forecast

This test was proposed by Patton[32] for the first time. The test is based on I(yi−f̂(xi) <

0) described in the previous section. This is a test for optimality under unknown loss

functions with the assumption that the loss is homogeneous[32] and the data generating

process has dynamics in the conditional mean and variance, or the DGP has dynamics

only in the conditional mean and the loss function is a function of the forecast error.

5 Under the null hypothesis of forecast rationality this variable should be orthogonal

to any instrument in the information set. Using simple OLS, the results of this test

are comparable to the ones obtained in the next sections, as shown in table 5.2. The

prediction and the indicator are significantly correlated each other. Whereas this result

may be biased if one of the assumption is not satisfied, it arises several questions about

the optimality of the forecast under certain classes of loss function.

Dependent variable:

indicator Λ′(α = 0.33, ρ = 1.1)

prediction −0.0001∗∗∗ −0.0001∗∗∗

(0.00001) (0.00001)

Constant 0.406∗∗∗ 0.072∗∗∗

(0.007) (0.012)

Observations 20,685 20,685
R2 0.007 0.007
Adjusted R2 0.007 0.007
Residual Std. Error 0.471 (df = 20683) 0.824 (df = 20683)
F Statistic 139.306∗∗∗ (df = 1; 20683) 138.230∗∗∗ (df = 1; 20683)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5.2: Tests for optimality: indicator test and Mincer-Zarnowitz test

5A comprehensive description of these conditions goes beyond the scope of this thesis. For a compre-
hensive understanding see [31,32]
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5.5 Generalized Mincer-Zarnowitz regression

This test is very similar to the indicator test, and it is historically used to test optimality

under MSE. Using the derivative of our asymmetric loss allow for extending this test to a

more general class of losses. In particular this is a test on the moment condition for which

the derivative of the loss function is orthogonal to any instrument in the information

set. Consequently we test whether Λ′(θ) has a certain correlation with the prediction.

To run this test we set α = 0.33 and ρ = 1.1. The result of this test is conditional on

the assumption that the loss is a two-parameter loss function and the estimation of the

parameters is correct. Whereas this is a weak assumption, given the difficulty of the

algorithm to converge when ρ is one, we conduct this test to check the robustness of the

previous result, leaving to future research the check of these assumptions. Also in this

case we do not need all the variables in the information set, but we can simply use the

prediction as dependent variable. 6

5.6 Comments and Critical Points

The results show no optimal forecast of the bus service agency under different classes of

loss functions. Furthermore, it is clear that the forecast tends to anticipate rather then

postpone predicted bus arrival compared to actual bus arrival.

The critical points are the following: with a ρ on the boundaries the minimization prob-

lem becomes much more difficult, given a non differentiable objective function and the

algorithm implemented in gmm does not perform well. In fact the in-sample J-statistic

is surprisingly high. Furthermore, if any of the assumptions underlined does not hold,

the conclusions are biased and , in this sense, further investigation seems necessary.

6See Appendix for a proof of moment condition 3.



Chapter 6

The Empirical Analysis

In this section I will describe the steps for evaluating different predictive models and

for assessing their performance. Furthermore, I will try to understand what are the

covariates most correlated with travel time. In total I analyze 20685 observations with

different travel time. In figure 4.3 I reported a description of the distribution of travel

time. For a complete description of the way the data set has been built see chapter 4.

6.1 Descriptive Statistics

The data frame contains 20685 observations and 21 continuous , two-levels or multi-

levels factor variables. Vehicle id contains approximately 1320 levels, trip id 62, stop id

26, cartels 8, traffic 6 (from 0 to 4 with decreasing traffic, -1 information not available),

weather 3, prevision of the weather 3, day of the week 7, day 20. The most important

dummies and continuous variables are described in the table 6.1.

6.1.1 Variable description

Air correspond to a dummy equal to one if there is an air conditioning system on the

vehicle, 0 otherwise. It might be a proxy for new or old vehicles.

Moby and Meb signals if on the vehicle tickets are buyable on board.

Footboard is a dummy equal to one if there is a footboard at the stop, zero otherwise. It

can be a proxy for lanes for buses next to that stop (footboard are usually in the middle

of the street, where there are preferential lanes).

Waiting time in minutes and in seconds are continuous variables reporting the ex-ante

prediction of Atac.

Missing stops is the number of stops that vehicle must go through before reaching the
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stop with given id.

At endstop is a dummy variable, equal to one if the bus is at the last stop of the route,

zero otherwise.

Travel time is the actual travel time of the bus.

Direction is equal to one if it is outbound, zero if the bus goes inbound. Direction has

been computed by merging the data with static data described in chapter 4.

The variables not reported in the table are vehicle id; trip id, which is the route in a

given direction; stop id, reporting the id of the stop where the bus is arrived after n

seconds of traveltime; traffic.x , for the traffic at end stop at the moment of the query;

traffic.y for the traffic at the initial position of the vehicle; weather, variable to control

for sunny, cloudy or raining weather; prevision, day-before prevision of the weather; day

of the week, with all seven days; banda, three level factors reporting the velocity of the

signal; day of the year.

Statistic N Mean St. Dev. Min Max

footboard 20,685 0.088 0.283 0 1
waiting time.min 20,685 18.716 10.428 3 40
missing stops 20,685 16.131 9.731 1 63
at endstop 20,685 0.352 0.478 0 1
waiting time seconds 20,685 1,122.273 625.939 150 2,429
traveltime 20,685 1,233.151 704.919 25 3,196
direction 20,685 0.453 0.498 0 1

Table 6.1: Descriptive Statistics

6.2 Univariate linear regression

In table 6.2 there is a summary of a regression with dependent variable travel time and

independent variable the ex-ante prediction of Atac. The result are close to what we

might expect. β1 is close to one, that is , for one minute of expected travel time cor-

responds approximately one minute of actual travel time on average. Note that β1 is

greater then one, which might mean that the prediction of Atac on average underesti-

mates real travel time. Both the betas are significantly different from zero. β0 might

have several interpretations: for zero seconds of expected travel time, there is approxi-

mately one minute of actual travel time. This might be interpreted as structural delay.

On the other hand, if we adjust for slack time at the stop it might be not significant

anymore. The adjusted R squared in the regression is particularly high, 87 per cent

(much in sample variance captured by this linear model). In table 6.3 I showed the

mean squared prediction error of the model of Atac and the MSPE of this simple linear
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model. The standard deviation of the MSPE (out-of-sample) of the linear model is com-

puted by bootstrapping 200 times the 5-folds cross validate mean squared error. The

standard deviation of the 100 MSPE is 1347 and the five per cent confidence interval is

(61182, 66464).

Dependent variable:

traveltime

waiting time sec 1.051∗∗∗

(0.003)

Constant 53.257∗∗∗

(3.602)

Observations 20,716
R2 0.872
Adjusted R2 0.872
Residual Std. Error 252.600 (df = 20714)
F Statistic 140,636.300∗∗∗ (df = 1; 20714)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6.2: Univariate linear model

mse Atac MSPE Linear Model

mse 77, 130.370 63, 811.490

Table 6.3: Performance of Atac and Univariate linear model

6.3 A smoother function

A second approach is to use local regression, and in particular natural cubic splines.

As explained in chapter 2, local regression suffers for curse of dimensionality problems

and for this reason it is better to run this regression on few variables. Furthermore, it

requires careful considerations if factors are involved in the regression in order to under-

stand what measure of distance should be used. For these reasons I decided to run this

model on only one variable, predicted waiting time in seconds. In the next sections I

will explain why I believe that this variable can be considered one of the most important

variables for prediction.

In figure 5.1 I show the behaviour of the MSPE as a function of the degrees of free-

dom of natural cubic splines. The best natural cubic spline has 10 degrees of freedom.
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Figure 6.1: Spline, EDF VS MSPE

A similar result is for a smoothing spline selected using LOOCV (10.4 DF). The MSPE

is 63377. Also in this case I use the technique of bootstrapping to get the SE. Note

that the SE is only an approximation because we run the spline with a chosen lambda.

The standard error is 1315 and the five percent confidence interval is (60798, 65955).

The MSPE is lower then the MSPE of the linear regression but the confidence intervals

overlap.

6.4 Multivariate regression with Lasso and Ridge Regres-

sion

For multivariate regression I dropped some variables depending on the circumstances.

The most complete dataframe that I use has three variables dropped: vehicle id, cartels

and day of the year. Whereas cartels had too many missing values, vehicle id had too

many levels and it was computationally infeasible to use. The behaviour of the MSPE

for lasso as a function of lambda is showed in figure 6.2. The scond figure reports the

number of variables included in the regression in function of lambda. The MSPE is

computed with 5 folds cross validation. The process is the following: for each four out

of the five folds, lambda is selected using 5-folds CV on this subset of data, tested on

the remaining fold and the process is repeated five times. The SE is computed by boot-

strapping 100 times.

To run the regression the data frame has first been converted into a matrix and all

factors have been expanded to 0-1 dummies. The matrix has 193 variables and 20685

observations.
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Figure 6.2: MSPE and Number of Covariate - Lasso 193 variables

The MSPE of lasso and ridge regression is particularly close each other. The MSPE

for lasso is 48292 with SE 1139 and 48282 for ridge regression with SE 1143. The

confidence intervals are respectively (46057,50526) and (46041,50524). The number of

covariates in the regression for lasso are 173 and for ridge regression 193.

In a second moment I run a regression reducing the number of features to 51. All

the dummies for each level of trip id, route id and stop id were dropped. The objective

is to understand the cost of dropping this information against the computational gain.

In fact, a regression on trip, route and stop id cannot be extended to all buses, route and

trips in Rome unless it is carried out a study on each single stop in Rome. The 5-folds

cross validated MSPE for lasso is 54977 with SE 1227 and five percent confidence inter-

val (52571,57382). For ridge regression is MSPE 54964, SE 1223 , confidence interval

(52566,57363). The MSPE is significantly higher then the one obtained by running a

regression on more covariates by two standard deviations. On the other hand, it is still

significantly lower then the prediction error of Atac. The lambda for the ridge regression

is 0.01, while it is 1.77 for lasso. The number of variables used are 51 for ridge and 39

for lasso.

6.5 Stepwise

With stepwise we obtain similar results, but much more computational intensive. With

5-folds CV on a stepwise on the dataset with 193 covariates the MSPE is 48736 and the

SE obtained by bootstrapping 100 times is 1378. The five percent confidence interval

is (46035,51437). The MSPE of a stepwise on only 51 covariates is 54817 and the

SE is 1322. The confidence interval is (52225,57410). The outcome of a stepwise on 51

variables is a regression function with 34 variables. Here a brief overview of the regression
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showed in the appendix:1: some of them are most of the hours of the day (dummy for

each hour), waiting time in seconds and minutes(significant with both positive sign),

traffic , rain (significant with positive sign), some days of the week, direction (significant

with positive sign), “at end stop” (significant with positive sign), number of stops to

go through (significant with positive sign), prevision of cloudy weather (significant with

positive sign) and others. Whereas it is difficult to give an interpretation to most of

the dummies because the effect must be compared to the average seconds of travel time

of all the levels not included in the regression, interesting results are for “at end stop”

and “missing stops”, both significant with positive sign. In the next section I will show

further results carried out on these variables.

6.6 Pruned tree and Random Forest

Pruned tree is showed in figure 6.3. The only variable used in this case is the ex-

ante prediction. For data set with less variance of travel time the results for trees are

different as showed in figure 2.2. The MSPE is computed with 5-folds CV on a pruned

tree trained on 4 folds. The result is a MSPE of 70608 with SE 1674. The five per cent

confidence is (67326,73889). As we might expect the performance of a single pruned

tree is much lower compared to linear regression. Running a Random Forest on only

51 covariates (dropping vehicle,stop and trip id) we get an out of bag mean squared

prediction error around 4700 with around 400 trees. The SE is 497 and the confidence

interval is (46006,47954). To check the result, we run a random forest on a training set

with 4/5 observations and test on the remaining out-of sample observations getting a

similar result. Note that the error has a positive bias compared to the cross-validated

mean squared prediction error. Running a random forest with 193 variables we get an

OOB MSPE around 42000 with 490 trees.

6.6.1 Variables Importance

Importance is a measure of how much a certain variable on average increases the purity

of the nodes in a random Forest. Purity for linear regression is computed by averaging

the MSE between the two nodes. The result on 193 covariates is showed in figure 6.4.

In the case of 51 variables we obtain similar results. These variables have been used for

three different regression with the first 4, 7 and 10 most important covariates on travel

time. For (1) in table 6.5 waiting time in seconds is significantly correlated with actual

travel time with a beta close to one (one-to-one relationship). On average one more

1Note: the error in brackets are always the heteroskedastic robust standard errors.
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Figure 6.3: MSPE of Random Forests and pruned tree

missing stop increases travel time by ten seconds, which makes sense if we consider the

few seconds of slack time at the stop. At end stop shows that unscheduled slack time

at end stop increases on average travel time by one minute and an half. Finally the

constant shows that waiting time at end stop has a minimum value of 20 seconds for

a bus with zero predicted waiting seconds, no stops to go through and not at the end

stop. Waiting time in minutes is not significant maybe because much of its information

is already captured by waiting time in seconds. The understanding of the dummy at end

stop may be related to higher slack time then scheduled. On the other hand, it may be

positively correlated to travel time only because the ex-ante prediction is not adjusted

for slack time. (2) and (3) shows similar results adding more variables. In particular, 4

pm seems to increase travel time by half minute on average, maybe due to higher traffic

conditions. Low traffic is negatevly correlated with travel time, as we might expect.

The only dummy of traffic with positive sign is traffic.y 3 (level 3 of traffic at starting

point) which shows contradictory results. One reason may be that the function collect

this variable only in an approximate way, introducing bias in the collection of data. A

second reason may be that this information does not truly represents traffic conditions.

Finally any variables correlated with both the independent variable and the error term

may introduce bias. An example may be trip id. A certain trip may be correlated with

the traffic and also with travel time.

6.7 Stop 70988: A case study for future research

Why buses at stop 70988 take on average one minute and an half more of travel time

ceteris paribus?
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Figure 6.4: Variables importance in random forest

Dependent variable:

traveltime

(1) (2) (3)

waiting time seconds 0.938∗∗∗ 0.920∗∗∗ 0.929∗∗∗

(0.099) (0.0982) (0.097)

waiting time.min −2.261 −4.068 −4.064
(5.976) (5.872) (5.827)

missing stops 10.617∗∗∗ 13.905∗∗∗ 13.682∗∗∗

(0.371) (0.407) (0.403)

at endstop 86.187∗∗∗ 103.714∗∗∗ 103.811∗∗∗

(4.616) (4.677) (4.661)

traffic.x4 −100.030∗∗∗ −239.475∗∗∗

(4.697) (27.946)

traffic.y4 −30.221∗∗∗ 64.159∗∗∗

(4.287) (12.484)

hour4pm 25.245∗∗∗ 24.845∗∗∗

(9.231) (9.199)

id stop70988 81.386∗∗∗

(7.469)

traffic.y3 101.821∗∗∗

(12.476)

traffic.x3 −139.073∗∗∗

(27.951)

Constant 21.343∗∗∗ 112.704∗∗∗ 146.516∗∗∗

(3.610) (4.948) (28.652)

Observations 20,685 20,685 20,685

R2 0.879 0.883 0.885

Adjusted R2 0.879 0.883 0.885
Residual Std. Error 244.968 (df = 20680) 240.818 (df = 20677) 239.238 (df = 20674)
F Statistic 37,648.860∗∗∗ (df = 4; 20680) 22,364.690∗∗∗ (df = 7; 20677) 15,890.470∗∗∗ (df = 10; 20674)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6.4: Linear Regressions - feature selection with RF
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Figure 6.5: Stop70988

One possible reason is that the bus stop is just before the entrance of an hotel and

a religious institute. This means that cars that are entering or exiting from the building

may increase slack time of the vehicle at the bus stop. A second possible reason is

that on the same street of the stop there are other offices and public buildings(mainly

religious ones). In particular few metres before the stop there is the entrance of a public

building again on the same side of the street of the stop. In the picture just some are

showed and there are others on the same street. Finally, the street has just one line for

each side and this may increase traffic during the day.

As just shown, this kind of prediction can be useful to detect also misplaced stops.

Probably this stop could be moved few metres onwards or even it could be put in a par-

allel street to decrease the delay effect on travel time. On the other hand there are many

critical points in this analysis. Whereas we control for many other variables, there could

be omitted variable bias and further research seems necessary to check the robustness

of this result.

Loss Atac Loss GMM

mean loss 35800 20988

Table 6.5: Test-set error of Atac and GMM under asymmetric loss
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Figure 6.6: Out of sample MSE on 2nd,3rd,4th,5th of May

6.8 Test out of sample using Random Forest and MSE

In this section I describe the results of a test conducted out of sample. To run this test

it was constructed a random forest on 193 variables using a dataset with data from the

16th of April to the 30th of April. The out of sample data were between the 2nd of May

and the 5th of May. The mean squared error is 47727, while the mse of Atac is 65648,

and it is slightly higher the the out of bag mean squared error which is around 42000.

This result is particularly interesting considering the objective of this study. In fact, it

shows that models built on past data can still significantly outperform the prediction of

Atac. On the other hand, figure 6.6 shows that for one day out of four this is not true.

As we might expect, the gain of a different model out of sample is still significant but

lower compared to the results obtained using cross validation. Future research should

collect more data to check this result on a larger time gap.

MSE Atac MSE Random Forest

mean loss 65648 47727

Table 6.6: Performance out of sample of Atac and Random Forest under MSE

6.9 Prediction with a different loss

In this section I develop an alternative linear model using an asymmetric loss. I recall

the general definition of a two-parameters loss function defined in chapter 5:

Λi(ρ, α, θ) = [α+ (1− 2α)I(yi − f̂(xi) < 0)]|yi − f̂(xi)|ρ (6.1)
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Figure 6.7: Loss function used for our prediction

Using GMM the estimation of α under three moment conditions was α = 0.33. This

means that I weight more negative errors then positive ones. Furthermore I set ρ equal

to 2. The reason is simply to get a convex and differentiable functions, although a

better value for ρ would be one as showed in the previous chapter. The argument θ that

minimizes the loss is found using iterative GMM on 133 variables (they were 193 but to

rule out multicollinearity the number of columns of the covariate matrix was reduced to

133). 2. The moment conditions are:

E[h(γ,W )] = E[X ′(I(y − f̂(x) < 0)− α0)]|yi − f̂(x)|ρ−1] = 0 (6.2)

The model is correctly identified (number of moments - that is the number of the column

of X - equal to the number of parameters). The results show that lines may be positive

or negative correlated to traveltime; some stops are negatively correlated with travel

time and further investigation seems necessary. Other variables such as the dummy

at end stop and the number of missing stops are positively correlated. To study the

predictive power of the model we train it on 4/5th of observations and use a test set

with the remaining 1/5th. Whereas the error of Atac is 35800 , the error of GMM is

20988. 3 Also in this case the performance of our model is better then the prediction of

Atac.

2See chapter 2 for a comprehensive description of GMM.
3Note that these values cannot be compared to the values of the MSE of the previous sections.



Chapter 7

Conclusions

In this chapter I will briefly describe the core findings of this study, I will underline the

critical points and describe the direction that future research may take.

7.1 Achievements

The results show an higher predictive power in terms of out of sample prediction error

of all the models that have been constructed compared to the one in use today. In figure

7.1 there is a summary of the MSPE for each model used in this research. The figure

reports the cross validated mean squared error of each model. Whereas the MSPE has

been computed using 5-folds cross validation for all the models, the only exception is for

random forest, for which it was used the out-of-bag mean squared error. Note that the

results have a positive bias due to the fact that only 4/5th observations of the dataset

has been used for constructing the models. Moreover, empirical evidence shows that

this bias tend to be higher for the OOB MSE compared to the CV MSE. As already

explained in chapter 2, the 95 per cent confidence interval showed in figure 7.1 is con-

structed bootstrapping 100 times. Random forest has the highest prediction power; the

lowest prediction power is for pruned tree and univariate regression. Even using just few

variables, without including stop id, trip id, route and vehicle id, lasso, ridge regression,

stepwise and random forest are significantly better then the predictor in use.

The result obtained by running a random forest on data between the 16th and the 30th

of April and tested on the 2nd, 3rd, 4th and 5th of May still shows a averaged better

performance, but the gain is lower compared to the gain estimated with cross validation.

A second important achievement regards the analysis of the variables. As already shown
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in the previous chapter, using the variables’ importance reported by the random forest,

it is possible to detect particular stops negatively correlated with travel time. This neg-

ative correlation can be due to wrong allocation of stops if all the assumptions hold, as

showed for the example of the stop 70988. A similar analysis may be done for detecting

vehicles with particular delays. In this sense future research should test whether this

statement may be correct.

Other variables correlated with travel time are the number of stops before arrival and

the dummy at end stop, proxy for slack time of the driver at the end stop. A possibility

of this positive correlation is that the prediction of Atac underestimates slack time of

the driver. On the other hand, we should be careful with this statement because if the

bus arrives at the last stop with delay, then this correlation may be due to this delay

and not to higher slack time.

In the last part of the empirical analysis I built a predictor by minimizing a quadratic

asymmetric loss function. The asymmetry gave more weight to errors whose prediction

overestimate travel time. The reason was because an higher prediction may increase the

likelihood that the person goes to the stop once the bus has already gone. I preferred a

power of the error ρ equal to 2 simply because it leads to a differentiable loss function.

GMM was used to estimate the function that also in this case showed an higher out of

sample predictive power compared to Atac. Further research should develop alternative

predictors under this new loss.

Chapter 5 was completely devoted to the estimation of the parameters of a generic

two-parameters loss function, the asymmetric parameter α and the power of the error

ρ under the weak assumption of forecast optimality of Atac. GMM regression with a

two-parameter generic loss function was used to estimate these values. The result show

an higher weight to negative errors as we might expect and a ρ equal to one. The J-test

rejects the null hypothesis of optimality of the forecast of Atac under a generic class of

loss functions, by assuming correct specification of the three moments conditions. On

the hand the high value of the in-sample J-stat show a problem of convergence of the

algorithm probably related to the non differentiability of the loss at ρ equal to 1. To

adjust for this problem the power of the error term was set equal to 1.1 but the J-stat

shows again similar problems and further investigation seems necessary. An indicator

test - introduced for the first time by Patton[31] - and a linear regression test were im-

plemented leading to the rejection of optimality forecast under specific assumptions.
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Figure 7.1: Summary of Model Performance

7.2 Future Research

Future research should be focused on collecting more data and testing new models.

One possible track to follow is to improve the code developed during this research to

construct an application able to make real time predictions. Extending the period of data

collection is a necessary condition to build a strong predictor. Furthermore, many other

sources of real time data can be used to improve the quality of the predictor, such as real

time API for weather. Finally, this models may be used for other fields: identification of

wrongly collocated bus stops or particularly slow vehicles may be detected in real time

using these models. In fact, detection of broken buses can be a new field of research.

Id of vehicles may become an interesting variable to control for anomalous behaviour.

Abnormal delays may signal technical problems of buses and a certain classifier may be

able to detect buses with high likelihood of becoming broken.

7.3 Critical Points

Key questions are: Are the observations on 26 stops representative of all the population?

Are the dropped observations key elements that would arise bias in my computation?

Are two weeks representative for the whole year? What are the costs in implementing a

these models to make predictions?
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Not all these questions have an easy answer and many others should be added. The

first problem come from the collection of data. The way the data set has been built may

arise many bias. Not all buses are detected, the data set is conditional on the informa-

tion provided by Atac. A further problem may arise when inactive buses are detected on

their route if the system is not updated in time. In addition, dropped observations may

play a crucial role in bus prediction. In fact, as already explained, I dropped almost

the 0.5 per cent top percentile to avoid mismatched observations of same vehicles on

the same route in different time windows. In addition, two weeks are not representative

for all the year and more data should be collected. Variables such as day or hour may

play a crucial role if more variance is present for these covariates. Moreover, to work in

a proper way the model should use data as close as possible to real time data. Good

predictions over time may require to continuously update the model to minimize the

out of sample error. In this sense, implementation of different models may require huge

costs. This is one reason why in the previous section I tried to decrease the number of

covariates used in the regression(from 193 to 51). On the other hand, to work in a proper

way , continuous updating of the coefficients using feasible samples of observations may

be useful. New research should be focused on collecting new samples of data and to test

models during different weeks.

A further problem relies on the reliability of the information provided by Atac. This

can be a huge limit if this information is not correctly updated in real time and further

investigation sem necessary to explore alternative sources of information.

In addition, there are many limits on the ways variables have been computed. Traf-

fic time is represented by the average speed of buses close to a certain stop, it only

covers the starting point and the end point of the trip of the bus and it does not show

high variance. Moreover the collection of this variable is conditional on several assump-

tions. Weather and predicted weather are computed manually and have low variance.

Some dummies have been dropped because always equal to the same value. Other fac-

tors such as id of the vehicle have too many levels. Cartels have too many missing values

and have not been used at all. On the other hand missing values on other variables were

very few, around 30 or 40 out of thousands of observations and they were dropped. If

missing values were correlated with the output variables this would create bias on the

data set.

The data set is not continuous in time because of problems of connection to the server

of Atac. This can create further bias if bad connection is correlated with travel time

(although it might be unreasonable). Also fatal errors of the machine have interrupted

for some hours the collection of data.
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7.4 Final Comments

Whether we can exploit the huge amount of data to improve the micro-cosm were we

live remains an open question. Whereas data are available, the possibility to store,

read and analyze this data can be extremelly difficult. A more complex task is then

the understanding of this data, which most of the time is an art rather then a science.

With this thesis I tried to give my small contribution showing how real time data of

bus arrival, apparently useless, can become useful for the people of a city with a bit of

efforts. Whereas the choice of the best model may depend on the nature of the problem

- see the no-free-lunch Machine Learning theorem - the methodology could be extended

also to other area of research - hopefully.



Appendix A

Miscellaneous

A.1 Proof EDF

To prove:

trace(S) =
n∑
1

cov(ŷi, yi)/σ
2 (A.1)

Assumptions:

• ŷi =
∑n

j=1 Si,jyj

• n ≥ j ≥ i ≥ 1

• (Si,j) does not depend on Y

• y1, ..., yn are uncorrelated and var(yi) =σ2

From the assumption we can derive that cov(yi, yj) = 0 ∀i 6= j, cov(yi, yj) = σ2 ∀i = j.

cov(ŷi, yi) = cov(
∑n

j=1 Si,jyj , yi) = Si,iσ
2 + 2Si,jcov(yj , yi) ∀j 6= i. By the assumption

of iid:

cov(ŷi, yi) = Siiσ
2 (A.2)

EDF =
1

σ2

n∑
1

cov(ŷi, yi) =
n∑
i

Sii = trace(S) (A.3)
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A.2 Proof Moment Condition

A.2.1 Moment Condition 1

To prove: E[1 ∗ λ(f̂ , y, γ0)] = 0.

Where γ0 = argmin
γ

E[Λ(f̂ , y, γ)], then by the first order condition, ∂Λ(γ)
∂γ = 0

→ C ∗ λ(f̂ , y, γ) = 0 where λ(f̂ , y, γ) = ∂Λ(γ)
∂γ = 0 at any local minimum and C is a

constant.

A.2.2 Moment Condition 2

To prove: E[λ(f̂ , y, γ0)′Λ(f̂ , y, γ0)] = 0.

This moment condition is derived because the derivative of a fixed length vector is al-

ways orthogonal to the vector itself. Given a vector of fixed length V, then: |V |2 is

constant,
∑
v2
a is constant,

∑ ∂
∂tv

2
a = 0, by the chain rule

∑
2∂va∂t va = 0,

∑ ∂va
∂t va = 0,

V ∂Va
∂t = 0.

A.2.3 Moment Condition 3

To prove: E[ŷiλ(f̂ , y, γ0)] = 0.

Under the two parameter class of loss functions, assuming:

f̂ = Xγ0

γ0 6= 0

λ(f̂ , y, γ) = E[ρX ′(I(y − f̂(x) < 0)− α)]|yi − f̂(x)|ρ−1] = 0 (A.4)

Because ρ is a constant this can be written as

λ(f̂ , y, γ) = E[X ′(I(y − f̂(x) < 0)− α)]|yi − f̂(x)|ρ−1] = 0 (A.5)

By multiplying each side for a fixed valued vector γ′0, γ′0E[X ′(I(y− f̂(x) < 0)−α)]|yi−
f̂(x)|ρ−1] = E[(Xγ0)′(I(y − f̂(x) < 0) − α)]|yi − f̂(x)|ρ−1] = E[f̂ ′(I(y − f̂(x) < 0) −
α)]|yi − f̂(x)|ρ−1] = 0
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A.3 Stepwise: results

For all other tables see chapter 6.

Table A.1: Features selection with Stepwise

Dependent variable:

traveltime

waiting time seconds 0.845∗∗∗ (0.005)
missing stops 14.594∗∗∗ (0.335)
traffic.x4 −203.502∗∗∗ (21.184)
at endstop 119.286∗∗∗ (4.029)
traffic.y1 −316.939∗∗∗ (22.911)
air 67.208∗∗∗ (6.128)
traffico.y3 32.801∗∗∗ (4.048)
hour4pm 82.330∗∗∗ (7.695)
hour7am 70.803∗∗∗ (8.236)
hour3am −156.306∗∗∗ (18.211)
hour1am −143.189∗∗∗ (17.437)
hour2am −128.249∗∗∗ (20.689)
hour5am −59.465∗∗∗ (10.533)
traffic.x3 −123.275∗∗∗ (21.212)
Wednesday −19.757∗∗∗ (4.679)
hour7pm 57.041∗∗∗ (8.099)
direction 21.390∗∗∗ (3.501)
prevision w1 12.831∗∗∗ (4.000)
hour6pm 45.145∗∗∗ (7.327)
hour5pm 41.145∗∗∗ (6.862)
hour4am −75.453∗∗∗ (19.462)
hour3pm 36.803∗∗∗ (8.576)
hour11am 30.216∗∗∗ (8.176)
banda.x1 −13.210∗∗∗ (4.445)
Thursday −14.272∗∗∗ (5.361)
hour11pm −21.011∗∗ (8.861)
hour9pm −12.723∗ (7.613)
traffico.y2 −23.469∗∗ (10.188)
hour10am 19.758∗∗∗ (7.595)
hour12am 20.472∗∗ (8.604)
Rain 10.159∗ (5.697)
hour2pm 15.422 (9.583)
hour8am 17.949 (10.916)
Saturday 8.153 (5.742)
Constant 155.399∗∗∗ (21.830)

Observations 20,685

R2 0.889

Adjusted R2 0.889
Residual Std. Error 234.789 (df = 20650)
F Statistic 4,876.395∗∗∗ (df = 34; 20650)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

A.4 Code

Code for Cross validation (in parallel execution with bootstrapping) is in chapter 2,

section 2.2.8; code for queries is in chapter 4, section 4.1. All scripts are available under

request.

A.4.1 Code for elaboration of data

The code has the following structure:

During the loop we first read each text file saved during the queries and we store only

the observations that are close to the bus stop:
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Load static Data

Create null object: xx = NULL

Initialize accumulator: k = 1

while try(read(data from query k)) is not error

xx = append by row xx to all buses with 0 minutes of expected arrival

at bus stop

k = k +1

To clean this matrix we drop doubled observations for same vehicle id, same stop id,

same day, hour and month:

Create two null objects: data = notdata = NULL

for i in 1: nrow(xx)

cc = xx[i,]

if cc is neither in notdata nor in data

obs = matrix with all observations in xx with same vehicle id, trip

id, stop, month, day and hour of cc

dd = vector of time values of each observation in obs

pos = the observation in obs with minimum (as.numeric(time))

obs = all observations in obs minus pos

data = append by row pos to data

notdata = append by row obs to notdata

To create the matrix of buses that have still to arrive to the stop we do something sim-

ilar, but now the distance in minutes is not 0 but C , were C is uniformly distributed

between 3 and 39:

Load static Data

Create null object: xx2 = NULL

Initialize accumulator: k = 1

while try(read(data from query k)) is not error

c = pick a number uniformly distributed between 3 and 39

xx2 = append by row xx2 to all buses with minutes of expected arrival

at bus stop equal to c

k = k +1

To clean also this matrix, we drop again doubled observations:

Create two null object: data2 = notdata2 = NULL

for i in 1: nrow(xx2)

cc = xx2[i,]

if cc is neither in notdata2 nor in data2
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obs = matrix with all observations in xx2 with same vehicle id, trip

id, stop, month, day and hour of cc

dd = vector of time values of each observation in obs

pos = the observation in obs with minimum (as.numeric(time)) (you

could pick any observation, not necessarly the min)

obs = all observations in obs minus pos

data2 = append by row pos to data2

notdata2 = append by row obs to notdata2

Merge the arrival and the bus with distance C expected minutes from the stop and clean

for same observations with same time of arrival, same stop id, same month, day, hour,

same trip and same vehicle id (mismatched observations):

rr = merge data with data2 by the id of the vehicle, the id of the trip

and the id of the stop

goodata = all rr where as.numeric(time of arrival) > as.numeric(time of

detection)

Create null vectors: bad = good = NULL

for i in 1: nrow(goodata)

cc = goodata[i,]

if cc is neither in bad nor in good

obs = matrix with all observations in goodata with same vehicle id,

trip id, stop, month, day and hour of ARRIVAL of cc

pos = observation in obs with maximum as.numeric(time)

obs = obs minus pos

good = append pos to good

bad = append obs to bad

Clean for same observations with same time of detection, same stop id, same month,

day, hour, same trip and same vehicle id:

null vectors bad2 = good2 = NULL

for i in 1: nrow(good2)

cc = good[i,]

if cc is neither in bad2 nor in good2

obs = matrix with all observations in goodata with same vehicle id,

trip id, stop, month, day and hour of STARTING POINT of cc

pos = observation in obs with minimum as.numeric(time)

obs = obs minus pos

good2 = append pos to good2

bad2 = append obs to bad2
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Add day, weather, direction to good2

compute travel time as the difference in seconds between time of arrival

and time of detection

save good2

A.4.2 Traffic Function

Function(trip id)

Query Trip s3

initialize first accumulator: set y = 1

while y is less then 100

if y==1

matrix2 = 1st values of s3

if (stop of matrix2 == STOP AND stop distance of xx < 2)

traffic condition = traffic condition of matrix2

exit the loop: y = 101

if (yth stop == STOP AND 2*nrows(matrix2) +2 >= stop distance)

traffic state = TS in row abs(nrow(matrix2) - stop distance)

exit the loop: y = 101

if (STOP in matrix2 AND 2untilstop + newarrivals >= stop distance)

traffic state = TS in last row matrix2

exit the loop: y = 101

else

bind by rows matrix2 with yth values of s3

if yth stop of matrix2 == STOP

initialize second accumulator: untilstop = y

initialize third accumulator: newarrivals = 0

y = y + 1

else

newarrivals = newarrivals + 1

y = y + 1

return traffic state

Traffic values are between 0 and 4 in decreasing order of traffic and -1 if they are not

available. They depend on the average speed of buses within a given radius from the

stop. The input of the query from traffic values must be the id of the trip. The out-

put is a list of dictionaries and values , reporting each stops in the trip and the traffic

condition for each stop. The objective of this function is to make a query on the id of

the trip for each bus arrival, find the closest stop to the vehicle in that moment and get

the traffic condition at that stop. The function builds a matrix with one single stop id
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and the corresponding traffic condition in each row. The rows are ordered from the first

stop to the last. To save time, the function does not build the full matrix but it stops

when it finds the right stop. For seek of brevity the graph reports many abbreviations.

STOP is the id of the stop; y, untilstop and newarrivals are three context-preserving

accumulators. The first, y, has the same role of x in the previous loop. It tells what is

the stop to extrapolate from the list and to append to the matrix. Untilstop tells what

is the position in the matrix of Si - the stop queried in the previous loop. Newarrivals is

the number of stops in the matrix after Si. TS is traffic state. The function exploits an

additional information from the values of the bus arrival: the number of missing stops

to arrive to Si, named in the graph stop distance.

I assumed that the vehicle do not change the route between two subsequent trips. One

further assumption is that traffic condition reported for stops in the opposite side of a

street - same stops of the same route on the trips with opposite directions - have the

same traffic condition.

The first if statement checks whether the first stop on the trip corresponds to the closest

stop to the vehicle considering both directions. If this is false, the second if statement

checks whether Si is the last element of the matrix and whether the vehicle has a stop

distance less then the number of stops reported in the matrix. If this is true, we are

sure that the stop of interest is in the matrix no matter what direction the bus has.

The function picks the traffic position from the ith element of the matrix, where i is the

number of rows minus the number of missing stops. It takes the absolute value because

it may be a negative number if the vehicle is in the opposite direction. The second if

statement checks whether both Si and the stop of interest are in the matrix. If this is

true it picks the last row of the matrix. In fact this condition is satisfied only when the

stop of interest enters in the matrix after Si, as the last observation.

A.5 Final notes on the models

• For linear regression the error was computed using the heteroskedastic formula;

• For splines both smoothing splines with loocv and cubic splines with 5 folds cv

were tested;

• For shrinkage models covariates were standardized as explained in chapter 2.
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