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1 Introduction	
 

Cryptocurrencies have become an increasing trend during the last years. Many economists, banks and 

other financial institutions have started studying their performances but, most importantly, they have 

started studying which are the variables that might determine their price. 

This thesis aims at studying, from a mathematical-statistical point of view, which are the factors that 

influence the virtual currencies’ value, after having given a general overview about cryptocurrencies. 

This paper is divided according to the following structure: Chapter one will provide an introduction 

from an historical point of view and it will analyse the main advantages of virtual currencies with 

respect to gold. Chapter two will instead give an overview over the Blockchain, that is the technology 

underlying cryptocurrencies whereas chapter three will discuss about the mathematical-statistical 

approach, the Kalman filter, that will be used in this dissertation so to understand whether in a system 

where disturbances occur, it is still possible to make a good prediction of the variable outcome after 

the error perturbed the system. Chapter four will provide the application of the aforementioned 

method to a data set composed by past prices. In order to do this, I will use a programming software 

called MatLab that will enable me to design a model and a consequent plot to finally analyse the 

outcome from a graphical point of view. The Kalman filter will be applied to a vector composed by 

Bitcoin’s returns. The data set for past prices I will be using is not provided with Bitcoins’ returns so, 

I will consequently compute the return for every period as the logarithm of the ratio of the 𝑛 + 1'( 

price and the 𝑛'( price. The Kalman filter will be used at the end in order to analyse whether the 

incidence of external random rumours on Bitcoins’ prices has a significant impact. Finally, Chapter 

five will be the appendix, so it will be entirely devoted to the codes I have used on MatLab.  

  

1.1 From	Fiat	to	Crypto	currency	
 

I am going to analyse the historical development of currencies, going from gold to virtual currencies 

(VCs), in order to asses why people would prefer them with respect to gold coins. The first assumption 

I need to start with is that many currency users prefer safe and anonymous transactions and all users 

prefer transactions that take place within a stable, safe and easy to use system. At first glance, VCs 

may appear distant from fiat coins often used as a standard to be compared to. VCs, in fact, have no 

physical dimension, no intrinsic value, and their value is not assessed by a governmental authority. 
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Since 700 BCE, gold coins have been used as a store of value, unit of account, and medium of 

exchange. You might be wondering why gold among so many elements that we might find in nature. 

Because gold, as a currency, has many satisfying properties: it has a market value and, most 

importantly, intrinsic value. Unlike shells that were used as a trading currency in West Africa; unlike 

beavers’ skin that was used as a trading currency in the Hudson’s’ bay territory; unlike salt used as a 

trading currency in Europe, China and Ethiopia since the Roman empire (this is where the word salary 

comes from); unlike tobacco leaves and cocoa beans used as a trading currency in Central America 

during the XIV and XVII century respectively; unlike tea used as a trading currency in Mongolia and 

Siberia until the XX century (unbelievable!) and unlike calcareous stones used as a trading currency 

in Yap island in Micronesia, gold is indestructible: in fact, the supply of gold in the world has been 

plentiful enough to guarantee its use as a currency, but not so plentiful as to exhaust its value. If it 

were to choose another metal, such as platinum or aluminium, they are either too rare or too abundant 

to be used as currency in fact, in the case of platinum, the intrinsic value would be so high due to its 

scarcity while, in the case of aluminium, the intrinsic value would be so low due to its profusion.  

 

Gold is also easily divisible, hence easily measurable. In fact, gold and silver coins’ value is mainly 

given by their weight and their pureness even though they are issued by a government. Given this, a 

central authority is not necessary to establish the value of commodity money1. Beside this, another 

peculiarity of commodity money is its high anonymity: there is no register that keeps records or tracks 

or monitors transactions made between users. Commodity money’s value has suffered of various 

fluctuations that were beyond the control of any monetary authority although most of commodity-

based currencies have preserved stable values over the years. Why did these fluctuations occur? 

Because the value of a currency in general is determined by the interaction of supply and demand for 

that particular currency. 

For instance, when silver deposits were discovered in South America around 1870, the increase in 

supply caused the value of silver with respect to the value of gold to fall by one half.  

In addition to their value variability, commodity money is difficult to use for large scale, international 

or distant payments: their use can be reduced just to small and local transactions even because it is 

not appropriate to be carried around. 

                                                
1 Commodity money is composed of actual units of a particular freely-obtainable, non-monopolised commodity (or of 
warehouse certificates for actually existing units of the commodity) which happens to have been chosen for the familiar 
purposes of money, but the supply of which is governed – like that of any other commodity – by scarcity and cost of 
production (Keynes 1930, p. 7) 
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This is why, most countries decided to shift from commodity-based to paper (fiat) currencies: these 

currencies are declared to be legal tender by a central authority, have no face value and they can only 

be converted into a commodity only if the issuing authority decides so. Because of this, currencies’ 

value depends upon users’ trust in the central authority in maintaining the currency’s value. 

The main advantages belonging to fiat currencies over commodity money are: 

 

• Weight: they are lighter, easier to use and they are a useful tool in the hands of governments 

for the realization of monetary and fiscal policy; 

• Anonymity: fiat currencies can provide more anonymous transactions. 

 

However, fiat money is not perfect, it has disadvantages as well. For instance, so to maintain its value 

and its stability, it is extremely dependent on its central authority. It can experience huge fluctuations, 

due to governments’ macroeconomic policies, even becoming worthless (hyperinflationary episodes). 

 

Nowadays, thanks to financial innovations, it is possible to conduct economic transactions that go far 

beyond the limits established by physical currency, just think about modern cheques. An ancestor of 

this instrument that appeared around the XIII century is the bill of exchange: it appeared to simplify 

trade and to avoid carrying large amounts of gold from country to country. According to the country 

in which they were issued, they were denominated in their country’s currency (like a proper cheque). 

At that time, they were a proper innovation that allowed users to use traditional currency more 

efficiently.  

More recent technological innovations have allowed users to shift from paper-based exchange 

systems, such as checks, to electronic systems, like swiping debit cards through a point-of-sale card 

reader, to using near-field communication (NFC) technology to enable radio communication through 

mobile-computing platforms (such as via applications on smartphones). As with bills of exchange, 

they are a real evolution for the whole economic system as they authorise clients to use traditional 

currency in a functional and practical way. However, unlike VCs, they do not constitute a new type 

of currency. 

 

1.2 The	evolution	of	Cryptocurrencies	

 

VCs have become even more used in recent years. So far, no government has implemented a VC as 

its legal tender, even though it might symbolise value for that particular community that uses it as a 
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mean of exchange. VCs have been adopted by many platforms especially online gaming communities 

and loyalty programs, like airline frequent-flier programs. 

As every existing currency, VCs need to have the following characteristics in order to be considered 

a proper currency. The three features I am talking about are: store of value, unit of account and 

medium of exchange. They do possess all of them within their community of interest. Unlike physical 

currency, where people within their community of interest belong to the same country or union of 

countries (like USA or Europe), so to the same geographical area, the VCs’ community of interest 

does not need to occupy a single geographical unit. 

Some of the most recent VCs, such as Bitcoin, differ from the earlier versions of VCs as they are 

created to function as 

currency in the real economy 

and they can be exchanged 

for fiat currency. 

Going back to the 

comparison with gold coins, 

Bitcoin has two common 

points with gold coins: 

• Limited supply of 

currency available in 

the economy; 

• Bitcoin’s exchange 

rate can be volatile. 

Differently from gold, Bitcoin is easily measurable and divisible, easily transportable and does not 

need any kind of authorization to transit through international borders as currency, which may 

facilitate its use and, most importantly, reduce transaction costs. Finally, Bitcoin does not depend on 

a central authority to maintain its value. 

The most important distinction between Bitcoin and previous VCs is that, while VCs do not need a 

central authority, Bitcoin’s main peculiarity is its complete decentralization: many recently 

introduced VCs have followed Bitcoin exactly in this path. Current VCs are structured in a way that 

they range from having a complete centralization to a complete decentralization (see Figure 1). 

After having analysed the monetary perspective of VCs, we will now determine the evolution of the 

VCs from a technological point of view. 

 

Figure 1. The different types of currencies and their decentralisation 
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2 The	Blockchain	

 

Before introducing the concept of Blockchain, we should make reference to few topics that normally 

do not have many points in common: first of all, the concept of trust and community, then 

cryptography, transparency, sharing and “competition” in the achievement of an objective. What is 

really important is the immutability over time of data and information and decentralization. All these 

concepts give rise to a complex and powerful innovation that is democratic and potentially supportive 

too. 

According to some, the Blockchain technology is the new Internet generation: more precisely, it 

represents a sort of Internet of Transactions and for those that basically go beyond the concept of 

transaction, the Blockchain technology represents the future. Others believe that this technology is 

the virtual representation of trust and this is why someone believes that the Blockchain may become, 

in some sense, political, in that it may guarantee a new form of democracy that is truly decentralized 

and that safeguards the possibility of verifying and checking. Most importantly, it guarantees the 

creation of immutable archives that are totally transparent and for this reason corruption free. 

However, the Blockchain technology should not be mistaken with the Bitcoin concept: they are 

interrelated in that the Blockchain is necessary for the Bitcoin to be exchanged but this is just one of 

the thousands use of the Blockchain. While the Bitcoin is a type of cryptocurrency, the Blockchain is 

the technology underlying Bitcoin and it is a platform for the management of transactions and 

exchanges of data also among sectors that are distant from the finance and payment sector. 

“Blockchain technology is challenging the status quo in a radical way: by using maths and 

cryptography, Blockchain provides an open and decentralised database of every transaction involving 

value as money, goods, property, work or even votes creating a record whose authenticity can be 

checked by the entire community […] so that third party trust organization may no longer be 

necessary.” (Video “What is Blockchain?”) 

Moreover, Blockchain is so well encrypted that someone believes that in ten years’ time it will be 

used to collect taxes so that people will exactly know for which purpose their taxes have been used. 

Because of this reason, due to its decentralization and encryption, Blockchain is the technology that 

allows the exchange of information and data on the Internet not only for what it concerns the payment 

system but also the exchange of information related to contracts, especially to Smart Contracts. 
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2.1 What	Blockchain	is	and	how	it	works	

 

The Blockchain is a communication protocol that is based on the idea of a distributive database (a 

database where data are not saved on a single computer but they are saved on many computers 

connected among them, called nodes). 

The Blockchain is a series of blocks that archive a set of validated and correlated transactions by a 

Timestamp. Every block is characterized by a hash, an algorithmic unconvertible function that 

connects a string of arbitrary length to a string of predetermined length. In this way, the block has 

been identified in an unambiguous way and that allows the connection with the previous block. 

However, what are the components that create the Blockchain? First of all, we have nodes that are 

the participants of the Blockchain and they are physically constituted by those servers belonging to 

every single participant; in the second place we have transactions made up by data that represent the 

object of the physical exchange that have to be verified, approved and later archived; then we have 

blocks represented by the grouping of a set of transactions that have to be verified, approved hence 

archived by the participants of the Blockchain; furthermore, one more component that needs to be 

mentioned is the ledger that is the public register where all the realized transactions are “noted” in 

the most transparent, ordered, sequential and immutable way. The ledger is composed by the set of 

blocks that are connected among them through cryptography and hash. To conclude, we have the 

aforementioned hash that consists in a nonconvertible operation that allows to relate either a textual 

or numerical string of random length to a unique string of predetermined length. Thanks to this 

process, the hash allows to identify uniquely and safely every single block. Since a hash “transforms” 

the textual or numerical string into another, there should be no reference to the previous string that 

generated it. 

Hence, every block contains different transactions and every block has its own hash located in the 

header. The hash registers all information related to the block and it is the hash with all information 

on the previous block that allows to create a chain and to connect blocks among them. 

Every transaction, instead, contains information relative to the public address of the recipient, the 

transaction’s features and the cryptographic signature that guarantees the authenticity of the 

transaction itself. Blockchain has to be seen as a public register that is sharable among all available 

clients or, in jargon, nodes. 
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At this point, a question would naturally pop up in your minds: how can I join the Blockchain? Is 

there any form I need to fill in in order to enter this transaction mechanism? Well, Blockchain has 

been organized in order to 

automatically refresh once a 

new client enters the 

system. Every realized 

transaction has to be 

automatically confirmed by 

every single node through 

cryptography softwares that 

are used to sign transactions 

in order to guarantee their 

digital identity. 

 

2.2 The	Blockchain	technique	applied	to	Fintech	

 

Before starting talking about Blockchain applied to Fintech, we should give an intuition of what 

Fintech is. Fintech had a great boost during the global crisis that dates back to 2008, when many 

people understood how slow the classical banking system was and how fast the Fintech sector is 

instead. It literally means “Techno-Finance” and it is concerned with the digitalization of the banking 

and financial system that uses technology in order to make the system more efficient. The Fintech 

includes many services, i.e.: crowdfunding, peer-to-peer lending, asset management, payment system 

management, credit-scoring, data collection, exchanges, digital currencies or Cryptocurrencies such 

as Bitcoins. 

This is where I wanted to get: Fintech applied to Cryptocurrencies, hence to Blockchain. Nowadays, 

ten Central Banks, as Singapore Central Bank, are working on projects related to national 

Cryptocurrencies; seven Central Banks have started projects on Distributed Ledger systems for 

interbank transactions while nine institutes have commissioned studies in order to better understand 

the topic. Among them, we can find some Italian banks such as Intesa Sanpaolo, Unicredit and Banca 

Mediolanum that are part of a consortium that is willing to develop Distributed Ledger systems to 

settle interbank relations.  

Allianz, the German insurance company, has been the first one to propose a service using the 

Blockchain technology. The project includes cash payments, real time access to information related 

Figure 2. The payment system using the Blockchain technique 
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to the transaction and an easy to use interface. So far, results demonstrate that Blockchain technology 

can improve the efficiency of insurance transactions at the international level. The role of the 

Blockchain, in this context, is to automatically connect all involved parties in the insurance program. 

As we have already seen, Blockchain is like a financial book shared among a network of participants 

that is able to record transactions and data. Updates or modifications are shared in real time among 

all users. In this way, it is easy to obtain a faster, more transparent, safer and more efficient method 

to provide information, to elaborate and to register commercial transactions among all parties. In the 

special case of Allianz, the insurance Blockchain prototype speeds and facilitates regular transactions 

and transfers of money between insurers and clients. Moreover, the entire process is transparent and 

it can be monitored in real time. 

This is just one of the thousands examples I could quote: this is because between 2012 and 2015 (so, 

just in three years’ time), the amount of investments in the Fintech sector has increased from two 

million dollars to one billion. Today, even though most of the applications of the Blockchain are 

related to payments, this technology can be found in other financial sectors such as trading and capital 

markets with the Nasdaq being the prevailing entity that monitors this sector. What is really 

appreciated about Blockchain is that, since everything is transparent, digitalized, encrypted and open, 

there is no possibility to evade taxes in those countries in which this technology is applied. 

To conclude, according to Santander bank, in the next years, Blockchain will not only be applied to 

the Fintech sector but there could be at least nineteen sectors of the economy that will employ these 

models to take advantage of the digital revolution. Among these nineteen sectors we find insurance 

companies, digital payments, agri-food industry, manufacturing (Industry 4.0), IoT (the Blockchain 

finds a wide application in the Internet of Things thanks to its facility to exchange data as it could be 

used to facilitate the communication among connected IoT objects beside making the exchange faster 

and safer), health care, public administration and finally retail so to make payments faster and 

cheaper. 

 

2.3 The	Blockchain	technique	applied	to	Cryptocurrencies	

 

So far we have discussed the Blockchain technology that is used in many sectors especially the 

Fintech. Most of the times the term Blockchain is misused: it is employed when we talk about 

Cryptocurrencies but it is not a synonym of Cryptocurrencies. As aforementioned, Blockchain is the 

technology underlying bitcoins but this is just one of the uses that Blockchain has. Recently, The 
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Economist has defined it to be the “trust machine” due to its high degree of safety, its decentralization, 

its transparency and its precision. 

At the beginning, in 2008, Satoshi Nakamoto, pseudonym of a guy that first introduced the Bitcoin, 

realized a P2P protocol that in the years has been used especially by hackers, activists and in the best 

case scenario by speculators. However, it has been so disruptive that Bitcoin has now convinced the 

most conservative analysts too. 

The bitcoin digital currency adopts the peer-to-peer technology which designates a model of 

architectural logic where the network’s nodes can achieve both the functions of client and server with 

respect to the other terminal hosts. Due to its decentralization, it does not need neither authorities nor 

central institutions: Bitcoins are issued on the network and the management of transactions is also 

governed by the network itself. It is basically a public operation and anybody who wants to participate 

in the project can just adhere and take part in it. How is this possible? How can I just decide to 

participate and as soon as I choose I am part of this project? The idea behind what Satoshi Nakamoto 

created is the open source software where the development, the management and the update are all 

public and shared among users. According to Satoshi Nakamoto and his White Paper “the Bitcoin 

network neither belongs to nor it is controlled by anybody, in other words it belongs and it is 

controlled by whoever wants to take part in the project.” According to me, it is something more than 

just a mere project: 

it is something 

revolutionary that 

neither Satoshi 

Nakamoto realized 

what he did when 

he first invented it. 

From a technical 

point of view, 

Bitcoin is an online 

communication 

protocol that 

enables users to 

employ virtual currencies in their daily activities including electronic transactions. Since it was first 

discovered in 2008/2009, Bitcoin has been used for almost 305 million transactions (source: 

blockchaininfo.info last estimation: 16/03/2018). These transactions however are not recorded on 

Figure 3. Sectors where the Blockchain is implemented 
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individual servers but they are rather recorded on a transaction log, where the Bitcoin is built, which 

is distributed over a network of involved computers. Bitcoin is built in such a way that it rewards 

users for their honest behaviour and most importantly it avoids that power will be concentrated in the 

hands of just one single entity. Because of this characteristic, Bitcoins have a con at the same time 

as, while traditional currencies have a Central Bank regulating their issuance, Bitcoins have not. So 

this may be an advantage and a disadvantage at the same time because issuing currency and verifying 

transactions becomes more difficult than in traditional cases. 

Transactions made with Bitcoins are not reversible and another feature of this virtual currency is that 

it basically has a fixed supply, so when the amount of Bitcoins will be entirely distributed, there will 

be no more newly issued Bitcoins available. It is still true that those existing Bitcoins could be traded 

but, for those goods that have a fixed supply, they are deflationary constructed meaning that when 

the amount of Bitcoins will entirely be allocated, nobody will be willing to hold them as they are 

basically worth nothing. 

Why have people been so concerned about them in the past few years? Because, due to its 

construction, it may disrupt the existing payment and even monetary system. 

Now, we are going to take a look at how Bitcoins work in practice. First of all, since Bitcoins should 

be used as a medium of exchange, we first have to understand what a transaction is: a transaction is 

composed by two people exchanging a good or service and, the one that is receiving the service pays 

the one that is selling. In this case, the mean of payment is Bitcoin and every transaction has a different 

encryption code, called Cryptographic Key, so that it is safe from external hackers and users. In order 

for the technology to operate in a fast and efficient way, the transactions are grouped until a certain 

number is reached so to form a block. A set of blocks becomes the Blockchain. 

Now, let’s see a practical application during the purchase of a house: suppose two individuals, Luke 

and Lucy, where Luke wants to sell his house to Lucy while, on the other hand, Lucy wants to 

purchase Luke’s house. Instead of using traditional currency, they want to use cryptocurrency, in our 

particular case, Bitcoins. In this way a transaction constituted by a set of elements such as the public 

address of the receiver, information relative to the transaction itself and the Cryptographic Keys is 

set up. In our particular example, the transaction includes information on the real estate, on the price, 

on Lucy’s financial liquidity, on Luke’s actual ownership of the property and other types of 

information that are necessary to carry out the transaction. 

Therefore, a new block that contains all data about the transaction between Luke and Lucy is created. 

As previously stated, the block contains other transactions as well that will be then submitted to the 

other participants of the Blockchain in order to be verified and later approved. Once the block has 
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been verified, it is added to the rest of the chain of blocks (Blockchain) that is contained in the 

participants’ archive and it can be accessed by all of them. Once information is verified, the 

transaction is validated and carried out. At that point, the transaction is part of a newly created block. 

 

Think about another scenario: suppose we have three individuals, Eric, Francis and Garrett, where 

Eric transfers 7 Bitcoins to Francis. Even though this transaction is not recorded in any book, it is 

verifiable through the encryption key assigned to every party involved in the transaction. The 

following table gives you an intuition of the Bitcoins’ flow between the parties: 

 

 

 

Eric transfers 7 BTC to Francis 

 

 
Figure 4. Table representation of a transaction involving Bitcoins 

The transaction, as already said, needs to be verified hence approved by the peer-to peer network. As 

soon as it is validated by the network, the transaction is recorded in the public register, the ledger. In 

this way, anyone on the peer-to-peer network has been updated. 

In the case in which, Francis wants to transfer the same amount of Bitcoins to Garrett, the same 

procedure applies. When the transaction has to be verified by the network, the order must go through 

the transaction chain in order to check whether Francis disposes of those 7 Bitcoins to be transferred 

to Garrett. Once Francis’s account has been approved, the new transaction either forms a new block 

or it is added to an existing one and, these blocks gathered together form the Blockchain (as 

previously stated). However, how are these blocks added to the network? They are added through the 

usage of miners. Miners perform the function of mining so they basically solve a very complex, both 

in terms of power and processing capacity, mathematical algorithm. In this way the blocks made up 

of transactions are valid and encrypted. 

All blocks are like puzzle pieces, so they match between one another and just one piece is the exact 

link of the other. This is done in order to avoid unauthorized transactions to be unlawfully added and 

to create a chain where all pieces match between themselves. However, before new transactions are 

Name Balance 

Eric 0 BTC 

Francis 9 BTC 

Garrett 1 BTC 

Name Balance 

Eric 7 BTC 

Francis 2 BTC 

Garrett 1 BTC 

LEDGER LEDGER 



 
 

 
 

12 

added to a new block, they are pooled all together until they are verified and confirmed. Since, at this 

point, several transactions can be added to the Blockchain, this could constitute a problem. In order 

to avoid this issue, the network only accepts those transactions constituting the longest chain. Those 

transactions belonging to the shorter chains are sent back to the pool of unconfirmed transactions so 

that they can be processed once again. 

 

3 Statistical	analysis	

 

So far, we have been dealing with the practical aspect of Cryptocurrencies, from its history to its 

functioning passing through the technology underlying them, known as Blockchain, and analysing 

the sectors where it is and where it will be employed the most. However, this was just an introductory 

section in order to let the reader fully understand in which context I am going to operate. The scope 

of this thesis is to analyse whether there is a model through which I can fairly predict a trend or a 

pattern in Bitcoins’ returns. The technology I am applying is the Kalman filter which is mainly used 

in engineering data prediction models. Here, the filter is constructed in such a way that, in the end, it 

ends up in the maximum likelihood estimation. 

An obvious question might pop up in the reader’s mind: why do I use a filter at all? What kind of 

information am I interested in? The idea behind this method is to deduce important information from 

a signal, neglecting superfluous knowledge. Moreover, I decided to use Kalman filter estimation as 

it is one of the few models that takes into account the random nature of measurements. Since this 

randomness has a statistical nature, I can solve the problem by using stochastic methods. 

 

 

 

3.1 State	space	derivation	

 

I start by introducing a state-space model necessary to conduct my analysis. A state-space model is 

built in such a way that contains enough equations in order to firstly estimate the model and, later, 

control it. It is useful because it allows to transform an abstract analysis into a more comprehensible 

one.  



 
 

 
 

13 

In the model, I considered two equations: the first one called the state-vector equation of the process 

for which I do not have information and the second one will be the observation vector, which is the 

estimate of x at time k. In formulae, 

 

 𝑥*+, = 	𝜙𝑥* +	𝑤* 

𝑧* = 	𝐻𝑥* +	𝜈* 

(3.1) 

(3.2) 

 

where, in equation 3.1, 𝑥* is the state vector of the process at time k also known as trend; 𝜙 is the 

𝑛	×	𝑛 state transition matrix of the process from the state at k to the state at k+1 and it is assumed to 

be stationary over time; 𝑤* is the noise process with known covariance. For what it concerns equation 

3.2, 𝑧* is the observed value of x at time k; H is the m ×	𝑛 connection matrix between the state and 

the observation vector 𝑧*	and it is constant over time; 𝜈* is the measurement error with known 

covariance and is uncorrelated from the error of the process. 

 

The 𝜙 matrix is a diagonal matrix that presents an extra 1 on the entry 𝛼,6: this is because the vector 

𝑥* is a bi-dimensional vector where the two entries are respectively 𝜇*and 𝜈*. 𝜇*	represents the local 

level component: you can think of it as if it were the intercept with the only peculiarity of being able 

to change over time (this is why you add the specification k). 𝜈* represents the angle of the trend line 

which also varies through time. The equations of 𝜇*+, and 𝜈*+, are represented as follows 

 

 𝜇*+, = 	𝜇* + 𝜈* +	𝜀9,* 

𝜈*+, = 	 𝜈* +	𝜀;,* 

(3.3) 

(3.4) 

 

where the two error components, 𝜀9,* and 𝜀;,*, have an approximately normal distribution with mean 

0 and variance 𝜎96 and 𝜎;6	respectively. Notice that, in order to make a better estimation, 𝜇*+, and 

𝜈*+, depend upon their past values. If I sum these two vectors together, at the end I obtain a third 

vector that is 𝑥*+, (the initial state vector equation). So, the vector 𝑥*+, is a linear combination of 

the two vectors (3.3) and (3.4). In formula, 

 

 𝑥*+, =
1 1
0 1 	

𝜇*
𝜈* +	𝑤*  (3.5) 
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where 𝑤* will be a vector	with entries 
𝜀9,*
𝜀;,* , approximately distributed with mean 0 and variance Q. 

Q is the error variance-covariance matrix where, on its main diagonal I will find the variances and in 

the other cells I will find the covariances. In numbers, 

 

 
𝑄 =

𝜎96 𝜎9𝜎;𝜌9,;
𝜎9𝜎;𝜌9,; 𝜎;6

  
(3.6) 

 

 

where 𝜌9,; is the correlation between 𝜀9,* and 𝜀;,*. 

 

3.2 The	Observer	Design	Problem	

 

Since it is difficult to assess or estimate the internal states of a linear system given that you just have 

access to the final outcome, I define the Observer design problem. This is why people refer to this 

estimation as if it were a kind of “closed box” as you can just observe the output that comes out of 

the box but you cannot determine what happens inside of it. 

 

Indeed, I now move to the observation vector that is the estimate of x at time k. Before talking about 

the vector 𝑧*, however, I first need to introduce the vector Y. The vector Y is an observation vector, 

so it is based on past data about bitcoins’ return. For the sake of simplicity and, in order to give the 

estimation a more real effect, I base the estimate of 𝑌*+, only upon 𝑌* and 𝑌*@,. In the end I have, 

 

 𝑌*+, = 𝑎	𝑌* + 𝑏	𝑌*@, + 𝜇* + 𝜀C,*  (3.7) 

 

where 𝑌*+, − 	𝑎	𝑌* − 𝑏	𝑌*@, = 	 𝑧*. So, eventually, I will have 𝑧* = 	𝜇* +	𝜀C,* that is the observation 

vector. 𝜇* is just the product between matrix H and vector 𝑥*, where matrix H is a 1x2 matrix with 

entries [1 0] respectively while, vector 𝑥* is the starting state vector equation I used to explain the 

previous equation too. The error of equation 3.7, 𝜀C,*, is an approximately normally distributed 

prediction error term with mean 0 and variance 𝜎C6. In equation 3.7 and, in a simplified way in 

equation 3.2, the covariance of the noise is assumed to be stationary over time, that is our term 

 

 𝑅 = 𝐸[𝜈*𝜈*H] (3.8) 
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Since I have written a lot about the uncertainty of measurements, I should devote some lines to explain 

which are the sources of noise that cause these measurements to be unreliable. For instance, every 

sensor has its own limitations related to the physical medium linked to it. Using electrical devices 

might cause erroneous estimates as using sensor and electrical circuits might add the electrical noise 

attached to them affecting the size and the quality of measurements. This is why, I should select the 

estimates correctly and interpret them as part of an overall sequence. 

Last issue that I have to consider when making this estimation is that long run predictions cannot be 

made hence the observation vector is only based on short term evidence. In fact, this might cause 

predictability in future measurements. 

 

3.3 The	Kalman	Filter	

 

So far, I have been discussing about the statistical analysis I will conduct but, I have not devoted 

enough time to explain in detail the filter I will be using throughout the estimation. As 

aforementioned, I will employ the Kalman filter estimation for the analysis of Bitcoins’ returns as it 

is one of the few models that takes into account the randomness of data. 

When having a physical system, in order to solve it, it is better to develop a suitable mathematical 

model in order to adequately represent the physical situation. In order to do this, I have fundamental 

laws and control theories that might help me in solving mathematical models representing my 

physical system. However, as we know, fundamental laws and control theories have shortcomings. 

In particular: 

I. no mathematical model adequately represents the actual physical system: in this way it does 

not take into account all features that characterise the reality. As we all know, mathematical 

methods only approximate real effects and do not truly represent them and this leads to 

uncertainty; 

II. some real effects can neither be truly modelled nor controlled because they are disturbed by 

external sources of error that can neither be predicted nor controlled; 

III. sensors, used for the estimation and data, do not provide all the information we want to have 

resulting in incomplete and imperfect measurements: this is because most devices are not 

planned to generate such information or because the cost to acquire such information is too 

high. 
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At this point, an important question becomes natural: how can you construct a model that takes into 

account for these noises and uncertainties that are inevitable in our mathematical system? 

The Kalman filter is one of the most well-known and very often-used tool first introduced in 1960 

and named after his discoverer Rudolph Kalman who gave a final solution to the data filtering 

problem. 

Why is it one of the most well-known and very often-used filter? Because, as a tool, it incorporates 

all necessary data that can be supplied to it. In fact, the Kalman filter handles all available data, even 

though they are not so precise, as it makes use of knowledge of the system and measurement device 

dynamics; it is provided with information about the statistical distribution of the system errors and 

uncertainties and with eventual information about initial conditions. 

The filter is conceived to be a data processing algorithm as if it were a computer program. As you 

can see from the figure below, this is how it works: the system is drawn using some control variables 

and the sensors of other electrical measuring apparatus provide the values for other data. This is 

intuitive when you have all the variables at disposal. When the variables of interest cannot be 

estimated, the help of a filter is necessary. 

 
Figure 5. Schema process of the Kalman filter 
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Furthermore, most of the times, when systems are driven by inputs other than our own control 

variables, they might be inaccurate and might present noises and errors. This is why I implement the 

Kalman filter as it combines all available measurements and prior knowledge about the mathematical 

model so to produce an estimate of the unknown variables by statistically minimizing the error2. 

 

3.3.1 The	Discrete	Kalman	Filter	

 

After having introduced the state space derivation and how I defined the state-vector and the 

observation vector equations, I apply the aforementioned Kalman filter. 

I define 𝑥*|*@, ∈ 	ℜM to be my a priori estimate at time k given measurement of x at time k-1 and 

𝑥*|* ∈ 	ℜM to be my a posteriori state estimate at time k given measurement 𝑥*. The errors of the a 

priori and of the a posteriori estimates will therefore be 

 

 𝑒*|*@, ≡ 	𝑥* −		𝑥*|*@, 

𝑒*|*	 ≡ 	 𝑥* −	𝑥*|* 

 

(3.9) 

(3.10) 

The a priori and the a posteriori estimate error covariances of x will hence be 

 

 Σ*|*@, = 	𝐸[𝑒*|*@,𝑒*|*@,H] 

Σ*|* = 	𝐸[𝑒*|*𝑒*|*H] 

(3.11) 

(3.12) 

 

Since I have to derive the equations for the final application of the Kalman filter, I need to find an 

equation that computes an a posteriori estimate 𝑥*|* as a linear combination of the a priori estimate 

𝑥*|*@, and of the weighted difference between the actual measurement 𝑧* and a measurement 

prediction 𝐻𝑥*|*@,. In formulae, 

 

                                                
2 There exists a lot of literature about Kalman filter. I have given a general and introductory idea just to introduce the 
reader to the method I will adopt from this moment onwards. A much more in depth discussion about the topic has been 
given by Sorensen in 1970 or by Gelb in 1974 or, to mention someone else, Maybeck in 1979. 



 
 

 
 

18 

 𝑥*|* = 	 𝑥*|*@, + 𝐾*	(𝑧* − 𝐻𝑥*|*@,)3 (3.13) 

 

The weighted difference between the actual measurement 𝑧* and the measurement prediction 

𝐻𝑥*|*@, is called the measurement innovation or, in statistical jargon, residual. As in statistics, if this 

difference is either positive or negative, the prediction differs from the actual measurement so I will 

have errors in prediction (either an overestimation or underestimation); if this difference is equal to 

zero, then the two values coincide and I will have no discrepancy between the actual measurement 

and the prediction (the estimate is equal to the real value). 

 

The 𝑛	×	𝑚 matrix K is set in such a way that minimises the a posteriori error covariance depicted in 

equation 3.12. How do you set K in such a way that minimises the a posteriori error covariance? 

If I substitute equation 3.2 into 3.13, I obtain the following equation 

 

 𝑥*|* = 	 𝑥*|*@, + 𝐾*	(𝐻𝑥* +	𝜈* − 𝐻𝑥*|*@,) (3.14) 

Replacing the above formula, equation 3.14, into the equation for the second moment of Σ*|*, quoted 

in the footnote of the previous page, it results in 

 

 Σ*|* = 	𝐸	[ 𝑥* − 𝑥*|*@, 𝐼 − 𝐻𝐾* −	𝐾*𝜈* 𝑥* − 𝑥*|*@, 𝐼 − 𝐻𝐾* −	𝐾*𝜈*
H
] (3.15) 

 

The first term in brackets, on the right side of the equal, is equation 3.9 so the a priori estimate of the 

error at time k. Since it is uncorrelated with the measurement noise, I can rewrite equation 3.15 in the 

following way 

 

 Σ*|* = 	 𝐼 − 𝐻𝐾* 	𝐸	[ 𝑥* − 𝑥*|*@, 𝑥* − 𝑥*|*@,
H] 𝐼 − 𝐻𝐾* H + 𝐾*𝐾*H𝐸 𝜈*𝜈*H = 

= 𝐼 − 𝐻𝐾* 	Σ*|*@, 𝐼 − 𝐻𝐾* H + 𝐾*𝐾*H𝑅 

(3.16) 

 

                                                
3 The explanation to this equation derives from Bayes’ formula of conditional probability where the a priori estimate 𝑥*W  
is conditioned on all prior measurements 𝑧*. The Kalman filter respects the first two moments of the state distribution 
𝐸 𝑥* = 	 𝑥*|*	and 𝐸[ 𝑥* − 𝑥*|*)(𝑥* − 𝑥*|*)H = 	 Σ*|*. 
The a posteriori estimate error covariance depicted in equation 3.12 reflects the variance of the state distribution: if you 
compute the conditional probability of 𝑥* and 𝑧*, it will result in a normal random variable approximately distributed 
with mean 𝑥*|* and variance Σ*|*. 
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The very last part of equation 3.16 is the updated version of the error covariance matrix. The matrix, 

on the main diagonal, contains the mean squared errors: 

 

 

Σ** =
𝐸[𝑒*|*@,𝑒*|*@,H ] 𝐸[𝑒*|*𝑒*|*@,H ] 𝐸[𝑒*|*+,𝑒*|*@,H ]
𝐸[𝑒*|*@,𝑒*|*H ] 𝐸[𝑒*|*𝑒*|*H ] 𝐸[𝑒*|*+,𝑒*|*H ]
𝐸[𝑒*|*@,𝑒*|*+,H ] 𝐸[𝑒*|*𝑒*|*+,H ] 𝐸[𝑒*|*+,𝑒*|*+,H ]

 

(3.17) 

 

The trace of a matrix is the sum of the terms that lie on its main diagonal. In this particular case, the 

trace will be the sum of the mean squared errors. Hence, the mean squared error can be minimised by 

minimising the trace of Σ*|* which will in turn minimise the trace of Σ**. 

In order to minimise the trace of Σ*|*, I first have to compute the derivative of Σ*|* with respect to 

𝐾* and set the result to zero so to find its minimum. 

After having expanded equation 3.16, I will obtain 

 

 Σ*|* = Σ*|*@, − Σ*|*@,𝐾*H𝐻H − Σ*|*@,𝐾*𝐻 + Σ*|*@,𝐾*𝐾*H𝐻𝐻H + 𝐾*𝐾*H𝑅 = 

 = Σ*|*@, − Σ*|*@,𝐾*H𝐻H − Σ*|*@,𝐾*𝐻 + 𝐾*𝐾*H(Σ*|*@,𝐻𝐻H + 𝑅) 

(3.18) 

 

The trace of matrix Σ*, given that the trace of a matrix is equal to the trace of its transpose, will 

therefore be 

 

 𝑇 Σ* = 𝑇 Σ*|*@, − 2𝑇 Σ*|*@,𝐾*𝐻 + 𝑇[𝐾*𝐾*H Σ*|*@,𝐻𝐻H + 𝑅 ] (3.19) 

 

Differentiating equation 3.19 with respect to 𝐾* will result in 

 

 𝑑𝑇[Σ*]
𝑑𝐾*

= −2 Σ*|*@,𝐻
H + 2𝐾* Σ*|*@,𝐻𝐻H + 𝑅  

(3.20) 

 

Setting the above result to zero and rearranging it, it will show the value of K such that minimises the 

a posteriori error covariance 

 

 
𝐾* = 	Σ*|*@,𝐻H Σ*|*@,𝐻𝐻H + 𝑅 @, = 	

Σ*|*@,𝐻H

Σ*|*@,𝐻𝐻H + 𝑅 
(3.21) 
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As the measurement error covariance R goes to 0, the term 𝐾*, since it represents the Kalman gain or 

the heaviness with which the residuals will be weighted, will weight the residual more heavily. That 

is, 

 

 lim
^_→a

𝐾* =	𝐻@, 

 

 

Another way of thinking of the case when R approaches 0 is that, since R is the variance of equation 

3.7, hence of equation 3.2, if R almost equals 0, it means that the actual measurement of 𝑧* is more 

reliable than the predicted measurement 𝐻𝑥*|*@,. 

If I instead reason on the Σ*|*@, term, as it approaches 0, the gain K goes to 0 too. In formulae, 

 

 lim
b_|_cd→a

𝐾* = 	0  

 

Another way of thinking of the case when Σ*|*@, approaches 0 is that, since Σ*|*@, is the a priori 

estimate error covariance, if Σ*|*@, equal 0, it means that the estimated measurement 𝐻𝑥*|*@, will 

be more reliable than the actual measurement 𝑧*. 

 

Going back to equation 3.21, in order to fully understand the filter, I replace it into equation 3.18. It 

will result in 

 

 Σ*|* = Σ*|*@, − Σ*|*@,𝐻H Σ*|*@,𝐻𝐻H + 𝑅 @,Σ*|*@,𝐻 = 

 = Σ*|*@, − 𝐾*Σ*|*@,𝐻 = (𝐼 − 𝐾*𝐻)Σ*|*@, 

(3.22) 

 

The above result is essential for the filter implementation: equation 3.22 is the Kalman filter 

measurement update equation for the error covariance matrix with optimal gain (when 𝐾* has been 

minimised). Equations 3.13, 3.21 and 3.22 will be necessary for our Kalman filter implementation 

and, most importantly, necessary to develop an estimate of the variable 𝑥*. 

The state projection will be obtained using the equation below 

 

 𝑥*+,|* = 	𝜙𝑥*|* (3.23) 
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What about the error term? It is sufficient to find an equation that transfers the error covariance matrix 

into the following time period, k+1. First of all, I construct an equation for the previous error, that is: 

 

 𝑒*+,|* = 	 𝑥*+, − 𝑥*+,|* = 𝜙𝑥* + 𝑤* − 𝜙𝑥*|* = 𝜙𝑒*|* + 𝑤* (3.24) 

 

Expanding equation 3.11 to time k+1 will give 

 

 Σ*+,|* = 𝐸 𝑒*+,|*𝑒*+,|*H = 𝐸[ 𝜙𝑒*|* + 𝑤*)(𝜙𝑒*|* + 𝑤*)H 	4 (3.25) 

 

Since 𝑒*|* and 𝑤* have a zero cross-correlation as the error 𝑤* accumulates between time k and time 

k+1 while the error 𝑒* is the error up to time k, I have 

 

 Σ*+,|* = 𝐸 𝑒*+,|*𝑒*+,|*H = 𝐸 𝜙𝑒*|* 𝜙𝑒*|*
H + 𝐸 𝑤*𝑤*H = 𝜙Σ*|*𝜙H + 𝑄 (3.26) 

 

This is the end of the analytical derivation of the Kalman filter. In the next paragraph I will give an 

intuition of what is the difference between the time update and measurement update equations, as I 

have mentioned them few times in this chapter and, I will provide two summarizing tables that will 

report the key equations I have just found. The two tables will be divided according to the 

specification of time update and measurement update equations. 

 

3.3.2 The	Kalman	Filter	Algorithm	

 

The filter evaluates the process state at a point in time and then uses feedbacks in the form of uncertain 

measurements. This is why I can classify Kalman filter equations into two groups: time update and 

measurements update. The former equations are used to cast the current state forward and the latter 

equations are used to obtain the a priori estimates for what is expected to occur next. The latter are 

also necessary to obtain the feedbacks: for instance, they are used to asses whether a new 

measurement should be added to the a priori estimate in order to obtain an enhanced a posteriori 

version of the estimate later. 

                                                
4 The explanation to the following relationship,  Σ𝑘+1|𝑘 = 	𝐸[ 𝜙𝑒𝑘|𝑘 + 𝑤𝑘)(𝜙𝑒𝑘|𝑘 + 𝑤𝑘)

𝑇  , can be found in footnote 3 
on page 16. In that case, however, it demonstrated the relationship between Σ* = 𝐸[ 𝑥* − 𝑥*|*)(𝑥* − 𝑥*|)H .	 
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The time update equation can be considered as a predictor equation while the measurements update 

equation is considered as a corrective equation. 

The table below will differentiate between the time update and the measurements update equations 

so that the reader will become more familiar with this classification: 

 

Kalman filter time update equations 

 𝑥*+,|* = 	𝜙𝑥*|* 

Σ*+,|* = 	𝜙Σ*|*𝜙H + 𝑄 

(3.23) 

(3.26) 
 

Notice, as said before, that the time update equations in the above table relate the current state to the 

forward state: from state k-1 to state k. Matrix 𝜙 is equal to the one I introduced in equation 3.1 while 

matrix Q is the error variance-covariance matrix introduced in equation 3.6. 

 

Kalman filter measurements update equations 

 𝑥*|* = 	 𝑥*|*@, + 𝐾*	 𝑧* − 𝐻𝑥*|*@,  

𝐾* = 	Σ*|*@,𝐻H Σ*|*@,𝐻𝐻H + 𝑅 @,
 

Σ*|* = (𝐼 − 𝐾*𝐻)Σ*|*@, 

(3.13) 
(3.21) 

(3.22) 

 

The first thing to do is to compute what I called the gain, 𝐾*. In this way, the process will be estimated 

so to obtain 𝑧*. Therefore, the a posteriori state estimate can be generated by using the measurement 

for the gain 𝐾*	as I did in equation 3.13. Equation 3.22 is just the way through which the a posteriori 

error covariance is estimated. 

This process does not end here, it will be iterated and every time previous a posteriori estimates will 

be used to forecast the latest a priori estimates. This recursive feature of the Kalman filter is what 

makes it appealing with respect to other filters: it constantly conditions actual estimates on past data. 
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The above table depicts all the passages that should be implemented when applying the Kalman filter: 

it joins the formulae already pointed out in the two above tables and the concept of time update and 

measurement update equations. 

 

3.3.3 The	Maximum	Likelihood	Estimation	

 

So to conclude my analysis on Bitcoins’ returns, I still need to tackle another topic: the maximum 

likelihood estimate. The maximum likelihood estimate is obtained by finding 𝑥	such that it maximizes 

the probability of y, meaning that it maximises the probability of having obtained the given sample 

over the parameter space. Let 𝜓	 ∈ ℝj be the vector of unknown parameters that belongs to the 

parameter space Ψ. The matrices of the state space model along with all the variances I have used so 

far depend on 𝜓. 

The likelihood function of the state space model will hence be: 

 

 𝑙(𝑦, 𝜓) = 𝑝(𝑦o, 𝑦o@,, 𝑦o@6, … , 𝑦,; 𝜓) (3.27) 

 

Time	Update	(prediction)

1. Make a	projection	of	the	state
!"#$%|# = (!"#|#

2. Make	a	projection	of	the	error	covariance
Σ#$%|# = (Σ#|#(	* + ,

Measurement	Update	(correction)

1. Compute	the	Kalman	gain,	-#
-# = Σ#|#.%/*(/Σ#|#.%/* + 1)	.%

2. Update	the	estimate	with	the	measurement	3#
!"#|# = !"#|#.% + -	 3# − /!"#|#.%

3. Update	the	error	covariance
Σ#|# = (6 − -#/)Σ#|#.%
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The above equation, the likelihood function, depends upon the joint density of the observable data, 

𝑦 = (𝑦o, 𝑦o@,, 𝑦o@6, … , 𝑦,), and upon the vector made of unknown parameters 𝜓. It reflects how 

likely it would have been to have observed the data if 𝜓 were the true values of the parameters. 

 

Applying the definition of conditional probability and using Bayes’ theorem, I can write the joint 

density as a product of conditional densities. In formulae, 

 

 𝑙(𝑦, 𝜓) = 𝑝(𝑦o|	𝑦o@,, 𝑦o@6, … , 𝑦,; 𝜓) ∙ … ∙ 𝑝(𝑦*|	𝑦*@,, 𝑦*@6, … , 𝑦,; 𝜓) ∙ … ∙ 𝑝(𝑦,; 𝜓) (3.28) 

 

The last term of equation 3.28 should be 𝑝(𝑦,|𝑦a; 𝜓). In a Markovian system, as this is, future values 

of 𝑦s ,when 𝑙 > 𝑘, are functions of  (𝑦*, 𝑦*@,, 𝑦*@6, … , 𝑦,) basing my estimation on current values of 

𝑦*. The above equation can be rewritten so that it depends upon the most recent observations, hence 

it will be equal to 

 

 𝑙(𝑦, 𝜓) = 𝑝(𝑦o|	𝑦o@,; 𝜓) ∙ … ∙ 𝑝(𝑦*|	𝑦*@,; 𝜓) ∙ … ∙ 𝑝(𝑦,; 𝜓) (3.29) 

 

But our question is still left unanswered: how do I estimate the parameter vector 𝜓? It will be 

evaluated by using the likelihood function expressed in terms of the prediction error, 𝜈*, which is the 

same as the conditional variance of 𝑦*: 

 

 𝐶𝑜𝑣	 𝜈* = 	𝐶𝑜𝑣	(𝑦*) (3.30) 

 

In this way, by expressing the conditional variance of the two variables, I can state the density 

function. The density function of 𝑝(𝑦*|	𝑦*@,; 𝜓) is a Gaussian Normal distribution with conditional 

mean equal to 

 𝐸[𝑦*] = 	𝐻*𝑥*|*@, (3.31) 

 

Having a conditional variance equal to 

 

 𝐶𝑜𝑣	 𝑦* = 𝐾*|*@, = Σ*|*@,𝐻𝐻H + 𝑅 (3.32) 

 

The last part of the above equation, Σ*|*@,𝐻𝐻H + 𝑅, is the result in brackets I found in equation 3.21. 

The density function of a n-dimensional Normal distribution can be written in matrix form as 
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 1

(2𝜋)
M
6 Σ

𝑒@
,
6(y@9)

zbcd(y@9) 
 

 

Where 𝜇 is the mean value and Σ is the covariance matrix I found before. In my case (𝑥 − 𝜇) is 

replaced by 𝜈* = 𝑦* −	𝐻*𝑥*|*@, and its covariance matrix is 𝐾*|*@,. Hence, the probability density 

function can be rewritten as 

 

 𝑝(𝑦*|	𝑦*@,; 𝜓) =
1

(2𝜋)
{
6 𝐾*|*@,

𝑒@
,
6;_

z|_|_cd
z ;_ 

(3.33) 

 

 Taking the logarithm of the above equation (3.33) gives 

 

 ln(𝑝(𝑦*|	𝑦*@,; 𝜓)) = −
𝑛
2 ln 2𝜋 −

1
2 ln 𝐾*|*@, −

1
2 𝜈*

H𝐾*|*@,@, 𝜈* 
(3.34) 

 

Which will result in the log-likelihood function 

 

 
𝐿(𝑦, 𝜓) = −

1
2 𝑛

o

*�,

ln 2𝜋 + ln 𝐾*|*@, + 𝜈*H𝐾*|*@,@, 𝜈* 
(3.35) 

 

To estimate the unknown values from the equation 3.35 I use an optimization method aimed at 

maximising 𝐿(𝑦, 𝜓) with respect to 𝜓. The optimization will be expressed as follows 

 

 𝜓�� = argmax
�∈�

𝐿(𝑦, 𝜓) (3.36) 

 

This optimization can be either unconstrained if 𝜓 ∈ 	ℝj or constrained if the parameter space Ψ ⊂

	ℝj. 

 

4 Application		

 



 
 

 
 

26 

After having analysed how the Bitcoin works and which are the components necessary to its 

functioning and after having explained the statistical approach I am going to use to analyse Bitcoins’ 

returns, I will apply this latter method to historical data. This chapter will be entirely devoted to 

explanations, results and comments on the plots I will obtain. So to obtain graphs, I will use a 

programming software, called MatLab, that will enable me to insert the entire model, apply historical 

data, and run an estimate to determine whether Bitcoins’ returns change can be modelled using a 

distribution even after disturbances occurred. The model’s commands can be found in the appendix. 

Most of the commands are explained in chapter 3 as they are equal to the ones I used to explain, step 

by step, the statistical approach I will use. Since the model is applied to historical data, it is better to 

first provide a graph of the past returns over time and some statistical indicators such as mean, 

variance, standard deviation, skewness and kurtosis. 

The graph below shows the Bitcoins’ returns over a time period that goes from the 28'( of April 2013 

to the 9'( of October 2017 (1627 days but 1626 returns as they are computed as the logarithm of the 

ratio between the 𝑛 + 1'( price and the 𝑛'( price so, the last day’s return cannot be computed). 

 

 
Figure 6. Graph representing Bitcoins' returns 

 

What I can observe from the graph is that Bitcoins’ returns are very volatile going from a maximum 

of 0.1552 to a minimum of -0.1156. Thanks to MatLab I have also been able to compute the mean, 
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variance, standard deviation, skewness5 and kurtosis6 of the historical series. The data set presents a 

mean and a variance equal to 9.5442e-04 and 3.4723e-04 respectively. Since the variance gives 

information about the deviation of a variable from its mean value, a variance equal to 3.4723e-04 

makes me concluding that every observed return will differ from its mean by 3.4723e-04. 

Another important datum is the one about the skewness which, in this case, happens to be -0.2562: 

so, basically, the data set deviates by -0.2562 from symmetry. In the end, the last indicator I am going 

to report is the one about the kurtosis. The kurtosis is equal to 12.8204 which explains the amount of 

variance due to outliers. From a graphical point of view, it means that the tails of the probability 

density function are quite fat: since the kurtosis is bigger than 0, the distribution is said to be 

leptokurtic. 

 

Before starting, however, I will make a comparison between two different distributions, the t-

Location Scale and the Stable distributions, that are the ones employed the most when data present 

heavy tails. Moreover, I will also include the Normal distribution so to let the reader clearly 

understand how the two distributions that better fit the data set work with respect to the Normal one. 

The first distribution I am going to deal with is the Normal one, so to give a background. The 

probability density function (pdf) of the Normal distribution is given by the following formula 

 

 
𝑦 = 𝑓 𝑥 𝜇, 𝜎 = 	

1
𝜎 2𝜋

𝑒
@(y@9)�
6��  

(4.1) 

 

The two parameters 𝜇 and 𝜎 are the mean and the standard deviation. It is a common continuous 

probability distribution generally used to represent random variables whose distribution is unknown.  

 

The second distribution I will introduce is the t-Location Scale. Along with the Stable distribution, it 

fits the data set better than the Normal one does. The t-Location is used to model data distributions 

with fat tails which are present when the data set is prone to outliers. The pdf of the t-Location 

distribution is given by the formula below 

 

                                                
5 The skewness of a distribution provides a mathematical way to describe how much a distribution deviates from 
symmetry (Introduction to Econometrics, third edition, 2012) 
6 The kurtosis of a distribution is a measure of how much mass is in its tails and it is a measure of how much of the 
variance of a random variable arises from extreme values (Introduction to Econometrics, third edition, 2012) 
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(4.2) 

 

The parameters in this equation are respectively 𝜇 that represents the mean, while the variance is 

represented by the values 𝜎 and 𝜈7. 𝜇 represents the location parameter and it can assume any value 

between −∞ and +∞; 𝜎 is the scale parameter and it only assumes values grater than 0; and finally, 

𝜈 is the shape parameter that can only be greater than 0 and it affects the general shape of the 

distribution. However, this distribution approaches the normal one as one of the parameters, 𝜈, that 

is the one that tells information about the shape, goes to infinity. 

 

The last distribution is the Stable distribution. As the t-Location Scale, it is a class of probability 

distribution used to model fat tails (kurtosis) and skewness. This specific type of distribution does not 

provide any pdf. However, it is represented by a characteristic function given by the following 

equation, 

 

 

𝐸 𝑒�'� =
𝑒𝑥𝑝 −𝛾� 𝑡 � 1 + 𝑖𝛽𝑠𝑖𝑔𝑛 𝑡 𝑡𝑎𝑛

𝜋𝛼
2 ( 𝛾 𝑡 ,@� − 1) + 𝑖𝛿a𝑡 			𝑓𝑜𝑟	𝛼 ≠ 1	

𝑒𝑥𝑝 −𝛾 𝑡 1 + 𝑖𝛽𝑠𝑖𝑔𝑛 𝑡
2
𝜋 ln 𝛾 𝑡 + 𝑖𝛿a𝑡 																															𝑓𝑜𝑟	𝛼 = 1

 

(4.3) 

 

The parameters are respectively	𝛼 that is a number greater than 0 and at most equal to 2 and it is 

denoted as the first shape parameter; 𝛽 is the second shape parameter and takes on values at least 

equal to -1 and at most equal to +1; 𝛾 is the scale parameter and can only be positive so, it assumes 

values from 0 to +∞ and, finally, 𝛿 is the location parameter that can take on any value. 

The first shape parameter, 𝛼, describes the tails of the pdf while the 𝛽, the second shape parameter, 

illustrates the skewness of the pdf. If 𝛽 = 0, the distribution is symmetric; if 𝛽 > 0, the distribution 

is right-skewed while, if 𝛽 < 0, the distribution will be left-skewed. The scale parameter, 𝛾, generally 

stretches or shrinks the distribution and the larger it is, the more the distribution is spread out. The 

location parameter, 𝛿, has a shifting graph function. 

These distributions are depicted in the graph below. The plot makes a comparison between the three 

distributions using the vector Y_btc that is the vector containing all the returns on Bitcoin. I have 

                                                
7 Note that 𝜈 in this case it is not the error term of the observation vector but just a parameter of the probability density 
function of the t-Location Scale. 
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computed the returns by taking the logarithm of the ratio between the 𝑛 + 1'( Bitcoin s’ price and 

the 𝑛'( Bitcoin’s price measured over a time period. As you can see from the plot, the Normal 

distribution (in red) does not fit the data set: generally speaking, the Normal distribution is not a good 

approximation of a financial data set. The Bitcoins’ case is even more extreme as Bitcoins are very 

volatile due to their construction: their supply is fixed by their developers. This peculiarity of the 

Bitcoin makes its value unpredictable. However, I put it just to have a general idea of how peaked 

the data set is and how it differs from the Normal approximation. Moreover, the t-Location and the 

Stable distributions show how the centre of mass is concentrated around zero while, the Normal one 

shows a wider distribution (with a larger variance). The other two distributions, the t-Location and 

the Stable, in blue and brown respectively, as depicted from the graph, better approximate the data 

set composed by the rates of return of the Bitcoin over the sample period. 

 

 
Figure 7. Plot representing the Probability density functions of Bitcoins' returns according to either a Normal, a 

t-Location or a Stable distribution 

 

Thanks to a MatLab tool, called dfittool, apart from drawing the distributions graphs, I have been 

able to compute the corresponding means, variances that are the estimates of 𝜇 and 𝜎 with their 

corresponding standard errors. All the results are reported in the table below. 
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 Normal t-Location Scale Stable 

Mean (𝜇) 0.000954421 0.00104507 0.00208361 

Variance (𝜎6) 0.00034723 Infinite Nan 

Parameter Estimate 𝜇 0.000954421 0.00104507  

Parameter Estimate 𝜎 0.0186341 0.00788913  

Parameter Estimate 𝜈  1.75467  

Parameter Estimate 𝛼   1.26921 

Parameter Estimate 𝛽   0.0740078 

Parameter Estimate 𝛾   0.00674468 

Parameter Estimate 𝛿   0.000974437 

Standard error of 𝜇 0.000462255 0.000252933  

Standard error of 𝜎 0.000327015 0.000320008  

Standard error of 𝜈  0.114617  

Standard error of 𝛼   0.0346448 

Standard error of 𝛽   0.0564947 

Standard error of 𝛾   0.000205114 

Standard error of 𝛿   0.000276765 

 

As it can be seen from the plot and, more evidently, from the table containing the most significant 

data about the different distributions above, the Stable distribution is the one that provides me with 

much information about the data set. In fact, the first shape parameter 𝛼, is approximately equal to 
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1.27 which describes how fat the tails of the distribution are. Since 𝛼 can at most be equal to 2, I see 

that the Stable distribution depicts a discrete fatness of the tails. Other pieces of information can be 

collected by looking at the second shape parameter, 𝛽: since it is approximately 0.07, which is a value 

quite close to 0, I conclude the distribution is approximately symmetric. 

Moreover, if I look at the other two parameters, 𝛾 and 𝛿, I can conclude that the scale parameter, 𝛾, 

is very small which indicates that data will not be spread out but rather gathered around a mean value. 

For what it concerns the location parameter, 𝛿, since it is very close to 0, I end up saying that the plot 

will not be shifted with respect to the mean value. In the end, I can assess that the Stable distribution 

is a good fitter of the Bitcoins’ returns data set. 

 

As I said before, the t-Location Scale distribution is used when the data set is prone to outliers, so 

when it has fat tails. As already depicted by the Stable distribution, this data set is characterized by 

fat tails. So, the t-Location Scale can be a good approximation of the data set too. The only 

information I am provided with when I use the following distribution is the information about the 

shape of the graph, that is given by the parameter 𝜈. In this case 𝜈 is roughly equal to 1.755. 𝜈 can 

assume any value greater than 0 up to infinity. As it approaches infinity, the shape of the graph 

resembles the Normal distribution. Compared to infinity, the value of 𝜈 I have in this particular case 

is really small. Hence, I can conclude that the shape of the graph, as I see, is not approximately bell-

shaped but rather peaked. 

 

After having analysed the Probability density functions of Bitcoins’ returns according to the three 

different distributions, I am going to analyse the Cumulative density functions and the Probability 

functions. As before, I will use the MatLab tool, dfittool, that will provide me with two different 

plots according to the two functions I want to graph. I will examine the Cumulative density function 

(cdf) first and the Probability plot later. As for the Probability density graph, the red line represents 

the Normal distribution, the blue line the t-Location distribution and the brown line the Stable 

distribution. 
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Figure 8. Plot representing the Cumulative density functions of Bitcoins' returns according to either a Normal, a 

t-Location or a Stable distribution 

The Cumulative distribution function of a random variable x is defined to be the probability that X 

will take a value smaller or at least equal to x. As you see from the chart above, both the t-Location 

Scale and the Stable distributions almost fit the data set while the Normal distribution is less precise. 

 

For the Normal distribution, the Cumulative distribution function becomes more stretched as 𝜎6 

increases, while it shifts either to the left or to the right according to the sign of 𝜇. Since this data set 

is more prone to outliers, as I said in the previous paragraph too, the Normal distribution will not be 

a good approximation of this data set: in fact, the Normal approximation creates a sort of gap between 

the actual data set graphed by a thin violet line and the red line. 

 

A different observation can be made for both the t-Location and the Stable distributions that almost 

perfectly graph the distribution of the data set: for the t-Location Scale, the higher the 𝜈 the more 

stretched the Cumulative density function will be and the more it will resemble the Normal 

distribution. With a parameter 𝜈 almost equal to 2, the plot will not be as stretched as when I have a 

𝜈 equal to infinity but, it will be stretched enough to represent the data set. 



 
 

 
 

33 

Same result can be drawn for the Stable distribution: differently from the t-Location, the Stable 

distribution has two shape parameters 𝛼, the stability parameter, and 𝛽, the skewness parameter, that 

can take values in between 0 and 2 and -1 and +1 respectively. With 𝛼 being equal to almost 1.27 and 

𝛽 being equal to 0.07 more or less, the shape of the Cumulative function using the Stable distribution 

will be sufficiently stretched so to fit the data considering outliers too, hence taking into account the 

asymmetry caused by some random returns. 

 

These results are even more evident if I analyse the Probability plot below: 

 

 
Figure 9. Plot representing the Probability functions of Bitcoins' returns according to either a Normal, a t-

Location or a Stable distribution 

The Probability plot is generally used to compare two data sets. As usual, the red line represents the 

Normal, the blue line represents the t-Location Scale and the brown line represents the Stable 

distribution. What differs in this graph is the line representing Bitcoins’ returns: in fact, they are 

represented by circles rather than a continuous thin line. The ones that do not lie on the red line 

represent departures from normality. However, as you see, they are not really well-fitted neither by 

the t-Location nor by the Stable distributions, especially at the extremes. This is because the Bitcoin, 
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as I wrote before, is very volatile, prone to outliers and with fat tails. This plot is the evidence that 

even if there are some distributions that mostly fit the data set, there will always be outliers. 

 

Now, after having analysed the different types of distributions with their respective densities, 

cumulative and probability functions, I will apply the Kalman filter on MatLab so to compute the 

value of the maximum likelihood function L introduced in equation 3.27. After having computed the 

value L I will have to maximise it so to observe whether that is a global (absolute) or local maximum. 

In order to carry out the aforementioned operations I will use two different scripts on MatLab each 

for every different function, one to compute –L and the other to maximise it. The Kalman filter is 

already contained in the first script. In the Appendix, you will also find the codes so to generate a 

random trajectory that in this case is not necessary as I already have it: it is the series of past returns 

that I obtained by observing the Bitcoins’ prices over a time period and then I computed the return 

for every period by applying the logarithm to the ratio of the 𝑛 + 1'( price and the 𝑛'( price. In the 

Appendix you will also find the Kalman filter as if it were a separate script, however, in this case I 

assumed it to be contained in the “compute_minusL” script. The function so to compute –L is given 

by the following relation: 

 

 [L,Err,mu,v] = calcolo_menoL(parametri,x0,Y_btc’) 
 

(4.4) 

 

Where L is the value of the maximum likelihood function; Err is the estimated error term; mu is the 

first component of the state-vector equation, x, and v is the estimated error. The function to the right 

of the equal requires the computation of minus L given the parametri that are a,b,R,Q, x0 and 

Y_btc’ where a and b are the two constants introduced in equation 3.7, R and Q are the two 

variance-covariance matrices of the error terms 𝑤 and 𝜈 of equations 3.1 and 3.2. The two matrices 

have been introduced in equations 3.6 and 3.8. As previously stated, matrix Q will be a diagonal 

matrix having variances on its main diagonal while matrix R will be a 1x1 matrix. x0 will instead be 

the initial observed values of variable x: it was introduced in the first script so to start generating the 

trajectory. Y_btc’ is the transposed vector of Bitcoins’ returns. 

After having found L, I will apply another command necessary to maximise the value of the 

maximum-likelihood function, that is 

 

 [a,b,R,var_mu,var_v,Err,mu,v,maxL,BTC_stimata]= 

=massimizzoL(x0,Y_btc’) 

(4.5) 



 
 

 
 

35 

 

The new output variables are var_mu and var_v that are the variances of 𝜇 and 𝜈 and they are 

respectively the terms that lie on the main diagonal of Q. maxL is the variable representing the 

maximised value of L, that will be obtained by running the above command, while BTC_stimata 

is Y_btc. 

By posing all parameters equal to 1, x0 being equal to a 1×2 matrix [0.1, 0.2] and Y_btc’ being 

equal to the Bitcoins’ returns vector, L will be equal to 1.3996e+03, Err, mu and v will be equal 

to three vectors made of as many error terms as the number of returns contained in Y_btc (1625) 

while v_k, that is the prediction error, is equal to -0.0059. The command in order to compute v_k 

will be 

 

 v_k= Y_btc(:,t+2)-a*Y_btc(:,t+1)-b*Y_btc(:,t)-(H*x_k_given_k) (4.6) 

 

Equation 4.5 is the estimated error that is equal to the difference between the actual Bitcoins’ returns 

observed on previous periods and the estimation already mentioned in Chapter 3 as the difference 

between 𝑧* and 𝐻𝑥*|*@, in equation 3.13. 

So to maximise L now, I will have to use the command in equation 4.5 that, given the parameters 

being all equal to 1 and given x0 being equal to a 1×2  matrix [0.1, 0.2] and Y_btc’ being equal 

to the Bitcoins’ returns vector, maxL will be equal to 7.7033e+03. This is the maximised value of 

L over a given interval whose extremes have been established in the script denominated 

“maximiseL”. 

In this estimation, the lower bound is given by lb=[a-20 b-20 0.00001 0.00001 

0.000001] and the upper bound is instead given by ub=[a+20 b+20 1 1 2]. According to 

the following estimation, the graph of the estimated error, Err, of mu and of v is given by the plot 

below: 
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Figure 10. Graph representing the estimated error, the first component of vector x and the measurement Gaussian 

error when all parameters are equal to 1 

I can however carry out the same analysis by changing the numbers assigned to the parameters in 

equation 4.4. 

Suppose I now change the values of the parameters and of x0: I set a being equal to 0.01, b being 

equal to 0, R being equal to 0.0846, var_mu being equal to 0.9649 and var_v being equal to 

0.4325 and x0 will have to be a row vector whose entries will be randomly established by the 

command 

 

 x0(i)=normrnd(0, i) (4.7) 

 

where i takes the value of either 1 or 2 depending on the entry of the row vector. With this new 

values, L will be equal to 612.9585, Err, mu and v will be equal to three vectors made of as many 

error terms as the number of returns contained in Y_btc (1625) and v_k is equal to -0.0059 as 

before. The value that maximises L happens to be the same as before 7.7033e+03 as I am still 

analysing the same interval. What if I change the interval too? I set the lower bound so that it is equal 

to lb=[a-50 b-50 0.00001 0.00001 0.000001] and the upper bound being equal to 

ub=[a+50 b+50 1 1 2]. maxL will now be equal to 7.6805e+03 so it will be lower than 
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before hence I can carry on the analysis by changing the interval upon which I am making the 

observations so to see whether the maximisation of L happens to be absolute or just local. 

 

 
Figure 11. Graph representing the estimated error, the first component of vector x and the measurement Gaussian error when 

parameters are all different and the interval widens to ±50 

Suppose I change the parameters setting them equal to [a b R var_mu var_v]= 

[0.00351,0.034,0.059,0.83,0.7091], the value of x0 to be set randomly by the software 

(equation 4.7) and the interval, shrinking it to ±5. The graph now becomes very similar to the one I 

obtained when the interval was ±50 with a maxL still equal to 7.7033e+03. Hence, what I can 

conclude is that the value of maxL equal to 7.7033e+03 results in being the global maximum: this 

will maximise the probability of having obtained the given sample. 

 

4.1 Error	Metrics	
 

This one to last paragraph will be devoted to error metrics. Error metrics are used to measure accuracy 

when we deal with continuous variables. The three metrics I will briefly discuss are: the Average 

Prediction Error (APE), the Average Relative Prediction Error (ARPE) and the Root Mean Square 



 
 

 
 

38 

Error (RMSE). They all measure how much the observed values diverge from the estimated ones. 

The first one I am going to analyse is the APE whose formula is given by 

 

 
𝑨𝑷𝑬 = 	

𝑦¡ − 𝑦¡
𝑦¡

o

¡�,

 
(4.8) 

 

Where the 𝑦¡ is the observed value while 𝑦¡ is the estimated one. The numerator is the result of the 

difference between the actual observed value and the estimated one, so it is the error caused by the 

estimation while the denominator is given by the sum of all observed values. As the name suggests, 

it is an average of the predicted error caused by the estimation. 

The other error metric I will talk about is the ARPE which is explained by the following equation 

 

 
𝑨𝑹𝑷𝑬 =

1
𝑁

|𝑦¡ − 𝑦¡|
𝑦¡

o

¡�,

 
(4.9) 

 

This formula is similar to the one I used for the APE but for the fact that, at the denominator, I am no 

longer summing all the observed values so it will be equal to just one observed value for the period I 

am looking at multiplied by the number of values observed. 

The last metric I am dealing with is the RMSE which is equal to 

 

 

𝑹𝑴𝑺𝑬 =
|𝑦¡ − 𝑦¡|6

𝑁

o

¡�,

		 

(4.10) 

 

This equation is the square root of the average of squared differences between prediction and actual 

observation. Differently from other equations, since the errors are squared before they averaged, the 

RMSE gives a higher weight to large errors than small ones. In fact, the RMSE should be employed 

when large errors are not expected to occur. 

Now, I apply the following equations to my data set composed by Bitcoins’ returns so to compute 

these error metrics. The results are reported in the table below 

 

Error Metrics Measurements 

Average Prediction Error (APE) 0.141905 
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Average Relative Prediction Error (ARPE) 0.21734 

Root Mean Square Error (RMSE) 0.05182 

 

As these numbers show, since they are all very small, the Kalman filter is a good model to predict 

Bitcoins’ returns as it is a good fit leading to small and inconsistent errors. 

 
4.2 Conclusion	
 

The goal of this thesis was to prove that even if there might be some perturbations that I cannot 

observe in Bitcoin’s returns, it is still possible to compute an estimate of it by observing the state 

before and after the disturbance occurred. The filter enables me to observe the perturbed system after 

the disturbance occurred but it does not enable me to observe exactly when the perturbation occurred. 

The situation can be portrayed as such: suppose I am in a condition in which the system can be 

observed and some measurements can be taken. As some inaccuracies might arise, that cannot be 

observed (as if the whole system were in a box from which I can only observe the outcome), the filter 

still enables me to make a good prediction of those unknown variables that result from the estimation. 

It makes use of the joint probability distribution for every time period. As shown with the filter, since 

it takes into account the randomness of errors, it has been possible to make an estimate of Bitcoins’ 

returns by designing a proper observation vector which has been used along with the measurement 

prediction to compute the estimated error. At the end the error term has been minimized in order to 

have a prediction that is very close to the actual measurement. 

5 Appendix	

 

In this section I will report all the commands implemented on MatLab. 
 

To generate the trajectory: 

function [X_tot,Y_tot] = genero_traiettoria(a,b,R,Q) %where both a and b are 

two parameters while R and Q are defined as diag(rand(1,1))*0.001 and 

diag(rand(2,1))*0.001 respectively 

 
 
T=50 %time 
dt=1 %sample time 
aa=ones(2,1) %implementation of matrix PHI 
PHI=diag(aa) 
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PHI(1,2)=1 

 

X=0 %to insert the solution vector and the output variable 𝑥*+, 

 

X_tot=[] %to collect them all 

Y_tot=[] 

 

H=[1 0] %to implement matrix H 

 

Q=diag(rand(2,1))*1 %to determine the error variance-covariance matrix Q 

R=diag(rand(1,1))*1 %to determine the variance of the error term 𝜈* 

 

x0=[0.1; 0.2] %initial data to generate the trajectory 

y0=[0.1, 0.3] %in order to compute y_2 

 

X=[x0] 

Y=[y0] 

 

times=[ 0 : dt : T] %time interval that goes from 0 to T with a pace equal 

to dt 

 

%application of the for-loop so to estimate the errors of the state-space 

and of the observation equation, of the state-space and of the observation 

vectors too. While X_tot contains the solution for every single time period, 

Y_tot contains the ending value for every time period 

for t =times(2):max(size(times)) 

w=(mvnrnd(zeros(2,1),Q,1))' 

v=(mvnrnd(zeros(1,1),R,1))' 

Y_tot = [Y_tot, Y] 

Y=a*Y_tot(end)+b*Y_tot(end-1)+H*X+v 

X=PHI*X+w 

X_tot=[X_tot,X] 

end 

 

To implement the filter: 

function[MEAN_PREDICTION,ERROR_PREDICTION]=filtro_new_3(a,b,R,var_mu,var_v,

Y_btc) 

 

Sigma0=eye(2)*100  %a priori estimate of the covariance of x – in chapter 3, 

I called it Σ*|*@, 
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X0=ones(2,1) %a priori estimate of the mean of x  

 

x_k_given_k_minus_one=X0 %initial value of 𝑥*|*@, 

 

Sigma_k_given_k_minus_one=Sigma0 %initial value of Σ*|*@, 

 

MEAN_FILTERING=[] %to store all values of 𝑥*|* 

 

COV_FILTERING=[] %to store the norm of Σ*|* 

 

MEAN_PREDICTION=[X0] %to store the values of 𝑥*+,|* 

 

COV_PREDICTION=[norm(Sigma_k_given_k_minus_one)] %to store the norm of Σ*+,|* 

 

ERROR_PREDICTION=[] %to collect all estimates of the prediction error 

 

COV_ERROR_PREDICTION=[] %to collect all estimates of the covariance of the 

prediction error 

 

L=0 

 

%application of the for-loop so to estimate the measurement update and the 

time update equations. The measurement update equation will have to be 

compared to the initial X0, the a priori estimate of the mean of x while the 

time update equations will constitute the prediction 

for t=1:max(size(times)-2) %to scan all time periods 

x_k_given_k=X0+Sigma0*H'*inv(H*Sigma0*H'+R)*((Y_tot(:,t+2)-a*Y_tot(:,t+1)-

b*Y_tot(:,t))-H*X0) 

Sigma_k_given_k=Sigma0-Sigma0*H'*inv(H*Sigma0*H'+R)*H*Sigma0 

MEAN_FILTERING=[MEAN_FILTERING,x_k_given_k] %to store all values of 𝑥*|* 

COV_FILTERING=[COV_FILTERING,norm(Sigma_k_given_k)] %to store the norm of 

Σ*|* 

X0=PHI*x_k_given_k 

Sigma_k_given_k_minus_one=PHI*Sigma_k_given_k*PHI'+Q 

MEAN_PREDICTION=[MEAN_PREDICTION,X0] %to store 𝑥*+,|* 

COV_PREDICTION=[COV_PREDICTION,norm(Sigma0)] %to store the norm of Σ*+,|* 

end 

 

L=-0.5*L %correction of the log-likelihood function. In chapter 3 I wrote it 

as a unique function. On MatLab it estimates the log-likelihood function 

first and it corrects it for -0.5 after 
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%all the commands below will be necessary to draw the plot 

figure() 

subplot(2,2,1) 

plot(times,Y_tot(1,:),'b-') 

hold on 

plot(times(1:length(MEAN_PREDICTION(1,:))),MEAN_PREDICTION(1,:),'k-') 

xlabel('time') 

ylabel('z') 

legend(' \z storica',' \z  filtro') 

 

subplot(2,2,2) 

plot(times(1:length(MEAN_PREDICTION(1,:))),abs(ETH(1,3:end)'-

MEAN_PREDICTION(1,:)),'m-') 

xlabel('time') 

ylabel('|z storica - z filtro|') 

 

To compute minus L: 

[L,Err,mu,v] = calcolo_menoL(parametri,x0,Y_btc’) %parameters are 
[a,b,R,Q,x0] 
 
v_k= Y_tot(:,t+2)-a*Y_tot(:,t+1)-b*Y_tot(:,t)-(H* x_k_given_k) 

 

K_k_given_k_minus_one=H*Sigma0*H'+R 

 

ERROR_PREDICTION=[ERROR_PREDICTION,v_k] %to compute the error prediction 

COV_ERROR_PREDICTION=[COV_ERROR_PREDICTION,K_k_given_k_minus_one] %to 

compute the covariance matrix of the error prediction 

 

L=L+log(det(K_k_given_k_minus_one))+v_k'*(K_k_given_k_minus_one)^(-1)*v_k 

%log-likelihood function 

 

Err(t)=v_k 
mu(t+1)=x_k_given_k(1) 
v(t+1)=x_k_given_k(2) 
 

 

To maximise L: 

[a,b,R,var_mu,var_v,Err,mu,v,maxL]=massimizzoL(x0,Y_btc)  
 

 

a11=0 

a12=0 
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a22=0 

a21=0 

b11=0 

b21=0 

 

c=length(BTC’) 

 

for k= 2:c-1 

a11=a11+(BTC(k)'.^2) 

a12=a12+(BTC(k)'*BTC(k-1)') 

a22=a22+(BTC(k-1)'.^2) 

b11=b11+(BTC(k+1)'*BTC(k)') 

b21=b21+(BTC(k+1)'*BTC(k-1)') 

end 

 

a21=a12 

A=[a11,a12;a21,a22] 

B=[b11;b21] 

D=inv(A)*B 

a1 = D(1) 

b1 = D(2) 

 

a=a1 

b=b1 

 

%the code below has been implemented in order to find the upper boundary of 
the interval, the optimum of every parameter. The last three terms 
represent the variances that can be changed with the only constraint of 
being positive 
lb=[a-20 b-20 0.00001 0.00001 0.000001]  
 
%so to find the upper boundary of the interval, the optimum of every 
parameter. Same thing holds for the last three terms 
ub=[a+20 b+20 1 1 2] 
 
%initial data where to start from in order to find the optimum of every 

parameter. Always choose a value in between the upper and lower boundary of 

every parameter 

c0=[a b 0.5 0.5 0.5] 
 
[parametri_opt,FVAL]=fmincon(f,c0,[],[],[],[],lb,ub) 
 
maxL=-FVAL 
a=parametri_opt(1) 
b=parametri_opt(2) 
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R=parametri_opt(3) 
var_mu=parametri_opt(4) 
var_v=parametri_opt(5) 

  

[L,Err,mu,v] = calcolo_menoL(parametri_opt,x0,BTC) 

 

To compute the bitcoin’s return: 

 

for i=2 : length(F) 

BTC(i-1)=log(F(i)/F(i-1)) 
end 
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