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1 INTRODUCTION 

The short term interest rate is one of the most important values determined when 
making a market analysis. Many different models have been created for the purpose of 
explaining its behavior rather than for any other variable in finance. 
The main aim of all those models is to outline a process for the short rate r in order to 
characterize changes related to the term structure of interest rates. 
In particular the short rate rt is the instantaneous rate continuously compounded at 
time t. 
Clearly all the models that i’m going to describe and the model (Vasiĉek) that i’m going 
to use to make an empirical analysis of data are all time-continuous, practically this 
implies that the time framework that we are taking in consideration does not simply go 
from t to t1 but from t to ∞. Since there is the vacancy of a common framework and of 
an appropriate benchwark is very hard to evaluate the performances of those model 
with respect to the capacity of capturing short term rates. 
The main scope of this thesis is to give a general description of what are short models 
starting by giving a general stochastic differential equation which solution is the rate we 
are looking for. 
Moreover i’m going to highlight all the assumptions and all the conditions that have the 
necessity to hold to make the models valid, than i’ll demonstrate that when there’s no 
arbitrage all bonds have equal market price of risk independently of the maturity, this 
is necessary because one of the variable of the term structure equation is ʎ the market 
price of risk. Than i’ll define the general term structure equation for the short rates and 
explain the meaning of each variable present in the equation 
Some necessary things to clarify, before we are going to use data and find empirical 
results, are martingales and martingale modelling in relation to the fact that the 
dynamics of the rate have a martingale measure Q. 
The model i’m going to focus on is the one invented by Vasiček, first i will highlight how 
to estimate the parameters related to the model than discuss how to compute its term 
structure. 
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Ultimately i will use some data, compute the price of a bond using the model mentioned 
before and comment the results obtained providing also a graphical representation. 
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2 GENERAL CHARACTERISTICS AND SOME PARTICULAR 
ASSUMPTIONS REGARDING SHORT RATE MODELS 

We start by posing the problem on how to model arbitrage free zero coupon bond 
prices defined by the processes {p(x,N) ; N≥0} of course N represents the time horizon 
where the price is defined. 
Instinctively the price P (t ,N) is probably influenced by the behavior of the short rate of 
interest over the interval [t ,T], the incipit is to determine an a priori definition for the 
dynamics of the short rate of interest. 
Indeed this has been the general path taken for interest rate theory, so we will model 
the interest rate under an objective probability measure P, defined by the resolution of 
a Stochastic Differential Equation of the form: 

 
 

 dr(t) = µ(t,r(t))dt + σ(t,r(t))dŴ(t) 
  

 
 Where µ is the drift term  
 σ is the diffusion term  
 Ŵ outlines a Wiener Process also defined as Standard Brownian Motion  

 

Another way to interpret this equation is to write: 

 

 

r(t+s) – r(t) = ∫ µ
𝒕ା𝒔

𝒕
(𝒓(𝒖); 𝒖)𝒅𝒖 + ∫ 𝛔(𝐫(𝐮); 𝐮)𝐝Ŵ(𝐮)

𝒕ା𝒔

𝒕
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This equation represents a continuous time stochastic process composed by a Lebesgue 
integral and an Ito’s integral, where the former is defined as the integral of a variable 
defined on a sigma algebra while the latter is outlines the dynamics of any Markovian 
function of the Brownian Motion of W. 
Of course the only variable given is the short rate associated to the money account 
which price process X is defined by the following equation: 

 
 
 

dX(t) = r(t)X(t)dt 
 

 
 
 

2.1 Assumptions 

 

First Assumption  

To clarify what is the meaning of this equation we are going to make a particular 
assumption: 

Assumption 1.1: “ We assume the existence of one exogenously given (locally risk 
free) asset. The price, X, of this asset has dynamics given by equation (1.3) where the 
dynamics of r, under the objective probability measure P, are given by equation 
(23.1).” 

The necessity to make such assumption is to outline the fact that this exogenously given 
risk free asset is considered as the underlying asset and the short rate associated to it 
as the underlying short rate. 
Of course for this to being valid there is the need of a market rich of bonds otherwise 
the fact that we have only one asset, even though he is the underlying one, doesn’t help 
us to model the short rate. 
So we assume that: 
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Second Assumption  

 “We assume that exists a market for zero coupon T-bonds for each value of T.” 

The market existence help us to understand the relationship between all the price 
dynamics of the bonds at each different maturity , of course since T is undefined there 
is an infinite number of zero coupon bonds. 
Also what we are interested in is to find a price for interest rate derivatives such as 
swaps and options. 
From what we have stated up until now one can asses that bond prices are uniquely 
determined by the Probability dynamics of the short but is not true, since the bond price 
depends also on the underlying risk free assets. 
The model we are trying to show is very similar to the Black-Scholes standard model 
where the stochastic process of the short rate is similar to the underlying stochastic 
process for the stock price S and the equation 1.3 which represents a money account 
which is also present on the Black-Scholes model. 
So a person can say that since the assumption that the price process is determined only 
by the P-dynamics of the undelying asset is valid for the Black-Scholes than is also valid 
for this model. 
To demonstrate that this is not true, we start by defining a meta theorem which states 
that “a market is incomplete when the number of traded assets is lower than the 
number of random sources”.  
Then we continue by taking in consideration the existence of a market where the only 
asset present is the money account (equation 1.3), the random part of the equation is 
the Wiener Process and since the number of traded assets taken in consideration (so 
without considering the money account) is 0, according to the meta theorem, the 
market is incomplete. 
Another way to verify incompleteness is to realize that is pretty much impossible to 
form portfolios and the only possible profit is given by investing all the money in the 
bank and let them grow at a certain rate, this prevents the possibility of replicating 
derivatives. 
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The impossibility of replicating derivatives makes us understand that the market is no 
arbitrage free. 
Also let’s consider a portfolio which follows Black-Scholes model and in particular it is 
formed by an underlying asset G and a derivative L, we choose weights to eliminate the 
Wiener process that will give us a riskless asset with rate of return r equal to the short 
rate, writing such equality will give us a Partial Differential Equation. 
However this approach makes no sense since G is not the price of an asset traded in the 
market and so talking about process of G and talking about the possibility of creating a 
portfolio based on G has no purpose. 
To summarize in a few steps: 
 

1. The value of the derivative we have defined is not entirely determined by the 
condition that the market is free of arbitrage and by the dynamics of G. 

2. Since there are not enough underlying assets, pricing a derivative in terms of 
them is not possible. 
 

From the situation that we were analyzing before the digression made we can clearly 
see that in our model we have a situation of market incompleteness, since the number 
of random sources is bigger than the amount of traded assets. 
If we compare the model we are building with Black-Scholes one main difference arise, 
since in the Black-Scholes we have that the underlying asset is the stock S which in our 
model would correspond to r, but in our model r is not the price of an asset so is 
impossible to form a portfolio based on r. 
To summarize briefly what we have said: 
 

 The short rate dynamics and the free of arbitrage condition of the market are not 
enough to define a price for the bond, this is because we do not have enough 
underlying assets to price a derivative in terms of them. 

 
This is why we need to take in consideration more variables that I will explain later in 
the next chapters. 
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3 DEFINING A TERM STRUCTURE EQUATION FOR SHORT RATE  

3.1 Term Structure Equation  

 

We start by defining the Price of a bond with maturity tn (tn-Bond): 

 

P(t,tn)  = F(t, r(t); tn) 

 

 Where t is the first year  
 

 The short rate is defined as r(t) 
 

 Differently tn is the time to maturity  
 
 

Also we need to define boundaries, the condition we pose is that at time to maturity 
the tn-bond values 1 dollar, now our interest is to clarify and define one of the factors 
that is fundamental for outlining the Term Structure Equation for short rate models, is 
also fundamental since help us separate between the short rate model we are trying to 
define and the Black-Scholes model. 
We start by defining two different time to maturity K and G according to the Ito’s 
formula and the description we have given for price processes, we can define different 
equations for the dynamics of the K-Bond. 
 
 

dFK = FKαKdt + FKσKdŴ, 
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 Where FK is defined as F(t ,r; K) 
 

 Where αK is the drift-term related to the performance of asset in a given market  
 

 Where σK is the volatility related to the asset took in consideration  
 

We denote r and t as subindices for the partial derivatives, 

 

 
 

 
             Ft

K + μFr
T + ½ σ2FT

rr 
 αK =     ̶  ̶ ̶ ̶ ̶ ̶̶ ̶  ̶ ̶ ̶ ̶ ̶̶ ̶  ̶ ̶ ̶ ̶ ̶̶ ̶  ̶̶ ̶ ̶̶ 

            FK 

 

         σFr
K 

σK =   ̶  ̶ ̶ ̶ ̶ ̶ ̶̶ ̶ ̶ 

           FT 

 
We assume the portfolio (βK , βG ) , with value described by this equation : 
 
 

dV = V {βK dFK/FK + βG dFG/FG } 
 

 
Inserting the differential equation dFK = FKαKdt + FKσKdŴ, and the equation for 
Bond G after some calculation we have this result  
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dV = V {βKαK + βGαG} dt + V {βKαK + βGαG } dŴ 
 

 
Of course for those portfolio equations to work we need those conditions to be valid: 
 

 βK + βG = 1 This says that the sum of the weights is equal to 1  
 

 βKσK + βGσG = 0 This implies that portfolio risk is equal to 0 (?) 
 
With those 2 conditions applied we can eliminate the term dŴ from the equation 
which now gives:  
 
 

 
dV = V{βKαK + βGαG } dt 

 
 

 

By solving the system of equation given by this last equation and the other 2 we obtain 

 

            σK 
βK = -   ̶  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶̶ ̶  ̶ ̶ ̶ ̶̶ ̶̶̶ 

            σG – σK 
 

           σG 
βG =     ̶  ̶ ̶ ̶ ̶̶ ̶  ̶ ̶ ̶ ̶̶ ̶  ̶̶ 

            σG - σK 
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Those two equations represents the weight of each asset in the portfolio, also by simply 
substituting we can see that 

 

       αKσG – αGσK 

dV = V{   ̶ ̶ ̶  ̶ ̶ ̶ ̶ ̶̶ ̶  ̶ ̶ ̶ ̶ ̶̶ ̶ ̶ ̶   } dt    

         σG - σK 

 
 

 
This equation states that the value of a portfolio is function of its own return at a certain 
time t. 
In case of a no arbitrage market the portfolio has the rate of return that corresponds to 
the short rate of interest.  
 

 
 

      αKσG – αGσK 

                ̶ ̶ ̶  ̶ ̶ ̶ ̶ ̶̶ ̶  ̶ ̶ ̶ ̶̶ ̶  ̶̶ ̶   = r(t) 

      σG - σK 

 

by manipulating a little bit this formula can be rewritten as: 
 

                                                      αK(t) - r(t)        αG(t) – r(t) 
     ̶  ̶ ̶ ̶ ̶̶ ̶  ̶ ̶ ̶ ̶ ̶̶ ̶  ̶ ̶ ̶ ̶ ̶  =   ̶  ̶̶ ̶  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶̶ ̶  ̶ ̶ ̶ ̶ ̶    

                                                             σK(t) σG(t) 
 
Where αK(t) is the return associated to bond K while r(t) is the return associated to the 
riskless asset, also σK(t) is the volatility associated to the bond K. 
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Moreover the difference αK(t) - r(t) is the risk premium associated to bond K. 
This is why for bond K we can define a variable that identify the risk premium weighted 
for the volatility. 
 

 

                                                        αK(t) - r(t)         
          ̶ ̶  ̶ ̶ ̶ ̶ ̶̶ ̶  ̶ ̶ ̶ ̶ ̶̶ ̶  ̶ ̶ ̶  =  λ(t)     

                                                                     σK(t) 
 
 
The variable just introduced represents the market risk premium weighted for the 
volatility of the particular bond taken in consideration, of course the market is 
considered to be arbitrage free because otherwise such condition would not be valid. 
In particular this result is valid for both bonds K, G and for all the bonds that are in the 
same market regardless of their individual time to maturity.  
The motivation of why we have done all this fatigue to demonstrate this existence of 
this variable is because this variable is fundamental to define the term structure 
equation associated to short rates.  
Starting from the last equation that we have found we can substitute the values for αK 
and for σK to obtain the “Term Structure Equation “ 

 
Ft

K + {μ – λσ} Fr
K+ ½ σ2Frr

K – rFK = 0 
 

FK(K,r) = 1 
 

 
 
We can clearly state that the Term Structure Equation takes the form of partial 
differential equation very similar to the Black-Scholes one but with more factor since it 
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has also the market price of risk which can’t be determined by the model but is usually 
determined exogenously, the same reasoning applies to μ and σ. 
We know that the objective probability measure P is not enough to measure correctly 
the short term rate and consequently the price of the bond, this is we will define a new 
equation that will respect a different measure. 
 
 

F(t, r; G) = EQ
t,r [e^-∫ 𝒓(𝒕)𝒅𝒕

𝑮

𝒕
] 

 

 

Bond prices are now under the martingale measure Q also this measure varies for 
different values of λ. 
The Black-Scholes differs from this, because its martingale measure it is completely 
determined. This is due to the fact that the market related to the Black-Scholes model 
is complete, while the market at which we are referring is not complete. 
We know that the different Bond Prices are determined partly by the Q-dynamics and 
partly by the market, in particular for each different values of λ, which is the market 
price of risk, it exists a bond market consistent with the r-dynamics. 
Specifically part of the bond price process will be determined by the demand and supply 
of the bonds in the market taken in consideration and factors such as risk aversion of 
investors. 
Still the problem remains on which value of λ we choose, the only way to do this is by 
getting market data and see which is the value of λ. 
Since the bonds described above are deterministic we can define a more general 
contingent N-claim: 
 
 

 
X = φ (r(N)) 

 Where φ is a real valued function. 
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After having defined this clam, it is easy to see that the price of a bond in an arbitrage-
free market is equal to: 

 

П(t;φ) = F(t,r(t)) 

 

This equation helps us to solve the problem we have with the boundary of F: 

 

 

Ft + {μ – λσ} Fr + 1/2σ2Frr – rF = 0 

F(N,r) = ф 

 

 

So F has the stochastic representation: 

 

F(t,r;N) = EQ
t,r[exp{- ∫

𝑻

𝒕
𝒓(𝒕)𝒅𝒕 } x φ(r(N))] 

 

 

Where the martingale measure Q and the variables t,r denote that the expectations 
respect the following dynamics : 

 

dr(s) = {μ – λσ}ds + σdW(s) 

 

r(t) = r  
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The equation we have found is the general final term structure equation for short rate 
models. 
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4 DESCRIPTION OF MARTINGALE MODELS FOR THE SHORT RATES 

We start by defining the terms of the term structure equation : 
 

 Where μ is the drift term  
 Where σ is the diffusion term  
 And λ is the market price of risk 

 
Let’s start by considering σ to be given a priori. Than we notice that in the term structure 
equation what really matters is the part of the equation represented by μ-λσ, which is 
the drift term of the short rate of interest associated with the martingale measure Q. 
So clearly both μ and λ are specified under the martingale measure Q, so by modelling 
the dynamics of the short rate under this measure we can write: 
 
 

 
dr(t) = μ(t,r(t))dt + σ(t,r(t))dW(t) 

 
 
This is a general way of describing r-dynamics but there are a lot of different approaches 
in the literature used to outline this relation i’m going to list the most popular ones. 
 

1.  Vasiček  
 

dr = (b – ar)dt + σdW  ( a>0 ) 
 

 Where b – ar is the drift term  
 Where σ is the diffusion  

 
 

2. Cox-Ingersoll-Ross (CIR) 
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dr = a(b – r)dt + σ√𝒓 dW 
 

 Where a(b – r) is the drift term  
 And σ√𝒓  is the diffusion 

 
 

3. Dothan  
 
 

dr = ardt + σrdW 
 

 
 Where ar is the drift term  
 And σr is the diffusion term  

 
 

4. Black-Derman-Toy 
 

 
dr = ϴ(t)rdt + σ(t)rdW 

 
 

 Where ϴ(t)r is the drift term 
 Where σ(t)r is the diffusion term 
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5 APPROACH TO THE ESTIMATION OF THE PARAMETERS OF 
MARTINGALE MODELS WITH PARTICULAR FOCUS ON VASYCEK 
MODEL 

Now we will consider how to estimate the various variable that characterize those 
models, since we want to focus on Vasiček, I will estimate the parameters related to it. 
Basically we need to estimate a, b and σ, the problem with this situation is that we can’t 
use a standard estimation for the parameters of an SDE because since we are modelling 
r under the Martingale Q measure, we can’t make observation in the real world, 
because when we observe in the real world we are observing under the objective 
measure P. 
In fact if we use standard statistical procedures we won’t get Q-variables but something 
which is non sensical. 
Even though we have no clue on how to estimate the parameters it is possible to 
demonstrate that the parameter σ is the same under both P and Q so it can be 
estimated by the data. 
Differently the drift term is a total different story, first of all we can notice that the 
martingale measure is decided by the market, so to gather data about the drift term we 
can collect price information from the market by inverting the yield curve. 
The process works like this: 
 

 We define a model that possess several parameters and denote all the 
parameters under vector β 

 
 

dr(t) = μ(t,r(t);β)dt + σ(t,r(t);α)dW(t) 
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 We solve this for every time of maturity N and the term structure equation is  

Ft
N μFr

N+ 1/2σ2Frr
N- rFN = 0 

FN(N,r) =1 

 

So now we have found the theoretical term structure  

 

P(t,N;β) = FN(t,r;β) 

 

 First of all we can collect price data from the market, infact we can observe the 
bond price at time 0 for all maturities N. Moreover we can denote the following 
term structure {p*(0,N); N ≥ 0}. 

 Moreover we will choose the value for β such that the theoretical term structure 
{p(0,N;β); N ≥ 0} is compatible with the empirical term structure {p*(0,N); N ≥
0}. This allow us to find the value for the parameter β. 

 Now if we insert β* into μ and σ, we have found the particular martingale measure 
we were looking for. 

 After having defined our martingale measure Q, we can price interest rate 
derivatives like for example Y = г(r(N)), so the price process is the result of П(t; г) 
= K(t,r(t)) where K solves the term structure equation 

 

Of course since some of the models are much easier to find than others, we have the 
necessity to define the subject called “affine term structures”. 
Hypothesize that the term structure {p(t,N); 0 ≤ t ≤ N, N > 0} is defined as 
 
 

p(t,N) = F(t,r(t);N) 
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Where F is  
 

 
F(t,r(t);T) = eA(t,N)-B(t,N)r 

 

 
A and B are deterministic functions, then the model is said to have an affine term 
structure (ATS). 
Since having an affine term structure makes things easier from an analytical and 
computational point of view so we need to find some signals that help us to recognize 
the presence of affine term structures. 
Our goal is to find values for μ and σ for the affine term structure. 
We start by assuming the following dynamics for r 
 
 

dr = μ(t,r(t))dt + σ(t,r(t))dW(t) 
 
 

Also let’s assume that this equation possesses an ATS which implies that the bond prices 
respect the following form F(t,r(t);T) = eA(t,N)-B(t,N)r , so from this condition we can 
compute the partial derivatives of F, which is the variable that solves the term structure 
equation, consequently we find  
 
 

At(t,N) – {1 + Bt(t,N)}r – μ(t,r)B(t,N) + 1/2σ2(t,r)B2(t,N) = 0 
 

 
 Where A and B are deterministic functions 
 μ is the drift term 
 σ2 is the diffusion term 
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The boundary value for the term structure equation F(N,r) = 1 tells that: 
 
 

A(N,N) = 0 
B(N,N) = 0 

 
 
The equation outlines the relation necessary to hold between B, σ, μ and A for an ATS 
to exist but there are a lot of different values that μ and σ not for all of the exist A and 
B such that the equation above is satisfied. 
So we want μ and σ such that A and B are functions able to solve the equation above, 
in general it is possible to observe that if μ and σ are affine functions, with respect to r, 
then the equation can be separated into two different differential equations for the 
unknown functions A and B. 
We assume that μ and σ have the following form  
 

μ(t,r) = ρ(t)r + κ(t) 

σ(t,r) = ඥ𝝀(𝒕)𝒓 +  𝝊(𝒕) 

 

After collecting terms the equation becomes  

 

At(t,N) - κ(t)B(t,N) + ½ 𝝊(𝒕)B2(t,N) – {1 + Bt(t,N) + ρ(t)B(t,N) – ½ 𝝀(𝒕)B2(t,N)} = 0 

 

This holds for all values of t,N and r, so we fix the time variables and since the equation 
holds for all values of r than all the coefficient of r have to be 0.  

So the equation becomes 
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Bt(t,N) + ρ(t)B(t,N) – ½ 𝝀(𝒕)B2(t,N) = -1  

 

This is the equation necessary used to find the value of B that respect the conditions of 
Affine Term Structures. 
Giving that the r term is zero it is clear that the other term must also be eliminated 
giving the equation  

 

At(t,N) = κ(t)B(t,N) – ½ 𝝀(𝒕)B2(t,N) 

 

This equation is used to find the value of A that respect the conditions of Affine Term 
Structures. 
Now we will sum up all the assumptions and equations for ATS to give a general 
framework. 
 
We assume that μ and σ, as we already said, are defined like this 
 

μ(t,r) = ρ(t)r + κ(t) 

σ(t,r) = ඥ𝝀(𝒕)𝒓 +  𝝊(𝒕) 
 
 

Then the model possess an ATS of the form F(t,r(t);T) = eA(t,N)-B(t,N)r , consequently A and 
B satisfy the system 
 
 

Bt(t,N) + ρ(t)B(t,N) – ½ 𝝀(𝒕)B2(t,N) = -1 
B(N,N) = 0 
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At(t,N) = κ(t)B(t,N) – ½ 𝝀(𝒕)B2(t,N) 
A(N,N) = 0 

 
 
We see that equation Bt(t,N) + ρ(t)B(t,N) – ½ 𝝀(𝒕)B2(t,N) = -1 is a Riccati equation, which 
is an ordinary differential equation quadratic in the unknown variable, in this situation 
related to the determination of B without using A. 
Than by substitution and integration we can find A. 
We can prove that if μ and σ are time independent, than the necessary condition to 
have an ATS is that those variables are affine, moreover almost all the model listed 
before have an ATS apart from the Dothan and the Black-Derman-Toy. 
In particular some models are surely easier than others to deal with, for example 
Vasiček and Hull-White mark out the short rate using a linear SDE. 
Such equations characterized by r-processes are normally distributed and bond prices 
are defined by equations similar to this: 
 

 

p(0,N) = E[exp{-∫ 𝒓(𝒔)𝒅𝒔
𝑵

𝟎
 

 
In fact to compute bond prices for a model with such distribution, is similar to compute 
the expected value of a log-normal stochastic variable. 
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6 COMPUTATION OF VASIĈEK MODEL TERM STRUCTURE 

The focus of this chapter is to derive the term structure for Vasiček model, in particular 
we will use the ATS theory developed before to compute what we are looking for. 
We know that short rates for Vasiček are given by the following equation  
 
 

 
dr = (b – ar)dt + σdW  

 
It can be seen that this model possess the characteristic of being mean-reverting, which 
means that the equation will tend to revert to the mean b/a. 
So equations used to find the values for A and B when we were taking in consideration 
ATS now become: 
 
 

Bt(t,N) – aB(t,N) = -1  
B(N,N) = 0  

 
 

At(t,N) = bB(t,N) - ½ σ2B2(t,N), 
A(N,N) = 0  

 
By fixing N for the first equation, we have a simple linear ordinary differential equation 
in the t-variable. Which can be solved as: 
 

B(t,N) = 1/a {1 – e-a(N-t)} 

 

 
Differently integrating the second equation we get: 
 
 



Alessandro Minciacchi Libera Università degli Studi Guido Carli 

 Vasiček Mathematical Model 
 

 

 
Data di emissione 15/06/2018 

 Pagina 

26 di 38 

 

 

A(t,N) = σ2/2 ∫
𝑵

𝒕
B2(s,N)ds – b∫ 𝑩

𝑵

𝒕
(s,N)ds 

 
If we substitute for B the equation above we obtain the following equations : 
 

 
p(t,N) = eA(t,N) - B(t,N)r(t) 

 

Where 
 
 

B(t,N) = 1/a {1 – e-a(N-t)} 
 

                                           {B(t,N) – N + t}(ab – 1/2σ2) σ2B(t,N) 
 A(t,N) =  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶    -    ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ 
                                                                  a2                                       4a 
 
 
In case we are talking about bond options there’s a specific formula to deal with them, 
if we are willing to use Vasiček model and Hull-White model  
 
 
 

C(t,N,K,S) = p(t,S)F(d) – p(t,N) · K · F(d – σp) 
 

 
Where: 
 
 
 
                                                                            p(t,S) 

d = 1/σp log {  ̶ ̶  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶  } + ½ σp              
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                                                                           p(t,N)K 
 
 

σp = 1/a { 1 – e-a(S-T)} · ඥ𝝈^𝟐/𝟐{𝟏 −  𝒆^ − 𝟐𝒂(𝑵 − 𝒕)} 
 

 
The data we are going to use to estimate the price are the Euribor with maturity one 
month with monthly granularity from 1st of January of 1999 to the 3rd of April of 2017. 
Those data are based on 220 observations. 
We start by recalling the equation of the Vasiček model : 
 
 

dr(t) = α(β-r(t))dt + σdW 
 

r(0) = r0 
 

 Where α is the speed of mean reversion 
 β is the long run mean  
 σ is the instantenous volatility, or also called the diffusion term 
 W is the Weiner process 
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7 EMPIRICAL EVALUATION OF BOND PRICE THROUGH VASIĈEK 
MODEL 

7.1 Necessary theoretical assumptions  

The focus of this chapter is to gather some data in order to calculate the bond price 
using Vasiček model. 
Before calculating the bond price there is a question that is needed to be answered,   
Which is related to the estimation of the parameters b and a which are necessary to  
find the bond value. 
We know that the general equation for Vasiček model is: 
 

dr = (β – αr)dt + σdW(t) 
 
 

Where W(t) is a random Wiener process modelling under the risk neutral measure 
(α>0). 
We start to resolve the following differential equation by taking the derivative of eatrt  
which gives the following result: 
 

 
d(eαtrt) = rtαeαtdt + eαtdrt 

 
 
Substitute the first equation into the second to obtain the following expression: 
 
 

d(eαtrt) = rtαeαtdt + eαt [α (β – rt) dt + σdWt] 
 
 

Rearranging this equation: 
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d(eαtrt) = eαt[αβdt + σdWt] 

 
If we take the integral from s to t for both sides of the equation: 
 

 

∫ 𝐝
𝒕

𝒔
 (eαtru) = ∫

𝒕

𝒔
eau [αβdu + σdWu] 
 
 

eαtrt - eαsrs = αβ∫
𝒕

𝒔
eαudu + σ∫

𝒕

𝒔
eαudWu 

 

eαtrt - eαsrs + β (eαt – eαs) + σ ∫
𝒕

𝒔
e-α(t-u) dWu 

 
 

By multiplying both sides of the equation for e-at, we have the solution of the differential  
equation: 
 

 

rt – e-α(t-s) rs + β (1 – e-α(t-s)) + σ ∫
𝒕

𝒔
e-α(t-u) dWu 

 
 

rt is described by this equation which follows a Gaussian distribution with mean:  
 
 

E[rt] = β + (rs – β) e-α(t-s) 

 
 
And Variance  

              σ2 

Var(rt) =   ̶ ̶   ̶̶   ̶̶  ̶ ̶  ̶  ̶ ̶ ̶  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ 
                2α (1-e-2α(t-s)) 
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To estimate the parameters that we use to calculate the price we need to use the SDE 
found before so: 
 

 

rt = e- α(t-s) rs + β (1 – e- α(t-s)) + σ ∫
𝒕

𝒔
e- α(t-u) dWu 

 
 
Where rt is a random variable with mean and variance: 
 
 

 
Mean:  e- α(t-s) rs + β (1 – e- α(t-s)) 

 
 

            σ2 

Variance:  ̶  ̶  ̶ ̶  ̶ ̶  ̶ ̶ ̶  ̶ ̶  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ 
                2α (1-e-2α(t-s)) 

 
  
It is assumed that rt follows this process: 
 
 

rt1 = a + brt-1 + δεt1 

 
To estimate the coefficient from the process we need to assume the SDE to be discrete 
on the following time horizon: 
 
ꓥt = tt – tt-1 
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ꓥrt = α (β – rt-1) ꓥt + σꓥεt 
 

Where εt is a Gaussian white noise (ε̴̴ ≈ N (0,1) 
  
Parameters of the equation defining the process are: 
 

 
 

a = b (1 – e- αꓥt) 
 

b = e-αꓥt 

 

δ = σට
𝟏 ି 𝒆^ି𝟐𝛂ꓥ𝒕

𝟐𝛂
 

 
 
 
Rearranging for the three parameters a, b and σ we have the equations necessary to  
find them: 
 
  
                                                   b                     lna 

β =   ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶   ;  α = -  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶  ; σ = δ ට
ି𝟐𝒍𝒏(𝐚)

ꓥ𝒕(𝟏ି𝐚^𝟐)
 

                                      1 – a                  ꓥt 
  

According to the OLS theory, the least square equation for a, b and εt are the following: 
 
                                                              ∑ 𝑟(𝑡)

ୀଵ  - a∑ 𝑟(𝑡 − 1) 
b =   ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ 

                                                                                n 
 
                                                      n∑ 𝑟(𝑡 − 1)𝑟(𝑡)

ୀଵ  - ∑ 𝑟(𝑡 − 1) ∑ 𝑟(𝑡) 
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      a =   ̶ ̶ ̶ ̶ ̶ ̶  ̶ ̶ ̶ ̶ ̶ ̶  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶                                                         
                n∑ 𝑟(𝑡 − 1) 2- ( ∑ 𝑟(𝑡 − 1) )2 

 

 

      εti = ඥ𝒏 ∑ 𝒓(𝒕𝒊)^𝟐 − (∑ 𝒓(𝒕𝒊))^𝟐 

 

7.2 Calculation of the bond price 

The data we are going to use to estimate the price of a bond are the Euribor with 
maturity 1 month and monthly granularity, the dataset is based on 220 observations 
starting from the 1st of January of 1999 and finishing to the 3rd of April of 2017.                                       
To find the bond value related to this data, we use R the statistical software and run the 
following commands: 

 

Vasicek.OLS = function (euribor_1m_monthly_csv, dt) 

 

This command is fundamental because it sets the function that we are going to use and 
how we are estimating the parameters of the model (OLS estimation). To define the 
length of the data, which in our case is denominated as “N” we use the following 
command: 

 

N = length(euribor_1m_monthly_csv) 

 

To isolate the only numeric variable in the data, which are the rates, we run this 
command: 
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euribor_1m_monthly_csv$rate 

 

 

For the sake of our thesis we need to mark out respectively the rate in t and the rate in 
t-1, which in our situation since the length of the dataset is N, the rates will be rN  and  

rN-1, so: 

 

rN = rate = euribor_1m_monthly_csv$rate[N] 

 

rN-1 = lagrate = euribor_1m_monthly_csv$rate[(N-1)] 

 

Now to find the parameters for the Vasiček equation we will use the OLS method with 
the formulas associated to it for the estimation, we know that our ꓥt = 1/12 since the 
Euribor rates have all maturity one month. 

 

a = (N*sum(rate*lagrate)-sum(rate)*sum(lagrate))/ (N*sum(lagrate^2)- 
sum(lagrate)^2) 

 

b = sum(rate)-a*(sum(lagrate))/N 

 

Recall that the Vasiček model is defined as: 

 

dr(t) = α (β – r(t)) dt + σdW(t) 
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In this chapter we have called a and b respectively α and β to make things easier to 
understand since the formula of the OLS estimation use this denomination for the 
parameters. Finding α require use the following command: 

 

α = -log(a)/dt 

 

 

Where α is the speed of mean reversion, to find β we use the following formula: 

 

β = α/1-b 

 

Where β is the long run mean, by some manipulation of the previous formulas we can 
define a new function v2, for the purpose of finding σ, which is equal to: 

 

v2=sum((rate-lagrate*α-β*(1-a)) ^2)/N 

 

While σ is equal to  

 

σ = sqrt(2*α*v2/(1-a^2)) 

 

Where σ is the diffusion term associated with the Weiner Process (W). 
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 The values obtained for the 3 parameters are: 

 α= 0.6272586 
 β= -1.5949913 
 σ= 1.9302522 

 

From those parameters we can calculate the price of the bond, recall from the chapters 
before that the price of a bond is equal to: 

 

 
p(t,N) = eA(t,N) - B(t,N)r(t) 

 

Where A and B are equal to: 

 
B(t,N) = 1/a {1 – e-a(N-t)} 

 
                                           {B(t,N) – N + t}(ab – 1/2σ2) σ2B(t,N) 
 A(t,N) =  ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶    -    ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ ̶ 
                                                                  a2                                       4a 
 
In those two equations a and b are our α and β, consequently the values for A and B 
are: 
 

 A(t,N) = 4.5427003 
 B(t,N) = 0.08119280 

 
After having calculated those values the price of the bond is: 
 

P(t,N) = 73.856646 
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8 CONCLUSIONS 

The main focus of this thesis is to give a general framework for short rate models, in 
particular by highlighting the fundamental assumptions necessary to make them valid.  
In addition we denoted a general term structure equation for those models, which is 
necessary to understand what is explained in the chapters ahead. 
After that we have listed the most famous short rate models, focusing particularly on 
Vasiček, we outlined the importance of using a martingale measure for those rates by 
giving clear motivations. 
The next steps were to define analytically and theoretically the parameters that were 
characterizing Vasiček model and to derive its term structure which is fundamental to 
find the equation for the price. 
Finally after having gathered data on EURIBOR with maturity 1 month and after having 
estimated through the OLS approach the equations necessary to calculate Vasičeks 
model parameters ; we used Rstudio to find the price of a bond associated with those 
EURIBOR rates. 
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10  APPENDIX  

 

In this appendix we will give a specific definition for the variable W; we start by saying 
that W is a “standard (one-dimensional) Wiener Process”, such process is stochastic 
defined as {Wt}t>=0 indexed by non-negative values of t. 
 
Also W is possess the following properties: 

 W0 = 0 
 With probability equal to 1, the function t -> Wt is continuos in t 
 The process {Wt}t>=0 has “stationary independent increments” 
 This increment Wt+k -Wk has this Normal distribution (0,t) 

One of the main reasons why the Brownian Motion is fundamental in probability theory 
is because it is similar to a limit of random rescaled random walks. 

 

 

 

 

 

 

 


