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Commodity futures contracts have become an important asset class for investors and

a source of diversification. This study demonstrates that combining signals based on

capturing the fundamental of the slope of term structure can yield Sharpe ratio much

higher than the S&P-GSCI index. Furthermore, we implement a neural network

based combination strategy to further improve the performance of our portfolio.

Robustness tests are performed to further strengthen our claim.
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1 Introduction

In the last decade, commodity futures have seen an huge increase in their popular-

ity among portfolio investors who seek diversification and improved performance,

making commodities an asset class of their own. Although theories on the slope

of the commodity future contracts, the longstanding hedging pressure theory, date

back to Keynes(1923), Hicks(1939) and Hirshleifer(1988), the literature on how to

construct signals to capture risk premium based on the fundamentals of backwarda-

tion and contango is quite recent. These signals are constructed from the slope of the

term structure (TS) of commodity futures prices (Gorton&Rouwenhorst, 2006; Erb

& Harvey, 2006); Idiosyncratic Volatility by Miffre et al,2013 (IVol); ; inventory lev-

els (Gorton et al, 2012), hedging pressure (Basu & Miffre,2013; Dewally et al,2013);

Momentum (Mom) (Miffre & Rallis,2007; Szakmary et al, 2010; Erb & Harvey, 2006;

Shen et al,2007) and finally Skewness (SK) (Perez et al, 2015). Although the prof-

itability of the last two signal (Mom and SK) have been empirically proven, the the-

ory and hence the reason behind the profits is still under debate. For the momentum

strategy, Barberis et al (1998), Daniel et al (1998), Hong & Stein (1999) argue for be-

havioral models which attribute abnormal returns to over-and-under reactions of

investors to news, while Chordia & Shivakumar (2002) and Lesmond et al (2004)

attribute them to transaction costs or time-variation in expected returns.

This study concerns the implementation of the Momentum, Term Structure, Id-

iosyncratic Volatility, Hedging Pressure Signals and Skewness and the added Kurto-

sis signals. TS and Hedging Pressure signals originate directly from the commodity

literature of theory of storage (Working,1949; Brennan, 1958). Mom and IVol arise

from the equity pricing literature with Jegadeesh & Titman (1993) proposing a long-

short portfolio going long with the recent best performers and going short witht the

recent worst performers. The IVol strategy consists in buying stock with low id-

iosyncratic risk and sell stock with high idiosyncratic risk as proposed by Ang et al
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(2006,2009). Furthermore, we will show that the signals are non-overlapping, moti-

vating the combination of the studied signals to enhance performance. The various

risk-return ratios (Sharpe, Sortino, Omega) confirm that the signals (by themselves

and combined) provide better returns in respect to the commodity indexes we con-

sider, namely the Standard & Poor’s Goldman Sachs Commodity Index (S&P-GSCI)

and the Bloomberg Commodity Index (BCOM). Moreover, we discuss how to com-

bine our signals in order to maximize risk-return. One of the combination model

defined will rely on the implementation of Artificial Neural Network (ANN), which

a computational method used in machine learning. Even though the theory behind

machine learning has been around for a long time, the application of it (especially in

finance) is quite recent. Before the actual implementation is presented, we display a

simple neural network example, to acquaint readers new to the concept of machine

learning to our neural network model.

1.1 The Financialization of Commodity Markets

Figure 1 plot the index level of the S&P-GSCI, BCOM and the equally weighted port-

folio constructed with the commodities studied in this paper. Moreover, the below

graph plots the average open interest (the sum of the total contract that have not

been settled, outstanding) of the studied commodities. The figure shows that after

the early 2000s the commodity index levels rose exponentially, closely followed by

the open interest. This trend has continued until 2008, year in which the commod-

ity prices fell steeply, mostly caused by the slowdown of the world economy. The

large inflow of investment capital (represented by open interest) to commodity fu-

tures markets has generated a debate about whether the so-called "financialization"

has distorted commodity prices. Cheng & Xiong (2013), looking at how financial

investors affect risk sharing and information discovery, argue that financialization

has substantially changed commodity markets.
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1.2 Structure

The paper unfolds into eight chapters. Chapter 2 presents the dataset and how it is

obtained, the 3rd one introduces the signals and their derivations. Chapter 4 tries to

refining those signals and chapter 5 presents the combination methods of said sig-

nals. Chapter 6 is dedicated to the artificial neural network while chapter 7 presents

various robustness checks before concluding with chapter 8.
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2 Data

2.1 Data Collection

The study is conducted on the daily settlement price and total return of 27 commod-

ity futures contracts over the period of January 2nd, 1990 to December 30th, 2016,

downloaded from Datastream. Table 1 displays the summary statistics of the com-

modities studies. The sample contains various types of commodities, such as energy

(Natural Gas, Brent, WTI, Heating Oil (ULS Diesel), Gasoline); agriculture (Corn,

Cotton, Oats, Soybean, Soybean Oil, Soybean Meal, Cocoa, Sugar, Coffee, Rough

Rice, Orange, Lumber, Wheat, HRW Wheat); livestock (Live Cattle, Feeder Cattle,

Lean Hogs); metals (Silver, Gold, Platinum, Palladium, Copper). For the gasoline

futures contract we used the unleaded gasoline daily prices until October 2005, after

this date the series switch to the Reformulated Blendstock for Oxygenate Blending

(RBOB). Daily closing of the S&P-GSCI and the Bloomberg Commodity Index are

instead obtained from Bloomberg. Furthermore, Fama-French 5 Research Factors

are downloaded from the Kenneth R. French Data Library website while the infla-

tion data from FRED. Constructing the Hedging Pressure portfolio has been possible

using the U.S. Commodity Futures Trading Commission weekly data on the Com-

mitment of Traders, provided in their website.

2.2 Constructing the Strategy

In our strategy, only the most liquid future contracts (nearest to maturity) are traded

and held in the portfolio. This is done to reduce to a minimum transaction costs and

for liquidity reason. Returns are calculated by holding the closest to maturity future

contract one day prior to first notice day and then rolling over to the second-closest

contract. First notice day (FND) is the first day that holders of long positions may
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be informed that they have been assigned a delivery of a future contract. Traders

that do not intend to receive (or provide) delivery, as in our case, should close their

position before FND. Following the approach adopted in Szakmary et al. (2010), the

long-short portfolios are fully collateralized, meaning that all the returns displayed

unless explicitly referred as total are excess returns. In other words, the returns of

the portfolios are divided by two. Thus, if one was to retain the gross performance,

he would simply add the risk-free rate.
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3 Individual Signals

3.1 Creating the Portfolios

In each of the portfolios based on the individual signals, we go long on the quintile

(20%) that is expected to outperform and go short on the quintile that is expected to

underperform. Considering our sample with 27 commodities, we therefore create

an equally weighted portfolio of 10 futures (5 long and 5 short), with a 1-month

horizon.

3.2 Momentum

Momentum based strategies are one of the most basic signals of technical analy-

sis. In our analysis we examine various methods to calculate the signal, over dif-

ferent rolling windows (RW = 1,3,6,12). Result strongly indicate on the exponen-

tially weighted average based signal adjusted for volatility being the best perform-

ing model. Table 2 sums the performance of the four momentum strategies.

3.2.1 Simple Moving Average

The sorting signal is based on the simple average of past performance over the se-

lected ranking period. Considering the erratic nature of each commodity, there is

the much more probability that highly volatile assets (like natural gas) could end up

at the far ends of the rankings, while less volatile assets (like gold) are stuck in the

middle of the rankings. To address this issue, we adjust by simply dividing for the

historical volatility calculated over the rolling window of said commodity.
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3.2.2 Exponentially Weighted Moving Average

This trend-following rule follows the same concept as the simple moving average,

with the difference that in this case we use an exponentially weighted average, fur-

ther raising the relative weight of recent observations. We adjust for volatility in this

case too.

3.3 Term Structure

When inventories are low, the term structure tends to be downward sloping because

the cost of storage is below the convenience yield. Hence, in a backwardated curve,

the TS strategy dictates to buy as the price of the future will tend to rise. On the

opposite, when inventories are high, the term structure tends to be upward sloping

because inventory holders are encouraged to hold the physical commodity and sell

forward at a premium. Hence, in a contangoed curve, the TS strategy dictates to sell

as the price of the future will tend to decline.

Having in mind the rules for the TS strategy, the corresponding sorting signals

is the moving average on each rolling window of the log differential between the

nearest and the second-nearest futures contract. The highest average roll-yield com-

modities are held in the long portfolio and the lowest are held in the short portfolio.

Table 3 presents the results of the TS strategy.

3.4 Hedging Pressure

The hedging pressure hypothesis (or risk transfer) is the oldest hypothesis of a source

of a commodity futures risk premium. Keynes(1930) and Hicks(1939) discussed that

a risk premium for speculator existed as a reward for accepting the price risk which

hedgers sought to transfer.

Hirshleifer(1990) provides an equilibrium-based generalized hedging pressure

hypothesis where non-participation effects lead to hedging pressure influencing the

risk premium of commodity futures. This theory assumes that risk premiums are

present in both backwardated markets (when hedgers are net short and speculators

are net long) and in contangoed markets (when hedgers are net long and speculators
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are net short). Following this idea, we construct the sorting signal for the speculator

portfolio and the commercial portfolio as proposed by Basu and Miffre(2013).

The Commitments of Traders dataset provide a breakdown of each Tuesday’s

open interest on commodity futures contract. The Commodity Futures Trading

Commission (CFTC) classifies traders based on the size of their positions into re-

portable and nonreportable. Reportable traders constitute 70% to 90% of the open

interest of any futures markets and are further classified as commercial or non-

commercial (speculators). We now define the hedging pressure variable for each

category as the number of long open position over the total position in that category.

HdgPressSpec =
OILSpec

OILSpec +OISSpec

HdgPressComm =
OILComm

OILComm +OISComm

Table 3 presents the results of the Hedging Pressure strategies.

3.4.1 Speculator Portfolio

The speculator-based portfolio is formed by going long on the highest average spec-

ulator hedging pressure and going short on the lowest average speculator hedging

pressure, on (RW=1,3,6,12). We define this portfolio as Spec.

3.4.2 Commercial Portfolio

The commercial-based portfolio is formed by going long on the lowest average com-

mercial hedging pressure and going short on the lowest average commercial hedg-

ing pressure, on (RW=1,3,6,12). We define this portfolio as Comm.

3.5 Idiosyncratic Volatility

The relation between idiosyncratic risk and returns has been subject of intense study

and debate. Sharpe(1964) suggests that idiosyncratic risk should not be priced as in-

vestor can diversify away the risk of single assets. Empirical analysis has delivered
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mixed results. Studies as Fama and McBeth(1973); Bali et al.(2005); Bali and Ca-

kici(2008); Fink et al.(2012); Huang et al.(2010); Han and Lesmond(2011) favors the

idea that idiosyncratic risk should not be priced, but others as Malkiel and Xu(2002);

Goyal and Santa-Clara(2003); Fu(2009); Garcia et al., 2011) report evidence in favor

of a positive correlation between idiosyncratic risk and returns.

The role of idiosyncratic risk in the commodity market was firstly studied by

Hirshleifer(1988) in a theoretical model that accounts for trading costs and non-

marketability of producers claims. Miffre and Fuertes(2013) showed evidence through

an empirical study that idiosyncratic volatility is negatively correlated. Table 3

presents the results of the IVol strategy.

3.5.1 Benchmark model

Unlike other signals, the idiosyncratic risk signal has to be defined on different

benchmarks. Benchmarks will be chosen between traditional benchmarks and fun-

damental commodity benchmark. The model can be expressed as the following

rk,d = αk + Fdβk + εi,d, d = 1, · · ·D days

where rk,d is the daily return of the kth commodity future contract, Fd is the sys-

tematic risk premia factors matrix, εi,d is the error term, and (αk, βk) are the OLS

estimated parameters. The regression is iteratively run over the days spanned by a

monthly rolling window of (RW = 3,6,12). Following the assumption that idiosyn-

cratic volatility, from now defined as IVol, is negatively correlated with returns, we

buy (sell) the assets with the lowest (highest) IVol signal which is obtained as the

standard deviation of the residuals of the above mentioned regression.

For the "traditional" factors, inspired by traditional asset pricing model, we con-

sider the equity risk premium (Rm − Rf ), size and value risk premia (SMB, HML);

robust minus weak and conservative minus aggressive (RMW, CMA). We also im-

plement the same concept of equity risk premium to the specificity of the commodity

futures market by using as factor the S&P-GSCI and/or the Bloomberg Commodity

Index (BCOM).
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On the other hand, we use factor that capture the fundamentals of backwardation

and contango, precisely term structure portfolio (TS) and hedging pressure portfolio.

We consider all of them and choose the model that gives the best performance

via backtesting. The model considering as a sole regressor the S&P-GSCI yields the

best return, hence we will use it for the rest of the study.

3.6 Higher Moments

Skewness is a measure of the asymmetry of a probability density function, with neg-

ative values indicating that the tail on the left side of the probability density function

is longer or fatter than the right side. Conversely, positive skew indicates that the

right tail is longer or fatter than the left tail.

Kurtosis is a measure of how "fat" are the tails of the distribution. An higher

(lower) value corresponds to fatter (thinner) tails. Having this in mind, one ought to

have a higher skewness as possible and a lower kurtosis as possible. Table 4 presents

the results of the TS strategy.

3.6.1 Constructing Skewness Portfolio

We construct the skewness based signal by calculating the skewness of the daily fu-

tures contract returns over a monthly rolling window of (RW = 1,3,6,12). We then

buy (sell) the contract with the highest (lowest) average skewness signal. The unbi-

ased estimator for the standardized sample skewness is:

√
n(n− 1)

n− 2

1
n

∑n
i=1(xi − x)3(√

1
n

∑n
i=1(xi − x)2

)3

3.6.2 Constructing Kurtosis Portfolio

We construct the kurtosis based signal by calculating the kurtosis of the daily futures

contract returns over a monthly rolling window of (RW = 1,3,6,12). We then buy

(sell) the contract with the lowest (highest) average kurtosis signal. The unbiased

estimator for the standardized sample kurtosis is:
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n− 1

(n− 2)(n− 3)
((n+ 1)k − 3(n− 1)) + 3

with

k =
1
n

∑n
i=1(xi − x)4(√

1
n

∑n
i=1(xi − x)2

)2
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4 Refining Signals

4.1 Refining Signals

In this section we will try to improve our signals. More specifically, we are going to

improve the IVol signal and the Momentum signal by forecasting next period condi-

tional volatility and next period total volatility (to adjust our momentum estimate),

respectively.

4.2 Forecasting Idiosyncratic Volatility

Miffre & Fuertes(2013) in their empirical study showed negative correlation between

returns and idiosyncratic volatility. In their study, they constructed the IVol signal

by computing the standard deviation of daily residuals of a given benchmark over

a rolling window. We will improve the signal by forecasting the next period non-

systematic volatility.

We look at the residuals of each commodity to assess heteroscedasticity by per-

forming the Engle’s ARCH test. Table 5 shows that each of the 27 commodities

studied display conditional heteroscedasticity (ARCH effect). We then estimate via

maximum likelihood estimation a GARCH(1,1) model.

rk,d = αk + Fdβk + εi,d, d = 1, · · ·D days

εi,d = σi,dZd

Where Zd is a strong white noise process and σi,d is the conditional volatility of

the process, which follows a certain process. Table 5 shows the summary statistics of

the residuals of each commodity. High kurtosis and the Jarque-Bera test confirm the
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non-normality of the process. Furthermore, negative skewness (a common pattern

in financial series) hints to the non-symmetry of the distribution, where negative

movement tend to have a bigger impact on the conditional volatility. Having this in

mind, we estimate four models over three different distributions.

4.2.1 The Models

GARCH(1,1)

The Autoregressive Conditional Heteroscedasticity (ARCH) model has been pro-

posed in a seminal paper by Engle (1982). The model uses past disturbances in

order to model variance of the process. Empirical evidence showed that an high

ARCH order has to be chosen to catch the variance of the series. To fix this problem,

the Generalized ARCH (GARCH) of Bollerslev (1986) uses previous period variance

to reduce the number of estimated parameter from ∞ to 2. The model boils down

to:

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1

with α0, α1, β1 ≥ 0 and α1 + β1 < 1

GJR-GARCH(1,1)

As previously mentioned, financial time series exhibit volatility clustering (large

changes are followed by large changes) and fat-tailness, or in more appropriate sta-

tistical term, a high value of kurtosis, way above the value of 3 of a Gaussian dis-

tribution. Furthermore, Black (1976) noticed the so-called "leverage effect", in which

volatility is higher after negative shocks than after positive shocks of same magni-

tude.

The GARCH model can capture the first two characteristic of financial series but

the symmetry of the model cannot capture the third one. To correct this and capture

the "leverage effect", various expansions have been proposed, Exponential GARCH

of Nelson(1991), GJR-GARCH of Glosten, Jagannathan and Runkle (1993) and the

furthest generalization with Asymmetric Power ARCH (APARCH) of Ding, Granger

and Engle (1993). The GJR(1,1) boils down to:
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σ2
t = α0 + α1ε

2
t−1 + γ1S

−
t−1ε

2
t−1 + β1σ

2
t−1

with α0, α1, β1 ≥ 0 and α1 + γ1 ≥ 1 and α1 + β1 + 1
2γ1 < 1

where S−t−1 is a dummy variable that takes value 1 if the shock is negative or 0 if

positive. Note that if γ1 = 0 the model is simply a GARCH(1,1).

EGARCH(1,1)

The exponential GARCH (EGARCH) model by Nelson(1991) is another asymmetric

GARCH model and has the following representation:

log σ2
t = α0 + γ1(|Zt| − E |Zt|) + β1 log σ2

t−1 + α1 logZt

For Gaussian: E |Zt| =
√

2
π

For Student’s t: E |Zt| =
√

ν−2
π

Γ

(
ν−1
2

)
Γ

(
ν
2

)
For Skewed Student’s t: E |Zt| = 2ξ2

ξ+ 1
ξ

√
ν−2
π

Γ

(
ν−1
2

)
Γ

(
ν
2

)

The main advantage of the EGARCH model is that since log σ2
t may be nega-

tive, there are less restrictions on the parameters. However, forecast of conditional

variances from an EGARCH model are biased. This can be shown through Jensen’s

inequality.

E[σtt] ≥ exp
(
E[log σ2

t ]
)

APARCH(1,1)

The Asymmetric Power ARCH model by Ding, Granger and Engle (1993) general-

izes the GJR model by introducing an additional parameter which models the expo-

nent. In practical terms, if δ is equal to 1, the APARCH models the volatility and if

equals to 2 it models the variance.

σδt = α0 + α1(|εt−1| − γ1εt−1)δ + β1σ
δ
t−1
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4.2.2 The distributions

The GARCH models are estimated through a maximum likelihood approach. The

ML approach as the words say is based on maximizing the likelihood function with

respect of unknown parameters. The likelihood function is the joint density of εt for

given parameters of θ, where θ = (α0, α1, β1) for the case of GARCH(1,1). Assum-

ing the independence of the Zt process, maximizing the joint density is the same of

maximizing the product of the marginal densities. Furthermore, by monotonicity of

the log function the maximizer of the product is equivalent to the sum of the logs.

As we discussed in the previous section the non-normality of the residuals, it

is useful to consider other distributions than the Gaussian, hence we will consider

three distributions: Normal, Student-t (in which we will estimate also the degrees of

freedom of the parameter, ν) and the Skewed Student-t (in which we will estimate

also the degrees of freedom of the parameter, ν, and the asymmetric parameter, ξ).

Normal

The normal distribution is the most used in estimating a GARCH model. The log-

likelihood function is given by

L = −T
2

log(2π)− 1

2

T∑
t=1

log(σ2
t )−

1

2

T∑
t=1

( ε
σ

)2

where T is the number of observations.

Student-t

The student T is the generalization of the Normal Distribution, in which the param-

eter ν controls the thickness of the tails. As ν → ∞, the t-distribution approaches

the normal distribution with mean 0 and variance 1. The log-likelihood function is

given by

L = T

(
log

[
Γ
(ν + 1

2

)]
− log

[
Γ
(ν

2

)]
− 1

2
log

[
π(ν − 2)

])
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−1

2

T∑
t=1

[
log(σ2

t ) + (1 + ν) log
(

1 +
ε2

σ2
t (ν − 2)

)]

where again ν is the degrees of freedom, ν > 2 and Γ
(
.
)

is the gamma function.

Skewed Student-t

Skewness is an important factor in financial application. Therefore a distribution

that can model the asymmetry is quite important. Lambert and Laurent (2001) have

extend the Skewed Student density to the GARCH framework. The log-likelihood

function is given by

L = T

(
log

[
Γ
(ν + 1

2

)]
− log

[
Γ
(ν

2

)]
− 1

2
log

[
π(ν − 2)

]
+ log

[
2

ξ + 1
ξ

]
+ log

[
s

])

−1

2

T∑
t=1

[
log(σ2

t ) + (1 + ν) log
(

1 +
(szt +m)2

ν − 2
ξ−2It

)]

Where ν is the degree of freedom, Γ
(
.
)

is the gamma function, ξ is the asymmetry

parameter, m =
Γ

(
ν+1
2

)
√
v−2

√
πΓ

(
ν
2

) (
ξ − 1

ξ

)
, s =

√(
ξ2 + 1

ξ2
− 1
)
−m2 and

It =


+1, if zt ≥ −m

s

−1, otherwise

Notice that when ξ equals 1, the function boils down to the symmetric student-t.

4.3 Refining Momentum

In the previous chapter we discussed that the momentum strategy section can be

improved by correcting with the volatility calculated over a rolling window of past

returns. The idea in refining this strategy is to forecast next period (on a monthly ba-

sis) volatility so to update the correction term with the forecasted volatility. Basically

we take the average of the standard deviation of the past 11 and 5 months with the
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forecasted next period volatility. More specifically, we will implement this method

to the best performing momentum strategy, the exponentially weighted momentum

corrected by the volatility. Moreover, given the fact that the forecasting model ne-

cessitates a starting rolling window over which to estimate the parameters, for the

first 60 months (the initial rolling window) the new "refined" strategy mimics the old

strategy and then implements the new strategy.

4.3.1 The Forecasting Model

In order to forecast next period (monthly) volatility we implement a model inspired

by a combination of a GARCH model and the HAR (Heterogeneous Auto-Regressive)

by Corsi (2009). As previously discussed, the idea of the ARCH model is that squared

past returns influence the next period volatility. Moreover, the GARCH introduces

autocorrelation in the volatility process. The partial autocorrelation function of the

equally weighted portfolio monthly volatility in Figure 2 confirms this claims, sug-

gesting an autoregressive process of order 2. The more recent HAR propose a simple

but effective method to model the asymmetric propagation of volatility. The idea is

that volatility over longer time intervals have stronger influence on those shorter

time intervals, possibly because long term volatility matters for short term traders

while short time volatility does not affect long term strategies. Corsi in the simple

HAR models this fact by regressing volatility calculated over 3 different horizons

through a cascade model. The HAR model is built for high frequency data and uses

as an estimate for the volatility the Realized Volatility, which is the sum of squared

returns. This two are the differences between the original model and our applica-

tion. The HAR of 2009 implements high frequency data, while we are using daily

data. In fact, HAR computes realized volatility over daily, weekly and monthly pe-

riod; while our time frame is over monthly, semiannual and annual. Furthermore,

as an estimate for volatility we will use the standard deviation of daily returns. We

now present the HAR model (in our framework) and the final model that we use

for forecasting. We compute the average between the 27 commodities of the Mean

Squared Error of our model and the ARMA(2,1). Our model has an average MSE of

0.000068 while the ARMA(2,1) has a average MSE of 0.000104.
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M = monthly,B = biannual, A = annual

σAt = cA + φAσAt−1 + υAt

σBt = cB + φBσBt−1 + γBEt[σ
A
t ] + υBt

σMt = cM + φMσMt−1 + γMEt[σ
B
t ] + υMt

with σAt , σ
B
t , σ

M
t representing the standard deviations of daily returns over a a

window of one year, six months and one month, respectively. υ represents the error

of each regression. Moreover, by straightforward recursive substitution

σMt = c+ βMσMt−1 + βBσBt−1 + βAσAt−1 + εt

Now the combined model is presented

σMt = β0
(2.37)

+ βM1
(5.78)

σMt−1 + βM2
(3.13)

σMt−2 + βB

(2.31)
σBt−1 + βA

(4.37)
σAt−1 + ψ

(1.97)
r2
t−1 + ηt

with r2
t−1 representing past period squared returns and the numbers in the paren-

thesis under the coefficients are the average t-test taken from the 27 commodities

studied.

4.4 The Results

The refined signals display a robust indication that forecasting total monthly vari-

ance and conditional volatility through a GARCH model can improve the Mom and
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IVol strategy performance, respectively. In fact, the Momentum strategy with fore-

casted volatily is superior in both the 6 months and 12 months rolling windows.

Similar argument can be done for the IVol refined strategy, in which all models using

any variation of GARCH and distribution are superior of the standard IVol model.

Table 6 and Figure 3 display the results.
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5 Combining the Signals

5.1 Studying the interaction between signals

In order to justify the combined use of the different signals we must study the inter-

action between them and prove that they do not contain the same information.

In order to provide evidence, we compute the correlation matrix with the portfo-

lios created using the single signals. The return correlations range between −0.11%

to 0.18%. Except for the higher moments based strategies, all these portfolios are

deemed to capture the fundamentals of contango and backwardation, hence we ex-

pect, when the correlation is statistically significant, positively correlated portfolio

returns. This is indeed the case for all cases. Moreover, unlike the hedging pres-

sure hypothesis (Cootner,1960) and theory of storage (Working,1949), Momentum

strategy has no theoretical background. Despite this, empirical studies (Gorton et

al,2012) showed that recent winners exhibit positive roll-yield, low inventories and

net short hedging. Table 7 displays the correlations between portfolios.

5.2 Construction of the combined strategies

To construct the sorting signal for the combined strategies, we assign a score to the

position of every asset in the single signal sorting portfolios, going from 1 (the most

outperforming) to N (the most underperforming), following the screening strategy

proposed by Achour et al(1998). We then add together this "score matrices" and

we sort again in ascending order, hence the 20% assets with lowest score will be

the in the long portfolio and conversely the 20% assets with the highest score will

be in the short portfolio. Before combining all the signals, we combine the Hedging

Pressure portfolios (Commercial and Speculative Pressure) and the Higher Moments
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portfolios (Skewness and Kurtosis) in order to reduce the total number of portfolios

to combine to avoid overlapping.

5.2.1 Combined Hedging Pressure

As explained in the previous section, to combine 2 or more strategies we assign a

score from 1 to N to each commodity in the each sorting signal. For the Combined

Hedging Pressure the highest score of N is given to the lowest commercial hedging

pressure and 1 to the highest average commercial hedging pressure. Conversely,

the highest score of N is given to the highest speculator hedging pressure and 1

to the lowest average speculator hedging pressure. We sort commodities on their

total score and go long on the commodities with the highest score and short on the

commodities with the lowest score.

5.2.2 Combined Higher Moments

In a similar fashion to the Combined Hedging Pressure portfolio, we combine Skew-

ness and Kurtosis by assigning the highest scores to the commodity with the highest

skewness and lowest kurtosis, and lowest scores to the commodity with the lowest

skewness and highest kurtosis. We sort commodities on their total score and go long

on the commodities with the highest score and short on the commodities with the

lowest score. Table 4 displays the performance of the two combined strategies.

5.3 Total Combined

Having shown the non-overlapping power of the signals for commodity futures re-

turns, we combine the Mom, TS, IVol, Combined Hedging Pressure and Combined

Higher Moments signals. Figure 4 plots the cumulative (excess) returns of the five

long-short strategies to be combined and the total combined long-short strategy. The

graph suggests that combining the five signals adds value relative to exploiting each

signal individually. In table 8 one can examine the performance of the total com-

bined strategy. Furthermore, each of the long-short portfolios (single and combined)

yield a significant and substantial improvement over the S&P-GSCI. It is paramount

to notice that this combination strategy equally weights each component.
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5.4 Linear Regression based Combination

We recognize that signals do not contribute in the same way to the prediction of

commodities performance, as Mom and TS seems to be the best performing having

a higher Sharpe ratio between all of the other strategies. Furthermore, performance

of the strategies varies through time. To account for this, we regress the signals for

in a simple OLS estimation against the next period returns.

rkt+1 = Skt β
′
+ εt+1

Skt =
[
1 Momk

t TSkt IV olkt
(
HdgPresskSpec,t−HdgPresskComm,t

) (
SKk

t −KUkt
)]

β =
[
β0

(3.41)
β1

(1.15)
β2

(6.87)
β3

(5.36)
β4

(4.17)
β5

(1.07)

]
where rkt+1 is the next monthly return of the k commodity; Skt is the matrix con-

taining the signals of the k commodity and β the vector containing the loading fac-

tors with the average t-test in the below parenthesis. Notice that when we define the

elements of the Skt matrix (Momk
t , TSt, ...), we intend Mom,TS, ...etc as the signals

(past averaged performance, the roll-yield), not the returns based on that signal.

Furthermore, to account for the combination of the Hedging Pressure signals and

the Higher Moments signal, we create a unique factor by taking the difference of the

two factors.

5.5 Risk-Return based Combination

Regressing noisy signals with noisy data as the commodities future returns can pro-

duce inaccurate result. Furthermore, not accounting for the non-linearity of the pro-

cess could result in big forecasting errors. We appreciate the simplicity of the com-

bination assigning values to each commodity on each signal of the previous section.

In said strategy, each signal is given an equal weight. We try to change this by giving

a weight to each signal based on their return-risk performance when implement as
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single signal portfolio strategies. In other words, the value we assign at each com-

modity based on their ranking, it is going to be multiplied by a scalar. The scalar

for each strategy is chosen in the following way. We compute, using an expanding

rolling window with starting length of 12 observations, the Sharpe and Sortino ratio

of each single signal portfolio strategy. The weights for the sorting signal for the

Risk-Return based Combination are given by

wi =
SRi∑
i SRi

with i = Mom,TS, IV ol, CombinedHedgingPressure, CombinedHigherMoments

and SRi is either the Sharpe ratio or the Sortino ratio of the i single signal portfolio

strategy. It is trivial to see that
∑

iwi = 1.

Among the two risk-return combination strategies, the Sortino ratio seems to

perform better. Furthermore, this method yields the best performance over the all

combining strategies studied so far. Table 8 and Figure 4 displays the result of the

combining strategies presented so far.
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6 Neural Networks

6.1 Machine Learning

Machine learning represent a group of computational methods strictly related to pat-

tern recognition. Neural networks, adaptive filters are example of machine learning

methods which give "computers the ability to learn without being explicitly pro-

grammed", as Arthur Samuel in 1959 defined them. Although the application of

Neural Network is quite recent, the theory behind it goes back to the famous paper

of 1950 "Computing Machinery and Intelligence" by Turing. In his proposal the En-

glish mathematician explores the various characteristics that could be possessed by

a thinking machine and the various implications in constructing one. In 1951, the

first neural net machine (the SNARC) was designed and built by Marvin Minsky.

Another important step happened in the 1980s with the rediscovery of backpropa-

gation, which is a training method for artificial neural networks. In the 2000s, thanks

to advances in computational speed, deep learning becomes feasible and neural net-

works see widespread commercial use.

6.2 A Simple Algorithm

In this section we present a simple 3 layers (1 hidden layer) neural network algo-

rithm. The table below presents the problem that we will try to forecast. More

specifically, the objective is to forecast the output at t = 8 using the data from t = 1

to t = 7. Notice that in the data the third column is irrelevant and the first and sec-

ond column behave like a XOR gate, in which the output is true only if one, and only

one, of the inputs is true.
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The problem is highly non linear. To show this we try to solve the problem by

solving a system of linear equations, Ax = b, for x. The solution x = A−1b returns

the x weights and we multiply them by the input at t = 8. The weights (x) are equal

to [0.5 0.5 10−17]. The weights displays that solving the problem in this way can

capture the irrelevancy of the third column, but not the non-linearity of the XOR

gate. In order to account for this, we build a Neural Network of three layers, with

the hidden layer of 5 neurons.

The neuron output (the output that the Neural Network estimates), is the weighted

sum of the previous layer. This value is normalized with a so-called activation func-

tion. In our specific case (output between 0 and 1), we choose the Sigmoid function.

S(x) =
1

1 + e−x

A nice property of the Sigmoid function is its gradient, which can be easily de-

fined as:
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S
′
(x) =

e−x

(1 + e−x)2
=

1

1 + e−x
e−x

1 + e−x
=

1

1 + e−x

(
1− 1

1 + e−x

)
= S(x)

(
1− S(x)

)

We can now start our algorithm. We initialize the weights with random uniform

numbers between -1 and 1. We calculate the error between the predicted output and

the actual output and work our way backwards. Firstly by computing the hidden

layer delta, which is the error multiplied by the sensitivity of a neuron to an input,

which is the gradient of the Sigmoid function. We now propagate the error back-

ward, multiplying the hidden layer delta by the weights of the hidden layer. The

delta of the input layer is calculated by multiplying the propagated error by the gra-

dient of the Sigmoid function calculated with the output of the input layer. We can

now adjust the weights of the two layers, multiply the inputs of the training set (

data from t = 1 to t = 7) by the input layer delta for the input layer and for the

hidden layer multiply the output of the input layer by the hidden layer delta. We

repeat this process for a large N. The figure below plots the forecasted value over

N iterations. We can clearly see that already at 5000 iterations the forecasted value

is around 0.05, very close to the true value of zero; ending up at 0.0076 after 50000

iterations.

6.3 Application in Commodity Forecasting

We now return to our task of forecasting commodities returns. In the previous chap-

ter we showed that our signals are able to capture risk premia and generate positive
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returns. Furthermore, we proved that the combination of these signals can improve

the performance of single signals strategies. Moreover, their contribution to returns

is not equally weighted. In fact, the regression based combination and the Sortino

Ratio based combination both beat the equally-weighted signals combination. We

implement the neural network method to address the probable non-linear contribu-

tion of the signals to returns.

6.3.1 Normalizing the signals

To stabilize the problem, we transform the signal matrix of section 5.4 into a -1,0,1

input matrix. We achieve this by assigning the value of 1 to the commodities that

are "signalled" to be in the long portfolio by each signal, -1 if they are in the short

portfolio and 0 if in neither of them. Notice that for the regression based combination

we subtracted the Hedging Pressure Speculator signal with the Hedging Pressure

Commercial signal to recreate the combined Hedging Pressure signal. A similar

argument is made for the Higher Moment signal. For our neural network case, we

can directly look at the Combined Hedging Pressure and the Higher Moment signal

to construct our 1,0,-1 signal matrix.

6.3.2 Levenberg-Marquardt Algorithm

For more complicated problems we rely on a more sophisticated optimization al-

gorithm. Like the quasi-Newton methods, the Levenberg-Marquardt algorithm is

designed to approach second-order training speed without having to compute the

Hessian matrix. In fact, when the performance function has the form of a sum of

squares (as is typical in training feedforward networks), then the Hessian matrix

can be approximated as:

H = JT J

The minimization problem reads as follows:

argmin
β

∑(
yi − f(xi, β)

)2
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To initialize the minimization process, initial guess has to be inputted. In each

iteration step, β is replaced by a new estimate β + δ which when plugged in the

function can be approximated with a first-order approximation:

f(xi, β + δ) = f(xi, β) + Jiδ

Where Ji is the Jacobian. Using matrix notation, we show the optimal value of δ.

[
y− f(β)− Jδ

]T [
y− f(β)− Jδ

]
=

=
[
y− f(β)

]T [
y− f(β)

]
−
[
y− f(β)

]T
Jδ −

[
Jδ
]T [

y− f(β)
]

+ δTJTJδ

Taking the derivative wrt δ yields

δ =
[
JT J
]−1

JT
[
y− f(β)

]
Levenberg’s contribution is to replace this equation by a "damped version"

δ =
[
JT J + µI

]−1
JT
[
y− f(β)

]
where I is the identity matrix and µ the dampening factor. When the scalar µ is

zero, this is just Newton’s method, using the approximate Hessian matrix. When

µ is large, this becomes gradient descent with a small step size. Newton’s method

is faster and more accurate near an error minimum, so the aim is to shift toward

Newton’s method as quickly as possible. Thus, µ is decreased after each success-

ful step (reduction in performance function) and is increased only when a tentative

step would increase the performance function. In this way, the performance func-

tion is always reduced at each iteration of the algorithm. The algorithm stops if the

maximum number of iteration is reached, or if the MSE is below a certain threshold

value, or the gradient falls below a certain threshold and finally if µ exceeds a cer-

tain threshold value. In our neural network problem, the weights will be adjusted

with the formula above and the activation function for the output layer (the function
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that maps the hidden layer to the output layer) will be the hyperbolic tangent, as it

ranges from -1 to 1, which describe the range of returns.

6.3.3 The Network

We construct a 3 layers neural network, with the input layer consisting of the 1,0,-

1 signal matrix, while the hidden layer consists of a 10 neuron layer. Finally the

output layer corresponds to single return vector. We use 250 observations (months)

to train our model. We then expand the rolling window as new information becomes

available. This means that we have 62 observations out-of-sample in which we will

test our model. The NN (neural network) portfolio is constructed using the 250 first

returns of the sortino ratio based combinined portfolio and then using the estimates

originated from the neural network model to sort the best to worst commodities

and, as usual, going long with the predicted best 5 future contracts and short the

predicted worst 5 futures contract.

6.3.4 The Results

Figure 5 and Table 8 show that the neural network provides a better performance

during the last 62 months sample. Another indicator of the goodness of the neural

network is the correlation between the predicted returns and the actual returns in the

62 months sample against the linear regression based forecasting. In practical terms,

this is a measure which indicates how often our model gets right the sign of the

return. The neural network has an average of 43.21% average correlation coefficient

between commodities while the linear regression model has only a 12.73% average

correlation coefficient.
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7 Diversification and Robustness

Analysis

7.1 Risk Diversification

One of the reasons of the financialization of commodities over the last decade is

the risk diversification that they provide to investors. We now address this issue

by looking on how our best performing portfolio (the neural network combination)

correlates with the S&P500. Figure 6 plots the rolling correlation (with a window of

60 months) and the unconditional (whole sample) correlation. The correlation for the

whole sample is 0.0843 and it is statistically not significant, while the S&P-GSCI has

a correlation of 0.15 and it is statistically significant. The rolling window correlation

coefficient ranges from 0.3 to -0.2, but with a low number of values around this

boundaries, confirming the risk diversification properties of the long-short portfolio.

We can conclude that equity investors seeking to diversify their investment should

opt for a long-short approach in futures commodity markets.

7.2 Inflation Hedging

The first step in this analysis is to compute the shocks to inflation. The model fit-

ted to the data is a ARMA(1,2) process, as we have chosen the appropriate lags by

choosing the smallest value of the Bayesian Information Criterion over 16 different

models. Then the residuals of the chosen model are considered as inflation shocks.

Correlation between said inflation shocks and our portfolio returns is 0.0071, thus

providing a good hedge against inflation. In contrary, the S&P-GSCI shows a corre-

lation coefficient of 0.24 it is statistically significant.
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7.3 Robustness Analysis

We now present additional tests to confirm the superiority in performance of the

long-short portfolio.

7.3.1 Is the Financialization of Commodities the Reason behind Perfor-

mance?

In order to assess if the the flow of cash in the commodity futures markets explains

the profits of our strategy we present two tests.

Random Portfolio

We create a random long-short portfolio for every month of the sample from January

2000 to June 2008 sorting the commodities using draws from a simulated uniform

distribution. We then compute the Sharpe Ratio of this random portfolio. We simu-

late the above process using a simple Monte Carlo simulation a 1000 times, storing

the results of the Sharpe Ratio at every iteration. We should then approach a Normal

Distribution with mean zero and variance σ2 if the financialization has no effect on

a random portfolio. The average value of the sharpe ratio is 0.0033, which ticks off

the first requirement of a mean equal to zero. To prove normality we perform the

Jarque-Bera test, which returns a value of 4.1239, which is below the critical value

of 5.9282, and confirms that the distribution as an expected skewness and kurtosis

as the normal distribution. Performing the one-sample Kolmogorov-Smirnov test

confirm the result of the JB-test, thus we can infer that our distribution of simulated

Sharpe Ratio is a normal with zero mean.

Granger Causality

We use the notion of causality proposed by Granger(1969) to test if the increase in

open interest position granger causes the returns of our long-short portfolio. We test

this with the following regression using monthly data:

rpt = δ0
(2.73)

+ δ1
(1.79)

log(
∑
i

OIit−1) + φ
(0.87)

rpt−1 + ηt
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where rpt is the long-short neural network portfolio and
∑

iOI
i
t−1) sum of the

open interest of each commodities. The t-test in parenthesis below δ1 coefficient

show us that the movement of the open interest has no impact on performance.

7.3.2 Transaction Cost

Locke & Venkatesh (1997) estimated that futures trading costs range between 0.0004%

and 0.033%. As the commodities futures contract studies in this paper are often liq-

uid, cheap and easy to short sell, transaction cost are unlikely to affect performance.

Furthermore, the strategy trades with the closest-to-maturity, often the most liquid

one. Thus, without doing formal tests, we can infer with reasonable confidence, that

transaction cost do not wipe out the abnormal performance of our portfolio.

7.3.3 Liquidity Risk

In the previous subsection we discussed the highly liquidity feature of our long-

short portfolio. Nevertheless, we want to test if the outperformance of the combi-

nation strategy is merely a compensation for holding illiquid futures contracts. We

tackle this issue by calculating the α of the portfolio via a two-factor model formed

by the S&P-GSCI and a liquidity risk premium portfolio (LRP) constructed following

the idea Pastor & Stambaugh’s paper of 2003, and the commodity implementation

of Fuertes & Miffre (2014). The regression is the following

rpt = α
(9.87)

+ β
(3.21)

S&P −GSCIt + γ
(1.81)

LRPt + νt

The estimated significant α is 8.39%, indicating that our long-short neural net-

work strategy is not a compensation for the illiquidity of certain futures contracts.
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8 Conclusion

This paper relies on signals that have been shown to predict commodity futures

returns in the recent literature. As previous literature indicated, the best perform-

ing benchmark for the idiosyncratic volatility is the S&P-GSCI. We go further by

enhancing the momentum and idiosyncratic volatility signals forecasting the next

period volatility. We further expand upon current literature by presenting different

methods for combining the signals, concluding with a combination method based

on a artificial neural network. We showed that over the period from 1990 to the

end of 2016 an investor that buys commodities with recent high past performance,

high average roll-yield, low idiosyncratic volatility, low commercial pressure and

high speculator pressure, highest past skewness and lowest kurtosis; and sell com-

modities that present the opposite above features can obtain an average (between

the 5 combination strategies) Sharpe ratio of 1.23. This value is much higher then

the Sharpe ratios obtained using the single signals, even more for the S&P-GSCI that

stands at 0.11. Moreover, we also proved the diversification and inflation hedging

properties of our strategies.

The main goal of this paper was to study the effectiveness of combining the stud-

ied signals and the strategies on how to combine them. An open question remains

whether adding as a signal inventory levels could improve performance.
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Appendix A. Tables 40

FIGURE A.6
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