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Abstract: 

 Financial industry asks for tail risk protection, as the assumption of normally 

distributed markets does not hold anymore. The recipe presented by Meucci (2006) 

to generalise Black -Litterman Model without assuming any underlying 

distributions is here analysed on its ability to consider further moments of a multi-

asset portfolio. Above all, we are questioning if it is convenient to input views. The 

asset allocation is computed from the Mean-CVaR efficient frontier. The 

performance of the resulting asset allocation aims at efficiency in cutting tail risk 

while it is tested on non-normally distributed returns with tail distributions 

modelled employing Extreme Value Theory. We then formulate a synthetic 

indicator to evaluate the impact of the view on portfolio allocation according to its 

confidence level. 
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Introduction and brief literary review  
 

In the last 70 years, different theories have offered solutions to the problem of 

portfolio optimisation. The first pioneer in this discipline was Harry Markowitz in 

1952 with his seminal paper "Portfolio Selection," published by the “Journal of 

Finance”. This was the beginning of Modern Portfolio Theory: risk-averse 

investors can construct portfolios to maximise expected return for a given level of 

market risk, implying that risk is an inherent part of higher reward. This path leads 

to the construction of an efficient frontier of portfolios, which are expected to 

achieve the highest return (mean) for a given level of risk (variance). Mean 

variance model brought to life the revolutionary idea of diversification. 

This basic portfolio model has been developed through several paths in the 

following years. The first alternative to minimum variance came out substituting 

the risk measure: Mean-Absolute Deviation model (MAD) by Konno and 

Yamazaki (1992) substitutes the mean squared error with the mean absolute 

deviation. Even this measure suffers from the “symmetric curse” giving the same 

weight to positive and negative variations around the mean. Along the same 

concept in 2000, Uriasev S. and Rockafellar, R.T. found an algorithm for efficient 

portfolio in a Mean-CVaR framework. For the first time the risk has been measured 

as a loss, or more precisely, the average loss in the “negative” tail of the worst 

percentile (usually 5%) of returns. As we will see later in this paper, this approach 

for efficient allocation does not rely on a specific distribution, allowing for better 

considerations on tail risk whatever would be the shape taken. 

In 1992 Black, F. and Litterman, R. (1992) published on the Financial Analyst 

Journal an article called “Global Portfolio Optimization” providing an outstanding 

model to import active management into portfolio optimisation process. This fine 

technique allows combining investor’s views and opinion on assets with CAPM 

and Mean-variance model. The pure strength was the tool to create a posterior 

distribution able to blend and to capture information from both market distribution 

and manager’s opinion. 
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The underlying assumption of normal distributions involved in the model supports 

the Black-Litterman (BL) innovation. Growing needs from financial industry and 

challenges for the academic world have brought attempts to generalise BL model to 

every sort of distribution. We will discuss broadly the result obtained by Meucci 

who in 2006 proposes a solution by replacing Bayesian statistics of traditional BL 

model with a Copula Opinion Pooling approach to implement the view without 

assuming any specific distribution for market returns.  

The following chapter set the ground for Black Litterman Model for non-normally 

distributed returns, describing in detail the previous step for efficient asset 

allocation. 

In the first chapter, we are presenting the basic concepts for modern portfolio 

theory.  We explain and compare Markowitz and Black Litterman models giving a 

deep perspective on the assumption in which they rely on. The aim of the work 

actually concerns the possibility to extend Black Litterman model beyond the 

normality assumption. Moving from the basic tool in portfolio optimisation we 

analyse the financial risk management measure of VaR and CVaR, introducing the 

advantages for portfolios’ efficient frontiers, and therefore, optimal allocation in 

the Mean-CVaR framework. 

The second chapter focuses on non-normality of asset’s returns. First feature from 

the third and fourth moment are presented. As a second step, we describe the 

methodology suggested by Meucci (2006) to generalise Black Litterman Model 

and therefore on how to insert views in asset allocation process employing a 

Copula Opinion Pooling approach. The final step to complete the non-Gaussian 

framework needs to structure a Monte Carlo simulation method consistent with our 

purposes: Extreme Value theory provides a way to model tails of the distribution 

and a practical way to assess risk brought by excess kurtosis. 

The third chapter puts the model at work.  The main question to answer is whether 

it is convenient to insert a view. The performances are tested for scenarios where 

the view is correct or wrong. In addition we formalises a synthetic indicator to 

express how intensively the view influences the portfolio allocation. The analysis is 
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concluded by considerations on the ability of this model to face non-normal 

markets. 
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CHAPTER 1: Portfolio theory 

1.1 Mean-Variance Model 

Markowitz approach moves from a set of background assumption: 

The investors want to maximize the returns for a given level of risk:  this 

statement is implied by the fact that most of the investors are risk adverse. 

Your portfolio includes all of your assets and liabilities: comprehensive 

approach implying the hypothesis of complete markets. 

A good portfolio is not simply a collection of individually good investments: 

the portfolio maximises the utility function of a risk adverse investors and takes 

into account the relationships among assets returns in the portfolio. 

The first practical and quantitative step is to estimate a set of parameters:  

1.1.1 Return  

The return of an asset over a single period is computed by   

Rt  = 
P t  

Pt−1

− 1 

 

For every asset, we need to estimate the average return over a one-period of time. 

Usually simulations or historical data are the sample for which the mean return is 

computed. For the upcoming analysis, data are collected on a daily basis and the 

arithmetic average is computed. 

For a portfolio with N assets, its return is the weighted average of the return of the 

assets composing the portfolio, while the weights are exactly the percentage of 

portfolio’s value invested in the respective asset.  Organising the weights in a 

vector w = ( w1 , w2 , w3 , … , wn ) the return on a portfolio for a given period is 

given by 

Rp  = w’ R 

where R is the vector of assets returns R = ( R1 ,R2 ,R3 ,…,RN ). 

In Portfolio management, rates of return are modelled as random variables for 

which a certain probability distributions function is assumed: the choice of the 
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random variable depends on the assumptions, namely the most famous and 

common models rely on the assumption of normally distributed returns; the 

purpose of this paper is to find a reasonable alternative to this binding perspective. 

Expected return is therefore the firs moment of the portfolio. 

E(Rp) = w’ E(R)  

1.1.2 Covariance Matrix 

Risk is the other fundamental parameter to be estimated. Risk is the uncertainty 

about future outcomes. An alternative, and a more intuitive, definition would be the 

probability of certain negative scenarios.  The most common measure of risk is the 

variance of returns namely the average of squared deviation from the expected 

return.  

In a portfolio framework with N assets, we have to deal with N random variables 

generating returns. This problem can be modelled using a multivariate random 

variable (n-variate random variable) where the expected value is a 1xN vector of 

expected returns, and the variance a symmetric NxN matrix. It is actually 

fundamental to take into account how assets’ returns covariate, enabling to 

appreciate the diversification effect. 

The computation of the covariance is performed through the usual formula: 

𝑐𝑜𝑣(𝑅𝑖 , 𝑅𝑗) = σi σj ρij 

where ρ is the Pearson correlation coefficient 

The variance covariance matrix would be composed as follow 

∑ = [
𝑐𝑜𝑣(𝑅1 , 𝑅1) ⋯ 𝑐𝑜𝑣(𝑅1 , 𝑅𝑁)

⋮ ⋱ ⋮

𝑐𝑜𝑣(𝑅𝑁 , 𝑅1) ⋯ 𝑐𝑜𝑣(𝑅𝑁 , 𝑅𝑁)

] 

 

According to Markowitz and to the mean variance framework, is now possible to 

assess the risk of a portfolio as the variance (a scalar) around its expected return 

given a pre-determined vector of weights to be applied to its assets 

 

σ
2
 = ∑ wi

n
i=1  σi

2 +  ∑ ∑ wij<i
n
i=1 wjcov(Ri ,Rj ) = w’ Σ w 
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1.1.3 Portfolio optimisation 

The aim of Modern Portfolio Theory is to select the optimum portfolio. So far, we 

have described how to achieve the first and the second (centralised) moment of the 

portfolio. Mean and standard deviation are the only sufficient parameters to 

describe a Normal distribution. Markowitz optimisation computes the efficient 

allocation according to these two parameters: it is actually easy to guess an 

underlying Normality assumption for market returns 

The optimisation is performed subject to the weights of every asset in the portfolio 

and hence performed to maximise the utility function of a hypothetical investor. 

According to the theory developed by Markowitz, most of the investors are risk 

averse. The choice of an utility function showing the risk aversion feature can be 

performed among a wide set of functions and the selection of a specific one is led 

by subjective reasons on a case by case basis.  

This problem can be brilliantly solved by noting that every consideration on risk 

aversion ends up with a minimisation of the risk, namely the variance of our 

portfolio computed as above, keeping the expected return at a certain level. 

 

min  
𝑤𝜖ℝ𝑛

1

2
w’ Σ w 

s.t.   w’ E(R) = µ    

  w’1 = 1 

 

This minimisation problem is solved using numerical methods. Speed consistency 

and stability of estimated parameters are crucial points that we will discuss later 

about weaknesses of this model.  

Using Lagrange multipliers to solve the optimisation, 

min  𝑤𝜖ℝ𝑛
1

2
w’ Σ w – λw’ E(R) 

we see that the multiplier λ is the parameter that calibrates the risk aversion. In this 

way, we can give a generalised and objective measure to the risk aversion. 

The solution for the optimal weights of the portfolio are defined as follow 
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    w* = (λ Σ )
-1

 E(R) 

The solution is a vector giving weights to the N assets included in the portfolio. In 

other words, it is the optimal portfolio. 

Remembering that we have just minimised the variance keeping the expected 

return at a determined level, it is possible to perform the very same optimisation for 

every level of expected return. The output would be an optimal portfolio, the one 

that minimises the risk, for each target expected return.  

Plotting every single combination of risk-return, we obtain a hyperbola, where its 

upper edge represents the efficient frontier.  

   

1.2 Black-Litterman Model 

In this paragraph, we describe the original version of Black Litterman starting to 

appreciate the innovativeness of the model. A pointwise comparison with the 

famed Markowitz model will follow. 

First, Black-Litterman model is an equilibrium model: the starting point is the 

market portfolio, where the weights are indicated by the full diversification and 

according to the exposure to the unique risk factor, namely market risk. It is a way 

to simplify the procedure concerning parameter’s estimation, keeping in mind all 

the weaknesses that such a procedure carries with itself. 

Anyway, historical data or simulation can be exploited to estimate the parameters, 

and this is actually, what we are going to see in the implementation of our modified 

model. 

Before starting to present the model, it is useful to state the aim of BL: estimate the 

distribution (mean and variance) of the returns taking into account that the investor 

has expressed views about assets’ performance. From the passive market portfolio 

from equilibrium model, we have switched into the world of active management.  
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1.2.1 The model 

First question arising is: “What is meant by view?” 

A view is an opinion or a statement about the market. This might appear quite a 

generic definition, actually Black –Litterman framework exclusively considers 

views on expected returns. In other words, these views are linear and arranged in a 

matrix.  

There are two kinds of views: relative and absolute. A relative view concerns the 

comparison with another asset, namely if an asset will outperform or underperform 

another one; in this case the weights in the respective row of the matrix will sum up 

to zero.  

An absolute view set up the comparison between an asset and the entire portfolio, 

again in terms of over/underperformance; in this case, the sum of the weight in the 

row will sum up to one. 

In addition, the set of views do not have to cover every asset, in fact they can even 

conflict with each other. 

Formalizing this theory using an example, we assume K views on a portfolio of N 

assets. The K views are usually organised into a pick matrix, called PK×N : it is easy 

to realize that every row describes a single view. Having in mind the structure of 

linear system described with matrices, we now need a vector containing 

information about expectation on the view. This vector is called a with dimension 

K × 1. Finally yet importantly, we have to introduce a confidence level for the 

views: the matrix Ω will be a diagonal matrix containing the percentage of 

confidence of the views. The matrix Ω is diagonal by construction because the 

views are assumed to be uncorrelated with each other.  

Modelling assets’ portfolio with returns R = ( R1 ,R2, … ,RN ) we set the following 

multivariate normal distribution 

R ~ N (µ, ∑) 
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Where µ is the vector containing the expected return of every asset while ∑ is the 

variance covariance matrix, both parameters estimated like in Markowitz model. 

Hence, we need to define the expectations again as a multivariate normal 

distribution. 

µ ~ N (θ, Σµ) 

It is interesting to notice that Σµ is equal to Σ scaled by a parameter τ representing 

the uncertainty around the estimation of µ. 

Coming back to the active management problem, we organise the views according 

to a normal distribution 

Pµ ~ N (a, Ω) 

From this statement follows that 

a = Pµ + H 

where H is a normal distribution ~ N (0, Ω). Expectations on the views can 

therefore be modelled as a random variable A conditioned on the realisation of µ 

A|µ ~ N (Pµ, Ω) 

Determining the confidence level matrix Ω is not a straightforward task. A long 

debate has tried to disentangle a procedure to estimate objectively the confidence 

level. Meucci (2006) has provided an easy and intuitive solution  

Ω = 
1

𝑐
 P Σ P 

Where the c is a scale, parameter showing the level of confidence on views 

considering them jointly. The scalar c does not share the same nature of the terms 

in the principal diagonal of Ω: c is not a percentage, its value varies in the interval 

(0, ∞) where it is 0 for the null confidence and ∞ meaning the certainty. 
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Concluding the treatise about the views, we provide an example. Suppose to have 5 

assets and 2 views: the first is an absolute view in which the asset 1 will have a 

return of 1% with confidence level η22. The second is a relative view according to 

which asset 3 will outperform asset 5 by 5% with confidence η11.We therefore 

formalise the problem with the following matrices 

P= (
1 0 0 0 0
0 0 1 0 −1

)    Ω = (
η11 0
0 η22

)    A=(
5%
1%

) 

1.2.2 Posterior distribution 

The aim of Black-Litterman model is to find a posterior distribution of assets’ 

return, namely the distribution of the views conditioned on the realization of 

estimated return µ. We can now introduce the basic concepts of Bayesian statistics 

using the previous notation for distributions. 

Considering A and µ two events, in probability theory we have that 

P (µ|A) = 
𝑃(𝐴∩µ)

𝑃(𝐴)
   and  P (A| µ) = 

𝑃(µ∩𝐴)

𝑃(µ)
 

From which follows Bayes theorem 

P (µ|A) = 
𝑃(𝐴|µ)×𝑃(µ)

𝑃(𝐴)
 

Or equivalently using probability density functions 

f(µ|A) (µ) = 
𝑓(𝐴|µ)(𝑎)  ×  𝑓(µ)(µ)

𝑓(𝐴)(𝑎)
 

We know that µ are the parameters, more precisely a multivariate normal 

distribution as stated before. This distribution is the prior distribution in Bayesian 

statistics, while the result of the latest equation, f(µ|A) (µ), is the posterior 

distribution and  𝑓(𝐴|µ)(𝑎) is the likelihood function.  

Practically speaking, the set of estimated parameters µ, are the implied returns from 

CAPM, defined as a prior equilibrium distributions, or directly estimated from 



14 
 

simulation or historical data. The information processing that follows is improperly 

defined as a Bayesian statistics, while it would be more precise to define it as a 

conditional probability. Actually, the distribution µ is then conditioned on the 

“observed data”, namely the views. As a result, the posterior distribution is the 

conditional probability that is obtained after that the relevant new information is 

taken into account. In other words we are updating information.  

Posterior distribution ∝ prior distribution × likelihood function 

Straight back to our Black Litterman portfolio, we obtain the posterior distribution 

of µ using Bayes’ formula 

µ|A ~ N(𝜃𝑝𝑜𝑠𝑡
 , 𝛴µ

𝑝𝑜𝑠𝑡
) 

where 

𝜃𝑝𝑜𝑠𝑡= [(Σµ)
-1

 + P’ΩP]
-1

[(Σµ)
-1

 θ +P’Ω
-1

V] 

𝛴µ
𝑝𝑜𝑠𝑡

 = [(Σµ)-1
 + P’Ω

-1
P]

-1
 

So far so good, we have obtained a posterior distribution of the estimated 

parameter, so the following step will be to find a posterior distribution of assets’ 

returns R. 

R|A ~ N(µ𝐵𝐿, Σ𝐵𝐿) 

where 

µ𝐵𝐿 = [(Σµ)
-1

 + P’ΩP]
-1

[(Σµ)
-1

 θ +P’Ω
-1

V] 

Σ𝐵𝐿 = Σ + 𝛴µ
𝑝𝑜𝑠𝑡

 = (1+τ) Σ –τ
2 ΣP’ (τP Σ P’ + Ω)

-1
 P Σ 

There are several interpretations of the obtained result.  
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Remembering that we started by estimating a market equilibrium µ in which views 

apply, a paper by Fabozzi, Focardi and Kolm (2008)1 suggests to interpret return 

distribution as a linear combination of market equilibrium θ and the estimated 

distribution µ weighted by the confidence levels concerning both views and 

estimated parameters. Given the result, the confidence level for our estimates of 

market equilibrium is (Σµ)-1
 while the confidence level of our views corresponds 

to P’ΩP. Describing further the linear combination formalised by Fabozzi, 

Focardi and Kolm (2006) we can compute the weights given to θ and µ 

ωθ = [(τΣ)
-1

 + P′Ω
-1

P]
-1

(τΣ)
-1 

ωA = [(τΣ)
-1

 + P′Ω
-1

P]
-1

(P′Ω
-1

P) 

where ωθ + ωA = I . 

Stress-testing  this result when (Σµ)-1
 → 0 we see that ωA → 1 so the Black 

Litterman return will get close to the value stated by the views. On the other hand 

when (P′Ω
-1

P) → 0 follows that ωθ → 1. 

1.3 Brief comparison: Black Litterman vs Markowitz 

It is easy to realise how Black-Litterman has introduced active management in the 

framework of Portfolio Theory and asset allocation problems. The chance to 

implement views in portfolio optimisation starting from a market equilibrium 

model, passive by definition, has rewritten the rules in asset management industry. 

From a pragmatic perspective, Black-Litterman is able to smooth the principal 

weaknesses of mean-variance approach. Mean variance optimisation is 

indisputably difficult to be performed mainly for two reasons: number of 

parameters to be estimated and sensitiveness of the results. 

For every single asset, Markowitz theory needs to estimate expected return, 

standard deviation and correlation with all the other assets. More precisely for a 

                                                           
1 Fabozzi, F., Foccardi, S., Kolm, A., 2008, “Incorporating trading strategies in the Black-Litterman 

framework”, The Journal of Trading 
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portfolio of N assets, we have N expected returns, N variances and (N
2
-N)/2 

covariances. This is extremely time consuming and it embeds a high amount of 

discretion in selecting the sample in which to perform the estimates. Moreover, the 

same accuracy is needed for every asset, also for the ones not taking parts into the 

active investment decision. 

Once we have the optimum portfolio or the entire efficient frontier we realise that 

our result is extremely sensitive to the estimated parameter used as inputs. A 

common problem with these portfolios is that they end up being unreasonably 

concentrated in few assets and extremely dependent on the selected sample. 

Portfolio managers can then use resampling technique to normalise the estimated 

parameters and to give robustness to their strategies: they compute an average of 

optima for a certain combination of mean-variance. Another solution to the 

excessive concentration of portfolios is to set a minimum diversification: 

constraining the weight to desirable ranges is after all a palliative care. Regarding 

strong dependence of estimated parameters to the sample can be partially overcome 

by shrinking the covariance matrix, giving more weight to the principal diagonal 

composed by variances
2
. 

Black-Litterman, on the other hand, faces brilliantly this problems estimating two 

sets of expected returns, one for the passive investment and one for the active side. 

The passive side concerns the “equilibrium” expected returns, namely what the 

market has decided a level of return and the investor is price taker. These returns 

are obtained using reverse engineering from a benchmark structured as the 

Capitalization weighted portfolio and they are the appropriate result for a passive 

investor, so a neutral vantage point for the active manager. 

As already mentioned, the active side concerns the views. What about assets not 

covered by any view? The weight in the portfolio is maintained close to the one 

revealed by the benchmark. For the other class of asset the weights are adjusted 

consistently with the views and respecting the trade-off between risk and return.  

                                                           
2
 Ledoit, O., Wolf, M., 2003, “Improved Estimation of the Covariance Matrix of Stock Returns 

With an Application to Portfolio Selection”, Journal of Empirical Finance 
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Actually, after having obtained the posterior distribution you can opt for several 

portfolio optimisation solutions, and traditionally mean variance optimisation is 

preferred. The Black-Litterman portfolios are more stable and less sensitive to 

input parameters having less degree of freedom in the overall estimation, but above 

all the asset allocation is better calibrated to fit manager’s investment decision, 

compared to any heuristic approach concerning constrained weights.  

Mean variance optimisation of posterior distribution is usually preferred for its 

applicability to normal distributions. When we analyse assets with non-normally 

distributed returns, portfolio optimisation can be performed using other risk 

measure to substitute the variance. The most common alternative is the Mean-

CVaR approach. Conditional VaR or Expected shortfall describes a loss function 

over a certain percentile of returns. The advantage of using CVaR is that the loss 

function is concave, so it is possible to perform a numerical optimisation. We leave 

for the following chapters a deep analysis of Mean-CVaR optimisation. 

1.4 Financial risk management measures 
In financial risk management, it is crucial to select the convenient risk measure to 

calibrate the models. Talking about risk, the standard deviation of unexpected 

outcomes is the first risk measure to think of. Anyway, standard deviation is 

relevant under normality of returns. Moreover, it describes the variation around the 

expected value for both sides, positive and negative variations with the same 

weight. As everybody can figure out, a person not familiar with financial measures 

would be much more concerned about the likelihood of losses than about the 

deviations from the mean: this is why measures like VaR and CVaR (or expected 

shortfall ES) have a good practical advantage. 

1.4.1 VaR 

JPMorgan firstly pioneered VaR, and it captures the idea of maximum loss for a 

determined confidence interval in a given amount of time. VaR measure is 

conventionally reported as a positive number X, equal to the amount of the loss. 

There are two ways to compute VaR: parametric, namely assuming a random 

variable generating the outcomes, or non-parametric, using only the sorted series of 

outcomes. 
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The formula for parametric VaR for a confidence level equal to α of a random X is 

defined by 

VaRα (X)= inf { FX (x) > β } 

where F(x) is the cdf of X.  

Equivalently, exploiting inverse cdf and quantiles we can rephrase easily the 

previous equation 

VaRα (X)= F 
-1

(β)  

For a non-parametric approach it is sufficient to sort the outcomes of the random 

variable, namely the returns and to take the element in the (1-α)
th

 percentile. 

The problem arises in portfolio optimisation realising the weakness of this risk 

measure. Actually, VaR is not a coherent risk measure. We are now showing the 

requirements for a function in order to be a coherent risk measure. 

Given a function π of a random variable X, if  π shows these properties 

 Monotonicity of the function: if an asset performs worse than another in 

every likely state does, than its risk measure must be higher. 

 Translation invariance: π(X+c) = π(X)+c or in other words if a c amount 

of risk free asset is added to a portfolio, the risk measure should decrease by 

c. 

 Homogeneity: if c>0 then π(Xc)= cπ(X) or in other words the risk measure 

is scaled by the size of the portfolio, other things being equal. 

 Subadditivity: π(X + Y) < π(X) + π(Y) or in other words merging two 

portfolios, the resulting risk measure should be less than the sum of the 

single risk measures. 

Unfortunately, VaR is not a coherent risk measure because of the lack of 

subadditivity property. Actually, VaR does not take into account the benefits from 
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diversification. Moreover performing a portfolio optimisation Mean-VaR we could 

face a non-convex region, importing difficulties in the numerical minimisation.  

1.4.2 CVaR 

Considering the technical weaknesses of Value at Risk, a conceptually close 

measure was developed by Rockafellar and Uryasev 
3
 called Conditional Value at 

Risk or Expected Shortfall. It is called conditional because it investigates the loss 

function in the “negative” tail, right after the threshold indicated by the VaR.  

Value at Risk states the likely maximum loss with a certain confidence, but it gives 

no information about what happens right after the VaR loss. Conditional VaR is the 

expected loss conditional that the loss exceeds VaR level. It answers the question, 

“if things go bad, how bad can they go?”. 

CVaRα(X) = E[X|X >VaRα(X)] 

CVaR is a coherent risk measure and a convex function. A way to compute it non-

parametrically consists on taking the average of outcomes worse than VaR 

threshold. 

Knowing the distribution generating the outcomes, Rockafellar and Uryasev 

provide a formula to compute this measure 

CVaRα(X) = ∫ 𝑦𝑓𝑥
𝛼+∞

−∞
(y) dy 

Where 

𝑓𝑥
𝛼(y) =  

1

𝑓𝑥
𝛼(𝑦)−𝛼

    if y ≥ VaRα (X) otherwise is equal to 0. 

The parametric approach meets a specific formula different for every kind of 

distribution. The challenge is to adapt this risk measure in a portfolio optimisation 

framework. 

                                                           
3  Rockafellar, R.T., S. Uryasev, 2000  “Optimization of conditional value-at-risk, Journal of Risk 

and  

Rockafellar, R.T., S. Uryasev. 2002, “Conditional Value-at-Risk for General Loss Distributions”,  

Journal of Banking & Finance 
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1.5 Portfolio optimisation Mean-CVaR 

Portfolio optimisation using Mean-CVaR combination is performed in order to 

achieve a corresponding efficient frontier. As we have seen for the theory by 

Markowitz, we can reach an efficient frontier by minimising the variance keeping 

the expected return at a certain minimum level, or equivalently maximising the 

expected return for a given level of variance. 

According to the pioneer work by Rockafellar and Uryasev (2000), the 

optimisation was considered as minimizing CVaR for a minimum expected return.  

According to a theorem formalised by Pavlo Krokhmal, Jonas Palmquist, and 

Stanislav Uryasev (2001)
4
 there are three equivalent ways to formulate the 

problem: 

min𝑤 𝐶𝑉𝑎𝑅(𝑤) − µ𝑅(𝑤)                     where w ∈ W and µ > 0 

min𝑤 𝐶𝑉𝑎𝑅(𝑤)   s.t. R(w)≥ r*        where w ∈ W and µ > 0 

max 𝑤 𝑅(𝑤)  s.t. CVaR ≤ L                 where w∈ W and µ > 0 

Given that CVaR (w) is a convex function, R(W) is concave and W is a concave 

set, the three versions to optimise end up with the same frontier allowing short-

selling and offsetting the long short positions. 

The algorithm computes the optimal weights for which the portfolio belongs to the 

efficient frontier, namely the best expected return-CVaR combination, using the 

information provided by the posterior.  

The choice of this methodology to compute the optimum portfolio is led by the 

assumption of non-normal markets. As we have already explained in the previous 

chapter, most of the features not covered by Markowitz optimization concern the 

probability of events in the tails of the distribution: fat-tails are unanimously 

                                                           
4
 Pavlo Krokhmal, Jonas Palmquist, and Stanislav Uryasev, 2001, “Portfolio optimization with 

conditional value-at-risk objective and constraints”  
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considered a problem for portfolio managers and risk specialists. CVaR measure 

describes the risk nestled on the tail of the distribution, giving weight to extreme 

events that normal model would not even take into consideration. Large success of 

the CVaR approach comes after having realized that extreme negative market 

conditions can deplete portfolio performances over the worst expectations simply 

because no defence was taken against these events. In addition more and more 

investment manager has matched the preferences of their investors by cutting tail 

risk and offering downside protection as a mandate. 
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CHAPTER 2: Living in a skewed and leptokurtic world 
 

Modern Portfolio Theory has defined the principal paradigm behind the one best 

way in constructing efficient asset allocation. Unfortunately, sometimes results are 

not as good as expected. Portfolio models cannot predict and react to every 

situation especially during extreme events. The point is that financial markets are 

excessively complicated, and the best model to represent the world is the world 

itself. The aim is towards the best approximation. 

The friendliest way to fit the distribution of returns is the Gaussian bell: a heavy 

assumption for a less painful procedure. What could be more painful than a 

complicated model are the losses the Gaussian distribution would have never 

considered. Thinking about deviations from Normality is straightforward to address 

the discussion to asymmetry and fat-tails in distribution of returns. 

Skewness 

 Asymmetric distributions have skewness different from zero: in other words, the 

mass of the outcome of the distribution does not take place symmetrically around 

the mean. When the left tail is longer (left-skewed) and the outcomes are 

concentrated on the right of the “bell”, than the distribution has a negative skew. 

On the other hand, a positively skewed distribution sees its right tail longer and the 

mass concentrated on the left. 

 

Fixed income securities are the perfect example for skewed distribution of returns. 

While the probability of default is relatively small and the probability of receiving 

the coupons and the face value at maturity is relatively high, the distribution is 

truncated for more positive returns, so it is possible to assess a negative skewness. 

The most common measure of risk, namely the standard deviation, is a measure of 

dispersion symmetrically around the mean and it would not consider the skewness. 

Whether to consider desirable positive or negative skewness is empirically sensible 

to the entity of the asymmetry. 

According to classical financial theory, investors always prefer positively skewed 

returns. After all, positively skewed tails head toward positive infinity while 
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negatively skewed tails point toward the negative infinite; moreover, for positive 

skewness the mean falls above the median. Recent developments in behavioural 

finance have observed empirically a preference for deeply negatively skewed 

returns. The key to interpret this phenomenon relies on prospect theory: “A change 

from impossibility to possibility or from possibility to certainty has a bigger impact 

than a comparable change in the middle of the scale.”  

The preference for positively skewed pay-offs is justified through the “longshots 

bias”, explaining the popularity of lotteries, because of the overweight events that 

are possible although the low probability. The preference for negatively skewed 

pay-off relies on the fact that positive outcomes have high probability to occur but 

not the certainty and for this reason are underweighted. Utility from skewness 

depends mainly on the weights addressed to the distribution of losses, where many 

investors are concerned to what would be their fate during severely distressed 

situation.  

After these considerations, the choice of a meaningful risk measure becomes the 

main driver for efficient asset allocation. Conditional VaR is a risk measure that 

gives enough relevance to what happens to the portfolio on the left tail of the 

distribution, answering to the question how much do I expect to lose in the worst 

X% of cases?  

We can compute the skewness for a multi-asset portfolio employing an approach 

similar to the one used to estimate the portfolio variance. In this case, the 

covariance matrix would be substituted by the co-skewness matrix. This matrix has 

dimension N x N
2 

and it is here defined: 

𝑀3 =  E [( R − µ)  ×  ( R − µ)’  ⊗  (R − µ)’ 

 

From which follows that the measure for multivariate skewness is computed as: 

𝑆𝑝 = w′𝑀3(w ⊗ w) 

 

Kurtosis 

Another deviation from normality concerns the concentration of outcomes 

clustered on the tails of the distribution. 
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What makes portfolio managers worried is that Normality assumption 

underestimates the probability of catastrophic events. The problem with kurtosis is 

better addressed in terms of “excess Kurtosis”: Gaussian distribution has a kurtosis 

equal to 3, and then a distribution showing a larger value is deemed as 

“leptokurtic”, and “platykurtic” for lower values. A leptokurtic distribution is more 

peaked than a Gaussian “bell”. It follows that small changes are less frequent while 

extreme events are far more likely to happen than the ones contemplated by 

Normality assumption because the tails are considerably fatter and longer.  

The motivation to dread leptokurtosis relies on assessing the likelihood of potential 

large losses to our portfolio, so excess kurtosis is undoubtedly perceived as a 

negative feature for the investor. Again, Conditional VaR is a useful tool to 

investigate what happens in the tails of the distribution. 

Multivariate kurtosis is again measured thanks to a multidimensional matrix called 

co-kurtosis matrix of dimension N x N
3
: 

𝑀4 =  E [( R − µ) × ( R − µ)’  ⊗ (R − µ)’ ⊗ (R − µ)’ 

From which follows that the measure for multivariate skewness is computed as: 

𝑆𝑝 = w′𝑀4(w ⊗ w ⊗  w) 

In the next paragraphs, we will analyse if the third and the fourth portfolio 

moments behaves in the process to implement the view. First consideration 

concerns the posterior and its moments for assets univariate distributions: are they 

going to change from the same measures found in the prior? Second analysis will 

cover the multivariate frame, namely how skewness and kurtosis differ for 

allocations depending on the confidence level. 
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2.1 Implementing views in a non-normal world 

Active portfolio management seeks a method to include manager’s view in asset 

allocation procedures, trying to keep aside naïve and heuristic biases.  

Information processing algorithms allows filtering the information from the market 

jointly with the opinions stated by the manager, creating a posterior distribution of 

returns. Dealing with non-normally distributed returns (prior) we should look after 

the features of the posterior distribution, namely how the distribution has been 

reshaped.  

As we have seen in the first chapter, the common model to process the information 

is the Black-Litterman model. This model is able to blend smoothly the views of 

the investor with the prior distribution from the market, assuming that every 

distribution involved is Gaussian. Given its popularity, financial industry and 

academic world has tried to extend the model to non-normal markets.  

Meucci (2006)
5
 provided an innovative method to insert views and to infer a 

posterior distribution starting from non-normally distributed returns using a 

Copula-Opinion Pooling (COP) approach. 

Meucci has applied COP to Black–Litterman’s views in two stages in 2006. First 

stage relies on a specific quasi-normality assumption: the market is assumed to be 

skew-t distributed just because linear combinations of this kind of distributions are 

again skew-t distributions creating a situation almost analogous to the normal case. 

This property is one of the main reason to make Gaussian distribution easy to 

handle and that allows the functionality of the Black-Litterman model in its 

original formulation. The second stage starts from an application of COP approach 

to reach a generalisation of the model for any kind of distribution: constructing a 

market prior through a very large number of Monte-Carlo simulations, COP can 

easily compute a posterior distribution. 

2.2 Copula Opinion Pooling: theory behind the algorithm 

The algorithm aims to compute a posterior distribution. First set of information is 

provided by the market in a N-dimensional vector: a set of returns from a bunch of 

                                                           
5
 Meucci, A. 2006 “Beyond Black-Litterman: Views on Non-normal Markets” 
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N assets or a collection of risk factors are the usual input to describe the stochastic 

variables determining the market randomness. At this point, it is useful to represent 

this random variable M in terms of their probability density function (f) or 

cumulative density function (F). 

As we have already exposed broadly, the crucial part of this model are the views. 

As in the BL model, the views are a set of K ≤ N statements of any linear 

combination of the market vectors. 

In this model, we observe a slight difference from the usual BL world: we have the 

option to express views directly on the market realizations M instead of the only 

distribution’s parameters. The above linear combinations give shape to a K×N 

dimensional "pick" matrix P.  

As a result, the random vector describing the views is defined by 

V= P×M 

We represent each view in terms of a probability density function: the model 

assumes that the views are expressed through a uniform distribution to better 

respect the feature of opinion on market realization and to take into account the 

non-normal market structure. The process to achieve a posterior consistent with 

non-normal market needs to stay clear from add information assumed exogenously: 

according to maximum entropy framework, uniform distribution is actually the 

random variable that maximises the entropy under no constraints.  

Market random variable could have any shape and uniformly distributed views 

needs to end up in a blending posterior: the views are then reshaped by the market 

distribution M.  

The heart of the procedure lies in the opinion pooling procedure: in this specific 

case, a “bottom up” approach has been selected. Therefore, the first step is about 

computing the posterior marginal distribution of each view separately: we can 

actually replicate the view by a weighted average of the market-structured prior pdf 

and the view’s pdf itself.  
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The weight given to the market or to the view depends on the confidence the 

investor assesses for the opinion: actually, we can assimilate this weight to the 

confidence level of the views in the traditional BL framework. 

The joint posterior distribution of the views comes as the next step using the 

dependence structure introduced by the market prior (see Monte Carlo simulation 

using copula).  

We fit a copula to the marginal distribution of V 

C = (𝐹𝑉1
 (V1) , 𝐹𝑉2

 (V2), … , 𝐹𝑉𝑘
 (Vk)) ’ 

Then it possible to constrain on the market structure to achieve the joint posterior 

distribution as follows: 

J =  ( 𝐹𝑆1

−1 (C1), 𝐹𝑆2

−1 (C2), … , 𝐹𝑆𝑘

−1 (Ck) ) ‘ 

where FSn

−1 is the quantile function of the cumulative distribution function. 

Finally, joint posterior distribution is computed by blending the views in a suitable 

set of market coordinates. Before that, we need to notice that the market vector can 

be expressed in a set of view-adjusted coordinates:  

M  ⇔   (
V ≡  PM

W ≡  P⊥M
) 

 
Where W is intuitively a matrix with (N-K) rows to describe the entries unaltered 

by the views. By reverting the now defined matrix M to the market coordinates, we 

end up with a posterior distribution. 

  

M*  ⇔ (
P

P⊥) −1 (
J

W
) 
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2.3 Algorithm 
The algorithm to compute the posterior is borrowed from Meucci (2006)

6 
and we 

now propose the list of five steps to insert views without assuming a specific 

distribution, not only traditional Gaussian, for our market random variable. 

 rotate the market prior into the views’ coordinates; 

 compute the views prior cdf’s and the market-implied prior copula; 

 compute the marginal posterior cdf of each view; 

 compute the joint posterior distribution of the views; 

 compute the joint posterior realizations of the market distribution; 

The posterior needs to show some consistent features and characteristics. First 

intuitive requirement concerns the fact that by imputing a confidence level equal to 

zero, the posterior is not different from the initial market structure. On the opposite 

side, we notice that a confidence level equal to certainty 100% will create a 

posterior where the vector related to the asset interested by the view shows a 

uniform distribution, namely the distribution of the view itself. 

Given our care to describe market randomness according the first four moments, 

mean, standard deviation, skewness and kurtosis, it is important to check how the 

process leading to the posterior has affected these parameters. In practice, we see a 

mean consistently modified according to the view while the higher moments are 

barely affected. Asset uncovered by any view are left completely unaltered. 

  

                                                           
6 Meucci, A., 2006 “Beyond Black-Litterman in practice: a five-step recipe to input views on non-

normal markets” 
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2.4 Monte Carlo Simulation adjusted for EVT7 

So far, our model has provided the weights to our efficient portfolio consistent with 

the views. Now we give the priority to assess the efficiency in information 

processing and therefore how the resulting asset allocation performs. 

We are going to evaluate portfolio performances upon simulated scenarios 

reflecting the characteristics of non-normal markets. More specifically the joint 

simulation needs to replicate the abnormalities detected from the input market data. 

Adjustment for Extreme Value Theory (EVT) helps us modelling tails of the joint 

multivariate distribution of assets in our portfolio. 

Recent researches applied EVT for extreme variations to financial markets to 

handle credit crises, currency shocks and other events considered impossible by 

traditional parametric models.  

The tail behaviour of financial series has been discussed in Longin (1996), McNeil 

(1999), Jondeau and Rockinger (1999), Neftci (2000), McNeil and Frey (2000). 

This Monte Carlo simulation employs t-copula and EVT to better replicate tail-risk.  

The process is articulated into several steps. First step we estimate an asymmetric 

GARCH model to data
8
. Autoregressive component deals with autocorrelation on 

data: 

𝑅𝑡 = 𝑐 +  𝑅𝑡−1𝛩 + 𝜀𝑡   

Asymmetric GARCH component cope with heteroscedasticity and asymmetry: 

𝜎𝑡
2 =  𝜍 +  𝑎𝜎𝑡−1

2 + 𝜙𝜀𝑡−1
2 +  𝜑[𝜀𝑡−1 < 0]𝜀𝑡−1

2  . 

At this point, we are interested in the filtered residuals related to every single asset. 

Hence, residuals are standardized and modelled according to a Student-t 

distribution to take into account leptokurtic asset’s returns. In case the assets have 

                                                           
7
 The model has been adapted for our purpose starting from the example presented in 

https://uk.mathworks.com/help/econ/examples/using-extreme-value-theory-and-copulas-to-

evaluate-market-risk.html  
8
  Glosten, L. R., Jagannathan R., Runkle, D. E., 1993, "On the Relation between Expected Value 

and the Volatility of the Nominal Excess Return on Stocks." The Journal of Finance, Vol. 48 

https://uk.mathworks.com/help/econ/examples/using-extreme-value-theory-and-copulas-to-evaluate-market-risk.html
https://uk.mathworks.com/help/econ/examples/using-extreme-value-theory-and-copulas-to-evaluate-market-risk.html
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an approximately normal kurtosis, normal residuals can also be an effective 

solution. 

Residuals are the base series for the EVT estimation of tails CDF modelled as 

Generalised Pareto Distribution (GPD). CDF for every asset is then constructed 

using a Gaussian Kernel to smooth the estimation and clean it from patterns due to 

sampling limits. Anyway, Gaussian Kernel does not provide the best available fit 

for distribution’s tail.  

Our main concern is about the lower tail, which is defined as the worst 5% 

percentile of returns: the issue is to model this area in an effective way, adjusting 

for non-normality distributions. We chose that percentile to be consistent with the 

Mean-CVaR framework we are using to compute efficient allocations. Actually, 

we minimise CVaR 95% for a target return, modelling therefore the tail risk on the 

extreme 5%. 

Residuals belonging to this area can be modelled effectively through a Generalised 

Pareto distribution. Maximum likelihood approach allows us to estimate the 

parameters (tail index and scale parameter) for a Generalised Pareto distribution of 

exceedances.  

The CDF of a GPD requires the estimation of the parameters in the following 

equation 

𝐹(𝑦) = 1−(1 +
𝜍𝑦

𝛽
)−1/𝜍 

Where ς is the tail index parameter larger than -0.5, y are the exceedances (positive 

by construction) and β>0 is the scale parameter. 

We provide therefore a picture about the estimates of the lower tail to give an 

intuitive view of the approach used to model the most concerning region of the 

distribution. 
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                           Figure 1 GPD fitting for the CDF of upper tail exceedances of residuals 

As a result, it is possible to combine and interpolate the three sections of residual 

distribution: 

 

                           Figure 2 Empirical CDF of residuals 
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 As a final step, we transform the standardized residuals to uniform variables using 

the semi-parametric empirical CDF just derived, and then we fit the t-copula to the 

transformed data (canonical maximum likelihood). Student-t copula imports 

correlation between the simulated residuals of each asset. Other elliptical copulas 

are available but it is largely recognised that t-copula is efficient for the low 

number of parameters to be estimated while, at the same time, it fits better than a 

Gaussian copula in modelling kurtosis.  

Copula fit is here performed through an approximate MLE approach for large 

samples. To summarise the estimation process, the fitting of the copula first 

constructs the log-likelihood function; it differentiates the function with respect to 

the linear correlation matrix, which is one of the parameters to be estimated: these 

iterations are nestled in the maximization process to converge into the estimation of 

degrees of freedom of the Student-t distribution. In this way you will not reach a 

convergence of the estimated correlation matrix to the classic conditional MLE 

parameter but for large samples the approximation is efficient in that takes much 

less computations to be addressed
9
.  

Employing parameters from Student-t, it is now possible to simulate asset returns: 

first, dependent uniform residuals are simulated by inverting the semi-parametric 

CDF. Output of the simulation is not dependent on time but dependent at any point 

in time, and most important consistent with the econometric model estimated on 

the first step. These simulated residuals are filtered in a way to re-establish the 

autocorrelation and the heteroschedasticity “cleaned” by the ARIMA process. They 

represent the standard noise process embedding the rank correlation induced by the 

copula to create returns. 

  

                                                           
9
 Durrleman V., Nikeghbali, A., Roncalli, T., 2000, “Copulas Approximation and New Families”, 

Groupe de Recherche Operationnelle Credit Lyonnais Paris 
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CHAPTER 3: Model at work 
 

The best model to explain the world is the world itself. 

Reliable models are a proficient way to handle efficiently the complexity of the 

world. Most famous models are nothing else than a good approximation but as we 

have seen the effects of extreme crashes and market shocks, investors have started 

to lower down their confidence in well-established models after having suffered 

losses. Skewed and leptokurtic market cannot be ignored anymore.  

Asset management industry needs to cope with market anomalies. Recent 

investment philosophies have developed successful strategies (and marketing) 

minimising losses and cutting tail risk. 

In this application of the model, we propose a very practical perspective reflecting 

the real needs of asset management industry. The main question to be answered is 

whether it is profitable to input views in the asset allocation process as a general 

matter. Related to that, we should know how bad it is going to perform in case the 

view is definitely wrong. Of course, this version of Black-Litterman under non-

normality assumption assesses an efficient allocation conditioned on the view for 

the following unit period, or, in other words, the model is calibrated for one period. 

As a result, it seems to be reasonable to wonder what happens if the view turns out 

to be correct in few periods. As a bottom line, we will try to assess empirically an 

efficient “rule” to calibrate the level of confidence for the view. 

Talking about the views to be inserted we will give way to relative views for our 

practical purpose’s sake. Market anomalies occur especially in distressed situations 

and do not follow closely fundamental analysis for asset pricing; moreover beta 

strategies are biased because of increased cross correlation among assets during 

volatility spirals; stock picking is too risky and unstable to even be considered. 

Cross assets (or cross sector) expectations of over/under performance seem to be 

the only way portfolio managers can express views. Relative views can then fit 

better the needs of practitioners. 
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Our metrics to evaluate and to rank performances is a modified version of Sharpe 

ratio. Just like the traditional indicator, we compute the amount of return for every 

unit of risk: what changes is the measure for risk, namely it is not the standard 

deviation of the returns but the Conditional VaR to be consistent with the asset 

allocation approach. The Conditional VaR is computed with 95% of confidence 

level. 

Five hypothetical assets compose our portfolio. Returns are simulated and 

resampled. 

In the next paragraphs, we are optimising the allocation conditioned on the view in 

a 5 assets portfolio and, after having obtained the optimal weights, we are going to 

simulate risk and returns in different horizons splitting the results on whether the 

view is correct or not. 

In this first section of analysis, we are going to compare performances of portfolios 

embedding or not a view: these two efficient allocations would then be assessed for 

their performances on different scenarios, namely where the view is correct and 

where it is not. The simulation will be run according to the Monte Carlo method 

adjusted for EVT. Occurrence (or not) of the view is obtained by setting the 

distribution in order to have on average the realisation (or not) of the view for 

every single period in one case or for distribution of cumulated returns until a 

certain horizon in a second case. 

Data present daily returns for the five assets and the maximum horizon to cumulate 

are 22 periods, one effective month.  

3.1 To put or not to put the view 
Before starting the empirical analysis we want to state clearly that we are going to 

present statistical results based on views likely to be achieved by the asset in 

portfolio for certain time terms and consistent with the input data. 

Another threshold for reasonability of the view concerns counter-productivity: we 

are going to exclude a view which would decrease sharply the expected return of 

the portfolio or enlarge the risk measure or a combination of both, even though the 

view reveals to be correct on market realizations. A portfolio manager would 
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actually figure out how the view would alter the asset allocation and portfolio 

performance and it would not make any sense to input a view that underperforms 

the neutral portfolio even when the view is correct.  

The core purpose of this analysis is to measure how bad could it be if the view is 

not correct or, in other word, if it would be worth to insert it in the allocation 

process. 

The first view states an over-performance of the fourth asset over the first one. We 

first compute the optimal allocation in case no view is introduced. As a second 

step, we optimise the posterior to obtain the optimum portfolio conditioned on the 

view. In the first part of the simulation we manipulate scenarios in order to have a 

distribution for every single period that on average makes the view occurring. 

Before implementing the views, we present in the following table the four moments 

associated with the assets’ returns. 

  Asset1  Asset2 Asset3 Asset4 Asset5 

Mean 0.09% 0.06% 0.03% 0.04% 0.09% 

Variance 0.029% 0.024% 0.020% 0.009% 0.022% 

Skewness -0.2913 -0.32173 -0.13961 -0.26036 0.379434 

Kurtosis 7.51315 6.027926 5.304139 6.035059 11.77309 
                TAB 1 Univariate moments of prior distribution 

We now implement a relative view claiming that Asset4 will over-perform Asset5 

by 0.07% in one period with a confidence level equal to 50%. 

We display una tantum the four moments related to the posterior for few simple 

considerations: 

  Asset1  Asset2 Asset3 Asset4 Asset5 

Mean 0.086% 0.048% 0.026% 0.056% 0.090% 

Variance 0.029% 0.017% 0.020% 0.009% 0.022% 

Skewness -0.291 -0.383 -0.140 -0.307 0.379 

Kurtosis 7.513 6.955 5.304 5.163 11.773 
                  TAB 2 Univariate moments of posterior distribution 

Only average returns have been “touched” by the posterior in that the view 

concerns the first moment of the distribution.  
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We now display in a graph the adjusted Sharpe ratio produced by the portfolio 

allocation conditioned on the view. The efficiency of the return is computed on the 

simulation of cumulative returns previously described: the maximum horizon to 

cumulate is 22 periods. The first picture compares these metrics for portfolio with 

and without the view, when the view is correct for the distribution of every single 

period. The second picture expresses the same comparison but for scenarios where 

the view does not occur. 

From now on, we define a wrong view calibrating the simulation in order to have 

the opposite outcome claimed by the view. In other words, let us assume a view 

saying that asset1 over-performs asset2 by 1%, the performance of the portfolio on 

wrong view would be tested on scenarios where asset2 outperforms asset1 by 1% 

 

Figure 3 Comparing performances: portfolio with the view (view) vs. neutral allocation (no view). The view is 

correct (upper plot) or wrong (lower plot) on average in every single period. Shortselling is not allowed. 

Portfolio with the view performs far better than the neutral one when the view is 

correct while it doe slightly worse when the opinion is found out to be a mistake. 

It is reasonable to find out that the spread between the two portfolios is larger when 

the view is actually correct. However, the positive evidence is that when the 
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manager’s opinion is wrong, the conditioned portfolio performance lay not far at all 

from the performance recorded by the neutral portfolio. 

The valuable feature of a CVaR portfolio optimization is the effective cut on tail 

risk. Once the efficient allocation conditioned on the view has been computed the 

weights for the portfolios allow the manager to keep the risk indicator CVaR 

almost at the same level, while the expected return undermines a shift downward 

that decreases the adjusted-Sharpe Ratio. 

So far, we did not allow portfolio weights to be negative. Long/short strategies are 

widely used in asset management industry especially by sophisticated asset 

managers, which at the same time would need to keep risk below a certain 

threshold. In this second case study, we repeat the very same situation as before, 

but letting weights moving inside the range [-1; 1] for every single asset. 

 

   Figure 4 Comparing performances: portfolio with the view (view) vs. neutral allocation (no view). The view 

is correct (upper plot) or wrong (lower plot) on average in every single period. Shortselling is allowed. 

First consideration reveals that implementing the view is convenient only when it is 

going to be correct: both expected return and CVaR worsen sharply when the view 

is wrong. Allowing short positions the portfolio is much more exposed to the 

occurrence of the view. The more the view states an underperformance of an asset, 
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the more it brings the respective weight into deep negative territory the worse is the 

performance for incorrect views. 

As a second step of the performance analysis through simulation, we want to 

introduce some “noise” around the realization of manager’s view. Distribution of 

simulated returns is generated as before but the adjustment for the occurrence of 

the view (or not) happens only in the cumulated returns for different time horizons 

ranging from 1 to 7 periods after the asset allocation has been established.  

This analysis is actually more useful and reasonable in practice for asset managers: 

they do not know exactly when their opinion could occur in the market even if they 

may hope to be right soon. Therefore we will not assume a distribution reflecting 

(or not) the view for every single period, but we are going to analyse the behaviour 

of our portfolios when the view occurs or not “cumulatively” within a certain 

amount of time. We create 7 cases when the view is correct (and 7 when it is not) 

for cumulated returns from 1 to 7 periods. The view implemented covers the same 

two assets but, given the longer term to be evaluated, the spread between 

performances is chosen at 20bps to appreciate a sensible change of performances in 

a longer term. First picture displays these results when short positions are not 

allowed 

 

Figure 5 Comparing performances: portfolio with the view (view) vs. neutral allocation (no view). The view is 

correct (upper plot) or wrong (lower plot) on the aggregated return. Shortselling is not allowed. 
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Portfolio conditioned on the opinion performs better than the neutral one when the 

view is correct all the way through the time horizon. The behaviour is different 

when the view is wrong: Actually, the unconditioned portfolio shows better results 

in the early time horizons while it tends to be recovered by the allocation 

embedding the view in the longer term. It may seem reasonable that the mistake 

about the view worsen the adjusted Sharpe Ratio in the early term just because the 

allocation was suited for different market outcomes.  

We have already noticed that, when short positions are allowed, the performance is 

deeply impacted by a mistake on the view. Evidence supporting this intuition is 

again detected. 

The following picture displays the results when we allow negative weights on 

assets: 

 

Figure 6 Comparing performances: portfolio with the view (view) vs. neutral allocation (no view). The view is 

correct (upper plot) or wrong (lower plot) on the aggregated return. Shortselling is allowed. 
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As already anticipated when market realizations do not match expectations stated 

by the view, the neutral portfolio outperforms the conditioned one. Like in the 

previous case with no shortselling, portfolio embedding the view starts to perform 

better after several periods even though the opinion continues to be wrong in the 

cumulative returns. Shortselling make the asset allocation conditioned on the view 

more focused and suited on the view itself. Adjusted Sharpe ratio is consistently 

higher for portfolios reflecting manager’s opinion when shortselling is allowed and 

the view is correct.  

Measure of risk expressed in CVaR is the key driver for better risk-adjusted returns 

in portfolio conditioned on the view. Either the view is right or wrong the adjusted 

Sharpe ratio is almost entirely determined by the different return associated with 

every scenario. Of course, a correct view improves the return. The interesting 

feature of portfolios with view is the unaltered CVaR measure whether the view is 

reflected by the market or not. As a matter of better diversification among assets, 

the view is likely to reshape efficiently the allocation minimising the CVaR for a 

target return. Very aggressive portfolios with weighty views and high target returns 

are still well diversified, while for the very same conditions the portfolio without 

the view collapses at the extreme of the efficient frontier concentrating 100% of the 

money in only one asset.  

Portfolios without view have consistently higher CVaR measures along the time 

horizons, no matter if the view reveals to be right or wrong. The most important 

feature to be considered is that, at a given point in time, the CVaR measure is kept 

at the same level for different scenarios where the view is either correct or wrong. 

3.2 Confidence level, performance and relative indicator function 
The ground-breaking technique introduced by Black-Litterman motivated 

practitioners to focus on the view to introduce in their portfolio strategy. The 

formulation of the view needs to select a certain confidence level on the opinion. 

Few researches have tried to analyse this parameter aiming to disentangle a 

convenient procedure to assess an optimum confidence level. 

During our analysis, we found out that, different confidence levels associated with 

the same view has very relevant effects on portfolio allocation and therefore, 
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performances. The intuition behind this analysis concerns the non-normality  of 

market returns: the more the prior is far from normality assumption, the more likely 

is the case to find portfolio allocations (still consistent with the prior) that over-

performs on the risk adjusted return only by calibrating a certain confidence level.  

First, we will show how the adjusted Sharpe Ratio is affected by different weights 

associated to different percentages of confidence levels, namely every (integer) 

percentage value ranging from 1% to 100%. 

The simulation is held according to the second typology previously employed: the 

view is right or wrong within cumulated returns on 7 periods. The view is again 

asset4 over-performing asset5 by 20bps.  

The following plot shows the performance of portfolios at different confidence 

level when the view is correct or it is wrong.  

 

Figure 7 Comparing performances across the range of confidence levels. The view is correct or not on the 

aggregated return. 

From the origin of the two curves, we see that the CVaR-based Sharpe ratio of the 

portfolio with view overperforms the unconditioned one for low percentage of 

confidence level.  This is most likely due to the better diversification of portfolios 
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embedding the extra information of the view, so better reacting to temporary shifts 

in parameters estimated for the optimization. Eventually increasing the confidence 

level of a wrong view will lead to an allocation conditioned on wrong information. 

In our example right over 30% of CL, the conditioned portfolio starts to 

underperform the neutral one. 

In this example and in several others simulations we observed that the confidence 

level in which the conditioned portfolio reach the maximum performance for a 

correct view  is strictly higher than the CL associated with the maximum 

performance achieved by the portfolio with view when the information is wrong: 

CL|CORRECT
∗ > CL|WRONG

∗  

Maximisation of the performances according to this parameter may seem a too 

ambitious task. The following analysis aims to improve the efficiency in the choice 

of this “discretional” parameter. The intuition comes from studies to assess the 

confidence mirrored by the final allocation. In particular, a research from Idzorek 

(2005) formulated an easy way to drive out this object: 

CL =  
w̃ − wmkt

w100% − wmkt
 

Where w̃ is the current allocation observed in the portfolio, wmkt is the neutral 

allocation (portfolio with no view) and w100% is the allocation resulting by giving a 

100% of confidence to the view. In this way, we can roughly assess at which 

distance from the two extremes (full neutral) the confidence really is. Actually, we 

want to employ this procedure to perform a sensitivity analysis based on an 

unambiguous value of how weights in portfolio behave for different CLs. This 

value will be called relative indicator. As a final step, we are making considerations 

on how different confidence levels affect multivariate skewness and kurtosis of the 

portfolio.  

The following plot shows the relationships between portfolios’ performances 

observed the previous paragraph and the values assumes by the relative indicator. 
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Figure 8 Portfolio performances across the range of confidence levels and Relative indicator (lower plot). The 

view is correct or not on the aggregated return. 

To summarise the results in the first two plots we compare the performance already 

described above, with the third plot presenting the behaviour of the relative 

indicator.  

We have noticed in this and in many other simulations that the performance tends 

to be higher and increasing for ranges of confidence level for which the relative 

indicator function has a cut-off on the slope, becoming flatter. As we will discuss 

further in the next paragraph, the market anomalies could push the relative 

indicator function to values above 1 for CL close to 100%. 

Remembering that our simulated performance is measured for cumulated returns 

(for which the view reveals to be correct or not), we want to investigate how the 

“price” to be paid when you are wrong evolves along time, namely cumulating 

more and more returns for different confidence levels. 

We will select two assets with the same expected return and implement a view 

claiming a spread between the two assets’ average return of about 10bps. 

The evidence from Monte Carlo simulation shows that for short time horizon (3 

periods) in which to aggregate return, the performance of the conditioned portfolio 
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when the view is correct improves as long as the CL is increased. Moreover, it 

overperforms the neutral portfolio. The opposite happens when the view is wrong: 

the neutral portfolio is consistently better than the conditioned one, especially for 

high confidence levels. On the other hand, increasing the time horizon we see that 

the performance of the portfolio with the view tends to converge to the same level 

no matter if the view is correct or not. 

The following picture shows the details for a short horizon of 3 periods. 

Shortselling is not allowed. 

 

Figure 9 Portfolio performances across the range of confidence levels and Relative indicator (lower plot) in 

short time horizon. The view is correct (upper plot) or not (middle plot) on the aggregated return. 

Clearly, in this short horizon a portfolio calibrated on a wrong view suffers and 

underperforms the neutral one. On the other hand, what it is interesting is that 

increasing the time horizon even if the view is wrong, the Black-Litterman 

portfolio achieves a better performance than the unconditioned one. The longer the 

time horizon, the more is convenient to insert a view in the allocation according to 

this model. In the following example, we represent the very same situation shown 

right above, but on a 10 period’s time horizon. 
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Figure 10 Portfolio performances across the range of confidence levels and Relative indicator (lower plot) in 

long time horizon. The view is correct (upper plot) or not (middle plot) on the aggregated return. 

Even when the view is wrong, the conditioned portfolio performs better than the 

neutral one. When the view is wrong in the second graph, we see that the 

performance increases for higher confidence levels just right in the case of a correct 

view. The absolute value of the adjusted Sharpe Ratio is obviously higher for a 

correct view due to a consistently higher return. 

 The power of the model exploiting the properties of the CVaR minimisation is that 

it can control for the risk even when the market opinion is wrong. Moreover, as we 

have stated before, posterior distribution of asset returns with view lead to a better 

diversified allocation. Higher time horizons are able to blend the mistake in view’s 

statement keeping the benefits of including more information in asset allocation. 

In this precise simulation, the conditioned portfolio starts to over-perform the 

neutral one even for a wrong view for a time horizon equal to 6 periods. 

In the case just presented, the relative indicator evolves as a monotonic increasing 

function, improving the intuitiveness of considerations. For higher confidence 
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level, a wrong view is a real burden for the performance. For longer time horizons, 

the performance would be consistently better than the neutral portfolio’s one: it 

tends to converge to the performance given by a correct view.  

So far so good, we can add an extra consideration on concavity of relative indicator 

function. The relative indicator function presents a positive concavity all over its 

dominion and more important it is strictly increasing. 

The performance ends up being improved increasing the confidence level on the 

view. It is consistent with the previous case: here the function does not know a cut-

off in the slope and the performance is free to go up as far as the confidence level 

increases.  

To support the previous statement, we want to analyse the performance and its 

relationship with the Relative Indicator function for higher time horizons: the 

performance when the view is wrong should not be any far from the risk-adjusted 

return achieved for a correct view scenario. In order to do that, the following 

picture shows what happens for a time horizon equal to 22 periods. 

 

Figure 11 Portfolio performances across the range of confidence levels and Relative indicator (lower plot) in 

long time horizon. The view is correct (upper plot) or not (middle plot) on the aggregated return. 
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In 22 periods, time horizon the performance of the conditioned portfolio is strictly 

higher than the neutral one and again it is confirmed that the view can improve the 

risk-adjusted performance. The time you have to “wait” obviously depends on how 

wrong the opinion was, facing the following market realizations, and how 

“extreme” the view was: for instance stating that an underperforming asset’s return 

would skyrocket, beating all the others assets. The information so far available in 

the market would blend the extreme view but obviously having set an overweight 

for the asset that continues to have a weak return, can end up being very painful. 

The merit of this powerful feature to achieve better performances than the neutral 

portfolio is mainly due to the capability to limit the risk, especially for the threat of 

the lower tail of the distribution. In Appendix A, we see for a last example how the 

risk measure behaves and we provide some considerations about risk contribution 

of the assets covered by the view and its relationship with relative indicator 

function.  

For the cases when the view is just not accurate, we have now the evidence to state 

that it would not make any sense to change the weights on the portfolio once you 

have realised that the view is wrong. At first the manager would regret for having 

missed the outlook (neutral portfolio is actually performing better at this point) but 

being patient and checking for cumulated returns ( even though the view carry on 

being wrong), the conditioned portfolio would overperform the neutral one. 

Changing the asset allocation straight away would import heavy transaction costs 

plus the risk to be wrong one more time, keeping on regretting the passive market 

portfolio. 

3.3 Risk contribution 

The previous example has been analysed in appendix A performing a sensitivity 

analysis of risk measure CVaR. The result showed how the conditioned portfolio 

was much less risky than the neutral one, while no relevant changes related to the 

realisation of the view have been detected.  

The following analysis on the same case study aims to investigate the risk 

contribution brought by the assets covered by the relative view of the case example 

of the appendix A. Risk contribution is usually measured in terms of VaR and it 
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answers the question “ what percentage of portfolio risk (VaR) is due to a certain 

asset?”. 

The contribution to VaR employs the beta of the asset with respect to the entire 

portfolio and it is defined as below: 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑉𝑎𝑅 =  𝛽𝑖𝑤𝑖𝑉𝑎𝑅𝑃 

Where 𝑤𝑖  is the weight of the asset, 𝛽𝑖 is the beta of the asset and 𝑉𝑎𝑅𝑃 is portfolio 

VaR 

Again the contribution to VaR is tested for a complete range of confidence levels.  

In the following graph the related result. 

 

Figure 12 Contribution to VaR due to the two assets covered by the view (above plot).                                     

Portfolio VaR (95%) across the range of confidence levels (below plot). 

Recalling appendix A, the portfolio VaR does not behave differently from the 

CVaR measure, increasing the confidence level on the view. Again, as the relative 

indicator function starts to be flat, VaR measure does not change relevantly for 

higher confidence levels. 
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Contribution to risk related by the two assets follows similar patterns according to 

the confidence level. The asset, which is seen as outperforming in the relative view, 

will have an increasing weight as the confidence level approach 100%. The 

opposite would happen to the asset seen as underperforming, namely less weight 

and decreasing contribution to risk. 

It is important to discuss the result according to how this contribution to risk 

changes. Again, as the relative indicator starts to flatten the variation of 

contribution to risk from the zero level of confidence has already reached its final 

level and remains almost unaltered until the 100% confidence. In other words, 

when this happens, the view has already saturated its “impact” in reshaping the 

portfolio. 

 The relative indicator function is again confirmed to be a synthetic indicator to 

evaluate the strength of the view’s impact on the portfolio. More technically the 

slope of the relative indicator function best describes the condition of the portfolio 

and signal that a certain level of confidence in the view of the portfolio would 

achieve better performances in terms of less risk, no matter how wrong the view is 

found out to be. 

As a last consideration of this paragraph, we want to highlight that, when the 

relative indicator function starts to be flat the portfolio reaches the minimum level 

of risk (in terms of VaR and CVaR). As we have seen in the previous paragraph, in 
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that spot, the risk-adjusted performance achieves the highest level, other things 

being equal about the realisation of the view. 

3.4 Relative indicator and further moments 

Relative indicator is function of portfolio weights and it is useful to disentangle 

how different confidence levels can actually affect the portfolio performances. 

 The powerful feature of this indicator we are going to discuss in this paragraph 

concerns its relationship with the adjusted Sharpe ratio, but more relevant with the 

multivariate skewness and kurtosis of the portfolio. 

We can actually start from the multivariate third and fourth portfolio moments. We 

have already provided the formulas to compute these further moments and we will 

report again only the final formula for the relevant value to be estimated. 

For the skewness we have 

𝑆𝑠 = w′𝑀3(w ⊗ w) 

while for the kurtosis, we have 

𝑆𝐾 = w′𝑀4(w ⊗ w ⊗  w) 

Where 𝑀3 and 𝑀4 are the co-skewness and the co-kurtosis matrices respectively. 

We can now compute the kurtosis and the skewness for every efficient allocation 

produced by different CLs.  

For practical reason we will present the analysis on the case seen before, where the 

relative indicator function was monotonically increasing; the graph is shown again 

below to easily make considerations.  

The following plot shows how relative indicator function, portfolio skewness and 

portfolio kurtosis correlate for different levels of confidence associated to the view.  
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Figure 14 From above: Relative indicator. Multivariate portfolio skewness across the range of confidence 

levels. Multivariate portfolio kurtosis across the range of confidence levels. 

Showing below the performances and relative indicator function described in the 

paragraphs above to allow an easier comparison : 

 

Figure 15 Portfolio performances across the range of confidence levels and Relative indicator (lower plot) in 

long time horizon. The view is correct (upper plot) or not (middle plot) on the aggregated return. 
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By increasing the confidence level, we see the third and the fourth moment 

reaching lower levels. This is partially not surprising given that when the CL is 

100%, the posterior embeds the view itself, which is by construction uniformly 

distributed (so null skewness and excess kurtosis equal to -6/5). 

We have seen that for long time horizon the risk-adjusted performance tends to be 

positively correlated with the relative indicator. The asset allocation summarised by 

the relative indicator has therefore a positive impact on portfolio performance 

subordinated to the level of kurtosis that the weights load to the portfolio.  

The very last purpose of such a model is to make the asset allocation facing 

affectively the non-normality of asset’s returns without losing in performance (not 

losing too much, at least).  

The major concern for a portfolio manager is in this case the excess kurtosis, the 

main cause of sharp and sudden losses. Remembering the accuracy in modelling 

the Monte Carlo simulation employing Extreme Value Theory to have a brighter 

precision about what happens in the tails of the distribution, we can draw reasoned 

considerations on how extreme events affects the performance. 

In the previous case study, we have dealt with strictly increasing relative indicator, 

positively correlated with the risk-adjusted performance and negatively with the 

portfolio kurtosis. This frame is just as things are supposed (and hoped) to be.  

We propose again the plot showing performance when the view is correct, when it 

is wrong and the relative indicator function. The view is widely trend following: 

the manager decides to state an over performance of an asset over another while the 

very same pattern has been confirmed by historical evidence. This might clearly be 

a momentum strategy. 
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Figure 16 Portfolio performances across the range of confidence levels and Relative indicator (lower plot) in 

long time horizon. The view is correct (upper plot) or not (middle plot) on the aggregated return. 

The relative indicator function looks less regular and intuitive: this is not 

particularly surprising given the non-normality of market data
10

.   

The simulation is run aggregating returns for a four period’s horizon. Our main 

concern is the way the portfolio faces excess kurtosis. We have already described 

how the assets in the portfolio are leptokurtic. Here the problem is about calibrating 

the allocation in order to face the issue.  

Before taking further considerations, we present the 2 graph of performances as 

before, but this time compared with portfolio kurtosis. 

                                                           
10

 Discontinuity points and non-strictly convex neighbourhood make less smooth the computation of 

an efficient frontier. We want to remember that in mean-CVaR framework the efficient frontier 

converges to the mean-variance frontier in case of normally distributed returns. Moreover 

sometimes discontinuity points and non-strictly convex neighbourhood make less smooth the 

computation of an efficient frontier resulting in a fragmented evolution of efficient weights along 

the way to 100% of confidence level. 



54 
 

We clearly see that the performance becomes positively related to the level of 

kurtosis.  

 

Figure 17 Portfolio performances across the confidence levels and related portfolio kurtosis (lower plot) in 

long time horizon. The view is correct (upper plot) or wrong (middle plot) for the aggregated return. 

The momentum strategy benefits from the input of a coherent view. Whether or not 

the opinion finds its realisation, the conditioned portfolio performs better than the 

one without the view. The portfolio structure has not been reshaped by the view. It 

has just strengthened the momentum opportunity. 

What we want to highlight is the low level of (excess) kurtosis. The asset allocation 

has found a way to limit the disrupt of extreme events in the tail’s distribution. On 

top of that, we see a slight pick of kurtosis for very high levels of confidence. The 

optimised asset allocation starting from the posterior finds support on the market 

anomaly of excess kurtosis. 
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Conclusions 

Active portfolio management is currently facing the threat posed by passive 

investment strategies. Actively managed funds generally ask for a higher Total 

Expense Ratio compared to a passive investor. This is why the disrupt of ETF 

product has led the balance of the competition to their advantage. What 

differentiates active portfolio management from the passive philosophy is the 

contribution from the portfolio manager: he/she would formulate investment 

opinions in order to achieve excess returns and the portfolio allocation would 

mirror those views. The question is whether it is convenient to insert the view or 

not. 

The model that we have analysed, aims to process information from the market 

(passive side) and the managers’ view (active) in order to reshape the market 

distribution of returns blending both sides. The advanced feature is to manage view 

implementation without assuming normally distributed asset returns. Actually, we 

do not assume any specific distribution. 

Non-normally distributed returns are actually one the major challenges for 

investment management. Traditional portfolio theory assumes a Gaussian 

distribution to describe the market but the reality, especially during distressed 

periods has proved to be different. To who might follow a different convictions the 

risk of sharp drawdowns is high. A model that counts for this reality is actually 

necessary. 

To answer the question on view’s benefit we have tested the efficient allocation 

from the Mean-CVaR framework on not normally distributed simulated returns. 

CVaR optimisation and Monte Carlo simulations adjusted for Extreme Value 

Theory allowed us to analyse the non-normality of the market. 

The main contestants are the neutral (no view) portfolio and the allocation 

conditioned on the view. The simulation is held in order to have the view occurring 

in the mean of the distribution of returns or for cumulative returns over a certain 

time horizon.  
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Conditioned portfolio delivers a better performance when the view is correct on 

average in every period. Anyway, due to an effective tail risk cut, CVaR measures 

do not differ considerably whether the view is correct or not. As a matter of facts, 

portfolios conditioned on the view end up being much better diversified. Moreover 

we proved how effectively the allocation from the model can face the threats 

hidden in the fat-ails of returns’ distributions. 

Time is a crucial component to answer our question. What if the market will not 

mirror the view along the way? Should we change the view? We can test the view 

checking for cumulated returns over a certain time horizon: if the manager was 

right, this would make the conditioned portfolio over-performing the neutral one by 

far, even for short time horizons. The brilliant feature to insert an investment 

opinion in our model relies on the fact that even if the view keeps on being wrong, 

the better construction of the conditioned portfolio would push the performance 

over the neutral’s one. Time plays at our advantage. Changing the view would 

import heavy transaction costs and the risk to be wrong one more time. Better to 

wait passively for our mistake to be diluted. 

In a certain way, it is the proof that active management can lead by avoiding 

transaction costs and by focusing on resilient and long term views.  

How intensely the view has reshaped the asset allocation deserves some 

considerations too. Our relative indicator measures the impact of the view on the 

portfolio according to its confidence level. We have seen that this indicator 

increases at the same pace along the way to 100% confidence on the view. The 

point, in which the view has just exhausted its effect, might be the confidence level 

to achieve better performances. 

Keeping in mind an intuitive way to asses a “convenient” confidence level, we 

have to know that patience and low transaction costs are what really pay out at the 

end. 
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Appendix A – Risk Levels  

The analysis’ result on whether to insert a view in the portfolio or not, clearly leant 

in favour of the portfolio conditioned on the view. The superior performance found 

the principal merit on the capability to limit the risk, especially when the view is 

actually wrong. We now see for the last example presented how the risk measure 

evolves by changing the confidence level, when the view is correct or not. 

 

   Figure 18 CVaR measures for neutral portfolio and for conditioned portfolio when the view is correct or it is wrong. 

 

The graph clearly shows a huge gap between risk measures of the neutral portfolio 

(in blue) compared to the levels achieved by the conditioned ones, especially when 

the CL increases. First conclusion brings us to repeat that portfolios conditioned on 

the view can count on lower risk. Second, whether the view is correct or not the 

distance between the two risk measures is not so relevant, while for low confidence 

levels, it is actually null. Third, the evolutions of the risk measure follow inversely 

the relative indicator function. The slope of CVaR function finds a cut-off where 

also the relative indicator function starts to be flat.  
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Appendix B– MATLAB CODES 
 

   % RELATIVE INDICATOR 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

 

   %INPUT:  
   % - WW is the matrix Nx101 of asset weights for the 100 

different       confidence levels [0:1:100]; 

    
   %OUTPUT:  
   % - IND = Relative indicator; 

    
   [J,N]=size(WW); 
   IND=zeros(J,1); 

 

   for i=1:J 
    ind= (WW(i,:)-WW(1,:))/(WW(101,:)-WW(1,:)); 
    IND(i:1)= ind 
   end 

 

 

% Multivariate Skewness and Kurtosis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

%INPUT:  
   % - R = asset returns 

%OUTPUT:  
   % - SKW = Portfolio Skewness 

   % - KURT = Portfolio Kurtosis 

 

length = size(R,2)  
T = size(R,1) 
Co_Kurt=[]; 
for i=1:length 
    for j=1:length 
        kurtcok=[]; 
        for k=1:length 
            for l=1:length 
                kc=0; 
                for t=1:T 
                    kc=kc+((R(t,i)-mean(R(:,i)))*(R(t,j)-

mean(R(:,j)))*(R(t,k)-mean(R(:,k)))*(R(t,l)-mean(R(:,l)))); 
                end 
                kurtcok(k,l)=kc/(T-3); 
            end 
        end 
        Co_Kurt=[Co_Kurt kurtcok]; %Co_Kurt= Co-Kurtosis Matrix 
    end 
end 
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Co_Skew=[]; 
for i=1:length 
    skewcoskew=[]; 
    for j=1:length 
        for k=1:length 
            sc=0; 
            for t=1:T 
                sc=sc+((R(t,i)-mean(R(:,i)))*(R(t,j)-

mean(R(:,j)))*(R(t,k)-mean(R(:,k)))); 
            end 
            skewcoskew(j,k)=sc/(T-2);  
        end 
    end 
    Co_Skew=[Co_Skew skewcoskew]; %Co_Skew= Co-Skewness Matrix 
end 

 

 
% Compute Portfolio kurtosis 
    KRON = kron(kron(w',w'),w'); 
    KURT = w*Ku_Cok*KRON; 

 
% Compute Portfolio skewness    
    kRON = kron(w',w'); % 
    SKW = w*Sk_CoS*kRON;  % 

 

Codes to compute posterior distribution borrowed from Meucci (2006) and 

available on: 

 ARPM – ARPM website. 2016. ARPM – ARPM website. [ONLINE] Available at: 

http://www.arpm.co. [Last access 20 September 2016] 

Code to simulate scenarios is inspired to the documentation open script: 

“Using Extreme Value Theory and Copulas to Evaluate Market Risk” available 

on: 

MathWorks – Makers of MATLAB and Simulink. 2016. MathWorks – Makers of 

MATLAB and Simulink. [ONLINE] Available at: http://www.mathworks.com. [Last 

access 20 September 2016] 
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EXECUTIVE SUMMARY  
 

The debate around passive and active investment management is going through 

revolutionary times. Active portfolio managers need to face an increasing 

competition from passive investment products made by ETF and other instrument 

replicating every sort of index or bucket of assets. The benefit brought by portfolio 

managers is their views about the market: manager’s insight and projections on 

what could happen in the future are supposed to be correct enough to achieve 

higher returns.  

There are many ways to express a view in practical terms, in order to affects the 

investment strategies. When it comes to managing a portfolio, the model employed 

to process the information from the market mixed and the input provided by the 

portfolio managers ends up being crucial. 

This work analyses an advanced version of the traditional and widely used Black-

Litterman Model: we actually want to extend the model, trying to remove the 

heavy assumption of dealing with normally distributed returns. Market turmoil has 

shown how unreasonable the assumption is and how painful it could it be to stick 

into inaccurate convictions.  

The model is able to blend effectively the market neutral information with an 

exogenous opinion from the investment manager in a posterior distribution. The 

principal task is to face market anomalies, namely non-normally distributed 

returns. The algorithm borrowed from Meucci (2006) is able to process the 

information in a consistent way with respect to the non-normality (skewness and 

excess kurtosis of returns) without assuming any kind of underlying distributions 

on market data. Skewness and kurtosis of univariate returns distributions are left 

unaltered. When the view is introduced with a zero confidence the efficient 

allocation is again the market allocation. On the other hand, for full confidence the 

univariate distribution of the asset covered by the view will tend to a uniform 

distribution, namely the distribution of the view.  
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The availability of a reliable posterior distribution let us proceed to compute the 

efficient allocation. For a target return, the CVaR is minimised and it provides us a 

pure measure of downside-risk. At the same time Mean-CVaR framework would 

fulfil the need, coming from asset management industry, to cut tail risk on stressed 

market conditions.  

The performance is tested and stressed on Monte Carlo simulation adjusted for 

Extreme Value Theory. A distinctive feature of this work concerns tail risk 

modelling and hedging. Monte Carlo simulation is achieved employing t-copula to 

fit the asset correlation. Every time series of returns is first modelled according to 

an asymmetric GARCH model. From the computed residuals, the CDF of returns 

distribution is inferred. Here the adjustment for tail risk is made through an EVT to 

model the tail distribution. The CDF of residuals is used to draw samples: the tails 

(5% percentile) of this sample distribution are therefore modelled as a Generalised 

Pareto distribution, while the remaining mass of the distribution is fitted through a 

Gaussian Kernel. 

The following picture helps to visualize the result for the EVT process (figure 1): 

 

                           Figure 1 Empirical CDF of residuals 
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where the Generalised Pareto is defined by 

𝐹(𝑦) = 1−(1 +
𝜍𝑦

𝛽
)−1/𝜍 

A multivariate t-copula will now fit this sample to import correlation among assets. 

Returns are simulated and asset allocation tested. 

Testing portfolios conditioned on the view should assess whether it is convenient 

or not to input a view: more intuitively, how “painful” it would be to insert a wrong 

view. The Monte Carlo simulation adjusted for tail risk is going to be calibrated in 

order to replicate a correct or a wrong view, depending on the case. Being 

consistent with the Mean-CVaR framework, portfolio performance is assessed 

through a CVaR based Sharpe ratio. This modified version is the ratio of Mean 

expected return over CVaR. 

We have conducted the performance analysis with daily returns according to two 

cases. For the first typology, the view is revealed to be correct or wrong on the 

distribution of the single market realization, checking also what happens on the 

cumulated returns.  

Five hypothetical assets compose our portfolio; returns are simulated and 

resampled. We decided to insert a view on the portfolio. For practical reasons, our 

views are going to be relative: modelling non-normal markets with a focus on 

excess kurtosis is more likely to be a concern for sophisticated investors. Hedge 

funds widely use these trades, but also their returns to investors are frequently 

leptokurtic. Relative value trades based on a certain relative view are actually very 

common strategies. 

According to this perspective, we found out that portfolios conditioned on the view 

without shortselling perform much better than the neutral one when the information 

is correct. On the other hand, the burden brought by a wrong view seems to be 

quite light. CVaR optimisation allows cutting the risk, namely CVaR does not 

change considerably whether the view is correct or not, the shift is due to lower 

returns. The following picture describes the risk-adjusted performance the 

statement above (figure 2). 
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Figure 2 Comparing performances: portfolio with the view (view) vs. neutral allocation (no view). The view is 

correct (upper plot) or wrong (lower plot) on average in every single period. Shortselling is not allowed. 

The story is different allowing for shortselling: the benefit brought by a correct 

view roughly equals (in the amount) the penalty carried by a wrong view. The 

decision to input a view is much more risky and a doubtful solution as shown by 

the following picture (figure 3). 

 

Figure 3 Comparing performances: portfolio with the view (view) vs. neutral allocation (no view). The view is 

correct (upper plot) or wrong (lower plot) on average in every single period. Shortselling is allowed. 
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. 

The second kind of analysis strictly concerns the cumulative returns for different 

time horizon (mainly from 1 to 7 periods). Noise is added to the single period 

return distribution: the adjustment for the occurrence of the view (or not) happens 

only in the cumulated returns for different time horizons. This analysis is actually 

more useful and reasonable in practice for asset managers: they do not know 

exactly when their view could occur in the market, even if they may hope to be 

right soon. From this perspective we have time playing to our advantage. It is 

convenient to introduce a view, and even if it is wrong the portfolio would rapidly 

converge to the benchmark result drawn by the neutral portfolio (figure 4).  

 

Figure 4 Performances by portfolio with the view (view) vs. neutral allocation (no view). The view is correct 

(upper plot) or wrong (lower plot) on the aggregated return. Shortselling is not allowed. 

Shortselling affects only the time to recover and to converge to the neutral portfolio 

performance, making it slowly (figure 5).  
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Figure 5 Performances by portfolio with the view (view) vs. neutral allocation (no view). The view is correct 

(upper plot) or wrong (lower plot) on the aggregated return. Shortselling is allowed. 

Maintaining the focus on aggregated returns, we have analysed how the confidence 

level associated to a view affects the allocation and therefore the results. To have 

an unambiguous measure of the relative strength of a view, we have formulated a 

relative indicator defined as 

CL =  
w̃ − wmkt

w100% − wmkt
 

Where w̃ is the current allocation observed in the portfolio, wmkt is the neutral 

allocation (portfolio with no view) and w100% is the allocation resulting by giving a 

100% of confidence to the view. In this way, we can roughly assess how strongly 

the view is affecting the asset allocation. 

The relative indicator goes from 0 to 1, as the confidence level associated to the 

view increases. Describing this relative indicator as a function, we have noticed 

that the maximum performance is reached when the relative indicator function find 

its maximum slope (in absolute value). Usually the marginal strength of a view 

grows for higher confidence levels: the relative indicator function would be 

monotonically increasing with positive concavity. This is why the best performance 
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is achieved for confidence equal to 100% when the view is correct (figure 6).       

 

Figure 6 Portfolio performances across the range of confidence levels and Relative indicator (lower plot) in 

short time horizon. The view is correct (upper plot) or not (middle plot) on the aggregated return. 

What surprises is that even when the view is wrong, the risk adjusted performance 

starts to show better results than the neutral portfolio simply enlarging the time 

horizon in which to cumulate returns. In other words, even if on average you are 

wrong, you had better waiting to have the mistake “diluted”: inserting the view is 

again convenient compared to not doing so (figure 7). 

 

Figure 7 Portfolio performances across the range of confidence levels and Relative indicator (lower plot) in 

long time horizon. The view is correct (upper plot) or not (middle plot) on the aggregated return. 
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Some views from a portfolio manager can be extreme, namely very unlikely to 

happen given the asset’s return distribution. In these cases, it is likely to deal with 

portfolios where the view has a very strong impact even for low confidence levels.  

We remember that the relative indicator provides us a measure of how the portfolio 

allocation has been altered by the view at different confidence levels. An anomaly 

could be signalled by the fact that the relative indicator function reaches values 

very close to 1 for low confidence levels, 30% for instance. It is basically what 

happens to in the following asset allocation (figure 8): 

 

Figure 8 Portfolio performances across the range of confidence levels and Relative indicator (lower plot) in 

long time horizon. The view is correct (upper plot) or not (middle plot) on the aggregated return. 

Either when the view is correct or not in a time horizon of 22 periods, the top 

performance is achieved for a confidence level close to 30%. As the picture shows, 

the slope of the relative indicator function knows a cut-off. It would be excessively 

ambitious to calibrate a model to optimise the confidence level, mainly because we 

have to see how wrong the view was.  

Anyway, the information carried by the relative indicator can help us in 

determining some areas in which the confidence level delivers portfolios with 

superior performances. 
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As we have stated before the better performance achieved by a conditioned 

portfolios compared to the neutral one is due to more efficiency in terms of risk.  

The following picture shows how the CVaR portfolio measure is lower for 

conditioned portfolios, compared to the neutral allocation, depending on the 

confidence and no matter if the view is correct (figure 9).  

 

Figure 9 CVaR measures for neutral portfolio and for conditioned portfolio when the view is correct or it is wrong. 

The final step of the analysis goes through the multivariate fourth moment of the 

portfolio. Relevant excess kurtosis is actually detected in the overall portfolio 

allocation. The purpose is to analyse how efficiently the allocation can face 

multivariate portfolio kurtosis..  

Multivariate portfolio kurtosis is computed as 

𝑆𝐾 = w′𝑀4(w ⊗ w ⊗  w) 

where 𝑀4 is the co-kurtosis matrix and w are the portfolio weights. 

Asset allocation does not suffer from kurtosis even when the portfolio show 

relevant leptokurtosis: usually for a monotonically increasing relative indicator 

function with positive concavity, we see the portfolio kurtosis going down for 



73 
 

higher confidence levels.  This finding is consistent with the fact that for 100% 

confidence level the uniform distribution
11

 of the view substitutes the asset’s 

univariate return distribution. On the other hand, market anomalies can lead to 

optimised allocation where the kurtosis can remain stable or can slightly increase 

for higher confidence levels. Even in this case the risk adjusted performance 

increases with the confidence levels (figure 10).  

 

Figure 10 Portfolio performances across the confidence levels and related portfolio kurtosis (lower plot) in   

long time horizon. The view is correct (upper plot) or wrong (middle plot) for the aggregated return. 

The performance delivered by a conditioned portfolio is still higher than the neutral 

one. The same feature is achieved even when the view is wrong, for a sufficiently 

long time horizon.  

One last consideration on transaction costs. We have already highlighted the 

evidence supporting the advice not to change the weights on the portfolio once the 

manager has realised that the view is wrong. At first, the manager would regret for 

having missed the expectations (neutral portfolio is actually performing better at 

this point) but being patient and counting for cumulated returns, even though the 

view carries on being wrong, the conditioned portfolio would overperform the 

neutral one. Changing the asset allocation straight away would import heavy 

                                                           
11

 Uniform distribution has negative excess kurtosis (-6/5) 
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transaction costs, plus the risk to be wrong one more time, regretting the passive 

market portfolio repeatedly.  

Exogenous information is processed according to this model to better face the non-

normality of the market. Leptokurtosis is handled by the Mean-CVaR optimisation. 

Neutral portfolio is under-diversified: quite often it is concentrated in few assets, 

“shortening” the capability of the efficient frontier. The view brings benefits to 

asset allocation and, even if it may be wrong, the better-diversified portfolio would 

overperform the neutral one. Patience and minimum transaction costs are what 

really pay out at the end. 

 


