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Introduction

The scope of this paper mainly concerns the investigation and subsequently ex-

ploitation of absolute and relative price discrepancies in the new and attractive

Cryptocurrency market, a volatile and fragmented space characterized by a multi-

tude of exchanges and virtual issued currencies, the former represented by centralized

and decentralized trading platforms, dislocated in several areas of the globe, that

operate as market makers or matching systems, while the latter are digital electronic

systems whose technological development relies on the academic works of modern

Cryptography and Network security.

Chapter 1 covers an analysis of the cryptocurrency market from an historical, techno-

logical and statistical point of view; firstly, the Distributed ledger technology (DLT),

the infrastructure upon which Cryptocurrencies rely, is introduced and followed by a

classification of the digital cryptographic assets according to a set of parameters and

metrics. Afterwards, basic statistics of the main cryptocurrencies are provided, with

a major emphasis over Bitcoin network, the first digital and unregulated currency

system to appear in 2009. Graphical methods and statistical tests are then outlined

to assess the presence of Normality in daily returns distribution of a group of se-

lected cryptocurrencies, chosen among the ones with most liquidity and historical

data. The results possess fundamental implications for risk-management applica-

tions, as Value at risk (VaR) and Expected Shortfall (Es) computations.

Chapter 2 briefly reviews academic literature over arbitrage phenomena and market

completeness, with a focus on the Law of One Price and No-arbitrage principles, ap-

plicable both to absolute and relative pricing theories. With regard to relative asset

price misalignments, a popular type of ”relative value” arbitrage and market neutral

strategy is introduced, namely the pairs trading, a quantitative investment strategy

extensively researched and experimented in a broad range of traditional markets

since mid-1980s, when a group of mathematicians and computer scientists at Mor-

gan Stanley were the first to formally theorize the underlying statistical property

of mean reversion. Pairs trading seeks to exploit relative price deviations from an

equilibrium level between components of a pair through the activation of matched
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long and short positions, and thus make a profit from market inefficiencies (rela-

tive value arbitrage), while hedging against market risk (market-neutral: absence

of correlation between the strategy expected return and the market ): the spread,

measured as the price difference of the paired components, should possess the prop-

erty of mean-reversion or stationarity; despite short-term deviations, where positions

are opened in the pair (long the undervalued asset and short the overvalued one),

its long-term behavior should converge to an average value or equilibrium term,

where they are subsequently closed. Univariate pairs trading frameworks, used to

identify the potential pairs, are properly investigated: Distance and Cointegration

methodologies are exposed, along with the series of statistical tests and estimation

procedures.

First section of Chapter 3 examines then absolute price discrepancies of digital

coins between exchange platforms and the subsequent occurrence of simple arbi-

trage strategies. The fragmentation of the cryptocurrency space in more than two

hundreds trading platforms, characterized by different trading volumes and buying

pressure, encourages this kind of analysis. Hence, cryptocurrencies and exchanges

have been ordered and selected on the basis of determined metrics, represented by

trading volumes (liquidity) and extension of the historical data for the former, and

a geographic order for the latter, with the intent of choosing the most representa-

tive platform for macro-region. The profitability of such risk-less strategies may be

eroded by consistent transaction costs and hurdles.

Therefore, second section of the chapter shifts the focus to exploitation of rela-

tive price discrepancies inside the same exchange platform, in order to minimize

many of the listed transaction costs and risks, more specifically, the execution time

and the complex system of fees: Deposit, withdrawal and trading fees. Pairs trad-

ing strategy is subsequently investigated: cointegration approach is used to identify

potential pairs. The analysis is restricted to few cryptocurrencies: Bitcoin, Litecoin,

Dash, Monero and Ethereum. An explanation of the choice of such small sample

relies on the lack of liquidity that interests the majority of other minor cryptocurren-

cies; moreover, Litecoin, Dash, Monero were all forks of the original Bitcoin code,

with whom share some network features and technological developments. Hence,

considering the strict connection with BTC, it is plausible to explore the evolution

of relative price dynamics. Unit root rests are performed to check stationarity, and

Engle-Granger two-step approach is adopted to form the pairs. Finally, once trading

rules have been delineated, an automatic trading system is activated to capture de-

viations of the formed spread, and in-sample and out-of-sample performance metrics

of the strategy are reported, along with final discussions.
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Chapter 1

The Cryptocurrency Market

1.1 Intro

The year 2017 has experienced an exponential growth of the Cryptocurrency mar-

ket, that reached a total capitalization of 800 billion dollars in the 4th quarter.

With the introduction of the Bitcoin Futures market by the Chicago Board Options

Exchange (CBOE) and the CME Group Inc (CME.O)1, a consistent decline of the

total market value has followed what has been defined in the academic world as one

of the largest asset bubbles of all times 2 (Figures 1.1, 1.2).

Since the release of Bitcoin protocol in 2008 3, an increasing number of projects and

initiatives have entered the new and attractive ecosystem, build upon mathematical

and probabilistic models, mainly with regard to Cryptography and Network tech-

nologies.

At November 2018, more than 2000 cryptocurrencies have been traded on the sev-

eral Crypto-exchanges located in all the areas of the Globe, setting an all time high

record; a trading mania has hit several western and eastern inhabitants and enthu-

siasts, including third world countries; according to academic papers and financial

analysts, this fear to be left out the market (FOMO) and the rise of trading bots

have contributed to the rising prices of all the main cryptocurrencies.

Hileman and Rauchs (2017) have documented as more than 90% of all cryp-

tocurrencies and tokens have copied the original code of Bitcoin, thus not providing

any innovation or utility, hence raising questions about the real value that could

justify their quotation.

Valuation remains a sensitive argument: the traditional valuation approaches have

reveled not to be appropriate; despite a part of the academic world denies the pos-

1respectively on December 10 and 17, 2017
2Nouriel Roubini and Robert Shiller positions
3Satoshi Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2018
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sibility of a valuation model for cryptocurrencies, suggesting the absence of every

intrinsic value, some attempts have been made: Hayes (2015) has provided a cost

of production model for the valuation of Bitcoin, while Pagnotta and Buraschi

(2018) have addressed the valuation topic in a new type of production economy: a

decentralized financial network.

The rising attention of the media and the public to the new sector has been accom-

panied by a series of negative and opaque events, including several hacks and fund

losses, as the Mt Gox exchange hack, market manipulations, insider trading events,

Crypto-exchanges disputable behaviors, that increased the climate of uncertainty

and doubt around a sector not fully understood by the regulators and agencies yet.

Figure 1.1
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1.2 A glimpse of the Distributed Ledger Technol-

ogy

The term ledger generally refers to the collection and classification of a series of

accounts, usually financial and economic information related to business activities,

stored in a double-entry bookkeeping system. Since their appearance in the Middle

Age, a common factor of all ledgers have been the fundamental presence of a trusted

party that acted as gatekeeper in order to protect the validity and originality of the

data. Since then, all ledgers created and adopted in every field of the human society

have been centralized; but centralization of a system presents different types of risk,

the most important about the presence of a single point of failure, the record-keeper

itself 4. Conversely, a distributed ledger, or shared ledger, is a database spread and

synchronized in a large network of participants, called Nodes, that possess a shared

copy of the digital data, and, more importantly, no ”central” server or administrator

is required.

The network is peer-to-peer, to remark the equality status of each member in the

execution of the tasks, and requires a consensus, a set of rules and agreements, to

ensure the replication of the data. The distributed ledger technology (DLT) is both

the sum of the protocols and supporting infrastructure that allow Nodes in different

locations to propose and validate transactions and update records in a synchronized

way across the network 5 (Figure 1.3).

Figure 1.3. Comparison of Systems. Source Baran (1962).

4Loss and counterfeit of data due to carelessness of natural events
5Morten Bech, Rodney Garratt, Central bank Cryptocurrencies, International banking and fi-

nancial market developments, BIS, Quarterly Review, September 2017, 55-67
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As a result, the DLT provides an irrevocable and auditable transaction history 6,

invulnerable to censorship and exclusion, counterfeit and loss of data .

The theorization of distributed computing systems in the 1980s opened a series of

questions and doubts on their practical realization and ability to ensure trust and

consensus between the participants of the network, a problem known as ”Byzantine

fault tolerance” 7.

Chaum (1984), Chaum et al. (1990), Okamoto et al. (1992) and Wei

(1998) were the first attempts at solving the mathematical problem and providing

a concept of Cryptocurrency, a virtual currency, or digital asset, that heavily relied

on the use of Cryptography to secure transactions.

On october 31, 2008, the release of a paper called ”Bitcoin: A Peer-to-Peer Elec-

tronic Cash System” by an obscure author named Satoshi Nakamoto revealed to

be the optimal solution so far, providing a version of the DLT based on a series of

chained blocks with the use of cryptography, i.e., the blockchain.

A blockchain is a tamper-proof, shared digital ledger that records transactions in a

decentralized peer-to-peer network 8 and reaches a decentralized consensus through

a Proof-of-Work algorithm 9 (POW).

It’s the core technology underlying Bitcoin, that makes use of pre-existing technolo-

gies and applications:

1. A P2P network

2. Public Key Cryptography (i.e. ECDSA – the Elliptic Curve Digital Signature

Algorithm)

3. Cryptographic hash functions (i.e. SHA-256 and RIPEMD-160)

At the same time the blockchain is only a part of Bitcoin, the latter not just iden-

tifiable a currency or an asset but rather a collection of concepts and technologies

that form the basis of a digital money ecosystem10. A summarized denition of BTC

would make use of one word: Code.

Bitcoin is code, an open-source and programmable code, and it is decentralized,

it does not rely on any Authority; this aspect is its truly advantage with respect

6Jan Loeys, Joyce Chang Decrypting Cryptocurrencies: Technology, Applications and Chal-

lenges, JP Morgan perspectives (2018)
7Leslie Lamport, Marshall Pease, Robert Shostak (1982)
8Andreas Antonoupolous, Mastering Bitcoin, (O’relly, 2017)
9Other versions use different algorithms as POS and POA

10Andreas Antonoupolous, op. cit.
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to traditional systems, it can be upgraded, it can evolve in the time, it is a living

organism nourished by the work of hundreds of developers and thinkers; this is also

the reason why it has been proven to be difficult for regulators all over the world to

categorize it under specific categories: currency, asset, or commodity ?

Probably it is neither of them, or will it become in the future.

The present work does not have as goal the research whether Bictoin could pos-

sess all of the traits of money or assets; different academic studies have dealt with

the argument: Lo and Wang (2014), White (2014), Mittal (2012), Ametrano

(2016), Yermack (2015), Baur et al. (2018).

The Blockchain is a particular realization of the DLT, but others have been the-

orized in the years and currently tested, as the Tangle, a directed acyclic graph

(DAG) used to store transactions for the internet of things (IoT),i.e., the infrastruc-

ture of Iota, a new generation and distributed cryptocurrency. The tangle dismisses

the need of mining activity, the latter necessary to confirm and validate transactions

of the blockchain, that raised concerns about the consumption of electrical energy
11 and effective decentralization of the network after the creation of concentrated

mining pools. 12

The elimination of the mining process allows users to transfer digital assets without

the necessary payment of transaction fees, a nice feature in the field of micropay-

ments and internet of things.

LITERATURE. Since 2014 the academic literature on the DLT and cryptocur-

rencies has lived an exponential growth; several studies from universities, research

centers and central banks have analyzed their properties and mathematical foun-

dations, their regulatory collocation and social implications, and their potential

applications for every work sector, from trade finance to digital identity and voting

system (Figure 1.4 in the appendix A):

Luther (2013) analyzes the network effects and switching costs of the adoption

of alternative currencies and technologies, while Catalini and Gans (2016) prove

the reduction of verification and networking costs improve innovation.

11Camilo Mora, Randi L. Rollins, Katie Taladay, Michael B Kantar, ”Bitcoin emissions alone

could push global warming above 2°C”, Nature Climate Change volume 8 (2018), 931-933
12Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, Emin Gün Sirer, Decen-

tralization in Bitcoin and Ethereum Networks, Cornell university, 2018
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Glaser and Bezzenberger (2015) focus on how Decentralized consensus systems

and smart contracts provide the technological basis to establish predefined, incor-

ruptible protocols to organize human behavior and interconnection. Davidson et

al. (2016) discuss the implications of the DLT on the current Governance systems.

Hileman and Rauchs (2017) present a systematic and comprehensive picture

of the rapidly evolving cryptocurrency ecosystem, illustrating how cryptocurrencies

are being used, stored, transacted and mined.

Rohr and Wright (2017) investigate the leverage the power of a blockchain and

the Internet to facilitate capital formation and the Democratization of Public Cap-

ital Markets. Malinova and Park (2017) and Khapko and Zoican (2017)

analyze the implementation of DLT in financial markets and its effects on settle-

ment times, market makers’ strategies, investor trading behavior and welfare, and

trading costs. Löber and Houben (2018) focus the attention on potential inte-

gration of the DLT with central banking and introduction of Central bank digital

currencies (CBDCs).

Kroll et al. (2013) examine the mining mechanism of public blockchains, linking

it to game theory and the presence of Nash equilibrium.

10



1.3 Classification of Cryptocurrencies

As stated in the previous section, a first classification of cryptocurrencies can entail

the type of distribute ledger technology; most of cryptocurrencies and tokens are

linked with blockchains, each one with peculiar features regarding the dimension of

the blocks, the number of transactions per block or the mining algorithm (Proof of

work, Proof of stake and Proof of Authority algorithms).

Others, as Iota or Ripple, are based on different infrastructure, the Tangle the for-

mer, a common shared ledger the latter; technically, Ripple can not be described as

cryptocurrency, but rather a protocol, a real-time settlement system and currency

exchange that supports fiat currencies and the Xrp token, the native token of the

network, to enable instant transactions between parties at insignificant fees.The to-

ken Xrp was issued at its creation and then distributed, it is not minable, a different

paradigm with respect to Bitcoin and other cryptocurrencies.

A second subdivision can be applied to the nature of decentralization of these infras-

tructures and protocols : Decentralized, or permissionless blockchain, as the Bitcoin

chain, or centralized and permissioned, as the Rypple one; the protocol could be

open source, as most of the crypto code, or closed source (Hashgraph). This dis-

tinction resembles the ancient separation between the Internet and the Intranet,

the former represented by permissionless protocols, while the latter by permissioned

ones. This level of classification could reveal of particular interest in the complex

and new field of valuation models, as decentralization, with the elimination of the

single point of failure, could be considered a feature that brings utility while solving

third party risks, failures, technical issues, that characterizes the modern and frag-

mented financial infrastructures.

A final subdivsion could entail the nature and purpose of cryptocurrencies, based on

several criteria; different studies cite as possible principles the level of governance,

the issuance and distribution mechanism, the transaction processing and the audit

system 13; different combinations of these features define specific types of digital

assets. A digital asset is essentially any type of data in binary format; it is scarce

as it admits a defined owner, or group of owner, in each time state.

A large part of cryptocurrencies is primarily used as medium of exchange with the

use of its own dedicated blockchain.

13Pavel Kravchenko, ”The periodic table of cryptocurrencies”, Coindesk, January 28, 2018
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Conversely, a token can be described a special type of virtual currency, an ac-

counting unit that represents the owner’s balance in a designated asset or utility
14; tokens can be build on top of other cryptocurrencies’ blockchains to create and

execute smart transactions and contracts, or decentralized applications (Dapps), as

happens on the Ethereum blockchain.

A naive codification would be of the following list:

• Cryptocurrencies, virtual fungible currencies not issued by a central au-

thority that make use of cryptography to exchange value between users; their

primary goal is to serve as mean of payment in a secure and decentralized

system.

• Platform currencies, virtual currencies that allow the creation and execu-

tion of smart contracts ,Dapps tokens and collectibles on the blockchain to

perform more complex and structured transactions, not necessarily financial

transfers; The Ethereum network is the most known platform, but doubts and

concerns have recently arose on the efficacy and security of its smart contracts
15

• Security tokens, tradable tokens that represent assets or securities.

• Utility tokens, tokens that provide future access to goods & services launched

by the project; they are not intended for investment.

• Crypto-collectibles, cryptographically unique and non-fungible digital as-

sets

• Crypto-fiat currencies, i.e. stablecoins, are cryptocurrencies pegged 1 : 1

to Fiat currencies as the US dollar or the Euro; their rise has followed the

exceptional volatility of crypto prices to meet investor’s demand of a stable

and fast instrument connected instantly with the market but that at the same

time could preserve the properties of unit of account and store of value.

A more detailed classification has been elaborated by Thomas Euler (2018), who

considers five dimensions under which order the digital cryptographic assets: Pur-

pose, Utility, Legal status, Underlying value and Technical layer.

14Pavel Kravchenko, ”The periodic table of cryptocurrencies”, Coindesk, January 28, 2018
15Lucianna Kiffer, Dave Levin, Alan Mislove Analyzing Ethereum’s Contract Topology, 2018
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However, the large part of cryptocurrencies revealed to be a clear copy of Bit-

coin code, not providing any substantial innovation to the field but focusing on the

different features of the network, as a different issuance and distribution scheme,

or block time 16. Most of the times these alternatives to the original conception

of the blokchain proved to possess evident security flaws and not to be capable of

preventing attacks to the network, a problem noted as ”51% attack” that could

enable the double spending of the digital currency. Actually, an article published by

Shanaev et al. (2018) brings the evidence that the majority of such attacks are

anticipated by the activation of Pump and Dump schemes with the final result of

prices and volumes manipulation. The authors deploy an event study methodology

to assess the influence of 51% attacks to cryptocurrency prices and report, among

the various results, that the negative price response, in the order of 10-15% loss, is

robust in various event windows. Moreover, prices of the attacked cryptocurrencies

do not recover to pre-attack levels one week after the event, and evidence of insider

trading prior the attacks is confirmed by the analysis of abnormal positive returns

antecedent few days the event.

This analysis narrows the number of cryptocurrencies that could bring a real utility

to traditional systems, as an effective and proved level of decentralization and secu-

rity without the service of trusted third parts.

16 Garrick Hileman, Michel Rauchs, Global cryptocurrency benchmarking study, University of

Cambdridge, 2017
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1.4 Main Statistics

Cryptocurrencies have the unique feature to be exchangeable at every day of the

week, with no closing times as in the traditional markets.

Table 1.1 represents the list of most capitalized cryptocurrency at the date of Jan-

uary 16, 2019; the comparison with snapshots of the market at previous dates would

demonstrate how new cryptocurrencies have emerged in the last years, or months,

and fast can be the process to scale rankings.

Bitcoin is the first cryptocurrency to appear in 2009, with the release of the first

client on the 3rd of January; it is the most liquid and traded cryptocurrency in the

entire market; in fact, it is possible to exchange it inside more than two hundred

exchanges, located in all the areas of the globe, from the United States of America

to South Korea, including Europe and third world countries.

Table 1.1: Top 15 cryptocurrencies by market capitalization

Rank Name Symbol Price Marketcap

1 Bitcoin BTC $3.664,10 $64.066.913.601

2 Ripple XRP $0,331296 $13.596.504.735

3 Ethereum ETH $124,31 $12.978.577.703

4 Bitcoin cash BCH $129,47 $2.274.707.084

5 EOS EOS $2,46 $2.226.360.399

6 Stellar XLM $0,107665 $2.059.314.945

7 Litecoin LTC $31,86 $1.913.065.27

8 Tron TRX $0,024993 $1.665.804.085

9 Bitcoin SV BSV $78,64 $1.381.638.153

10 Cardano ADA $0,044904 $1.164.232.549

11 IOTA MIOTA $0,308556 $857.641.044

12 Binance coin BNB $6,12 $790.630.750

13 Monero XMR $45,68 $763.933.011

14 Dash DASH $71,89 $616.199.372

15 Nem XEM $0,056754 $510.785.606
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Figure 1.5 shows Bitcoin trading volumes per currency, starting from January

2016; it is clearly visible the huge decline of Bitcoin trading in the Chinese currency

after the new regulations and restrictions imposed by the Chinese Authorities in

2017; at the same time, there has been registered a consistent increase of the Btc-

to-stablecoin trading instead to fiat currencies, after the broader adoption by the

exchanges of new issued covered , or partially covered, stable cryptocurrencies tied

to the Us dollar.

Figure 1.5

Notes: Bitcoin Trading volumes by currency. Data extracted from Bitcoinity with the

adjunt of Korean exchanges data from Cryptocompare api

Figure 1.6 illustrates Bitcoin price evolution in the last three years; Btc price expo-

nentially surged in 2017, when it registered an impressive annual growth rate equal

to 1268% and reached an all time high of $20, 000 in December, and then declined

at the start of 2018, concurrently with the introduction of Bitcoin Futures, to mark

an annual price fall around 73% and maximum drawdown of 81.53% . However, it

has not been the first year that the cryptocurrency experienced this extreme level

of volatility, as happened in 2013, when it passed from $13.28 to the all time high

of the period of $807.78, or in 2011, when suffered a price loss of 90% after the hack

of Mt Gox exchange.

Since its inception, BTC has been the cryptocurrency with the highest market cap-

italization, property that still holds at the date of writing, January 2019, as it is

possible to see from Figure 1.7 (Appendix A), that shows the evolution of its dom-

inance, expressed as percentage of the total market capitalization.
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Figure 1.6. Bitcoin Price
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representation

In the years a growing debate has considered the possibility for other cryptocur-

rencies to overtake its market cap and acquire the special status of symbol and

brand of the market, situation, called the Flippening phenomenon, that has never

occurred yet but was very close to occur on June 20, 2017, when Ethereum capital-

ization reached near the 30% of the total market cap and BTC one was declining

to 37%. Figures 1.8, 1.9, 1.10, 1.11, 1.12, 1.13 (Appendix A) display the main

statistics of BTC network: the monetary emission, the evolution of average trans-

action fees, the growth of hash rate, the distribution of mining pools and the energy

consumption index.

Bitcoin monetary emission is embedded in the protocol, that implies a maximum is-

suance of 21 million units of the currency, following a geometric distribution scheme;

in fact the number of Bitcoins generated per block by users, i.e. the miners, halves

every 210000 blocks, approximately 4 years. This algorithm makes BTC a currency

with finite supply, hence with deflationary properties, an opposite paradigm with

respect to the traditional inflationary fiat currencies.

However, it is not reasonable to exclude ex ante a possible review of the issuance

scheme, as suggested by the same developers who follow the progress of the project.

With the current scheme, once all the units will be mined, the protocol entails veri-

fiers of the network will receive as only source of income the transaction fees payed

by users, thus maintaining the reward incentive in order to validate the transactions.
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BTC transactions are usually confirmed in 60 minutes, but in times of elevated traf-

fic they can take longer times, even days. A higher payment of the fees speeds the

confirmation process; during the exponential rise of its price at the end of 2017, fees

reached the threshold of $80 per transaction, due to the increased demand of daily

transactions.

This unsustainable level of fees began to decline with the adjunct of new features to

the protocol, as the ”batching”, the combine of multiple transactions into a single

operation to reduce the space and cost into the limited block space, and the ”Seg-

regated witness” update (Segwit), a change in the transaction format that reduced

its cost of a factor of ten to one hundred times. Currently, Segwit is adopted by the

majority of cryptocurrency exchanges.

Moreover, a second reason of this decline can be traced back in the reduction of the

total number of daily confirmed transactions, that passed from a daily average of

500000 to 250000.

Another interesting statistics of bitcoin network regards its hash rate, the mea-

surement unit of computing power needed to solve the mathematical problems for

security reasons. In the years it has showed an exponential growth, touching the all

time high level of 60 trillion of hashes per second in August,2018. A higher number

of miners and mining pools determines as primary effect the growth of the network

hash rate and the adjustment of the difficulty mechanism, the latter a measure of

the effort needed to find a new block, to maintain the extraction time of each block

unchanged. The increase in the difficulty consequently complicated the computing

costs and led to a progressive concentration of the hashing power, distributed to

fewer and fewer mining pools, thus raising concerns about the effective decentral-

ization of the entire network, highlighted by Gencer et al. (2018). For all 2018,

only 5 Bitcoin mining pools accounted for more than 60% of the total hashrate dis-

tribution, and the scenario has not evolved since.

The electricity consumption needed to perform the mathematical computations

could have powered 6,7 millions of U.S households in 2018 or satisfied the elec-

tricity demand of a country as Austria, approximately 70 TWh per year, and, even

though it has nearly halved at the end of the same year, it is estimated to grow more

in the years. The creation of Bitcoin Energy Consumption index, that tracks the

annual amount of electricity consumed by miners, has helped to raise the conscious-

ness on the unsustainability of the Proof of Work algorithm, certified by scientific

studies (Mora et al. (2018)).
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Figures 1.14, 1.15, 1.16 display the main statistics of other principal cryptocur-

rencies, Ethereum, Litecoin, Ripple, Dash, Monero and Stellar Lumens, and their

comparison with Bitcoin.

The analysis of daily returns for this group of cryptocurrencies exhibits the presence

of extreme outliers; in fact, Cryptocurrency daily returns are very high, as their

volatility, in comparison to traditional financial markets. Therefore, differences be-

tween simple and log daily returns are visible when the ratio between consecutive

prices is far from one, a situation that occurred more than once for some cryptocur-

rencies, as Ripple, or Stellar Lumens, that presented, at a daily frequency, returns

above the unity (100%). Figure 1.17 plots the comparison of daily log and simple

returns for Bitcoin for the period 01/2016-12/2018; the same computations have

been executed for the other main cryptocurrencies with at least three years of his-

torical data (Figure 1.18, Appendix A).

Figure 1.17. Bitcoin log vs simple returns
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Normality assumption of returns distribution can be assessed with graphical meth-

ods and statistical tests. The qualitative approach, based on the comparison of the

sample data histogram to a normal probability curve (Frequency distribution His-

togram) or sample data quantiles to Normal ones (Quantile-Quantile plot), rejects

Normality in favor of Leptokurtosis.

Cryptocurrency daily log returns are not normal but Leptokurtic, as they are more

peaked towards the mean, i.e., higher Kurtosis than Normal distribution, and dis-

play evident fatter tails. In this sense, the Q-Q plot is an useful tool to highlight

large deviations in the tails from the normal distribution (heavy tails). Moreover,

some cryptocurrencies show evident signs of Skewness. Figure 1.19, 1.20 report

the Frequency distribution Histogram and Q-Q plot of the daily log returns for Bit-

coin ( Figure 1.21, 1.22 for the other cryptocurrencies, Appendix A).
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Figure 1.19. Frequency distribution Histogram of Bitcoin daily log returns
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Figure 1.20. Quantile-Quantile plot of Bitcoin daily log returns

-4 -3 -2 -1 0 1 2 3 4

Standard Normal Quantiles

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Q
u
a
n
ti
le

s
 o

f 
B

tc
 s

a
m

p
le

QQ Plot of Sample Data versus Standard Normal

The presence of Leptokurtosis in a distribution of values has relevant effect on risk

management activities, likewise Value at Risk (VaR) and Expected Shortfall (ES)

computations. As a result, extreme levels of returns are more likely to occur than

VaR estimates, based on the assumption of Normality, would indicate. Thus, there

would be an underestimate of potential risk coming from extreme outliers. Borri

(2018) uses the CoVaR risk-measure to estimate the conditional tail-risk for bitcoin,

ether, ripple and litecoin and finds that these cryptocurrencies are highly exposed
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to tail-risk within cryptomarkets; as a consequence, single cryptocurrencies could be

exposed to tail events that negatively impact portfolios with large negative returns.

The empirical findings of non-normality in the distribution of daily log returns are

confirmed by significance tests: Jarque-Bera and Kolmogorov-Smirnov Normality

tests both reject the null hypothesis that the sample data follow a Normal distribu-

tion; Matlab version of the test returns in both cases the result h = 1, rejection of

the null hypothesis. Table 1.2 contains the results of the test.

Table 1.2: Normality tests

BTC ETH XRP LTC DASH XMR XLM

J-B test 1 1 1 1 1 1 1

K-S test 1 1 1 1 1 1 1

Notes: Results of Jarque-Bera and Kolmogorov-Smirnov tests to assess Normality

Other distributions should be considered in the analysis to obtain the one that could

best fit to the data, with resulting effects for investment and risk-management activ-

ities, as Normal distribution clearly do not characterize the sample data. According

to Chan et al. (2017), the generalized hyperbolic distribution gives the best fit

for Bitcoin and Litecoin, while for the smaller cryptocurrencies the normal inverse

Gaussian distribution, generalized t distribution, and Laplace distribution provide

the best goodness of fit. To conclude, Table 1.3 contains summary statistics of

daily log returns: Mean, standard deviation, Skewness and Kurtosis.

Table 1.3: Summary statistics

BTC ETH XRP LTC DASH XMR XLM

Mean 0.0021 0.0044 0.00389 0.0021 0.0032 0.0044 0,0040

Std. 0.0407 0.0655 0.0792 0.0595 0.0627 0.0733 0.0880

Skew. -0.1704 0.2511 2.9711 1.2829 0.8635 1.0639 1.9803

Kurt. 7.4237 6.7155 39.8509 15.3698 8.7617 10.1430 17.1846

Obs. 1077 1077 1077 1077 1077 1077 1077

Notes: evident signs of positive Kurtosis; XRP, LTC, XLM are positively skewed

20



Chapter 2

Arbitrage and Pairs Trading:

Literature Review

2.1 The Law of One Price and the No-arbitrage

condition

An arbitrage strategy is unanimously defined, both in the academic and in the trad-

ing field, an investment strategy designed to take advantage of one or more assets’

price discrepancies generated in different markets; thus, this type of strategy, likewise

nominated riskless strategy as it does not bear risk, requires no capital commitment

and guarantees a positive payoff for the investor.

A typical example of arbitrage opportunity involves the simultaneous purchase and

sale of the same security, quoted in multiple markets at different price:

∆arb = PA
X − PB

X

,with PA
X > PB

X , where PA
X and PB

X are the prices of asset X in the markets A,B and

∆arb is the profit generated by the combined trades.

The existence of arbitrage opportunities in financial markets is in contrast with

the Law of one price (LOP) and Fundamental theorem of equilibrium; the former,

that can be considered a special case of the No-arbitrage theory and constitutes

the basis of the purchasing power parity (PPP), holds that assets with identical

payoffs, in every state of nature, must trade at the same price (Ingersoll (1987)).

Cochrane (2000) links the existence of the LOP to the presence of a discount

factor: ”there is a discount factor that prices all the payoffs by

pt = Et(mt+1xt+1)
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if and only if the law of one price holds.”, where the equation represents the basic

asset pricing relation (with mt+1 the stochastic discount factor), that simply ex-

presses the value of any stream of uncertain cash flows (see Cochrane (2000) for

theorem proof, pag 64-68).

The Fundamental theorem of finance constitutes the basis of modern capital mar-

ket theory and encompasses a more general version of No-arbitrage condition. The

theorem states the principle according which security market prices are rational and

in equilibrium, in the sense they do not allow for arbitrage opportunities; however,

when market conditions ensure the exploitation of price deviations of homogeneous

assets, then, the pressure reinforced by arbitrageurs will restore equilibrium levels.

As a result, arbitrage activities would led to a convergence of price in different mar-

kets, in accordance with the efficient market hypothesis (EMH): asset prices fully

reflect all past and current publicly available information and all private informa-

tion (Fama (1970)). It is therefore the quickness of market response to arbitrage

occurrences that defines it as efficient or not; if price discrepancies persist over a

long period of time, as, for example, changes in demand and supply are not rapidly

incorporated into current asset prices with the effect of deviations from their true

intrinsic value, the market is then not able to restore equilibrium levels in the short-

term, and arbitrage occurrences arise from market inefficiencies.

In mathematical terms, a formal definition of No-arbitrage (NA) condition can be

defined:

NA ⇐⇒ {η|Aη > 0} = ∅

1, i.e., there exist no arbitrage portfolios, assumed that:

(1)

Ω = {θ1, ..., θm}

is the state space with a finite number of states of nature

(2)

p = (p1, ..., pn)

is the price vector of n traded assets, and (η1, ..., ηn) is the vector of investments

in asset (1, ..., i, ..., n)

(3)

−pη =
∑
i

piηi ≤ 0

represents a portfolio with no positive cost

1Stephen Ross, Neoclassical finance (Princeton university press, 2005)
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(4)

Gη > 0

is the positive payoffs in some state of nature of the portfolio, where

G = [gij] = [payoff of security i if state θij occurs]

represents the Arrow-Debreu tableau of possible security payoffs, as explained

by Ross (2005); The rows i of matrix G represent states of nature, while the

columns j are the traded assets. ”Each row of G contains the payoffs of n

securities in the particular state of nature, and each column lists the payoffs

of that particular security in the different states of nature”2

(5)

Aη =

[
−p
G

]
η

is the resulting arbitrage portfolio with no negative payoffs and a positive

payoff in some state of nature3;

This mathematical principle states that does not exist a portfolio that has a positive

payoff and no cost at all; but if it exists and persists over time, while equilibrium

level is not restored in the market, then the No-arbitrage condition is not satisfied,

and the market in which the arbitrage portfolio is constructed is not complete and

arbitrage free (See Dybvig and Ross (1987) for proof of the Fundamental theo-

rem of Finance).

2Stephen Ross, Neoclassical finance (Princeton university press, 2005)
3Stephen Ross, op. cit
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2.2 Relative Value Arbitrage

The LOP and EMH also apply to ”relative value arbitrage”, an investment strat-

egy based on the concept of ”relative pricing”, the latter a methodology that infers

the value of an asset or security in terms to another, i.e., through a comparison

analysis. It is a completely different valuation approach to ”absolute asset pricing”,

where assets are priced from fundamental factors. Then, if two assets are close

substitutes (Gatev et al. (2006)) and present similar payoffs, they should trade

at similar price (a variant of LOP, called ”near-LOP”). In case of price deviation

from an equilibrium level, for example due to a significant change in the relationship

between two securities prices from its historical average, a relative value arbitrage

strategy could be activated to profit from this temporary misalignment once it has

been corrected. Hence, relative arbitrage strategies seek to exploit price discrepan-

cies between similar financial assets, even under the circumstance of wrong price

valuation (prices of the assets do not truly reflect their fair value), in contrast with

the ”near”-LOP and EMH. Market neutral strategies, as matched long/short strate-

gies, and Convertible arbitrage strategies are considered examples of relative value

arbitrage strategies that include multiple assets; they are not entirely risk-free, but

based on the investor’s perspective.

A typical expression of relative arbitrage and market neutral strategy is represented

by pairs trading, a popular strategy that belongs to the category of statistical arbi-

trage, and seeks to exploit temporary price deviations between a couple of assets;

however, it is not a risk-free strategy and in many circumstances neither market

neutral.
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2.3 Pairs Trading

2.3.1 History

The first appearance of pairs trading as investment strategy should be credited to the

American investor and trader Jesse Livermore, who conceived the trading methodol-

ogy called ”sister stocks” in the early 1920s; his investment rules were simply based

on the selection of stocks whose prices had moved together under normal market

conditions, and subsequent opening of positions whenever their prices would have

diverged. Therefore, positions would be held until price convergence was achieved

or stop loss levels hit. Although Livermore was probably the first to experiment

the methodology, the formal theorization of pairs trading, and its broad adoption as

investment strategy, took place in the following decades. In the mid 1980s, a group

of mathematicians, statisticians and computer scientists was assembled by Morgan

Stanley quant-trader Nunzio Tartaglia4, in order to develop statistical and quanti-

tative methods able to identify the presence of arbitrage opportunities in the equity

market. In particular, the group developed high-tech automated trading systems,

one of the innovations of the period, that employed the use of consistent filter rules

to execute trades5. The first results were astonishing: the group reportedly made

a $50 million profit in 1987. They did not replicate the same level of performance

in the following years, and the group disbanded in 1989; meanwhile, pairs trading

was gaining attention from the market and press, as an innovative market neutral

strategy that could be implemented both by institutional and retail traders.

2.3.2 Definition and approaches

The essence of a pairs trading strategy relies on the identification of some form of

temporarily mispricing or anomaly between a pair of assets, the latter that could be

represented by stocks, interest rates, currency rates or exchange rates. Whenever

this divergence, called spread, is large enough to the investor perspective, the pair

of assets could be traded with the idea that the price divergence would correct itself

and return to an equilibrium level at some point in the future.

The success of the strategy depends on the approach chosen to identify potential

profitable pairs6; in fact, pair identification remains the principle hurdle to the ac-

4Ganapathy Vidyamurthy, Pairs Trading: Quantitative Methods and Analysis (Wiley Finance,

2004)
5Evan Gatev, William N. Goetzmann, K. Geert Rouwenhorst, Pairs Trading: Performance of

a Relative-Value Arbitrage Rule (2006)
6Francois-Serge Lhabitant, Handbook of Hedge funds (Wiley Finance, 2006)
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tivation of a profitable pairs trading strategy. The first attempts were based on

fundamental valuation, and comprised the analysis of financial and accounting data

to perform the selection, usually stocks that belonged to the same industrial sector.

Obviously, this approach had the limit to take into consideration only a limited

number of assets due to the amount of time required to derive financial ratios and

perform comparisons. More recently, with the proliferation of computer statistical

software and tools, it is possible to deploy advanced algorithms and techniques to

fathom the entire market of a given asset class and select among hundreds or thou-

sands of assets the ones whose price satisfy prespecified metrics.

Among the statistical methods theorized to identify the pairs, two have emerged and

subsequently tested in the years in a wide array of markets: the Distance method,

introduced by Gatev et al. (1999), and the Cointegration approach, a more so-

phisticated version that heavily relies on econometric techniques.

2.3.3 The Distance method

Gatev et al. (1999) use some sort of distance function to measure the co-

movements of the pair components; a justification of the approach comes from the

analysis of the main features pair traders of the period looked when forming the

pairs, that is they were searching assets prices that ”moved together”. The authors

define the tracking variance (TV), a measure of distance between two normalized

asset prices, for instance stock prices, computed as the sum of their squared differ-

ences over a formation period. Then, a minimum-distance criterion is used to match

the assets; in other words, stocks that minimize this distance measure are selected

to form the pairs and subsequently tested in the trading period.

If {PA
1 , P

A
2 , ..., P

A
t , ..., P

A
T } and {PB

1 , P
B
2 , ..., P

B
t , ..., P

B
T } are the price series of stocks

A,B, the tracking variance can be estimated as the following7:

TV =
1

T

T∑
t=1

(QA
t −QB

t )2

, where QA
t = PA

t /P
A
1 and QB

t = PB
t /P

B
1 are the normalized prices of the two stocks,

and δt = QA
t −QB

t is their difference, or spread.

7Paolo Vitale, Pairs trading and Statistical arbitrage, lecture notes, Equity Markets and Alter-

native Investments, Luiss University, Academic year 2015-2016
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Positions in a pair are activated whenever the asset prices distance has reached

a certain threshold, defined in the formation period. In this sense, the authors use

as trading rule the standard deviation metric: once ”prices diverge by more than

two historical standard deviations”, δt > |2SD|, a long position is assumed on the

undervalued stock, and a short position on the overvalued one; positions are then

closed when the spread cross back to another threshold or a stop loss level is hit.

Standard deviation of the tracking variance can be defined as:

SD =

(
1

T − 1

T∑
t=1

[(
QA
t −QB

t

)2 − TV ]2)1/2

Figure 2.1 is the illustration of an example provided by the authors; a pair trading

strategy applied to a couple of Us stocks, Kennecot and Uniroyal, in the trading

period from August 1963 to January 1964. The graph also displays the positions of

the strategy, opened and unwound whenever the pair spread is above or below the

threshold defined in the formation period.

Figure 2.1. Daily normalized prices: Kennecott and Uniroyal, August 1963 - January

1964

Notes: The graph plots in the upper part the normalized prices of two Us stocks,

Kennecot and Uniroyal, and in the bottom one the positions obtained by the pair

trading rule
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The position in a pair is constituted by a long position on a stock and a short

position on the other one, so, the return over the holding period for this pair is

simply the difference in returns between the two stocks. The pair is open 5 times,

so the total return of the strategy in the interval of time is the result of the product

of the corresponding 5 returns obtained with the activation of positions.

The main advantage of Distance methodology relies on the absence of parameters to

be estimated; it is a parametric-free approach. Therefore, it is not subject to model

mis-specifications and mis-estimations, as illustrated by Krauss(2015).

On the other hand, this methodology presents several drawbacks with regard to the

spread variance and mean reversion requirements; firstly, the choice of Euclidean

squared distance as measure to select pairs is analytically suboptimal8, as the ”ideal

pair”, the one that minimizes the TV, would present null squared distance, but also

a null spread and no profits; in fact, this methodology led to the formation of pairs

with low spread variance and limited profits, a choice in contrast with the investment

goals of a rational investor. Secondly, the methodology does not investigate on the

nature of correlation between the pair components, as it does not make use of any

statistical test to confirm some long-run equilibrium relationship. As a consequence,

the high level of correlation could be spurious and the pair may not possess mean

reverting properties, with implications on the strategy profitability. With regard

to this last aspect, Gatev et al. (2006) confirm the profitability of pairs trading

strategies, but at the same time record a small magnitude of the profit levels, justi-

fied by the exacerbation of arbitrage strategies by speculative funds. The declining

profitability is documented by Do and Faff (2010, 2012) too, who replicated the

methodology in a wider trading period, and found that approximately one third

of the pairs, formed with the distance measure, did not converge or possess mean

reversion properties at all.

2.3.4 Statistical Arbitrage: the Cointegration method

The application of cointegration approach to pairs trading has been introduced

by Vidyamurthy (2004); it exploits co-movement between pair components by

cointegration testing, with the Engle-Granger (1987) two step procedure, or the

Johansen (1988) method in the context of multiple cointegrating relations.

8Krauss (2015)
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Cointegration is a statistical property that characterizes a set of non-stationary

time series data Xt, Yt, i.e, random processes ordered by time t. In time series anal-

ysis, non stationary variables Xt, Yt possess time-varying moments: unconditional

mean, variance and autocovariance are not constant over time (or just one of them):

E[Yt] = µt

V ar(Yt) = kf(µt)

Cov(Yt, Yt−h) = γt(h)

, where k is a constant and f() a known function. An example of non-stationary

variable is the one generated by an AR(1) model with a slope parameter of unity,

φ = 1, also called a random walk model.

However, non stationary variables can be made stationary by differencing; in this

case they are said to be Integrated processes of order d, I(d) , where d is the degree

of differencing required to make the variable stationary 9. If Xt, Yt are then inte-

grated time series of order 1, I(1) , their first differences, {xt − xt−1}, {yt − yt−1},
are stationary time series with constant unconditional moments.

In general, as expressed by Caldeira, Moura (2013), linear combinations of non-

stationary variables are also non-stationary, but any linear combination that pro-

duces as result a stationary time series is said to be a cointegration relation.

In mathematical terms, if there exists a vector β such that the linear combination

εt = Yt − βXt ∼ I(0)

is stationary, the two variables Xt, Yt ∼ I(1) are said to be cointegrated.

In this sense, Cointegration expresses the long-term relationship that ties two or

multiple variables together, as asset prices, under a common stochastic trend, even

though they might diverge in the short term; it is a measure of long-run comove-

ments in the variables, not to be confused with the concept of correlation; in fact,

correlation is a short-term measure, liable to great instability over time 10, while a

cointegrating relation may even occur in periods of low static correlation. It does

not indicate whether the two variables move in the same direction, but rather fo-

cuses on long term behaviour of their distance, or difference. Hence, it is possible to

have cointegration jointly with correlation or not (cointegration without correlation).

The framefork introduced by Vidyamurthy relies on this statistical property: most

financial price series are not stationary time series, but rather geometric random

walks; however, if a linear combination of them is found to be stationary, then their

9Robert Sollis , Empirical finance for finance and banking (Wiley, 2012)
10Alexander (1999)
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distance, or spread, possesses mean reversion traits. Consequently, a trading strat-

egy could be constructed pairing non stationary but cointegrated asset prices ,as it

is expected that their evolution will diverge in the short term but eventually retrace

to an equilibrium level in the long-run.

2.3.4.1 Unit root tests and Stationarity

Antecedent the cointegration testing, the first essential stage of the analysis relies

on the identifcation of non-stationarity in the asset price time series. If they are

integrated processes, then there is the possibility of being cointegrated.

Statistical tests are utilized to verify the presence of unit roots, i.e., non-stationarity,

in the price time series: the Augmented Dickey Fuller (ADF) test (Said and Dickey

(1984)), the Phillips-Perron (PP) test (Phillips and Perron (1988)) and the

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al. (1992)).

The ADF test is a version of the initial Dickey-Fuller test for checking the pres-

ence of unit root in a time series sample, but it encompasses a larger set of time

series models, not focusing exclusively on a simple first order autoregressive model

AR(1) (Dickey-Fuller test, 1979) but including variables that may contain high or-

der dynamics (ARIMA, ARMA models). Constants and deterministic trends may

be added to the model:

∆Yt = µ+ γt+ φ∗
1Yt−1 +

k∑
i=1

βi∆Yt−i + εt

,where:

∆Yt = Yt − Yt−1

φ∗
1 = (φ1 − 1) is the coefficient to assess unit root presence

µ is the constant term

γ is the trend component

εt is an IID random error term

The model tests the null hypothesis of φ∗
1 = 0, i.e., unit root in the sample, against

the alternative hypothesis φ∗ < 0; the t-statistic is compared with the DF critical

values and not the ones associated to the Student’s t-distribution, as the authors

proved that under the null hypothesis the t-statistic did not converged asymptoti-

cally to the Student’s t-distribution but rather followed a non-standard distribution.
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The model includes k lagged values of the dependant variable ∆Yt−i, as it allows for

higher-order autoregressive processes; moreover, the lag length parameter could be

optimized via an information criterion (AIC, SIC).

Phillips-Perron test for unit root builds on the DF test as well, but addresses the

issue of higher order dynamics of the interested variables through a non parametric

correction of the t-statistic. In fact, the authors ”adjust the statistics computed from

a simple first order autoregression to account for serial correlation of the differenced

data” 11.

To conclude, in KPSS test for stationarity, the presence of unit root in the sample

data is contained in the alternative hypothesis and tested against the null hypothesis

of trend stationarity; hence it encompasses the possibility for a time series to reject

the presence of unit root yet to be trend-stationary (time series data is stationary

around a deterministic trend).

2.3.4.2 Engle-Granger approach

Engle and Granger (1987) propose a two-step approach to find a cointegrating

relation between the components of a pair. Once it is proven via an unit root test

that two variables, for instance Xt, Yt, are integrated processes of order 1, I(1), then

the first step of authors’ procedure entails the performance of a linear regression of

a variable (Yt) on the other (Xt), using the Ordinary least squares (OLS) model for

parameter estimation:

Yt = β0 + β1Xt + εt

ε̂t = Yt − β̂0 − β̂1Xt

where β0 is a constant term, the intercept, β1 is the hedge ratio, or cointegration

coefficient, and ε̂t are the fitted errors, the latter subsequently tested for stationar-

ity with the ADF test (Second step), excluding drift or deterministic trend in the

model. In case of rejection of the null hypothesis of unit root in the residuals, the

components of the pair are said to be cointegrated, while ε̂t is the estimated cointe-

grating vector.

The authors demonstrated as cointegrated time series can then be expressed in

terms of error-correction (Engle–Granger representation theorem).

11James D. Hamilton, Time Series Analysis (Princeton university press, 1994) chapter 17
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According to Alexander (1999), ”the mechanism which ties cointegrated series to-

gether is a ’causality...’”, known as ”Granger casuality”, ”...in the sense that turning

points on one series precede turning points in the other”.

In fact, the Error correction model (ECM) links the first differences of the two

variables, which capture short-term dynamics, to a long-run equilibrium term, rep-

resented by the lagged fitted error, and estimates the speed of adjustment parameter,

the rate at which the dependant variable adjusts to this equilibrium term after a

change in the other variable. In other words, the model incorporates the tendency

of cointegrated variables to converge to a common stochastic trend:

∆Yt = γ∆Xt + θε̂t + ηt (ECM)

, θ is the speed-of adjustment parameter, which is negative for cointegrated vari-

ables. A more general version includes lags of the relevant variables ∆Xt,∆Yt on

the right-hand side of the equation. In the context of cointegration, all variables of

the ECM are stationary processes, I(0), hence the standard inference techniques are

therefore valid.

When it comes to modeling multivariate time series data, the Engle−Granger two-

step procedure may produce biased results, as the order of time series data in de-

pendant and independent variable assumes a crucial role, while Johansen (1988)

methodology permits more than one cointegrating vector and is commonly regarded

as the standard procedure. However, as expressed by Alexander (1999), for

many financial applications, the Engle-Granger approach can represent the opti-

mal methodology, as ”it is very straight-forward to implement”; secondly, its linear

combinations present the minimum variance, a nice feature in the context of risk

management applications, and, finally, it is quite natural the choice of dependant

variable in the linear regression, while the bias of small-sample is not realistic as

financial sample size are quite large most of the times.

2.3.4.3 Evidences of profitability

The profitability and superiority of the cointegration approach has extensively docu-

mented by a wide array of academic studies: Perlin (2006), Caldeira and Moura

(2013) document consistent excess returns on the Brazilian financial market; Hong,

Susmel (2003) cointegrated pairs-trading results for 64 Asian shares display con-

sistent positive profits, which are robust to different holding and estimation periods.

Rad et al. (2015) find excess returns on a monthly basis on the entire US equity

market from 1962 to 2014, and report that the cointegration method proves to be
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the superior strategy during turbulent market conditions. Huck and Afawubo

(2015), using the components of the SP 500 index, reveal that cointegration pro-

vides high, stable and robust returns. Blázquez et al. (2018) find that pairs

trading strategy based on the distance and cointegration techniques generates resid-

ual series with better properties than the other techniques for a given pair of stocks

within the US financial sector.

2.3.5 Other methods

Other pairs trading techniques, as time series approach Elliott et al. (2005), or

the the stochastic control approach Jurek and Yang (2007) , ignore the formation

period over which estimate the pairs but mostly focus on the optimization of trading

rules and signals, as highlighted by Krauss (2015). In particular, Elliott et al.

(2005) approach ”propose a mean-reverting Gaussian Markov chain model for the

spread which is observed in Gaussian noise”, a parametric framework that makes use

of a state space model. It comprehends a set of states over the time, as the evolution

of price series of a pair, and a set of observations on these states; however, the

observable variable is a linear function of the hidden variable but contains statistical

noise, with the implication that the ”true” state is not ever directly observable.

Hence, the Kalman filter, an optimal linear algorithm, can be deployed to estimate

the ”true” state of a variable, as the dynamic hedge ratio of a pair spread; it updates

the expected value of a hidden variable according to the latest value of an observable

variable 12. The measurement prediction error (or forecast error) estimated by the

algorithm represents the deviation of the spread from its true state; thus, a trading

strategy could be activated whenever this deviation is quite large, with negative or

positive sign, depending on its predicted standard deviation13.

12Ernie Chan, Algorithmic Trading: Winning Strategies and Their Rationale (Wiley, 2013)
13See Elliott et al (2005), and Chan (2013) for a detailed explanation of the Kalman filter
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Chapter 3

Empirical Analysis

3.1 Arbitrage Strategies

Simple arbitrage strategies in the cryptocurrency market regard the possibility of

buying and selling at the same time selected cryptocurrencies in different exchanges

in order to retain the difference in price, defined as premium (when positive). One

of the main reasons that suggests the analysis of price discrepancies relies on the

fragmentation of the cryptocurrency space: there existed more than two hundred

trading platforms in 2018 according to Coinmarketcap website, with sensible differ-

ent trading volumes and buying pressure, certified by academic studies1. Moreover,

the majority of them was open to foreign traders and investors, thus reinforcing the

possibility for arbitrageurs to exploit temporary price misalignments.

3.1.1 Data

Historical Data of the exchange rate of cryptocurrencies versus the Us dollar have

been collected with the use of Cryptocompare api on Python software. Cryptocom-

pare is a global cryptocurrency market data provider that gives access to real-time

pricing data on more than five thousand coins; the reliability of the data have been

confirmed through the comparison with other data providers as Coinmarketcap and

Investing.com. The data set contains the open, high, low and close pricing data

(OHLC), trade volumes and the timestamp in Universal Coordinated time (UTC).

Even if cryptocurrency markets have no closing times, closing prices for all the

cryptocurrencies have been used to test the strategies, and they correspond to the

midnight UTC (00 : 00 UTC). I have restricted the analysis to three of the most

liquid cryptocurrencis, with the largest market capitalization and at least one year

of historical price data: Bitcoin (BTC), Ether (ETH) and Litecoin (LTC).

1Borri and Shakhnov (2018), Igor Makarov and Antoinette Schoar (2018)
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The exchanges covered by the analysis have been classified following a geographic

order:

1. Asia: Bithumb (South Korea, fiat currency: Korean won), bitFlyer (Japan,

fiat currency: Japanese Yen), Bitfinex (Hong Kong, fiat currency: Us dollar)

2. US: Coinbase (fiat currency: Us dollar), Kraken (fiat currency: Us dollar, Eur,

Canadian dollar)

3. Europe: Bitstamp (Luxembourg, fiat currency: Eur, Us dollar)

The time frame of the analysis covers the period from May 22th, 2017 to December

20th, 2018 due to data unavailability of previous prices from the Korean exchange

Bithumb; however, the analysis of daily volumes shows a lower market liquidity in

the period prior to 2017, thus sustaining the hypothesis to focus the analysis on

the selected time frame. Daily exchange rates versus the Korean won (KRW) and

Japanese Yen (JPY) have been converted with the KRW/USD and JPY/USD pairs

obtained from Investing.com.

3.1.2 Methodology and Results

The selected cryptocurrencies are strictly homogeneous assets: every unit possess

the same properties, thus it should be traded at the same price in different markets,

and any price differences should be eliminated by the market. However, cryptocur-

rencies prove not to satisfy the law of one price (LOP) as they can trade at sensible

different prices in multiple exchanges.

Figure 3.1 shows the so-called ”Kimchi Premium” 2, a large gap in cryptocurren-

cies prices recorded on the South Korean exchange compared to foreign ones; this

difference appear quite evident between December 2017 and February 2018, when

Bitcoin price was 40% higher than rates in the Us, Europe exchanges.

We can define such premium over USD as:

Pr =
PBTC/KRW ∗ SKRW

PBTC/USD
− 1

, where PBTC/KRW and PBTC/USD are respectively the Bitcoin price to the South

Korean won and the US dollar, while SKRW is the spot exchange rate between the

South Korean won and US dollar.

2literally the country fermented cabbage dish
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Figure 3.1
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Notes: Bitcoin daily prices in US dollar on the selected exchanges; Korean and

Japanese prices have been converted with the spot exchange rates from Investing.com.

Data extracted with Cryptocompare api

More formally, Borri and Shakhnov (2018) define cryptocurrency discounts as:

Dm,j =
Pm,j
P1,1

− 1

, where Dm,j is the discount in market m in the currency j, Pm,j = Sj

P ∗
m,j

is the units

of coin obtained in market m with one U.S. dollar, expressed as the ratio between

Sj, the spot exchange rate in unit of currency j per Us dollar, and P ∗
m,j, the unit of

currency j = 1, ..., J required to buy one coin, i.e., Bitcoin, in market m. P1,1 is the

price in market m = 1 (Bitstamp) in the currency j = 1 (Us dollar).

Figure 3.2, 3.3 show the evolution of Bitcoin discounts in the period 05/2017-

12/2018, selecting Bitstamp as reference exchange and expressing all the trading

pairs in USD values. Table 3.1 reports the main statistics of Bitcoin discounts in

percent over the USD price for the sample of international exchanges: mean, stan-

dard deviation, maximum and minimum values, first order autocorrelation and the

total number of observations. The empirical findings confirm Borri and Shakhnov

(2018) results: discounts are volatile, time-varying, as they can be positive or neg-

ative between the same pair of exchanges, and persistent. Figure 3.4, 3.5 and

Table 3.2, 3.3 report the same results for the coins ETH, LTC.
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Figure 3.2: BTC Kimchi premium to European exchange Bitstamp, 05/2017-12/2018
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Table 3.1: Summary statistics

BTC Discount (in %)

Exchange Mean Std. Max. Min. AC(1) obs.

Bithumb 4.5889 7.9131 48.4129 -6.3397 0.9409 578

BitFlyer 0.8783 2.3370 17.7331 -11.8885 0.7365 578

Bitfinex 0.1362 1.3235 5.8344 -6.7514 0.8029 578

Kraken -0.0126 0.5842 2.0650 -4.8908 0.3919 578

Coinbase 0.1491 0.6743 6.4871 -1.2800 0.6109 578

Notes: main statistics of Bitcoin daily discounts in percent over Bitstamp exchange,

period 05/2017-12/2018. Btc Discounts are volatile, time-varying and persistent

Price discrepancies are more observable during 2017 and across regions than ex-

changes within the same region; in fact, since March,2018 prices in Us and Europe

exchanges seem to be aligned, while large deviations appeared and still appear be-

tween western exchanges and Asian ones (Bitfinex). A reduction of the magnitude

of these discounts could be attributed to a major decrease of daily trading volumes

and buying pressure, starting from the first quarter of 2018, and the deployment of

advanced arbitrage strategies by new speculative funds that entered the market in

2017 and 2018 3.

3According to Crypto fund research, crypto-funds constituted more than 16% of the total hedge

fund launches in 2017 and more than 20% in 2018
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However, as stated above, when these price discrepancies take form they tend to

persist over time, in terms of days and weeks, and could allow traders to perform

arbitrage strategies but the presence of several hurdles might influence their prof-

itability, as documented by Borri and Shakhnov (2018).

In fact investors may face considerable transaction costs and risks, represented by:

- Deposit, withdrawal and trading fees to exchanges to execute the orders

- Bid-ask spread

- Mining fees to move the assets between exchanges

- Execution risks due to settlement time for fiat deposit4 and transaction con-

firmation times for cryptocurrencies5

- Counterparty risk due to disputable and opaque behaviours of the same ex-

changes: unexpected website maintenance, deposits and withdrawals suspended

for selected coins, trade suspensions for hackings

- National and international interventions and restrictions of trading and inter-

national capital flows, as happened in South Korea at the beginning of 2018
6

The majority of such transaction costs could be minimized following some precau-

tions:

1. Selection of transparent crypto-exchanges with large volumes, low bid-ask

spread and trading fees, low level of hackings and technical failures, and in

compliance with national or international rules.

2. Selection of coins that requires little or no time to move from an exchange to

another, paying minimal mining/transaction fees

3. Execution of large trades in order to reduce or elude deposit, withdrawal and

trading fees 7, transaction costs with the heaviest weight

4Between two and five business days
5Mining confirmation times can take between 5-10 to 60 minutes, depending on the type of

cryptocurrency
6Since February 2018, crypto-trading is only allowable to citizens of the country
7Not applicable to every exchange
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For example, we could construct a simple arbitrage strategy that involves a cryp-

tocurrency with a significant discount between a pair of exchanges but includes a

second currency for transfer; this second coin has to be traded in both exchanges, not

present the same discount and take few time for the transfer. The main advantage

of this strategy relies in the minimization of the execution time and transaction fees

(tx) payment; in fact Bitcoin transaction confirmations take between 30 minutes and

1 hour to finalize, at an average tx fee of 0.8$, but with the possibility of reaching

even 60 − 80$ in periods of heavy network traffic, while coins as Ripple (XRP), or

Stellar Lumens (XLM) may take few seconds at infinitesimal tx fees (0.007$). A

drawback is represented by the higher trading costs due to the execution of more

trades. I select Bitcoin as the cryptocurrency with discount, Bitstamp and Bitfinex

as the pair of exchanges, while Ripple is the selected currency to execute fast trans-

fers. Hourly Btc, Xrp prices have been gathered via Cryptocompare api. Discounts

computations are represented in Figure 3.6; Bitcoin discounts are expressed in Us

dollar , while Ripple discounts take as reference Bitcoin. Figure 3.7 illustrates a

comparison of the two arbitrage strategies: simple and with a second currency.

Figure 3.7 Arbitrage strategies

Notes: (a) simple arbitrage, (b) arbitrage with the inclusion of a second currency;

Legend: DF= deposit fee; MF= Mining fee; TF= Trading fee; WF= Withdrawal fee;

B/A= Bid-ask spread. Author illustration
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Table 3.4 reports summary statistics of the hourly discounts between Bitfinex and

Bitstamp exchanges.

Table 3.4: Summary statistics of hourly discounts

Discount (in %)

Exch. Pair Mean Std. Max. Min. AC(1) obs. D > 2

Bitf. BTC/USD 2.3435 1.1959 11.2796 0.4006 0.9608 2001 58.12

Bitf. XRP/BTC - 0.0053 0.2304 2.7100 -1.9740 0.0657 2001 0.0005

Notes: main statistics of BTC/USD and XRP/BTC hourly discounts in percent over

Bitstamp exchange, period 08/2017-12/2018; every observation corresponds to one hour

Bitcoin presents a consistent discount, with an average value of 2.3435% and with

58.12% of probability of being larger than 2% (1163 over 2001 observations); the

pair XRP/BTC presents no significant discount, as more of 97% of observations lie

in the range −0.5− 0.5% ; therefore, when BTC discount is consistent and assum-

ing the Usd deposit has already been executed, a trading arbitrage strategy can be

structured as the following:

1. Buy Bitcoin on the exchange with cheaper price, i.e., Bitstamp

2. Sell Bitcoin for Ripple

3. Transfer Ripple to the second exchange, Bitfinex

4. Sell Ripple for Bitcoin

5. Buy Us dollar with Bitcoin

6. Withdraw Usd from exchange

The above strategy minimizes the execution time and the payment of mining fees.

However, it is reasonable to highlight as mining fees are very tiny and irrelevant

with respect to other costs, for example the higher trading costs that have to be

accounted; hence, the strategy can be considered profitable in cases of consistent

price deviations, in the minimum order of 2− 3% with the actual system of fees8.

8See table of fees, Bitstamp and Bitfinex exchanges
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Table 3.5 reports the transaction costs. Usd deposit fee is 0.05% on Bitstamp

(Eur deposit is free of charge), while Usd withdrawal fee is 0.10% on Bitfinex; Rip-

ple deposits and withdrawals are free of charge on the two exchanges; trading fees

vary between 0% − 0.20% on Bitfinex, and can be minimized with higher trade

volumes, and between 0.10%− 0.25% on Bitstamp; mining fees are null with XRP

transfers; remain to consider the bid-ask spread, represented in Figure 3.8.

In the case of reduced fees9, the investor should only face the bid-ask spread, deposit

and trading fees on Bitstamp, and Usd withdrawal fee on Bitfinex (no withdrawals

fees of xrp from Bitstamp, no mining fees of xrp, no deposit and trading fees on

Bitfinex). With a BTC price discrepancy of 1% and a null XRP/BTC discount the

strategy generates an average outcome of −0.02% in the case of full fees payment,

and a 0.485% profit in the case of reduced fees10. Hence, trading signals of entry

positions may be placed at levels that equal 2% or 3% (Figure 3.9); whenever the

discount is above such levels the arbitrage strategy can deliver a net profit.

3.1.3 Conclusions

Price discounts in cryptocurrency markets are in decline, mainly due to reduction

of trading volumes, new strategies deployed by speculative funds and expert arbi-

trageurs and new measures adopted by exchanges11; however, in periods of uncer-

tainty and volatility, during particular news or events, as Cryptocurrency forks12,

deviations may re-appear and in double-digit levels too; furthermore, with the in-

troduction of liquid institutional platforms it is expected that the time period such

that these arbitrage occurrences generate abnormal profits will shorten, in favor of

high frequency trading strategies.

9For high monthly traded volumes
10 Author computations, all transaction costs included except the bid-ask spread
11Introduction of new fees
12Bitcoin cash fork and subsequently hashing war on November, 14th raised uncertainty in the

market and daily volatility, after months of relative price stability
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3.2 Pairs Trading

3.2.1 Intro

Cryptocurrencies proved to be extreme volatile assets, mostly correlated between

them but largely uncorrelated with traditional financial markets (Chuen et al.

(2017), Bianchi (2018)). Figure 3.10 displays the moving correlation of daily

returns between Bitcoin and four altcoins; it is observable how, starting from Jan-

uary 2018, correlation between daily returns surged dramatically, passing from weak

to a strong positive association. The simultaneous presence of volatility and corre-

lation in the market is an opportunity to examine market neutral trading strategies,

that do not take into account the market trend ; on the contrary, they allow in-

vestors to profit from any market condition.

Consequently, I analyze the process of constructing pair trading strategies in the

cryptocurrency market; a set of cryptocurrencies is chosen to form the pairs and

subject to a series of statistical tests.

The scope of the research is not to find the most profitable pair but rather demon-

strate that the cryptocurrency market is not efficient, as it allows the construction

of profitable arbitrage strategies, and, hence, reject the Efficient Market Hypothesis.

Figure 3.10: 90-day correlation for Bitcoin and four altcoins, Bitfinex
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Notes: The graph plots the 90-day correlation between Bitcoin and four altcoins:

Ethereum, Dash, Litecoin and Monero. Data extracted from Bitfinex exchange, author

computations
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3.2.2 Data

Historical data of cryptocurrencies have been gathered via Cryptocompare api for

the period 08/2017-12/2018 from Bitfinex exchange. The dataset contains the

OHLC data and the timestamp in UTC of five cryptocurrencies, selected among

the most liquid and with at least one year of historical price data: Bitcoin (BTC),

Ether (ETH), Litecoin (LTC), Dash (DASH) and Monero (XMR). All the pric-

ing data are expressed in Us dollar. Litecoin, Dash, Monero were all forks of the

original code Bitcoin, with whom share some network features and technological

developments. Hence, considering the strict connection with BTC, it is plausible to

explore the evolution of relative price dynamics. The Hong kong based exchange has

been selected for the research as it displays significant trading volumes of the main

cryptocurrencies and allows short selling practice; moreover, historically it has not

suffered major technical failures or hacks, thus, the execution risk is of low order

compared to other exchanges. The choice to use daily prices is explained by the

persistence that characterizes prices deviations and movements in the market.

3.2.3 Training set and Test set

The historical data are divided in two parts in order to avoid the look-ahead bias13:

the first part, the training set, comprehends the least recent observations; parame-

ters of the model are optimized on this portion of data. The second part, the test set,

is the set of observations where the resulting model is tested; the two portions should

be equal in size, as expressed by Chan (2013), but in the presence of insufficient

training data, the size of the test set should at least be one-third of the training set.

As a result, the first 365 observations of the dataset are contained in the training

set, where parameters are optimized; the last 123 observations are contained in the

testing set, where I will test the model optimized in the first portion of data. In

the end performance measures of the two sets are compared; the performance of the

second part should at least be reasonable, otherwise it could face the data-snooping

bias. A more rigorous method of out-of-sample testing is to use moving optimiza-

tion of the parameters14; this means that parameters are dynamically optimized in

a moving look-back window, i.e., the parameters constantly adapt to the changing

historical data.

13When future information or data are used to construct and back-test a trading strategy for a

time period antecedent to their availability
14Ernie Chan, Quantitative Trading: How to Build Your Own Algorithmic Trading Business

(John Wiley & Sons, 2009)
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3.2.4 Methodology: the Cointegration method

To construct the trading strategy at first I need to find the pairs of cryptocurrencies.

The Cointegration method, proposed by Vidyamurthy (2004) and based on the

works of Engle and Granger (1987), is employed to identify the cointegrated

pairs, as it has proved to generate more robust pairs and better risk-adjusted per-

formance measures in traditional markets. In order to be cointegrated, price series

of the selected cryptocurrencies have to be integrated of order one, i.e., they are

non stationary processes but can be brought to stationary through differencing, and

there exists a vector β such that their linear combination generates a time series

whose residuals, or error terms, are stationary. Log prices of the five cryptocur-

rencies, represented in Figure 3.11, display evident signs of co-movement; hence

prices of the selected cryptocurrencies could be interpreted as being in a long-run

equilibrium relation, where their difference, denoted as Spread, is not constant in

the short-run as they can deviate from the equilibrium level, but it is expected that

they will retrace the path to this equilibrium in the long-run.

Figure 3.11 Log prices, Bitfinex
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Notes: The graph plots the log price of five cryptocurrencies: Bitcoin, Litecoin,

Ethereum, Dash, Monero

The analysis of autocorrelation and partial autocorrelation functions is an useful

tool to decide if a variable is stationary or non-stationary; however, statistical tests

provide more robust results.

44



The augmented Dickey-Fuller (ADF) test and Kwiatkowski, Phillips, Schmidt, and

Shin (KPSS) test are then applied to absolute prices series of the five cryptocur-

rencies in the training set. Matlab version of the tests return a logical value with

the rejection decision and the p-value: h = 1 indicates rejection of the unit-root

hypothesis in favor of the alternative model (no root) for the ADF test, confirming

the stationarity of log prices series; on the contrary, h = 0 indicates failure to reject

the unit-root hypothesis. Opposite situation for the KPSS test: h = 1 indicates

rejection of stationarity for the price series, while h = 0 confirms it. At a confidence

level of 95% the null hypothesis is rejected for p-values smaller than the significance

level α = 0.05.

Results of the tests are contained in table 3.6, that shows p-values ; the null hy-

pothesis of the presence of unit roots (ADF) in the prices time series is accepted,

confirming the daily prices of the selected cryptocurrencies are not stationary; on

the other hand, the ADF test rejects the null hypothesis for the first difference of

prices; KPSS test confirms the findings (Prices are not stationary); as a result, prices

are integrated process of order one, I(1).

Table 3.6: Unit root test: Augmented Dickey Fuller test

BTCt ETHt DASHt LTCt XMRt

ADF-test 0.3713 0.5245 0.5760 0.4461 0.3397

KPSS-test 0.01 0.01 0.01 0.01 0.01

∆BTCt ∆ETHt ∆DASHt ∆LTCt ∆XMRt

ADF-test < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

KPSS-test 0.1 0.1 0.1 0.1 0.1

Notes: P-values of the ADF and KPSS tests: Prices are integrated time series of order

1; their first difference is stationary

Thereupon, Engle-Granger two-step approach can be computed: at first, a regres-

sion is performed in order to estimate parameters of the linear relation between

components of a pair. The Ordinary Least Squares regression (OLS) model is used

to estimate parameters β = [β0, β1], respectively the intercept and coefficient of the

relation:

Yt = β0 + β1Xt + εt

β1 is the Hedge ratio, the coefficient that ensures the mean reversion of the spread.

Bitcoin is assumed as the dependent variable, while Dash, Litecoin, Ethereum and
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Monero are,in turn, the independent variable of the model; however, if we switch the

roles of variables in every regression, for example, for the pair BTC/ETH, taking

ETH as dependent variable and BTC as the independent one, we will not obtain the

same estimated parameters. Afterwards, unit root tests are computed on the fitted

errors εt = Yt − β̂0 − β̂1Xt, the residuals of the model, to check stationarity. In case

of rejection of the null hypothesis of unit root in the residuals (ADF), the two cryp-

tocurrencies are then cointegrated; the vector containing the estimated parameters

εt is called Cointegrating vector. Table 3.7 illustrates results of the OLS regression

for the pair BTC/DASH.

Table 3.7: OLS regression BTC-DASH

Dependent variable
BTC

Variable Coefficient T-statistic
DASH 10.799∗ 34.362

(0.314)
Intercept 3,306.270∗ 19.841

(166.635)
R2 0.765
F statistic 1,182.314∗

obs. 365

Note: ∗p < 0.001

The coefficients are statistically significant at the 5% significance level, showing

p-values smaller than 0.1%. The large coefficient of determination, R2 = 76.50%,

implies that 76.5% of the variability of the dependent variable is explained by the

linear model, thus, a positive result. We can then describe their linear relation as:

BTCt = 3, 306.27 + 10.79DASHt + εt

, where 10.79 is the hedge ratio.

Tables 3.8, 3.9, 3.10 show the OLS results for the other pairs.

To conclude, Table 3.11 contains p-values of unit root test on the residuals. They

appear to be stationary for all except the pair BTC/ETH, where p-value lies on the

edge of the regions of acceptance and rejection; thus, while for the pairs BTC/DASH,

BTC/LTC and BTC/XMR the spread can be defined using the coefficients obtained

by the OLS model in the training set, for the pair BTC/ETH, the computation of

a dynamic hedge ratio should be more appropriate to capture the changing levels

of the pair components; in fact, although cointegration is not achieved for a pair

of variables, a profitable mean reverting strategy can be constructed if their spread

displays enough short-term mean reversion.
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Table 3.11: Unit root test (ADF) on the residuals

BTC/ETH BTC/DASH BTC/LTC BTC/XMR

et et et et

ADF-test 0.0492 0.0026 0.0047 0.0032

Notes: P-values of the ADF test for the residuals of the OLS model: Residuals are

stationary, hence the pairs are cointegrated, except for the pair BTC/ETH, where

p-value is on the edge of the regions of acceptance and rejection

3.2.5 Half-line of mean reversion, trading rules and returns

computation

Consider again the pair BTC/DASH; residuals of the OLS model, that represent

the spread of the pair, are stationary, hence a mean reverting strategy could be

constructed taking simultaneously a long position on one asset and short position

on the other one; we can define the spread as:

δt = BTCt − β1DASHt

, where β1 = 10.79.

A long position on the spread denotes the opening of a long position of 1 unit on

BTC and a short position of 10.79 units on DASH; a short position on the spread

in exactly the opposite. However, the fact that a process shows signs of mean rever-

sion does not automatically imply that it is profitable to construct a mean-reverting

strategy; in fact, the half-line of mean reversion, the period of time a price series

reverts to its mean, could be very long, in terms of several months or years. Hence,

before setting trading rules, it is preferable to compute this measure of speed of

mean reversion; the shorter the half-line of a process, the higher the chances of

profitability for a mean reverting strategy. Table 3.12 displays the half-line of the

selected pairs; for the BTC/DASH pair, the spread mean reverts in about 14 days,

which means that it will full revert to the mean in about 28 days, a remarkable

result. Once demonstrated that the pairs are cointegrated and the half-line of mean

reversion is of a reasonable order, we can then back-test the pairs in the trading

period, or test-set, and compare performance metrics of the strategies with the ones

for the training period, although it should be mentioned that performance statistics

computed over the training period suffer of the look-ahead bias as they have used

the same data for parameter optimization and back-test.

47



Table 3.12: half-line mean reversion

BTC/ETH BTC/DASH BTC/LTC BTC/XMR

λ -0.0195 -0.0495 -0.0434 -0.0498

half-line 35.60 13.97 15.98 13.9262

Notes: Half-line of mean reversion, expressed in days; the parameter λ measures the

time it takes for a price or spread to mean revert. It is negative for mean reverting

processes, a value very close to 0 means the half-line will be very long, hence even if the

process is mean reverting the trading strategy could not be profitable.

Trading rules have to be defined to set the entry and exit thresholds and, for this

reason, the Bollinger bands system is employed. At first, the pair spread has to

be standardized in order to normalize the trading signals; mean (uδ) and standard

deviation (σδ) of the spread are computed within the training set, and the Zscore is

subsequently defined by:

Zt =
δt − uδ
σδ

Figure 3.12 plots the Zscore for the pair BTC/DASH, Figure 3.13, 3.14 for the

other pairs ; a red vertical line divides the graph in two regions: the left-hand side

represents the training set, where all computations and optimization of parameters

have been executed, while the right-hand side the test set; it is quite evident as in the

test set the precision of the model is less accurate, but it preserves the stationarity

property. The mean reverting spread is even more visible if we consider a smaller

sample of data for the training set, starting from January 2018 (240 days); it is rep-

resented in Figure 3.15; however, optimization of parameters has been conducted

on the larger sample of data in order to have enough amount of data to validate the

model; in fact for daily trading models there should be at least three years of data

with daily prices, but since cryptocurrency relations proved to move much faster

than in traditional markets and volumes of the previous years have been very low,

the period of 1 year has been selected for parameter optimization.

Positions on the spread are opened whenever the Zscore diverges more than n his-

torical standard deviations from the mean; more precisely, entry and exit signals

are set as the follows: entry signals are generated whenever the Zscore falls below a

pre-determined threshold, for example 1 standard deviation, Zt < −1 (long signal),

or when it goes above it, Zt > 1 (short signal).
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Figure 3.12 Z-score BTC-DASH
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Notes: The red line divide the graph into two regions: the left part represents the

Z-score over the training set, while the right-hand side over the test set

Figure 3.15 Z-score BTC-DASH
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Notes: Z-score of the pair BTC-DASH, estimated using a small sample of data

Exit signals can be generated as the opposite of entry signals, which means that

positions are closed when the Zscore moves beyond the opposite band, or an addi-

tional threshold can be set, for example when the Zscore reverts to the mean (exit

signal = 0). We can formally define them:

- entry signal = n1 and exit signal = n2, with n1 > n2

- long entry signal = Zscore < −n1

- long exit signal = Zscore ≥ −n2

- short entry signal= Zscore > n1

- short exit signal = Zscore ≤ n2
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Values n1 and n2 are free parameters that can be optimized in the training set;

empirical evidences have demonstrated that the choice of smaller thresholds gener-

ates shorter holding periods and more round trip trades, with higher profits (Chan

(2013)); however, in markets that present significant transaction costs, as the cryp-

tocurrency market, where trading fees may vary between 0.10 − 0.30%, the choice

of having fewer trades and longer holding periods might be the optimal one.

Returns are computed through a mark-to market system (MTM), that entails the

division of the Profit and Loss (P&L), generated by the pair trading strategy, over

the Gross market value of the portfolio.

For example, consider PA
t = $76.30 PB

t = $27.12 be the dollar price of two cointe-

grated cryptocurrencies at time t, while β = 2.13 is the Hedge ratio and the spread

is obtained as

δt = 76.30− (2.13 ∗ 27.12) = 76.30− 57.77 = 18.53

; moreover, assume that the the Zscore has fallen a given threshold, as 1 standard

deviation, and it is expected to mean revert at some point in the future; hence

the strategy entails the opening of a long position on the undervalued cryptocur-

rency A (−$76.30), and a short position of 2.13 units on the overvalued one B

(+57.51) ; at time t, the P&L amounts to $ − 18.53. At time t+1, prices of the

two cryptocurrencies are changed: PA
t+1 = $84.57 and PB

t+1 = $23.61, with a spread

δt+1 = 34.28. The Zscore has retraced to its mean, or a given threshold, hence

the positions are closed: +$84.57 from the sale of the undervalued cryptocurrency

and −$50.29 from the repurchase of the overvalued one, with a final P&L equal to

$34.28 + (−$18.53) = $15.75; the same result can simply be obtained subtracting

the two values of the spread. The final return of the strategy is obtained divid-

ing the P&L with the total traded notional, of Gross market value of portfolio,

Mp = $76.30 + $27.12 = $103.42 :

rt+1 = $15.75/$103.42 = 15.23%
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3.2.6 Automated Trading System: In-sample vs Out-of sam-

ple results

An automated trading system is activated in order to capture the deviations of

the spread for the cointegrated pairs, choosing as backtest platform the scripting

language of MATLAB; however, this algorithm strategy could be implemented, for

instance, using Bitfinex API, that allow users to recreate all the features of the

platform and insert their algorithms to execute trades; positions are automatically

opened and closed in the correspondence of the signals, while P&L are computed

at a daily frequency. Existing positions of the previous day are carried forward

whenever the following day’s positions are indeterminate. In the end, daily returns

are computed according to the procedure explained in the previous paragraph, and

subsequently compounded. In the first instance, transaction costs are not consid-

ered; the corresponding trading strategies are shown to be protable under different

entry/exit thresholds.

Figure 3.16 illustrates the positions in the pair BTC/DASH as the Zscore evolves

over the time in the training set, and the profit and loss generated by the strategy

with two different trading rules: the first, z1, opens positions when the Zscore is

above or below 1 standard deviation and close them when it reverts to the mean

(z1 : n1 = 1, n2 = 0), while the second, z2, closes them when the Zscore moves be-

yond the opposite band (z2 : n1 = 1, n2 = −1). Hence, a position of 1 in the pair

indicates the purchase of 1 unit of the spread, in other words, a long position of 1

unit of BTC (+1), and a short position of 10.79 units of DASH (-10.79); converse

situation for a position of -1. Figure 3.17 displays the results for the test set (out of

sample). Figure 3.18 plots the cumulative compounded gross returns of the pair

BTC/DASH generated in the training and test periods. The strategy performs bet-

ter with the first rule either in the training set or in the test set; in fact, it presents

a lower maximum drawdown and a higher Sharpe ratio. Out-of the sample results

are consistent with the model. Table 3.13 summarizes some of the performance

metrics.

Return and risk measures of the strategy do not vary considerably with the inclu-

sion of transaction costs, represented by the bid-ask spread, trading fees and margin

funding rates (borrowing costs to short sell the cryptocurrencies). All the data that

regard these costs have been gathered from Bitcoinity, Bitfinex, Polobot and Cryp-

tolend websites, but historical data of the borrowing rates revealed to be difficult

to be obtained; hence, annual average values of these rates have been used for the

analysis (Table 3.14 in the Appendix B). Gross profits of the strategy are preserved

with the inclusion of all transaction costs, as displayed in figure 3.19.
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Figure 3.16 In sample positions and P&L, BTC-DASH
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Figure 3.17 Out of sample positions and P&L, BTC-DASH pair
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Figure 3.18 In sample and out of sample cumulative compounded returns, BTC/DASH
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Notes: The graph plots the cumulative compounded return of the strategy for the

training and test periods with different thresholds

Table 3.13: In sample and out of sample performance measures, BTC/DASH

Training set Test set

Threshold level z1 z2 z1 z2

Gross profit % 162.59 131.92 21.19 22.40

Max.Drawdown % -24.16 -26.42 -6.69 -13.05

Sharpe Ratio 2.45 1.85 1.44 1.05

Notes: Performance of the automated trading system with Bollinger bands applied to

the BTC-DASH pair

Table 3.15 reports performance metrics of the automated strategy with the in-

clusion of transaction costs, under the two trading rules. Graphs and tables of the

other pairs are included in the Appendix, as a comparison of the profitability of the

three cointegrated pairs. BTC/DASH pair presents the best risk-adjusted perfor-

mance measures, even with the inclusion of transaction costs. (Figures 3.20, 3.21,

3.22, 3.23, 3.24, 3.25, 3.26, 3.27, 3.28, 3.29; Tables 3.16, 3.17 ).
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Figure 3.19 Out of sample gross vs net returns of the strategy, BTC/DASH
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Notes: The two graph plot a comparison of gross and net cumulative returns generated

by the strategy in the test set under the two different rules z1 and z2

Table 3.15: Out of sample performance measures of the strategy includ. transaction

costs, BTC/DASH

Threshold level z1 z2

Gross Net∗ Gross Net∗

Cum. return% 21.19 18.10 22.40 18.42

Max.Drawdown % -6.69 -6.69 -13.05 -13.06

Sharpe Ratio 1.44 1.25 1.05 0.89

Notes: ∗ indicates the inclusion of Bid-ask spread, trading fees and margin funding

rates (short selling costs) in the computation
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An implementation of the strategy could be executed by a ”scale in” process, in

order to capture even the slight deviations of the spread; in fact, the scaling, or

averaging, of positions lets the trader capture potential profits otherwise lost, as

the spread deviates further and further from its mean and then reverse to it; hence,

capital could be added to maximize the profit potential (scaling-in); on the other

hand, the strategy also could scales out gradually. To implement scaling-in with the

Bollinger bands system, multiple entry and exit thresholds have to be defined. As

expressed in the previous section, empirical evidence demonstrates that the defini-

tion of thresholds with smaller magnitude determines shorter holding periods and

more round trip trades, generally with higher profits in absence of transaction costs

(Chan (2013)). However, in the presence of transaction costs, as in this context,

the higher number of trades would consequently erode profits, due to payment of

consistent trading fees; for this reason, a scale-in process is not activated.

3.2.7 Discussions

Cryptocurrencies prices of the arbitrarily selected pairs proved to be cointegrated

processes in the training set, except for the pair BTC/ETH, whose residuals, ob-

tained by the OLS model, barely passed the ADF test. Hence, a pair trading

strategy that involved cointegrated pairs has been constructed using the Bollinger

bands method as trading rules; an automated trading system has been defined to

capture the deviations of the formed spread; positions have been automatically ac-

tivated once thresholds parameters were satisfied. The system exhibited large gross

profits both in the training and test sets and maintained the profitability even tak-

ing into account the transaction costs represented by the Bid-ask spread, trading

fees and Margin funding rates. These empirical findings confirm the hypothesis that

the Cryptocurrency market is not Efficient, as it allows profitable arbitrage trad-

ing strategies. However, due to the magnitude of transaction costs (short selling

costs are extremely high for certain cryptocurrencies), the construction of a mean

reverting portfolio, comprised of several cryptocurrencies, has not been performed.

Further analysis should consider the selection of other cryptocurrencies to form the

pairs and use hourly or minutely historical data to evaluate high-frequency trad-

ing strategies; an algorithmic system could be used to optimize the selection in

the formation period. Secondly, for not truly cointegrated pairs but that display

mean reversion, the computation of dynamic hedge ratio should be more opportune

to adapt to the changing levels of the pair components. To conclude, the use of

Kalman filter algorithm could be deployed to compute dynamic hedge ratios of the

pairs.
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3.2.8 Dynamic hedge ratio: BTC/ETH pair

This section develops a pair trading strategy that considers the use of a dynamic

hedge ratio to define the spread between the pair components. In fact, residuals of

the BTC/ETH pair, obtained with OLS method, were the only one not to provide

enough statistical certainty of being a stationary process; hence, the construction

of a pair strategy that make use of the cointegration approach would have not pro-

vided the same level of profitability obtained by other pairs and, thus, has not been

performed. However, the absence of a cointegration relationship between the com-

ponents of a pair does not exclude the possibility that it could possess traits of

mean reversion in the short term. In this sense, a pairs arbitrage strategy can be

constructed taking into consideration the dynamic nature of the hedge ratio.

A rolling linear regression is then utilized to capture the changes over time in the

hedge ratio; a lookback window is set, and a regression is performed on the observa-

tions contained in the window; afterwards, the window is moved forward in time of

one observation and regression repeated, incorporating one new observation every

time. As a final result, the process will generate a vector containing the hedge ratio,

estimated with multiple regressions. Short size length of the lookback windows is

found to provide better results; the use of a short window determines the execution

of parameters estimations on a smaller sample of data; on the contrary, a longer

window enhances the possibility for the data-generating process to change over the

time period covered by the window with the result that oldest data does not rep-

resent any longer the current behavior of the model. This free parameter could be

subject to an optimization process, for instance, through cross-validation technique.

Sensitivity analysis is then performed by varying the lookback period over a range of

values: results indicate that the use of a lookback window of 20 days in the training

set provide the highest gross profits (Figure 3.30 in the Appendix). Hence, the

window length is set at 20 days.

The Zscore of the pair is computed considering the moving average and standard

deviation of the spread; it is represented in Figure 3.31 with the lookback window

of 20 days. The strategy is back-tested using the same trading rules applied to

the other pairs: z1 and z2. The main difference with the previous approach relies

on the absence of parameter estimations exclusively in the training period; here,

parameters are continuously estimated; however the subdivision of sample data in

training and test sets is maintained and returns computed in both sets; for instance,

the training set has been useful to find the optimal lookback period, subsequently

implemented in the test set.
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Figure 3.31 Z-score of BTC-ETH pair (lookback window of 20 days)
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Figures 3.32, 3.33 illustrate the positions in the pair as the Zscore evolves over the

time in the training and test sets, and the profit and loss generated by the strategy

under the two different trading rules.

Figure 3.32 In sample positions and P&L generated by the strategy
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Figure 3.33 Out of sample positions and P&L generated by the strategy
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Figure 3.34 plots the cumulative compounded gross returns of the pair in the two

sets, transaction costs excluded. The strategy performs better according to trading

rule z2 both in the training and test sets; a sensitivity analysis that considers dif-

ferent thresholds to form trading rules could be executed to find the best range of

thresholds under which perform trades. Table 3.18 contains performance metrics

of the strategy in both sets, while Figure 3.35 and Table 3.19 include transaction

costs in the out-of-sample analysis. Trading fees represent transaction costs with the

heaviest weight and completely annihilate gross returns, due to the higher number

of performed trades; in fact, aside from opening and closing positions when Zscore

has reached certain threshold, a constant rebalancing of portfolio is needed to adapt

to the dynamic hedge ratio; hence, positions in ETH are daily rebalanced to best

match the synthetic spread formed with the dynamic hedge ratio, with the result

of payment of higher trading costs. The reduction or avoidance of trading fees, for

instance performing the strategy with large volumes15, could enhance profitability,

aligning net returns to gross ones. Moreover, the short selling costs of Ethereum

proved to be much greater in comparison to Bitcoin; this aspect explains the diver-

gence in performance between the first and second trading rule once margin funding

rates have been accounted (with the second rule, the time over which ETH is short

sold is longer, with the effect of higher margin funding costs).

15Maker fees on Bitfinex are erased for monthly traded volumes above $7.5 million
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Figure 3.34 In sample and out of sample cumulative compounded gross returns
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Notes: The graph plots the cumulative compounded gross returns of the strategy under

the two trading rules; upper part training set, at the bottom test set (lookback window

of 20 days)

Table 3.18: In sample and Out of sample performance measures, BTC-ETH

Training set Test set

Threshold level z1 z2 z1 z2

Gross profit % 40.32 150.60 10.94 12.50

Max.Drawdown % -24.52 -24.52 -8.07 -8.07

Sharpe Ratio 0.93 1.93 1.16 1.22

Notes: In sample and Out of sample performance of the automated trading system with

Bollinger bands applied to the BTC-ETH pair (lookback window of 20 days)
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Figure 3.35 Out of sample gross vs net returns, BTC-ETH
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Notes: The graph plots the cumulated compounded gross returns of the strategy under

the two trading rules (lookback window of 20 days)

Table 3.19: Out of sample performance measures includ. transaction costs, BTC/ETH

Threshold level z1 z2

Gross Net∗ Net Gross Net∗ Net

Cum. return% 10.94 8.17 0.15 12.50 8.50 -3.59

Max.Drawdown % -8.07 -8.08 -8.09 -8.07 -8.08 -8.09

Sharpe Ratio 1.16 0.88 0.03 1.22 0.86 -0.31

Notes: ∗ indicates the exclusion of trading fees from the computation

Further analysis should consider the opportunity to add stop loss orders to the

system to mitigate effects of large short term price swings, thus reducing maximum

drawdown in the pair, a concept valid for the cointegrated pairs too (BTC/DASH,

BTC/LTC, BTC/XMR); however, a drawback could be represented by the loss of

potential profits, not captured anymore with the activation of a stop loss order.
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3.2.9 Matlab Code

1 %% PAIRS TRADING: COINTEGRATION METHOD WITH ENGLE−GRANGER TESTING

2

3 %Load file with pricing data (obtained via API)

4

5 data = readtable('Pricbitf20172018.xlsx');

6 S=size(data,1)

7 dates=data(1:S,1);

8 dates=dates{:,1};
9 assetNames = data.Properties.VariableNames(2:end);

10 assetPrice = data(:,assetNames).Variables;

11 BTC=assetPrice(1:S,1);

12 ETH= assetPrice(1:S,2);

13 DASH=assetPrice(1:S,3);

14 LTC=assetPrice(1:S,4);

15 MONERO=assetPrice(1:S,5);

16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 %% DIVIDE SAMPLE DATA IN TRAINING AND TEST SETS

18 trainset=1:365;

19 testset=trainset(end)+1:S;

20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 %% UNIT ROOT TESTS: ADF, KPSS

22 % ADF: h=0, failure to reject the null hyp of STATIONARITY

23 % KPSS= h=1 rejects null hyp of STATIONARITY

24

25 %BTC

26 [h1,pVal1] = adftest(BTC(trainset),'model','ARD')

27 [h1D,pVal1D] = adftest(diff(BTC(trainset)),'model','ARD')

28

29 %ETH

30 [h12,pVal2] = adftest(ETH(trainset),'model','ARD')

31 [h1D2,pVal1D2] = adftest(diff(ETH(trainset)),'model','ARD')

32

33 %DASH

34 [h13,pVal3] = adftest(DASH(trainset),'model','ARD')

35 [h1D3,pVal1D3] = adftest(diff(DASH(trainset)),'model','ARD')

36

37 %LTC

38 [h14,pVal4] = adftest(LTC(trainset),'model','ARD')

39 [h1D4,pVal1D4] = adftest(diff(LTC(trainset)),'model','ARD')

40

41 %XMR

42 [h15,pVal5] = adftest(MONERO(trainset),'model','ARD')

43 [h1D5,pVal1D5] = adftest(diff(MONERO(trainset)),'model','ARD')
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44

45 % KPSS test for stationarity

46 [h kpss,pValue kpss] = kpsstest(BTC(trainset))

47 [h kpssd,pValue kpssd] = kpsstest(diff(BTC(trainset)))

48

49 [h kpss1,pValue kpss1] = kpsstest(ETH(trainset))

50 [h kpss1d,pValue kpss1d] = kpsstest(diff(ETH(trainset)))

51

52 [h kpss2,pValue kpss2] = kpsstest(DASH(trainset))

53 [h kpss2d,pValue kpss2d] = kpsstest(diff(DASH(trainset)))

54

55 [h kpss3,pValue kpss3] = kpsstest(LTC(trainset))

56 [h kpss3d,pValue kpss3d] = kpsstest(diff(LTC(trainset)))

57

58 [h kpss4,pValue kpss4] = kpsstest(MONERO(trainset))

59 [h kpss4d,pValue kpss4d] = kpsstest(diff(MONERO(trainset)))

60 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61

62 %% ENGLE GRANGER PROCEDURE: STEP 1

63

64 %Choose the pair and perfom Linear regression in the training set

65

66 %BTC−DASH
67

68 Y=BTC

69 X=DASH

70

71 Y train=Y(trainset);

72 T=rows(Y train);

73 X0 train=ones(T,1); %intercept

74 X1 train=X(trainset);

75 X train=[X0 train,X1 train];

76

77 results=ols(Y train,X train);

78 beta OLS=results.beta;

79 hedgeRatio=beta OLS(2);

80 errors=results.resid;

81 Rsquared=results.rsqr

82 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
83

84 %% ENGLE GRANGER PROCEDURE: STEP 2

85

86 %Perform Unit root tests on the fitted errors.

87 %Not include constant or deterministic trend when performing test

88

89 [h1a,pVal1a] = adftest(errors,'model','AR')

90 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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91 %% PAIR SPREAD AND ZSCORE

92

93 spread=Y−hedgeRatio*X;
94

95 % Zscore

96 spreadMean=mean(spread(trainset)); % In−sample mean of the spread

97 spreadStd=std(spread(trainset)); % In−sample standard deviation ...

of the spread

98 zScore=(spread − spreadMean)./spreadStd; % z−score of the spread

99 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
100

101 %% HALFLINE OF MEAN REVERSION (Credit to Ernie Chan)

102

103 %Find value of lambda and thus the halflife of mean reversion by ...

linear regression fit

104

105 ylag=lag1(spread(trainset)); % lag1 is a function written by ...

Ernest Chan.

106 ∆Y=spread(trainset)−ylag;
107 ∆Y(1)=[]; % To remove the NaN in the first observation of the ...

time series.

108 ylag(1)=[];

109 regress results=ols(∆Y, [ylag ones(size(ylag))]);

110 halflife=−log(2)/regress results.beta(1);

111

112 fprintf(1, 'halflife=%f days\n', halflife);

113

114 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
115 %% AUTOMATED TRADING SYSTEM

116 %(Rielaboration of Ernie Chan Code from "Algorithmic Trading: ...

Winning Strategies and Their Rationale")

117

118 % Trading rules: Bollinger bands, Z1

119

120 entryZscore=1;

121 exitZscore=0;

122

123 longsEntry=zScore < −entryZscore;
124 longsExit=zScore > −exitZscore;
125

126 shortsEntry=zScore > entryZscore;

127 shortsExit=zScore < exitZscore;

128

129 numUnitsLong=NaN(length(spread), 1);

130 numUnitsShort=NaN(length(spread), 1);

131

132
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133 numUnitsLong(1)=0;

134 numUnitsLong(longsEntry)=1;

135 numUnitsLong(longsExit)=0;

136 numUnitsLong=fillMissingData(numUnitsLong); % fillMissingData is ...

a function created by Chan: it carries forward an existing ...

position from previous day if today's position is ...

indeterminate (NaN).

137

138 numUnitsShort(1)=0;

139 numUnitsShort(shortsEntry)=−1;
140 numUnitsShort(shortsExit)=0;

141 numUnitsShort=fillMissingData(numUnitsShort);

142

143 numUnits=numUnitsLong+numUnitsShort;

144 cl=[X Y];

145 positions=repmat(numUnits, [1 size(cl, 2)]).*[−hedgeRatio ...

ones(size(hedgeRatio))].*cl; % [−hedgeRatio ...

ones(size(hedgeRatio))] is the units allocation, ...

[−hedgeRatio ones(size(hedgeRatio))].*cl is the dollar ...

capital allocation, while positions is the dollar capital in ...

each coin.

146

147 pnl=sum(lag1(positions).*(cl−lag1(cl))./lag1(cl), 2); % daily ...

P&L of the strategy

148 ret=pnl./sum(abs(lag1(positions)), 2); % return is P&L divided ...

by gross market value of portfolio

149 ret(isnan(ret))=0;

150 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
151 %PERFORMANCE MEASURES

152

153 %Cumulative return

154 CumRet trainset=cumprod(1+ret(trainset))−1;
155 CumRet trainset=CumRet trainset(end);

156 CumRet testset=cumprod(1+ret(testset))−1;
157 CumRet testset=CumRet testset(end);

158

159 %Maximum drawdown

160 MaxDD train = maxdrawdown(1+ret(trainset));

161 MaxDD test = maxdrawdown(1+ret(testset));

162

163 %Sharpe ratio

164 Sh train=sqrt(size(trainset,2))*mean(ret(trainset))/std(ret(trainset));

165 Sh test=sqrt(size(testset,2))*mean(ret(testset))/std(ret(testset));

166

167 %Compare results with different trading rule Z2, and different pairs

168 %%NOTES: Functions used: rows, ols, lag1, fillMissingData
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1 %%PAIRS TRADING: DYNAMIC HEDGE RATIO

2

3 % First and second sections equal to Cointegration method file

4

5 ...

6

7 %% DYNAMIC HEDGE RATIO (Rielaboration of Chan code)

8

9 X=ETH

10 Y=BTC

11

12 lback=20; % Lookback set arbitrarily short

13 hedgeRatio=NaN(size(X, 1), 1);

14 for t=lback:size(hedgeRatio, 1)

15 regression result=ols(Y(t−lback+1:t), [X(t−lback+1:t) ...

ones(lback, 1)]);

16 hedgeRatio(t)=regression result.beta(1);

17 end

18

19 cl=[X Y];

20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21

22 %% SPREAD AND ZSCORE

23

24 spread=sum([−hedgeRatio ones(size(hedgeRatio))].*cl, 2); % ...

Spread of the pair

25 hedgeRatio(1:lback)=[]; % Removed because hedge ratio is ...

indeterminate

26 spread(1:lback)=[];

27 cl(1:lback, :)=[];

28

29 MA=movingAvg(spread, lback); %Credit to Ernie Chan

30 MSTD=movingStd(spread, lback);

31 zScore=(spread−MA)./MSTD
32 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33

34 %%AUTOMATED TRADING SYSTEM

35

36 %Same as in the cointegration file: try different trading rules

37

38 ...

39

40 %%NOTES: functions used: fillMissingData, lag1, movingStd, ...

movingAvg, ols, rows
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Concluding Remarks

Cryptocurrency market proves not to be efficient as it allows profitable arbitrage

and relative value arbitrage strategies, even with the inclusion of transaction costs.

Price discrepancies of digital coins persist over a considerable amount of time, in

terms of days and weeks. Although several constraints and obstacles may limit the

exploitation of these temporary misalgninments, simple arbitrage strategies between

exchanges were profitable for all 2017 and even 2018 but with a lower magnitude.

The main obstacles remain the execution time, needed to perform the combined

trades, and the international capital restrictions, that may limit the choice of plat-

forms where perform strategies, thus affecting the outcome. The reduction of buying

pressure and global trading volumes, consequence of a minor interest of the public

and perhaps several opaque and fraudulent events that interested the space, and the

advanced strategies performed by speculative funds have probably eroded most of

arbitrage opportunities between exchanges, thus upgrading the efficiency level of the

market. However, in time of elevate volatility and uncertainty, due to relevant posi-

tive or negative news, price discrepancies are likely to re-occur due to the fragmented

organization of the cryptocurrency space, characterized by multiple exchanges with

sensible different volumes and local demands.

A solution to main obstacles to arbitrage exploitation has been represented by the ac-

tivation of more sophisticated trading strategies that seek to find price discrepancies

inside the same exchange, for example, investigating temporary price misalignments

between a pair of assets, as implemented by pairs trading. Cointegration method

applied to a group of 5 cryptocurrencies has identified 3 pairs with mean reversion

property, and the automated trading system, based on the Bollinger bands rules,

exhibited consistent gross and net cumulative returns under different thresholds.

For non stationary pairs, the computation of a dynamic hedging ratio has been per-

formed to adapt to the changing levels of the pair components.
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Further research on the subject should explore the potential explanations of coin-

tegrating relations in the cryptourrency space, while extending the dataset of pos-

sible pairs and adopting more sophisticated frameworks, as the stochastic spread

approach ; Kalman filter could be used to correctly infer the exact entry and exit

trading signals, or the true weights to assume in each pair component. In conclusion,

high-frequency pairs trading could be tested with the use of minutely pricing data,

but only in the context of trading fees minimization, as they represent transaction

cost with the heaviest weight.
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Figure 1.2. Comparison of greatest asset bubbles of all times

Source: Bloomberg, International center for finance

Figure 1.4. DLT applications
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Figure 1.7. Bitcoin Dominance
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Notes: Bitcoin dominance (%), data extracted from Coinmarketcap, Matlab
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Figure 1.8. Bitcoin Monetary Emission
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Notes: Bitcoin monetary emission, Author illustration with Matlab software
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Figure 1.9. Bitcoin average transaction fees

Source: Bitinfocharts.com

Figure 1.10. Bitcoin hash rate and difficulty

Source: Bitinfocharts
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Figure 1.11. Bitcoin hash rate distribution

Notes: The pie chart shows Bitcoin hash rate distribution between Mining pools,

November 2018, Source: Blockchain.com

Figure 1.12. Bitcoin energy consumption index
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Notes: The graph plots the estimated and minimum amount of energy Bitcoin network

needs to execute the mining process. Author illustration with Matlab software; data

from digiconomist.net
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Figure 1.14. Prices
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Notes:Main cryptocurrencies price: (a) Ether, (b) Xrp, (c) Ltc, (d) Dash, (e) Monero,

(f) Stellar Lumens. Source: Coinmarketcap

Figure 1.15. average tx fees for main cryptocurrencies
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Figure 1.16. average tx fees in the period august-november 2018

Figure 1.18. Log vs simple returns
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Notes: Log vs Simple daily returns: (a) Ether, (b) Xrp, (c) Ltc, (d) Dash, (e) Monero,

(f) Stellar Lumens. Source: Coinmarketcap
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Figure 1.21. Frequency distribution Histogram of daily log returns
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Notes:(a) Ether, (b) Xrp, (c) Ltc, (d) Dash, (e) Monero, (f) Stellar Lumens.
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Figure 1.22. Quantile-Quantile plot of daily log returns
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B.1 Arbitrage strategies

Figure 3.3 Bitcoin discounts
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Notes: The four graphs plot Bitcoin discounts with respect to Bitstamp exchange: (a)

BitFlyier, (b) Bitfinex, (c) Kraken, (d) Coinbase
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Figure 3.4 Ethereum discounts
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Notes: The four graphs plot Ethereum discounts with respect to Bitstamp exchange: (a)

Bithumb, (b) Bitfinex, (c) Coinbase, (d) Kraken

Table 3.2: Summary statistics of ETH discounts

ETH Premium (in %)

Exchange Mean Std. Max. Min. AC(1) obs.

Bithumb 4.3025 8.1939 52.8957 -5.8970 0.9533 474

Bitfinex 0.3578 1.1998 5.1505 -6.1507 0.8383 481

Coinbase 0.2174 0.9172 10.6721 -1.3904 0.6320 481

Kraken 0.0179 0.6054 5.9340 -2.9696 0.4130 481

Notes: main statistics of Etherum daily discounts in percent over Bitstamp exchange,

period 08/2017-12/2018.
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Figure 3.5 Litecoin discounts
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Notes: The graphs plot Litecoin discounts with respect to Bitstamp exchange: (a)

Bithumb, (b) Bitfinex, (c) Kraken

Table 3.3: Summary statistics of LTC discounts

LTC Premium (in %)

Exchange Mean Std. Max. Min. AC(1) obs.

Bithumb 4.0947 7.6621 52.2455 -5.8970 0.9426 542

Bitfinex 0.2118 1.1784 5.4358 -6.2684 0.7775 535

Kraken 0.0189 0.6967 3.3618 -5.4816 0.4149 535

Notes: main statistics of Litecoin daily discounts in percent over Bitstamp exchange,

period 06/2017-12/2018.
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Figure 3.6 Hourly discounts in percent over Bitstamp exchange, period 10/2018-12/2018
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Notes: (a) BTC/USD discount, (b) XRP/BTC discount

Figure 3.8 Daily Bid-ask spread
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Notes: The chart represents the daily bid-ask spread in Bitfinex, Bitstamp, Kraken and

Coinbase exchanges
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Figure 3.9 Final hourly discount
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Notes: The graph plots the hourly discount of the strategy; the red line represents the

threshold over which the arbitrage strategy is profitable considering transaction costs

Table 3.5: Fees

Exchange Coin Deposit (%) withdrawal (%) trading (%)

Bitstamp USD 0.05 0.09 0.1-0.25

BTC free of charge free of charge 0.1-0.25

XRP free of charge free of charge 0.1-0.25

Bitfinex USD 0.1 0.1 0-0.20

BTC free of charge 0.0004* 0-0.20

XRP free of charge 0.02* 0-0.20

Notes: Trading fees may vary based on the total monthly traded volumes; * entries

represent absolute values
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B.2 Pairs trading

Table 3.8: OLS regression BTC-ETH

Dep. variable
BTC

Variable Coefficient T-stat.
ETH 9.177∗ 18.986

(0.483)
Intercept 3,205.918∗ 10.919

(293.604)
R2 0.498
F stat. 360∗

obs. 365
Note: ∗p < 0.001

Table 3.9: OLS regression BTC-LTC

Dep. variable
BTC

Variable Coefficient T-stat.
LTC 42.351∗ 35.489

(1.193)
Intercept 3,046.752∗ 18.131

(168.035)
R2 0.776
F stat. 1,263.721∗

obs. 365

Note: ∗p < 0.001

Table 3.10: OLS regression BTC-XMR

Dep. variable
BTC

Variable Coefficient T-stat.
XMR 30.992∗ 35.357

(0.877)
Intercept 2,411.819∗ 13.061

(184.659)
R2 0.775
F stat. 1,252.148∗

obs. 365

Note: ∗p < 0.001
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Figure 3.13 Z-score BTC-LTC
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Notes: The graph plots the Z-score over the pair BTC-LTC

Figure 3.14 Z-score BTC-XMR
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Notes: The graph plots the Z-score over the pair BTC-XMR

Table 3.14: Average daily margin funding rates, January 2019

Polobot Cryptolend
BTC 0.0233 0.0062
ETH 0.0346 0.0105

DASH 0.0477 0.0269
LTC 0.0365 0.0364

XMR 0.0035 0.0025

Notes: Values are in percentage
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Figure 3.20 In sample positions and P&L, BTC/LTC pair
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Figure 3.21 Out of sample positions and P&L, BTC/LTC pair
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Figure 3.22 In sample positions and P&L, BTC/XMR pair
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Figure 3.23 Out of sample positions and P&L, BTC/XMR pair
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Figure 3.24 In sample and out of sample cumulative gross returns, BTC/LTC pair
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Figure 3.25 In sample and out of sample cumulative gross returns, BTC/XMR pair
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Figure 3.26 Out of sample gross vs net returns, BTC/LTC pair
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Table 3.16: Out of sample performance measures of the strategy, BTC-LTC pair

Threshold level z1 z2

Gross Net∗ Gross Net∗

Cum. return% 13.79 10.89 18.77 14.92
Max.Drawdown % -6.95 -6.95 -11.33 -11.33

Sharpe Ratio 1.21 0.98 1.05 0.86

Notes: ∗ indicates the inclusion of the bid-ask spread, trading fees and margin funding
rates in the computation
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Figure 3.27 Out of sample gross vs net returns, BTC/XMR pair
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pair BTC/XMR generated by the strategy in the test set under the two different rules z1
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Table 3.17: Out of sample performance measures of the strategy, BTC-XMR

Threshold level z1 z2

Gross Net∗ Gross Net∗

Cum. return% 12.22 9.36 9.44 5.90
Max.Drawdown % -5.73 -5.74 -8.39 -8.39

Sharpe Ratio 1.17 0.92 0.69 0.46

Notes: ∗ indicates the inclusion of the bid-ask spread, trading fees and margin funding
rates in the computation
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Figure 3.28 Out of sample comparison of gross compounded returns under z1
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Figure 3.29 Out of sample comparison of gross compounded returns under z2
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Figure 3.30 Sensitivity analysis of the lookback window
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Introduction

The scope of this paper mainly concerns the investigation and subsequently ex-

ploitation of absolute and relative price discrepancies in the new and attractive

Cryptocurrency market, a volatile and fragmented space characterized by a multi-

tude of exchanges and virtual issued currencies, the former represented by centralized

and decentralized trading platforms, dislocated in several area of the globe, that op-

erate as market makers or matching systems, while the latter are digital electronic

systems whose technological development relies on the academic works of modern

Cryptography and Network security. Firstly, an analysis of the cryptocurrency mar-

ket from an historical, technological and statistical point of view is illustrated. Basic

statistics of the main cryptocurrencies are provided, with a major emphasis over Bit-

coin network, the first digital and unregulated currency system to appear in 2009.

Graphical methods and statistical tests are then outlined to assess the presence of

Normality in daily returns distribution of a group of selected cryptocurrencies. Fol-

lows a briefly review of academic literature, that covers arbitrage phenomena and

market completeness, with a focus on the Law of One Price and No-arbitrage prin-

ciples. Afterwards, a popular type of ”relative value” arbitrage and market neutral

strategy is introduced, namely the pairs trading, a quantitative investment strat-

egy that seeks to exploit relative price deviations from an equilibrium level between

components of a pair. Univariate pairs trading frameworks are investigated, along

with the series of statistical tests and estimation procedures. The empirical analysis

examines then absolute price discrepancies of digital coins between exchange plat-

forms. The profitability of such risk-less simple arbitrage strategies may be eroded

by consistent transaction costs and hurdles. As a result, second section of the anal-

ysis shift the focus to the exploitation of relative price discrepancies inside the same

exchange, in order to minimize many of the listed transaction costs and risks: the

execution time, and the complex system of fees. Pairs trading strategy is then in-

vestigated: Unit root rests are performed to check stationarity, and Engle-Granger

two-step procedure is adopted to form the potential pairs. Finally, once trading

rules have been delineated, an automatic trading system is activated to capture de-

viations of the formed spread, and in-sample and out-of-sample performance metrics

of the strategy are reported, along with final discussions.
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The Cryptocurrency Market

The year 2017 has experienced an exponential growth of the Cryptocurrency mar-

ket, that reached a total capitalization of 800 billion dollars in the 4th quarter.

With the introduction of the Bitcoin Futures market by the Chicago Board Options

Exchange (CBOE) and the CME Group Inc (CME.O), a consistent decline of the

total market value has followed what has been defined in the academic world as one

of the largest asset bubbles of all times. Since the release of Bitcoin protocol in

2008 1, an increasing number of projects and initiatives have entered the new and

attractive ecosystem, build upon mathematical and probabilistic models, mainly

with regard to the Cryptography and Network technologies. In particular, large

part of digital cryptographic assets make use of cryptography to secure transactions

through a series of concatenated blocks, i.e., the blockchain, a version of the more

general Distributed ledger technology (DLT). At November 2018, more than 2000

cryptocurrencies have been traded on the several Crypto-exchanges located in all the

areas of the Globe, setting an all time high record; a trading mania has hit several

western and eastern inhabitants and enthusiasts, including third world countries;

according to academic papers and financial analysts, this fear to be left out the

market (FOMO) and the rise of trading bots have contributed to the rising prices

of all the main cryptocurrencies. Hileman and Rauchs (2017) have documented

as more than 90% of all cryptocurrencies and tokens have copied the original code

of Bitcoin, thus not providing any innovation or utility, and raising questions about

the real value that could justify their quotation. However, a naive codification of the

digital cryptographic assets would consider six main categories: cryptocurrencies,

platform currencies, security tokens, Utility tokens, Crypto-collectibles, and Stable-

coins. More general subsdivisions can entail the type of distribute ledger technology,

or the nature of decentralization of the network (permissionless or permissioned).

The rising attention of the media and the public to the new sector has been ac-

companied by a series of opaque events, including hacks and fund losses, as the Mt

Gox exchange hack, market manipulations, insider trading events, Crypto-exchanges

disputable behaviors, that increased the climate of uncertainty and doubt around a

sector not fully understood by the regulators and agencies yet.

1Satoshi Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2018
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MAIN STATISTICS. Cryptocurrencies have the unique feature to be exchange-

able at every day of the week, with no closing times as in the traditional markets.

Table 1 represents the list of most capitalized cryptocurrency at the date of Jan-

uary 16, 2019.

Table 1: Top 15 cryptocurrencies by market capitalization

Rank Name Symbol Price Marketcap
1 Bitcoin BTC $3.664,10 $64.066.913.601
2 Ripple XRP $0,331296 $13.596.504.735
3 Ethereum ETH $124,31 $12.978.577.703
4 Bitcoin cash BCH $129,47 $2.274.707.084
5 EOS EOS $2,46 $2.226.360.399
6 Stellar XLM $0,107665 $2.059.314.945
7 Litecoin LTC $31,86 $1.913.065.27
8 Tron TRX $0,024993 $1.665.804.085
9 Bitcoin SV BSV $78,64 $1.381.638.153
10 Cardano ADA $0,044904 $1.164.232.549
11 IOTA MIOTA $0,308556 $857.641.044
12 Binance coin BNB $6,12 $790.630.750
13 Monero XMR $45,68 $763.933.011
14 Dash DASH $71,89 $616.199.372
15 Nem XEM $0,056754 $510.785.606

Bitcoin is the first cryptocurrency to appear in 2009, with the release of the first

client on the 3rd of January; it is the most liquid and traded cryptocurrency in the

entire market, and with the highest market capitalization, property that still holds

at the date of writing, January 2019. Main statistics of BTC network regards the

monetary emission, the evolution of average transaction fees, the growth of hash

rate, the distribution of mining pools and the energy consumption index. All of

these network features have been extensively researched by academic and profes-

sional studies, with a major focus over the effective decentralization nature of the

system and its potential long-term effects on the environment. The analysis of daily

returns for a group of selected cryptocurrencies has evidenced the remarkable level

of volatility that characterizes the cryptocurrency space; as a result, differences be-

tween simple and log daily returns are clearly visible for many coins; in fact, this

situation materializes when the ratio between consecutive prices is far from one, i.e.,

when assets record consistent daily returns in the double-digit range (30 − 50%).

Absence of Normality in the distribution of daily returns is assessed through graph-

ical methods and statistical tests (Jarque-Bera and Kolmogorov-Smirnov Normality

tests); both display the presence of Leptokurtosis : cryptocurrency returns are more

peaked towards the mean with respect to a Normal distribution, and present fatter

tails. The empirical findings reveal to be fundamental for many risk management

3



applications, as Value at Risk (VaR) and Expected Shortfall (ES) estimations. Fig-

ure 1 reports the Frequency distribution Histogram and Q-Q plot of the daily log

returns for Bitcoin ( graphs of the other cryptocurrencies in Appendix A).

Figure 1 Graphical methods
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Notes: (a) Frequency distribution Histogram and (b) Q-Q plot of BTC daily log returns

Other distributions should be considered in the analysis to obtain the one that could

best fit to the data, with resulting effects for investment and risk-management activ-

ities, as Normal distribution clearly do not characterize the sample data. According

to Chan et al. (2017), the generalized hyperbolic distribution gives the best fit

for Bitcoin and Litecoin, while for the smaller cryptocurrencies the normal inverse

Gaussian distribution, generalized t distribution, and Laplace distribution provide

the best goodness of fit. To conclude, Table 2 contains summary statistics of daily

log returns: Mean, standard deviation, Skewness and Kurtosis.

Table 2: Summary statistics

BTC ETH XRP LTC DASH XMR XLM
Mean 0.0021 0.0044 0.00389 0.0021 0.0032 0.0044 0,0040
Std. 0.0407 0.0655 0.0792 0.0595 0.0627 0.0733 0.0880
Skew. -0.1704 0.2511 2.9711 1.2829 0.8635 1.0639 1.9803
Kurt. 7.4237 6.7155 39.8509 15.3698 8.7617 10.1430 17.1846
Obs. 1077 1077 1077 1077 1077 1077 1077

Notes: evident signs of positive Kurtosis; XRP, LTC, XLM are positively skewed
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Arbitrage and Pairs Trading:
Literature Review

An arbitrage strategy is an investment strategy designed to take advantage of one or

more assets’ price discrepancies generated in different markets; it does not require

capital commitment and guarantees a positive payoff for the investor.

The existence of arbitrage opportunities in financial markets is in contrast with the

Law of one price (LOP) and Fundamental theorem of equilibrium; the former holds

that assets with identical payoffs, in every state of nature, must trade at the same

price (Ingersoll (1987)), while the latter constitutes the basis of modern capital

market theory and encompasses a more general version of No-arbitrage condition.

The theorem states the principle according which security market prices are ratio-

nal and in equilibrium; however, when market conditions ensure the exploitation

of price deviations of homogeneous assets, then, the pressure reinforced by arbi-

trageurs will restore equilibrium levels. As a result, arbitrage activities would led to

a convergence of price in different markets, in accordance with the efficient market

hypothesis (EMH): asset prices fully reflect all past and current publicly available

information and all private information (Fama (1970)). It is therefore the quick-

ness of market response to arbitrage occurrences that defines it as efficient or not;

if price discrepancies persist over a long period of time, the market is then not able

to restore equilibrium levels in the short-term, and arbitrage occurrences arise from

market inefficiencies.

The LOP and EMH also apply to ”relative value arbitrage”, an investment strategy

based on the concept of ”relative pricing”. If two assets are close substitutes (Gatev

et al. (2006)) and present similar payoffs, they should trade at similar price (a

variant of LOP, called ”near-LOP”). In case of price deviation from an equilibrium

level, for example due to a significant change in the relationship between two se-

curities prices from its historical average, a relative value arbitrage strategy could

be activated to profit from this temporary misalignment once it has been corrected.

Market neutral strategies and Convertible arbitrage strategies are considered exam-

ples of relative value arbitrage strategies that include multiple assets; they are not

entirely risk-free, but based on the investor’s perspective.
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PAIRS TRADING. A typical expression of market neutral strategy is repre-

sented by pairs trading, a popular strategy that belongs to the category of statis-

tical arbitrage. Its essence relies on the identification of some form of temporarily

mispricing between a pair of assets, the latter that could be represented by stocks,

interest rates, currency rates or exchange rates. Whenever this divergence, called

spread, is large enough to the investor perspective, the pair of assets could be traded

with the idea that the price divergence would correct itself and return to an equi-

librium level at some point in the future. The success of the strategy depends on

the approach chosen to identify potential profitable pairs; the first attempts were

based on fundamental valuation. Among the statistical methods theorized to iden-

tify the pairs, two have emerged and subsequently tested in the years in a wide array

of markets: the Distance method, introduced by Gatev et al. (1999), and the

Cointegration approach.

Distance method. Gatev et al. (1999) use some sort of distance function to

measure the co-movements of the pair components. The authors define the tracking

variance (TV), a measure of distance between two normalized asset prices, computed

as the sum of their squared differences over a formation period. Then, a minimum-

distance criterion is used to match the assets. Stocks that minimize this distance

measure are selected to form the pairs and subsequently tested in the trading pe-

riod. The standard deviation metric is used as trading rule: once ”prices diverge

by more than two historical standard deviations”, a long position is assumed on the

undervalued stock, and a short position on the overvalued one; positions are then

closed when the spread cross back to another threshold or a stop loss level is hit.

The main advantage of Distance methodology relies on the absence of parameters to

be estimated; it is a parametric-free approach. On the other hand, this methodology

presents several drawbacks with regard to the spread variance and mean reversion

requirements; firstly, the choice of Euclidean squared distance as measure to select

pairs is analytically suboptimal. Secondly, the methodology does not investigate on

the nature of correlation between the pair components, as it does not make use of

any statistical test to confirm some long-run equilibrium relationship.

Cointegration method. A more sophisticated approach that heavily relies on

econometric techniques; it has been introduced by Vidyamurthy (2004) and ex-

ploits co-movement between pair components by cointegration testing, with the

Engle-Granger (1987) two step procedure, or the Johansen (1988) method in

the context of multiple cointegrating relations. Cointegration is a statistical prop-
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erty that characterizes a set of non-stationary time series data Xt, Yt, i.e, random

processes ordered by time t. Non stationary variables can be made stationary by

differencing; in this case they are said to be Integrated processes of order d, I(d) ,

where d is the degree of differencing required to make the variable stationary. In

general, linear combinations of non-stationary variables are also non-stationary, but

any linear combination that produce as result a stationary time series is said to be

a cointegration relation.

In mathematical terms, if there exists a vector β such that the linear combination

εt = Yt − βXt ∼ I(0)

is stationary, the two variables Xt, Yt ∼ I(1) are said to be cointegrated, i.e., there

is a long-term relationship that ties them under a common stochastic trend. Most

financial price series are not stationary time series, but rather geometric random

walks; however, if a linear combination of them is found to be stationary, then

their distance, or spread, possess mean reversion traits. Antecedent the cointe-

gration testing, the first essential stage of the analysis relies on the identifcation

of non-stationarity in the asset price time series; this step can be performed via

the the Augmented Dickey Fuller (ADF) test, the Phillips-Perron (PP) test, or the

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. Once it is proven that two vari-

ables, for instance Xt, Yt, are integrated processes of order 1, I(1), then the first

step of Engle-Granger procedure entails the performance of a linear regression of a

variable (Yt) on the other (Xt), using the Ordinary least squares (OLS) model for

parameter estimation:

Yt = β0 + β1Xt + εt

ε̂t = Yt − β̂0 − β̂1Xt

where β0 is a constant term, the interceipt, β1 is the hedging ratio, and ε̂t are the

fitted errors, the latter subsequently tested for stationarity with the ADF test (Sec-

ond step), excluding drift or deterministic trend in the model. In case of rejection

of the null hypothesis of unit root in the residuals, the components of the pair are

said to be cointegrated, while ε̂t is the estimated cointegrating vector.

As expressed by Alexander (1999), the Engle-Granger approach can represent

the optimal methodology, as ”it is very straight-forward to implement”; secondly,

its linear combinations present the minimum variance, a nice feature in the context

of risk management applications, and, finally, it is quite natural the choice of de-

pendant variable in the linear regression. The profitability and superiority of the

cointegration approach has extensively documented by a wide array of academic

studies: Perlin (2006), Caldeira and Moura (2013), Hong, Susmel (2003),

Rad et al. (2015), Huck and Afawubo (2015), Blázquez et al. (2018).
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Empirical Analysis

SIMPLE ARBITRAGE STRATEGIES. They concern the possibility of buy-

ing and selling at the same time selected cryptocurrencies in different exchanges in

order to retain the difference in price, defined as premium (when positive). One

of the main reason that suggests the analysis of price discrepancies relies on the

fragmentation of the cryptocurrency space: there existed more than two hundred

trading platforms in 2018 according to Coinmarketcap website, with sensible differ-

ent trading volumes and buying pressure, certified by academic studies2. Moreover,

the majority of them was open to foreign traders and investors, thus reinforcing

the possibility for arbitrageurs to exploit temporary price misalignments. Historical

Data of the exchange rate of three cryptocurrencies versus the Us dollar have been

collected with the auxiliary of Cryptocompare api on Python software (from May

22th, 2017 to December 20th, 2018). The exchanges covered by the analysis have

been classified following a geographic order.

Methodology and results Cryptocurrencies prove not to satisfy the law of one

price (LOP) as they can trade at sensible different prices in multiple exchanges. In

particular, Korean exchanges recorded, especially in 2017, consistent gap in price,

called the ”Kimchi premium”. Table 3 reports the main statistics of Bitcoin dis-

counts in percent over the USD price for the sample of international exchanges:

mean, standard deviation, maximum and minimum values, first order autocorrela-

tion and the total number of observations. The empirical findings confirm that price

discounts are volatile, time-varying, as they can be positive or negative between the

same pair of exchanges, and persistent.

Identical result for the other coins: Ether (ETH) and Litecoin (LTC). Price discrep-

ancies are more observable during 2017 and across regions than exchanges within

the same region. Investors may face considerable transaction costs and risks, rep-

resented by a complex system of fees, bid-ask spread, execution and counterparty

risks, international capital restrictions. The majority of such transaction costs could

be minimized following some precautions; for example, we could consider a simple

arbitrage strategy that involves a cryptocurrency (BTC) with a significant discount

2Borri and Shakhnov (2018), Igor Makarov and Antoinette Schoar (2018)
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Table 3: Summary statistics

BTC Discount (in %)
Exchange Mean Std. Max. Min. AC(1) obs.
Bithumb 4.5889 7.9131 48.4129 -6.3397 0.9409 578
BitFlyer 0.8783 2.3370 17.7331 -11.8885 0.7365 578
Bitfinex 0.1362 1.3235 5.8344 -6.7514 0.8029 578
Kraken -0.0126 0.5842 2.0650 -4.8908 0.3919 578
Coinbase 0.1491 0.6743 6.4871 -1.2800 0.6109 578

Notes: main statistics of Bitcoin daily discounts in percent over Bitstamp exchange,
period 05/2017-12/2018. Btc Discounts are volatile, time-varying and persistent

between a pair of exchanges, Bitstamp and Bitfinex, but includes a second fast

currency for transfer (XRP). The main advantage of this strategy relies in the min-

imization of the execution time and transaction fees (tx) payment; a drawback is

represented by the higher trading costs due to the execution of more trades. Hourly

Btc, Xrp prices have been gathered via Cryptocompare api, while Table 4 reports

summary statistics of the hourly discounts. Bitcoin presents a consistent discount,

with an average value of 2.3435% and with 58.12% of probability of being larger

than 2% (1163 over 2001 observations); the pair XRP/BTC presents no significant

discount, as more of 97% of observations lie in the range −0.5 − 0.5% ; therefore,

when BTC discount is consistent and assuming the Usd deposit has already been

executed, a trading arbitrage strategy can be structured as the following:

1. Buy Bitcoin on the exchange with cheaper price, i.e. Bitstamp

2. Sell Bitcoin for Ripple

3. Transfer Ripple to the second exchange, Bitfinex

4. Sell Ripple for Bitcoin

5. Buy Us dollar with Bitcoin

6. Withdraw Usd from exchange

The above strategy minimizes the execution time and the payment of mining fees.

However, it is reasonable to highlight as mining fees are very tiny and irrelevant

with respect to other costs, for example the higher trading costs that have to be

accounted; hence, the strategy can be considered profitable in cases of consistent

price deviations, in the minimum order of 3 − 5% with the actual system of fees3.

With a BTC price discrepancy of 1% and a null XRP/BTC discount the strategy

3Deposit, withdrawal and trading fees
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Table 4: Summary statistics of hourly discounts

Discount (in %)
Exch. Pair Mean Std. Max. Min. AC(1) obs. D > 2
Bitf. BTC/USD 2.3435 1.1959 11.2796 0.4006 0.9608 2001 58.12
Bitf. XRP/BTC - 0.0053 0.2304 2.7100 -1.9740 0.0657 2001 0.0005

Notes: main statistics of BTC/USD and XRP/BTC hourly discounts in percent over
Bitstamp exchange, period 08/2017-12/2018; every observation corresponds to one hour

generates an average outcome of −0.02% in the case of full fees payment, and a

0.485% profit in the case of reduced fees4. Hence, trading signals of entry positions

may be placed at levels that equal 2% or 3%; whenever the discount is above such

levels the arbitrage strategy can deliver a net profit.

Conclusions Price discounts in cryptocurrency markets are in decline, mainly due

to reduction of trading volumes, new strategies deployed by speculative funds and

expert arbitrageurs and new measures adopted by exchanges5; however, in periods

of uncertainty and volatility, during particular news or events, as Cryptocurrency

forks6, deviations may re-appear and in double-digit levels too; furthermore, with

the introduction of liquid institutional platforms it is expected that the time period

such that these arbitrage occurrences generate abnormal profits will shorten, in fa-

vor of high frequency trading strategies.

PAIRS TRADING. Cryptocurrencies proved to be extreme volatile assets, mostly

correlated between them but largely uncorrelated with traditional financial markets.

The simultaneous presence of volatility and correlation in the market is an oppor-

tunity to examine market neutral trading strategies, that do not take into account

the market trend.

Methodology. Cointegration-based pairs trading is then applied to a set of cryp-

tocurrencies, selected among the most liquid and with at least one year of historical

price data, traded on Bitfinex exchange: Bitcoin (BTC), Ether (ETH), Litecoin

(LTC), Dash (DASH) and Monero (XMR). In particular, Litecoin, Dash, Monero

were all forks of the original code Bitcoin, with whom share some network features

4 Forh highly traded volumes, all transaction costs included except the bid-ask spread
5Introduction of new fees
6Bitcoin cash fork and subsequently hashing war on November, 14th raised uncertainty in the

market and daily volatility, after months of relative price stability
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and technological developments. Hence, considering the strict connection with BTC,

it is plausible to explore the evolution of relative price dynamics. The historical data

are divided in two parts in order to avoid the look-ahead bias7: the first part, the

training set, comprehends the least recent observations; parameters of the model

are optimized on this portion of data. The second part, the test set, is the set of

observations where the resulting model is tested, i.e., the trading period. Prices of

the selected cryptocurrencies confirm to be integrated process of order one, I(1), via

the augmented Dickey-Fuller (ADF) and Kwiatkowski, Phillips, Schmidt, and Shin

(KPSS) tests. Afterwards, Engle-Granger procedure is used to form the pairs; a lin-

ear regression is computed to estimate model parameters: the hedging ratio and the

intercept. Bitcoin is the dependant variable, while the other coins are in turn the in-

dependent ones. Afterwards, unit root tests are computed on the fitted errors. They

appear to be stationary for all except the pair BTC/ETH, where lies on the edge

of the regions of acceptance and rejection; thus, while for the pairs BTC/DASH,

BTC/LTC and BTC/XMR the spread can be defined using the coefficients obtained

by the OLS model in the training set, for the pair BTC/ETH, the computation of a

dynamic hedging ratio should be more appropriate to capture the changing levels of

the pair components. Consider, for example, the pair BTC/DASH; the spread can

be defined as:

δt = BTCt − β1DASHt

, where β1 = 10.79.

A long position on the spread denotes the opening of a long position of 1 unit on

BTC and a short position of 10.79 units on DASH; a short position on the spread

in exactly the opposite. The Zscore is subsequently defined by:

Zt =
δt − uδ
σδ

, where uδ and σδ are the mean and standard deviation of the spread. Once trading

rules are defined (Bollinger bands), an automated trading system can be activated;

it automatically opens and closes positions in the pair in correspondence of pre-

determined signals; more specifically, entry and exit signals are determined on the

basis of Zscore standard deviations from the mean.

Daily returns of the strategy are computed through a mark-to market system (MTM),

that entails the division of the Profit and Loss (P&L) over the Gross market value

of the portfolio. Existing positions of the previous day are carried forward whenever

the following day’s positions are indeterminate. Figure 2 illustrates the positions in

7When future information or data are used to construct and back-test a trading strategy for a
time period antecedent to their availability
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the pair BTC/DASH as the Zscore evolves over the time in the training and test sets,

and the profit and loss generated by the strategy with two different trading rules: the

first, z1, opens positions when the Zscore is above or below 1 standard deviation and

close them when it reverts to the mean (z1 : n1 = 1, n2 = 0), while the second, z2,

closes them when the Zscore moves beyond the opposite band (z2 : n1 = 1, n2 = −1).

Figure 2. In-sample and out-of-sample positions and P&L, BTC-DASH
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Figure 3 plots the cumulative compounded gross returns of the pair BTC/DASH

generated in the training and test periods. The strategy performs better with the

first rule either in the training set or in the test set; in fact, it presents a lower maxi-

mum drawdown and a higher Sharpe ratio. Out-of the sample results are consistent

with the model. Table 5 summarizes some of the performance metrics.

Table 5: In sample and out of sample performance measures, BTC/DASH

Training set Test set
Threshold level z1 z2 z1 z2

Gross profit % 162.59 131.92 21.19 22.40
Max.Drawdown % -24.16 -26.42 -6.69 -13.05

Sharpe Ratio 2.45 1.85 1.44 1.05
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Return and risk measures of the strategy do not vary considerably with the in-

clusion of transaction costs, represented by the bid-ask spread, trading fees and

margin funding rates (borrowing costs to short sell the cryptocurrencies). Gross

profits of the strategy are preserved with the inclusion of all transaction costs, as

displayed in figure 4.

Figure 3 In sample and out of sample cumulative compounded returns, BTC/DASH
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Figure 4 Out of sample gross vs net returns of the strategy, BTC/DASH
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Table 6 reports performance metrics of the automated strategy with the inclusion

of transaction costs, under the two trading rules. The strategy presents similar per-

formance metrics for the other pairs BTC/LTC, BTC/XMR.
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Table 6: Out of sample performance measures of the strategy includ. transaction costs,
BTC/DASH

Threshold level z1 z2

Gross Net∗ Gross Net∗

Cum. return% 21.19 18.10 22.40 18.42
Max.Drawdown % -6.69 -6.69 -13.05 -13.06

Sharpe Ratio 1.44 1.25 1.05 0.89

Notes: ∗ indicates the inclusion of Bid-ask spread, trading fees and margin funding
rates (short selling costs) in the computation

On the other hand, with regard to the pair BTC/ETH, a dynamic hedging ratio is

computed to adapt to the changing levels of the pair components. A rolling linear

regression is utilized to capture the changes over time in the hedging ratio. The

Zscore of the pair is computed considering the moving average and standard devi-

ation of the spread; Positions in ETH are rebalanced at a daily frequence to best

match the synthetic spread formed with the dynamic hedging ratio, with the result

of payment of higher trading costs. The reduction or avoidance of trading fees, for

instance performing the strategy with large volumes8, could enhance profitability,

aligning net returns to gross ones. Moreover, the short selling costs of Ethereum

proved to be much greater in comparison to Bitcoin; this aspect explains the diver-

gence in performance between the first and second trading rule once margin funding

rates have been accounted (with the second rule, the time over which ETH is short

sold is longer, with the effect of higher margin funding costs). Table 7 contains

out-of-sample performance metrics of the strategy with the inclusion of transaction

costs.

Table 7: Out of sample performance measures includ. transaction costs, BTC/ETH

Threshold level z1 z2

Gross Net∗ Net Gross Net∗ Net
Cum. return% 10.94 8.17 0.15 12.50 8.50 -3.59

Max.Drawdown % -8.07 -8.08 -8.09 -8.07 -8.08 -8.09
Sharpe Ratio 1.16 0.88 0.03 1.22 0.86 -0.31

Notes: ∗ indicates the exclusion of trading fees from the computation

8Maker fees on Bitfinex are erased for monthly traded volumes above $7.5 million
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Concluding Remarks

Cryptocurrency market proves not to be efficient as it allows profitable arbitrage

and relative value arbitrage strategies, even with the inclusion of transaction costs.

Price discrepancies of digital coins persist over a considerable amount of time, in

terms of days and weeks. Although several constraints and obstacles may limit the

exploitation of these temporary misalgninments, simple arbitrage strategies between

exchanges were profitable for all 2017 and even 2018 but with a lower magnitude.

The reduction of buying pressure and global trading volumes and the advanced

strategies performed by speculative funds have probably eroded most of arbitrage

opportunities between exchanges, thus upgrading the efficiency level of the market.

However, in time of elevate volatility and uncertainty, due to positive or negative

relevant news, price discrepancies are likely to re-occur due to the fragmented or-

ganization of the cryptocurrency space, characterized by multiple exchanges with

sensible different volumes and local demands.

A solution of the main obstacles to arbitrage exploitation (execution time, capital

restrictions) has been represented by the activation of more sophisticated trading

strategies that seeks to find price discrepancies inside the same exchange, for ex-

ample, investigating temporary price misalignments between a pair of assets, as

implemented by pairs trading. Cointegration method applied to a group of 5 cryp-

tocurrencies has identified 3 pairs with mean reversion property, and the automated

trading system, based on the Bollinger bands rules, exhibited consistent gross and

net cumulative returns under different thresholds. For non stationary pairs, the

computation of a dynamic hedging ratio has been performed to adapt to the chang-

ing levels of the pair components.

Further research on the subject should explore the potential explanations of coin-

tegrating relations in the cryptourrency space, while extending the dataset of pos-

sible pairs and adopting more sophisticated frameworks, as the stochastic spread

approach ; Kalman filter could be used to correctly infer the exact entry and exit

trading signals, or the true weights to assume in each pair component. In conclusion,

high-frequency pairs trading could be tested with the use of minutely pricing data,

but only in the context of trading fees minimization, as they represent transaction

cost with the heaviest weight.
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fillMissingData.m
function my_prices=fillMissingData(prices, varargin)

%  my_prices=fillMissingData(prices) fills missing price with previous

%  day's price

%  my_prices=fillMissingData(prices, tday, cday) fills missing prices with previous day's price including non-trading days

%  as specified in cday





if (nargin == 1)

    my_prices=prices;

    for t=2:size(my_prices, 1)

        missData=~isfinite(my_prices(t, :, :));

        my_prices(t, missData)=my_prices(t-1, missData);

    end

else

    % We deal only with 2 dim prices array here.

    tday=varargin{1};

    cday=varargin{2};

    my_prices=NaN*zeros(size(cday, 1), size(prices, 2));



    tdayIdx=find(tday==cday(1));

    if (~isempty(tdayIdx))

        my_prices(1, :)=prices(tdayIdx, :);

    end

    

    for t=2:size(my_prices, 1)

        tdayIdx=find(tday==cday(t));

        if (~isempty(tdayIdx))

            my_prices(t, :)=prices(tdayIdx, :);

            

            missData=find(~isfinite(my_prices(t, :)));

            my_prices(t, missData)=my_prices(t-1, missData);

        else

            my_prices(t, :)=my_prices(t-1, :);

        end

    end

end






lag1.m
function y=lag(x)

% y=lag(x)

% 

% written by:

% Ernest Chan

%

% Author of “Quantitative Trading: 

% How to Start Your Own Algorithmic Trading Business”

%

% ernest@epchan.com

% www.epchan.com



if (isnumeric(x))

    y=[NaN(1,size(x,2));x(1:end-1, :)]; % populate the first entry with NaN

elseif (ischar(x))

    y=[repmat('',[1 size(x,2)]);x(1:end-1, :)]; % populate the first entry with ''

else

    error('Can only be numeric or char array');

end




movingAvg.m
function [mvavg] = movingAvg(x, T)

% [mvavg]=movingAvg(x, T). create moving average series over T days. mvavg

% has T-1 NaN in beginning.



assert(T>0);



mvavg = zeros(size(x,1)-T+1, size(x, 2));



for i=0:T-1

    mvavg = mvavg + x(1+i:end-T+1+i, :);

end



mvavg = mvavg / T;



mvavg=[NaN*ones(T-1, size(x,2)); mvavg];




movingStd.m
function sd=movingStd(x, T, varargin)

% calculate standard deviation of x over T days. Expect T-1

% NaN in the beginning of the series

% [mvstd]=movingStd(x, lookback, period) creates moving std of lookback

% periods. I.e. data is sampled every period.

% This uses std which normalizes by N-1.



sd=NaN*ones(size(x));



if (nargin == 2)

    for t=T:size(x, 1)

        % for t=T:length(x)

        sd(t, :)=std(x(t-T+1:t, :));

    end

else

    period=varargin{1};

    for t=T*period:size(x, 1)

        sd(t, :)=std(x(t-T*period+1:t, :));

    end

end 








ols.m
function results=ols(y,x)

% PURPOSE: least-squares regression 

%---------------------------------------------------

% USAGE: results = ols(y,x)

% where: y = dependent variable vector    (nobs x 1)

%        x = independent variables matrix (nobs x nvar)

%---------------------------------------------------

% RETURNS: a structure

%        results.meth  = 'ols'

%        results.beta  = bhat     (nvar x 1)

%        results.tstat = t-stats  (nvar x 1)

%        results.bstd  = std deviations for bhat (nvar x 1)

%        results.yhat  = yhat     (nobs x 1)

%        results.resid = residuals (nobs x 1)

%        results.sige  = e'*e/(n-k)   scalar

%        results.rsqr  = rsquared     scalar

%        results.rbar  = rbar-squared scalar

%        results.dw    = Durbin-Watson Statistic

%        results.nobs  = nobs

%        results.nvar  = nvars

%        results.y     = y data vector (nobs x 1)

%        results.bint  = (nvar x2 ) vector with 95% confidence intervals on beta

%---------------------------------------------------

% SEE ALSO: prt(results), plt(results)

%---------------------------------------------------



% written by:

% James P. LeSage, Dept of Economics

% University of Toledo

% 2801 W. Bancroft St,

% Toledo, OH 43606

% jlesage@spatial-econometrics.com

%

% Barry Dillon (CICG Equity)

% added the 95% confidence intervals on bhat



if (nargin ~= 2); error('Wrong # of arguments to ols'); 

else

 [nobs nvar] = size(x); [nobs2 junk] = size(y);

 if (nobs ~= nobs2); error('x and y must have same # obs in ols'); 

 end;

end;



results.meth = 'ols';

results.y = y;

results.nobs = nobs;

results.nvar = nvar;





xpxi = (x'*x)\eye(nvar);



T=rows(x);

results.beta = xpxi*(x'*y);

results.yhat = x*results.beta;

results.resid = y - results.yhat;

sigu = results.resid'*results.resid;

results.sige = sigu/(nobs-nvar);

tmp = (results.sige)*(diag(xpxi));

results.cov=(results.sige)*(xpxi);

sigb=sqrt(tmp);

results.bstd = sigb;

results.tstat = results.beta./(sqrt(tmp));

results.pvalue  = 2*(1-tcdf( abs(results.tstat), T-size(results.beta,1) ));

ym = y - mean(y);

rsqr1 = sigu;

rsqr2 = ym'*ym;

results.rsqr = 1.0 - rsqr1/rsqr2; % r-squared

rsqr1 = rsqr1/(nobs-nvar);

rsqr2 = rsqr2/(nobs-1.0);

if rsqr2 ~= 0

    results.rbar = 1 - (rsqr1/rsqr2); % rbar-squared

else

    results.rbar = results.rsqr;

end;

ediff = results.resid(2:nobs) - results.resid(1:nobs-1);

results.dw = (ediff'*ediff)/sigu; % durbin-watson
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		12/12/17		16968		634.87		926.99		292.04		305

		12/13/17		16171		690.69		876.25		295.35		298.67

		12/14/17		16384		686.51		927.4		276.31		318.97

		12/15/17		17569		678.29		891.09		295.55		309.2

		12/16/17		19210		683.25		990		295.67		323.04

		12/17/17		18961		708.78		1084.9		313.5		345.33

		12/18/17		18928		783.99		1141.6		355.5		372.9

		12/19/17		17345		799.98		1137.1		340.8		355.4

		12/20/17		16425		794.99		1432.5		304.31		470.99

		12/21/17		15645		786.97		1345.9		306.63		420.32

		12/22/17		13173		628.19		1080		248.37		315.05

		12/23/17		14035		672.59		1159		269		342.54

		12/24/17		13477		659.89		1091.1		261.99		329.96

		12/25/17		13633		709.81		1103.6		261.14		332.53

		12/26/17		15680		749.8		1180.8		278.78		357.09

		12/27/17		15375		736.45		1130.5		263.53		376.1

		12/28/17		14323		711.42		1098.9		247.45		349.01

		12/29/17		14307		731.52		1087.9		239.51		348

		12/30/17		12384		682.22		940.1		206.99		303.16

		12/31/17		13769		736.77		1010.9		225.4		330.48

		1/1/18		13376		752.46		1018.4		223.51		337.35

		1/2/18		14722		858.78		1162.9		250.11		364.24

		1/3/18		15150		942.01		1131.4		244.21		386

		1/4/18		15159		940		1118		237.76		372.5

		1/5/18		16911		962.77		1079.8		242.9		357.62

		1/6/18		17169		1004.3		1156.3		278		392.98

		1/7/18		16214		1115.8		1157.9		271.05		399.53

		1/8/18		14906		1129		1075.8		252.77		400.87

		1/9/18		14425		1283.8		1102.1		245		410

		1/10/18		14898		1246.9		1093.3		249.24		402.85

		1/11/18		13254		1135.1		995		225.52		352.38

		1/12/18		13794		1257		1043.2		234.96		388.2

		1/13/18		14199		1379.9		1093.3		257.7		415.95

		1/14/18		13558		1349.7		992.2		235.24		392.87

		1/15/18		13601		1276.9		928.6		231.05		412.64

		1/16/18		11063		1019.6		736		181.8		310.84

		1/17/18		11108		1021.6		790.44		186.71		318.9

		1/18/18		11031		994		815		187.66		306.63

		1/19/18		11476		1032.6		838.38		191.68		362.84

		1/20/18		12731		1146.3		919		209.85		382.79

		1/21/18		11514		1047.7		815.18		189.96		346.21

		1/22/18		10779		997.52		757.42		179.54		313.86

		1/23/18		10811		981.8		756.27		177.64		306.24

		1/24/18		11391		1061.6		786.2		180.36		319.53

		1/25/18		11147		1048.2		788.4		178.8		315.4

		1/26/18		11069		1046.9		779		175.37		321.93

		1/27/18		11458		1113.9		775.5		181.49		323.03

		1/28/18		11829		1245.5		821.8		196.08		334.66

		1/29/18		11217.82		1174.3		768.41		181.51		314.13

		1/30/18		10171		1076.9		681.77		167.35		275.8

		1/31/18		10267		1120		704.26		164.5		275

		2/1/18		9181		1035		620.5		143.2		242.2

		2/2/18		8890.9		923.13		595		132		236.86

		2/3/18		9225		972.1		635.9		161.35		252.01

		2/4/18		8185.2		825.3		542		147.47		219.65

		2/5/18		6947.2		698.62		450.86		125.32		180.14

		2/6/18		7678.8		782.99		520.91		141.81		209.4

		2/7/18		7586.9		752.8		516.91		137.93		206.31

		2/8/18		8239.7		813.11		603.1		149.86		246.31

		2/9/18		8678.1		878.01		636.26		163.61		257.7

		2/10/18		8563		851.09		633.09		154.82		246.11

		2/11/18		8070.5		810.46		578.6		148.92		227.07

		2/12/18		8902.9		866.4		619.02		161.39		246.33

		2/13/18		8511.6		839.83		590.82		159.19		232.91

		2/14/18		9455.5		919.13		678.29		211.97		274.74

		2/15/18		9996		925.02		696.4		220.47		294.15

		2/16/18		10162		937.38		692.2		228.5		292.89

		2/17/18		11062		973.28		738		228.9		320.41

		2/18/18		10400		913.13		683.8		213.57		293.34

		2/19/18		11172		939.19		728.54		221.63		313.18

		2/20/18		11211		883.91		681.43		228.98		298.46

		2/21/18		10450		837.79		658.29		210.05		305.9

		2/22/18		9826.5		802.85		625.21		192.47		273.49

		2/23/18		10144		852.56		625.6		206.21		278.23

		2/24/18		9666.3		831.51		588.19		206.33		266.84

		2/25/18		9581.9		838.47		586.67		218.13		276.17

		2/26/18		10320		867.77		619.99		218.36		291.43

		2/27/18		10582		871.33		609.2		214.96		299.43

		2/28/18		10315		851.26		581.7		202.02		283.55

		3/1/18		10923		869.24		617.5		209.26		311.95

		3/2/18		11024		854.5		601.3		213.32		342.8

		3/3/18		11454		855.29		608.01		209.92		348.94

		3/4/18		11499		866.06		622		213.47		368.17

		3/5/18		11402		848.13		609.1		210		368.85

		3/6/18		10720		814.45		578.48		196.14		343.72

		3/7/18		9910.6		749.2		508.64		185.17		335.84

		3/8/18		9300		697.3		491.64		175.48		275

		3/9/18		9216.2		724.61		495.61		186.04		284.44

		3/10/18		8769.9		679.68		481.7		176.5		253.49

		3/11/18		9527.7		719.86		528		188.18		279.9

		3/12/18		9130.2		696.52		498.88		177.42		256.88

		3/13/18		9135.2		688.49		487.35		175.14		246.63

		3/14/18		8177.2		610.91		423.7		160.11		213.73

		3/15/18		8250		609.9		416.64		164.08		211.74

		3/16/18		8250		598.77		424.8		163.84		214.99

		3/17/18		7845		548.82		387.5		152.2		195.88

		3/18/18		8200.3		536.73		394.51		153.54		208.63

		3/19/18		8600.2		554.99		411.18		161.49		217.1

		3/20/18		8899.7		556.38		428.12		168.73		223.28

		3/21/18		8888.2		558.78		433.31		168.53		217.42

		3/22/18		8699.3		539.19		410.09		163.77		210.98

		3/23/18		8914.4		543.85		430.22		168.76		214.44

		3/24/18		8522.7		518.8		418.1		158.95		206.21

		3/25/18		8445		522.41		409.06		159.95		209.86

		3/26/18		8131.12		485.2		387.4		148.09		195.26

		3/27/18		7784.6		448.22		353.28		134.87		186.6

		3/28/18		7936		445.43		349.72		131.53		198.41

		3/29/18		7094		384.11		328.37		114.58		175.44

		3/30/18		6840.4		393.08		309.6		118.28		171.67

		3/31/18		6925.4		393.37		303.65		116		178.24

		4/1/18		6816.6		378.67		291.03		114.9		174.52

		4/2/18		7053.3		384.25		312.41		119.17		176.33

		4/3/18		7405.6		415.44		339.87		134		188

		4/4/18		6785.9		377.99		298.22		118.18		169.1

		4/5/18		6769		380.99		300.03		118.45		171.8

		4/6/18		6610		369.73		285		112.85		161.4

		4/7/18		6892.6		384.16		296.08		115.92		168.62

		4/8/18		7023.9		400.33		311.57		117.6		174.07

		4/9/18		6770		398.82		299.63		114.79		166.19

		4/10/18		6837.1		415.12		299.42		114.2		165.65

		4/11/18		6943.1		429.74		310		118.35		169.11

		4/12/18		7912		493.55		357.46		129.54		192.22

		4/13/18		7886.9		495.93		351.25		125.54		188.51

		4/14/18		8003		502.44		356.56		126.36		190.25

		4/15/18		8357.5		534.04		382.6		132.66		200.96

		4/16/18		8056.2		511.29		363.71		128.82		193.99

		4/17/18		7888.9		503.13		363.3		132.2		195.1

		4/18/18		8171		525.55		421.58		140.26		228.62

		4/19/18		8273		566.92		432.09		146.61		237.7

		4/20/18		8865.4		616.44		462.22		155.73		271.87

		4/21/18		8912.5		604.62		442.26		148.5		255.65

		4/22/18		8791.4		621.11		466.81		146.5		268.69

		4/23/18		8940		643.98		506.11		152.5		283.02

		4/24/18		9646.8		702.98		524.85		164.57		292.56

		4/25/18		8868.4		618.09		461.8		144.98		255.98

		4/26/18		9269.9		661		504.37		153.12		267.96

		4/27/18		8920.1		643.49		470.59		145.68		251.1

		4/28/18		9345.7		683.27		497.12		151.99		261.48

		4/29/18		9400		689.93		499.3		153.46		255.81

		4/30/18		9240.6		670.33		471.94		148.07		241.77

		5/1/18		9068.2		671.01		480.32		148.03		239.3

		5/2/18		9236.4		688		488.1		151.72		249.92

		5/3/18		9759		779.39		504.57		161.55		246.29

		5/4/18		9703		785.52		488.97		169.33		242.29

		5/5/18		9861.2		819.69		509.85		178.81		241.11

		5/6/18		9658.7		793.79		485.43		172.3		235.71

		5/7/18		9370		752.14		457.36		164.3		232.94

		5/8/18		9184.7		747.94		441.35		159.07		222.49

		5/9/18		9318.2		751.86		443.83		156.7		227.05

		5/10/18		9018		723.38		417.24		148.14		216.88

		5/11/18		8412.4		677.99		390.56		136.41		196.74

		5/12/18		8470.8		683.32		402.04		141.44		200.66

		5/13/18		8683.6		728.78		415.32		144.24		207

		5/14/18		8670.8		727.41		433		147.42		212.85

		5/15/18		8467.5		705.06		426.3		139.25		202.56

		5/16/18		8336.1		706.57		413.1		139.17		198.76

		5/17/18		8054.3		667.84		386.93		132.43		190.48

		5/18/18		8238.9		693.61		394.46		136.08		203.49

		5/19/18		8231		695.87		384.93		135.14		197.73

		5/20/18		8523.6		715.5		402.2		139.75		203.68

		5/21/18		8398.8		696.13		382.96		134.12		198.01

		5/22/18		7977.85		640		357.28		127.9		174.66

		5/23/18		7494.8		576.89		337.96		118.32		170.96

		5/24/18		7576.7		602.52		345.16		122.68		171.17

		5/25/18		7456.7		584.42		337.34		119.04		164.51

		5/26/18		7327.7		585.6		320.71		118.38		164.94

		5/27/18		7339.7		569		314.78		117.84		166.2

		5/28/18		7097.9		511.98		285.63		110.9		148.9

		5/29/18		7465.2		566.98		315.45		119.52		157.01

		5/30/18		7375.12		557.01		303.62		117.16		154.48

		5/31/18		7485.8		577		304.37		118.31		155.14

		6/1/18		7521		579.24		315.58		120.4		157.51

		6/2/18		7638.1		590.44		322.1		123.69		162.63

		6/3/18		7718		619.4		329.7		125.42		168.77

		6/4/18		7488.3		591.09		316.8		119.89		159.48

		6/5/18		7621.9		608.69		318.23		122.39		167.12

		6/6/18		7654		606.67		315.08		121.55		164.56

		6/7/18		7688.9		605.39		315.2		121.65		163.8

		6/8/18		7615.1		599.9		310.74		119.97		158.3

		6/9/18		7498.5		593.2		297.3		117.31		154.42

		6/10/18		6758		523.55		268.86		106.41		139.28

		6/11/18		6873.3		530.77		269.95		106.89		137.6

		6/12/18		6543.9		494.25		259.7		99.82		124.83

		6/13/18		6295.1		476.15		244.9		93.52		121.78

		6/14/18		6633.7		519.85		266.77		100.81		132.38

		6/15/18		6385		487.27		254.34		95.5		121.73

		6/16/18		6485.9		497.02		266.28		96.64		126.17

		6/17/18		6438.4		497.08		264.89		94.87		123.19

		6/18/18		6709.2		517.64		264.48		98.84		127

		6/19/18		6735.5		538.47		260.72		98.76		126.11

		6/20/18		6760.4		536.26		266.8		97.88		122.57

		6/21/18		6715.2		526.11		260.67		96.71		123.49

		6/22/18		6042.6		461.77		235.39		84.9		110.1

		6/23/18		6151.93		473.47		242.86		82.66		114.65

		6/24/18		6148.04		455.32		238.08		80.6		120.79

		6/25/18		6246.6		459		240.22		81.49		126.81

		6/26/18		6073.4		429.32		230.01		75.8		119.9

		6/27/18		6133.09		441.65		228.76		80.69		128.64

		6/28/18		5848.1		420.78		220.65		74.03		116.42

		6/29/18		6208.1		435.7		234.73		79.15		126.45

		6/30/18		6391.5		453.85		239.97		81.22		130.83

		7/1/18		6349.7		452.03		236.31		79.91		129.9

		7/2/18		6617.6		476.8		249.97		85.57		140.5

		7/3/18		6509		462.01		241.26		85.02		138.36

		7/4/18		6590		467.47		245.34		85.42		138.48

		7/5/18		6531.7		467.52		242.24		83.32		137.67

		7/6/18		6602.2		470.37		242.4		83.12		133.22

		7/7/18		6761.8		486.72		246.67		85.02		133.89

		7/8/18		6707		486.1		242.93		82.18		137.62

		7/9/18		6666.9		471.55		230.29		80.45		135

		7/10/18		6301.8		432.44		220.37		75.87		120.6

		7/11/18		6377.8		445.14		217.9		78.18		124.8

		7/12/18		6249		431		213.57		77		120.33

		7/13/18		6220		432.17		217.33		76.48		121.64

		7/14/18		6250		433.5		222.44		76.18		122.79

		7/15/18		6347.2		449.9		232.26		78.67		123.63

		7/16/18		6729.2		479.1		247.09		83.66		135.59

		7/17/18		7319.8		499.11		260		89.07		143.9

		7/18/18		7379.4		478.97		265.38		86.32		139.87

		7/19/18		7473.5		468.64		260.79		86.13		139.35

		7/20/18		7333.1		449.13		242.69		81.89		130.05

		7/21/18		7403.4		460.74		255		83.44		132.3

		7/22/18		7397.6		457.99		251		82.22		128.18

		7/23/18		7718.9		449.6		241.15		81.39		133.38

		7/24/18		8390		479.33		252.41		89.41		147.94

		7/25/18		8178.4		471.89		245.37		86.4		143.4

		7/26/18		7939		462.3		242.45		83.6		136.6

		7/27/18		8188		470.21		244.24		84.42		140.28

		7/28/18		8235.6		469.25		240.51		84.19		140.11

		7/29/18		8221		466.47		239.49		84.08		135.76

		7/30/18		8179.5		456.65		235.6		82.17		132.12

		7/31/18		7731.3		431.98		217.05		78.78		122.05

		8/1/18		7606		420.03		218.44		77.64		128.32

		8/2/18		7535.2		410.89		210.37		76.13		122.4

		8/3/18		7420		417.66		210.57		77.56		120.17

		8/4/18		7013.22		407		202.29		73		113.78

		8/5/18		7025.8		408.75		207.08		74.64		117.57

		8/6/18		6941.2		404.95		199.27		73.57		113.32

		8/7/18		6718.8		377.82		186.37		67.28		107.82

		8/8/18		6280.7		355.62		173.45		62.14		94.64

		8/9/18		6533.6		363.27		183.44		62.9		99.94

		8/10/18		6146.7		331.77		168.34		59.13		91.54

		8/11/18		6233.1		317.84		164.34		57.67		92.88

		8/12/18		6313.9		318.16		168.01		59.29		92.98

		8/13/18		6251.9		283.92		144.02		56.48		87.69

		8/14/18		6189		278.38		138.1		54.34		84.21

		8/15/18		6270.2		281.27		153.67		54.36		89.31

		8/16/18		6315.6		286.87		150.63		55.3		91.53

		8/17/18		6584.05		317.68		167.5		61.81		99.51

		8/18/18		6391.2		294.3		152.07		57.13		98.05

		8/19/18		6485.1		299.37		154.78		57.78		98.64

		8/20/18		6255.9		270.71		141.15		53.4		92.5

		8/21/18		6479.1		281.25		141.7		56.42		94.74

		8/22/18		6362.1		270.5		136.43		55.16		89.56

		8/23/18		6527.2		275.86		140.24		57.27		89.96

		8/24/18		6693.6		281.28		145.01		57.89		93.75

		8/25/18		6732.9		277.29		145.09		57.87		92.64

		8/26/18		6707		274.34		141.78		57.07		94.83

		8/27/18		6909.4		288.17		183.69		60.72		105.29

		8/28/18		7079.9		295.59		193.85		63.15		107.56

		8/29/18		7039		288.76		186.78		61.53		103.52

		8/30/18		6986		284.11		184.88		60.25		103.27

		8/31/18		7014.6		281.63		194.44		62.13		116.14

		9/1/18		7197.4		295.72		222.61		66.5		121.03

		9/2/18		7300		295.23		213.12		66.25		119.94

		9/3/18		7267.8		289.28		217.25		65.41		134.87

		9/4/18		7358.9		285.34		217		67.6		138.16

		9/5/18		6704		228.39		173.19		57.76		114.9

		9/6/18		6516.1		229.74		180.82		57.54		117.32

		9/7/18		6397		215.17		186.43		55.52		110.69

		9/8/18		6184.94		196.7		185.98		53.05		103.8

		9/9/18		6239.9		196.04		192.92		54.73		105.02

		9/10/18		6314.9		197.29		201.94		54.39		105.95

		9/11/18		6290.9		185.21		187.46		52.06		105.12

		9/12/18		6332.42		183.17		185.19		51.65		104.2

		9/13/18		6489		211.09		191.86		54.4		112.15

		9/14/18		6480.1		208.49		190.84		56.18		116.61

		9/15/18		6512.8		221.48		191.42		56.34		118.92

		9/16/18		6498.4		220.16		191.92		56.79		117.18

		9/17/18		6252		196.03		182.92		52.09		106.1

		9/18/18		6335.4		208.36		191		54		112.01

		9/19/18		6390.9		209.83		191.12		54.36		109.57

		9/20/18		6493.91		225		199.88		56.65		115.79

		9/21/18		6762.1		247.8		210.17		60.92		124.43

		9/22/18		6723		241		204.64		60.68		122.39

		9/23/18		6710		244.7		204.95		61.41		122.49

		9/24/18		6585.1		227.85		198.15		57.96		115.03

		9/25/18		6442.8		219.26		189.95		57.52		116.8

		9/26/18		6462.4		214.26		183.52		57.25		115.06

		9/27/18		6691.2		229.26		195.04		63.33		119.11

		9/28/18		6635.2		221.92		187.54		61.95		116.94

		9/29/18		6597.3		231.52		188.43		61.64		114.59

		9/30/18		6622.4		232.86		187.13		61.22		115.82

		10/1/18		6601.9		231.49		187.48		60.39		114.49

		10/2/18		6527.6		225.97		181.84		59.5		116.59

		10/3/18		6503.2		220.74		177.66		57.57		114.5

		10/4/18		6590.4		222.36		181.5		58.3		114.66

		10/5/18		6639.9		228.54		183.34		59.03		115.56

		10/6/18		6595.2		225.31		181.06		57.92		115.13

		10/7/18		6609.4		226.28		180.79		58.3		113.71

		10/8/18		6673.2		230.2		183.28		59.67		114.45

		10/9/18		6663		228.58		181.66		59.06		113.79

		10/10/18		6630.07		226.7		179.77		58.48		115.05

		10/11/18		6251.9		191.16		156.66		51.27		100.91

		10/12/18		6291.9		197.02		158.73		53.72		101.78

		10/13/18		6326.5		201.23		163.39		54.09		103.92

		10/14/18		6336.4		196.75		159.05		52.58		101.43

		10/15/18		6742		214.31		168.63		56.08		109.93

		10/16/18		6754.2		215.12		167.73		55.59		111.63

		10/17/18		6736		212.83		164.23		55.38		109.61

		10/18/18		6613.2		206.08		157.51		53.5		105.56

		10/19/18		6525.1		204.93		154.99		53.71		105.4

		10/20/18		6586.7		208.16		157.12		54.25		106.03

		10/21/18		6590.9		207.29		156.88		53.63		106.83

		10/22/18		6567.3		206.56		154.37		53.07		107.8

		10/23/18		6550		205.9		155.66		53.32		110.19

		10/24/18		6554.1		205.23		157.57		53.02		108.29

		10/25/18		6528		203.68		156.8		52.87		107.83

		10/26/18		6531.5		205.03		157.17		52.65		106.25

		10/27/18		6500.2		204.23		154.59		52.3		104.71

		10/28/18		6490.1		204.97		156.81		52.05		105.42

		10/29/18		6346.5		196.91		151.05		49.13		101.91

		10/30/18		6330.1		197.33		153.96		49.33		103.47

		10/31/18		6368.39		198.7		153.45		49.96		105.37

		11/1/18		6406.1		199.81		154.38		50.62		104.94

		11/2/18		6427		202.22		155.53		51.75		106.8

		11/3/18		6389.1		200.3		155.97		51.08		107.31

		11/4/18		6491.7		212.3		166.06		54.67		113.06

		11/5/18		6470.2		210.83		165		53.97		112.62

		11/6/18		6522.2		220.83		170.92		56.43		113.91

		11/7/18		6572.9		218.98		167.7		54.49		112.4

		11/8/18		6475.3		212.7		165.6		52.73		109.23

		11/9/18		6418.7		211.01		160.47		52.29		107.8

		11/10/18		6431.1		213.2		161.91		52.52		105.53

		11/11/18		6447.9		212.99		160.84		51.46		107.43

		11/12/18		6446.9		212.68		164.83		51.28		106.66

		11/13/18		6459.07		209.85		163.95		50.43		106.69

		11/14/18		5922.4		187.21		147.85		45		93.29

		11/15/18		5749.6		184.15		141.25		44.69		90.22

		11/16/18		5655.7		176.95		139.15		43		88.08

		11/17/18		5628.3		175.9		134.57		42.48		89.24

		11/18/18		5659.5		178.96		133.45		42.57		90

		11/19/18		4920.7		150.93		111.01		37.15		73.58

		11/20/18		4571		133.85		107.63		33.84		68.1

		11/21/18		4662.7		138.18		115.75		35.16		69.89

		11/22/18		4369.6		126.3		101.89		32.09		65.85

		11/23/18		4422.7		125.24		101		32.73		68.08

		11/24/18		3929.9		114.8		93.55		29.73		59.36

		11/25/18		4089.1		118.72		92.91		31.55		58.98

		11/26/18		3864.1		110.75		91.38		30.22		54.4

		11/27/18		3882.7		111.72		90.79		31.64		58.41

		11/28/18		4305		124.05		100.39		35.1		64.19

		11/29/18		4321.9		118.51		97.27		34.07		61.74

		11/30/18		4039.5		113.68		92.5		32.2		58.63

		12/1/18		4241.3		119.65		95.97		34.62		60.33

		12/2/18		4173		117.12		93.53		34		59.39

		12/3/18		3901.2		109.22		84.73		31.06		54.99

		12/4/18		3981.9		110.77		85.61		31.28		57.48

		12/5/18		3772.9		102.66		78.05		29.25		52.04

		12/6/18		3531		91.97		65.14		26.9		46.81

		12/7/18		3460		94.79		68.87		25.44		47.3

		12/8/18		3506		92.98		69.14		24.94		45.83

		12/9/18		3642.3		96.03		76.82		26.04		48.19

		12/10/18		3524.8		92.2		68.92		24.78		44.95

		12/11/18		3435.28		89.14		63.87		23.77		42.85

		12/12/18		3535.6		91.85		65.57		24.77		44.65

		12/13/18		3354.3		87.9		61.29		23.47		41.53

		12/14/18		3281.7		85.2		59.42		23.77		39.37

		12/15/18		3283.4		85.74		63.16		24.13		39.52

		12/16/18		3301.5		86.56		63.9		26.12		39.82

		12/17/18		3625		97.25		73		29.88		44.74

		12/18/18		3780.8		104.08		75.32		30.97		47.82

		12/19/18		3810		102.36		74.77		29.95		46.85

		12/20/18		4214.5		118.47		99.52		33.54		56.42

		12/21/18		3976		111.11		86.77		31.31		53.14
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rows.m
function r = rows(X)

r = size(X,1);


