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Abstract

We often have to deal with uncertainty regarding multiple aspects of the decision problems

we face. This uncertainty may concern, for instance, our earnings, the likelihood to receive

them in a given moment and in a given amount. The aim of this thesis is to contribute to the

growing body of literature around “multi-dimensional uncertainty”, which enlarges the scope

of ambiguity outside the frame of uncertainty about probabilities. It does so by analysing, both

theoretically and empirically the evidence stemming from a multi-stage experiment in which

subjects have to choose between lotteries whereby amounts of monetary prizes are not always

known, whereas probabilities are always public knowledge. In the experiment, three different

levels of information over some monetary prizes are randomized between subjects. The

experimental evidence undergoes structural estimation exercises: these elicit the individuals’

degree of risk aversion within the frame of a standard constant relative risk aversion (CRRA)

utility function. Furthermore, we investigate whether a change of information, such as the one

we reproduce through the different treatments conditions, translates into a change in behavior

and, in turn, whether and how much this change translates into a significant change in their

measured (CRRA) attitude toward risk. As to the behavioral content of the structural model

for the uncertain payoffs, we propose two alternative specifications, labelled “naive” and

“sophisticated”. The empirical evidence shows a moderate but significant degree of love for

ambiguity, since less information given to subjects results in a lower estimate of their risk

aversion, and, as a consequence, in a stronger attraction toward risk and uncertainty. A mixture

model is implemented to identify the probability of individuals mirroring one behavioral

model or the other, or, saying it differently, the percentage of observations compatible with

either model. We conclude that our subjects have a strong tendency to behave as naive.

Keywords: heterogeneity; risk aversion; ambiguity.
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CHAPTER 1

Introduction

Uncertainty regarding multiple aspects of the decision problems is an issue that often arises.

This uncertainty may concern the amount of monetary earnings, the likelihood of these

earnings, the actual date at which these earning are received, etc. In this respect, the way in

which individuals behave in uncertain situations may as well varies for different dimensions

of uncertainty. However, the theoretical and empirical economic discussion on these issues

has been mostly focused on a specific kind of uncertainty, the uncertainty about probabilities.

The aim of this dissertation is to contribute to the scarce but increasing body of research which

deals with “multi-dimensional uncertainty”, that enlarges the scope of ambiguity outside the

frame of uncertainty about probabilities. We contribute on this by analyzing (both theoretically

and empirically) existing evidence from a multi-stage experiment in which subjects have to

choose between lotteries where probabilities were publicly known at all times but some of the

monetary prizes were not.

It should be noted at this point that, from a pure bayesian perspective, all the different dimen-

sions of ambiguity can be reduced to a single one by appropriately defining the “states of

the world” as multidimensional objects defined over all uncertain dimensions. Within this

augmented frame, a “bayesian” decision maker would simply form some subjective prior

beliefs over this augmented set of states of the world and maximize an objective function,

that represents her preferences based on them. If we accept this bayesian interpretation,

every decision problem under multi-dimensional ambiguity can be appropriately reduced to

a standard problem of uncertainty over probabilities. This can only stand if we show that
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people are able to build such complex and multi-dimensional spaces and behave accordingly.

Conversely, if this was not be the case, it would matter which objects of uncertainty are

domains and whether and how these domains might be correlated.

This thesis reports evidence form a multi-stage experiment conducted at the "Laboratory of

Theoretical and Experimental Economics" of the University of Alicante by Albarrán et al

[1]. In the experiment, three different levels of information over some monetary prizes are

randomized between subjects. Specifically, in the full information treatment, TR2, subjects

observe all the prizes of the lotteries they are asked to select; in the partial information

treatment, TR1, they are not informed about their actual values, but they know that they are

i.i.d. draws from a uniform distribution; finally in the no information treatment, TR0, they are

just informed of the prize rankings.

The experiment develops along two ordered balance phases built upon two classic risk-

elicitation protocols, the Holt and Laury [2] and the Hey and Orme [3], respectively. Hey and

Orme [3] experiment is built around binary choices between lotteries over 4 fixed monetary

prizes, such as {0, 1
3 ,

2
3 ,1}. In the treatments with ambiguity, TR0 and TR1, the intermediate

payoffs, Y and X , are communicated to the subjects, being between 0 and 1, with Y < X . In

phase 1, instead, the subjects elicit, by the way of a Multiple Prize List (MPL), the certainty

equivalent of the same lotteries used in phase 2.

The experimental evidence is read by the way of some structural estimation exercises in which

the individuals’ degree of risk aversion is elicited within the frame of a standard constant

relative risk aversion (CRRA) utility function. Furthermore, it is analyzed whether a change of

information, such as the one reproduced through the different treatments conditions, correlates

to a change in behavior and, in turn, whether and, how this change trasforms into a significant

change in their measured (CRRA) attitude toward risk.

The uncertain payoffs Y and X are identified as the first and the second order statistics from

a uniform distribution in [ 0, 1 ], where the order statistics of a random sample {�1,�2} are

defined as the sample values placed in ascending order.

While this is totally correct for TR1 subjects -given that they know the characteristics of

the random generation process that yields the uncertain payoffs- the same statistical model

was imposed for subjects in TR0, considering that they already had this information. This
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is purely an identification assumption, as there is no possibility to test whether this is truth

for the expectations in TR0 about the X and Y distributions, or whether subjects in TR0

consider another distribution. On the other hand, it is highly probable that TR0 subjects will

heuristically and automatically come up with such a distribution of the payoffs, as it occurs in

Laplace’s well known “principle of insufficient reason”. In any case, the important here is

that -based on this assumption- our structural model is able to estimate treatment effects, to

such an extent that we are able test a null hypothesis in which CRRA in both TR0 and TR1 is

the same. Since subjects are randomized within treatments, a significant change in the CRRA

coefficient between TR0 and TR1 has to be interpreted as a genuine treatment effect due to a

change in information.

Regarding the behavioral content of the structural model for the uncertain payoffs, two alter-

native specifications were considered, labelled as “naive” and “sophisticated”, respectively. A

naive decision maker figures out a point estimation of the unknown payoffs X and Y , starting

from the information that these are draws of a uniform distribution in [ 0, 1 ]. This means

that E[X] and the E[Y ] are computed and then plugged inside the CRRA utility function to

be maximized. On the other hand, a sophisticated decision maker will proceed with a true

bayesian updating. In particular, she formulates a prior distribution over the X and the Y , and

then calculate the expected utility from these densities.

We shall now here summarize our main findings. Our empirical evidence shows a certain

degree of love for ambiguity, given that the less the information given to subjects, the lower

their estimated risk aversion, and, consequently, the bigger their attraction toward risk and

uncertainty. Moreover, the risk aversion coefficient estimated for TR0 is significantly lower

from that estimated in TR2, although no statistically significant difference was found between

estimated CRRA coefficients in TR0 and TR1. These findings are in a way in contradiction to

the common wisdom of the literature, although they are consistent with other experimental

literature that applies similar elicitation techniques as Andersen et al [4].

When comparing the two behavioral models, that is the "bayesian" against the "naive", the

estimated likelihood of the naive approach is higher than the one of the bayesian. This

suggests that the naive approach closely approximates subjects’ decision rules, given the data.

In this regard, a mixture model is implemented to identify the probability of individuals using
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each model, which corresponds to the percentage of observations compatible to each model.

This mixture model aims to achieve a statistical reconciliation of these two dominant theories

of choices under risk. It avoids any extreme declaration of "winners" and "losers", providing

a more balanced metric to decide which theory performs better in a given domain given

the experimental data. Due to the fact that the likelihood of our models are very close, this

probability was estimated numerically, using a grid loop.

Specifically, a probability ⇡BAY , i.e. the probability of the subjects acting as bayesian in each

of their decisions was estimated. Subsequently we let this ⇡BAY moving inside a grid (0, 1),

to finally choose the value that maximizes the likelihood function.

This numerical computation demonstrates that the subjects have a strong tendency to behave

as naive, given the estimation result, which was ⇡BAY = 0.2.

The structure of this thesis is arranged as follows. In Chapter 2 the previous results on the

long lasting debate of decision making under risk and uncertainty are presented. In Chapter 3

the experimental design is described in details. In Chapter 4 it is shown how the individuals’

heterogeneity is treated under structural modelling, providing some examples applied to the

data. In Chapter 5 our structural estimations are reported as a function of the two alternative

behavioral specifications, the naive and the bayesian, along with the estimation of our mixture

model. Finally, Chapter 6 summarizes our results and highlights possible future develop-

ments and more complex experimental investigations. Two appendices follow, containing the

experimental instructions and the Stata codes used for the statistical analysis.
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CHAPTER 2

Literature Review

2.1 Risk vs Uncertainty: previous approaches to a

long-lasting debate

In Economic theory, an already established difference exists between the concept of risk and

the concept of uncertainty, also defined as ambiguity. Indeed, a risky situation exists when

both the outcome values and their distribution are known. On the other hand, an uncertain, or

ambiguous, situation occurs when the outcomes but not their distribution are known.

Reporting Knight [5] “Even though the business man could not know in advance the re-

sults of individual ventures, he could operate and base his competitive offers upon accurate

foreknowledge of the future if quantitative knowledge of the probability of every possible

outcome can be had. . . ”

Risk can be quantitatively measured by any form, while uncertainty cannot. Therefore, there

are certain risks that can be fully covered by taking insurance policies such as fire, flood, theft,

robbery etc.. whereas in uncertainty an insurance coverage is not possible.

Knowing the distribution of the outcomes can be considered as a hyperbolic situation in the

daily decisions agents face. However, incomplete information, or uncertainty, is common in

multiple aspect of the decision problem.

For example, the monetary earnings value may be uncertain, the likelihood of positive earn-
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ings may be uncertain, the payment date may be uncertain etc... The proliferation and frequent

introductions of new brands are involved in the marketplace uncertain processes such as

the time of purchase and brand selection. When buying a used car, people cannot know

beforehand that it will not break down in the near future. When considering a loan for a new

home, one can never be certain whether a fixed or a variable plan will be more effective.

Consumers have learned eventually how to deal with uncertainty or ambiguity. Indeed, in real

settings, exact probabilities are impossible to be assigned to specific events. For example, the

probability the car breaking down in the next moths could be estimated between 10% and

40%. In these situations, the probabilities are ambiguous, which means there is uncertainty

about the uncertainty, as the odds of an uncertain event aren’t exactly known. For istance,

whereas there is no ambiguity associated to a coin toss, on the other hand a new product

technology, a computer hardware obsolescence or the purchase time relative to the next price

cut are quite ambiguous situations.

In conclusion, as Heath and Tversky [6] point, "the potential significance of ambiguity stems

from its relevance to the evaluation of evidence in the real word."

According to Savage [7], uncertainty does not exist, since individuals always have been decid-

ing for a subjective probability distribution to be associated to all decisions. This reflects all

the information players have on the likelihood of a specific event and is a Bayesian approach,

where subjects create a subjective probability evaluation that represents their specific state

of knowledge in an uncertain situation. The subjects make their choices by maximizing the

subjective expected values they compute.

By contrast, Ellsberg [8] states that these subjective probabilities cannot be always established

by the players. Indeed, Savage approach is true only when some uncertain choice events

become risky, after individuals had assigned subjective probabilities. In many instances

though the subjective probability assessment is impossible or meaningless and people do not

maximize the mathematical utility expectation on the basis of numerical probability for these

events. It is not also possible to derive from their choices in these gamble events numerical

von Neumann-Morgenstern utilities. Thus, their choices are not ascribable to any usual criteria

for predicting or prescribing decision-making under uncertainty. Still, these choices do not

appear to be careless or random.
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In the empirical evidence proposed by Ellsberg, individuals seem to stay away from lotteries

which are ambiguous, that is, lotteries whose associated probabilities cannot be precisely

stated. Attending to his experiments, people choices depend also on the level of ambiguity the

decisions contain, namely the reliability of probability assessment. To sum up, people dislike

ambiguity and this yields inconsistency with the Bayesian theory under uncertain decisions.

Following Kahn and Sarin [9], ambiguity can be operationally defined as the second-order

uncertainty, particularly as the probability distribution for the perceived frequencies.

On the other hand, Lauriola and Levin [10] state that ambiguity cannot be reduced to second-

order probability distributions. Their empirical results show that subjects strongly dislike

ambiguous lotteries compered to the ones with explicit probabilities ones. In addition, the

same proportion of preferences for the first- and second-order lotteries are observed, when

one is compared to the another. Thus it seems that behavioural science does not support the

hypothesis that ambiguity could be reduced to explicit second order probabilities.

Klibanoff, Marinacci and Mukerji [11] achieve a separation between ambiguity, as a charac-

teristic of the decision maker subjective beliefs, and ambiguity attitude, as a characteristic of

the decision maker’s tastes. Ambiguity is defined by them as the uncertainty about the priors

relative to the decision. The value function is:

V (f) =

Z

�

�

Z

S

u(f)d⇡ = Eµ[�(E⇡[u · f ])]

where f is the action chosen, � the ambiguity aversion function over �, ⇡ the probability

measure over S and µ the subjective prior.

Halevy [12] tests different theories’ performances in a controlled experimental environment,

extension of the original Ellsberg experiment. As a result of this study, derives the lack of the

ability of a comprehensive model to universally capture ambiguity preferences. This work

confirms the approach of Epstein [13], by defining ambiguity aversion as a non-probabilistic

sophisticated behaviour model, with no commitment to a specific functional model. This

suggests that the failure in reducing compound objective lotteries is the underlying factor of

the Ellsberg paradox itself. Finally, it lies upon decision theory to uncover the theoretical

relationship between the reduction and ambiguity aversion.

In Harrison and Rutstrom’s work [14] is introduced for the first time the possibility of a
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"wedding" between utility theory and prospect theory, i.e. between the two front runners

for choices under uncertainty. In the aforementioned literature, is to allow for heterogeneity

is usually allowed in responses through standard methods, such as random or fixed effects

models. Indeed, this is not helpful to identify which people and when behave according to

which theory, as heterogeneity is only recognized within a given theory. This automatically

excludes heterogeneous theories from co-existing in the same sample. Harrison and Rutstrom

specify and estimate a grand likelihood function, namely a mixture model, allowing for

different theories to coexist and each having a specific weight. Specifically, the different

theories are the expected utility theory (EUT) and prospect theory (PT) by Kahneman and

Tversky [15]. The EUT assumes constant relative risk aversion utility function defined over

the final monetary prize the subject will receive if the lotteries are played out. On the other

hand, PT has a utility function defined over gains and losses separately, with a probability

weighting function converting the underlying probabilities of the lottery into subjective ones.

The key idea behind this mixture model is to achieve a statistical reconciliation of these two

dominant theories of choices under risk. The model avoids any extreme declaration of winners

and losers, providing metric to decide which theory performs better in a given domain. It also

provides insight regarding when one theory behaves better than the other, using individual

characteristics effects and treatments on estimated probability of support.

The already mentioned Kahn and Sarin [9] develop a modified version of the subjective

expected utility model which assigns a decision weight, w(E), to each event E. Therefore,

the value function of a lottery L is obtained as:

V (L) = w(E)u(x).

Specifically, the weight is a function of the individual attitude toward ambiguity, namely �, of

the mean value of the probability of the event E, p and of the standard deviation of p, �. It is

expressed as:

w(E) = p� ��.

This is clearly a variance of the common mean variance model, that is degraded to the SEU

classical model when there is no ambiguity effect.

As a consequence, an ambiguity adverse individual, with a � > 0, dislikes higher variance

24



of p. On the other hand, if there is no ambiguity or the subject does not care about it, which

means that � = 0, the weight will reduce to the mean value, w(E) = p.

The findings point a significant context effect, which means that individuals attitude toward

ambiguity changes depending on the context. As a result, � is individual and context specific.

Also the payoffs involved, namely if there is a win or loss, the amount of ambiguity, i.e.

the range effect, and risk, that is the mean effects, do influence the overall attitudes toward

ambiguity.

Based on Andersen et all [4] people formulate some priors on both certain and uncertain

events and subsequently calculate the weighted average subjective expected value, given the

probability of the priors. As the authors stated in their horse race metaphor, "the decision-

maker might have one prior over the performance of horses if it rains and the track is heavy,

and another prior over the performance of the horses if the track is dry".

Sarin and Winkler [16] model ambiguous decision-making situations through a modification

in the utility functions rather than in the decision maker’s probability. Indeed, utilities depend

not only on the received payoff but also on the one that might have been received but was

not. This preference based model is composed by a simple bet B which yields a monetary

payoff of X if the event E does occur, otherwise a payoff Y , where we assume X > Y . The

decision maker expected utility is :

U(B) = pu(x) + (1� p)u(y).

If the decision maker feels ambiguous about p, some new modified utility functions will

appear, which depend on the degree of ambiguity in the event probability:

v[u(x)|u(y)]

and

v[u(y)|u(x)].

The new expectation of the modified utility functions will be:

V (B) = pv(x|y) + (1� p)v(y|x)

The ambiguity concern is related to both the payoffs, and, when they are very close, the

ambiguity about E probability does not really matter. Specifically, as x � y approaches to
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0, v(x|y) approaches to u(x) and v(y|x) to u(y). So the greater the degree of ambiguity, the

higher the effect on v().

Gilboa and Schmeidler [17] propose a new decision making model under uncertainty. Firstly,

they adopt the neobayesian paradigm which leads to a set of multiple priors instead of a

unique one. Following this way of reasoning, the ambiguity adverse decision maker takes

into account the minimal expected utility, over all priors in the set, while evaluating a bet.

Then, he proceeds on maximizing this expected utility. This results in the maximization of

the minimum expected value of the decision maker’s utility.

Herrero and Villar [18] suggest a quantitative assessment on the relative desirability of

some lotteries distribution in term of the likelihood of getting better results. They provide

a consistent application of the willingness to pay principle which is coherent with the first

order stochastic dominance criterion. In particular, if distribution A stochastically dominates

distribution B, then the worth of A, that’s the willingness to pay for it, will be larger than of B.

However, this evaluation procedure does not compute the difference in the magnitude of the

prizes, but only their rankings. For this reason, this assessment may not be exhaustive in case

the size of the prize differences constitutes a relevant part of the evaluation problem. On the

other hand, this suggests an immediate application for monetary lotteries when utilities are

ordinal.

Eliaz and Ortoleva [19] inject in the decision making task different dimensions of uncertainty,

for example in the winning probability, in the prize amount, in the payment date and in all

their subsequent combination. This is called a "multidimensional" uncertainty, a situation

that does influence the willingness to accept uncertainty. Namely, they questioned whether

the presence of uncertainty in some dimensions influences the willingness to accept it in a

specific dimension and whether decision makers are still uncertainty adverse when facing

multidimensional uncertainty. Their findings suggest that in many circumstances decision

makers are more likely to opt for uncertainty options, having more and correlated uncertain

dimensions. Specifically, when they have the possibility to remove all uncertainty, people

opt for the sure option. On the other hand, when uncertainty cannot be removed at all, the

majority prefers the options with perfectly correlated uncertainty on several dimensions with

respect to the ones with a unique uncertainty dimension.
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Eichberger, Oechssler and Schnedler [20] arrive to a similar conclusion. Indeed, they conduct

an experiment to examine the effect of introducing an additional source of ambiguity to the

standard two-color experiment by Ellsberg. Their results showed that fewer subjects opt

for betting on known proportions events, once a second source of ambiguity appears. This

behaviour, which is in line with Eliaz and Ortoleva’s findings, contrasts to the prediction of

numerous decision making theories, such as the maximized expected utility.

Moore and Eckel [21] consider multiple levels of ambiguity, while analyzing the difference

between the gain domain and the loss domain. Greater ambiguity aversion will be exhibited

in the gain domain, if there is ambiguity in the probability of the event and also if there is

ambiguity both in the probability and in the amount of the outcome. In the loss domain

instead, the ambiguity aversion is mainly driven by the size of the ambiguity rather then

by its specific location. This finding is particularly interesting, because it may explain why

consumers are used to pay large insurance premiums, even if the expected loss is relatively

low. In conclusion, they also note that decision makers do have a preference for gambles

framed as investment opportunities, rather than as lotteries.

List et al [22] analyze how ambiguity aversion estimates change as function of the risk aver-

sion assumed. In particularly, estimates of ambiguity aversion are greater when risk neutrality

is assumed than when risk and ambiguity aversion parameters are jointly estimated. Thus,

the methods based on risk neutral individuals, while qualitatively capture their ambiguity

attitudes, do not jointly measure the risk attitude and may fall on the trap of overstating the

true degree of ambiguity aversion.
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2.2 Elicitation Procedures

To ascertain the individuals’ risk attitudes in the experimental laboratory, there are 5 general

elicitation procedures, as described by Harrison and Rutstrom [23].

The first is the Multiple Price List (MPL), where the subject faces an ordered array of binary

lottery choices, to be made all at once. Then the subject has to pick the one that will be played.

The experiment described in Holt and Laury [2] is an example of a MPL. Indeed, there

are two binary lotteries, A and B, and the subject has to choose to play one of them. The

difference between payoffs of the events of the lottery A is small (for example $2 and $1.6)

while the difference between the payoffs of the events of the lottery B is big (for example

$3.85 and $0.1). Namely, the highest difference in between the lotteries is their payoffs’

standard deviation. The lottery A starts with a higher expected value than lottery B, giving in

both cases a high probability to the lower pay-off. When we advance in stages, probabilities

change, and the expected value of both lotteries increase. However, expected value of B do it

faster, being in the final stage higher than the expected value of lottery A.

Figure 2.1 reports a MPL experiment example1.

Figure 2.1: Holt and Laury (2002) lotteries

1Holt and Laury [2]
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Figure 2.2 reports the proportion of safe choices in each decision2.

Figure 2.2: Holt and Laury (2002) safe choices

Every lottery can be represented in this form:

Lk

i
()x = {xH

i
, xL

i
;
k

10
,
10� k

10
}, i = 0, 1; k = 1, ..., 10; xH

i
> xL

i

If the subject is risk lover, he would be prone to choose B even when its expected value

is lower than the expected value of A. On the other hand, if the subject is risk averse, he

would be prone to choose A even when the expected value of A is lower than the B one. The

expected behavior of a risk neutral subject would be to start choosing A and then subsequently

B, according to the amount of the expected value.

However, it could exist a frame that encourages subjects to choose middle rows, win which

case we do not have enough information to see the attitude to risk of the subject. Therefore,

we could solve the problem by adding some parameters in these middle choices to achieve

more information about the risk attitude.

2Holt and Laury [2]
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Figure 2.3 reports the risk aversion classifications based on lottery choices3.

Figure 2.3: Holt and Laury (2002) risk aversion classification

The second elicitation procedure is the series of Random Lottery Pairs (RLP), proposed by

Hey and Orme [3], where the subject faces a sequence of multiple pairs and he has to pick

one in each pair.

Individuals have to choose repeatedly between two lotteries over four fixed monetary prizes.

They are also allowed to state indifference between the two lotteries. In all the lotteries,

the support of each probability distributions is not full, in the sense that all lotteries in the

experiments assign probability zero to at least one monetary outcome. Therefore, there are

at most three prizes with positive probability in each lottery. At the end, one of the pairs is

randomly selected for the payoff, and the preferred lottery of the two is the reward.

Figure 2.4 reports the original Hey and Orme’s user interface for the experimental implemen-

tation of a RLP4 and Figure 2.5 reports the 25 pairs of questions5.

3Holt and Laury [2]
4Hey and Orme [3]
5Hey and Orme [3]
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Figure 2.4: Hey and Orme (1994) user interface

Figure 2.5: Hey and Orme (1994) pairs of questions

The third is the Ordered Lottery Selection (OLS), where the subject selects a lottery from

an ordered set. This method was developed by Binswanger [24]. There is a group of 8

lotteries. The first one is the secure option: with a probability of 1
2 you win $50 and with a

probability of 1
2 you win $50. The second lottery is riskier but with a higher expected value:
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with 1
2 you get $45 and with 1

2 you get $90. This pattern goes on, increasing at the same time

both the expected value and the risk associated to the lottery.The degree of risk aversion can

be estimated depending on the lottery chosen by the subject.

The fourth method is the Becker-DeGroot-Marschak auction where the minimum certain

equivalent selling price to give up the endowed lottery is stated by the subject. Namely, it is an

auction procedure where a number of lotteries are offered to the subject and for each of them

he has to choose a ”selling price”. Then a ”buying price” is given randomly. If the selling

price is lower than the buying price, the subject will earn the difference. Depending on the

price picked by the subject, his degree of certainty can be inferred. Anyway, this procedure

can bring some errors if not well defined and performed.

Finally, the last one is the Trade-off design, where the lotteries’ prizes are real-time endoge-

nously defined by the subject’s prior responses and certain equivalent elicited. It was first

proposed by Wakker and Deneffe [25].

In this method we have four prizes: x0, x1, r and R. R is higher than r, and x0 is a fixed low

prize, for example $0. Then, there are the two probabilities p and 1 � p. In this case we

have two lotteries in the first stage: {x1, p; r, 1� p} and {x0, p;R, 1� p}. The subject has to

choose the x1 that makes herself indifferent between the two lotteries. In the second stage the

two lotteries are: {x2, p; r, 1� p} and {x1, p;R, 1� p}. Again, the subject has to choose the

x2 that makes him indifferent between the two lotteries. The experiment continues for more

stages with this same procedure. The difference between the utility of x2 and x1 has to be the

same as the one between x1 and x0. The utility of a prize equal to zero is zero, so the utility

of x2 is two times the utility of x1, the utility of x3 is three times the utility of x1 and so on

and so forth for the rest of xn. The common problem of this elicitation is the overestimation

tendency of the x1. Furthermore, this first stage error might propagate in all the following

ones, as all the subsequent lotteries depend on the x first established by the subject.

To conclude, a wide discussion regarding a theoretical model able to capture the ambiguity

preferences is still open.
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CHAPTER 3

Experimental Design

As stated earlier, the economic discussion among decision theorists has been often confined

to a very specific kind of uncertainty, that is, uncertainty over probabilities, i.e. subjects know

the outcomes but not the probabilities associated with them.

In contrast to the previous literature, the novelty of this work is that the uncertainty lies on the

outcomes, namely on the payoffs, and not on their distributions.

The experimental layout of Albarrán et al [1] consists of two Phases, which are described in

Section 3.1. Both of them are built around binary choices having the probability distributions

over 4 monetary prizes according to the rule 0 < Y < X < 15.

The treatment conditions, as clarified in Section 3.2, differentiate each other on the amount of

information given to the subjects over the actual values of the intermediate payoffs, namely

X and Y , which are randomized between-subjects. In all sessions, the amount X and Y are

i.i.d. integers 2 [1, 14], drawn from a uniform distribution without replacement.

Furthermore, a strict bayesian interpretation may deal with this form of ambiguity as un-

certainty on the probabilities and not on the outcome. Indeed, individuals can figure out

some prior distributions of X and Y , and calculate their expected utility. In conclusion, the

ambiguity conditions characterizing this work may be traced back to the ones traditionally

embraced in economic literature, where uncertainty lies only on the prizes probabilities.
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3.1 Sessions

The data were collected during an experiment run place at University of Alicante "Laboratory

of Theoretical and Experimental Economics". The sessions conducted were 6, with 24 students

per session, so for a total of 144 subjects that were recruited among the undergraduate students

via the Orsee platform [26].

During all the phases, each subject was working in front of an individual screen with a user

interface. Before the start of the experiment, the subjects were provided with a printed copy

of the instructions, which were also read aloud by the experimenter in all sessions. The

experimenters answered any questions raised by the subjects by using only the information

provided in the instructions. A debriefing questionnaire was submitted at the end of the

experiment, to provide us with data regarding social attitudes and individual characteristics.

At the end of each session the subjects were compensated with real money. A random round

was selected at the end of each of the 3 phases, and individuals were paid in cash according to

their winnings in the 3 randomly selected rounds. The payment procedure just mentioned was

described in the experiment instructions, and can be found in the Appendix A.

3.2 Treatments

In this multi-stage experiment the between subjects level of information over the lotteries mon-

etary prizes is manipulated through three different treatments. In the FULL INFO treatment

(TR2), prizes are precisely communicated to the subjects throughout the entire experiment; in

the PARTIAL INFO treatment (TR1), the actual prizes are not communicated, but individuals

know that X > Y are drawn from a uniform distribution; in the NO INFO treatment (TR0)

neither the x and y values nor the statistical process generating them are revealed to the

subjects, they only know the values are i.i.d. 2 [1, 14] and that X > Y .

In Figure 3.1 the sessions and treatments are displayed.

36



Figure 3.1: Sessions and treatments

3.3 Phases

Phase 1 is a multiple price list certain equivalence elicitation [2] composed of 50 rounds.

Subjects are asked about their certain equivalence for each of the 50 lotteries, as shown in

Figure 2.5. The standard multiple price list format is then played, namely the subjects are

asked to choose between a fixed amount 2 [0, 15] and the lottery in question, as we can see

from the Figure 3.1, from Albarrán et al [1].

Figure 3.2: Phase 1 User Interface, Certain Equivalence
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Phase 2 is a random lottery pair elicitation protocol [3], where subjects, throughout the

25 rounds, are asked to make a binary choice of the same lotteries of Phase 1, which are

randomly ordered between subject. The 25 probability distributions pairs are the same as

in Hey and Orme’s [3], and randomized over these four combinations of fixed amounts

(0, y, x), (0, y, 15), (0, x, 15),

(y, x, 15).

The uses interface, in fig 3.3, displays the 2 lotteries. Each color represents a prize probability

and it remains the same during all rounds. Subjects are asked to select their preferred lottery

using the corresponding button. Individuals can also express indifference, so no strict lottery

preference is required, following Hey and Orme layout. In Figure 3.1 the user interface of

Phase 2 is shown, from Albarrán et al. [1]

Figure 3.3: Phase 2 User Interface, Random Lottery Pair
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3.4 Debriefing Questionnaire

At the end of the experiment, a debriefing questionnaire was given to the subjects. It contained

socio-demographics questions, such as on gender, parents’ education and wealth, personal

education and the field of degree chosen. There were also some additional questions regarding

abilities of the subjects, such as the GPA or the Cognitive Reflection Test [27]. Finally, there

were questions on the subjects’ personality, calculated using a reduced version of the Big Five

test [28].
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CHAPTER 4

Structural Modelling Under

Heterogeneity

4.1 Maximum Likelihood Estimation

Customized likelihood functions corresponding to specific models of decision making under

risk and uncertainty are more and more popular among economists dealing with a wide

range of fields, as suggested by Harrison [29]. This demand for customization is due to the

numerous parametric functional forms experimental economists use to account for behaviour

under risk and uncertainty. These functions also permit to represents "handwritten" models,

used to explain decision rules, which may be different from the traditional ones. In behavioural

econometrics it’s becoming even more common to see user-written maximum likelihood

estimations rather than pre-packaged model specifications.

Specifically, what a maximum likelihood estimation does is, conditional on the structural

model under scrutiny, to select the value of the estimator which maximizes the probability

of observing the collected data, i.e. the probability density function. It is given by a model

such as P (y|✓), where ✓ represents the set of unknown parameters we want to estimate and

Y the vector containing the observed decisions. The maximum likelihood estimator, ✓⇤,

maximizes the the likelihood function P (y|✓) with respect to ✓; this means that we maximize
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the probability of observing the data we actually observed as function of the parameters of

the model.

With a big sample size the likelihood function, being the product of the probability density

functions of all the subjects’ outcomes, is close to 0. For this reason, locating its maximum

may be difficult. The logarithmic function is usually employed to solve this problem in order

to stretch the function vertically and making it easier to locate its maximum. Furthermore, the

logarithmic transformation is strictly monotone, preserving the same local maxima.

In our specific model, so under the Expected Utility Model, the probabilities of each outcome

k, namely pk, are the ones induced by the experimenter.1 This means that the expected utility

is calculated as the sum of utilities of monetary prizes, each of which is multiplied by the

corresponding probability.

Being i the subject, k 2 {0, 1} the index of the lottery equal to 0 for the right one and 1 for

the left one, and h 2 {1, 2, 3, 4} the index of the prizes:

Ui(Lk) =
P

H

h=1 u(�i) phh (4.1)

where ui : R ! R, Lk = {�; pk}, � 2 {0, y, x, 1}.

In this chapter we use the mean-variance utility function (4.2), given its simplicity and

intuitiveness in calculations. The mean-variance (MV) utility function applied to a lottery i is

as follow:

Ui(Lk) = E[Lk]� �iV ar[Lk] (4.2)

The utility of each individual is a function of the expected value of the lottery µk, and of its

variance, V ar[Lk].

It can be shown that MV utility is equivalent to a VNM utility function (4.1) with a quadratic

utility function u(x) = x � �x2, where � is the only unknown parameter to be estimated.

It represents the level of risk aversion. Indeed, the variance V ar[Lk] is used as a proxy of

the risk of the lottery. An individual is considered to be risk-averse if � has a positive value,

namely if, ceteris paribus, a higher value of the lottery variance decreases his utility. By the
1All maximum likelihood routines have been programmed and run with STATA v. 14, by STATA Corporation.

The interested reader can find all codes being used in Appendix B.
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same token, a negative � value is associated with a risk-seeking decision maker, hence � = 0

indicates risk neutrality.

In this section we shall estimate � using data from the full information treatment, TR2, where

there is no ambiguity and subjects know the true value of both X and Y . In Phase 1, subjects

make 16 choices per period. According to the usual Holt and Laury framework, the threshold

value of �, such that the the decision maker switches to the certain amount rather then the

risky lottery, is extracted. According to Moffatt [30], only this piece of information should

be extracted from each individual facing the Holt and Laury lottery. Indeed, he states the list

of people choices cannot be analyzed as an independent sequence. However, this does not

seem to be the case for our data, as we can see from Figure 4.1 from Rodriguez and Ponti

[31], where subjects choices are shown as a function of the periods (i.e., the individual choice

between the lottery and a specific monetary prize ranging from 0 to 15).

Figure 4.1: Phase 1 Switching Point Graph
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Here the highlighted subjects, subject 1 and 2, are a perfect example of a rational behavior,

as indicated by the presence of a single switching point. Looking at subject 4 or 6 instead, a

clearly irrational behavioral pattern emerges, with the presence of several switching points.

Furthermore, these two cases are not unique. This demonstrates that we may not rely on

a single switching point information per subject. Indeed, the emergent absence of a clear

path individuals follow throughout the whole Phase suggests that we may also treat people’s

decisions as independent.

For Phase 2 we directly take the 25 decisions subjects make between the two lotteries.

For the lotteries of Phase 1 and Phase 2, the expected value is computed as:

E[Lk] =
HX

h=1

ph
k
⇥ �h

where ⇡h is the prize the subjects will receive with probability pk.

The variance, as the expectation of the squared deviation of the prize random variable from

its mean, is computed as:

�2
Li

=
HX

h=1

ph
k
⇥ (�h � E[Lk])

2.

Then, using these values, for every left and right lottery we compute their utility function and

the difference of these utility values:

Ui(Lk) = E[Lk]� �i�
2
Lk
, k = 0, 1.

This difference will prescribe the optimal behavior, namely the lottery to be chosen according

to the utility maximization principle.

In Phase 1, the left lottery L0 is actually a certain prize. This means that for all the left lotteries

we have �2
0 = 0 and E[L0] = to the actual number displayed. Namely, the � never appears in

the left lotteries of Phase 1.

Subsequently, we proceed with the calculation of the difference of the expected utility, as

follows:

�U = U(L1)� U(L0) = (E[L1]� ��2
L1
)� (E[L0]� ��2

L0
) = [...]
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This latent index, based on latent preferences, is then brought back to the observed choices

using a standard cumulative normal distribution function �(�E[U ]). This probit function has

a domain in [�1,+1] and has a codomain in [0, 1] as shown in Figure 4.22.

Figure 4.2: Normal c.d.f. Function

4.2 Dealing with Heterogeneity

Here we introduce the distinction between the various and competing approaches to stochastic

modelling, in which the choices made by individuals express their heterogeneity.

The Random Preference Model (Loomes and Sugden [32]) explains heterogenity in decisions

as heterogeneity in the structural component (�, in our case). This is an example of an

heterogeneous agent approach, which attributes a variation in behavior of the population to

variation in the parameter representing preferences.

The Fechner Model (Fechner [33]), in which the stochastic component in the decision making

process is done applying an additive idiosyncratic error ✏ ⇠ N(0, �2
✏
).

The Tremble Approach (Loomes et al. [34]) assumes that there is a small positive probability
2http://data.princeton.edu

45



that the individual, at any point in time, loses concentration and adopt any possible behavior

randomly with probability !.

The Random Effect Model, whereby the unobserved heterogeneity is expected to be explained

by a random effect parameter, ⌘i, which captures the between subject differences, and its

variance, �2
⌘
, is a measure of subject heterogeneity.

Random Preference Model

In this model, the structural parameter � ⇠ N(µ�, �2
�
) accounts for all the heterogeneity in

the model.

For the maximum likelihood routine to work, we need to create some local variables, which

are temporarily used only inside the program.

The parameters we want to estimate are µ� and ��, which describe the distribution of

� ⇠ N(µ�, �2
�
). This means that we maximize the log likelihood function with respect to µ�

and �� , where:

- µ� is estimated through the choices made by subjects, the experimental data represents then

the basis to construct likelihood functions, such that the selected optimal value of is directly

dependent on the subjects’ binary decisions between the two lotteries.

- �� is imposed to be strictly positive, given that it is the standard deviation of �, using the

strictly monotone exponential transformation, and is estimated as a constant.

Equating the expected utilities and solving for � we get:

� =
E[L1]� E[L0]

�2
L1

� �2
L0

This general formula holds for both Phase 1 and Phase 2. Furthermore, for Phase 1, it can be

simplified, given the left lottery is always a fixed price, �, and E[L0] = � and �2
L0

= 0.

Specifically, �i = �i�1
15 , with �i being the prize of decision i, is scaled back by 1 position and

then normalized in [0, 1] dividing by 15.

�Phase1 =
E[L1]� �

�2
L1

.

Therefore, we are left with this two values for �:

�Phase1 =
E[L1]� �

�2
L1
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and

�Phase2 =
E[L1]� E[L0]

�2
L1

� �2
L0

The probability that the right lottery is chosen, conditional on the average risk aversion

coefficient, namely the mean of �, µ� , is equal to the probability that �U is positive:

P (k = 1| µ�) = P (�U > 0 | µ�) = P (U(L1) > U(L0) | µ�)

= P (�E[Lk]� ��E[�k] > 0 | µ�) = P (� <
�E[Lk]

�E[�k]
| µ�).

Calling �⇤ = ��µ�

��
, we use the normal transformation and we get:

Pi,t(� <
�E[Lk,t]

�E[�k,t]
| µ�) = P (

� � µ�

��
<

�E[Lk,t]
�E[�k,t]

� µ�

��
| µ�) = P (� < �⇤ | µ�) = �(�⇤

i,t
)

where � is the standard normal c.d.f.

In conclusion, the likelihood function of observing the right lottery chosen, given µ� , is:

L =
X

i,t

ln(Pi,t(� <
�E[Lk,t]

�E[�k,t]
| µ�))

An important property of the c.d.f. of both the probit and the logit model is symmetry.

By this,

�(��⇤) = 1� �(�⇤)

Following the same way of reasoning, the symmetric probability that the right lottery is

chosen, is just:

P (k = 0| µ�) = P (�U < 0 | µ�) = P (U(L1) < U(L0) | µ�) = P (�E[Lk]� ��E[�k] < 0 | µ�)

= P (� >
�E[Lk]

�E[�k]
| µ�)

Calling �⇤ = ��µ�

��
, we use the normal transformation and we get:

Pi,t(
� � µ�

��
>

�E[Lk,t]
�E[�k,t]

� µ�

��
| µ�) = Pi,t(� > �⇤ | µ�) = �(��⇤)

In conclusion, the likelihood function of observing the left lottery chosen, given µ� , is:

L =
X

i,t

ln(1� Pi,t(� <
�E[Lk,t]

�E[�k,t]
| µ�))
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Fechner Model

As hinted above, the Fechner Model introduces a stochastic component to take into account

subjects’ heterogeneity in the decision making process. This is included by adding an

idiosyncratic error to �U , that is ✏ ⇠ N(0, �2
✏
). Then, rather than to parameters, attention is

here posed to payoffs differences.

As soon as this error terms appears, the behavior is no longer deterministic and it is described

in term of probabilities as follows:

P (k = 1) = P (U(L1) + ⇠1 > U(L0) + ⇠0) = P (�U + ✏ > 0) = P (✏ > ��U)

= P (
✏

�✏
>

��U

�✏
) = �(

�U

�✏
)

where ✏ is the difference between the two lotteries’ errors in valuation ⇠1 and ⇠0, � is the

standard normal c.d.f. and �✏ represents the noisiness of the choice. This means �✏ = 0

fully explains a deterministic choice, while if �✏ ! 1, the choice is entirely driven by noise,

namely both right and left lotteries are chosen with 0.5 probability.

The parameter we want to estimate is �✏, namely we maximize the log likelihood function

with respect to it. It is imposed to be strictly positive, being a standard deviation, trough the

usual strictly monotone exponential transformation.

Again, the U(Li) and the �U are used as temporary variables.

Table 4.1 reports an application of the Fechner model using the Mean Variance utility function.

Only TR2 data are used here, so � estimated is a proxy of individuals’ aversion to risk (as

represented by the variance).

48



Table 4.1: Fechner Model with Mean Variance Utility Function

Tremble Parameter

According to the Random Preference model just described above, if the lottery Li first-order

stochastically dominates lottery Lk, the first one will always be chosen, no matter the risk

attitudes of subjects. Indeed, any observed choice of a dominated lottery cannot be explained

by the RP model.

For this reason the tremble parameter ! is introduced, and it represents the probability a

subject loses concentration at any task and randomly chooses, with equal probability, between

the two alternative lotteries. This does not necessarily imply he makes the incorrect choice, as

under such a condition the correct and incorrect choices are equally likely.

This is not a model per se, rather it’s an extension to be applied either to the Random

Preference model or to the Fechner model.

In the RP model the

P (k = 1)(1� !)�(
�⇤ � µ�

��
) +

!

2

In Fechner,

P (k = 1) = (1� !)�(
�U

 
) +

!

2

This means that with (1� !) probability the correct choice prescribed by the model is done,

and with (!) probability the random choice equal to 1
2 is made.
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The Random Effect Model

In this model, the unobserved heterogeneity is explained by a random effect parameter, ⌘i,

which is perpendicular to the other covariates. Specifically, ⌘i captures the between-subject

differences, and its variance, �2
⌘
, is a measure of subject heterogeneity. The probability of

observing the right lottery chosen by subject i in period ⌧ is now:

P (k = 1) = f(�i,⌧ �) + ⌘i + ✏i⌧

where ⌘i ⇠ (0, �2
⌘
) is the individual error, or heterogeneity, and ✏i⌧ ⇠ N(0, 1) is the idiosyn-

cratic error. While ✏i⌧ varies across subjects and periods, ⌘i has a unique value for every

individual.

In our model, this probability can be explained as:

P (k = 1) = ↵E[�µi,⌧ ] + �E[��2
i,⌧
] + ⌘i + ✏i, ⌧

where

E[�µi,⌧ ] = E[L1]� E[L0]

and

E[��2
i,⌧
] = �2

L1
� �2

L0
.

If the ↵ = 1 constraint is imposed, we obtain the usual mean-variance utility function, where

a negative value for � is expected.

Only the data from TR2 individual is used, since we want to extract the risk aversion coeffi-

cient, while leaving aside any form of ambiguity which might arise from the missing payoffs’

information of the TR1 and TR0.

We implement both probit and logit regressions, with the xtprobit and xtlogit functions,

namely declairing our data structure to be a longitudinal panel. The Fechner approach is

implemented by default when using these functions in Stata.

The results are shown in table 4.2.

The results of the probit and the logit are closely comparable. As expected, � is negative,

and statistically significant at the 99% confidence level. Namely, the probability of choosing

the right lottery is a negative function of the difference between the right and the left lottery
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variance.

Also the standard deviation of the random effect coefficient is statistically significant at the

99% confidence level, and it gives us information about the subjects heterogeneity. Specif-

ically, the random effect coefficient ⌘i ⇠ (0, 0.238) according to the probit model, and

⌘i ⇠ (0, 0.363) according to the logit.

Table 4.2: Random Effect Probit and Logit Models
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CHAPTER 5

Dealing with Ambiguity

5.1 Introduction

In conditions of uncertain outcomes, the Savage approach [7] has been traditionally used. In

particular, individuals have been assumed to behave according to a unique subjective prior

belief over all states of the world, and, given this, they would maximize their expected utility.

This decision process clearly neglects the existence of any form of ambiguity, and it prescribes

the way decision makers should deal with uncertain situations.

However, Ellsberg [8] claims that most individuals treat ambiguity differently than objective

risk. In specific, he argues that people exhibit a significant degree of ambiguity aversion,

placing a premium on outcomes for which probabilities are known. This general stylized

fact has been replicated broadly and has important implications for the economics of optimal

contracting, investment choices, and mechanism design.

One possible way to structurally identify ambiguity aversion is to assume that the latter influ-

ences people’s degree of risk aversion (more precisely, the curvature of the utility function),

an approach followed, among others, by Klibanoff et al. [11] and Andersen et al. [4].

As described in Chapter 3, in the experiment of Albarrán et al [1], prizes in the lotteries

are distributed according to the rule 0 < y < x < 15. In what follows, this prize domain

is normalized, for the sake of simplicity, to lay within the unit interval [ 0, 1 ], where $0 is
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0 and $15 is 1. The treatment conditions -randomized between subjects- regard the amount

of information given to them about X and Y . Furthermore, while in the full information

treatment, TR2, people face a normal risky situation and there is no ambiguity influencing

their decision, this is not the case for the partial information and no information treatments

TR1 and TR0, respectively. As we shall see, some ambiguity preference appears from subjects’

choices which is higher the less information is received.

5.2 Econometric strategy

In what follows we shall layout the identification assumptions underlying our structural estima-

tions. Specifically, we need to define our identification strategy with respect to i) subjects’ risk

attitudes and how the uncertain payoffs, X and Y , enter in subjects’ calculations together with

ii) the behavioral model underlying subjects’ optimization program. Regarding the former, as

it will be explained in Section 5.2.1, we shall impose that subjects maximize a VNM CRRA

utility function in all treatments and that, consistently with the TR1 experimental instructions,

Y and X are calculated as first and second order statistics of a uniform distribution defined

over the unit interval. Regarding the latter, that is explained in Section 5.2.2, we shall consider

two alternative behavioral models, defined as naive and sophisticated. In the former, subjects

are assumed to estimate first the uncertain payoffs and then use these expected payoffs in the

expected maximization program; in the latter -consistently with a genuine bayesian approach-

the order of integration is reversed.

5.2.1 Uncertain Payoffs and Risk Aversion

We read the experimental evidence by the way of some structural estimation exercises in

which we elicit the individuals’ degree of risk aversion within the frame of a standard constant

relative risk aversion (CRRA) utility function, which generally performs better in more

complex structural estimations.

The utility function is given below:
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u(�) =

8
><

>:

�
1�⇢

1�⇢
if ⇢ 6= 1

ln(�) if ⇢ = 1
(5.1)

where ⇢ is the (CRRA) coefficient which does not depend on �, as formalized by Pratt [35].

As for its economic interpretation, ⇢ > 0 represents risk aversion, ⇢ = 0 risk neutrality and

⇢ < 0 risk loving.

In Figure 5.11, examples of u(�) are presented for different values of ⇢: concave in case of

risk aversion (left) and convex in case of risk loving (right).

Figure 5.1: Risk Aversion Coefficient for both the Naive and Bayesian approaches

In Section 5.3.1 we check whether the change of information implemented by our treatments

conditions generates a change in behavior and, in turn, (whether and) how this change is

converted into a significant change in the measured (CRRA) attitude toward risk.

The uncertain payoffs Y and X are identified as the first and the second order statistics from

a uniform distribution in [ 0, 1 ], where the order statistics of a random sample �1, ...,�n are
1Machina [36]
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defined as the sample values placed in ascending order.

Specifically, let fk(n, z) denote the kth order statistics of n draws, where n = 2 in our case,

of a density function f(·). Let

X ⇠ f2(2, z), Y ⇠ f1(2, z)

where

f2(2, z) = 2 z f(z) F (z), f1(2, z) = 2 z f(z) (1� F (z))

come from the general formula for the the kth order statistics of n draws

n

✓
n� 1

k � 1

◆
f(z) (F (z))n�1(1� F (z))n�k

being z a random draw from a uniform distribution and being

f(z) = 1 is the p.d.f. of z, F (z) = z is the c.d.f of z.

While this is certainly true for TR1 subjects -since they know the characteristics of the

random generation process that yields the uncertain payoffs- we impose the same statistical

model for subjects in TR0, assuming they had this information. As we said, this is purely

an identification assumption, as there is no possibility to test whether this is the true for

expectations in TR0 about X and Y distribution, or whether subjects in TR0 consider a

different type of distribution. On the other hand, it is highly probable that TR0 subjects

will heuristically and automatically assume such a distribution of the payoffs, as it occurs in

Laplace’s well known “principle of insufficient reason”. In any case, what is important here is

that -thanks to this assumption- our structural model is able to estimate treatment effects, to

such an extent that we are able test a null hypothesis in which CRRA in both TR0 and TR1 is

the same. Since subjects have been randomized within treatments, a significant change in the

CRRA coefficient between TR0 and TR1 has to be interpreted as a genuine treatment effect

due to a change in information.

In the maximum likelihood function routine, ⇢ is analyzed through the individual choices

subjects make, which are expressed in function of the treatments, to identify how a different

level of information influences people’s risk attitude.

Phase 1 observations are treated as a series of individual and independent choices between a
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certain outcome and a risky lottery, whose expected value is computed and compared to the

sure prize.

Instead, phase 2 data are used as a sequence of binary choices between lotteries. TR2 players

know the true X and Y , so their ⇢ derived from a situation with no ambiguity. On the other

hand, TR0 and TR1 players compute the lotteries expected values and variances, as function

of the X and Y they figure out, and then the Ui and the �U .

A logit function is used to solve the usual binary choice model, explaining the P (k = 1) =

P (�U > 0) which is :

P (k = 1) =
e�U

1 + e�U
if L1 is chosen

P (k = 1) =
e��U

1 + e��U
if L0 is chosen.

The Fechner model is used, where people heterogeneity is expressed as function of a random

error in the CRRA utility computation, i.e. ✏ ⇠ N(0, �2). In the whole of estimates we cluster

all the observations made by the decisions of the same individual.

5.2.2 Identification of the Behavioral Model

Regarding the behavioral content of the structural model for the uncertain payoffs, we consider

two alternative specifications, labelled as “naive” and “sophisticated”, respectively. A naive

decision maker figures out a point estimation of the unknown payoffs X and Y , starting with

the information that they are draws from a uniform distribution in [ 0, 1 ]. This means that

the E[X] and the E[Y ] are computed first and then plugged into the CRRA expected utility

function to be maximized. Specifically:

E[ X ] =

Z 1

0

f2(2, z) dz =
2

3

E[ Y ] =

Z 1

0

f1(2, z) dz =
1

3

where fk is the k-th order statistics of a uniform distribution in [ 0, 1 ].

Finally, the utility of a lottery k is:

U(Lk) = u(E[ Y ]) pk
y
+ u(E[ X ]) pk

x
+ pk1
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given that the first price is 0, so u(0) = 0, and the last price is 1, so u(1) = 1.

A "sophisticated" decision maker, instead, will proceed based on a true bayesian updating,

forming a prior distribution over the X and the Y , and then calculate the expected utility from

these densities. Specifically:

U(X) =

Z 1

0

u(z)f2(2, z) dz;

U(Y ) =

Z 1

0

u(z)f1(2, z) dz,

where f1(·) and f2(·) are the first and second order statistics of a uniform distribution in

[ 0, 1 ].

Finally, the utility of Lk, U(Lk) equals to

U(Lk) = U(X) pk
x
+ U(Y ) pk

y
+ pk1

given the first price is 0, so u(0) = 0 and the last price is 1, so u(1) = 1.

In conclusion, the two models differ due to the order of integration.

5.3 Results

The "atom" of our analysis is the decision made by subjects and our research question is

how their ⇢ varies as function of the amount of information they receive, depending on their

treatments, and how this process differs in the two distinct approaches, the naive and the

bayesian one. We also query whether one model is more used than the other.

5.3.1 Treatment effects

Figure 5.2 reports the result of the structural estimation of the ⇢ as function of the different

treatments, for both the two approaches.

Our empirical evidence shows a certain degree of love for ambiguity, as the less information

given to the subjects, the lower their risk aversion, and, consequently, the bigger their attraction

toward risk and uncertainty. Moreover, the risk aversion coefficient estimated for TR0 is

significantly lower than that estimated in TR2, although there is no statistically significant
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difference between estimated CRRA coefficients in TR0 and TR1. These findings are -

somewhat- in contradiction with the common wisdom of the literature, although they are

consistent with other experimental literature that applies similar elicitation techniques as ours,

such as Andersen et al [4].

When comparing our two behavioral models, as shown in Table 5.1, the estimated likelihood

of the naive approach is higher than that of the bayesian. This suggests that, based on our

data, the naive approach approximates better subjects’ decision rules.

Afterwards, we would like to identify the percentage of the subjects using each of the two

models, i.e. the probability of them behaving either in a naive or a bayesian way.

Table 5.1: Risk Aversion Coefficient for both the Naive and Bayesian approaches
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5.3.2 Naive or Sophisticated?

Up to now, we identified two different approaches individuals may follow to make their

choices. The following step is to implement a mixture model to identify the probability of

each observation being compatible with either model.

We use a binary mixture model, since a finite number of types, the naive and the bayesian, are

assumed.2

The main advantage of this approach that the assumption of different subjects operating

according to a single model is avoided. The behavior of a typical subject is often traced back

to the average behavior, but it is quite possible this is not an accurate representation of every

subject under study.

A possible answer to this issue could be the Average Treatment Effect, ATE, where a specific

treatment effect is recognized to each individual. All subjects specific treatment effects

are then assumed to vary randomly around an average, the ATE, i.e. the parameter being

estimated.

If the distribution is bell-shaped and symmetric, the ATE will provide a sensible measure of

the affect of the treatment. In other words, the ATE measure is relevant when the treatment

has universal applicability so that it is reasonable to consider the hypothetical gain from

treatment to a randomly selected member of the population.

However, this is not always the case, and this ATE can end up being far away form the actual

treatment effect of any single subject.

The approach adopted by a finite mixture model is presented below. A total number of types

in the population is decided, and a specific behavioral model is assigned to each of them.

The parameters of these various models are estimated altogether, along with the mixing

proportions.

In particular, we generate the probability ⇡BAY , namely the probability of our subjects acting

as bayesian in each of their decisions.

We tried to estimate the ⇢NAI and ⇢BAY , i.e. the risk aversion coefficients for both the

approaches, and ⇡BAY altogheter, but the likelihood function did not converge. Indeed,

2In case of an "infinite" mixture model, a continuous variation in some parameters indexing individual type
is assumed, as happens for random coefficient models or random effect models
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the likelihood functions of our models are very close. For this reason, we estimated this

probability numerically, using a grid loop.

Subsequently we let ⇡BAY moving inside a grid (0, 1), to finally choose the value that

maximizes the likelihood function.

A possible drawback of this numerical procedure is the fact that the ⇡BAY standard error

cannot be estimated, as it is shown in Figure 5.3. On the other hand, we can justify this

statement by saying that our likelihood function is not function of it, given that it is just a

product of probability.

This numerical computation demonstrates that our subjects have a strong tendency to behave

as naive, given the estimation result of ⇡BAY = 0.2.

Figure 5.2: Mixture Model with ⇡BAY = 0.2
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CHAPTER 6

Conclusions

The thesis aims to explore how subjects approach ambiguous decision making when uncer-

tainty is on a different level than the one usually investigated. In fact, although most decision

problems in daily life involve different dimensions of uncertainty, the majority of models

discussed in the economic literature deal with a specific form of uncertainty, the one on

probability of the payoffs. In this investigation, uncertainty lies on the prizes of the lotteries

people have to choose, rather than on their probabilities.

We explore the question of whether there is some systematic different behavior that people

exhibit while dealing with ambiguity. Specifically, we investigate how a change in the infor-

mation given to decision makers influences their risk aversion and, in order to find an answer

to this question, we analyze the effects of some between subjects treatment.

Our results suggest that increasing the amount of ambiguity, people modify their predisposi-

tion toward it, showing some degree of love in favour of it. Namely, the lower the information

given, the lower their risk aversion.

When the decision problem is faced under uncertainty, two different specifications are pre-

sented, the naive and the bayesian. Indeed, according to the former, a pointwise estimation of

the uncertain parameters is plugged inside the utility function. On the other hand, according

to a more sophisticated paradigm, the bayesian, the prior distributions of these unknown

parameters are used in order to compute the expected utility function, for each of them.

A mixture model demonstrates a strong majority of people, almost 80%, adopting the naive

approach.
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In this thesis, we measured the treatment effects in the variation of ⇢ parameter in two models,

namely ⇢NAI and ⇢BAY . Albarrán et al [1] adopt a different indentification strategy, where

the ⇢ is extracted from the TR2 subjects and the treatment effects are measured as the X and

Y estimations. Although ours is a different approach, the results are more than compatible,

that further confirm our main findings.

It is my intention, in the future, to apply more complex models of decision making under

uncertainty to these data, like the models suggested by Klibanoff et al. [11]. This project,

which constitutes the core of the future research advisable in this thesis, shall also incorporate

the possibility to extend uncertainty to more and different levels, like already been done in

Eliaz et al. [19]. Furthermore, we wonder whether individuals have a higher predisposition

toward the bayesian approach while facing multiple levels of ambiguity.

This thesis, therefore, can be considered not only as a partial and exploratory analysis, but

also as a good starting point for numerous and extended future investigations.
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APPENDIX A

Experiment Instructions

Here there are the instructions of the three treatments, respectively the Information treatment

TR2, the Partial Information treatment TR1 and the No Information treatment TR0.

The text is written in Spanish, given the experiment was conducted at University of Alicante

"Laboratory of Theoretical and Experimental Economics".
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 1 

¡BIENVENIDO AL EXPERIMENTO! 
 
 
 

• Este es un experimento para estudiar el comportamiento individual al tomar decisiones. Sólo estamos interesados en 
lo que hacen los individuos en media. 

• No pienses que se espera ningún comportamiento particular de ti. Sin embargo, ten en cuenta que tu actuación a lo 
largo del experimento influirá en la cantidad de dinero que puedes ganar. 

• A continuación encontrarás una serie de instrucciones explicando cómo funciona el experimento y cómo usar el 
ordenador a lo largo del mismo. 

• Por favor, es importante que no hables ni molestes a los otros participantes durante el experimento. Si necesitas 
ayuda, levanta la mano y espera en silencio. Serás atendido lo antes posible. 

 

 
 

EL EXPERIMENTO 
 
 
 

 
• El experimento consta de 81 rondas divididas en tres FASES.  

• La cantidad de dinero recibida durante el experimento se determinará al concluir las 2 fases del mismo. 



 

 2 

 

FASE 1 
 

 
 

• En cada una de las 25 rondas de la FASE 1 te presentaremos una pareja de loterías entre las cuales tendrás que elegir 
tu preferida. Si estás indiferente entre las dos loterías, puedes señalarlo pinchando el botón “INDIFERENTE”. Al 
final del experimento el servidor determinará de forma aleatoria una de las 25 rondas, y se te pagará la cantidad de 
dinero que resulta de la lotería que has escogido. Si has elegido la opción “INDIFERENTE”, el ordenador sacará al 
azar una de las dos loterías y se te pagará la cantidad de dinero de la lotería escogida al azar por el ordenador.  

• En cada ronda, en tu pantalla aparecerán las dos loterías entre las cuales tienes que escoger. 
 

 
• En la figura que aparece sobre estas líneas tenemos un ejemplo de elección entre loterías. Si eliges la OPCIÓN A, 

puedes ganar € 0 con una probabilidad del 62.5% o € 14 con una probabilidad del 62.5%. Si, por el contrario, eliges 
la lotería de la DERECHA, puedes ganar € 0 con una probabilidad del 37.5 % y €4 con una probabilidad del 62.5%. 

• En cada ronda, simplemente tendrás que elegir tu lotería preferida pinchando con el ratón en el botón 
correspondiente. Si estás indiferente entre las dos loterías, puedes señalarlo pinchando el botón “INDIFERENTE”. 

• Es importante que juegues cada una de las 25 rondas de elección entre loterías como si fuera la que se va a jugar de 
verdad. Esto es debido a que al final del experimento, el ordenador escogerá una de las 25 rondas de manera 
aleatoria y jugará la lotería escogida por ti (o por el mismo ordenador, en el caso de indiferencia). La cantidad de 
dinero seleccionada se corresponderá a tu pago monetario asociado a la FASE 2.   

• En resumen, la cantidad de dinero que recibirás para la FASE 2 dependerá de la ronda escogida aleatoriamente por 
el ordenador y del resultado de la lotería escogida por ti (o por el ordenador, en caso de indiferencia) en dicha ronda. 

 



 

 3 

FASE 2 
 

 
• En las 50 rondas de la FASE 2 participarás en un juego parecido al anterior pero con algunas variaciones. 

• Así como en la FASE 1, también en la FASE 2 tendrás que elegir entre loterías sobre cuatro cantidades de 
dinero.  

• La única diferencia con la FASE 1 es que, en la FASE 2, la OPCIÓN A es una determinada cantidad de 
dinero, que crece de 0€ a 15€ en cada una de las decisiones que tienes que tomar en cada ronda de la FASE 
2. 

• En cada ronda, en tu pantalla aparecerán las 16 cantidades de dinero (OPCIÓN A), y una lotería (OPCIÓN 
B), que tendrá exactamente el mismo formato de las loterías de la FASE 1. 

 

 
 

• Cada ronda de la FASE 1 consta de 16 decisiones independientes, que se corresponden a cada fila.  

• En la figura que aparece sobre estas líneas tenemos un ejemplo. La OPCIÓN A se corresponde una 
determinada cantidad de dinero, que crece de 0€ a 15€ en cada una de las decisiones que tienes que tomar en 
las sucesivas rondas de la FASE 1. En cada ronda, en tu pantalla aparecerán las 16 cantidades de dinero 
(OPCIÓN A), y una lotería (OPCIÓN B). 

• Si eliges la OPCIÓN B en el ejemplo, podrías ganar 0€ con una probabilidad del 62.5% o 12€ con una 
probabilidad del 62.5%.  

• En cada ronda de la FASE 1, la OPCION A seguirá siendo la misma (16 cantidades de dinero que suben de 
€0 hasta €15), mientras la OPCION B se corresponde a una lotería que irá cambiando de una ronda a otra.  

• En cada una de las 16 decisiones, simplemente tendrás que elegir si prefieres la cantidad cierta de dinero 
asociada a cada decisión (OPCIÓN A) o jugar la lotería de la derecha (OPCIÓN B). Para tomar tu decisión, 
tendrás que pinchar con el ratón en el botón correspondiente.  

• Es importante que juegues cada una de las 16 decisiones de cada ronda como si fuera la que se va a jugar de 
verdad. Esto es debido a que el ordenador -tras terminar el experimento- elegirá una de las decisiones de la 
FASE 1, y te pagará el dinero correspondiente a dicha decisión: la cantidad cierta si has escogido la 
OPCIÓN A o la resultante de jugar la lotería  si has escogido la OPCION B.  

• En resumen, la cantidad de dinero que recibirás en la FASE 1 dependerá de la ronda y decisión escogida 
aleatoriamente por el ordenador. Es decir, el pago monetario puede ser la cantidad cierta que elegiste o la 
cantidad resultante de la lotería escogida por ti. 

 



 

 1 

¡BIENVENIDO AL EXPERIMENTO! 
 
 
 

• Este es un experimento para estudiar el comportamiento individual al tomar decisiones. Sólo estamos interesados en 
lo que hacen los individuos en media. 

• No pienses que se espera ningún comportamiento particular de ti. Sin embargo, ten en cuenta que tu actuación a lo 
largo del experimento influirá en la cantidad de dinero que puedes ganar. 

• A continuación encontrarás una serie de instrucciones explicando cómo funciona el experimento y cómo usar el 
ordenador a lo largo del mismo. 

• Por favor, es importante que no hables ni molestes a los otros participantes durante el experimento. Si necesitas 
ayuda, levanta la mano y espera en silencio. Serás atendido lo antes posible. 

 

 
 

EL EXPERIMENTO 

 
 
 

 
• El experimento consta de 81 rondas divididas en tres FASES.  

• La cantidad de dinero recibida durante el experimento se determinará al concluir las 2 fases del mismo. 



 

 2 

FASE 1 

 

 

• En las 25 rondas de la FASE 1 te presentaremos una pareja de loterías entre las cuales tendrás que elegir tu 
preferida. Cada lotería asigna diferentes probabilidades de ganar cuatro premios de 0€, Y€, X€ y 15€, 
respectivamente. El valor de Y y X nunca se te comunicará y cambiará en cada una de las 25 rondas de 

las que consta esta fase. Lo único que sabes es que 0€ < Y€ < X€ < 15€ (es decir, X es mayor de Y, y 
ambas cantidades están entre 0€ y 15€) y que X y Y pueden tomar cualquier valor entero entre 1€ y 14€ con 
la misma probabilidad. 

• A cada premio está asociado un color. Esta asociación ente premios y colores se va a mantener a lo largo de 
todas las 50 rondas de esta fase. 

 

 
 

• En la figura que aparece sobre estas líneas tenemos un ejemplo de elección entre loterías. Si eliges la OPCIÓN A, 
podrías ganar 0€ con una probabilidad del 62.5% o X€ con una probabilidad del 37.5%. Si, por el contrario, eliges la 
OPCIÓN B, podrías ganar 0€ con una probabilidad del 37.5 % y Y€ con una probabilidad del 62.5%. 

• En cada ronda, simplemente tendrás que elegir tu lotería preferida pinchando con el ratón en el botón 
correspondiente. Si estás indiferente entre las dos loterías, puedes señalarlo pinchando el botón “INDIFERENTE”. 
En este último caso, el ordenador escogerá una lotería por ti, seleccionando una de las dos loterías con la misma 
probabilidad.  

• Es importante que juegues cada una de las 25 rondas de elección entre loterías como si fuera la que se va a jugar de 
verdad. Esto es debido a que al final del experimento, el ordenador escogerá una de las 25 rondas de manera 
aleatoria y jugará la lotería escogida por ti (o por el mismo ordenador, en el caso de indiferencia). La cantidad de 
dinero seleccionada se corresponderá a tu pago monetario asociado a la FASE 1.   

• En resumen, la cantidad de dinero que recibirás en la FASE 1 dependerá de la ronda escogida aleatoriamente por el 
ordenador y del resultado de la lotería escogida por ti (o por el ordenador, en caso de indiferencia) en dicha ronda. 

 



 

 3 

 

FASE 2 

 

• En las 50 rondas de la FASE 2 participarás en un juego parecido al anterior pero con algunas variaciones. 

• Así como en la FASE 1, también en la FASE 2 tendrás que elegir entre loterías sobre cuatro cantidades de 
dinero: 0€ < Y€ < X€ < 15€. Recuerda que Y y X pueden tomar cualquier valor entero entre 1€ y 14€ 
con la misma probabilidad, y que ese valor cambiará a lo largo de las 50 rondas de esta segunda 

fase 

• La única diferencia con la FASE 1 es que, en la FASE 2, la OPCIÓN A es una determinada cantidad de 
dinero, que crece de 0€ a 15€ en cada una de las decisiones que tienes que tomar en cada ronda de la FASE 
2. 

• En cada ronda, en tu pantalla aparecerán las 16 cantidades de dinero (OPCIÓN A), y una lotería (OPCIÓN 
B), que tendrá exactamente el mismo formato de las loterías de la FASE 1. 

 
 

• Cada ronda de la FASE 2 consta de 16 decisiones independientes, que se corresponden a cada fila.  

• En la figura aquí arriba tenemos un ejemplo. La OPCIÓN A se corresponde una determinada cantidad de 
dinero, que crece de 0€ a 15€ en cada una de las 16 decisiones que tienes que tomar (OPCIÓN A).  

• La opción B se corresponde a una lotería, que se mantiene para todas las 16 decisiones. Si eliges la OPCIÓN 
B en el ejemplo, podrías ganar 0€ con una probabilidad del 62.5% o X€ con una probabilidad del 37.5%.  

• En cada una de las 16 decisiones, simplemente tendrás que elegir si prefieres la cantidad cierta de dinero 
asociada a cada decisión (OPCIÓN A) o jugar la lotería de la derecha (OPCIÓN B). Para tomar tu decisión, 
tendrás que pinchar con el ratón en el botón correspondiente.  

• Es importante que juegues cada una de las 16 decisiones de cada ronda como si fuera la que se va a jugar de 
verdad. Esto es debido a que el ordenador -tras terminar el experimento- elegirá una de las decisiones de la 
FASE 2, y te pagará el dinero correspondiente a dicha decisión: la cantidad cierta si has escogido la 
OPCIÓN A o la resultante de jugar la lotería  si has escogido la OPCION B.  

• En resumen, la cantidad de dinero que recibirás en la FASE 2 dependerá de la ronda y decisión escogida 
aleatoriamente por el ordenador. Es decir, el pago monetario puede ser la cantidad cierta que elegiste o la 
cantidad resultante de la lotería escogida por ti. 



 

 1 

¡BIENVENIDO AL EXPERIMENTO! 
 
 
 

• Este es un experimento para estudiar el comportamiento individual al tomar decisiones. Sólo estamos interesados en 
lo que hacen los individuos en media. 

• No pienses que se espera ningún comportamiento particular de ti. Sin embargo, ten en cuenta que tu actuación a lo 
largo del experimento influirá en la cantidad de dinero que puedes ganar.  

• A continuación encontrarás una serie de instrucciones explicando cómo funciona el experimento y cómo usar el 
ordenador a lo largo del mismo. 

• Por favor, es importante que no hables ni molestes a los otros participantes durante el experimento. Si necesitas 
ayuda, levanta la mano y espera en silencio. Serás atendido lo antes posible. 

 

 

 
EL EXPERIMENTO 

 
 
 

 
• El experimento consta de 81 rondas divididas en tres FASES.  

• La cantidad de dinero recibida durante el experimento se determinará al concluir las 2 fases del mismo. 



 

 2 

FASE 1 
 

 
• En las 25 rondas de la FASE 1 te presentaremos una pareja de loterías entre las cuales tendrás que elegir tu 

preferida. Cada lotería asigna diferentes probabilidades de ganar cuatro premios de 0€, Y€, X€ y 15€, 
respectivamente. El valor de Y y X nunca se te comunicará y cambiará en cada una de las 25 rondas de 
las que consta esta fase. Lo único que sabes es que 0€ < Y€ < X€ < 15€ (es decir, X es mayor que Y, y 
ambas cantidades están entre 0€ y 15€). A cada premio está asociado un color. Esta asociación ente premios 
y colores se va a mantener a lo largo de todas las 50 rondas de esta fase.  

 

 
• En la figura que aparece sobre estas líneas tenemos un ejemplo de elección entre loterías. Si eliges la OPCIÓN A, 

podrías ganar 0€ con una probabilidad del 62.5% o X€ con una probabilidad del 37.5%. Si, por el contrario, eliges la 
OPCIÓN B, podrías ganar 0€ con una probabilidad del 37.5 % y Y€ con una probabilidad del 62.5%. 

• En cada ronda, simplemente tendrás que elegir tu lotería preferida pinchando con el ratón en el botón 
correspondiente. Si estás indiferente entre las dos loterías, puedes señalarlo pinchando el botón “INDIFERENTE”. 
En este último caso, el ordenador escogerá una lotería por ti, seleccionando una de las dos loterías con la misma 
probabilidad.  

• Es importante que juegues cada una de las 25 rondas de elección entre loterías como si fuera la que se va a jugar de 
verdad. Esto es debido a que al final del experimento, el ordenador escogerá una de las 25 rondas de manera 
aleatoria y jugará la lotería escogida por ti (o por el mismo ordenador, en el caso de indiferencia). La cantidad de 
dinero seleccionada se corresponderá a tu pago monetario asociado a la FASE 1.   

• En resumen, la cantidad de dinero que recibirás en la FASE 1 dependerá de la ronda escogida aleatoriamente por el 
ordenador y del resultado de la lotería escogida por ti (o por el ordenador, en caso de indiferencia) en dicha ronda. 

 



 

 3 

 
FASE 2 

 
• En las 50 rondas de la FASE 2 participarás en un juego parecido al anterior pero con algunas variaciones. 

• Así como en la FASE 1, también en la FASE 2 tendrás que elegir entre loterías sobre cuatro cantidades de 
dinero: 0€ < Y€ < X€ < 15€. Recuerda que los valores de Y y X cambiarán en cada una  de las 50 rondas de 
esta segunda fase. 

• La única diferencia con la FASE 1 es que, en la FASE 2, la OPCIÓN A es una determinada cantidad de 
dinero, que crece de 0€ a 15€ en cada una de las decisiones que tienes que tomar en cada ronda de la FASE 
2. 

• En cada ronda, en tu pantalla aparecerán las 16 cantidades de dinero (OPCIÓN A), y una lotería (OPCIÓN 
B), que tendrá exactamente el mismo formato de las loterías de la FASE 1. 

 
 

• Cada ronda de la FASE 2 consta de 16 decisiones independientes, que se corresponden a cada fila.  

• En la figura aquí arriba tenemos un ejemplo. La OPCIÓN A se corresponde una determinada cantidad de 
dinero, que crece de 0€ a 15€ en cada una de las 16 decisiones que tienes que tomar (OPCIÓN A).  

• La opción B corresponde a una lotería, que se mantiene para todas las 16 decisiones. Si eliges la OPCIÓN B 
en el ejemplo, podrías ganar 0€ con una probabilidad del 62.5% o X€ con una probabilidad del 37.5%.  

• En cada una de las 16 decisiones, simplemente tendrás que elegir si prefieres la cantidad cierta de dinero 
asociada a cada decisión (OPCIÓN A) o jugar la lotería de la derecha (OPCIÓN B). Para tomar tu decisión, 
tendrás que pinchar con el ratón en el botón correspondiente.  

• Es importante que juegues cada una de las 16 decisiones de cada ronda como si fuera la que se va a jugar de 
verdad. Esto es debido a que el ordenador -tras terminar el experimento- elegirá una de las decisiones de la 
FASE 1, y te pagará el dinero correspondiente a dicha decisión: la cantidad cierta si has escogido la 
OPCIÓN A o la resultante de jugar la lotería  si has escogido la OPCION B.  

• En resumen, la cantidad de dinero que recibirás en la FASE 2 dependerá de la ronda y decisión escogida 
aleatoriamente por el ordenador. Es decir, el pago monetario puede ser la cantidad cierta que elegiste o la 
cantidad resultante de la lotería escogida por ti. 
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FechnerEx 29/05/18, 10:19

1   ****FECHNER WITH MEAN VARIANCE ORDERED PROBIT
2   
3   
4   
5   cap program drop probit_MV_P123
6   program define probit_MV_P123
7   
8   args lnf kappa_beta kappa_sigma 
9   tempvar beta sigma num0_MV num1_MV EV_0 EV_1 VAR_0 VAR_1 euDiff_MV

10   tempvar fMV1
11   
12   quietly {
13   
14   gen double `beta' =`kappa_beta'
15   gen double `sigma'=exp(`kappa_sigma')
16   
17   
18   *Defining EV and VAR:
19   
20   g `EV_0'=.
21   g `EV_1'=.
22   g `VAR_0'=.
23   g `VAR_1'=.
24   
25   
26   *Phase 1 (we have sure payoff on the left):
27   
28   replace `EV_0' = (Round-1)/15 if Phase==1
29   replace `VAR_0'= 0 if Phase==1
30   
31   replace `EV_1'= prize_HO_1 * prob_HO_11 + prize_HO_2 * 

prob_HO_12 + prize_HO_3 * prob_HO_13 + prize_HO_4 * prob_HO_14 
if Phase==1

32   
33   
34   replace `VAR_1'= ((prize_HO_1-`EV_1')^2) * prob_HO_11 + ((

prize_HO_2-`EV_1')^2) * prob_HO_12 + ((prize_HO_3-`EV_1')^2) * 
prob_HO_13 + ((prize_HO_4-`EV_1')^2) * prob_HO_14 if Phase==1

35   
36   *Phase 2 and 3:
37   replace `EV_0'= prize_HO_1 * prob_HO_01 + prize_HO_2 * 

prob_HO_02 + prize_HO_3 * prob_HO_03 + prize_HO_4 * prob_HO_04 if
 Phase>1

38   
39   replace `EV_1'= prize_HO_1 * prob_HO_11 + prize_HO_2 * 

prob_HO_12 + prize_HO_3 * prob_HO_13 + prize_HO_4 * prob_HO_14 if
 Phase>1

40   
41   replace `VAR_0'= ((prize_HO_1-`EV_0')^2) * prob_HO_01 + ((

prize_HO_2-`EV_0')^2) * prob_HO_02 + ((prize_HO_3-`EV_0')^2) * 
prob_HO_03 + ((prize_HO_4-`EV_0')^2) * prob_HO_04 if Phase>1

42   
43   replace `VAR_1'= ((prize_HO_1-`EV_1')^2) * prob_HO_11 + ((

prize_HO_2-`EV_1')^2) * prob_HO_12 + ((prize_HO_3-`EV_1')^2) * 
prob_HO_13 + ((prize_HO_4-`EV_1')^2) * prob_HO_14 if Phase>1

44   
45   
46   
47   *The model:
48   
49   gen double `num0_MV' = `EV_0' - (`beta'*`VAR_0')
50   gen double `num1_MV' = `EV_1' - (`beta'*`VAR_1')
51   
52   generate double `euDiff_MV' = (`num1_MV' - `num0_MV')/`sigma'
53   
54   
55   generate double `fMV1' = 0
56   
57   
58   *FOR PROBIT
59   
60   replace `fMV1' = normal( `euDiff_MV') if $ML_y1==1
61   replace `fMV1' = normal(-`euDiff_MV') if $ML_y1==0
62   
63   
64   replace `lnf' = ln(`fMV1')
65    
66   } 
67   
68   end
69   
70   
71   
72   xi: ml model lf probit_MV_P123 (beta: NEWchoice=) (sigma:=) if 

NEWchoice!=. & Phase<3 & TR==2, robust technique(dfp) cluster(
idNEW) init(.5 .5, copy)

73   set more 1
74   ml maximize, dif 
75   outreg2 using FechnerEx.doc, append
76   nlcom (beta: [beta]_cons) (sigma: exp([sigma]_cons))
77   
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FechnerEx 29/05/18, 10:19

1   ****FECHNER WITH MEAN VARIANCE ORDERED PROBIT
2   
3   
4   
5   cap program drop probit_MV_P123
6   program define probit_MV_P123
7   
8   args lnf kappa_beta kappa_sigma 
9   tempvar beta sigma num0_MV num1_MV EV_0 EV_1 VAR_0 VAR_1 euDiff_MV

10   tempvar fMV1
11   
12   quietly {
13   
14   gen double `beta' =`kappa_beta'
15   gen double `sigma'=exp(`kappa_sigma')
16   
17   
18   *Defining EV and VAR:
19   
20   g `EV_0'=.
21   g `EV_1'=.
22   g `VAR_0'=.
23   g `VAR_1'=.
24   
25   
26   *Phase 1 (we have sure payoff on the left):
27   
28   replace `EV_0' = (Round-1)/15 if Phase==1
29   replace `VAR_0'= 0 if Phase==1
30   
31   replace `EV_1'= prize_HO_1 * prob_HO_11 + prize_HO_2 * 

prob_HO_12 + prize_HO_3 * prob_HO_13 + prize_HO_4 * prob_HO_14 
if Phase==1

32   
33   
34   replace `VAR_1'= ((prize_HO_1-`EV_1')^2) * prob_HO_11 + ((

prize_HO_2-`EV_1')^2) * prob_HO_12 + ((prize_HO_3-`EV_1')^2) * 
prob_HO_13 + ((prize_HO_4-`EV_1')^2) * prob_HO_14 if Phase==1

35   
36   *Phase 2 and 3:
37   replace `EV_0'= prize_HO_1 * prob_HO_01 + prize_HO_2 * 

prob_HO_02 + prize_HO_3 * prob_HO_03 + prize_HO_4 * prob_HO_04 if
 Phase>1

38   
39   replace `EV_1'= prize_HO_1 * prob_HO_11 + prize_HO_2 * 

prob_HO_12 + prize_HO_3 * prob_HO_13 + prize_HO_4 * prob_HO_14 if
 Phase>1

40   
41   replace `VAR_0'= ((prize_HO_1-`EV_0')^2) * prob_HO_01 + ((

prize_HO_2-`EV_0')^2) * prob_HO_02 + ((prize_HO_3-`EV_0')^2) * 
prob_HO_03 + ((prize_HO_4-`EV_0')^2) * prob_HO_04 if Phase>1

42   
43   replace `VAR_1'= ((prize_HO_1-`EV_1')^2) * prob_HO_11 + ((

prize_HO_2-`EV_1')^2) * prob_HO_12 + ((prize_HO_3-`EV_1')^2) * 
prob_HO_13 + ((prize_HO_4-`EV_1')^2) * prob_HO_14 if Phase>1

44   
45   
46   
47   *The model:
48   
49   gen double `num0_MV' = `EV_0' - (`beta'*`VAR_0')
50   gen double `num1_MV' = `EV_1' - (`beta'*`VAR_1')
51   
52   generate double `euDiff_MV' = (`num1_MV' - `num0_MV')/`sigma'
53   
54   
55   generate double `fMV1' = 0
56   
57   
58   *FOR PROBIT
59   
60   replace `fMV1' = normal( `euDiff_MV') if $ML_y1==1
61   replace `fMV1' = normal(-`euDiff_MV') if $ML_y1==0
62   
63   
64   replace `lnf' = ln(`fMV1')
65    
66   } 
67   
68   end
69   
70   
71   
72   xi: ml model lf probit_MV_P123 (beta: NEWchoice=) (sigma:=) if 

NEWchoice!=. & Phase<3 & TR==2, robust technique(dfp) cluster(
idNEW) init(.5 .5, copy)

73   set more 1
74   ml maximize, dif 
75   outreg2 using FechnerEx.doc, append
76   nlcom (beta: [beta]_cons) (sigma: exp([sigma]_cons))
77   
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1   ****RANDOM EFFECT
2   
3   
4   
5   keep if TR==2
6   
7   *RANDOM EFFECT PROBIT MODEL
8   
9   

10   xtprobit NEWchoice newDelta_VAR if Phase<3, nocons offset(
newDelta_EV)

11   
12   
13   *RANDOM EFFECT LOGIT MODEL
14   
15   
16   xtlogit NEWchoice newDelta_VAR if Phase<3, nocons offset(

newDelta_EV)
17   
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Naive 29/05/18, 10:16

1   ****NAIVE
2   
3   
4   
5   cap program drop logit_CRRA_P12_NAIVE2_TR_012
6   program define  logit_CRRA_P12_NAIVE2_TR_012
7   
8   args lnf kappa_rho 
9   tempvar rho X Y numP1_0 numP1_1 numP2_0 numP2_1  euDiff_P1 

euDiff_P2 alpha
10   tempvar fP1 fP2
11   
12   quietly {
13   
14   *** VAR TRANSFORMATIONS
15   
16   gen double `rho'=`kappa_rho'
17   gen double `X'=(2/3)           
18   gen double `Y'=(1/3)           
19   
20   ***Phase 1 
21   
22   gen double `numP1_0' = 0 
23   replace    `numP1_0' = (((Round-1)/15)^(1-`rho'))/(1-`rho'

) if Round>1
24   gen double `numP1_1' = ((prize_HO_2^(1-`rho'))/(1-`rho'))*

prob_HO_12+((prize_HO_3^(1-`rho'))/(1-`rho'))*prob_HO_13+(1/(1-
`rho'))*prob_HO_14

25   replace    `numP1_1' = ((`Y'^       (1-`rho'))/(1-`rho'))*
prob_HO_12+((`X'^       (1-`rho'))/(1-`rho'))*prob_HO_13+(1/(1-
`rho'))*prob_HO_14 if TR<2

26   
27   
28   * get the Fechner index
29   
30   generate double `euDiff_P1' = `numP1_1' - `numP1_0'
31   generate double `fP1' = 1
32   replace `fP1' = invlogit( `euDiff_P1') if $ML_y1==1 & Phase==1
33   replace `fP1' = invlogit(-`euDiff_P1') if $ML_y1==0 & Phase==1
34   
35   
36   ***PHASE II
37   
38   gen double `numP2_0' = ((prize_HO_2^(1-`rho'))/(1-`rho'))*

prob_HO_02 + ///
39      ((prize_HO_3^(1-`rho'))/(1-`rho'))*

prob_HO_03+ (1/(1-`rho')) * prob_HO_04 
40    
41   
42   gen double `numP2_1' = ((prize_HO_2^(1-`rho'))/(1-`rho'))*

prob_HO_12 + ///
43    ((prize_HO_3^(1-`rho'))/(1-`rho'))*

prob_HO_13+ (1/(1-`rho')) * prob_HO_14
44   
45   
46   replace  `numP2_0' = ((`Y'^(1-`rho'))/(1-`rho'))*prob_HO_02 +

 ///
47    ((`X'^(1-`rho'))/(1-`rho'))*prob_HO_03+ 

(1/(1-`rho')) * prob_HO_04 if TR<2 
48    
49   
50   replace `numP2_1' =  ((`Y'^(1-`rho'))/(1-`rho'))*prob_HO_12 +

 ///
51    ((`X'^(1-`rho'))/(1-`rho'))*prob_HO_13+(

1/(1-`rho'))*prob_HO_14 if TR<2
52    
53    
54   generate double `euDiff_P2' = `numP2_1' - `numP2_0'
55   
56   generate double `fP2' = 1
57   replace `fP2' = invlogit(`euDiff_P2')  if $ML_y1==1 & Phase==2
58   replace `fP2' = invlogit(-`euDiff_P2') if $ML_y1==0 & Phase==2
59   
60   
61     * now collect all the pieces
62     
63   replace `lnf'=ln(`fP1'*`fP2')
64   
65   
66   }
67   
68   end
69   
70   
71   xi: ml model lf logit_CRRA_P12_NAIVE2_TR_012 (rho:NEWchoice=i.TR)

 if NEWchoice!=., robust technique(dfp) cluster(idNEW) init(.5 .5
 .5, copy) 

72   set more 1
73   ml maximize, dif 
74   
75   lincom TR_0 - TR_1
76   nlcom (delta_TR: [rho]TR_0 - [rho]TR_1)
77   
78   
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Naive 29/05/18, 10:16

1   ****NAIVE
2   
3   
4   
5   cap program drop logit_CRRA_P12_NAIVE2_TR_012
6   program define  logit_CRRA_P12_NAIVE2_TR_012
7   
8   args lnf kappa_rho 
9   tempvar rho X Y numP1_0 numP1_1 numP2_0 numP2_1  euDiff_P1 

euDiff_P2 alpha
10   tempvar fP1 fP2
11   
12   quietly {
13   
14   *** VAR TRANSFORMATIONS
15   
16   gen double `rho'=`kappa_rho'
17   gen double `X'=(2/3)           
18   gen double `Y'=(1/3)           
19   
20   ***Phase 1 
21   
22   gen double `numP1_0' = 0 
23   replace    `numP1_0' = (((Round-1)/15)^(1-`rho'))/(1-`rho'

) if Round>1
24   gen double `numP1_1' = ((prize_HO_2^(1-`rho'))/(1-`rho'))*

prob_HO_12+((prize_HO_3^(1-`rho'))/(1-`rho'))*prob_HO_13+(1/(1-
`rho'))*prob_HO_14

25   replace    `numP1_1' = ((`Y'^       (1-`rho'))/(1-`rho'))*
prob_HO_12+((`X'^       (1-`rho'))/(1-`rho'))*prob_HO_13+(1/(1-
`rho'))*prob_HO_14 if TR<2

26   
27   
28   * get the Fechner index
29   
30   generate double `euDiff_P1' = `numP1_1' - `numP1_0'
31   generate double `fP1' = 1
32   replace `fP1' = invlogit( `euDiff_P1') if $ML_y1==1 & Phase==1
33   replace `fP1' = invlogit(-`euDiff_P1') if $ML_y1==0 & Phase==1
34   
35   
36   ***PHASE II
37   
38   gen double `numP2_0' = ((prize_HO_2^(1-`rho'))/(1-`rho'))*

prob_HO_02 + ///
39      ((prize_HO_3^(1-`rho'))/(1-`rho'))*

prob_HO_03+ (1/(1-`rho')) * prob_HO_04 
40    
41   
42   gen double `numP2_1' = ((prize_HO_2^(1-`rho'))/(1-`rho'))*

prob_HO_12 + ///
43    ((prize_HO_3^(1-`rho'))/(1-`rho'))*

prob_HO_13+ (1/(1-`rho')) * prob_HO_14
44   
45   
46   replace  `numP2_0' = ((`Y'^(1-`rho'))/(1-`rho'))*prob_HO_02 +

 ///
47    ((`X'^(1-`rho'))/(1-`rho'))*prob_HO_03+ 

(1/(1-`rho')) * prob_HO_04 if TR<2 
48    
49   
50   replace `numP2_1' =  ((`Y'^(1-`rho'))/(1-`rho'))*prob_HO_12 +

 ///
51    ((`X'^(1-`rho'))/(1-`rho'))*prob_HO_13+(

1/(1-`rho'))*prob_HO_14 if TR<2
52    
53    
54   generate double `euDiff_P2' = `numP2_1' - `numP2_0'
55   
56   generate double `fP2' = 1
57   replace `fP2' = invlogit(`euDiff_P2')  if $ML_y1==1 & Phase==2
58   replace `fP2' = invlogit(-`euDiff_P2') if $ML_y1==0 & Phase==2
59   
60   
61     * now collect all the pieces
62     
63   replace `lnf'=ln(`fP1'*`fP2')
64   
65   
66   }
67   
68   end
69   
70   
71   xi: ml model lf logit_CRRA_P12_NAIVE2_TR_012 (rho:NEWchoice=i.TR)

 if NEWchoice!=., robust technique(dfp) cluster(idNEW) init(.5 .5
 .5, copy) 

72   set more 1
73   ml maximize, dif 
74   
75   lincom TR_0 - TR_1
76   nlcom (delta_TR: [rho]TR_0 - [rho]TR_1)
77   
78   
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1   ****BAYESIAN
2   
3   
4   
5   cap program drop logit_CRRA_P12_BAYES2_TR_012
6   program define  logit_CRRA_P12_BAYES2_TR_012
7   
8   args lnf kappa_rho 
9   tempvar rho X Y numP1_0 numP1_1 numP2_0 numP2_1  euDiff_P1 

euDiff_P2 alpha
10   tempvar fP1 fP2
11   
12   quietly {
13   
14   *** VAR TRANSFORMATIONS
15   
16   gen double `rho'=`kappa_rho'
17   gen double `X'=  (2 * 1^(1 - `rho'))/((-3 + `rho') * (-1 + 

`rho'))
18   gen double `Y'=-(2 * 1^(1 - `rho'))/(-6 + 11 * `rho' - 6 * 

`rho'^2 + `rho'^3)
19   
20   
21   ***Phase 1 
22   
23   gen double `numP1_0' = 0 
24   replace    `numP1_0' = (((Round-1)/15)^(1-`rho'))/(1-`rho'

) if Round>1
25   gen double `numP1_1' = ((prize_HO_2^(1-`rho'))/(1-`rho'))*

prob_HO_12+((prize_HO_3^(1-`rho'))/(1-`rho'))*prob_HO_13+(1/(1-
`rho'))*prob_HO_14

26   replace    `numP1_1' =       `Y'                         *
prob_HO_12+       `X'                        *prob_HO_13+(1/(1-
`rho'))*prob_HO_14 if TR<2

27   
28   * get the Fechner index
29   
30   generate double `euDiff_P1' = `numP1_1' - `numP1_0'
31   generate double `fP1' = 1
32   replace `fP1' = invlogit( `euDiff_P1') if $ML_y1==1 & Phase==1
33   replace `fP1' = invlogit(-`euDiff_P1') if $ML_y1==0 & Phase==1
34   
35   
36   ***PHASE II
37   
38   gen double `numP2_0' = ((prize_HO_2^(1-`rho'))/(1-`rho'))*

prob_HO_02 + ///
39      ((prize_HO_3^(1-`rho'))/(1-`rho'))*

prob_HO_03+ (1/(1-`rho')) * prob_HO_04 
40    
41   
42   gen double `numP2_1' = ((prize_HO_2^(1-`rho'))/(1-`rho'))*

prob_HO_12 + ///
43      ((prize_HO_3^(1-`rho'))/(1-`rho'))*

prob_HO_13+ (1/(1-`rho')) * prob_HO_14
44   
45   
46   replace `numP2_0' = `Y' * prob_HO_02 + `X' * prob_HO_03 + (1/(1-

`rho')) * prob_HO_04 if TR<2 
47   replace `numP2_1' = `Y' * prob_HO_12 + `X' * prob_HO_13 + (1/(1-

`rho')) * prob_HO_14 if TR<2
48    
49    
50   generate double `euDiff_P2' = `numP2_1' - `numP2_0'
51   
52   generate double `fP2' = 1
53   replace `fP2' = invlogit(`euDiff_P2')  if $ML_y1==1 & Phase==2
54   replace `fP2' = invlogit(-`euDiff_P2') if $ML_y1==0 & Phase==2
55   
56   
57     * now collect all the pieces
58     
59   replace `lnf'=ln(`fP1'*`fP2')
60   
61   
62   }
63   
64   end
65   
66   
67   xi: ml model lf logit_CRRA_P12_BAYES2_TR_012 (rho:NEWchoice=TR_0 

TR_1) if NEWchoice!=., robust technique(dfp) cluster(idNEW) init(
.5 .5 .5, copy) 

68   set more 1
69   ml maximize, dif
70   
71   lincom TR_0 - TR_1
72   nlcom (delta_TR: [rho]TR_0 - [rho]TR_1)
73   
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1   ****BAYESIAN
2   
3   
4   
5   cap program drop logit_CRRA_P12_BAYES2_TR_012
6   program define  logit_CRRA_P12_BAYES2_TR_012
7   
8   args lnf kappa_rho 
9   tempvar rho X Y numP1_0 numP1_1 numP2_0 numP2_1  euDiff_P1 

euDiff_P2 alpha
10   tempvar fP1 fP2
11   
12   quietly {
13   
14   *** VAR TRANSFORMATIONS
15   
16   gen double `rho'=`kappa_rho'
17   gen double `X'=  (2 * 1^(1 - `rho'))/((-3 + `rho') * (-1 + 

`rho'))
18   gen double `Y'=-(2 * 1^(1 - `rho'))/(-6 + 11 * `rho' - 6 * 

`rho'^2 + `rho'^3)
19   
20   
21   ***Phase 1 
22   
23   gen double `numP1_0' = 0 
24   replace    `numP1_0' = (((Round-1)/15)^(1-`rho'))/(1-`rho'

) if Round>1
25   gen double `numP1_1' = ((prize_HO_2^(1-`rho'))/(1-`rho'))*

prob_HO_12+((prize_HO_3^(1-`rho'))/(1-`rho'))*prob_HO_13+(1/(1-
`rho'))*prob_HO_14

26   replace    `numP1_1' =       `Y'                         *
prob_HO_12+       `X'                        *prob_HO_13+(1/(1-
`rho'))*prob_HO_14 if TR<2

27   
28   * get the Fechner index
29   
30   generate double `euDiff_P1' = `numP1_1' - `numP1_0'
31   generate double `fP1' = 1
32   replace `fP1' = invlogit( `euDiff_P1') if $ML_y1==1 & Phase==1
33   replace `fP1' = invlogit(-`euDiff_P1') if $ML_y1==0 & Phase==1
34   
35   
36   ***PHASE II
37   
38   gen double `numP2_0' = ((prize_HO_2^(1-`rho'))/(1-`rho'))*

prob_HO_02 + ///
39      ((prize_HO_3^(1-`rho'))/(1-`rho'))*

prob_HO_03+ (1/(1-`rho')) * prob_HO_04 
40    
41   
42   gen double `numP2_1' = ((prize_HO_2^(1-`rho'))/(1-`rho'))*

prob_HO_12 + ///
43      ((prize_HO_3^(1-`rho'))/(1-`rho'))*

prob_HO_13+ (1/(1-`rho')) * prob_HO_14
44   
45   
46   replace `numP2_0' = `Y' * prob_HO_02 + `X' * prob_HO_03 + (1/(1-

`rho')) * prob_HO_04 if TR<2 
47   replace `numP2_1' = `Y' * prob_HO_12 + `X' * prob_HO_13 + (1/(1-

`rho')) * prob_HO_14 if TR<2
48    
49    
50   generate double `euDiff_P2' = `numP2_1' - `numP2_0'
51   
52   generate double `fP2' = 1
53   replace `fP2' = invlogit(`euDiff_P2')  if $ML_y1==1 & Phase==2
54   replace `fP2' = invlogit(-`euDiff_P2') if $ML_y1==0 & Phase==2
55   
56   
57     * now collect all the pieces
58     
59   replace `lnf'=ln(`fP1'*`fP2')
60   
61   
62   }
63   
64   end
65   
66   
67   xi: ml model lf logit_CRRA_P12_BAYES2_TR_012 (rho:NEWchoice=TR_0 

TR_1) if NEWchoice!=., robust technique(dfp) cluster(idNEW) init(
.5 .5 .5, copy) 

68   set more 1
69   ml maximize, dif
70   
71   lincom TR_0 - TR_1
72   nlcom (delta_TR: [rho]TR_0 - [rho]TR_1)
73   
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1   ***MIXTURE
2   
3   
4   
5   cap program drop logit_CRRA_P12_MIX2_TR_012
6   program define  logit_CRRA_P12_MIX2_TR_012
7   
8   args lnf kappa_rho_NAI kappa_rho_BAY
9   tempvar rho X_NAI Y_NAI X_BAY Y_BAY numP1_0 numP1_1 numP2_0 

numP2_1  euDiff_P1 euDiff_P2
10   tempvar rho_NAI rho_BAY pi_BAY alpha_NAI alpha_BAY
11   tempvar fP1_NAI fP2_NAI f_NAI fP1_BAY fP2_BAY f_BAY 
12   
13   quietly {
14   
15   *** VAR TRANSFORMATIONS
16   
17   gen double `rho_NAI'=`kappa_rho_NAI'
18   gen double `rho_BAY'=`kappa_rho_BAY'
19   gen double `pi_BAY'=pi_GRID
20   gen double `X_NAI'=2/3
21   gen double `Y_NAI'=1/3
22   gen double `X_BAY'= (2 * 1^(1 - `rho_BAY'))/((-3 + `rho_BAY')

 * (-1 + `rho_BAY'))
23   gen double `Y_BAY'=-(2 * 1^(1 - `rho_BAY'))/(-6 + 11 * 

`rho_BAY' - 6 * `rho_BAY'^2 + `rho_BAY'^3)<2
24   
25   
26   ***NAIVE 
27   
28   ***PHASE I NAIVE 
29   
30   
31   gen double `numP1_0' = 0 
32   replace    `numP1_0' = (((Round-1)/15)^(1-`rho_NAI'))/(1-

`rho_NAI') if Round>1
33   gen double `numP1_1' = ((prize_HO_2^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_12+((prize_HO_3^(1-`rho_NAI'))/(1-`rho_NAI'
))*prob_HO_13+(1/(1-`rho_NAI'))*prob_HO_14

34   replace    `numP1_1' = ((`Y_NAI'^       (1-`rho_NAI'))/(1-
`rho_NAI'))*prob_HO_12+((`X_NAI'^       (1-`rho_NAI'))/(1-
`rho_NAI'))*prob_HO_13+(1/(1-`rho_NAI'))*prob_HO_14 if TR<2

35   
36   
37   * get the Fechner index
38   
39   generate double `euDiff_P1' = `numP1_1' - `numP1_0'
40   generate double `fP1_NAI' = 1
41   replace `fP1_NAI' = invlogit( `euDiff_P1') if $ML_y1==1 & Phase==1
42   replace `fP1_NAI' = invlogit(-`euDiff_P1') if $ML_y1==0 & Phase==1
43   
44   
45   ***PHASE II NAIVE
46   
47   gen double `numP2_0' = ((prize_HO_2^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_02 + ///
48      ((prize_HO_3^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_03+ (1/(1-`rho_NAI')) * prob_HO_04 
49    
50   
51   gen double `numP2_1' = ((prize_HO_2^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_12 + ///
52    ((prize_HO_3^(1-`rho_NAI'))/(1-`rho_NAI'

))*prob_HO_13+ (1/(1-`rho_NAI')) * prob_HO_14
53   
54   
55   replace  `numP2_0' = ((`Y_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_02 + ///
56    ((`X_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_03+ (1/(1-`rho_NAI')) * prob_HO_04 if TR<2 
57    
58   
59   replace `numP2_1' =  ((`Y_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_12 + ///
60    ((`X_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_13+(1/(1-`rho_NAI'))*prob_HO_14 if TR<2
61   
62    
63   generate double `euDiff_P2' = `numP2_1' - `numP2_0'
64   
65   generate double `fP2_NAI' = 1
66   
67   replace `fP2_NAI' = invlogit( `euDiff_P2')  if $ML_y1==1 & Phase

==2
68   replace `fP2_NAI' = invlogit(-`euDiff_P2')  if $ML_y1==0 & Phase

==2
69   
70   
71     * now collect all the pieces
72     
73   gen double `f_NAI'=(`fP1_NAI' * `fP2_NAI')
74   
75   ***BAYES
76   
77   ***PHASE I BAYES 
78   
79   
80   replace    `numP1_0' = (((Round-1)/15)^(1-`rho_BAY'))/(1-

`rho_BAY') if Round>1
81   replace    `numP1_1' = ((prize_HO_2^(1-`rho_BAY'))/(1-

`rho_BAY'))*prob_HO_12+((prize_HO_3^(1-`rho_BAY'))/(1-`rho_BAY'
))*prob_HO_13+(1/(1-`rho_BAY'))*prob_HO_14

82   replace    `numP1_1' =       `Y_BAY'
                         *prob_HO_12+       `X_BAY'
                        *prob_HO_13+(1/(1-`rho_BAY'))*prob_HO_14 
if TR<2

83   
84   * get the Fechner index
85   
86   replace `euDiff_P1' = `numP1_1' - `numP1_0'
87   generate double `fP1_BAY' = 1
88   replace `fP1_BAY' = invlogit( `euDiff_P1') if $ML_y1==1 & Phase==1
89   replace `fP1_BAY' = invlogit(-`euDiff_P1') if $ML_y1==0 & Phase==1
90   
91   
92   ***PHASE II BAYES
93   
94       
95   replace `numP2_0' = ((prize_HO_2^(1-`rho_BAY'))/(1-`rho_BAY'

))*prob_HO_02 + ///
96      ((prize_HO_3^(1-`rho_BAY'))/(1-

`rho_BAY'))*prob_HO_03+ (1/(1-`rho_BAY')) * prob_HO_04 
97    
98   
99   replace `numP2_1' = ((prize_HO_2^(1-`rho_BAY'))/(1-`rho_BAY'

))*prob_HO_12 + ///
100   ((prize_HO_3^(1-`rho_BAY'))/(1-`rho_BAY'

))*prob_HO_13+ (1/(1-`rho_BAY')) * prob_HO_14
101   
102   
103       replace `numP2_0' = `Y_BAY' * prob_HO_02 + `X_BAY' * 

prob_HO_03 + (1/(1-`rho_BAY')) * prob_HO_04 if TR<2 
104       
105   replace `numP2_1' = `Y_BAY' * prob_HO_12 + `X_BAY' * 

prob_HO_13 + (1/(1-`rho_BAY')) * prob_HO_14 if TR<2
106   
107    
108   replace `euDiff_P2' = `numP2_1' - `numP2_0'
109   
110   generate double `fP2_BAY' = 1
111   replace `fP2_BAY' = invlogit(`euDiff_P2')  if $ML_y1==1 & Phase==2
112   replace `fP2_BAY' = invlogit(-`euDiff_P2') if $ML_y1==0 & Phase==2
113   
114   
115     * now collect all the pieces
116     
117   gen double `f_BAY'=`fP1_BAY' * `fP2_BAY'
118   
119   
120   *HERE THE MIXTURE
121   
122   replace `lnf'=ln((1-`pi_BAY') * `f_NAI' + (`pi_BAY') * 

`f_BAY' )
123   
124   
125   }
126   
127   end
128   
129   
130   
131   g pi_GRID=.5 
132   
133   replace pi_GRID=.5
134   xi: ml model lf logit_CRRA_P12_MIX2_TR_012 (rho_NAI:NEWchoice=

TR_0 TR_1) (rho_BAY:NEWchoice=TR_0 TR_1) if NEWchoice!=., robust 
technique(dfp) cluster(idNEW) init(.5 .5 .5 .5 .5 .5, copy) 

135   set more 1
136   ml maximize, dif 
137   
138   
139   
140   **************LOOP 
141   
142   log using Dile_2.log, replace 
143   
144   
145   set more off 
146   forvalues i=.181(.001).182{
147   
148   replace pi_GRID=`i'
149   
150   di "************** pi=`i' ***************"
151   
152   xi: ml model lf logit_CRRA_P12_MIX_TR_012 (rho_NAI:NEWchoice=) (

rho_BAY:=) if NEWchoice!=., robust technique() cluster(idNEW) 
init(.5 .5 .5, copy) 

153   set more 1
154   ml maximize, dif 
155   nlcom (rho_NAI: [rho_NAI]_cons) (rho_BAY: [rho_BAY]_cons) 
156   
157   }
158   
159   log close 
160   
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1   ***MIXTURE
2   
3   
4   
5   cap program drop logit_CRRA_P12_MIX2_TR_012
6   program define  logit_CRRA_P12_MIX2_TR_012
7   
8   args lnf kappa_rho_NAI kappa_rho_BAY
9   tempvar rho X_NAI Y_NAI X_BAY Y_BAY numP1_0 numP1_1 numP2_0 

numP2_1  euDiff_P1 euDiff_P2
10   tempvar rho_NAI rho_BAY pi_BAY alpha_NAI alpha_BAY
11   tempvar fP1_NAI fP2_NAI f_NAI fP1_BAY fP2_BAY f_BAY 
12   
13   quietly {
14   
15   *** VAR TRANSFORMATIONS
16   
17   gen double `rho_NAI'=`kappa_rho_NAI'
18   gen double `rho_BAY'=`kappa_rho_BAY'
19   gen double `pi_BAY'=pi_GRID
20   gen double `X_NAI'=2/3
21   gen double `Y_NAI'=1/3
22   gen double `X_BAY'= (2 * 1^(1 - `rho_BAY'))/((-3 + `rho_BAY')

 * (-1 + `rho_BAY'))
23   gen double `Y_BAY'=-(2 * 1^(1 - `rho_BAY'))/(-6 + 11 * 

`rho_BAY' - 6 * `rho_BAY'^2 + `rho_BAY'^3)<2
24   
25   
26   ***NAIVE 
27   
28   ***PHASE I NAIVE 
29   
30   
31   gen double `numP1_0' = 0 
32   replace    `numP1_0' = (((Round-1)/15)^(1-`rho_NAI'))/(1-

`rho_NAI') if Round>1
33   gen double `numP1_1' = ((prize_HO_2^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_12+((prize_HO_3^(1-`rho_NAI'))/(1-`rho_NAI'
))*prob_HO_13+(1/(1-`rho_NAI'))*prob_HO_14

34   replace    `numP1_1' = ((`Y_NAI'^       (1-`rho_NAI'))/(1-
`rho_NAI'))*prob_HO_12+((`X_NAI'^       (1-`rho_NAI'))/(1-
`rho_NAI'))*prob_HO_13+(1/(1-`rho_NAI'))*prob_HO_14 if TR<2

35   
36   
37   * get the Fechner index
38   
39   generate double `euDiff_P1' = `numP1_1' - `numP1_0'
40   generate double `fP1_NAI' = 1
41   replace `fP1_NAI' = invlogit( `euDiff_P1') if $ML_y1==1 & Phase==1
42   replace `fP1_NAI' = invlogit(-`euDiff_P1') if $ML_y1==0 & Phase==1
43   
44   
45   ***PHASE II NAIVE
46   
47   gen double `numP2_0' = ((prize_HO_2^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_02 + ///
48      ((prize_HO_3^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_03+ (1/(1-`rho_NAI')) * prob_HO_04 
49    
50   
51   gen double `numP2_1' = ((prize_HO_2^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_12 + ///
52    ((prize_HO_3^(1-`rho_NAI'))/(1-`rho_NAI'

))*prob_HO_13+ (1/(1-`rho_NAI')) * prob_HO_14
53   
54   
55   replace  `numP2_0' = ((`Y_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_02 + ///
56    ((`X_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_03+ (1/(1-`rho_NAI')) * prob_HO_04 if TR<2 
57    
58   
59   replace `numP2_1' =  ((`Y_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_12 + ///
60    ((`X_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_13+(1/(1-`rho_NAI'))*prob_HO_14 if TR<2
61   
62    
63   generate double `euDiff_P2' = `numP2_1' - `numP2_0'
64   
65   generate double `fP2_NAI' = 1
66   
67   replace `fP2_NAI' = invlogit( `euDiff_P2')  if $ML_y1==1 & Phase

==2
68   replace `fP2_NAI' = invlogit(-`euDiff_P2')  if $ML_y1==0 & Phase

==2
69   
70   
71     * now collect all the pieces
72     
73   gen double `f_NAI'=(`fP1_NAI' * `fP2_NAI')
74   
75   ***BAYES
76   
77   ***PHASE I BAYES 
78   
79   
80   replace    `numP1_0' = (((Round-1)/15)^(1-`rho_BAY'))/(1-

`rho_BAY') if Round>1
81   replace    `numP1_1' = ((prize_HO_2^(1-`rho_BAY'))/(1-

`rho_BAY'))*prob_HO_12+((prize_HO_3^(1-`rho_BAY'))/(1-`rho_BAY'
))*prob_HO_13+(1/(1-`rho_BAY'))*prob_HO_14

82   replace    `numP1_1' =       `Y_BAY'
                         *prob_HO_12+       `X_BAY'
                        *prob_HO_13+(1/(1-`rho_BAY'))*prob_HO_14 
if TR<2

83   
84   * get the Fechner index
85   
86   replace `euDiff_P1' = `numP1_1' - `numP1_0'
87   generate double `fP1_BAY' = 1
88   replace `fP1_BAY' = invlogit( `euDiff_P1') if $ML_y1==1 & Phase==1
89   replace `fP1_BAY' = invlogit(-`euDiff_P1') if $ML_y1==0 & Phase==1
90   
91   
92   ***PHASE II BAYES
93   
94       
95   replace `numP2_0' = ((prize_HO_2^(1-`rho_BAY'))/(1-`rho_BAY'

))*prob_HO_02 + ///
96      ((prize_HO_3^(1-`rho_BAY'))/(1-

`rho_BAY'))*prob_HO_03+ (1/(1-`rho_BAY')) * prob_HO_04 
97    
98   
99   replace `numP2_1' = ((prize_HO_2^(1-`rho_BAY'))/(1-`rho_BAY'

))*prob_HO_12 + ///
100   ((prize_HO_3^(1-`rho_BAY'))/(1-`rho_BAY'

))*prob_HO_13+ (1/(1-`rho_BAY')) * prob_HO_14
101   
102   
103       replace `numP2_0' = `Y_BAY' * prob_HO_02 + `X_BAY' * 

prob_HO_03 + (1/(1-`rho_BAY')) * prob_HO_04 if TR<2 
104       
105   replace `numP2_1' = `Y_BAY' * prob_HO_12 + `X_BAY' * 

prob_HO_13 + (1/(1-`rho_BAY')) * prob_HO_14 if TR<2
106   
107    
108   replace `euDiff_P2' = `numP2_1' - `numP2_0'
109   
110   generate double `fP2_BAY' = 1
111   replace `fP2_BAY' = invlogit(`euDiff_P2')  if $ML_y1==1 & Phase==2
112   replace `fP2_BAY' = invlogit(-`euDiff_P2') if $ML_y1==0 & Phase==2
113   
114   
115     * now collect all the pieces
116     
117   gen double `f_BAY'=`fP1_BAY' * `fP2_BAY'
118   
119   
120   *HERE THE MIXTURE
121   
122   replace `lnf'=ln((1-`pi_BAY') * `f_NAI' + (`pi_BAY') * 

`f_BAY' )
123   
124   
125   }
126   
127   end
128   
129   
130   
131   g pi_GRID=.5 
132   
133   replace pi_GRID=.5
134   xi: ml model lf logit_CRRA_P12_MIX2_TR_012 (rho_NAI:NEWchoice=

TR_0 TR_1) (rho_BAY:NEWchoice=TR_0 TR_1) if NEWchoice!=., robust 
technique(dfp) cluster(idNEW) init(.5 .5 .5 .5 .5 .5, copy) 

135   set more 1
136   ml maximize, dif 
137   
138   
139   
140   **************LOOP 
141   
142   log using Dile_2.log, replace 
143   
144   
145   set more off 
146   forvalues i=.181(.001).182{
147   
148   replace pi_GRID=`i'
149   
150   di "************** pi=`i' ***************"
151   
152   xi: ml model lf logit_CRRA_P12_MIX_TR_012 (rho_NAI:NEWchoice=) (

rho_BAY:=) if NEWchoice!=., robust technique() cluster(idNEW) 
init(.5 .5 .5, copy) 

153   set more 1
154   ml maximize, dif 
155   nlcom (rho_NAI: [rho_NAI]_cons) (rho_BAY: [rho_BAY]_cons) 
156   
157   }
158   
159   log close 
160   
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1   ***MIXTURE
2   
3   
4   
5   cap program drop logit_CRRA_P12_MIX2_TR_012
6   program define  logit_CRRA_P12_MIX2_TR_012
7   
8   args lnf kappa_rho_NAI kappa_rho_BAY
9   tempvar rho X_NAI Y_NAI X_BAY Y_BAY numP1_0 numP1_1 numP2_0 

numP2_1  euDiff_P1 euDiff_P2
10   tempvar rho_NAI rho_BAY pi_BAY alpha_NAI alpha_BAY
11   tempvar fP1_NAI fP2_NAI f_NAI fP1_BAY fP2_BAY f_BAY 
12   
13   quietly {
14   
15   *** VAR TRANSFORMATIONS
16   
17   gen double `rho_NAI'=`kappa_rho_NAI'
18   gen double `rho_BAY'=`kappa_rho_BAY'
19   gen double `pi_BAY'=pi_GRID
20   gen double `X_NAI'=2/3
21   gen double `Y_NAI'=1/3
22   gen double `X_BAY'= (2 * 1^(1 - `rho_BAY'))/((-3 + `rho_BAY')

 * (-1 + `rho_BAY'))
23   gen double `Y_BAY'=-(2 * 1^(1 - `rho_BAY'))/(-6 + 11 * 

`rho_BAY' - 6 * `rho_BAY'^2 + `rho_BAY'^3)<2
24   
25   
26   ***NAIVE 
27   
28   ***PHASE I NAIVE 
29   
30   
31   gen double `numP1_0' = 0 
32   replace    `numP1_0' = (((Round-1)/15)^(1-`rho_NAI'))/(1-

`rho_NAI') if Round>1
33   gen double `numP1_1' = ((prize_HO_2^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_12+((prize_HO_3^(1-`rho_NAI'))/(1-`rho_NAI'
))*prob_HO_13+(1/(1-`rho_NAI'))*prob_HO_14

34   replace    `numP1_1' = ((`Y_NAI'^       (1-`rho_NAI'))/(1-
`rho_NAI'))*prob_HO_12+((`X_NAI'^       (1-`rho_NAI'))/(1-
`rho_NAI'))*prob_HO_13+(1/(1-`rho_NAI'))*prob_HO_14 if TR<2

35   
36   
37   * get the Fechner index
38   
39   generate double `euDiff_P1' = `numP1_1' - `numP1_0'
40   generate double `fP1_NAI' = 1
41   replace `fP1_NAI' = invlogit( `euDiff_P1') if $ML_y1==1 & Phase==1
42   replace `fP1_NAI' = invlogit(-`euDiff_P1') if $ML_y1==0 & Phase==1
43   
44   
45   ***PHASE II NAIVE
46   
47   gen double `numP2_0' = ((prize_HO_2^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_02 + ///
48      ((prize_HO_3^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_03+ (1/(1-`rho_NAI')) * prob_HO_04 
49    
50   
51   gen double `numP2_1' = ((prize_HO_2^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_12 + ///
52    ((prize_HO_3^(1-`rho_NAI'))/(1-`rho_NAI'

))*prob_HO_13+ (1/(1-`rho_NAI')) * prob_HO_14
53   
54   
55   replace  `numP2_0' = ((`Y_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_02 + ///
56    ((`X_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_03+ (1/(1-`rho_NAI')) * prob_HO_04 if TR<2 
57    
58   
59   replace `numP2_1' =  ((`Y_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_12 + ///
60    ((`X_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_13+(1/(1-`rho_NAI'))*prob_HO_14 if TR<2
61   
62    
63   generate double `euDiff_P2' = `numP2_1' - `numP2_0'
64   
65   generate double `fP2_NAI' = 1
66   
67   replace `fP2_NAI' = invlogit( `euDiff_P2')  if $ML_y1==1 & Phase

==2
68   replace `fP2_NAI' = invlogit(-`euDiff_P2')  if $ML_y1==0 & Phase

==2
69   
70   
71     * now collect all the pieces
72     
73   gen double `f_NAI'=(`fP1_NAI' * `fP2_NAI')
74   
75   ***BAYES
76   
77   ***PHASE I BAYES 
78   
79   
80   replace    `numP1_0' = (((Round-1)/15)^(1-`rho_BAY'))/(1-

`rho_BAY') if Round>1
81   replace    `numP1_1' = ((prize_HO_2^(1-`rho_BAY'))/(1-

`rho_BAY'))*prob_HO_12+((prize_HO_3^(1-`rho_BAY'))/(1-`rho_BAY'
))*prob_HO_13+(1/(1-`rho_BAY'))*prob_HO_14

82   replace    `numP1_1' =       `Y_BAY'
                         *prob_HO_12+       `X_BAY'
                        *prob_HO_13+(1/(1-`rho_BAY'))*prob_HO_14 
if TR<2

83   
84   * get the Fechner index
85   
86   replace `euDiff_P1' = `numP1_1' - `numP1_0'
87   generate double `fP1_BAY' = 1
88   replace `fP1_BAY' = invlogit( `euDiff_P1') if $ML_y1==1 & Phase==1
89   replace `fP1_BAY' = invlogit(-`euDiff_P1') if $ML_y1==0 & Phase==1
90   
91   
92   ***PHASE II BAYES
93   
94       
95   replace `numP2_0' = ((prize_HO_2^(1-`rho_BAY'))/(1-`rho_BAY'

))*prob_HO_02 + ///
96      ((prize_HO_3^(1-`rho_BAY'))/(1-

`rho_BAY'))*prob_HO_03+ (1/(1-`rho_BAY')) * prob_HO_04 
97    
98   
99   replace `numP2_1' = ((prize_HO_2^(1-`rho_BAY'))/(1-`rho_BAY'

))*prob_HO_12 + ///
100   ((prize_HO_3^(1-`rho_BAY'))/(1-`rho_BAY'

))*prob_HO_13+ (1/(1-`rho_BAY')) * prob_HO_14
101   
102   
103       replace `numP2_0' = `Y_BAY' * prob_HO_02 + `X_BAY' * 

prob_HO_03 + (1/(1-`rho_BAY')) * prob_HO_04 if TR<2 
104       
105   replace `numP2_1' = `Y_BAY' * prob_HO_12 + `X_BAY' * 

prob_HO_13 + (1/(1-`rho_BAY')) * prob_HO_14 if TR<2
106   
107    
108   replace `euDiff_P2' = `numP2_1' - `numP2_0'
109   
110   generate double `fP2_BAY' = 1
111   replace `fP2_BAY' = invlogit(`euDiff_P2')  if $ML_y1==1 & Phase==2
112   replace `fP2_BAY' = invlogit(-`euDiff_P2') if $ML_y1==0 & Phase==2
113   
114   
115     * now collect all the pieces
116     
117   gen double `f_BAY'=`fP1_BAY' * `fP2_BAY'
118   
119   
120   *HERE THE MIXTURE
121   
122   replace `lnf'=ln((1-`pi_BAY') * `f_NAI' + (`pi_BAY') * 

`f_BAY' )
123   
124   
125   }
126   
127   end
128   
129   
130   
131   g pi_GRID=.5 
132   
133   replace pi_GRID=.5
134   xi: ml model lf logit_CRRA_P12_MIX2_TR_012 (rho_NAI:NEWchoice=

TR_0 TR_1) (rho_BAY:NEWchoice=TR_0 TR_1) if NEWchoice!=., robust 
technique(dfp) cluster(idNEW) init(.5 .5 .5 .5 .5 .5, copy) 

135   set more 1
136   ml maximize, dif 
137   
138   
139   
140   **************LOOP 
141   
142   log using Dile_2.log, replace 
143   
144   
145   set more off 
146   forvalues i=.181(.001).182{
147   
148   replace pi_GRID=`i'
149   
150   di "************** pi=`i' ***************"
151   
152   xi: ml model lf logit_CRRA_P12_MIX_TR_012 (rho_NAI:NEWchoice=) (

rho_BAY:=) if NEWchoice!=., robust technique() cluster(idNEW) 
init(.5 .5 .5, copy) 

153   set more 1
154   ml maximize, dif 
155   nlcom (rho_NAI: [rho_NAI]_cons) (rho_BAY: [rho_BAY]_cons) 
156   
157   }
158   
159   log close 
160   



Page 4 of 4

MIxGrid 29/05/18, 10:17

1   ***MIXTURE
2   
3   
4   
5   cap program drop logit_CRRA_P12_MIX2_TR_012
6   program define  logit_CRRA_P12_MIX2_TR_012
7   
8   args lnf kappa_rho_NAI kappa_rho_BAY
9   tempvar rho X_NAI Y_NAI X_BAY Y_BAY numP1_0 numP1_1 numP2_0 

numP2_1  euDiff_P1 euDiff_P2
10   tempvar rho_NAI rho_BAY pi_BAY alpha_NAI alpha_BAY
11   tempvar fP1_NAI fP2_NAI f_NAI fP1_BAY fP2_BAY f_BAY 
12   
13   quietly {
14   
15   *** VAR TRANSFORMATIONS
16   
17   gen double `rho_NAI'=`kappa_rho_NAI'
18   gen double `rho_BAY'=`kappa_rho_BAY'
19   gen double `pi_BAY'=pi_GRID
20   gen double `X_NAI'=2/3
21   gen double `Y_NAI'=1/3
22   gen double `X_BAY'= (2 * 1^(1 - `rho_BAY'))/((-3 + `rho_BAY')

 * (-1 + `rho_BAY'))
23   gen double `Y_BAY'=-(2 * 1^(1 - `rho_BAY'))/(-6 + 11 * 

`rho_BAY' - 6 * `rho_BAY'^2 + `rho_BAY'^3)<2
24   
25   
26   ***NAIVE 
27   
28   ***PHASE I NAIVE 
29   
30   
31   gen double `numP1_0' = 0 
32   replace    `numP1_0' = (((Round-1)/15)^(1-`rho_NAI'))/(1-

`rho_NAI') if Round>1
33   gen double `numP1_1' = ((prize_HO_2^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_12+((prize_HO_3^(1-`rho_NAI'))/(1-`rho_NAI'
))*prob_HO_13+(1/(1-`rho_NAI'))*prob_HO_14

34   replace    `numP1_1' = ((`Y_NAI'^       (1-`rho_NAI'))/(1-
`rho_NAI'))*prob_HO_12+((`X_NAI'^       (1-`rho_NAI'))/(1-
`rho_NAI'))*prob_HO_13+(1/(1-`rho_NAI'))*prob_HO_14 if TR<2

35   
36   
37   * get the Fechner index
38   
39   generate double `euDiff_P1' = `numP1_1' - `numP1_0'
40   generate double `fP1_NAI' = 1
41   replace `fP1_NAI' = invlogit( `euDiff_P1') if $ML_y1==1 & Phase==1
42   replace `fP1_NAI' = invlogit(-`euDiff_P1') if $ML_y1==0 & Phase==1
43   
44   
45   ***PHASE II NAIVE
46   
47   gen double `numP2_0' = ((prize_HO_2^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_02 + ///
48      ((prize_HO_3^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_03+ (1/(1-`rho_NAI')) * prob_HO_04 
49    
50   
51   gen double `numP2_1' = ((prize_HO_2^(1-`rho_NAI'))/(1-

`rho_NAI'))*prob_HO_12 + ///
52    ((prize_HO_3^(1-`rho_NAI'))/(1-`rho_NAI'

))*prob_HO_13+ (1/(1-`rho_NAI')) * prob_HO_14
53   
54   
55   replace  `numP2_0' = ((`Y_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_02 + ///
56    ((`X_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_03+ (1/(1-`rho_NAI')) * prob_HO_04 if TR<2 
57    
58   
59   replace `numP2_1' =  ((`Y_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_12 + ///
60    ((`X_NAI'^(1-`rho_NAI'))/(1-`rho_NAI'))*

prob_HO_13+(1/(1-`rho_NAI'))*prob_HO_14 if TR<2
61   
62    
63   generate double `euDiff_P2' = `numP2_1' - `numP2_0'
64   
65   generate double `fP2_NAI' = 1
66   
67   replace `fP2_NAI' = invlogit( `euDiff_P2')  if $ML_y1==1 & Phase

==2
68   replace `fP2_NAI' = invlogit(-`euDiff_P2')  if $ML_y1==0 & Phase

==2
69   
70   
71     * now collect all the pieces
72     
73   gen double `f_NAI'=(`fP1_NAI' * `fP2_NAI')
74   
75   ***BAYES
76   
77   ***PHASE I BAYES 
78   
79   
80   replace    `numP1_0' = (((Round-1)/15)^(1-`rho_BAY'))/(1-

`rho_BAY') if Round>1
81   replace    `numP1_1' = ((prize_HO_2^(1-`rho_BAY'))/(1-

`rho_BAY'))*prob_HO_12+((prize_HO_3^(1-`rho_BAY'))/(1-`rho_BAY'
))*prob_HO_13+(1/(1-`rho_BAY'))*prob_HO_14

82   replace    `numP1_1' =       `Y_BAY'
                         *prob_HO_12+       `X_BAY'
                        *prob_HO_13+(1/(1-`rho_BAY'))*prob_HO_14 
if TR<2

83   
84   * get the Fechner index
85   
86   replace `euDiff_P1' = `numP1_1' - `numP1_0'
87   generate double `fP1_BAY' = 1
88   replace `fP1_BAY' = invlogit( `euDiff_P1') if $ML_y1==1 & Phase==1
89   replace `fP1_BAY' = invlogit(-`euDiff_P1') if $ML_y1==0 & Phase==1
90   
91   
92   ***PHASE II BAYES
93   
94       
95   replace `numP2_0' = ((prize_HO_2^(1-`rho_BAY'))/(1-`rho_BAY'

))*prob_HO_02 + ///
96      ((prize_HO_3^(1-`rho_BAY'))/(1-

`rho_BAY'))*prob_HO_03+ (1/(1-`rho_BAY')) * prob_HO_04 
97    
98   
99   replace `numP2_1' = ((prize_HO_2^(1-`rho_BAY'))/(1-`rho_BAY'

))*prob_HO_12 + ///
100   ((prize_HO_3^(1-`rho_BAY'))/(1-`rho_BAY'

))*prob_HO_13+ (1/(1-`rho_BAY')) * prob_HO_14
101   
102   
103       replace `numP2_0' = `Y_BAY' * prob_HO_02 + `X_BAY' * 

prob_HO_03 + (1/(1-`rho_BAY')) * prob_HO_04 if TR<2 
104       
105   replace `numP2_1' = `Y_BAY' * prob_HO_12 + `X_BAY' * 

prob_HO_13 + (1/(1-`rho_BAY')) * prob_HO_14 if TR<2
106   
107    
108   replace `euDiff_P2' = `numP2_1' - `numP2_0'
109   
110   generate double `fP2_BAY' = 1
111   replace `fP2_BAY' = invlogit(`euDiff_P2')  if $ML_y1==1 & Phase==2
112   replace `fP2_BAY' = invlogit(-`euDiff_P2') if $ML_y1==0 & Phase==2
113   
114   
115     * now collect all the pieces
116     
117   gen double `f_BAY'=`fP1_BAY' * `fP2_BAY'
118   
119   
120   *HERE THE MIXTURE
121   
122   replace `lnf'=ln((1-`pi_BAY') * `f_NAI' + (`pi_BAY') * 

`f_BAY' )
123   
124   
125   }
126   
127   end
128   
129   
130   
131   g pi_GRID=.5 
132   
133   replace pi_GRID=.5
134   xi: ml model lf logit_CRRA_P12_MIX2_TR_012 (rho_NAI:NEWchoice=

TR_0 TR_1) (rho_BAY:NEWchoice=TR_0 TR_1) if NEWchoice!=., robust 
technique(dfp) cluster(idNEW) init(.5 .5 .5 .5 .5 .5, copy) 

135   set more 1
136   ml maximize, dif 
137   
138   
139   
140   **************LOOP 
141   
142   log using Dile_2.log, replace 
143   
144   
145   set more off 
146   forvalues i=.181(.001).182{
147   
148   replace pi_GRID=`i'
149   
150   di "************** pi=`i' ***************"
151   
152   xi: ml model lf logit_CRRA_P12_MIX_TR_012 (rho_NAI:NEWchoice=) (

rho_BAY:=) if NEWchoice!=., robust technique() cluster(idNEW) 
init(.5 .5 .5, copy) 

153   set more 1
154   ml maximize, dif 
155   nlcom (rho_NAI: [rho_NAI]_cons) (rho_BAY: [rho_BAY]_cons) 
156   
157   }
158   
159   log close 
160   
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Abstract

We often have to deal with uncertainty regarding multiple aspects of the decision problems

we face. This uncertainty may concern, for instance, our earnings, the likelihood to receive

them in a given moment and in a given amount. The aim of this thesis is to contribute to the

growing body of literature around “multi-dimensional uncertainty”, which enlarges the scope

of ambiguity outside the frame of uncertainty about probabilities. It does so by analysing, both

theoretically and empirically. The evidence stemming from a multi-stage experiment in which

subjects have to choose between lotteries whereby amounts of monetary prizes are not always

known, whereas probabilities are always public knowledge. In the experiment, three different

levels of information over some monetary prizes are randomized between subjects. The

experimental evidence undergoes structural estimation exercises: these elicit the individuals’

degree of risk aversion within the frame of a standard constant relative risk aversion (CRRA)

utility function. Furthermore, we investigate whether a change of information, such as the one

we reproduce through the different treatments conditions, translates into a change in behavior

and, in turn, whether and how much this change translates into a significant change in their

measured (CRRA) attitude toward risk. As to the behavioral content of the structural model

for the uncertain payoffs, we propose two alternative specifications, labelled “naive” and

“sophisticated”. The empirical evidence shows a moderate but significant degree of love for

ambiguity, since less information given to subjects results in a lower estimate of their risk

aversion, and, as a consequence, in a stronger attraction toward risk and uncertainty. A mixture

model is implemented to identify the probability of individuals mirroring one behavioral

model or the other, or, saying it differently, the percentage of observations compatible with

either model. We conclude that our subjects have a strong tendency to behave as naive.

Keywords: heterogeneity; risk aversion; ambiguity.
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CHAPTER 1
Dealing with Ambiguity

1.1 Introduction

In conditions of uncertain outcomes, the Savage approach [1] has been traditionally used. In

particular, individuals have been assumed to behave according to a unique subjective prior

belief over all states of the world, and, given this, they would maximize their expected utility.

This decision process clearly neglects the existence of any form of ambiguity, and it prescribes

the way decision makers should deal with uncertain situations.

However, Ellsberg [2] claims that most individuals treat ambiguity differently than objective

risk. In specific, he argues that people exhibit a significant degree of ambiguity aversion,

placing a premium on outcomes for which probabilities are known. This general stylized

fact has been replicated broadly and has important implications for the economics of optimal

contracting, investment choices, and mechanism design.

One possible way to structurally identify ambiguity aversion is to assume that the latter influ-

ences people’s degree of risk aversion (more precisely, the curvature of the utility function),

an approach followed, among others, by Klibanoff et al. [3] and Andersen et al. [4].

in the experiment of Albarrán et al [5], from which our data are from, prizes in the lotteries

are distributed according to the rule 0 < y < x < 15. In what follows, this prize domain

is normalized, for the sake of simplicity, to lay within the unit interval [ 0, 1 ], where $0 is
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0 and $15 is 1. The treatment conditions -randomized between subjects- regard the amount

of information given to them about X and Y . Furthermore, while in the full information

treatment, TR2, people face a normal risky situation and there is no ambiguity influencing

their decision, this is not the case for the partial information and no information treatments

TR1 and TR0, respectively. As we shall see, some ambiguity preference appears from subjects’

choices which is higher the less information is received.

1.2 Econometric strategy

In what follows we shall layout the identification assumptions underlying our structural estima-

tions. Specifically, we need to define our identification strategy with respect to i) subjects’ risk

attitudes and how the uncertain payoffs, X and Y , enter in subjects’ calculations together with

ii) the behavioral model underlying subjects’ optimization program. Regarding the former, as

it will be explained in Section 1.2.1, we shall impose that subjects maximize a VNM CRRA

utility function in all treatments and that, consistently with the TR1 experimental instructions,

Y and X are calculated as first and second order statistics of a uniform distribution defined

over the unit interval. Regarding the latter, that is explained in Section 1.2.2, we shall consider

two alternative behavioral models, defined as naive and sophisticated. In the former, subjects

are assumed to estimate first the uncertain payoffs and then use these expected payoffs in the

expected maximization program; in the latter -consistently with a genuine bayesian approach-

the order of integration is reversed.

1.2.1 Uncertain Payoffs and Risk Aversion

We read the experimental evidence by the way of some structural estimation exercises in

which we elicit the individuals’ degree of risk aversion within the frame of a standard constant

relative risk aversion (CRRA) utility function, which generally performs better in more

complex structural estimations.

The utility function is given below:
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u(�) =

8
><

>:

�1�⇢

1�⇢ if ⇢ 6= 1

ln(�) if ⇢ = 1
(1.1)

where ⇢ is the (CRRA) coefficient which does not depend on �, as formalized by Pratt [?].

As for its economic interpretation, ⇢ > 0 represents risk aversion, ⇢ = 0 risk neutrality and

⇢ < 0 risk loving.

In Figure 1.11, examples of u(�) are presented for different values of ⇢: concave in case of

risk aversion (left) and convex in case of risk loving (right).

Figure 1.1: Risk Aversion Coefficient for both the Naive and Bayesian approaches

In Section 1.3.1 we check whether the change of information implemented by our treatments

conditions generates a change in behavior and, in turn, (whether and) how this change is

converted into a significant change in the measured (CRRA) attitude toward risk.

The uncertain payoffs Y and X are identified as the first and the second order statistics from

a uniform distribution in [ 0, 1 ], where the order statistics of a random sample �1, ...,�n are
1Machina [6]
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defined as the sample values placed in ascending order.

Specifically, let fk(n, z) denote the kth order statistics of n draws, where n = 2 in our case,

of a density function f(·). Let

X ⇠ f2(2, z), Y ⇠ f1(2, z)

where

f2(2, z) = 2 z f(z) F (z), f1(2, z) = 2 z f(z) (1� F (z))

come from the general formula for the the kth order statistics of n draws

n

✓
n� 1

k � 1

◆
f(z) (F (z))n�1(1� F (z))n�k

being z a random draw from a uniform distribution and being

f(z) = 1 is the p.d.f. of z, F (z) = z is the c.d.f of z.

While this is certainly true for TR1 subjects -since they know the characteristics of the

random generation process that yields the uncertain payoffs- we impose the same statistical

model for subjects in TR0, assuming they had this information. As we said, this is purely

an identification assumption, as there is no possibility to test whether this is the true for

expectations in TR0 about X and Y distribution, or whether subjects in TR0 consider a

different type of distribution. On the other hand, it is highly probable that TR0 subjects

will heuristically and automatically assume such a distribution of the payoffs, as it occurs in

Laplace’s well known “principle of insufficient reason”. In any case, what is important here is

that -thanks to this assumption- our structural model is able to estimate treatment effects, to

such an extent that we are able test a null hypothesis in which CRRA in both TR0 and TR1 is

the same. Since subjects have been randomized within treatments, a significant change in the

CRRA coefficient between TR0 and TR1 has to be interpreted as a genuine treatment effect

due to a change in information.

In the maximum likelihood function routine, ⇢ is analyzed through the individual choices

subjects make, which are expressed in function of the treatments, to identify how a different

level of information influences people’s risk attitude.

Phase 1 observations are treated as a series of individual and independent choices between a
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certain outcome and a risky lottery, whose expected value is computed and compared to the

sure prize.

Instead, phase 2 data are used as a sequence of binary choices between lotteries. TR2 players

know the true X and Y , so their ⇢ derived from a situation with no ambiguity. On the other

hand, TR0 and TR1 players compute the lotteries expected values and variances, as function

of the X and Y they figure out, and then the Ui and the �U .

A logit function is used to solve the usual binary choice model, explaining the P (k = 1) =

P (�U > 0) which is :

P (k = 1) =
e�U

1 + e�U
if L1 is chosen

P (k = 1) =
e��U

1 + e��U
if L0 is chosen.

The Fechner model is used, where people heterogeneity is expressed as function of a random

error in the CRRA utility computation, i.e. ✏ ⇠ N(0, �2). In the whole of estimates we cluster

all the observations made by the decisions of the same individual.

1.2.2 Identification of the Behavioral Model

Regarding the behavioral content of the structural model for the uncertain payoffs, we consider

two alternative specifications, labelled as “naive” and “sophisticated”, respectively. A naive

decision maker figures out a point estimation of the unknown payoffs X and Y , starting with

the information that they are draws from a uniform distribution in [ 0, 1 ]. This means that

the E[X] and the E[Y ] are computed first and then plugged into the CRRA expected utility

function to be maximized. Specifically:

E[ X ] =

Z 1

0

f2(2, z) dz =
2

3

E[ Y ] =

Z 1

0

f1(2, z) dz =
1

3

where fk is the k-th order statistics of a uniform distribution in [ 0, 1 ].

Finally, the utility of a lottery k is:

U(Lk) = u(E[ Y ]) pky + u(E[ X ]) pkx + pk1
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given that the first price is 0, so u(0) = 0, and the last price is 1, so u(1) = 1.

A "sophisticated" decision maker, instead, will proceed based on a true bayesian updating,

forming a prior distribution over the X and the Y , and then calculate the expected utility from

these densities. Specifically:

U(X) =

Z 1

0

u(z)f2(2, z) dz;

U(Y ) =

Z 1

0

u(z)f1(2, z) dz,

where f1(·) and f2(·) are the first and second order statistics of a uniform distribution in

[ 0, 1 ].

Finally, the utility of Lk, U(Lk) equals to

U(Lk) = U(X) pkx + U(Y ) pky + pk1

given the first price is 0, so u(0) = 0 and the last price is 1, so u(1) = 1.

In conclusion, the two models differ due to the order of integration.

1.3 Results

The "atom" of our analysis is the decision made by subjects and our research question is

how their ⇢ varies as function of the amount of information they receive, depending on their

treatments, and how this process differs in the two distinct approaches, the naive and the

bayesian one. We also query whether one model is more used than the other.

1.3.1 Treatment effects

Figure 1.2 reports the result of the structural estimation of the ⇢ as function of the different

treatments, for both the two approaches.

Our empirical evidence shows a certain degree of love for ambiguity, as the less information

given to the subjects, the lower their risk aversion, and, consequently, the bigger their attraction

toward risk and uncertainty. Moreover, the risk aversion coefficient estimated for TR0 is

significantly lower than that estimated in TR2, although there is no statistically significant

12



difference between estimated CRRA coefficients in TR0 and TR1. These findings are -

somewhat- in contradiction with the common wisdom of the literature, although they are

consistent with other experimental literature that applies similar elicitation techniques as ours,

such as Andersen et al [4].

When comparing our two behavioral models, as shown in Table 1.1, the estimated likelihood

of the naive approach is higher than that of the bayesian. This suggests that, based on our

data, the naive approach approximates better subjects’ decision rules.

Afterwards, we would like to identify the percentage of the subjects using each of the two

models, i.e. the probability of them behaving either in a naive or a bayesian way.

Table 1.1: Risk Aversion Coefficient for both the Naive and Bayesian approaches
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1.3.2 Naive or Sophisticated?

Up to now, we identified two different approaches individuals may follow to make their

choices. The following step is to implement a mixture model to identify the probability of

each observation being compatible with either model.

We use a binary mixture model, since a finite number of types, the naive and the bayesian, are

assumed.2

The main advantage of this approach that the assumption of different subjects operating

according to a single model is avoided. The behavior of a typical subject is often traced back

to the average behavior, but it is quite possible this is not an accurate representation of every

subject under study.

A possible answer to this issue could be the Average Treatment Effect, ATE, where a specific

treatment effect is recognized to each individual. All subjects specific treatment effects

are then assumed to vary randomly around an average, the ATE, i.e. the parameter being

estimated.

If the distribution is bell-shaped and symmetric, the ATE will provide a sensible measure of

the affect of the treatment. In other words, the ATE measure is relevant when the treatment

has universal applicability so that it is reasonable to consider the hypothetical gain from

treatment to a randomly selected member of the population.

However, this is not always the case, and this ATE can end up being far away form the actual

treatment effect of any single subject.

The approach adopted by a finite mixture model is presented below. A total number of types

in the population is decided, and a specific behavioral model is assigned to each of them.

The parameters of these various models are estimated altogether, along with the mixing

proportions.

In particular, we generate the probability ⇡BAY , namely the probability of our subjects acting

as bayesian in each of their decisions.

We tried to estimate the ⇢NAI and ⇢BAY , i.e. the risk aversion coefficients for both the

approaches, and ⇡BAY altogheter, but the likelihood function did not converge. Indeed,

2In case of an "infinite" mixture model, a continuous variation in some parameters indexing individual type
is assumed, as happens for random coefficient models or random effect models
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the likelihood functions of our models are very close. For this reason, we estimated this

probability numerically, using a grid loop.

Subsequently we let ⇡BAY moving inside a grid (0, 1), to finally choose the value that

maximizes the likelihood function.

A possible drawback of this numerical procedure is the fact that the ⇡BAY standard error

cannot be estimated, as it is shown in Figure 1.3. On the other hand, we can justify this

statement by saying that our likelihood function is not function of it, given that it is just a

product of probability.

This numerical computation demonstrates that our subjects have a strong tendency to behave

as naive, given the estimation result of ⇡BAY = 0.2.

Figure 1.2: Mixture Model with ⇡BAY = 0.2
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