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Introduction

The mathematical modeling of financial market start with Louis Bachelier, who was the first
to introduce the Brownian motion as a model for the price fluctuation of a liquid traded
financial asset with his doctoral thesis in 1900. In 1973 Fisher Black and Myron Scholes
given a great contribution with the article "The Pricing of Option and Corporate Liabilities",
which gave a new dimension to the use of probability theory in finance. The option pricing
methodology introduced by Black and Scholes is unique in that distributional assumptions
alone suffice to generate well-specified option pricing formulas involving mostly observable
variable and parameters. One assumption is that the price of the underlying asset follows
a diffusion process and an additional assumption is that the instantaneous risk-free rate
is nonstochastic and constant. Under these plus other "frictionless market" assumptions,
the option’s payoff can be replicated by a continuously adjusted hedge portfolio composed
of the underlying asset and short-term bonds. This imply that the key assumption in the
Black-Scholes model is that the market is complete. In a complete market models probabil-
ity does not really matter, in fact the objective evolution of the asset is only there to define
the set of impossible events and serves to specify the class of equivalent measures. Hence,
two statistical models with equivalent measures lead to the same option prices in a complete
market setting. Therefore, the option pricing formula generated by Black and Scholes de-
pends critically upon the distributional restriction on the volatility of the underlying asset.
The result of that restriction is that the systematic risk of the option is a function of the
systematic risk of the underlying asset only.

Jump diffusion process and more in general Lévy models generalize the Black and Scholes
work by allowing the stock price to jump while preserving the independence and stationary
of returns. Hence, the jump diffusion process described the observed reality of financial
markets in a more accurate way than models based only on Brownian motion. In the real
world, we observe that the asset price processes have jumps or spikes. Therefore, we can find
three main reason for introducing jumps in financial modeling. First, asset price processes
have jumps and some risks cannot be handled with a continuous path model but we need to
study a discontinuous models. Second, the presence in the option market of the phenomenon
of implied volatility smile which shows that the risk-neutral returns are non-gaussian and
leptokurtic. Moreover, in continuous path models the law of returns for shorter maturities
becomes closer to the Gaussian distribution, on the other hand in models with jumps returns
actually become less Gaussian as the maturity becomes shorter. Finally, the jump process
correspond to incomplete markets, hence we did not find a unique equivalent probability
measure for the option pricing but there are many possible choice. This imply that a perfect
hedge, i.e. the Black and Scholes Delta hedging, is not longer possible in jump models and
the hedging in jump process achieves a trade-off between the risk due to the diffusion part
and the jump risk.

This thesis is structured as follows. The first chapter contains a brief review of the main
concept of probability theory and the last section gives the definition of stochastic process
and, in particular, we define and explain the most well-known continuous stochastic process:
the Brownian motion.

The second chapter is dedicated to the theoretical treatment of the jump diffusion process.
We start the chapter introducing the Poisson process, which is the main building block of
discontinuity process. Then, we talk in general about the Lévy process and we study the



main features about their distributions. And we conclude the chapter talking about the
jump diffusion model and we give some example about it.

The third chapter describes the stochastic integral and the main tool to explain the time
evolution of a derivative instrument. The first section is dedicated to the concept of stochas-
tic integral and then we see how change the stochastic integral when is driven by a jump
diffusion process.

The last chapter is focused on hedging strategy. We start by talking about the measure
transformation, which is a key tool to find equivalent probability measure in option pricing.
The second section is dedicated to the option pricing in jump diffusion model and here we see
how the option pricing is different between the Black and Scholes model and a jump process.
Finally, we talk about the hedging strategy. We start by describing the Delta hedging in
the Black-Scholes model and then we start to talk about the hedging in discontinuous-path
process. First, we introduce the Merton approach proposed in 1976, then we described the
more general concept of hedging in the Lévy process: the Quadratic Hedging. We conclude
the fourth chapter with a comparison between the Merton model and the Black and Scholes
model.



Chapter 1

Probability Theory

This first chapter presents an introduction to probability theory and stochastic process. We
start with the definition of probability space and measure, which is important in the study of
stochastic process in general and, in particular, in the jump process. Then, we describe the
probability law and how it converges. Moreover, we introduce the characteristic function,
which is central tool in the second chapter, and we state some properties, then we give an
example of characteristic function for a normal distribution.

The second part of the chapter introduce the concept of stochastic process. In particular,
we talk about the construction of stochastic process and about the stopping time. Then,
we define the most well-known continuous stochastic process: the Brownian motion, which
is the core concept of the Black-Scholes model and it is one of the component of the jump
diffusion process, which is described in the second chapter. Finally, we define the martingale
and the property associate to it. We start to define the martingale in discrete time and,
then, we extend the result for the continuous time case.

1.1 Probability Concept

1.1.1 Random Variable

Definition 1.1 [Probability Space] A probability space is a triple (0, F,P) where: Q is
the sample space corresponding to outcomes of some experiment; F is a o-algebra of subset
of Q and P is a probability measure on F such that P(Q) = 1.

Moreover, PP is a function with domain F and range [0, 1] such that P(A) > Oforall A € F
and if {A,,,n > 1} are events in F that are disjoint, then P ({J;_, A,,) = >~ P(A4,). In this
case, we say that P is o-additive. Finally, we say that an event A with probability P(A) =1
occurs almost surely and, on the other hand, if P(A) = 0 the event A is impossible.

In the definition of Probability space, we saw a o-algebra, the following two definition helps
us to understand this concept.

Definition 1.2 [Algebra] (definition 1.5.2 in [12]) A algebra or a field is a non-empty class
of subsets of Q) closed under finite union, finite intersection and complements.

Hence, a minimal set of postulates for A to be a field is:
1. Qe A;
2. A€ Aimplies A¢ € A;
3. A,B € Aimplies AUB € A.

Definition 1.3 [o-Algebra] (definition 1.5.3 in [12]) A o-algebra or a o-field is a non-empty
class of subsets of Q0 closed under countable union, countable intersection and complements.
Hence, a minimal set of postulates for B to be a o-field is:

1. Qe B;



2. B € B implies B¢ € B;
3. B; € B,i>1implies |J;-, B; € Band (;-, B; € B.

Definition 1.4 [Measurable space] A measurable space is a couple (E,E) where: E is a
space and £ is a o-algebra of subset of E.

Definition 1.5 [Measure] (definition 2.1 in [2]) A (positive) measure on (E,E) is defined
as a function

w:€ = [0,00)
A p(A)

such that:
o 11(0) =0;
e For any sequence of disjoint sets A, € E: (Un21 An) =21 H(AR);

An element A € £ is called a measurable set and p(A) its measure.

Suppose © = R and let C = {(a,b],.00 < a < b < co}. Then, we can define the Borel
subset of R, denoted by B(R), as:
BR) :=0c(C)

Thus the Borel subset of R are elements of the o-field generated by intervals that are open
on the left and closed on the right.

Let (Q, F,P) be a probability space and (E,£) be a measurable space. Then, a random
variable is a function X :  — E measurable such that X 1(A) € F every time A € £. A
special case occurs when F = R and £ = B(R), in this case X is a real random variable.
Therefore, for a real random variable X on (92, F,P), we can always define its integral.
Many integrations results are proved by first showing they hold for simple functions and then
extending the result to more general functions. Recall that a function on the probability
space (Q, F,P): X : Q — R is simple if it has a finite range. Hence, we can assume that a
simple function is measurable and this kind of function can always be written in the forms:

k
Xw) =Y aila, )
i=1
where a; € R and A; € F and Aqy,..., A are disjoint and Zle A; = Q.
Let (Q, F7,P) be a probability space and
X :(Q,F)— R,B(R)

where R = (—oo, o0). Then, we can define the expectation of X, denoted by E(X), as:

EX] = /Q XdP = /Q X (w)P(dw) (1.1)

This integral is also known as the Lebesgue-Stieltjes integral of X with respect to P. For
example, if X is a simple random variable equal to: X = """ | a;14,, where |a;| < oo and
Zle A; = Q. The expectation of X can be defined as:

k
E[X] = / XdP =: Z a;P(A;)

We can note that for a simple function the expectation is computed by taking a possible
value, multiplying by the probability of the possible value and then summing over all possi-
ble values. Moreover, we can see that this example define the expected value for a discrete
random variables.



On the other hand, we say that X is a continuous random variable if there exists a nonneg-
ative function f, defined for all real € (—oo, 00), having the property that, for any set B
of real numbers:

P(X € B) = /B F(@)dz (1.2)

where f(z) is called the probability density functions of the random variable X. Therefore,
we can define the expected value of X as:

We can define the L? spaces, with 1 < p < +o00, as the norm of X. More precisely, we
have that | X||, = E[|X|p]%. We say that two random variable X and Y are equivalent if
P(X =Y) = 1. We can note that if X and Y are equivalent, then we have [|X||, = [[Y]],
and that LP is the set of equivalence classes of random variable X such that [ X||, < +oo.
In particular, L? is the set of equivalence classes and it is not the set of random variable.
Let X be a real random variable in L2. Then, we can define the variance of X, denoted by
Var(X), as the quantity:

Var(X) = E[(X — E[X])?] = E[X?] - E[X]”

If a > 0, the quantity [ ||*u(dz) is called the absolute moment of order « of y. Moreover,
if o is a positive integer, the quantity [ z*u(dz) is called the moment of order « of p.
Now, consider two random variable X and Y in L?. The covariance of X and Y can be
defined as:

Cov(X,Y) = B[(X — E[X])(Y — E[Y]) = E[XY] — E[X]E[Y]

We can note that if X = Y, then Cov(X,Y) = Var(X) and that if X L Y, then
E[XY] = E[X]E[Y] and consequently Cov(X,Y) = 0. If Cov(X,Y) = 0, we say that
X and Y are not correlated.

We need to introduce the following inequalities because they are useful in the following
chapter to study the behavior of the stochastic process.

o Jensen Inequality: Let X be a random variable in R™ and let ® : R™ — R U {+o0}
be a convex function. Also suppose that X and ®(X) are integrable. Then:

E[®(X)] > ¢(E[X])

Proof
Suppose that @ is twice differentiable. We know that its second derivative is always
positive. Therefore, by Taylor expansion, for any x, we have:

O(x) > (E[X]) + (¢ — E[X])®(E[X])

Putting = X (w) and taking expectations, we will finish the proof.

e Markov Inequality: Let X € L' and for any 6 > 0, 3 > 0, we have that:

B[ X|%]
P(X| 2 0) <
Proof
Let § is equal to 1. Then, we have:
11 <Xy < X
(5= =75 =



o Chebyshev Inequality: Let X € L?. Then, for any a > 0 we have:
< Var(X)

P(X - BIX] 2 a) < —3

Proof

P(|X — E[X]| > o) = P(IX — E[X]|* > o?)

E[X - E[X]? _ Var(X)

<
- o? o

where the last inequality is an application of the Markov inequality.

O

The Chebyshev inequality imply that the variance of one random variable is a quantity
which is as much larger as bigger is the value of X from his mean E[X].

e Holder Inequality: Let Z and W be real random variable > 0 and «, 8 real numbers
> 0 such that o + 8 = 1. Then, we have:

E[Z°WP] < E[Z]*E[W)?

From the inequality above, we find that if X, Y are real random variable and p, ¢ are
numbers > 0 such that % + % = 1, then we have the Hélder inequality:

EXY] < BIX|]» E[[X| = [|X]], - [Vl

Proof
Let w € Q and let z = T, and y = R Then, we consider the following
P q

inequality: zy < % + % for z, y > 0 and we have:

p q
_L(ax\" 1y
oy < = | w7 ol e
p \IX1,) " IV,

X|P 1 Y|? 1 1
xe] o fve] 1
q p q

1
E[XY] < -
p [ IXI5 IYllg

|
o Minkowski Inequality: Let p > 1 and let X, Y are real random variable such that
E[|X|P] < o0 and E[|Y|P] < co. Then:
X+ Y, <[IX], + Y1,

Proof
If | X + Y|, = O there is nothing to prove. Therefore, we prove that ||.X + Y|, > 0.

We can note that (p — 1)¢ = p and % = p~!. Hence, we obtain by triangular and

Holder inequality that:
IX+Y[)=E[|X+Y[P X +Y]]
SE[X+YPX|] 4+ E[IX +Y[PY]
< [1X + Y P IX, + 1+ Y=, 1Y,
= (BIX +Y1=D9) " (1X1], + V1],
= | X + Y2/ (X1, + Y1)

Then, dividing both members by || X + Y||Z/q we will finish the proof.
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The Minkowski inequality imply that LP, for p > 1, is a vector space. Moreover, if
p > ¢ from the Jensen inequality with the convex function ®(z) = |z|P/4, we will find:

IX15 = EIIXI7] = E[@(X|)] = ®(E[X|%) = B[ X|4"/
and applying the p-root, we find
1X1, = [1X1],
Therefore, we can conclude that if p > ¢ then LP C L9.

Let X be a random variable which takes value on the measurable space (E,E). Then, it
is easy to see that the function @ define on £ by

Q(A) =P(X~(A4)) =P([w : X(w) € A])

is a probability measure, ) is also call the law of X. In words this means that we define the
probability that the random variable X falls into a Borel set as the probability (on (2, F))
of the inverse image of this Borel set. The following proposition is useful to compute the
integral with respect to the inverse image.

Proposition 1.1 Let X : (Q,F,P) — (E, &) be a random variable, f : (E,€) — (R, B(R))
be a measurable function and Q be the law of X. Then, f is Q-integrable if and only if fo X
is P-integrable. Therefore, we have

/ f@)QUdz) = [ foX(w)P(dw) (1.3)
E Q

In particular, if X is a real random variable and p is its law, the following relation hold:

BIX) = [antdo),  BIXP) = [ felulde)
Therefore, X € LP if and only if its law has absolute moment of order p finite .

Let X be a real random variable. Then, it can be decomposed in a positive and in a
negative part: X = X* — X~. We call X quasi-integrable if at least one of E[XT] and
E[X ] is finite. In this case, we can define the expectation of X as:

E[X] := E[X*] - E[X7]

If E[X "] and E[X "] are both finite, we call X integrable. If E[XT] < oo but E[X | = oo,
then E[X] = —oo. If E[X*] = oo but E[X~] < oo, then E[X]| = co. If E[XT]| = 0o but
E[X~] = oo, then E[X] does not exist.

1.1.2 Conditional Probability and Independence

If £ and &’ are o-algebra of events of E, we can denote with £ V £’ the smallest o-algebra,
which contains £ and &’.

Let X be a random variable such that (Q, F,P) — (E,&). We denote with o(X) the o-
algebra generated by X, hence it is the smallest sub-o-algebra of F such that X is still
measurable. The following lemma describes the situation when one random variable is a
function of another one by the inclusion of the o-field generated by the random variable.
Lemma 1.1 (Doob’s measurable criterion) Let X be a random variable such that (Q, F,P) —
(E,&). Then, all the real random variables o(X)-measurable has the form f(X), where f is
a measurable operation from (E,E) to (R, B(R)).



Consider m random variable, X7, ..., X,,, which take values respectively in (E1,&1), ..., (Em, Em)-
We say that they are independent if, for any A} € &,..., A, € &, we have

P(X,€A],...,XneA)=P(X; € A)...P(X,, € A)
The events Ay, ..., A,, € F are independent if and only if
P(A;, N---NA;) =P(A4;,)...P(4;)

for any 1 <! < m and for any 1 < i1 < is < -+ < 4 < m. This definition is equivalent to
say that the random variable 14,,...,14,, are independent.
If F1,...,F,, are sub-c-algebra of F, they are independent if, for any A; € Fy,..., A, €
Fm, we have:

P(A;N---NA,) =P(Ay)...P(4,)

We can note that the random variable Xy, ..., X,, are independent if and only if also the
o-algebra generated by o(X1),...,0(X,,) are independent. Finally, we say that the random
variable X is independent from the o-algebra G if and only if the o-algebra o(X) and G
are independent. This happen when X is independent from each random variable W G-
measurable.

Now, we need to introduce the relationship between the independence and the law of the
random variable. If j; is the law of X; and weset E=F1 X -+ X Ep,, E=&6 Q- Q& on
the space (E, ), we can consider the product law p = 1 ® -+ & fiy,.

Proposition 1.2 Consider tha above notation. Then, the random variable X4,..., X,
are independent if and only if the law of X on (E,E) is the product law p, with X =
(X1,..., Xm)-

The proof of this proposition use the following theorem:

Theorem 1.1 [Carathéodory’s criterion| Let (E, ) be a measurable space and let py, po
be two finite measure on (E,E). Let C be a family of subset of E stable under finite inter-
section and which built £. If pu1(E) = pe(E) and p1, ps are equal on C, then they are also
equal on all £.

Proof (proposition 1.2)

Let v be the law of X and let C be the set of parts of £ of the form A; x --- x A,, with
A; €&,1=1,...,m. C is table under finite intersection and built £, by definition. Then,
the definition of independence told us that u and v are equal on C, therefore they are also
equal over all £, by the Carathéodory criterion.

O

Let (Q, F,P) be a probability space. Then, we have the following definition for conditional
probability:

Definition 1.6 [Conditional Probability] Let A, B € F be two events and suppose that
P(A) > 0. The conditional probability on (2, F) of B given A is defined as:

P(AN B)

(1.4)
The conditional probability thus measures the probability of B given that we know that A
has occurred.

Let X be a real random variable and Z be a random variable which takes value in a mea-
surable set F such that P(Z = z) > 0 for all z € E. Then, for every A C R and for every
z € E, we have:

P(X €A Z=x2)

P(Z =2z)

For every z € E, A — n(z, A) is a probability on R and it is called the conditional law of X
given Z = z. Hence, A — n(z, A) is the law given at the random variable X when we know

n(z,A)=P(X € A|Z =2) =

(L.5)

10



that the event {Z = 2z} has occurred.
The conditional expectation of X given Z = z is defined as:

1 E[Xl{Z:z}]

E[X|Z:z]:/xn(z,dx):]P(ZZ)/{2=Z}XCIP= P(Z = 2)

Theorem 1.2 Let X be a quasi-integrable random variable, D be a sub-o-algebra of F.
We call conditional expectation of X respect to D and it is denoted by E[X|D] the class of
equivalence random variable Z, D-measurable and quasi-integrable, such that for any B € D:

/Zd]P’:/Xd]P’
B B

A detailed proof can be found in chapter 3 of "Equazioni differenziali stocastiche e appli-
cazioni" written by Baldi.

A random variable Z with these property exists always and it is unique unless there exist
an equivalent probability measure.

Proposition 1.3 Let X, X1, Xz be integrale random variable and o, f € R. Then:
a) ElaX; + pX2|D] = aE[X1|D] + BE[X2|D] almost surely (a.s);

b) if X >0 a.s, then E[X|D] >0 a.s;

¢) E[E[X|D]] = BIX];

d) if D' C D, E[E[X|D]|D'] = E[X|D'] a.s;

e) if Z is D-measurable, then E[ZX|D| = ZE[X|D] a.s;

f) if X is independent from D, E[X|D] = E[X] a.s.

Proof
we prove only the last three point because the first three are just immediate applications of
the definition.
d) the random variable E[E[X|D]|D’] is D’-measurable; moreover, if W is D’-measurable,
then it is also D-measurable and:

E[WE[E[X|D])|D)] = E]WE[X|D]] = E[WX]

e) ZE[X|D] is D-measurable. If W is D-measurable also ZW is D-measurable, thanks to c)
we have:

E[ZWE|[X|D]] = E[E[ZW X|D]] = E[ZW X]

f) the random variable w — FE[X] is constant and, hence, D-measurable. If W is D-
measurable, it is also independent from X and

E[WX] = E[W]|E[X] = E[WE[X]]
therefore E[X] = E[X|D] a.s
|

Let H be a o-algebra and X be a random variable H-measurable. If Z is a random variable
independent from H, we know that, if X and Z are integrable,

E[XZH] = XE|Z]

The equation above is a particular case of the following lemma:
Lemma 1.2 Let (Q, F,P) be a probability space, (E,£) be a measurable space, G and H

11



sub-o-algebra of F. Moreover, G is independent from H. Let X be a random variable H-
measurable which takes value in (E, &) and ¢(x,w) be a function on E xQ, EQG-measurable
such that w — (X (w),w) is integrable. Then

E[p(X,)[H] = 2(X)

where ®(X) = E[¢Y(x, )]
A detailed proof can be found in chapter 3 of "Equazioni differenziali stocastiche e appli-
cazioni" written by Baldi.

1.1.3 Probability Law

Let u be a probability law on R™ and 7r; : R™ — R his projection on the i-coordinate. Then,
we call marginal law of y the image of the law u through ;.

Let X = (X1,...,X,,) be a random variable on R™ with probability law p. We can note
that the marginal law is the same of the law u; of X;. Therefore, the marginal law can be
expressed as:

wi(A) = /1A(xi),u(dw1,...,dxm)

The probability p on R™ admits density with respect the Lebesgue measure, if there exists
a borel function f, > 0, such that for each A € B(R™) we have:

p(4) = [ fayis (1.6)

Consder two random variable X, Y on R™ with two independent probability law, respec-
tively, equal to i and v. We call convolution product of 1 and v, denoted p+v, the probability
law of X +Y. We can note that this definition depends only on x and v and not on X and
Y. In fact, p * v is the image law on R™ through the operation (z,y) — x + y of the law of
(X,Y) on R™ x R™,

Proposition 1.4 Let p and v be two probability measure on R™ with density f and g,
respectively. Then, u * v has density h equal to:

hz)= [ [flz)g(x—z)dz

R?n
Proof

porvtd) = [La@er(ds) = [ Lata+ puldeidy)
— [1ate + s@gte)dady = [ do [ flgta - 2z
A R™

O

Now, we need to introduce how we can study the asymptotic behavior of a sequence of
random variables. Let X, with n € N, and X be a random variable on the probability
space (2, F,P) which take value in (F,B(FE)). Then, there are several different notions of
convergence:

i. Let (n)n be a sequence of finite measure on the measurable space (E,B(E)). Then,
u converges strictly (or weakly) if for each continuous and bounded function f on F
we have:

lim fd,un:/fdu.
n—oo

ii. We say that (X,), converges almost surely (a.s) to X, written X,, =% X, if there
exists an event n € F with P(N) = 0 (IV is called the exception set) such that

lim X, (w) = X(w) Vwé¢ N

n—oo
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iii. Let £ = R™. We say that (X,,),, converges in L? to X, written X,, L X, if XelL?
and
lim E[|X, — X|"] = 0.
n— o0
iv. We say that (X,,), converges in probability (i.p) to X, written X, P x , if for any

6>0
lim P(|X, — X| >4¢) =0.

n—oo

v. We say that (X,,), converges in distribution to X, written X, i> X, if p,, converges
weakly to u, where u,, and u are, respectively, the law of X,, and X. We can note that
for this case the random variable X and X,, can be defined in different probability
space.

The following proposition explain the relation among the above converges.

Proposition 1.5 If X, LN X, then X, P, x. If X, =% X, then X,, P, x. If X, £, X,
then X, N If X, £, X, then ezists a sub-sequences (X, )r which converges almost
surely to X.

A detailed proof can be found in chapter 7 of "A Probability Path" written by Resnick.
The last sentence of the proposition 1.5 imply the uniqueness of the limit in probability.

Let X be a random variable in R™ and p be its law. We can define the characteristic
function (or the Fourier transform) of u as:

a(0) = /eiw’z)u(dx) —E [e“”q . feR™ (1.7)

The characteristic function is defined for all probability x on R™ and has the following
properties:

1. 4(0) =1 and |(0)| <1, V8 € R™;
(i 2)(0) = 1(0)0(0);

3. i is uniformly continuous;

2.

4. If ;o has moment of order 1 finite, /i admits derivatives and

o

In particular, R
ggj«» —i [ auldo)
hence i/(0) = iE[X];
5. If p has moment of order 2 finite, 1 admits second derivatives and
02
00;00,

0) = —/xjxkeiw’@u(dx) (1.9)

In particular,
0%
500 = = [ wsounldo)
J

If m = 1 the above equation becomes i’ (0) = —FE[X?];

6. If i(0) = 0(0) for each € R™, then p = v;

13



7.

Let Xi,...,X,, be random variable with law p1, ..., ., respectively. Then, they are
independent if and only if the law p of X, defined as X = (X1,...,X,,), could be
expressed as:

ﬂ(elv ce 79771) = /11(91) . ..ﬂm(Qm);

If 1, —> p strictly, then j,(0) — (6), v0. In fact, z — %% is a continuous
n—oo

n—oo
function and its real and imaginary part are bounded. Vice versa, if

Hm fi,(0) = ¥(0) VO €R™

and if ¢ is continuous at 6 = 0, then 1 is the characteristic function of the probability
law p and, moreover, p, —> p strictly (Lévy theorem).
n—oo

A detailed proof can be found in chapter 9 of "A Probability Path" written by Resnick.

For example, consider normal distribution, denoted by N(a,0?), with mean a € R and
standard deviation o > 0. Its density function can be expressed as:

fl@) = —7— 557

ea:p{—(x_a)Q} (1.10)

Therefore, we can easily compute its characteristic function:

A(6) = / ¢0:2) 1 (dr)

1 oo 0 (r —a)?
— 0x S N
5 /_oo e exp{ 572 T

ei@a +oo 22
= 7/ 0% e 207 d

210 J_ o

. m2 .
Set u(f) = —2— [T ¢i07e 357 da, we find fi(6) = u(A)e?® and, by integration by parts, we

have:

2o J—o0

/ 1 > - 0z L
u'(0) = ixe'Te” 202 dx

210 J -
1 oo 22 |7 20 [ e 22
= { (102)61916_202} S / e 2.7 dg
2o o 210 J-x
= —o%0u()

We find a differential equation of first order. If we make the integral and if we set the
condition u(0) = 1, we will find

1.2

ﬂ(9) _ eieae—%cﬂ&?

Stochastic Process

1.2.1 Construction of Stochastic Process

A stochastic process is a family (X;)o<;<7 of random variables indexed by time. For each
realization of the randomness w, the trajectory X(w) : t — Xy(w) defines a function of

time,

called the sample path of the process. Thus stochastic processes can also be viewed

as random functions, hence random variables raking values in function spaces.

14



Definition 1.7 [Stochastic process] We call stochastic process an object with the form:
X = (QF, (Fe)ter, (Xt)ter, P)

where: T is a subset of RT; F is a o-algebra in Q; P is a probability law on (Q, F); (Fy)er
is a filtration, hence it is an increasing family of sub-o-algebra of F in t such that if s <t,
Fs C Fr and (Xy¢)ier 15 a family of random variable on (0, F) which takes value in a mea-
surable space (E,&) such that, for any t, X, is Fi-measurable. In this case, we say that
(X4): is adapted to the filtration (Fy);.

Fi is then interpreted as the information known at time ¢, which increases with time.
We denoted by Fo, the smallest o-algebra of parts of 2, which is in J, F;. Moreover, an F;-
measurable random variable is a random variable whose value will be revealed at time ¢. A
process whose value at time ¢ is revealed by the information F; is said to be nonanticipating:
Definition 1.8 [Nonanticipating process| (definition 2.12 in [2]) A stochastic process
(X1)o<i<T is said to be nonanticipating with respect to the information structure (Fy)o<i<r
or Fi-adapted if, for each t € [0,T)], the value of X; is revealed at time t: the random variable
X; is Fi-measurable.

If the only observation available is the past values of a stochastic process X, then the
information is represented by the history, also called the natural filtration, of X defined as
follows:

Definition 1.9 [History of a process] (definition 2.13 in [2]) The history of a process X
is the information flows (FiX)o<i<T, where FiX is the o-algebra generated by the past values
of the process, completed by the null sets:

F=oX.sel0.t)\/ N
where N' = {4; A € F,P(A4) = 0}.

A process is continuous if for any w, the trajectory ¢ — X;(w) is continuous. Moreover,
X is said measurable if the operation (,w) — X;(w) is measurable from (T x Q, B(T) ® F)
to (E,B(FE)). In the next chapter, we will make the assumption that the processes are
discontinuous functions. Therefore, we need to introduce the class of cadlag function:
Definition 1.10 [Cadlag function] (definition 2.10 in [2]) A function f :[0,T] — R? is
said to be cadlag if it is right-continuous with left limits: for each t € [0,T] the limits:

N R
Fe7) = tim_ f(s), fF7) = lim  f(s)

exists and f(t) = f(t).
We can note that any continuous function is cadlag but cadlag functions can have disconti-
nuities. If ¢ is a discontinuity point we denote by

the jump of f at t. A cadlag function f can have at most a countable number of discon-
tinuities, therefore, {t € [0,T], f(t) # f(¢t7)} is finite or countable. Also, for any ¢ > 0
the number of jumps on the interval [0, 7] larger than e should be finite. Hence, a cadlag
function on [0, 7] has a finite number of "large jumps" and a possibly infinite but countable
number of small jumps. An example of cadlag function could be a step function having a
jump at some point T, whose value at Tj is defined to be the value after the jump, hence
f = 1z, m(t). In this case, f(T; ) =0, f(Ty7) = f(Tp) = 1 and Af(Ty) = 1. More gen-
erally, given a continuous function ¢ : [0,7] — R and constants f;, 7 = 0,...,n — 1 and
to=0<t <---<ty, =T, the following function is cadlag:

n—1
FO =9+ Y fili () (1.11)
=0
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The function g can be interpreted as the continuous component of ¢ to which the jumps
have been added, hence the jumps of f occur at ¢;, i > 1 with Af(¢;) = fi — fi—1. Therefore,
cadlag functions are natural model for the trajectories of processes with jumps.

Definition 1.11 [Stopping Times] Let (Fi)ier be a filtration. A random variable
T:Q = TU{+oo} is called stopping times if, for each t € T, {7 < t} € F;. Moreover, we
set

Fr={AeFu,AN{r <t}VteT}

where Foo = \/; F:-

We can note that F, is the o-algebra of the events, which at time 7 are occurred or not.
The following proposition tells us some properties of the stopping time:

Proposition 1.6 Let o and 7 be two stopping time. Then:

a) 7 is Fr-measurable;

b) oV 1,0 AT are stopping times;
c) ifo <1, F, CFr;

d) Forr =Fs N Fr.

Proof
a)
For each s > 0, {7 < s} € F,. Its clear that {7 < s} € F, C Feo.
For each ¢, {7 < s}nN{r <t} € F.
If t < s, we have that {7 < s}N{r <t} ={r <t} € F.
If t > s, we have that {r < s} N{r <t} ={r <s} € Fs C F.
b)
{onT <t} ={oc <t}U{r <t} € F; = is a stopping time.
{ovr <t} ={oc <t}n{r <t} € F; = is a stopping time.
c)

If Ae F,, then for each t : AN {o <t} € F;. Therefore, {7 <t} C {o <t}:
An{r<t}=An{oc <t}n{r <t}
—_——— ——

ej:t GJ:t
d)
Let A€ FoNF;, then A € Foo, AN{7T <t} € F; and AN{r < s} € F;. Therefore, we
have:
An{onT<t}=An{o <t}u{r <t})
=(An{oc<tHUAN{r <t}) e K

Therefore, A € Fynr.
O

Proposition 1.7 Let X be a measurable process and o : Q — RT be a random variable.
Then X, : w — Xo(w)(w) is a random variable. If T is a finite stopping time almost surely
and X is measurable, then X, is F,-measurable.

A detailed proof can be found in chapter 1 of "Equazioni differenziali stocastiche e appli-
cazioni" written by Baldi.

1.2.2 Brownian motion

Definition 1.12 [Brownian Motion] A real-valued process B = (0, F, (Fi)1>0, (Bt)t>0,P)
is a Brownian motion if
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i) Bo=0 a.s;
i1) for each 0 < s < t, the random variable By — By is independent of Fs = 0(B,,u < s);
iii) for each 0 < s <t, By — By has law N(0,t — s).

The Brownian motion is a continuous stochastic process, in fact, the map s — Bg(w) is
continuous. We can note that the Brownian motion is a Gaussian process and we define a
Gaussian process as:

Definition 1.13 Let T be a family of random variable in R® defined on the probability
space (Q, F,P). Then, we say that T is a Gaussian process if, for each Xy, ..., X,, € T and
Yooy ¥m € R, the random variable (v, X1) + -+ + (Ym, Xpm) is Gaussian.

Moreover, the point i) imply that the Brownian motion has stationary increments, there-
fore, if s <t, By — Bs; and B;_s — By have the same probability law. We shall also need a
definition of a Brownian motion with respect to a filtration (F;).

Definition 1.14 (definition 3.2.5 in [1]) A real-valued, continuous stochastic process is an
(F¢)-Brownian motion if it satisfies:

a) for any t >0, By is Fi- measurable;
b) if s <t, By — By is independent of the o-algebra Fs;
¢) if s <t, By — Bs and B;_s — By have the same law.

We can note that if B is a (F;);-Brownian motion, it is also a Brownian motion with
respect other filtration (F}); smaller than (F;);. Finally, we say that we have a natural
Brownian motion when (F%); is a natural filtration.

Proposition 1.8 If B is a Brownian motion, then

1) Bo =0 a.s;
2) for each 0 < t; < -+ < ty, (Biy,-..,By,,) is "centered” normal random variable in
an;

3) E[B,B;] = s At.

Vice versa, if 1), 2) and 8) are true, then B is a natural Brownian motion. Proof
1)
If B is a Brownian motion, By = 0 by definition.
2)
is a consequence of the definition 1.13 and the point i) of the definition 1.12
3)
iss<t
E[ByB;] = E[(B; — Bs)Bs] + E[B2] = s =s At
Vice versa, if B satisfy 1), 2) and 3), then i) of the definition 1.12 is clear. Moreover, if
0 < s < t, By — By is a normal random variable as linear function of (Bs, B;) and it is
centered because B; and B; are centered; since

E[(B; — B,)*))E[B| + E|B?] —2E[B;B,] =t +s—2s =t —s
hence, B; — B, has distribution N(0,¢ — s) and #74) is satisfy. Finally, if u < s <t
E[(B; — B,)B,)| = E[B,B] — E[BsB,] =t Au—sAu=0

hence, B; — By is independent of o(B,,u < s).
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We say that a Brownian motion is standard if By = 0 and its first two moment are, respec-
tively, equal to: E[B;] = 0 and [B?] = t.

Now, we need to study the behavior of the trajectories of the Brownian motion. Therefore,
we need to introduce the following corollary:

Corollary 1.1 Let X be a process which takes value in R? such that exists an o > 0,3 >
0,¢ > 0 such that, for each s, t,

E[|X; — X,|%] < |t — s|**+

Then, exist a modification Y of X which is continuous. Moreover, if for each v < %, the
trajectories of Y has Holder exponent v in each bounden time interval.

We can note that a Brownian motion admits always a continuity modification of it, which
still remain a Brownian motion. Let ¢ > s, since By — Bs ~ N(0,t — s), we have that
B; — By = (t — 5)'/2Z, where Z ~ N(0,1). Therefore, for p > 0,

BBy — B[] = (t — s)"E[|Z]*"]

We can note that F[|Z|?’] < oo for each p > 0, then we can apply the corollary 1.1 with
B8 = 2p,a = p—1 and we find that for any Brownian motions exist always a continuity
modification. Moreover, these are Holder with exponent v, therefore v < % which imply
that v < %

We have seen that a Brownian motion admits always a continuity version and it is Holder
with exponent -y, for each v < % Now, we need to study the behavior of the trajectories
and we denote with X = (Q, F, (F;)¢, (X1)¢, P) a continuous Brownian motion.

Definition 1.15 Let I C R be an interval and f : I — R be a continuous function. we call
modulus of continuity of f the function, for x,y € I,:

w(d) = sup [f(z) = f(y)]

|z—y|<é

Theorem 1.3 (P. Lévy) For each T > 0

Xy — X
P( lim sup Llj‘z =1]=1
50+ 0<s<t<Tit—s<s (20log 5)V/

A detailed proof can be found in chapter 1 of "Equazioni differenziali stocastiche e appli-
cazioni" written by Baldi.

The P-Lévy theorem say that the trajectories can not be Holder with exponent v = % on
the interval [0, T] for each T.

Definition 1.16 [Total Variation] Given a function f : R — R, we call total variation
of f in [a,b] the quantity:

Vitf =sup ) |f(wisn) = f (i)l

where w changes among all the partitions a = rg < ©1 < -+ < Tpy1 = b on the interval
[a,b]. Moreover, f is said finite if Vf < +o00 for each a,b € R.

Proposition 1.9 Let m = {tg,...,tm} with s =ty < t; < - - < t,,, =t be a partition on the
interval [s,t], |7| = maxo<p<m—1 |tk+1 — ti|. Then, if we set

m—1
Sn = Z |th+1 - th|2
k=0

we have that
lim S,=t—s cL? (1.12)

|| =0+

Therefore, the trajectories of a Brownian motion have not finite total variation in any time
interval, almost surely.
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Proof
Let 7=t —s, then 7 =Y ;" (tgpy1 —tp and

—

m—

[(th+1 - th,)Q - (tk+1 - tk)]
k=0

since the random variable (X, ,, — X;,)? — (tp41 — tx) are independent and centered, we

have:
m—1

Bl(Sy = 7)) = Y El((Xos = Xu)? = (a1 — 1))

k=0

Therefore, we have:

m—1
E[(Sx — ) Z ther — tr)?
=0

<(th+1 - th)2 _ 1>2
ter1 — Tk
—X,

X
but for each k the random variable ﬁ is N(0,1), hence the quantity

<(th+1 - th)Q B 1>2
tet1 — tk

is finite and is not depend on k. Therefore

c=F

m—1 m—1
El(Se =7 =¢ Y (thr —tr)? <l D [thsr — tr| = c|m|(t — 5) == 0
k=0 k=0

which proves the equation (1.12). Moreover,

m—1 m—1

|th+1 th' < 0<I7,Iéax |Xti+1
k=0 k=0

_th|

Therefore, the trajectories are continuous,

lim max |X;,, —X;|=0
\w—>0+0§i§m71| i+ il

hence, if the trajectories have finite total variation on the interval [s,¢] for w in a set A, then
in A we can have:

m—1
li X - X | <
lﬂ‘l_{%Jr kzz;) | tet1 tk| +00

and, in conclusion, lim|;|_,o+ Sz(w) = 0, which contradict the proposition 1.9
O

We can note that if a function f has finite total variation, then we can definite the integral

T
/0 H(t)df (1)

for each bounded borel function ¢. But the proposition 1.9 say that we can not make
the integral w for w because the trajectories of the Brownian motion have not finite total
variation. Therefore, in the following chapter, we need to introduce the stochastic integral:

T
/0 $(£)dX, (w)
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1.2.3 Martingale

Definition 1.17 [Martingale] A real-valued process M = (0, F, (Fi)ter, (M)ter,P) is a
martingale if M is integrable for each t € T and

E[M,|F)=M, Vs<t (1.13)

it is a supermartingale if
E[M,|F) <M, Vs<t

it is a submartingale if
E[M,|F)> M, Vs<t

It is clear that linear combination of martingale are still martingale. If (M;); is a super-

martingale, then (—M;); is a submartingale, and vice versa. If (M), is a martingale, then
(| M) is a submartingale. Moreover, if M is a martingale (respectively a submartingale)
and ® : R — R is a convex function (respectively an increasing convex function) such that
®(M,) is integrable, then (®(M;)); is a submartingale. This is a consequence of Jensen’s
inequality. Finally, we say that a martingale (M;); isin LP, p > 1, if M, € LP for each ¢ and
we say that a martingale is square integrable for p = 2.

Now, we give some result for martingale in discrete time and then we extend it to the
continuous one. Let T = N. A process (A4,), adapted to the filtration (F,), is called
increasing predictable process if Ag = 0, A, < 4,41 and A,41 is F,, measurable. Let
(Xn)n be a (F,)p-submartingale and we set

AO = 07 An+1 = An + E[Xn+1|]:n] - Xn
By construction (4, ), is an increasing predictable process. If M,, = X,, — A,,, then
E[Mn+1|-7:n] = E[Xn+1|fn] - An+1 = Xn - An = Mn

Therefore (M,,),, is a martingale. Consider another decomposition of (X, ),: X,, = M, + A},
where M’ is the martingale part and A’ is the increasing predictable process. Then, we have
Ay = Ay =0 and

:H-l — Ay = Xng1 — Xn — (M?{L-‘rl — M)

If we take the conditional expectation respect to F,,, we find:
A1 — A, = E[Xpn|Fa] = X,

therefore A! = A,, and M}, = M,,. This result is called Doob’s decomposition, which shows
that each submartingale (X,,),, can be decomposed in a sum of predictable increasing pro-
cess (A,), and martingale part (M,),.

If (X,,), is a martingale, also the stopping process X7 = X, is a martingale; in this
notation 7 is a stopping time of the filtration (F,),. In fact, by definition of stopping time
{r>2n+1} ={r <n}° e F, and, since, X],; = X] on {7 < n}, we have

E[X77;+1 - X;z—l}—n] = E[(Xn+1 - Xn>1{72n+1}|]:n]
= 1{72n+1}E[Xn+1 - Xn|]:n]
=0
Theorem 1.4 (Sampling Theorem) Let X = (Q, F, (Fn)n, (Xn)n,P) be a supermartingale

and let 71 and 1o be two stopping time associated to the filtration (F, )y, bounded a.s and
such that 7 < 12 a.s. Then, the random variable X, and X, are integrable and

BX,|Fr] < Xr (1.14)

Proof

The integrability of the random variable X, and X, are obviuos because, for i = 2,2, | X,,| <
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Zle |X;|, where k is a number which is added to 7.
Let » =k e Nandlet A € F,,. Since AN{n =j} = F,, we have, for j <k,

/ X, dP = / X,dP > / X dP
Am{lej} Aﬂ{‘l’lzj} Aﬂ{‘l’lzj}

and, making the sum respect to j, with 0 < 57 < k, we find

k k
X, dP = / X, dP > / XdeZ/ X, dP
/A ! jgo An{ri=j} ’ ]go An{ri=j} A ’

Hence, we have shown that the theorem hold if 75 is a constant stopping time. Now, we
change the hypothesis above with 75 < k. If we apply the result find in the first part of this
proof at the martingale (X72),, at the stopping time 71 and at k, we find

/XTldIP’:/XIfd]P’z/X,?dIF’:/XTQd]P’
A A A A

which ends the proof.
O
Corollary 1.2 Consider the hypothesis of theorem 1.4. If X is a martingale, then we have

E[XTQ|-F7'1] = XT1 (115)

A process (X¢)ie[o,r is called a local martingale if there exists a sequence of stopping times
(1) with 7, — oo a.s such that (X;ar,)ie[o,r) is @ martingale. Thus a local martingale
behaves like a martingale up to some stopping time 7,,, which can be chosen as large as one
wants. Moreover, any martingales are a local martingale but there exists local martingales
which are not martingales.

A martingale M is bounded in LP if sup,, F[|M,|P] < +oc0. Then, we have the following
theorem:
Theorem 1.5 (Doob’s inequality) Let X = (Q, F, (Fn)n, (Mp)n, P) be a bounded martingale
in LP, p > 1. Then, let M* = sup,, |M,| € LP and

M|, < gsup [ Mallp
n

where ¢ = ﬁ.

This theorem is a consequence of the following lemma:
Lemma 1.3 If X is a positive submartingale, then for each o > 1 and n € N :

e
E{ max Xf‘] g( < ) E[X?]
0<<i<n a—1

A detailed proof can be found in chapter 4 of "Equazioni differenziali stocastiche e appli-
cazioni" written by Baldi.
Theorem 1.6 Let X be a supermartingale such that sup,>oE[X, ] < +oco. Then, X con-
verges a.s and it has finite limit.
A detailed proof can be found in chapter 4 of "Equazioni differenziali stocastiche e appli-
cazioni" written by Baldi.
If M is a martingale bounded in LP, then it has sup,~qM, < M?*. Therefore, the
martingale M converges a.s to a random variable M, such that |[Mo| < M*. Since
|M,, — Mo|P < 2P~ Y(|M,|P + | My |P) < 2P M*P, we can apply the Lebesgue theorem and we
find

lim E[|M, — Mx|’] =0

n—oo

Hence, for p > 1, the following theorem told us the behavior of a martingale bounded in L?:
Theorem 1.7 If p > 1, a martingale bounded in LP converges a.s and in LP.
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Now, we need to study the converges of martingale in L' and we need to introduce the
definition of uniformly integrable:
Definition 1.18 Let H be a family of random variable in R. We say that H is uniformly

integrable if:
lim sup/ [Y|dP =0
e FtO Ve J{|Y|>c}

Consider a set built with one random variable, this is the easiest example of set uniformly
integrable. Therefore, we have lim., o [Y|1{jy|>c} = 0 a.s and, since [Y|1y|sep < Y]
and for the Lebesgue theorem, we have

lim Y |dP = 0

et J{Y >}

Hence, H is uniformly integrable if there exists a real integrable random variable Z such
that Z > |Y| for each Y € H. Therefore, in this case we have:

/ Y |dP < / ZdP
{IY]>e} {Z>c}

Then the following theorem is an extension of the Lebesgue theorem:

Theorem 1.8 Let (Y,,),, be a sequence of random variable convergent a.s to Y. A necessary
and sufficient condition for Y to be integrable and to be convergent in L' is that (Yy,), is
uniformly integrable.

A detailed proof can be found in chapter 6 of "A Probability Path" written by Resnick.

In any case, a family H uniformly integrable is bounded in L!. In fact, let ¢ > 0 such that
SUPy ey f{IY\>C} |Y|dP < 1, then we have, for each Y € H,

EY]] :/ |Y\d]P’+/ VAP < c+1
{lY'[>c} {IY|<c}

We can note that if (F,), is a filtration on the probability space (,F,P) and YV €
L', (E[Y|F.])n is a uniform integrable martingale. Vice versa, if M = (M,), is a uni-
form integrable martingale, then it is bounded in L'. Therefore, the theorem 1.6 is satisfy
and M converges a.s to a random variable Y. Moreover, by theorem 1.8, Y € L! and it
converges in L'. Hence, we have

My, = B[My|Fp] — E[Y|Fn] €L

Therefore, we have already proved the following theorem:
Theorem 1.9 A martingale (M,),, is uniformly integrable if and only it it has the form
M, = E[Y|F,], where Y € L*(Q, F,P). In this case, (M,), converges a.s and in L.

Finally, we change the assumption from 7" € R to T € R". Hence, we consider the
martingale in continuous time. The theorem above are still valid for the continuous time
case but, in this case, we require that the martingale is right continuous. We can rewrite
the theorem 1.4 for the continuous martingale as:

Theorem 1.10 (Optimal Sampling theorem) (theorem 3.3.4 in [1]) If (M¢)¢>0 is a continu-
ous martingale with respect to the filtration (F;)i>o0, and if 1 and o are two stopping time
such that m < 7 < K, where K is a finite real number, then M., is integrable and

E[M.|F.] =M, a.s (1.16)

This result implies that if 7 is a bounded stopping time, then E[M,] = E[M;]. Moreover,
let M = (Q,,(Fp)¢, (M), P) be a right continuous martingale and let T be a stopping time.
Then (Ma-): is a martingale respect to the filtration (F);.

We need to study if the Doob’s decomposition is true for submartingale in continuous time.
Therefore, we introduce the following theorem (we did not prove the theorem but a detailed
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proof can be found in chapter 1 of "Brownian Motion and Stochastic Calculus, 2"¢ edition"
written by Karatzas and Shreve):

Theorem 1.11 Let M be a continuous square integrable martingale respect to the filtration
(Ft): completed with the null set. Then, exists an unique continuous increasing process A,
with Ag = 0, such that (M? — Ay); is a martingale. If 7 = {0 =1tg <t; < -+ < t;, =t} is
a partition on the interval [0,t], then we have

m—1
. 2
A=, kZ:O Moy = M|
We call the process (A;); of the theorem 1.11 an increasing process respect to the square
integrable martingale M and we use the notation (M);. We can note that the increasing pro-
cess respect to a continuous martingale does not depend on the filtration of the martingale.
Hence, if we have two filtration completed with the null set, (F;); and (F})s, then (M), is a
martingale respect both filtration and the increasing process respect the two filtration (F;);
and (]:'t)t are equal. Moreover, the increasing process A respect to a Brownian motion is
equal to A; = t.
Theorem 1.11 imply that all the continuous square integrable martingale have not finite
total variation. Therefore, we have the following proposition:
Proposition 1.10 Let M be a continuous square integrable martingale, then on {{M); >
0} M has not finite total variation on the interval [0,t] a.s. On the other hand, on {(M); =
0} M is constant on the interval [0,t] a.s.
Proof
The first part of the proof is exactly the same of preposition 1.9. We have, for each partition
ﬂ':{O:to<t1 <"'<tm:t}

m—1 m—1

Z |Mtk+1 - Mtk|2 § sup |Mti+1 - Mt Z ‘Mtk+1 - Mtk|
k=0 lsism—1 k=0

i

On {(M); > 0}, the left term converges to (M), > 0 and the right term, if ¢ — M;(w) has
total variation, converges to 0 for |7| — 0. This conclude the first part of the proof.

For the second part of the proof we can suppose that My = 0 because (M; — My); is still a
martingale with the same increasing process. Let 7 = inf {¢; (M); > 0} be a stopping time
and, since (M); =0 for s <7 and X, = M? — (M), is a null martingale in 0, we have

E[MtQ/\r] = E[Mtz/\T - <M>t/\7'] = E[Xt/\T] = E[XO] =0

If we apply the following inequality:

w( inf M, < —)\) < / — MydP < E[|My]]
OStST {infOStST X{,S—)\}

at the negative supermartingale (—M}?, ), we find that the supermartingale is equal to 0
a.s. This conclude the second part of the proof.

O
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Chapter 2

Jump Process

In the previous chapter we have seen the most well-known continuous process: the Brownian
motion. Here, we introduce and explain a family of discontinuous process called Lévy
processes. We begin with the definition of a Poisson process, which is the main building
block for stochastic process with discontinuous trajectories. Then, we talk about compound
Poisson process, which is use to built a jump-diffusion model, and we study its property.
The second section of the chapter, starts with the definition of Lévy process, then we discuss
its infinitely divisible distribution and we present the Lévy-Khintchine formula, which links
processes to distributions. The opposite way, from distribution to processes, is the subject
of the Lévy-Ito decomposition of a Lévy process. The Lévy measure, which is responsable
for the richness of the class of Lévy processes, is studied in some detail and we use it to
draw some conclusions about the path and the moment of a Lévy process.

The last section uses the Lévy processes and its properties to built a model for financial
applications, which can be decomposed in two main categories: the jump diffusion model
and the infinite activity models. Here, we give some example of jump diffusion model and we
explain the properties and the relationship between the ordinary and stochastic exponential
models.

2.1 Poisson Process

2.1.1 Definition and Properties

Definition 2.1 [Poisson Process] (definition 7.1.1 in [1]) Let (T;);>1 be a sequence of
independent, identically, exponentially distributed random variables ! with parameters A\(\ >
0) and let T, = Z?=1 T;. We call Poisson process with intensity A the process Ny defined by:

Ne=) Apreny = Y 0l <rcrn)

n>1 n>1

Where N; indicates the number of points of the sequence (7,,),>1 which are smaller than
or equal to t. Moreover, a poisson process can be described as a counting process. Given
an increasing sequence of random times {7,,n > 1} with P(7,, — co) = 1, we can define the
associated counting process (X;);>o with

Xt = Z 1{TV,LSt} = # {TL > 177-n > t}

n>1

The condition P(7,, — 00) = 1 told that X, is well-defined, hence finite, for any ¢ > 0 with
probability 1. Therefore, the Poisson process counts the number of random times (7,,) which

LA positive random variable X follow an exponential distribution with parameter A > 0 if it has a
probability density function equal to

Ae™ 1,00y
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occur between 0 and t, where (7,, — T,—1)n>1 is an independent and identically distributed
(i.i.d.) sequence of exponential variables.
Let (N¢)i>0 be a Poisson process and it has the following properties:

1) For all ¢ > 0, N is almost surely (a.s.) finite;

2) The trajectories of N (in other words: Vw, the sample path ¢ — N;(w)) are piecewise
constant with jumps of size 1;

3) The trajectories are right continuous with left limit (cadlag?);
4) ¥Vt > 0, N;- = N, with probability 1;
5) (Ny) is continuous in probability:

V¢ >0,N, — Ny
s—t

6) Vt > 0, N, follows a Poisson distribution with parameter At¢:

Vn €N, P(N, = n) = e~ M 0"

n!

7) The characteristic function of Ny is
Ele™Nt] = exp {Mt(e™ — 1)}, Vu € R;

8) Independence of increments: for all 0 < ¢y < t; < --- < t, and n > 1 the increments

Ny — Neyy oo oy Ny, — Ny,

are mutually independent random variables. In other words, if s > 0, Ny, — IV, _, is
independent of the o-algebra Fy;

9) Stationarity of increments: Ny, — Ngip has the same distribution as N, — Ny for
all h > 0 and 0 < s < t. Hence, the law of N;;; — IV; is identical to the law of
Ns — No = Ng;

10) (NV;) has the Markov property:
Vt > s, E[f(N)|Nu,u < s] = E[f(Ne)|N];

11) The Poisson process is a Lévy process.

A detailed proof of this property can be found in chapter 2 of "Financial Modeling with
Jump Process" written by Cont and Tankov.

The right continuity, cadlag property, of the Poisson process is not really a "property".
In fact, we have defined V; in such a way that at a discontinuity point N; = N+ but a
function could be caglad (left continuous with right limit, in this case we have f(t) = f(¢t7)
and Ny = N;— ). There is a difference between a cadlag and a caglag process especially
in the context of financial modeling. In fact, if a right continuous function has a jump at
time t, then the value f(¢) is not predictable by following the trajectory up to time t and
the discontinuity is seen as a sudden event. On the other hand, if the function was left
continuous, an observer approaching t along the path could predict the value at t. Hence,
jumps represent unexpected, unforeseeable events and the assumption of right-continuity is
natural. By contrast, we should use a caglad process if we want to model a discontinuous
process whose values are predictable. This will be the case when we want built trading
strategies.

Theorem 2.1 Assume that the counting process (Ny)ier, satisfies the independence and
the stationary of increments property. Then for all fized 0 < s < t we have:

2Defined in chapter 1
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P(N; — N, = k) = e M= QD" - ey,

for some constant A > 0.
The parameter A > 0 is called the intensity of the Poisson process (N¢)icr, and can be
found as

1
A= }11—>IHO hP(Nh = 1)

There are other two important properties of Poisson process: the superposition property
and the thinning property. The superposition property said that a sum of independent Pois-
son process is again a Poisson process. Hence, let (N}!);>0 and (N7?):>¢ are two independent
Poisson processes with intensities A1, A2, then (N} + N?);>0 is a Poisson process with in-
tensity Ay + A2 3. The other property define a new process X; by "thinning" N;, which is
a Poisson process with intensity A. In particular, it takes all the jump events (7,,n > 1)
corresponding to N and it keeps them with probability 0 < p < 1 or delete them with
probability 1 —p, independently from each other. Therefore, we can collect and order all the

points which have not been deleted: 7{,...,7/,... and we can define the new process as:
Xo=3 Agmzn
n>1

Then the new process X is still a Poisson process but it has intensity equal to pA 4. In
other words, if the arrival 7,, of each event in the Poisson process N has probability p,
independently from event to event, then the process of joint events thus obtained is again
a Poisson process whose intensity is equal to the intensity of N but it is decreased by the
marking probability: Ax = pA.

2.1.2 Compensated Poisson Processes

The compensated Poisson process define the "centered" version of the Poisson process N;
by

Nt :Nt—>\t

where Mt is the expected value of the Poisson process®. (Nt) has centered increments because

it has the expected value equal to zero. Moreover, (N) follows a centered version of the
Poisson law with characteristic function:

Vg, (u) = exp[At(e™ — 1 — iu)]

In addition, the compensated Poisson process (N; — At);cgr, has independent increments
and we can show that:

E[N|Ny, s < t] = E[N, — N, + Nj|N,]
= E[N, — N,] + N, = A(t — s) + N,

so (IVy) is a martingale with respect to it’s generated filtration F; ( F; := o(Ns : s €
[Oat] ,te R+):

BN NJ =N, Vt>s
proof

E[Nt+5 — )\(t - S)|.Ft] = E[Nt+5 —NS +NS - )\(t— S)‘ft]
=Ny — Mt

3See the appendix A.1 for the proof.
4See the appendix A.1 for the proof.
5The expected value is computed in the appendix A.1.
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(Nt)tzo is called a compensated Poisson process and (At);>¢ is called the compensator of
(N¢)i>0 and it is the quantity which has to be subtracted from N, in order to obtain a
martingale. Moreover, the compensated Poisson process is no longer integer valued because
it is not a counting process unlike the Poisson process. i

The rescaled version of the compensated Poisson process, i.e. %, has the same first two
moments as a standard Brownian motion:

Bl%] =0 Var[%] =t

Moreover, when the intensity of the jumps increases the interpolated compensated Poisson
process converges in distribution to a Wiener process:

N, A—00
2t — H/
( A )te[O,T] (We)ieo

This result is a consequence of the Donsker invariance principle® and it can be seen as a
"functional” central limit theorem.

2.1.3 Compound Poisson Process

The Poisson process itself appears to be too limited to develop realistic asset prices model
because the assumption that the jumps size are always equal to 1 is too restrictive, but it
can be used as building block to built richer models. Therefore, there is some interest in
considering jump processes that can have random jump sizes.

Definition 2.2 [Compound Poisson Process] The compound Poisson process with
jump intensity X and jump size distribution p is a stochastic process (X;);>o defined by:

N
X, =) Y,
i=1

where (Y;)i>1 is a sequence of independent random variable with law p and Ny is a Poisson
process with intensity X independent from (Y;);>1.

This definition means that a compound Poisson process is a piecewise constant process
which jumps at jump times of a standard Poisson process and whose jump size are i.i.d
random variables with a given law.

Proposition 2.1 (Characteristic function of the compound Poisson process) (proposition
3.4 in [2]) Let (X¢)i>0 be a compound Poisson process with jump intensity A and jump size
distribution . Then X is a piecewise constant Lévy process and its characteristic function
is given by:

o0

EleXt] = exp {)\t/ (etue — 1)u(dx)} . (2.1)

— 00
A detailed proof can be found in chapter 3 of "Financial Modeling with Jump Process"
written by Cont and Tankov.

Let X;- denote the left limit, i.e. X;- := h/‘ni X, with ¢ > 0, then we note that the jump
size (AXy := X; — X;— ,with t € R}) of (X;)er, at time t is equal to:
AXt :YNtANt t€R+

where AN; (:= Ny — N;— € [0,1] and ¢t € R, ) denotes the jump size of the standard Poisson
process Ny and N,- is the left limit.

We know that the n (Ny = n) jump sizes of (X;)icr, on [0,7] are independent random
variables which are distributed on R according to v(dz). Therefore, we can compute the

6The Donsker invariance principle is described in the appendix A.2.
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moment generating function of the increments X7 — X; with the following proposition:

Proposition 2.2 For any t € [0,T] we have:

(o)

Eleap(a(Xr — X)] = exp ()\(T 1) / (oo — 1)u(dw)> a€R.

— 00

ETP ( >
i=Nz+1

=Y E |exp (aZY) | Np — N, :n] P(Np — N; = n)
n=0 =1
o0 )\ n
= e NI Z (T —t)"—E |exp <a Z Yi>
n=0 i
H [exp(aY;)]
TL

o~ MT— t)z —' Elexp(aY;))"

o AT—1) Z
n=0
= exp(\(T — t)(E[emp(aY)] - 1))
= exp (/\(T - t)/ e“Yu(dy) — NT —t) / V(dy))

Proof:

Elexp(a(Xp — X¢)] = F

o X )

i=1

n
7!

— 00 — 00

= exp (/\(T —t) /oo (e — 1)v(dy))

— 00

Since the probability distribution v(dy) of Y satisfies:

Elexp(aY)] = /  cy(dy) and / T ) = 1

— 00 — 00

O

Now, we can compute the expectation of Xy, for fixed t, as the product of the mean number
of jump times (E[N;] = At) and the mean jump size (E[Y]). This is equal to:

(o]
E[Xy] = Z B[00 = At / zv(dr) = E[N{E[Y] = ME[Y]
— 0o
The equation above make the assumption that the moment generation function takes finite
values for all « in a certain neighborhood (—¢,¢) of 0 because so it is possible to exchange
the differentiation and the expectation operators. On the other hand, the variance is equal

to:
o0
Var(X;) = At/ 2?v(dz) = ME[|Y )] = E[N,E[|Y]?]
—0o0
Moreover, the compound Poisson process has independent increments if for any finite se-
quence of times tg < t; < --- < t,,, the increments:

X, — Xy Xpy — Xy oo, Xy, — X,

are mutually independent random variables.
By construction, the compound Poisson processes only have a finite number of jumps on any
interval, therefore, they belong to the family of Lévy processes which may have an infinite
number of jumps on any finite time interval.
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2.1.4 Poisson Random Measures

The definition of the Poisson random measure is a key point for the theory of Lévy processes,
which are described in the next section of this chapter.

Definition 2.3 [Random measure] Let (0, P, F) be a probability space and let (E,E) be
a measurable space. Then M : Q x £ — R is a random measure if:

o for every w € Q, M(w,-) is a measure on &;
o for every A€ &, M(-,A) is measurable.

We can express a Poisson process in terms of the random measure M in the following
way:

Ny(w) = M(w,[0,¢]) = [

0,4] M(w,ds)

where M is called the random jump measure associated to the Poisson process N. Fur-
thermore, the properties of the Poisson process must be translated to fit the measure M.
Therefore, we have the following properties for disjoint intervals [t1,t]],. .., [tn, t)] :

1) M([tn,t)]) is the number of jumps of the Poisson process in [t,,t)] : it is a Poisson
random variable with parameter (¢}, — t);

2) for two disjoint intervals j # k, M([t;,t}]) ans M([ty,t,]) are independent random
variables;

3) for any measurable set A, M(A) follows a Poisson distribution with parameter \|A|
where |A| = [, dx is the Lebesgue measure of A.

We can give another interpretation to the random measure M which is the "derivative" of
the Poisson process. Hence, its derivative (in the sense of distributions) is a positive measure
because each trajectory ¢ — N;(w) of a Poisson process is an increasing step function. In
fact, it is simply the superposition of Dirac masses located at the jump times:

2 Ny(w) = M(w,[0,t]) where M = Z 07, (w)

i>1

Definition 2.4 [Radon measure] (definition 2.2 in [2]) Let E C R%. A Radon measure
on (E,B) is a measure u such that for every compact measurable set B € B, u(B) < oo

Definition 2.5 [Poisson random measure] (definition 2.18 in [2]) Let (2, P, F) be
a probability space, (E,E) be a measurable space and p a measure on (E,E). Then

M:OQxE—R
(w, A) = M(w, A),

is a Poisson random measure with intensity p if:

1. for (almost all) w € Q, M(w,-) is an integer-valued Radon measure on E: for any
bounded measurable A C E;, M(A) < oo is an integer valued random variable;

2. forall A € £ with u(A) < oo, M(A) follows the Poisson law with parameter E[M(A)] =
n(A) :

VkEN,  P(M(A) = k) = (4 W)

3. for any disjoint measurable sets Ay, ..., A, € &, the variables M (Ay),..., M(A,) are
independent.
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In particular, the following preposition show as the Poisson random measure can be
constructed as the counting measure of randomly scattered points.
Proposition 2.3 (Construction of Poisson random measures) (proposition 2.14 in [2]) Let p
be a o-finite measure on a measurable subset E of RY. Then, there exists a Poisson random
measure M on E with intensity .

Proof:
1. Assume that u(FE) <
that P(X; € A) = 5
with intensity p(E) in
measure M defined by:

oo Let (X;);>1 be a sequence of independent random variables such
Vi and VA € B(E), and let M(E) be a Poisson random variables
dependent from (X;);>1. Then, it is easy to see that the random

(E)

M(E)
M(A):= Y 1a(X;), VA€B(E)

i=1

is a Poisson random measure on E with intensity u.

2. Assume that (E) = co. Then, we choose a sequence of disjoint measurable sets (E;);>1
such that p(E;) < oo, Vi and |J; E; = E. We can built a Poisson random measure M; on
each F; as described above and define:

M(A):=> M;A), VAecB(E)

O

The following proposition is useful to study the convergence of Poisson random measures:

Proposition 2.4 (Convergence of Poisson random measures) (proposition 2.15 in [2]) Let
(M,)n>1 be a sequance of Poisson random measure on E C RY with intensities (fin)n>1.
Then, (My,)n>1 converges in distribution if and only if the intensities (u,) converge to a
Radon measure p. Hence, M,, = M, where M is a Poisson random measure with intensity

L

In the same way as we have defined the compensated Poisson process, we can construct
the compensated Poisson random measure M by subtracting from M its intensity measure:

NI(A) = M(A) — u(A)

Moreover, from the definition of Poisson random measures, we can note that for disjoint
compact sets (A, ..., A, € &) the variables M(A;),. M(A ) are independent and have
the following two moments.

E[M(A;)] =0 Var[M(4;)] = u(4,).

Corollary 2.1 (Exponential formula) Let M be a Poisson Random measure on (E,E) with
intensity ju, B € £ and let f be a measurable function with [, lef @) —1|u(dx) < co. Then:

E [efB f(m)M(dx)} = exp [ [, (7@ — 1) pu(da)]

Definition 2.6 [Jump measure] Let X be a R—valued cidlig process. The jump
measure of X is a random measure on B([0,00) x R?) defined by

This definition means that the jump measure of a set of the form [s,¢] X A counts the
number of jumps of X between s and t such that their amplitude belongs to A. In other
words, Jx contains all the information about the discontinuities, i.e. jumps, of the process
X. Tt tells us when the jumps occur and how big they are. Therefore, Jx does not tell us
anything about the continuous component of X, which has continuous sample path if and
only if Jx = 0 almost surely. This means that there are no jumps in the process.
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For a counting process, since the jumps size is always equal to 1, the jump measure can be
seen as a random measure on [0, c0).

Proposition 2.4 Let X be a Poisson process with intensity \. Then, Jx is a Poisson random
measure on [0,00) with intensity A X dt.

Proposition 2.5 (Jump measure of a compound Poisson process) (proposition 3.5 in [2])
Let (X¢)i>0 be a compound Poisson process with intensity A and jump size distribution f.
Its jump measure Jx is a Poisson random measure on R? x [0,00) with intensity measure
p(dx x dt) = v(dz)dt = Af(dz)dt.

A detailed proof can be found in chapter 3 of "Financial Modelling with Jump Process"
written by Cont and Tankov.

This proposition implies that every compound Poisson process can be represented in the
following form:

X; = AXS:/ zJx (ds X dx
' Z [0,t] xRe ( )

s€[0,t]

where Jy is a Poisson random measure with intensity measure v(dz)dt. In this equation, we
have rewritten the process X as the sum of its jumps and since it is a compound Poisson
process, it has almost surely a finite number of jumps in the interval [0,¢]. Moreover, the
stochastic integral in the equation is a finite sum, hence there are no convergence problems.

2.2 Lévy Processes

2.2.1 Definition and Properties

Definition 2.7 [Lévy process] (definition 3.1 in [2]) A cadlag stochastic process (Xi)i>o
on (Q, F,P) with values in R? such that Xo = 0 is called a Lévy process if it possesses the
following properties:

1) Independent increments: for every increasing sequence of times tq, ..., ty, the random
variables Xy, X¢, — X4, ..., Xt, — Xy, , are independent;

2) Stationary increments: the law of X¢ip, — X; does not depend on t;

3) Stochastic continuity: Ve > 0, }lbirr%) P(| X¢in — X¢| > ) =0.
—

The last properties does not imply that the sample path are continuous as it is in the
Poisson process. The stochastic continuity serves to exclude processes with jump at fixed
times, which can be regarded as "calendar effects". Therefore, it means that for given time
t, the probability of seeing a jump at t is zero, discontinuities occur at random times:

vt, P(X,- =X;)=1.

The simplest Lévy process is the linear process is the linear drift, a deterministic process.
Brownian motion is the only (non-deterministic) Lévy process with continuous sample paths.
Other examples of Lévy processes are the Poisson and the compound Poisson processes.
Moreover, the sum of a linear drift, a Brownian motion and a compound Poisson process is
again a Lévy process and it is called a "jump-diffusion process."

We say that a probability distribution F' on R? is infinitely divisible if for any integer
n > 2, there exists n i.i.d. random variables Y7, ...,Y,, such that Y;+- - -+Y), has distribution
F. Hence, if X is a Lévy process, the distribution of X; is infinitely divisible for any ¢ > 0.
Therefore, the distribution of increments of a Lévy process has to be infinitely divisible,
this puts a constraint on the possible choices of distribution for X;. Gaussian distribution,
Gamma distribution and Poisson distribution are common examples of infinitely divisible
laws. A random variable having any of these distributions can be decomposed into a sum
of n ii.d. parts having the same distribution but with modified parameters.
Proposition 2.6 (proposition 3.1 in [2]) Let (Xy);>0 be a Lévy process. Then, X; has
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an infinitely divisible distribution for every t. Conversely, if F' is an infinitely divisible
distribution then there exists a Lévy process (X;) such that the distribution of X; is a given
by F.

Proposition 2.7 (Characteristic function of a Lévy process) (proposition 3.2 in [2]) Let
(X1)e>0 be a Lévy process on Re. There exists a continuous function ¢ : R? — R called the
characteristic exponent of X, such that:

EleXi] = et¥(w) 4 € RY,

Where 1) is the cumulant generating function of X;. The cumulant generating function
¥(t) is the natural logarithm of the moment generating function:

(t) = log B[]

The law of X, is determined by the knowledge of the law of X; because the cumulant gen-
erating function of X; varies linearly in ¢t. Therefore, the only degree of freedom that we
have to specify is the distribution of X, for a single time (¢ = 1).

The proposition regarding the Jump measure of a compound Poisson process can be
used to define the Lévy measure for all the Lévy process. Therefore, we give the following
definition:

Definition 2.8 [Lévy measure] (definition 3.4 in [2]) Let (X;);>0 be a Lévy process on
R?. The measure v on R?® defined by:

V(A) = E[#{t € [0,1]: AX; £0, AX, € A}], A€ BRY

is called the Lévy measure of X. v(A) is the expected number, per unit time, of jumps whose
size belongs to A.

Lévy processes are basically processes with jumps. In fact, it can be shown that any
Lévy process which has continuous trajectories is a Brownian motion with drift a.s.
Proposition 2.8 Let X be a continuous Lévy process. Then, there exists v € R% and a
symmetric positive definite matriz A such that:

Xt:’yt+Wt

where W is a Brownian motion with covariance matriz A.

This preposition is important for understand the Lévy processes. Hence, we give a proof for
the one-dimensional case.

Proof

We need to show that X; has Gaussian law because the rest will follow from the stationary
and independence of increments.

a). Let & := Xx — Xr1 and b, = P(|§;] > €). The continuity of X implies that:

lim P(sup |€F] > €) =0, Ve
n—0o0 k
Since
P(supy [§3] > €) = 1 = [1 = P(|&;] > €)]"

We find that 1i_{n (1 -10b,)" = 1, from which it follows that le nlog (1 —b,) = 0. But
nlog (1 —b,) < —nb, < 0. Therefore, we have:

nl;rr;o nP(|X1| >€) =0. (2.3)

b). We use the property of the independence and stationary of increments to show that:

1 ) .
lim nE[cos X1 — 1] = i{log E[e™] +log Ele~"1]} := —4; (2.4)
n—oo n
1 ) )
li_}rn nE[sin X.1] = ?{log E[eX1] —log Ele™™1]} := 1. (2.5)
n=300 i
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The equation (2.3) and (2.4) allow to prove that for every function f such that f(x) = o(|z|?)
in a neighborhood of 0, lim nE[f(X1)] =0, which implies that € > 0:
n—oo

n

lim nE[X11x, < =7,
n— 00 n 7

lim nE[XéyXl < = 4,

n— oo

lim nE[|X1’1x, <] =0.

n— oo

c). Putting together the different equations, we find:

log E[e™*1] = nlog E[emX% 1x, <] +o(1)

n

u2

1
= nlog{l—l-qu[X;lX < — ?E[Xilx <] —l—o(n)} +o(1)

1 1
_ u? ) Au?
= juy — T—Fo(l) T

where o(1) denotes a quantity which tends to 0 as n — .
g

Now, consider a Brownian motion with drift ¢ + W;, independent from X°, the sum X, =
X0 + ~vt + W, defines another Lévy process, which can be decomposed as:

X, =t + W, + ZASS:7t+Wt+/ zJx (ds x dz)
s€[0,¢] [0,t] x R4

where Jx is a Poisson random measure on [0, 00) x R? with intensity v(dx)dt, where v is a
finite measure defined by:

v(A) = E[#{te€[0,1]: AX) #£0, AX? € A}], A€ B(R?).

For every Lévy process X; we can define its Lévy measure v as above. For any compact
set A such that 0 ¢ A, v(A) is still finite. Otherwise, the process would have an infinite
number of jumps of finite size on [0, 7], which contradicts the cadlag property. Hence, v
defines a Radon measure on R?\ {0}. On the contrary, v is not necessarily a finite measure,
the above restriction still allows it to blow up at zero and X may have an infinite number
of small jumps on [0,7]. In this case, the sum of the jumps becomes an infinite series and
its convergence imposes some conditions on the measure v, under which which we obtain a
decomposition of X given by the following proposition.

Proposition 2.9 (Lévy-Ito decomposition) (proposition 3.7 in [2]) Let (X;);>0 be a Lévy
process on R and v its Lévy measure. Then:

e the Lévy measure v satisfies the integrability condition:
[ (el A 1)w(da) < oo
Rd

e the jump measure Jx of X is a Poisson random measure on [0, 00) x R? with intensity
dt x v = v(dz)dt;

o there exists v € R% and a d-dimensional Brownian motion (Bi)i>0 with covariance
matriz A such that:

X =~t+ By + Ny + My, where (2.6)
N, = / xJx (ds x dx)
|z|>1,s€[0,t]

M,

/ x{Jx(ds x dx) — v(dz)ds}
0<|z|<1,s€[0,t]

/ xJx (ds x dx)
0<|z|<1,5€[0,t]
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The three terms in (2.6) are independent and the convergence in the last term is almost sure
and uniform in t on [0,T).

A detailed proof can be found in chapter 3 of "Financial Modeling with Jump Process"
written by Cont and Tankov.

The Lévy-Ito decomposition say that for every Lévy process there exist a vector ~y (drift),
a positive definite matrix A and a positive measure v that uniquely determine its distribution.
We call the triplet (A, v, ) characteristic triplet or Lévy triplet of the process Xj.
The term in the equation (2.6) have the following meaning: ¢+ B; is a continuous Gaussian
Lévy process and every Gaussian Lévy process is continuous and it can be written in this
form Moreover, it can be described by the drift v and the covariance matrix of the Brownian
motion A. The other two terms, N;+ M, are discontinuous processes incorporating the jumps
of X; and they are described by the Lévy measure v. The integrability condition can be also
written as:

v is a Radon measure on R%\ {0} and verify: / |z|?v(dz) < oo, v(dx) < oo
jel<1 |1

The integral / v(dz) < oo means that X has a finite number of jumps with absolute
lz|>1
value greater or equal to 1. So, the sum:

|AX,[>1
N, = Z AX,

0<s<t

contains a finite number of terms and Ny is a compound Poisson process almost surely. v
can have a singularity in zero, which means that there can be infinitely many small jumps
and that their sum does not necessarily converge. In order to obtain convergence, we replace
the jump integral by its compensated version, which is a martingale, and it is equal to:

M, = f0<|w\§1,se[07t] xJx (ds x dz).

M; can be seen as an infinite superposition of independent compensated.
An important result of the Lévy-Ito decomposition is that every Lévy process is a combina-
tion of a Brownian motion with drift and a possibile infinite sum of independent compound
Poisson process. Therefore, every Lévy process can be approximated by a jump-diffusion
process, which is equal to the sum of Brownian motion with drift and a compound Poisson
process.

Proposition 2.10 Let (X;,Y:) be a Lévy process such thatY is a piecewise constant and
AX;AY; =0 for all t a.s. Then, X and Y are independent.
Proof
It is enough show that X; and Y; are independent due to the independence and the stationary
of increments. Let M; = E‘E;i:(;f] and N; = ET;%:?] Then, M and N are martingales on
[0,1]. From the independence and stationary of increments, we know that for every Lévy
process Z:

E[eiuZt] — E[eiuzl]t and E[eiuZ1] 7& O,VU.

This means that M is bounded. Since (V;) is a Lévy process and a counting process then
(Ny) is a Poisson process, therefore, the number of jumps of Y on [0, 1] is a Poisson random
variable. Hence, NV has integrable variation on this interval and by the martingale property
and by the dominated convergence, we find:

n

EMiN]-1=E > (M. . — Na-n)

K3 KR
n n n n
i=1

—E| Y AMAN,
0<t<1

which implies that E[e“X1+iv11] = pleivX1] BletvY1],
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The following theorem give to us the second fundamental result of the structure of the path
of Poisson process and it announces the expression of the characteristic function of a Lévy
process in terms of its characteristic triplet (A,v,~) :

Theorem 2.2 [Lévy-Khinchin representation] (theorem3.1 in [2]) Let (X;);>0 be a Lévy
process on RY with characteristic triplet (A,v,v). Then:

E[efwXo] = o) 4 e RY (2.7)

1 )
with  9(w) =i (vu) - lu A+ [ (@0 <1 (u,5) Ly)w(do).
R4
A detailed proof can be found in chapter 3 of "Financial Modeling with Jump Process"
written by Cont and Tankov.
For real-valued Lévy processes, the equation (2.7) becomes:

EletXt] = ey e R? (2.8)

1 .
with  Y(u) = iyu — §Au2 +/ (€™ =1 —iuxl)y < )v(dz).
Rd

When v(R%) = oo, we are in the infinite activity case and the set of jumps times of ev-
ery trajectory of the Lévy process is countably infinite and dense in [0, 00). The countably
follows directly from the fact that the path are cadlag. The following theorem gives the
characteristic function of infinitely divisible distributions:

Theorem 2.3 [Characteristic function of infinitely divisible distributions] (theo-
rem3.2 in [2]) Let F be an infinitely divisible distribution on R?. Its characteristic function
can be represented as:

Dp(u) =™, yeR?

b(u) =i (y,u) — %<U7Au> + /R ("™ =1 —i(u, ) 1 <1)v(dw) (2.9)

where A is a symmetric positive n x n matriz, v € R and v is a positive Radon measure
on R%\ {0} verifying:

/ |z|?v(dz) < oo, v(dz) < oo
lz[<1 |z]>1
where v is called the Lévy measure of the distribution F.

This theorem imply that since X has stationary and independent increments, we have
that E [e/(wX0)] = {E [e!(wXD)] }t, Vvt € R and by the right continuity of X, Vt. Moreover,
the exponent (8) is called the Lévy exponent of the Lévy process (X;);>0. Note that the first
term is the Lévy exponent of the Lévy process vt. The second term, is the Lévy exponent
of the Lévy process X B;, where B; are d-independent Brownian processes and Y is a d X d
lower triangular matrix in the Cholesky decomposition A = X7, The last term in the Lévy
exponent, can be decomposed into two terms:

VP (u) = /Ia:>1 (€i<u’m> B 1) v(dz),
¢ZCCP(U) _ /|$<1 (ei(u,x) —1—3 <u7x>) V(daj).

The first equation above is the Lévy exponent of a compound Poisson process (indicated with
"cp") X with Lévy measure: vi(dx) := 1|4>1v(dw). The second term corresponds to the
limit in distribution of compensated compound Poisson process (indicated with "lccp"). Sup-
pose that X(®) is a compound Poisson process with Lévy measure v, (dz) := 1.cz<1v(de),
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then the process Xf — F [X?] converges in distribution to a process with characteristic func-
tion exp {tz//“p } . The Lévy-Khinchin representation implies that, in distribution, X is the
superposition of four independent Lévy processes:

D
Xt = 7t + EBt
~~ ~~
Drift Brownian component

XP lim (Xf — B [X?
+ t + 61_{%( t [(XE])

Compounded Poisson
P Limit of compensated compounded Poisson

The condition in the theorem on v of the characteristic function of infinitely divisible dis-
tribution guarantees that the X is indeed well defined and the compensated compound
Poisson process converges in distribution.

2.2.2 Pathwise properties

We know that almost all the trajectories of a Lévy process are piecewise constant if and
only if it is of compound Poisson type. Combining this with the characteristic function of a
compound Poisson process (equation (2.1)), we obtain the following proposition:
Proposition 2.11 (proposition 3.8 in [2]) A Lévy process has piecewise constant trajectories
if and only if its characteristic triplet satisfies the following condition:

e A=0,

o /Rd v(dx) < oo,

o = / zv(dz) < oo
|z|<1
or, equivalently, if its characteristic exponent is equal to:

o0
P(u) = / (™ — Dv(dx) with v(R) < oco.
— 00

The meaning of the condition above is that the Lévy process has covariance matrix of
the Brownian motion (A) equal to 0, the drift parameter () must be finite and the second
condition told us that the process has a finite number of jumps.
Moreover, a Lévy process is said to be of finite variation” if its trajectories are functions of
finite variation with probability 1. Therefore, we have the following proposition for finite
variation Lévy processes:
Proposition 2.12 (Finite variation Lévy processes) (proposition 3.9 in [2]) A Lévy process
is of finite variation if and only if its characteristic triplet (A, v,~) satisfies:

A=0 and / |z|v(dz) < oo.
lz|<1

A detailed proof can be found in chapter 3 of "Financial Modeling with Jump Process"
written by Cont and Tankov.
The preposition above said that in the finite variation case the Lévy-Ito decomposition and
the Lévy-Khinchin representation can be simplified with the following corollary:
Corollary 2.2 (Lévy-Ito decomposition and Lévy-Khinchin representation in the finite vari-
ation case) (corollary 3.1 in [2]) Let (X¢)i>0 be a Lévy process of finite variation with char-
acteristic triplet given by (0,v,v). Then, X can be expressed as the sum of its jumps between
0 and t and a linear drift term. So, we find:

AX#£0
X, = bt+/ wJx(ds x dz) =bt+ »  AX, (2.10)
[0,t] xR s€[0,4]

"Defined in chapter 1.
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and its characteristic function can be expressed as:
E [e““’X”] = expt {z (b, u) +/ (e““@)) V(d:c)} , (2.11)
R4

X
where b=~ — / av(dx) is such that P (lim Tt = b) =1
lz]<1

t—0
We can highlight that the Lévy triplet of X in not given by (0,v,b) instead by (0,v,).
Indeed, v is not an intrinsic quantity and depends on the truncation function used in the
Lévy-Khinchin representation while b¢ has an intrinsic interpretation as the continuous part
of X. For every bounded measurable function g : R¢ — R satisying g(x) = 1 + o(|z|) as
x — 0 and g(z) = o(ﬁ) as ¢ — oo, we can write the Lévy-Khinchin representation as:

E[€i<u,Xt>] — eti,/}(u)’ = Rd

with  Y(u) =i {y?,u) — %(%Aw “‘/

Rd

(ei<“’m> —1—1i{(u, mg(a:)>) v(dx).

the function g is called the truncation function and the Lévy triplet (A, r,~9) is called the
characteristic triplet of X with respect to the truncation function g. Different choices of g
do not affect A and v which are intrinsic parameters of the Lévy process, but v depends on
the choice of truncation function.

Proposition 2.13 Let (X;);>0 be a Lévy process on R. The following conditions are
equivalent:

a. X; >0 a.s.for somet > 0;
b. X¢ >0 a.s.for every t > 0;
c. Sample path of (X:) are almost surely nondecreasing: t > s = X; > X;;

d. The characteristic triplet of (X;) satisfies A =0, v((—00,0]) =0, [;° (z A1)v(dz) < 0o
and b > 0. Then, (X;) has no diffusion component, only positive jumps of finite vari-
ation and positive drift.

Proof
Here, we give only a short proof of the equivalence between the condition ¢ and d, for the
rest point look in chapter 3 of "Financial Modeling with Jump Process" written by Cont
and Tankov.
Since, the trajectories are nondecreasing they are of finite variation, so A = 0 and
[7, (@ A1l)v(dz) < co. On the other hand, the trajectories are nonincreasing if there will
be no negative jumps, therefore v((—o00,0]) = 0. If a function is nondecresing then after
removing some of its jumps, we obtain another nondecreasing function. When we remove
all jumps from a trajectory of X;, we obtain a deterministic function b¢, which must be
nondecreasing. This allows to conclude that b > 0.

O

Increasing Lévy processes are called subordinators because they can be used as time changes
for other Lévy process. The following proposition gives an important example of subordi-
nator:

Proposition 2.14 (proposition 3.11 in [2]) Let (X;)¢>0 be a Lévy process on RY and let
f R4 — [0,00) be a positive function such that f(z) = o(|z|?) when x — 0. Then, the
process (St)i>o0 is a subornitator and is defined by:

Se= > f(AX)).
s<t,AX #0

If there exists a Lévy processes without diffusion and with negative jumps, it will satisfy
the condition: fol |z|v(dz) = oo. The above proposition entails that these processes cannot
have increasing trajectories. whatever drift coefficient they may have.
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2.2.3 Distribution Properties

Let (X¢)t>0 be a Lévy process then the distribution of X is infinitely divisible and has a
characteristic function as in equation (2.7) for any ¢ > 0. However, the Lévy process X; does
not always have a density, in fact, if we have a compound Poisson process we find:

P(X; =0)=e > 0.

Hence, the probability distribution of X; has an atom at zero for all t. On the other hand,
if X; is not a compound Poisson process, then it has a continuous density.

Proposition 2.15 (Existence of a smooth density) (proposition 3.12 in [2]) Let X be a
real-valued Lévy process with characteristic triplet (0%, v,v). Then:

i. If o >0 or v(R) = oo, X; has a continuous density p;(.) on R

ii. If the Lévy measure v verifies: 38 € (0,2), limi(l)lfs*B/ |z|?dv(x) > 0, then for
e— e

each t > 0, X; has a smooth density p;(.) on R? such that:

() €C®R)Vn > 1, ZL(t,z) — 0.

|z|— 00

Now, we focus on the relation between probability density function and the Lévy density.
In particular, in the compound Poisson process there is a simple relation between probability
distribution at time ¢ and the jump size distribution or the Lévy measure. Let (X;);>0 be a
compounded Poisson process with intensity A and jump size distribution f and (N¢);>o be
the number of jumps of X on [0,¢]. Then:

0 e—>\t )™
P(X; € A) = S P(X, € AN, = n)%
n=0 :

— )xté‘ +Zf*n _At()\t) ’

where f* denotes the n-th convolution power of f and Jy is the Dirac measure concentrated
at 0.8

As note before, this probability measure has not a density because P(X; = 0) > 0. Recall
that a Lebesgue measure A is a measure on (R, R), satisfying: A((a,b]) =b—a forall a<
b, a,b € R. Therefore, if we consider jump size distribution with Lebesgue measure and if
it has a density, then the law of X; is absolutely continuous except at zero. Therefore, the
law of X; can be decomposed as:

]P(Xt € A) = G_AtloeA +/ p?c(x)dx
A

where

—)\t

and we denote the jump size density by f(x) and by pf¢ the density, which is conditioned
on the fact that the process has jumped at least once. Then, we can conclude with the
following asymptotic relation:

1
lim —pf°(z) = Af(x) =v(z), Yax#0
t—0 ¢
where v(z) is the Lévy density, which describes the small time behavior of the probability
density. Moreover, from this relation we can find the small time behavior for expectation of
function X;, given any bounded measurable function of f such that f(0) = 0 we have:

8The convolution power and the Dirac measure are explain in the appendix A.3 and A.4.
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lim L E[f(X,)] = lim~ [ f@peldz) = [ f@)v(d).
t—0 t t—0 ¢ RE R

Another important property to say is what is the tail behavior of the distribution of the
Lévy process and how its moments are determined by the Lévy measure. Therefore, we
consider the following proposition:
Proposition 2.16 (Moments and cumulants of a Lévy process) (proposition 3.13 in [2])
Let (X)i>0 be a Lévy process on R with characteristic triplet (A,v,v). The n-th absolute
moment of X;, E[|X|"] is finite for some t or, equivalently, for every t > 0 if and only if
f|x\>1 |z|"v(dz) < oco. In this case, moments of X; can be computed from its characteristic

function by differentiation. Therefore, using the cumulants® of X, we have:

E[Xi| =t (’er / - xu(dm))

c2(Xy) =Var(Xy) =t (A + /OO

— 00

x21/(dm))

en(Xe) = t/C>O z"v(dx), form > 3.

—00

We can note that all the infinitely distribution are leptokurtic!® since c¢,(X;) > 0 and also
the cumulants of the distributions of X; increase linearly with t. In particular, the kurtosis
and skewness of the increments X;; A — X; or X are given by:

s(Xa) = 280 =00 (Xy) = S = 20,
Therefore, the increments of a Lévy process or of all infinitely divisible distributions are
always leptokurtic but the skewness (if there is any) and the kurtosis decreases with the
time scale over which increments are computed by ﬁ and %, respectively.
With the following proposition we define the exponential moments of a Lévy process:
Proposition 2.17 (Exponential moments) (proposition 3.14 in [2]) Let (X;):>0 be a Lévy
process on R with characteristic triplet (A,v,v) and let u € R. We call E [e“Xt} the expo-

nential moment which is finite for some t or for all t > 0 if and only zf/ e y(dz) < oco.
|z|>1
In this case, we have:

E [6uXt} — et’t[)(—iu)

where v is the characteristic exponent of the Lévy process defined in equation (2.7).
For a detailed proof theorem 25.17 in "Lévy Process and Infinitely Divisible Distribution"
written by Stato.

One last thing to note is how the Lévy measure v can be inferred from the characteristic
function @ (u) of the Lévy process (equation (2.9)). First, we need to say that the unique-
ness of the matrix A, given by the Lévy triplet (A,v,), is a consequence of the following
equation:

. U t
}lllirbhlog Dy, (\/E) = —§<u,Au>. (2.12)

In term of the process X, this result implies that:

1 d
{\/EXht}t>O h—0 {EWifezo

where W is a d-dimensional Wiener processes and ¥ is a lower triangular matrix such that
A =337, This means that the short-term increments (X(k+1)h — Xkn)ji—1, properly scaled,

9Defined in the appendix A.5.
10X is said to be leptokurtic or "fat-tailed" if x(X) > 0 (k(X) is called the excess kurtosis of X).
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behave like the increments of a Wiener process, when 3 # 0.
Now, we recover (u, Au) from equation (2.12) and we can find:

T(u) :=log®x, (u) + %(u, Au)

Then, it turns out that:

; d sinx;
T(u) —T(u+w))dw = e’ 1 2.13
[, @Y= [ o IR e e

Rd

=:0(dz)

where =24 ig equal to 1 when xj = 0 and 7 is a finite measure which can be recovered from

the i 1nverse Fourier transform®® of the left-hand side of the above equation.
Proof
We can note that:

(T(u) — YT(u+w)) = / (6i<“’m> — eilutw) 4 (w, x) 1‘$|§1> v(dz) — i {v,w)
Rd
moreover, we know that the argument inside the integral has the following relation:

|ez’(u,x) _ ei(u—i—w,x) 44 <w7x> ‘ < |1 _ ei(u+w,x) +i (w,x) | + ‘ <w7$> ||1 _ e(u,a:)|

1
5 lwllal? + [wllz*[ul

A

Therefore, we can use Fubini Theorem and we get:

/ (T(u) = T(u+w))dw = / ei<”’w>y(dx)/ (1 - @i<w’w>) dw
[~1,1]¢ R4 [—1,1]¢

which shows equation (2.13).
Now, let show that o(dz) is finite. It is finite since:

d .
; 1
[T2% =1 2%+ O(l2]") as 2| =0
=1 a:j 6

2.2.4 Lévy processes as Markov process and martingales

From the independent of increments property of the Lévy process, we can built different
martingales. Therefore, we can introduce the following proposition:

Proposition 2.18 (proposition 3.17 in [2]) Let (X;):>0 be a real-valued process with inde-
pendent increments. Then:

1) ( euf};t )t>0 is a martingale, Yu € R;

2) if for some u € R, E [e"*t] < oo, Vt>0, then (E[e“ij‘;t]) is a martingale;
3) if E[X:] < 00, Vt>0, then My = X; — E[X¢] is a martingale and also a process with
independent increments;

4) if Var(X,) < oo, Vt >0, then (M;)* — E[(M;)?] is a martingale and M is defined
as in the point 3).

HDescribed in the appendix A.6.
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Let (X;) is a Lévy process. Therefore, it is a martingale if its corresponding moments are
finite for one value of t.

The proposition 2.18 with the Lévy-Khinchin formula imply the following proposition:
Proposition 2.19 (proposition 3.18 in [2]) Let (X;);>0 be a Lévy process on R with char-
acteristic triplet (A,v,~). Then:

1. (Xy) is a martingale if and only if |z|v(dx) < 0o and
|| >1

0% +/ azv(dx) =0
lz|>1

2. exp(Xy) is a martingale if and only if e’v(dx) < co and
|z|>1

A oo
5—1—7—&-/ (" =1 —aly<1) v(dz) =0

The above proposition told us the necessary and sufficient conditions for a Lévy process
or its exponential to be a martingale.

Definition 2.9 [Semimartingale] A semimartingale is a stochastic process (X;)o<i<T
which admits the decomposition:

X=Xo+M+A (2.14)

where Xq is finite and Fo-measurable, M is a local martingale with My = 0 and A is a finite
variation process with Ag = 0.

If A is predictable, then X is a special semimartingale and all special semimartingale have
a "canonical decomposition" equal to:

X=Xo+B+X+a(Jx —v¥) (2.15)

where X¢ is the continuous martingale part of X and z(Jx —v™) is the purely discontinuous
martingale part of X. In particular, Jx is the jump measure of X (defined in equation (2.2))
and v~ is called the compensator of Jx.

Every Lévy processes are also a samimartingale, which follows from the definition of semi-
martingale (equation (2.14) and from the Lévy-Ito decomposition (equation (2.6)). On the
other hand, every Lévy processes with finite first moment are also special samimartingale
and all the Lévy processes which are a special semimartingale, have a finite first moment.
Therefore, we have the following lemma:

Lemma 2.1 Let (X;);>0 be a Lévy process with Lévy triplet (A,v,~y). Then, the following
conditions are equivalent:

e X is a special semimartingale;

. / (|| A |z|?)v(dz) < oo;
Rd

d / (|2]1)z)>1)v(dz) < oc.
Rd

Another important property of the Lévy process is the Markov property. It states that an
Fi-adapted process (X;);>o satisfies the Markov property if, for any bounded Borel function
f and for any s and ¢, such that s < ¢, we have:

In other words, the meaning of the Markov property is that the future behavior of the
process (X¢)>0 after ¢ depends only on the value X; and is not influenced by the history of
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the process before ¢.
We can define the transitional kernel of the process X; as:

P,.(x,B) =P(X, € B|X, =2) VBeB. (2.16)

Moreover, the markov property implies the Champam-Kolmogorov equations:
Ps o (z,B) = / Ps 1(z,dy) Py (y, B)
]Rd

An important result from these condition is that the Lévy processes are the only Markov
processes which are homogeneous in space and in time. In fact, the Lévy processes satisfy
a stronger version of the Markov property: for all ¢, the increments (X;4s — X;)s>0 has the
same law as the process (X;)s>0 and is independent from (X;),<s<¢. Therefore, the strong
Markov property of Lévy processes allows to replace the nonrandom time ¢ by any random
time which is nonanticipating with respect to the history of X. If 7 is a nonanticipating
random time, then the process Y; = X;y, — X, is again a Lévy process, independent from
Fr and with the same law as (X¢)>o0.

2.3 Jump-Diffusion Model

The financial models with jumps can be decomposed in two main categories: the jump-
diffusion model and the infinite activity models. We focus only in the first category but we
make a short description also of the second type.

The infinite activity models consists in a model with infinite number of jumps in every
interval, therefore we did not need to introduce a Brownian component since the process
moves essentially by jumps. This imply that the distribution of the jump size does not
exist because jumps arrive infinitely often. The infinite activity model gives a more realistic
description of the historical price process.

On the other hand, in the jump-diffusion model the evolution of prices are given by a diffusion
process which has jumps at random intervals. Here, the jumps represent rare events such
as crashes and large drawdown. Since the distribution of jump sizes is known, the dynamic
structure of the jump process is easy to understand and describe. The jump-diffusion models
perform well for implied volatility smile interpolation.

2.3.1 Exponential Lévy Models

In order to construct an exponential Lévy model for the process X, we need to start from
the Black-Scholes model and how it describes the evolution of an asset price. Here, the asset
price (S;) follow a geometric Brownian motion:

S, = SyerttoW (2.17)

If we replace ut + oW, by a Lévy process X;, we obtain the class of the exponential Lévy
models:

S, = SpeXt (2.18)
Now, consider a Lévy process of jump-diffusion type with the following form:
Ny
X =qt+oW,+> % (2.19)
i=1

where (IV;);>0 is the Poisson process which counting the jumps of X and Y; are the jump
sizes, which are i.i.d. variables. Therefore, the evolution of the asset price becomes:

S, = Soe’yt+UWt+Zf]:t1 ! (2.20)

We need to specify the distribution of jump sizes vp(z) in order to define the parametric
model completely. Is is important to specify the tail behavior of vy(x) correctly because the
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tail behavior of the jump measure determines the tail behavior of the probability density of
the process.

In the Merton model (introduced by Merton in 1973 with the article "Option pricing when
underlying stock return are discontinuous”) we have that the process is equal to the equation
(2.20) and the jumps are assumed to have a Gaussian distribution, therefore Y; ~ N (u, §2).
This allows to obtain the probability density of X; as a quickly converging series. In fact,

M&emzfmuﬁAm:mmmzm
k=0

then the probability density of X; satisfies the equation:

Tt k)?
> ()\t)kescp {_ (2(03;,]:52)) }

—At
xr)=e
Pi() kZ:o k27 (0?t 4+ kd2)

The Lévy density of the model is equal to:
A @—MV}
v(x) = exPy —
(0) = sosenn{ -5

One last thing to note is the moment of the process in the Merton model. Hence, we have
that the characteristic exponent of the characteristic function is equal to:

2,2

b(u) = iyu — +/\{e‘#+”‘“ -1}

It follows that: E[X;] = t(y + Au) and Var(X;) = t(0? + M2 + A\u?). If we analyze the
moment, we can note the tail behavior of the probability density, which are heavier than
Gaussian but all the exponential moments are finite.

In the Kou model (introduced by Kou in 2002 with the article "A jump-diffusion model
for option pricing”) we have that the process X; is equal as in the Merton model but the
distribution of jumps sizes is an asymmetric exponential (i.e. has a double exponential
distribution, therefore Y; ~ DbExp(p, 61,02)) with a density of the form:

vo(dr) = [p916791w1z>0 +(1 *p)026792‘w‘11<0i| dx (2.21)
where 6; > 0, 5 > 0 represent the decay of the tails for the distribution of positive and

negative jump sizes, respectively, and p € [0, 1] represent the probability of an upward jump.
Therefore, we can easily find the Lévy measure of the process:

v(z) = pMie "% 1,00 + (1 — p)Ahae %1711, g

The first two moments of the process are equal to: FE[X;] = ¢ (’y—|— g‘—f — )‘(197;”)) and

Var(X,) =t (02 + % — M) . We find these two result from the characteristic function
1

03
of the process, which has characteristic exponent equal to:
2,2
. o°u . p 1-p
= — )\ —
w(u) “ra 2 o {91 — 92 + ’LU}

In this case, the probability distribution of returns has semi-heavy exponential tails. On
one hand, we have that p(z) ~ e~%% when z — 400, on the other hand, we have that
p(z) ~ e %1%l when z — —o0.

The advantage of the Kou model compared to the Merton model is that analytical expres-
sions for expectations involving first passage times may be obtained due to the memoryless
property of exponential random variables.
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In the Kou and in the Merton model the intensity of the jump is assume to be constant. If
we want to implement the model building of the price evolution of an asset, we can consider
the Doubly stochastic Poisson process, also known as Cox processes. Here, we want that the
intensity A of the counting process N is stochastic, therefore we want that A = (X)o<i<7-
One approach is to computing the probability that an event arrives at time t given the
information we have at time s, hence is to define P(N; — Ny = n|F) where F is the natural
filtration generated by (N, \). Therefore, we have the following property:

(1 vut)”

n!

PV, — N = 0V o)) = exn{ - [ t i}

so that

(S M)

t
P(N, — N, = 0[F,) = E exp{—/ /\udu}n' s

where o((Ay)s<u<t) denotes the smallest o—algebra generated by the intensity process A
over the time interval [s,t], and F, V o((A\y)s<u<t) represents the information contained on
the entire path of A\ up to time ¢, but excluding the information on the N process on the
interval (s,t]. Therefore, we can note that the Cox process is conditionally (conditioned on
o((Au)s<u<t)) an inhomogeneous Poisson process with the conditionally known intensity.
Some examples of driver of the intensity process might be an independent diffusion, an
independent jump process or a counting process itself.

Now, we can give few examples of the intensity process \:

1. Feller process:

dAt = k(9 — )\t)dt + nv )\tth
2. Ornstein-Uhlenbeck process:

d)\t = —k)\tdt + ’Yth

3. Jump-diffusion:
d)\t = k(e — )\t>dt + nv )\tth + ’Yth

4. Hawkes process:

t
At = / g(t — s)dN;
0

where W is an independent Brownian motion, # is the long-run mean, k is the rate of mean
reversion and J is an independent compound Poisson process with non-negative jumps and
with intensity A; and i.i.d. jumps e with distribution function F. The first three processes
exhibit mean-reversion. The second process mean-reverts to 0, while the first and the third
mean revert to §. However, if we consider the jump in the process, the mean-reversion level
does not reflect the long-run behavior. Hence, we should rewrite the process in terms of
their compensated version and we introduce the following proposition:

Proposition 2.20 (Compensated Doubly stochastic Poisson process) N = (Ny)o<i<7 i5 a
t
martingale if Ny = Ny — Agds.
0
Therefore, in terms of the compensated Doubly stochastic Poisson process we have:

1. Ornstein-Uhlenbeck process:

di\ =k <72jE[s] — /\t> dt + ~dJ;
2. Jump-diffusion:

oy ~

dAt =k <9 + %E[E} — )\t> dt + nv )‘tth + ")/th
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Then, we can see that the expected average intensities in the long run are %E [e] and
0+ %E [e], respectively. Therefore, the expected long run intensity is the mean-reversion
level plus the jump correction terms %E[E]

The following proposition told us the condition of the exponential Lévy process to be a
semimartingale:
Proposition 2.21 (Exponential Lévy process) (proposition 8.20 in [2]) Let (X¢)i>0 be a
Lévy process with Lévy triplet (o2, v,~) verifying / eYv(dy) < oo. Then, Y; = eXt is a

ly|>1
semimartingale with decomposition Yy = M; + A; where the martingale part is given by:

t
Mt:1+/ stodWS—l—/ Y- (e* — 1) Jx(ds x dz)
0 [0,t] xR
and the continuous finite variation drift part is given by:

t 2 [ee]
Ay = / Y,- ['y + % +/ (" =1 —21p,>1) v(dz)| ds.
0 —00

(Y}) is a martingale if and only if

2 o0
’y+%+/ (" =1 —21>1) v(dz) =0

Proof
Let (X¢)i>0 be a Lévy process with jump measure Jx and let ¥; = eXt. Then, we apply the
Ito formula to Y; and we find:

t 2 t
Y, =1 +/ Y-0dXs + %/ Y,-ds + Z (eXf FAX: _ X - AXSQXS—)
0 0 0<s<t;AX,#£0

t 2t }
:1+/ stadXs—&—U—/ stds—&—/ Y,- (€ —1—2)Jx(ds x dz)
0 2 Jo [0,6] xR

We can make the assumption that E[|Y;|] = E[eXt] < oo which is equivalent to / ev(dy) <
ly|>1
00. Therefore, we can decompose Y; into a martingale part and a drift part, where the mar-

tingale part is the sum of an integral with respect to the Brownian component of X and a
compensated sum of jump terms:

¢
1—|—/ YS—UdWs—I—/ Y,- (¢* — 1) Jx(ds x dz)
0 [0,¢] xR

while the drift term is given by:

t 2 oo
/ Y,- {’erC;Jr/ (eF =1 — 21, 51) v(dz)| ds
0

— 00

Then, Y is a martingale if and only if E[eXt] = E[Y;] = 1 but E[eXt] = !¥x(=) | where ¢x
is the characteristic exponent of X. Hence, we obtain that:

2 oo
Yx(—1) 27—&-%4-/ (e =1 —21,51) v(dz) =0
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2.3.2 Stochastic exponential of Jump process

The stochastic exponential was introduced by Doléans-Dade and it can be found using the
Ito formula in the geometric Brownian motion (equation (2.17)) and substituting a Lévy
process. Hence, if we apply the Ito formula in (2.17) we obtain:

dSt 0'2
— = — | dt dW,
S, (’“L 2) +oalhy

Then, we can define B} = (u + ";)t + oW, and the above equation becomes:

ds

—t — 4B} (2.22)

St
If we substitute B} by a Lévy process X, we obtain the stochastic exponential. Therefore,
with the following proposition we can introduce a generic stochastic exponential for a process
(Zt)t>0-
Proposition 2.22 (Stochastic exponential) (proposition 8.21 in [1]) Let (X;)¢>0 be a Lévy
process with Lévy triplet (02,v,~). Then, there exists a unique cadlag process (Z;)i>o such
that:

dZ, = Z-dX
b R (2.23)
Zop=1
Where Z s given by:
Zy=eXilooids TT (14 AX,)e 2% (2.24)
0<s<t

1
If/ |z|v(dx) < oo, then the jumps of X have finite variation and the stochastic exponential
1

of)g can be expressed as:

o2t
7, = eWetot=t T (14 AX,)
0<s<t

1
where 9 =y — / zv(dx).

-1
Z is called the stochastic exponential of X and is denoted by Z = E(X).
Proof

The first step is to show that the following process exists and is of finite variation:

Vi= [  (+Ax)edx
0<s<t;AXs#0

So, we decompose the process V; as the product of two terms:

V, = Vav?
where:
A II (14 AX,)e X
0<s<t;|AX |<1/2
VP = 1T (1+AX,)e 2%

0<s<t;|AX;|>1/2

Let’s start to analyze V2. Since, for every t, it is a product of finite number of factors follows
that it is of finite variation. Now, we look to V,*. We consider its logarithm because it is
positive and we have:

InVyo = > (In (14 AX,) — AX,)
0<s<t;|]AX|<1/2

46



Each terms of this sum satisfies: 0 > In(1 + AX,) — AX, > —AX2. Therefore, the series is
decreasing and bounded fro, below by — ., AX?2, which is finite for every Lévy process.
Hence, In V,* exists and is a decreasing process. Finally, we can say that V; exists and has
trajectories of finite variation.

In the second step, we consider:

1t 2
7 :eX"_ifo osdsv;

now, if we apply the Ito formula at the equation define above, we find in differential form:

t

2
dZ, = _%eXt—%fot azds‘/tdt =+ eXt_—%fo Uidsv;g—dXt

2
g t 2 t 2
+ gext_%fﬂ a'sds‘rtdt eXt—%fo o’sds‘rt

1t 2 1t 2 1t 2
_ eXt_—§f0 asdsv;_ _ eXt—_Efo UstW—AXt _ eXt—_Efo UsdsAVVt

Since V; is a pure jump process we have that: dV; = AV, = V,- (eAX*(1 + AX;) — 1) . Then,
substituting into the above equation and make some calculus, we find the equation (2.23).

O

We can note that the stochastic exponential is always nonnegative if all the jumps of X, are
greater than —1, i.e. v((—o0,—1]) = 0.

Goll and Kallsen have shown that the stochastic exponential is equivalent to the ordinary
exponential. In fact, if Z > 0 is the stochastic exponential of a Lévy process, it is also the
ordinary exponential of another Lévy process (it is also true the opposite case). Therefore,
the two exponential end up by giving us the same class of positive processes. The following
proposition shows the relation between ordinary and stochastic exponential:

Proposition 2.23 (Relation between ordinary and stochastic exponential) (proposition 8.22
in [2])

1. Let (X¢)t>0 be a real valued Lévy process with Lévy triplet (02,v,7) and Z = £(X) its
stochastic exponential. If Z > 0 almost surely, then there exists another Lévy process
(Lt)i>0 with triplet (o2, vy, L) such that Z, = eXt where:

Lt:hth:Xt—%%-f— (ln(l—i—AXs)—AXs
0>s>t
o =0
vi(A)=v{z:In(1+2z) € A}) = /1A(ln (14 z))v(de)
o2
=Y + / (1 +2)11 (0 (14 2)) — 21—y q)(z)]v(dx)

2. Let (Ly)¢>o0 be a real valued Lévy process with Lévy triplet (o2 ,vr,v1) and Sy = ebt its
exponential. Then, there exists a Lévy process (X;)i>o such that S is the stochastic
exponential of X : S = E(X) where:

O'Qt AL
Xt:Lt_FTJ'_ (6 g_l_ALé)
0<s<t
Therefore, the Lévy triplet (o2, v,7) of X is given by:
g =0],
v(A)=vp({z: (" =1) € A}) = /1,4(633 — 1 (dx)

2

Y=L — %L + / (" =11y y(e” = 1) — 21y y)(2)]vr(dz)
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3. Let (Xi)i>0 be a Lévy process and a martingale. Then, its stochastic exponential

Z = E(X) is also a martingale. Therefore, for every Lévy process X with E[|X;|] < oo
we have:

ElE(Xy)] =P ¢ >0
This property is also known as Martingale preserving property.

A detailed proof can be found in chapter 8 of "Financial Modeling with Jump Process"
written by Cont and Tankov.
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Chapter 3

Stochastic Calculus for Jump
Process

In financial market there are two type of strategies related to the price of a financial asset:
trading strategies and hedging strategies.

If we want to describe a trading strategy, we need to consider a dynamic portfolio resulting
from buying and selling the assets which satisfies the non-arbitrage assumption. We can
define an arbitrage strategy as a self-financing strategy ¢ with zero initial value and non-
zero final value with probability equal to 1. Moreover, a strategy is called self-financing if
the following equation is satisfied for all ¢ : (¢, S;) = (pt+1,S¢) . Therefore, we can consider
an investor who trades at times 7o = 0 < T} < --- < T}, < T,,41 = T and detaining a
quantity ¢; of an asset whose price is S during the period (T}, T;+1]. Then, we can definite
the capital gain G(¢) as:

Gt(¢) = Z¢i(STi+l - St,) (3.1)
=0

We can write the quantity which represents the capital gain of the investors following the
strategy ¢ as :

n T
Gi(6) = > (St~ S1) = [ uds, (3:2)
i=0 0
where the last term in equation (3.2) represent the stochastic integral ¢ with respect to S.
In this chapter, we describe the stochastic integral and the main tools to explain the time
evolution of a derivative instrument. The first section introduces the concept of stochastic
integral. We describe its properties in the case is built with a semimartingale of respect to
a Brownian motion. Then, we give the definition of quadratic variation and covariation for
the stochastic integral. The second part of the chapter is entirely focused on the stochastic
integral with jump and, in particular, we talk about the stochastic integral with respect to
a Poisson process and to a Poisson Random measure. The last section talks about the Ito’s
formula, which is the key tool to describe the time evolution of a derivative instruments.
Before we define the Ito’s formula for a jump-diffusion and, in general for a Lévy process,
then the introduce the Ito’s formula for martingale and semimartingale.

3.1 Stochastic integral
Consider a vector of asset whose price S is described by a stochastic process, i.e. Sy =

(SE,52,...94) and a portfolio ¢ = (¢!, ¢%, ..., #?) which describes the amount of each asset
held by the investor. Therefore, the value of such portfolio at time t is equal to:

d
Vi(g) =Y 67SF = (61, Sh) (3.3)

k=1
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We also assume a dynamic trading strategy, which consist in buying and selling assets at
different dates, and we consider an investor who trades at times T, = 0 < T} < -+ <
T, < Th+1 = T. We also assume that the strategy is self-financing and that between two
transaction dates T; and T;y; the portfolio remains unchanged. The meaning of the self-
financing assumption is that at time ¢ the investors readjusts his position from ¢; to ¢¢41
without bringing or consuming any wealth. Moreover, if we dropped this assumption, we
would had arbitrage opportunities because a portfolio which is empty at time 0 but to which
cash (> 0) is added, without any liability, would trivially be an arbitrage portfolio. The
second assumption told us that the investor did not know in advance the transaction dates
but he will decide to buy or sell at T;; depending on the information revealed before T} .
Hence, the transaction date T;41 is a stopping time. In the first chapter, we assume that the
processes are cadlag (i.e. right continuous with left limits), whereas here we have that the
trading strategy is caglad (i.e. left continuous with right limits). We have the left continuity
in the process because if the investor decides to make a transaction at ¢ = T}, the portfolio
will take the new value at ¢; before that the value of the portfolio is still described by
¢i—1. Therefore, we have that (¢¢)¢c[o,7] is a predictable process and we have the following
definition:

Definition 3.1 [Simple Predictable Process] (definition 8.1 in [2]) A stochastic process
(¢t)ieo,1) i called a simple predictable process if it can be represented as:

¢t = poli—o + Z Giler, 1,0 (1) (3.4)

=0

where Tp =0 < Ty < --- < T, < Thq41 =T are nonanticipating random times and each ¢;
is bounded random variable whose value is revealed at T; (i.e. Fr,-measurable).
We can define the gain process of the strategy ¢ followed by an investor as the stochastic

process (G¢(®))efo,r) equal to:

j—1

Gi(¢) = (po, S0) + Z <¢i, (STpy — ST,;)> + <¢j, (Sy — STJ»)> for T; <t <Tjy

i=0
where (ST, 1 St,) represent the asset price movement between time T;4; and T;. We can

write the equation above with stopping time notation, therefore we find a more compact
equation:

Gi(¢) = (¢, So) +Z<¢z, Tooint — STAL)) (3.5)

=0

where T;11 At represent the minimum between 7;,; and ¢. Hence, the stochastic process
G(¢) can be expressed as the stochastic integral of the simple predictable process ¢ with
respect to S and it is equal to:

/ budSu = (60, 50) + 3 (66, (St 100 — Stind)) (3.6)
1=0

Since the self-financing assumption imply that the cost of the process (defined as Cy(¢) =
Vi(@) — Gi(@) = (¢, St) — fg ©,dS,,) is equal to zero, we have that the value of the portfolio,
Vi(9), is equal to:

t t

where the first term is the initial value of the portfolio and the second term is the capital gain
between 0 and t. Therefore, for an investors the only source of variation of the portfolio’s
value is the variation of the asset values.

Proposition 3.1 (Martingale preserving property) (proposition 8.1 in [2]) If (S¢)ie[o,7]
t

is a martingale, then for any predictable process ¢ the stochastic integral Gy = / odS is
0
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also a martingale.

Proof

Consider the process defined in the equation (3.4). We need to prove that E[Gr|Fs] = Gt but
is sufficient to show that E[¢;(St,, — S1,)|Ft] = ¢i(ST,. A+ — ST,A7) fOr €ach i. Therefore,
we have that:

E[¢i(STi+1 - STz)

‘7:15] = E[1t>Ti+1 ¢i(STi+1 — STL) ]:t]
+ E[]‘(Ti,qu+1](t)¢i(STi+1 — STI)
+ E[Li<r,6:(ST:,, — S1,)|F]

Ft]

Since 1>, Y1, 100 and 1,<7, are F;-measurable because T; and T; 1 are stopping times,
we can bring out the indicator function from the conditional expectation and, in the third
term, we need to use the law of iterated expectation. Hence, the three terms in the above
equation become:

E[1t>Ti+1 (bi(STiJrl - STL)
E[l(Ti7Ti+1](t)¢i(STi+l — STi)

Fi) = Lis7y,, 0i(ST00, — ST))
Fiol =Lz, 1) ()G E[(STyy — ST0)
= 1(Ti7Ti+1](t)¢i(St —ST,)
Fi) = Li<1, E[E[¢:(St,,, — ST,)|F1,] | F)
= Li<r, B[¢:E[(St..., — S7.)|Fr]| Fi]
= Licr, B[¢i(E[Sn,., [Fn] — ElSt, | P |7

=ST. =S,

i i

.Ft]

E[ltSTi d)i(STH—l - STz)

=0
Therefore, putting all together we have:
El¢i(St,., — ST,)|Ft]l = Listiy, 6i(ST0yy — ST0) + L1, 70,1) (8) 9 (St — ST7,)
= ¢i(ST, o Ar — STiAT)
O

This proposition imply that if the asset follows a martingale then the the value of any self-
financing strategy is a martingale.

Now, consider a nonanticipating cadlag process (X¢);c[o,77, We can built a new stochastic
processes by choosing various simple predictable processes (0¢).e[0,7], hence the new process

is equal to:
t
/ 0,dX,
0

where X; represents the "source of randomness" and oy is the "volatility coefficient". There-
fore, we have the following proposition:
Proposition 3.2 (Associativity) (proposition 8.2 in [2]) Let (X;)icjo,r be a real-valued
nonanticipating cadlaag process and (o)i>0 and (¢1)i>0 be a real-valued predictable pro-
cesses. Then, S; = fot odX (which can be written in differential notation as dS; = oydX;)
18 a monanticipating cadlag process and

/0 t budS, = /O t budXy. (3.7)

The associativity proposition means that the gain process of any strategy involving S,
defined as stochastic integral with respect to a source of randomness (i.e. S; = fot odX),
can be expressed as a stochastic integral with respect to X.
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3.1.1 Semimartingale

Since a Lévy process X is not stable under stochastic integration or non-linear transforma-
tions, we need to consider the class of samimartingales, which are a larger class of stochastic
processes. These kind of class are both stable under stochastic integration and non-linear
transformation. Moreover, they are also stable under other operation such as change of
filtration and change of measure. We have already given the definition of semimartingale
(definition 2.9) but now, we give the definition of semimartingale with respect a simple pre-
dictable process.

Definition 3.2 [Semimartingale] (definition 8.2 in [2]) A nonanticipating cadlag pro-
cess S is called a semimartingale if the stochastic integral of simple predictable process with
respect to S':

n T n
¢ =doli=o+ Y il 1) / ¢dS = ¢oSo + Y _ ¢i(Sr.,, — S1,)
i=0 0 i=0

verifies the following continuity property: for every ¢™, ¢ € S([0,T]) if:

sup [} (w) — ¢e(w)] — 0
(t,w)€[0,T]xQ n—00

then
T b T
/ o"dS —— ¢dS (3.8)
0 0

n—oo

where S([0,T]) is a set of simple predictable processes on [0,T].

The class of semimartingales satisfy the stability property: a small change in the portfolio
should lead to a small change in the gain process. If this property does not hold, it means
that a small change in the portfolio can lead to large change in the gain process. Therefore,
we need to use stochastic processes which are semimartingales and the following proposition
shows that the stability property holds for process defined by stochastic integral:
Proposition 3.3 (proposition 8.3 in [2]) If (St)icjo,1) i @ semimartingale then for every

o", ¢ € S([0,T7):

if sup o (w) — ¢e(w)| — 0 (3.9)
(t,w)€[0,T]xQ n—00
t t
then  sup / omdS — / $dS| —2— 0. (3.10)
te[o,7] 1 Jo 0 n—oo

Moreover, we have that any linear combination of a finite number of semimartingales
is a semimartingales. In fact, all the Lévy processes are semimartingale because it can be
decomposed into a sum of square integrable martingale (the Wiener process) and a finite
variation process (the Poisson process). We can easily see that for a finite variation process
S, we always have: .
sup / ¢dS < TV(S) sup |pe(w)]

0

te(0,T] (tw)€[0,T]x Q2

where TV (S) is the total variation! of S on [0,7]. Then, for a square integrable martingale

!Defined in chapter 1

52



M we have that:

E

( Wf

n 2
=K <¢0M0 + " 6i(Mry e — MTi/\‘r)>

=0

¢0MO + Z(b Tip1 AT — MT@/\T)Q‘|

=0

< Stup \¢s M + Z Titai AT — MTi/\T)Q‘|
=0
< plon (1B |11+ 30080 00|

< stup |ps(w)| sup E[M?]

To show this result we have used the Optional Sampling Theorem (Theorem 1.10). Moreover,
the above inequality implies the convergence in probability because the stochastic integrals
converge in L2, uniformly in t.

Finally, we can note that all the new processes constructed from semimartingales using
stochastic integration are again semimartingales due to associativity property, which helps
us to show that a stochastic integral with respect to a semimartingale is a semimartingale.
And that every semimartingale is the sum of a finite variation process and a local martingale,
which can be defined as the process (X;) in which there exists a sequence of stopping times
(7:)i>1 such that 7; — co when ¢ — oo and for each i, (X, ;) is a martingale.

3.1.2 Stochastic integral with respect to Brownian motion

Consider the simple predictable process ¢ defines in equation (3.4). Then, we can define the
Brownian stochastic integral as:

T n
/ GedWy = Z¢i(WTi+1 - Wr,) (3.11)
0 =

Proposition 3.4 (Isometry formula) (proposition 8.5 in [2]) Let (¢)o<i<r be a simple
predictable process and (Wi)o<i<r be a Wiener process. Then:

T
E /O ¢tth]0, (3.12)

T 2 T
|/ o dW; =EV |¢>t|2dt] (3.13)
0 0
Proof

The first equation is easy to prove since W; is a martingale, then also fot ¢dW is a martingale.

Therefore, E[fot ddW] = 0.
To show the second equation, we compute the second moment due to the independent of
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increments in W. Therefore, we have:

T 2 n
/ odW, | | = Var (Z ¢i(Wr,,, — Wr, ))

0 :

- ZE ¢2 Tit1 — 'i)Q]

+2ZCOU ¢Z Tiy1 — ) d)]( Tjy1 — WTj))

*ZE (67 (Wr,py — Wr,)?|Fr ]

+ QZE ¢z¢j - Wr, )(WT7+1 - WTJ‘)“FTJ‘H

E[E[¢?(WTi+1 - WTi)2|‘FTiH +0

- 1>

N
I
o

Bl(Tiy ~T)) = F [ / t qsfdt}

O

We can use the isometry formula to built stochastic integrals with respect to the Wiener
process for predictable processes. We need that the predictable processes (¢):eo, 1) verify:

T

E 24t
/O|¢t| ]<oo
T

E[/ |¢?—¢t|2dt] =0

Therefore, we have the following proposition for Brownian integrals:

Proposition 3.5 (Isometry formula for Brownian integrals) (proposition 8.6 in [2]) Let
(¢t)o<t<T be a predictable process which satisfy:

T
/ |¢t|2dt] < o0
0

Then, f(f ¢dW, is a square integrable martingale and

T
E dw,| =0,
/Oa&t t]
T 2 T
aw, =F 2qt
|/ dudW, V 6] ]

We can note that ¢ can not be interpreted as a "trading strategy" even if fg ¢dW, is
a well-defined random variable. Moreover, its integral can not be represented as a limit of
Riemann sums, which can be defined with the following proposition:
Proposition 3.6 (Stochastic integral via Riemann sums) (proposition 8.4 in [2]) Let S be
a semimartingale, ¢ be a cadlag process and 7 = (Ig =0 < I < --- < T}, =T)

E
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a sequence of random partitions of [0,T] such that |7™| = sup, |T — 17 ;| — 0 a.s when
n — oo. Then:

n t
$0So + Z &1, (ST int — STint) N / ¢y—-dSy (3.14)
uniformly in t on [0,T].
We can note that in the sum the variation of S is multiplied by the value of ¢ at the left
endpoint of the interval. We use the stochastic integrals via Riemann sums when we want
make a stochastic integrals for caglad processes.

3.1.3 Quadratic variation and covariation

Consider a process observed on a time grid 7 = (tgp = 0 < t; < -+ < tp41 = T), then we
can define the realized variance as:

VX(ﬂ-) = Z (Xti+1 - thi)Q

t;em
We can rewrite the realized variance as a Riemann sum:

Vx(m) = X7 - X5 -2 X, (X, — X¢,)

i

t,em

If X is a semimartingale with Xy = 0, it will be a nonanticipating right-continuous process
with left limits. Therefore, we can define the cadlag process X = (X;-)icjo,7]- We can
note that the Riemann sum defined above converge in probability to a random variable: the
quadratic variation. Hence, we can give the following definition of the quadratic variation
process:

Definition 3.3 [Quadratic Variation] (definition 8.3 in [2]) The quadratic variation
process of a semimartingale X is the nonanticipating cadlag process defined by:

t
XX = X -2 [ Xydx, (3.15)
0
Is important to specify that the quadratic variation is a random variable and not a number.

Moreover, if 7" = (t§ =0 <t} < --- <t]',; =T) is a sequence of partitions of [0,T] such
that |7"| = supy, [t} —t7_;| — 0 as n — oo, then

OSti<t P
Z (Xti+1 7Xt1‘,)2 naoo} [X, X]t
t,mm

where the convergence is uniform in ¢. Then, the following proposition summarizes some
properties of the quadratic variation:

Proposition 3.7 (Properties of quadratic variation) Consider [X, X]; = | X;|?—2 fg Xy-dX,.
Then, we have the following properties:

a) ([X, X]t)icjo,1) s an increasing process. This allows to define integrals fot @d[X, X] ;

b) the jumps of [X, X| are related to the jumps of X by: A[X, X]; = |AXy|%. In particular,
[X, X] has continuous sample paths if and only if X does;

¢) if X is continuous and has finite variation, then [X, X] =0;
d) if X is a martingale and [X, X] = 0 then X = Xy almost surely.

Proof
We give a proof for the property a) and c).
a). Since [X, X] is defined as a limit of a positive sum [X, X]; > 0, for ¢ > s and since
[X, X]t — [X, X]s is again a limit of positive sums [X, X|; > [X, X];. We can conclude that
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[X, X] is an increasing process.
c). If X is continuous and has paths of finite variation, we obtain:

Z (Xti+1 - th‘)2 < Sup |Xti+1 - Xti| Z |Xti+1 - Xt1|
i

t;m" t;em

<sup|X; (X) — 0

|| —0

i1

where TV (X) is the total variation of X on [0,7]. Therefore, [X, X] = 0. In particular,
for a smooth (C') function, [f, f] = 0. Moreover, this result is no longer true for processes
with discontinuous sample paths since, in this case, |X;,,, — X;,| will not go to zero when
| Xy

i+l

i

i1

O

The property d) imply that if we have a continuous square-integrable martingale with path
of finite variation, it will be constant with probability 1. This implication allows to say
that if a process is decomposed into the sum of a square- 1ntegrable martingale term and a
continuous process with finite variation (i.e. X; = M; + fo ), then this decomposition
is unique.

Consider a Brownian motion B; = oW;, where W is a standard Wiener process, then
the quadratic variation of the Brownian motion is equal to [B, B]; = 0®t. We can note that
the quadratic variation is equal to the variance of the process in the Brownian motion. To
prove this statement, consider a sequence of partitions of [0,77], i.e. 7™ = (tf =0 < ¢} <

- <ty =T), such that |7"| = supy, [t} —t}'_;| — 0. We can see that V(™) — 0°T =
Zﬂn (Bt,,, — Bt,)?—0?(tiy1—t;) is a sum of independent terms with mean zero. Therefore,
we have:

E[|[Vp(n") = o®T|?] = ZE (B, — Bi,)” — 0% (tiy1 — ti)]

=X o't - 6PE <((¥+1i))1>2]

= 04 > ltivr —tPE[(Z* = 1)’] where Z ~ N(0,1)

2

< E[(Z* - 1)?¢*T|7"] = 0

Hence, E [|Vp(7™) — 0°T|?] — 0 implies convergence in probability of Vp(7™) to o2T.
On the other hand, if we consider a Lévy process X with characteristic triplet (o2, v,7), the
quadratic variation is equal to:

X, Xl =o"t+ D |AX
s€[0,t],AX#0

—02t+/ /yJdexdy)
[0,]

In the quadratic variation, we consider only one process X but, in the reality, we can see
more stochastic process. Therefore, we need to introduce the multidimensional counterpart
of the realized volatility: the realized covariance. Consider a time grid # = (tp = 0 < t; <

- <tpy1 =T) and two process X and Y. Then, we can define the realized covariance as:

Z (Xti+1 - X, )(thwrl - YI) (316)

As we do for the realized variance, we can rewrite the sum above as a Riemann sum and we
find:
XrYr — XoYp — Z (Y;fb (Xt'H»l - Xti) + Xti (}/t'H»l - )/tz))

t;em
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If X,Y are semimartingale, the expression above convergence in probability to the random
variable called quadratic covariation, which can be defined as:

Definition 3.4 [Quadratic Covariation] (definition 8.4 in [2]) Given two semimartin-
gales X, Y. The quadratic covariation process [X,Y] is the semimartingale defined by:

t t
[X,Y], = X,Y; — XoY —/ X,-dY, — / Y,-dX, (3.17)
0 0

Consider the quadratic covariance defined in the expression (3.16). It discrete approxima-
tions converge in probability to [X,Y] uniformly on [0,T]. Therefore, we have that:

t; <t

P
Z (Xti+1 - Xti)(}/twﬂ - }/tb) HTO> [X7 Y]t (318)
tem

The following proposition summarizes some important properties of the quadratic covaria-
tion:

Proposition 3.8 (Properties of the quadratic covariation) Consider the quadratic covaria-
tion [ X,Y]; = Xth—XQYO—fOt Xsdes—fOt Y, dX,. Then, we have the following properties:

a) [X,Y] is a nonanticipating cadlag process with path of finite variation;
b) Polarization identity: [X,Y] = 2([(X+Y, X +Y] - [X - Y, X - Y]);

¢) The quadratic covariation [X,Y] is not modified if we add to X or Y continuous
processes with finite variation, i.e random drift terms. It is only sensitive to the
martingale parts, i.e. noise terms, or jumps in X and Y;

d) If X, Y are semimartingales and ¢, are integrable predictable processes then:

[/gbdX,/deL/thﬁz/}d[X,Y];

e) Product differentiation rule: if X,Y are semimartingales, then:
t t
XY, = XoYy +/ X,-dY; +/ Y,-dX; + [X,Y];
0 0

Consider two Brownian motion: B} = o1 W}! and B? = 0oW2, where W, W?2 are two
standard wiener processes with correlation p (typically, with differential notation we define
the correlation between two standard Wiener process as: dW'dW? = pdt. Hence, we can
show that:

1
(B} B2) = (1B + B2, B + BY) — (B} - B, B}~ BY))

1
Z( Wl + 0o W2, oW+ 0o WE] — [0 W) — 02 W2, oW} — 0o W)
1
1 ( 0'1W1 + 20’10’2Wt1Wt2 + (JQWtz)z — (Uth1)2 -+ 2010’2Wt1Wt2 — (O’QWE)Q)
1
Z (4(710'2W W )

=0 UQW Wt

= po 10’2t

3.2 Stochastic Integral with Jumps

3.2.1 Stochastic Integral with respect to Poisson process

Consider the relation, for the Poisson process, described in chapter 2, i.e. AX; = YN, AN;.
Then, we can define the stochastic integral of a stochastic process (¢:)i>0 with respect to
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(Xt)e>0 by:

T T Nr
/ prdX; = / G YN, ANy =Y én, Vi (3.19)

0 0 k=1
The meaning of the above equation is that the value at time T of a portfolio containing
a quantity ¢, of an asset at time t, whose price evolves according to random returns Y,
generate capital gain or losses equal to ¢, Yy at random times Tj.
Consider a compound Poisson process (Definition 2.2) (X;);>0, it admits stochastic integral
representation equal to:

Ny

¢
X :X0+2Yk =Y0+/ Yn, dN,
k=1 0

Proposition 3.9 (Smoothing formula) (proposition 15.9 in [6]) Let (¢¢)i>0 be a process
adapted to the filtration generated by (X;);>o0 and such that:

T
0

Then, the expected value of the compensated Poisson stochastic integral is equal to:

T T
/ b1 dX, / Wn] (3.20)
0 0

where ¢; is the left limit of the process.

The equation (3.20) holds only for the left limit of the process ¢, otherwise if we consider
the full process ¢ we can have arbitrage opportunities.

Proof

From chapter 2, we already known that the compensated compound Poisson process is a
martingale, therefore the stochastic integral is also a martingale due to the adaptedness of
(¢1)e>0 to the filtration generated by (X;);>0, which makes the process (¢;- );>0 predictable
(i.e. Fi- :==0(X,:s€]0,¢))). In fact, we have:

E

T
E —E / ¢,-Y,dN,| = AE[Y]|E
0

E

T T T
/ @czxt] — [ 6 dX. = ABW]9) = [ o (V.. - AE[Y]d)
0 0 0

Now, we need to show that the expectation of a martingale remains constant over time.
Therefore:

[T
0=F / qbtfd(Xt — )\E[Y]t)
0
[ T T
=F /o ¢-dXe| — )\E[Y] /0 (bt_dt]
: T T
=F /0 ¢-dXe| — )\E[Y] /0 (;Stdt]

O

Proposition 3.10 Let (¢;)i>0 be a process adapted to the filtration generated by (X;)i>0

and such that
T
E / |¢>t|2dt] < o0
0
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Then, the expected value of the squared compensated Poisson stochastic integral is equal to:

T
/ |¢t2dt] (3.21)
0

We can see that only the generic jump size Y is squared whereas the intensity of the jump,
i.e. ), is not.

2
(/T by (dX; — AE[Y]dt)) = \E[[Y|*|E
0

Consider a counting process N; with jump times 7; and with random variables observed
at T; describe by Y;. Let X; be a process defined by X; = Zf\il Y;, hence the quadratic
variation of the process is equal to:

Ny
X.X) = Y (AX)P = Y v

s<t

We can note that the same formula holds for every finite variation process X. Moreover,
the predictable quadratic variation of the process (i.e. "angle bracket") is the compensator
of [X, X], namely:

(X, X), = ME[YY]

For the quadratic covariation we need to consider another counting process N7, which has
jump times Tj and random variables observed at 7}, described by Yb . Then, we consider the

process Z; = Z j=1 ] Now, we make the assumption that X and Z have finite variation
processes whose jumps times are almost surely disjoint, hence they did not jump at the same
time, therefore the quadratic covariation is equal to:

X, 2 =Y AX,AZ, =0

s<t

The assumption of disjoint jumps is a strong assumption and we consider it only for the
stock price behavior. In fact, if we consider the exchange rate we drop this assumption and
we consider correlated jumps between the rate.

3.2.2 Stochastic Integral with respect to Poisson random measure

Consider a Poisson random measure > M on [0,7] x R with intensity jpu(dt x dz). Let
M be the compensated random measure defined as the centered version of M: M(A) =
M(A) — u(A) = M(A) — E[M(A)], where A C R

We can define the simple predictable process with respect to the Poisson random measure
as:

ZZ% (13, Tiea) (D) 14, (y) (3.22)

=1 j=1

where ¢ : Q x [0,T] x R? — R is a simple predictable functions, (¢;;)j=1,...,m are bounded
Fr,-measurable random variables, 713 < Ty < -.- < T,, are non anticipating random times
and (A4;)j=1,..m are disjoint subsets of RY Wlth p([0,T] x Aj) < oco. The disjoint subset
implies that the compensated random measure is a martlngale with respect to A; and that
if AN B =0, then M;(A) and M,(B) are independent.

Now, we can define the stochastic integral with respect to Poisson process as the random
variable:

T n,m
/O y $(s,y)M(ds x dy) = Y ¢i; M (T, Tiya] x A;)
ij=1

O bi[Mr,, (A)) — Mz, (4;)] (3:23)

i=1 j=1

2Defined in chapter 2
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If we want that the the stochastlc integral is a cadlag, nonanticipating process, we need to
define the process t fo Jga &(t,y) M (dt x dy) by:

[ ot mnatas <) = 5 610 n(4)) ~ Mrin(4)

3,j=1

Similarly, we can define the stochastic integral with respect to the compensated Poisson
process, which can be defined as the random variable:

/ y ¢(s,y)M(ds x dy) = Y ¢i; M (T, Tiya] x A;)

i,j=1

SO " 6uM (T3, Tiga] x Aj) — n((Ti, Tia] x A;7)] (3.24)

i=1 j=1

As we do for the equation (3.23), the equation (3.24) can be written in stopping times
notation by restricting the terms with 7T; < ¢, therefore we obtain a stochastic process equal
to:

/ » o(s,y)M(ds x dy) = Z i (M, ni(A;) = Mo, ae(A;)] (3.25)
4,5=1

We have introduced the stochastic integral with respect to the compensated Poisson process
because we use it to show the martingale preserving property.

Proposition 3.11 (Martingale preserving property) (proposition 8.7 in [2]) For any simple
predictable function ¢ : Q2 x[0, T]xR% — R the process (Xt)tepo,1) defined by the compensated
integral:

t ~
X, = / o(s, y) N (ds x dy)
0 Rd

is a square integrable martingale and verifies the isometry formula:

E[| X, = [/ / o(s,y) > u(ds x dy) (3.26)
Proof

First, define a process Y7/, with j = 1,...,m, as Y/ = M ((0,t] x A;) = M;(A;). We know
that (Yt])te[o,T] is a martingale with independent increments and that the process Y7 are
mutually independent since A; are disjoint. Therefore, we can write the argument inside

the sum in the equation (3.25) (i.e.[Mr, +1At(A ) — Mz, pi(A))]), as YT 1At YT - Hence,
we find that the compensated integral X; is equal to:

quw Fooint = Ydino)

,Jl

= ZZ‘% Ty 1At T/\t)

j=11i=1

mo o
:Z/ gbdej

j=1"0

where ¢/ = 37" | ¢i;1(7, 1,,,]- We can note that ¢/ is a simple predictable process, therefore

its stochastic integral ( fot #’dY7) is a martingale by the martingale preserving property
(proposition 3.1), which allow us to conclude that also X; is a martingale. Now, we need to
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compute the first two moment of X;: the mean and the variance.

E[IX[?) = Var (/ [ otsias dy))
0 JRd
= Z B :|¢ij‘2(szi+1/\t Y% /\t) }
j:

n,m _ .
- Z E _E [|¢ij|2(yjj“i+1/\t TM) |]:T”
=

- ZE |¢ly‘ E[( Tip1Nt T/\t) |-7'—T”
Jj=
= Z E [|¢s; 11 (IT3, Tiga] x Aj)]
which yields (3.26). Finally, we can say that X; is a square integrable martingale because
E[|X:”] < E[|X7|*] < o0

]

We can extend the isometry formula (equation (3.26)) to square integrable predictable func-
tions and we have the following proposition:

Proposition 3.12 (Compensated Poisson integrals) (proposition 8.8 in [2]) For any pre-
dictable random function ¢ : Q x [0, T] x RY — R werifying

B[ [ 166s)Putas < ay)] <

the following property hold:

t
ot / o(s,y)M(ds x dy) is a square integrable martingale;
0 Jre

=l t [ 6. wPutas <)) 2m

Consider a Lévy process (X;);>o with Lévy measure v and a Poisson random measure
Jx with intensity u(dt x dx) = dtv(dz). Then, for a predictable random function ¢ the
integral in equation (3.23) is equal to:

2

’ /ot A5 y)nlds x dy)

AX,#0

/ quﬁsy) (ds x dy) = Z o(t, AXy)

te[0,T]
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The meaning of the above equation is that the integral of the predictable function is a sum
of terms involving jump times (¢) and jump sizes (AX).

Let M be a Poisson random measure on [0,7] x R? with intensity u(ds x dy) and let
¢ :[0,T] x RY+— R. Then, we can define the process X as the integral of ¢ with respect to
M:

t
X, = / 6(s,y) M (ds x dy)
0 R4

Therefore, the quadratic variation of X is equal to:

XX = [ [ 1ot pP (s x ay)

Now, consider a Wiener process (W;)¢c[o,7] independent from M and two process X. Hence,
the process X; can be written as

t t
X} =X3+/ oldW, +/ ' (s,y)M(ds x dy)  i=1,2
0 0 JR4

Hence, the quadratic covariation of the two process is equal to:

t t
[Xl,X2]t = / Uiagds +/ . ¢1(s,y)¢2(s,y)M(ds x dy) 1=1,2
0 o Jrd

3.3 Change of variable formula

In this section we talk about the change of variable formula for the jump processes. But
first, we need to remind the change of variables formula for smooth functions and the Ito
formula for Brownian integrals. Let f : R — R be a C? function and let g : [0,7] — R be a
C! function. Then, the change of variables formula for smooth function is:

Fa(®) — F(9(0)) = / F(g(s))g (s)ds = / F(9(s))da(s) (3.28)

Now, we can consider the Brownian integral defined as: X; = fot o0sdWy and the function f
defined as above. Then, if we apply the Ito formula at X; we find:

f(X¢) = £(0) +/0 f(Xs)osdW, + %/0 f"(X,)ds (3.29)

3.3.1 Calculus for finite jump processes

Let = : [0,7] — R be a function with a finite number of discontinuities at time 0 = Ty <
W <To <---<T, <T,41 =T and the function x is smooth on each interval, defines as
(T3, Ti+1). Moreover, we can define z(7;) := z(T;"), which means that z is cadlag at the
discontinuity points. Let f : R — R be a C! function. Since z is smooth on each interval
(T;, Ti+1), f(x(t)) is also smooth. Then, the change of variable formula for piecewise smooth
functions is given by the following proposition:

Proposition 3.13 (Change of variable formula for piecewise smooth functions) (proposition
8.12in [2]) If x is a piecewise C function given by:

t
:r(t):/b(s)der Z Axz; withi=1,...,n+1
0

{i.Ti<t}

where Ax; = z(T;) — (T, ). Then, for every C' function f: R — R we have:

T
F@(T)) — F(x(0)) = / b(t) £ (w(t )t
n+1

+ 2 (F@(T7) + Awi) = f(2(T7))) (3:30)
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Proof

Consider the function x represented by: x(t / b(s)ds + Z Ax;. We apply the
{i.T; <t}
change of variable formula for smooth function, ie. equation (3.28), and we find:

-

i+l T

P = [ p b

T;

@(To) — f(a(T)) = /

T;

Now, we need to study what happen at each discontinuity point at the function f(z(t)),
which has jumps equal to:

f@(T) = f@(T7) = f@(T7) + AX) — f(«(T77))

Therefore, we can write the variation of f between 0 and ¢ as:

n

F@(T)) = f(@(0)) = Y (f(@(Ti1)) = f(2(T))))

i=0
—Z Tiv1)) + f(2(T ) + f(@(T5,)) — f(=(Ty)))

n+1 n T
—Z )+ AX) - f(2(T)) +Z/ D) ()t

Jump part

T ntl
:/0 b(t) f' dt+Zf )+ Ax) — f(2(T))

O

We can note that if b is continuous, then x is piecewise C! and if b = 0, then 2 is piecewise
constant and the integral term is equal to zero.
Now, consider a stochastic process (X¢)¢c[o,7] defined by:

t Ny
&:/mw+ZA&
0 i=1

where AX; := X (T;) — X(T; ) represent the jump size and N; is the random number of
jumps. Then by the proposition above, the following change of variable formula holds almost
surely:

3, T; <t
AX#0

/b Xtm+§:U Hﬂx)ﬂ&ﬁ

0<t<T

We can note that this change of variable formula is valid independently of the probabilistic
structure of the process X. Moreover, the following proposition summarized the Ito formula
for finite activity jump process where the counting process NV; is a martingale:
Proposition 3.14 (Ito formula for finite activity jump processes) (proposition 8.13 in [2])
Let X be a jump process with values in R defined by:

t Ny
x:/@@+2n
0 i=1

where bs is a nonanticipating cadlag process, Ny is a counting process representing the number
of jumps between 0 and t and Y; is the size of the i-th jump. Denote by (T),)n>1 the jump
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times of X; and Jx the random measure on [0,T] x R associated to the jumps of X3 Then,
for any measurable function f :[0,T] x R = R we have:

¢
ft, X)) — f(0,Xo) = /0 <Z(5,XS) + bsgi(s,Xs)ds>

+ Z (f(SaXs* “FAXS)_f(&XS*))

n>1,T, <T

= ' g S % S S
- [ (Zexor+nex )
+ [ [ (F(5. Xoe + 1) — [(5. X)) Ix(ds x dy)  (3.31)

Moreover, if Ny is a Poisson process with E[N;] = M, with Y; ~ F are i.i.d. and f is
boundend, then Y, = f(t,Y:) = Vi + My, where M is the martingale or noise component and
V' is the continuous finite variation drift. This two component are respectively equal to:

Mo= [T X ) = 505X s x ) (3:32)

where Jx (ds x dy) = Jx (dt x dy) — \F(dy)dt

tro 0
Vi [ (Gexoengexa)

o [ as [ P (X )= 5. X0) (3.33)

3.3.2 Ito formula for jump-diffusion and Lévy process

Consider a jump-diffusion process defined in chapter 2 by the equation (2.19) (i.e. X; =

vt + oW, + 25\21 Y;). We can write this process with a different notation:

Nt
Xp =t + oW+ AX,
1=1
Xe(t) ———
Jt

where AX; := X(T;) — X(I; ). Therefore, the equation above can be write as:
X, = X°(t) + J, (3.34)

Let f be a C? function on R and let T, i = 1,..., Ny, be the jump times of X. Then, we
can define Y; = f(X;) and we can say that X, between T; and T;11, evolves according to
the differential equation equal to:

dX; = dX; = ~dt + odW,

therefore, by applying the Ito formula in the Brownian case, which is described in equation
(3.29), we find:

Tita o? " Titr /
Vi, ~Yo = [ G [ paoax,
T; T;

Ti;l 0-2 1 /
- [ (G e o)

T;

3Jx can be defined as: Jx = Z d(T,,,v,): Where § is the dirac measure (see appendix A.4)
n>1,Th <T
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since we consider the behavior of the function inside the interval (T;,7;+1), we have that
dX; = dX;. Now, we need to analyze what happen at Y; when a jump of size AX; occurs.
Hence, the change in Y; is equal to: f(X;- + AX;) — f(X;-). Therefore, if we add these
two contributions, we will find the total change in Y;:

(X)) — F(Xo) = / F(X,)dXE + / 7 (X )ds
AX,#0
+ 3 (F(X- +AX) — f(X)) (3.35)
0<s<t

The equation (3.35) can be rewritten in a more general form. If we replace dX¢ by dX, —
AX, we find:

t 0_2
F(X0) — F(Xo) = / F/(X.)dX, + / 7 F(X.)ds
AX#0
+ > (f(X- +AX,) - f(X,-) — AX (X)) (3.36)
0<s<t

This equation becomes equivalent to the equation (3.35), when the number of jumps is finite.
Moreover, in (3.36) the stochastic integral and the sum over the jumps are well-defined for
any semimartingale, even if we have an infinite number of jumps. Instead, the equation
(3.35) could not converge if jumps have an infinite variation.

The following proposition summarized the result for the jump-diffusion processes when o is
a nonanticipating square-integrable process:

Proposition 3.15 (Ito formula for jump-diffusion processes) (proposition 8.14 in [2]) Let
X be a diffusion process with jumps defined as:

Ny

t t
Xt:XO+/ bsds+/ anWSJrZAXi
0 0

i=1

where Zivztl AX; is a compound Poisson process and by and oy are continuous nonanticipat-
ing processes with satisfy the condition:
t
=F [/ Utzdt] < o0
0

o[f oo

Then, for any C*? function f : [0,T] x R — R, the process Y; = f(t, X;) can be represented
as:

2

t
f(tht)_f(OvXO):/o {gi( X)—i——sX )bs| ds
1/ 20°f tf)f
+*/ 582 +073}SXO-SdW
> (10 ax) - p0x,) (337
121,11 <t

The equation (3.37) can be written in differential notation as:

2 92
dY, = ?3{ (t, Xt)dt+btgf (t, X,)dt + ‘;f g ‘é(t X,)dt
+ 2 X0t (X +AX0) — J(X,) (3.33)
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More in general, when we consider a Lévy process we can have an infinite number of
jumps in each interval, which imply that the above result could be not true. Therefore, we
need to study the conditions under which the sum in the equation (3.36) converges. Suppose
that f and its two derivatives are bounded by a constant C, hence we can see that the sum
in the equation (3.36) using proposition 2.14 is equal to:

l (f(Xs* + AXS) - f(Xs*) - AXSf/(Xs*)) | < CAXSQ

which means that the sum in the equation (3.36) is finite. Therefore, we have the following
proposition for the Lévy processes:

Proposition 3.16 (Ito formula for scalar Lévy processes) (proposition 8.15 in [2]) Let
(X1)e>0 be a Lévy process with Lévy triplet (o%,v,7) and f : R — R a C? function. Then:

100) = 10+ [ fax.+ [ G as
AX 40
+ ) (f(X- +AXL) - f(X-) — AX (X)) (3.39)

0<s<t

The equation (3.39) can be written in differential notation as:

0,2
df(Xe) = 5 [ (Xe)dt + f/(X,-)dXe + f(X) = f(Xi-) = AXf'(Xo-)

If we have that the Lévy process is of finite variation, we do not need to subtract AX, f'(X,-)
from each term of the sum in the equation (3.39). In this case, we have the following propo-
sition that summarizes the Ito formula for Lévy processes with finite variation:
Proposition 3.17 (Ito formula for Lévy processes with finite variation jumps) (proposition
8.17 in [2]) Let X be a finite variation Lévy process with characteristic exponent equal to:

oo

x (u) = ibu + / (eiuy —1) v(dy)

—00

where the Lévy measure v verifies [ |y|lv(dy) < co. Then, for any C* function f : [0, T]xR —
R we have:

f&, X)) — f(0,Xo) = /0 ((?)JSC(S,XS) + bgi(s,Xs)) ds
AX,H£0
+ 3 (F(X- +AXL) — f(X,)) (3.40)
0<s<t

If f and its first derivative in x are bounded, then Y = f(t,Y}:) is the sum of a martingale
part and a drift part. This two component are respectively equal to:

M, = /0 /_00 (f(s, Xo +y) — f5, X)) Ix(ds x dy) (3.41)
Vtz/0 <Z£(S,Xs—)+bsg£(s,XS_)ds>
+/0 dS/RV(dy) (f(s, Xo- +y) = f(s, X)) (3.42)

3.3.3 Ito formula for martingale and semimartingale

If we use the change of variable formula in Y; = f(¢, X;), we find that the process Y; is not
anymore a Lévy process even if X, is defined as Lévy process. One solution could be written
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Y; as a stochastic integral, which imply that the process Y; is a semimartingale. Therefore,
our new problem is find a change of variable formula for semimartingale. The following
proposition shows us the Ito formula for semimartingales:

Proposition 3.18 (Ito formula for semimartingale) (proposition 8.19 in [2]) Let (X;)¢>0 be
a martingale and let f : [0,T] x R — R be a C? function. Then, the Ito formula is equal to:

Lo Lo
f(t,Xt)—f(O,Xo):/O a'];l(S,XS)dS—F/(; %(S,XS—)dXS
t a2f
2 )y 0x2

AX#£0
b Y (fex)-fexo-axSlexn) e

Ox
0<s<t

(s, Xs-)d[X, XT¢

where [X, X]¢ is the continuous part of the quadratic variation [X, X], which it can be split
into a jump part and a continuous part because it is an increasing process.

Proof

Consider a partition To =0 < Ty < --- < T, < T, 41 =t and consider a second order Taylor
expansion*. Then, we can write f(X;) as the sum of increments and we find:

n

f(Xt) - f(XO) = Z (f(XTi+1) - f(XTL))

=0

then, we apply the second order Taylor expansion at the equation above and we find:

Z 1+1 - (XTz)):

1=0
n

n
1
= Z f/(Xti)(XTL+1 - XTi) + QZ f/l(Xt’i)(XTL+l - XTi)2
=0 =0
(XT +17XTi)
0

%

We can note that X has a well defined quadratic variation, hence Y AX?2 converges almost
surely. Then, let A C [0,T] x  such that Z AX? < con Afor e >0 and B{(s,w) ¢

0<s<t
A, AX; # 0}. Therefore, the sum above can be rewritten as:

n

= 1
f(Xt XO = Z f/ XTL+1 XTi) + 52 f”(Xti)(XTiJrl - XTL)Z
=0 i=0

+ Z (f(XTi+1> - f(XTl) - f/(Xti)(XT-H»l - XTl)

BN(T;,T;41)#0

1
- if//(Xt’i)(XTL+l XTi)2) + Z T(XT1+1 ’ XTi)
Bﬁ(Ti,Ti+1)#0

Now, let sup |T;+1 — T;| — 0 a.s, then the first three terms converge to the following expres-
sions:

a)

n

S P (X, — X3) = / f/(X.)dX

=0

4A second order Taylor expansion is equal to: f(y) = f(z) + f'(z)(y — ) + M +7r(z,y)
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1 t
/I 2 "
f§y>& Xy = X = 5 [ XXX,

Z (f(XTi+1) - f(XTl) - f/(Xti)(XTH—l - XTl) - %f//(Xti)(XTi+l - XTi)z)

BN (T;,Ti+1)#0
- Z (f(Xs) - f(Xs*) - AXsfl(Xs*) - f”(Xs*)|AXs|2)
B
the first two term (i.e a) and b)) are Riemann sum. Now, we need to analyze the last term:
the remainder. We can note that the remainder verifies:
r(z,y) < (y —z)?a(|z —y|) with a(u) =0 as u— 0

Moreover, the remainder’s sum only contain term with BN (7}, T;4+1) # 0, then we have that
| X1,y i+1 — T;| = 0. Therefore, we have that:

Z |T(XT1‘+UXT1‘) = (2€)Z(XT1’+1 _XTi)2

BA(T T, 41)#0 i
a(2e)[X, X}t = 0 as sup|Tiy1 —Ti| =0

Hence, we sum all the terms together and we find:

F(X0) — £(Xo) = /f dX+/f’ X],
S (F(X0) — F(Xe) — AXLF/(Xo) — F(X )| AXLP)

0<s<t
and since:
/f// XXS—/f” Zf// |AX|2
0<s<t

we finally obtain the equation (3.43).
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Chapter 4

Hedging Strategy

This chapter describe how to compute the option price in an exponential-Lévy model. The
first section talk about the measure transformation, which represent the main tool to find
the risk-neutral probability to compute the option pricing. The second part of the chapter
introduces the concept of option and, in particular, of European call option. We show how
is built the pricing of European option in the Black-Scholes model and, then, we define the
pricing of European option on exponential-Lévy model. Moreover, we give an example of
option pricing for a jump diffusion process. Then, we briefly describe the concept of implied
volatility and we describe some feature. Finally, we will see how to use an European call
option for hedging purpose. We start by describing the hedging in the Black-Scholes model,
in particular, we will talk about the delta hedging. Then, we will introduce the Merton
hedging for a jump diffusion process and we will compare the result with the hedging in
the Black-Scholes model. Finally, we will generalize the hedging strategy for jump diffusion
process, therefore we will introduce and explain the quadratic hedging in jump diffusion
process. The last part of this chapter is entirely focused on empirical result and we compare
the hedging in the Black and Scholes model with the hedging in the Merton model for the
jump diffusion process

4.1 Measure Transformation

One normal assumption in each model built in finance is that the market is complete, which
means that every contingent claim in the market is attainable. This imply that there is only
one arbitrage-free way to value an option, which is a linear combination between a risky
asset and a riskless one (i.e. is called the replicating portfolio). Hence, there exist only one
risk-neutral probability in the market. Unfortunately, the complete market assumption is
not true in the real market because the asset prices have jumps, which imply that there is
not a unique risk-neutral probability but we can find a much greater variety of equivalent
measure by changing the distribution of jumps. Therefore, the perfect hedges do not exists
(i.e. the delta hedging in the Black-Scholes model) since it is impossible replicate an option
by trading in the underlying asset due to the presence of jumps in the price behavior.

In the Black-Scholes model to find the equivalent measure we use the Radon-Nikodym
theorem. Hence, we need to introduce the concempt of equivalent measure. Let (2, F) be
a measurable space and let Q, P be two probability measure on F. Then, we say that Q is
absolutely continuous respect to P (P > Q) if:

VAe F PA)=0=Q(A)=0

Therefore, we can say that two probability measure Q, P on F are equivalent (P ~ Q) if
P> Q and Q > P, hence if Q and P define the same set of impossible events:

VAeF  Q(A) =0 P(A) =0 (4.1)
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Therefore, we have the following theorem:

Theorem 4.1 [Radon-Nikodym Theorem] Let P > Q, then exist a random vari-
able A, F-measurable, with non-negative value such that for every random variable X (F-
measurable) integrable under P the following relation is true:

EolX] = Ep[AX] = /A AdP

In particular:
VAe F Q(A) = Ep(A1,).

A is called the Radon-Nikodym derivative and, usually, it is written as:

_ @

A=
dP

We can note that the variable A is unique. In fact, if A’ is another Radon-Nikodym derivative,
then we have the following equality:

Ep[A—A]=0
Moreover, the Radon-Nikodym derivative satisfy the following relation:

d
E[A] = Ep [d%} —
Instead, P and Q are orthogonal is there exist an event A such that P(A) = 1 and Q(A4) = 0.
This imply that if P and Q are orthogonal, it will not be possible find that one probability
measure is absolutely continuous respect to the other one.

Let (Q, F,P) be a probability space which describe a market between 0 and 7. Then,
we can define the underlying asset S by a nonanticipating (cadlag) process:

S :[0,T] x Qs RO
(t,w) = (S (W), 5 (w), 5F (), S} (w))

where S}(w) represent the value of the asset i in the market scenario w and SP(w) is a
numeraire (we define it as S?(w) = e, where r is the interest rate) A self-financing strategy
(09, ¢¢), in the Black-Scholes model, is said to be a perfect hedge or a replication strategy
for a contingent claim H, if we have the following:

T T
H=Vy+ / $¢dS; + / ¢0dSY P —a.s. (4.2)
0 0

where S; is the asset price. Moreover, we can say that a market is complete if any contin-
gent claim H, admits a replicating portfolio which means that for any H € H there exists a
self-financing strategy (¢Y, ¢;) such that the equation (4.2) holds with probability 1 under
P. If the equation (4.2) holds with probability 1, it also holds with probability 1 under any
equivalent martingale measure Q ~ IP. Therefore, we find the following proposition:
Proposition 4.1 A market defined by the asset (S, St, ..., S8 )o<i<r described as stochastic
processes on (0, F, (Ft),P) is complete if and only if there is a unique martingale measure
Q equivalent to P.

If we consider a discount factor equal to B(t,T) = e "T=%) then we can write the
discounted value of H (equation (4.2)) as:
A T A
H = ‘/0 + / ¢>td5’t Q — Qa.s. (43)
0
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We can note that Vy = Eg [ﬁ ]. If the above equation holds for all payoff with finite variance
(i.e. H € L*(F;,Q)), then we can represented the above process as:

T
H = E[H)] +/ $vdS,
0

for some predictable process ¢, moreover the martingale (St)ogth is said to have the pred-
icatable representation property. But this property did not hold for most discontinuous
model used in finance. Therefore, we need to introduce a representation of H in terms of
a stochastic integral with respect to S, which is called the predictable representation with
respect to W, M or predicatable representation property:

Proposition 4.2 (Predictable representation property) (proposition 9.4 in [2]) Let (Wy)o<i<T
be a d-dimensional Wiener process and M a Poisson random measure on [0, T] x R?, indepen-
dent from W. Then, any random variable H with finite variance depending on the filtration
(Foo<i<r of W and M between 0 and T can be represented as the sum of a constant, a
stochastic integral with respect to W and a compensated Poisson integral with respect to M.
There ezists a predictable process ¢ : Q x [0,T] — R and a predictable random function
Y :Qx[0,T] x R R such that:

t t
=B+ [ oo+ [ [ utsits <y (1.4)
0 0o JRrd
In particular, equation (4.4) is important when we talk about hedging strategies.

4.1.1 Risk-neutral pricing

Let (Q, F, (Ft)o<t<T,P) be a probability space, where (F;)o<i<r denote the set of informa-
tion generated by the history of assets up to t and let H be a contingent claim with maturity
T, which can be represented by defining its terminal payoff H(w) in each scenario. We can
note that H is a Fp-measurable map H : 2 — R since H is known at 7. We denote the set
of contingent claims of interest by H and we can assume that S% € H, which means that
the underlying assets themselves can be seen as particular contingent claims whose payoff is
given by the terminal value S%.. Then, we can define a pricing rule as the procedure which
attributes to each contingent claim H € H a value II;(H) at each point in time. If II;(H) is
a pricing rule, it satisfy the following requirements:

1. II;(H) should be a nonanticipating process, therefore we can compute the value of
I1;(H) with the information given at t;

2. II;(H) should be positive, which means that a claim with positive payoff should nat-
urally have a positive value:

YweQ, Hw) > 0=Vt e[0,T], II,(H) > 0;

3. II;(H) should be linear, which means that the value of a portfolio is given by the sum
of the value of its components:

J J
M | > Hy | =) Th(H)
j=1 j=1

This requirement may fail when we consider large portfolio due to the discount prices
on the market.

Consider an event A € F and a random variable 14, which represents the payoff of a
contingent claim which pays 1 at T if A occurs and zero otherwise, moreover, we will
assume that 14 € H. On one hand, we can start from a pricing rule IT and then we can
construct a probability measure Q. On the other hand, II can be found from Q: consider
a random payoff of the form H = > ¢;14,, then by the linearity property of IT we have
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that IIo(H) = Eg[H]. Moreover, if the dominated convergence theorem holds on H, we can
conclude that for any random payoff H € ‘H we have:

Iy (H) = e Bg[H]

Therefore, there is a one-to-one correspondence between linear valuation rules I (verifying
the properties above) and probability measure Q, in fact we have:

L, (H) = e " T~ By [H] (4.5)

Q(A) = e" T D1Iy(1,4) (4.6)

The equation (4.5) is called a risk-neutral pricing formula and means that the value of a
random payoff is given by its discountend expectation under the probability Q. We can note
that the probability Q has nothing to do with the actual or objective probability. Moreover,
if we want that the pricing rule IT is constant over time (the value at 0 of the payoff H at T
is equal to the value at 0 of the payoff II;(H) at t), then @ should be given by the restriction
of Q; to the filtration F;. Hence, we have that:

IL,(H) = e "7~ Eg[H| F]

The equation above means that the pricing rule II;(H) is equal to the discounted condition
expectation under the probability Q.

Now, consider the objective probability P, which represents the probability of future
scenario, defined in the probability space (Q,F, (Fi)o<i<r,P). Then, a fundamental re-
quirement for a pricing rule is that it does not generate arbitrage opportunities. Recall that
an arbitrage opportunity (in probability meaning) is a self-financing strategy ¢, which can
lead to a positive terminal gain without any probability of intermediate loss, therefore:

PVt e [0,T].Vi(¢) 20) =1, P(Vz(¢) > Vo(¢)) # 0

A consequence of the arbitrage-free assumption is the "Law of One Price" which say that
in the absence of trade frictions (such as transaction cost) two self-financing strategies with
the same terminal payoff must have the same value at all times, otherwise the difference
would generate an arbitrage opportunity.
Now, recall the definition of equivalent probability measure given by the equation (4.1).
Then, we have the following two proposition, where the first one is also known as the "Fun-
damental theorem of asset pricing":
Proposition 4.3 Let (Q, F, (F),P) be a probability space which defined a market model and
let (Si)o<i<T be the asset price in the time interval [0,T]. The asset price is arbitrage-free
if and only if there exists an equivalent probability measure Q ~ P such that the discounted
asset price (St)ogth are martingale with respect to Q.
Proposition 4.4 (Risk-neutral pricing) Let (Q, F, (F:),P) be a probability space which de-
fined a market model under the probability P. Then, any arbitrage-free pricing rule 11 can
be expressed as:

I,(H) = e " T By [H|F,]

where Q is an equivalent martingale measure of P.

The following two example can help us to understand the above proposition. Consider a
market with two assets S° and S!, where S is the numeraire. Then, the two asset have
price equal to S} and SY = e"*. Then, consider a buy and hold strategies for the asset S*:
hold the asset until T, which generate a terminal payoff of Sk, or sold the asset at time
t at the price S} and invest the sum at the interest rate r until time T, which generate a
terminal payoff equal to e"(T=%S!. We can note that these two strategies are self-financing
and that they have the same terminal payoff, therefore, by the "Law of One Price", they
must have the same value at all time t:

Eo[S}IF) = Egle" ™08} F] = & s}
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Then, we divide for the numeraire, in particular we consider the time T, and we find that
the discounted asset price is:

Sl r(T—t)Sl S1 R
Ro|gf| 7] = ot = =5

erT - StO
Therefore, the absence of arbitrage implies that the discount value (S} = e="*S! ) of the
asset is a martingale with respect to the probability measure QQ, which is called equivalent
martingale measure. This result can be generalized of all the traded assets.
Consider a self-financing strategy (¢:)o<i<r and let Q be a martingale measure. Then, S,
is a martingale under Q. Hence, the value of the portfolio V;(¢) (Vi(¢) = Vo + fg @dS) is a

martingale and, in particular, Eg| f(f ¢dS] = 0. Therefore, the random variable fot ¢dS can
take both positive and negative value, this imply that: Q (VT(QS) -V = fOT ¢rdSy > 0) # 1.
Hence, we can conclude that ¢ cannot be an arbitrage strategy since P ~ @Q, which entails

that P [y ¢S, = 0) #1

4.1.2 Equivalence measures in Lévy processes

We have seen how much important is the equivalent change of measure in defining arbitrage-
free pricing models in the Black-Scholes model, now we will study such changes of measure
in the Lévy process. When we consider Lévy process the equivalence of their measures, gives
relations between their parameters.

Consider two Poisson process defined by jump size, respectively, equal to a1, a2 and jump
intensity, respectively, equal to A1, Ao. Then, the following proposition shows the equivalence
of measure for Poisson processes:

Proposition 4.5 (Equivalence of measure for Poisson processes) (proposition 9.5 in [2]) Let
(N,Py,) and (N,Py,) be Poisson process on (Q, F;) with intensities \1 and Ao and jump
sizes a1 and as. Then, we have:

1. if a1 = ag, then Py, is equivalent to Py, with Radon-Nikodym density:

dP»,
P>,

=exp|(A2—A1)T — Nrln % (4.7)

2. if a1 # aq, then Py, is not equivalent to Py, .

Proof
1. Let A € F;. We need to show that, under the Radon-Nikodym derivative given by
equation (7), the following equality is satisfy:

dP
Py, (A) = Ep,, [1,4 *1}

dPy,

We can note that the left-hand side of the above equation could be rewritten as:

— e MT(\T)*
Pa(d) =Y Ty N =k
k=0 ’

on the other hand, the right-hand side of the equation is equal to:

dP) = e T (VT (A
Ep,, {1,4 } = 27,6! " P2 MWT Ry [14|Np =

% —MT (), Tk
:ZMEPA2[1A|NT:M
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Then, putting all together we find:

> e*MT Al = e MT (N T)
> E]ph [AalNp =K =) —— By, [LalNr = K]
k=0 k=0

Ep, [1a|Nr = k] = Ep,,[14| N1 = k]

We can note that the jump times of a Poisson process are uniformly distributed on this
interval, therefore Ep, [14| N7 = k| does not depend on A.

O

This proposition told us that if we want the equivalence measure of two Poisson process,
we can freely change the intensity of the jumps but the jump size must remain the same.
In other word, the intensity of a Poisson process can be modified without changing the
jump size of the process, but with changing the size of the jumps, which generates a new
measure. This new measure assigns nonzero probability to some events which otherwise
were impossible under the old one. We can note that two Poisson processes with different
intensities define equivalent measures only on a finite time interval. In fact, if T is infinity,
the Radon-Nikodym derivative (equation (4.7)) is either zero or infinity when the intensity
of two Poisson process are different. This result is due to the fact that the intensity cannot
be find from a trajectory of finite length but it can be estimated in an almost sure way from
an infinite trajectory.

Now, consider two compound Poisson process and the following proposition gives us the
equivalence of measure in this case:
Proposition 4.6 (Equivalence of measure for compound Poisson processes) (proposition 9.6
in [2]) Let (X,P) and (X,Q) be compound Poisson processes on (2, F;) with Lévy measure
vp and vg. The probability P and Q are equivalent if and only if vp and vy are equivalent.
In this case, the Radon-Nikodym derivative is:

d!
Dp =T = cap [ 100~ 20) + 3 oax,) (4.8)

where A\p = vp(R) and A\g = vo(R) are the jumps intensities of the two processes and
¢ In (dug)

dvp
Proof
This proposition is a "if and only if" statement, therefore we need to show first the "if" part
and then the "only if".
Hence, we start with the "if" part and we suppose that vp and vg are equivalent. Now,
conditioning the trajectory of X on the number of jumps on [0,7], we find:

Ep[Dr] = Ep |exp | T(Ap — Ag) + Y _ ¢(AX,)

s<T

0 k
_ 2T (AeT) s(ax)]" _
=e Ty B [e } =1
k=0

Hence, Ep[Dr] is a probability measure. Therefore, we need to show that if X is a compound
Poisson process under P is also a compound Poisson process under Q with Lévy measure
vg. The first step is check that X has Q-independent increments and then check if X
under the probability Q is a compound Poisson process with Lévy measure Tvg. To prove
the independence of increments, consider two bounded measurable functions f and ¢ and
let s <t <T. We can note that X and In D are P-Lévy processes and that D is also a
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P-martingale. Hence, we have:
Eolf(Xs)g(Xe — Xy)] = Ep[f(Xs)g(Xe — Xs) Dy
— Belf(X)D.JEe |o(X; - X.) '

= Ep[f(Xs)Ds|Ep [g(X; — Xs) Dy
= Ep[f(Xs)|Eq [9(X: — X5)]

which proves the Q-independent increments. Then, if we use the characteristic function on
X, we will find:

Ep |exp | T(Ap — Ag) + Z d(AX,) + iuXy =
s<T

_ =T = (/\PT)k iuAX+p(AX) k
e sz joR [e }
=0

— exp (T / (e — l)u@(dx)>

Now, we prove the "only if" part and we assume the opposite of the "if" part, therefore we
consider the case when vp and v are not equivalent. Then, we can find either a set A such
that vp(A) > 0 and vg(A) = 0 or a set A’ such thatvp(A’) = 0 and vg(A’) > 0. Assume that
we are in the second case, therefore we find that the set of trajectories having at least one
jump size in A’ has positive Q-probability and zero P-probability. Hence, we have shown
that these two measures are not equivalent.

O

Before talk about the change of measure for general Lévy processes, we need to introduce
the last important change of measure with respect the Brownian motion with drift. The
following proposition gives us the equivalence of measure in this case:

Proposition 4.7 (Equivalence of measure for Brownian motion with drift) (proposition 9.7
in [2]) Let (X,P) and (X,Q) be two Brownian motion on (2, F;) with volatilities op > 0
and og > 0 and drift up and pg. The probability P and Q are equivalent if and only if
op = og > 0 and singular otherwise. Then, when they are equivalent the Radon-Nikodym

derivative 1s: i0 ( )2
pQ — pp 1 (ng — pp
% X — = T 4.

ap ~ P ( o? B o? ) (49)

With the Cameron-Martin theorem can rewrite the equation (4.9) as an exponential
martingale equal to:

aQ _

dP = exrp

_ 1 — 2
po = pey, 1 (g — pp)”
o 2 o2

where W = @ is a standard Brownian motion under the probability P. This result

shows that the drift and the volatility play a crucial roles in defining a diffusion model. On
one hand, if we modify the drift, we will reweight the paths of X (the scenario); on the other
hand, if we change the volatility, we will find a completely different process, leading to a
new scenarios which were initially impossible.

After this introduction about the change of measure of the Poisson process and the
Brownian motion, we can give a general result of equivalence of measure for Lévy processes.
We can already say that in presence of jumps the class of probabilities equivalent to a given
one is large even if we restrict our attention to structure preserving measures. The following
proposition describes the possible measure changes under which a Lévy process remains a
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Lévy process.
Proposition 4.8 (proposition 9.8 in [2]) Let (X;,P) and (X:,Q) be two Lévy processes
on R with characteristic triplets (o, vp,ve) and (aé,l/(@,m@). Then, Plz, and Q|7 ' are
equivalent for all t, or equivalently for one t >0, if and only if the following three conditions
are satisfied:

1) op = og;

2) The Lévy measures are equivalent with

/Oo <e¢(2m) - 1)2 v(dz) < oo (4.10)

where ¢(z) = In (‘;LVE);

3) If 0 =0 then in addition we have:

1
Yo — TP = / z(vg — vp)dx (4.11)
1

When P and Q are equivalent, the Radon-Nikodym derivative is:

dQlr, _ v
L= et 4.12
P, ~© (412
with
77202
U =nXf — —nyt + lim Y b(AX,) -t / (e®@ —Vw(dr) | (4.13)
2 e—0 lz|>e
s<t,|AX;|>e
t
= (n, XF) + / / (e?® —1).Jx (ds x dx) (4.14)
0 JR4

where X{ denotes the continuous martingale (Brownian motion) part of X; and n is such
that
1
Yo — TP — / z(vg — vp)dz = o*n
-1
if o > 0 and zero if o = 0. Finally, U; is a Lévy process with characteristic triplet
(0%, vu,yu) given by:

a.
02 = o2
b.
o
vy = v
C.

1 > -
W = =500’ _/ (€ = 1=yl <1)(ve™')dy
— 00

If we want that the equivalence measure hold, we cannot freely change the drift of
the process unless a diffusion component is present. Moreover, we can note that we have
freedom to change the distribution of large jumps as long as the Lévy measure is absolutely
continuous with respect to the old one. This is an important result since only the large
jumps are important in option pricing because they affect the tail of the return distribution.
On the other hand, we cannot freely change the distribution of the small jumps because
they depend on the behavior of the Lévy measure near zero.

lel]:t represents the restriction of the probability measure P to F: and it is a probability measure on F;
which assigns to all events in F; the same probability P (the same is true for Q).
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4.1.3 Esscher transform and Relative entropy

When we consider model with jumps, if the Gaussian component is absent, we can find a
much variety of equivalent measures by changing the distribution of jumps. Instead, in the
Black-Scholes model we find equivalent measure by changing the drift.

One of the main tool to find the equivalence measure is used the Esscher transform, which
constructs equivalent martingale measure in exponential-Lévy models?. To find this trans-
formation consider a Lévy process X with triplet equal to (02,7,7), a real number § € R?
and a the Lévy measure v, which satisfy f\z\>1 e’ v(dz) < oo. Then, we apply the measure
transformation of proposition 4.8 with ¢(x) = 6X and we obtain an equivalent probability
under which X is a Lévy process with: zero Gaussian component, Lévy measure 7(dz) and
drift 7, respectively equal to 7(dz) = e®®v(dx) and ¥ = v + f_ll z(e?® — 1)v(dz). Hence,
using the proposition 4.8, we can find that the Radon-Nikodym derivative corresponding to
the Esscher transform is equal to:

dQ|E: efXe _ OXey (Ot
dP|r,  Elef%]

where () = —In E[e?X1] is the log of the moment generating function of X; which, up to
the change of variable 6 <> —if, is given by the characteristic exponent of the Lévy process
X.

In the Esscher transform we consider the exponential-Lévy model via ordinary exponential
to find the equivalent measure but we can also consider the exponential-Lévy model via the
stochastic exponential ? since these two definition are equivalent. However, the set of Lévy
processes that lead to arbitrage-free models with the form of ordinary exponential could
be different from the set of arbitrage-free models defined with the stochastic exponential.
Therefore, it will be convenient find the arbitrage-free condition using the stochastic expo-
nential and then find the condition for the ordinary exponential using the transformation
X: :=In&(Y:). The exponential-Lévy model is arbitrage-free if we have one of the following
case:

i. X has a nonzero Gaussian component: o > 0;
ii. X has infinite variation: f_ll |z|v(dr) = oo
iii. X has both negative and positive jumps;
iv. X has positve jumps and negative drift or negative jumps and positive drift.

Therefore, the above four case could be written as the following proposition:

Proposition 4.9 (Absence of arbitrage in exponential-Lévy models) Let (X,P) be a Lévy
process. 1If the trajectories of X are neither almost surely increasing or decreasing, then
the exponential-Lévy model given by S; = e"*TX¢ is arbitrage-free. Therefore, there exists a
probability measure Q equivalent to P under which (e ="' S)o<i<7 is a Q-martingale (where
T is the interest rate).

Proof

i. (X has a nonzero Gaussian component) Let X be a Lévy process with characteristic
triplet (02,v,7). As in the Black-Scholes model, an equivalence martingale measure can be
found by changing the drift and without changing the Lévy measure when o > 0. Therefore,
we consider the case when o = 0 and the function ¢(z) = —22. Then, we apply the measure
transformation of the proposition 4.8 at the function ¢(z) and we find an equivalent prob-
ability measure under which X is a Lévy process with zero Gaussian component, the same
drift coefficient and Lévy measure equal to 7(dz) = 67121/(6158). Hence, we can assume that

2Defined in chapter 2.
3Defined in chapter 2.
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v has exponential moments of all orders since 7 has exponential moments of all orders.

iii. (X has both negative and positive jumps) Consider the Lévy triplet find by the
Esscher transform is (0,7,7), with #(dz) = e?®v(dz) and ¥ = v + fil z(e? — 1)v(dz). For
eX to be a martingale under the new probability, the following equation must be satisfied:

Therefore, we substitute 7 and 4 and we find:

1 0o
0% Jr/ z(ef" — 1)v(dz) +/ (e —1-— z1|l|§1)eezl/(dx) =0

0 -
/ z(e?" — 1)v(dzx) +/ (" —1-— x1|x|51)eezu(dx) = —y (4.15)
-1 —o0
=19
-y = f(0)

By the dominated convergence, we have that f is continuous and that its first derivative
is greater or equal to 0: f/(f) = [*_x(e” — 1)e’v(dx) > 0. This imply that f(6) is an
increasing functions. Moreover, if v((0,00)) > 0 and v((—o00,0)) > 0, then f’ is everywhere
bounded from below by a positive number. Hence, f(+00) = 400, f(—o0) = —oo and we

have a solution.

iv. (X has positive jumps and negative drift or viceversa) We consider only the case
when v((—o00,0)) = 0, since the proposition is symmetric. In this case, we still have that
f(+00) = 400 but we need that , lim f(0) # —oo, hence:

——00

oo

lim (e —1— x1|w‘<1)eexu(dx) =0
0——0c0 Jo -

lim z(ef" — v(dz) = / zv(dz)
0——o0 Jg 0

The first limit always converges to zero. On the other hand, the second limit above has a
solution if [ zv(dx) = oo (it goes to —oo as § — 0c), otherwise it converges to — [~ zv/(dx)
which is the difference between ~ and the drift of X in the finite variation case. Therefore,
in the finite variation case a solution exists if X has negative drift. Hence, we can conclude
that a solution exists unless v((—00,0)) =0, [, zv(dz) < oo and the drift is positive.

O

When we find two equivalent probability measure and we want to measure the proximity
of them, we can use the Relative entropy. Let (€2, F) be the space of real-valued discontinuous
cadlag function defined on [0,7], F; be the history of path up to t and P and Q be two
equivalent probability measure on (€, F). Then, we can define the relative entropy of Q

with respect to IP as:
dQ
dP] = Ee [d]P’ In dIP] (4.16)

If we consider a strictly convex function: f(x) = xIlnz, we can write the equation (16) as:

E(QP) = Fs [f (fgﬂ

We can note that the relative entropy is a convex function of Q and that it is always
nonnegative £(Q,P) > 0 due to the Jensen’s inequality *. In fact, £(Q,P) = 0 if and only if

£(Q,P) = Eqg [m dQ, 40

4Defined in chapter 1.
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d
d—% = 1, almost surely.

The following proposition shows the relative entropy of Lévy processes when the measures
are generated by the exponential-Lévy models:

Proposition 4.10 (Relative entropy of Lévy processes) (Proposition 9.10 in [2]) Let Q and
P be equivalent measure on (Q, F) generated by exponential-Lévy models with Lévy triplet
(0%, vpyp) and (02, vg.yg). Assume o > 0. Then, the relative entrapy E(Q,P) is given by:

2

E(Q,P) = ;{7@ - — /11 z(vg — V@)(dw)} +
T/ (dVQl g dy@) vp(dz) (4.17)

dvp  dup duvp

If Q and P correspond ro risk-neutral exponential-Lévy models, the equation (4.17) becomes:

2@ 2 = ] [ - Dive v} +

— 00

T/ <dVQ lnd& +1- dVQ) vp(dx) (4.18)

dvp  dup dvp

Proof

Let (X;) be a Lévy process and we can define S; = eXt. We can note that the filtration
generated by X; and S; are the same. Therefore, we can compute the relative entropy of
the log-prices processes. Hence, we use the Radon-Nikodym derivative define in equation
(9) and we find:

€= / w S2ap = B [Ure"r)

where Uy is a Lévy process with Lévy triplet (o7, vy, vy ), which are defined by the point
a. b. c¢. of the proposition 4.6. Now, consider the characteristic function ¢;(z) equal to
¢1(z) = Ep [Ure*Ur] = e(*), where 9(z) is the characteristic exponent. Then, we can
write the expectation above as:

d ,
B [Ure""] = —i—-¢r(—i) = —iTe™ "9/ (—i)
= —iTY' (=) EpleV"] = —iTy’'(—i)
From the Lévy-Khinchin formula 3 we now that:

oo

V'(2) = —apz +ivw + / (ize'™™ — il |y)<1) vu(dz)

— 00

Then, we substitute and we find the relative entropy as follow:

oo

£ = faUTJrfyUTJrT/ (ixeim - i:z:lmgl) vy (dx)

— 00

52
_ TTn2 + T/ (ye¥ — e¥ +1)(vpo~ 1) (dy)

2
T 2 dI/Q dll@ dV@
= T (= 2E2m=—"+1-"2) 1
2 + /(dV]P ndup + duvp ve(dz)

where 7 is chosen such that: yg — vp — f_ll z(vg — vp)(dx) = o?n. Since, we assume that
o > 0 we can write the first term on the above equation as:

2

T T .
502772 = M{’Y@ — TP = / z(vg — V@)(dx)}

—1

5Theorem 2.2 in chapter 2
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which leads to the equation (4.17).
Now, consider the case where P and QQ are martingale measures. Then, we can express the
drift v using o and v as:

g(,%f _ T{ / T g - v@(dw)}z

2
20 oo

which leads to the equation (4.18).

4.2 Option Pricing

The modern finance is centered on the pricing of derivative instruments, which are instru-
ments whose payoff is a function of the value of another financial instruments (such as
commodities, currency, bond, stock), also called underlying asset. The derivative itself is a
contract between two or more counterparties and the derivatives traded directly between two
counterparties are called over-the-counter (OTC) derivatives, which contrast with exchange-
traded derivatives where an exchange matches buyers and sellers and each counterparty faces
the exchange on the contract.

One of the most popular derivative contract in the world is the option contract. An option
is a contract between a buyer and a seller that gives at the purchaser of the option the right,
but not the obligation, to buy or to sell a particular asset at an exercise date at an agreed
price (exercise price). Later in this chapter, we denote with K the strike or exercise price,
with 7" the exercise date or maturity and with St the value of the asset at the maturity. On
one hand, we have a call option when we have the right to buy an asset S for K at time T
and we can represent its payout at time T as:

Cr =max (Sr — K,0) = (Sp — K)* (4.19)

on the other hand, we have a put option when we have the right to sell an asset S for K at
time 7" and we can represent its payout at time T as:

PT — max (K - ST,O) = (K - ST)+ (420)

In the market we can find two type of option contract: European option and American
option. In the European option, we can exercise the option only at the maturity, instead in
the American one, we can exercise the option at any time ¢, with ¢t < T.

Consider an asset S and an European call option (for the rest of the chapter we consider
only the European option type) with underlying asset S and maturity 7. Let Cy(T, K) be
the price of the call option on S with strike K, V¢t € [0,7]. Then, follow Merton, we can
decompose the price of the call option in the following way:

Ot(T,K) = max(St - K,O)+Ct(T,K) *maX(St *K,O)

intrinsic value extrinsic value

We use the notation of C/ (T, K) to identify the intrinsic value and CE(T, K) to identify
the extrinsic value. We can note that for every time ¢ such that 0 < ¢ < T, the extrinsic
value CF(T, K) is always positive and the intrinsic value C{ (T, K) is never negative. If we
consider the case when ¢ = T, the extrinsic value is zero and the value of the call option is
equal to the intrinsic one:

Cr(T,K) = max (Sp — K,0) = CL(T, K)
Therefore, we can say that a call option at time ¢ is:

e in the money (ITM) if S; > Kj;
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at the money (ATM) if S; = K;
e out of the money (OTM) if S; < K;

deep in the money if S; > K;

deep out of the money if S; <« K;
e just in the money or just out of the money if S; = K;

We can note that for the ATM and OTM call option we have only the extrinsic value and
that this terminology is still valid for the put option with a little bit of change in the notation.

Consider a call and put option at time 7. It easy to note that the two payoff are never
negative since we want the maximum between zero and the difference between the underlying
asset and the strike price in the call option (vice versa for the put option):

Cr(T,K) = max (St — K,0) >0 and Pr(T,K) = max (K — S7,0) >0

Hence: Cy(T,K) > 0 and P,(T,K) > 0. Moreover, if we study the behavior of the strike
price, which can go either to zero or infinity, we will find how the put and call option behave:

limy, 0 limy, 00
Call max (St — K,0)=S7r max(Sr—K,0)=0
Put max(K —S7,0)=0 max (K — S7,0) =00

Let V;4(T, K) be the value at time ¢ of the forward contract 8 with delivery price K.
Then, we can define the forward price F'(¢,T') at current time ¢ < T to be the delivery price
K such that Vi(T, K) = 0, in other words, such that the forward contract has zero value at
time t. Therefore, we find the following relationship:

Vi(T,K) = (F(t,T) = K)e """

Now, we can find how the price of a call and a put of the same strike are related with the
value of the forward:
(T, K) - PA(T, K) = Vi(T, K) (4.21)

The above equation is called Put-Call Parity, which states that long one call and short one
put is equal to go long to one forward. After some transformation, the Put-Call Parity can
be written as:

C(T,K) — P,(T,K) =8, — Ke """~ (4.22)

The Put-Call Parity is important for three reason. First, it is an arbitrage-free condition.
In fact, any violation of the Put-Call Parity leads to an arbitrage opportunity. Second,
when we want pricing an option, we can focus only in a call (for example) and then find the
price of the put using the Put-Call Parity. Third, the Put-Call Parity is model-independent,
which means that this parity relationship between the values of put and call options holds,
regardless of the model assumed for the evolution of the price of the underlying asset or
arbitrage opportunities occur.

Consider two call option with two different strike price: Cy(T, K;) and Cy(T, Kz). If
K; < K, then we have that Cy(T,K;) > Cy(T,K>) and P/(T,K;) < P,(T,K3). This
result follows from the monotonicity theorem. Moreover, if K7 < K, we will find that
Ci(T, K1) —Cy(T, Ky) < e "I (Ky— K;) and P,(T, Ko) — P(T, K1) < e "= (K, - K;).
Therefore, combining this two result, it is easy to see that:

Ci(T, K3) < Cy(T, K1) < C(T, K») + e " T (K, — Ky)

6 A forward contract (or forward) is an agreement between two counterparties to trade a specific asset at
a certain future time T, called maturity, and at a certain price K, called delivery price.
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Since e "(T=% does not depend on K; or K,, we can say that Cy(T,K) is a Lipschitz
continuous” function of K with Lipschitz constant e="(T=*. Moreover, if K| # Ks, we have
the following arbitrage relation for the call option:

_er(T—t) Ci(T, K3) — Cy(T, K1)

<0
Ky — K,

Finally, consider an european call option Cy(T, K) with underlying S and let K; < Ko,
K*=XK;+ (1 —X)K> and let A\ € [0,1]. We can show that the price of the call option is a
convex function of the strike price K; therefore, for each A € [0, 1], we have:

Co(T, K*) < ACy(T, K1) + (1 — NC(T, K>)

We can note that the function z* = max (0, ) is convex, hence for each z,y € R and for
each X € [0, 1], we have that:

Amax (0,z) + (1 — M) max (0,y) > max (0, Az + (1 — N)y)
therefore, for each St we have the following inequality:
MSt — K1)+ (1 =N (St — K1)t > (St — AK1 — (1 = M) Ky) ™"

We see later that when there is a jump in the asset trajectories, the call option in the money
can become out of the money and that the jump could transform the convex payoff into a
concave one. This imply that the delta-hedging is not possible in reality when the jump
occurs.

4.2.1 Pricing European Option in Black-Scholes model

In the Black and Scholes model the behavior of prices is a continuous time model with the
assumption of one risky asset (denoted by S; at time t) and a riskless asset (denoted by S
at time t). Moreover, we assume that the risky asset will not pay dividend and that the
behavior of the riskless asset is expressed by the following ordinary differential equation:

dsp = rSPat (4.23)

where r is an instantaneous interest rate and it is a non-negative constant. We also set that
S§, which imply that SP = e™ for t > 0. On the other hand, the behavior of the risky asset
is determined by the following stochastic differential equation:

where By is a standard Brownian motion defined in the probability space (Q, F, (F;)o<t<T, P)
and p and o (called the volatility of the asset) are two constant, which are bounded and
locally Lipschitz continuous. We consider the model valid for the time interval [0, T, where
T is the maturity date of the option. Equation (4.24) has a closed-form solution equal to:

S, = Syeln—% )t+oB: (4.25)

where Sy is the spot price at time 0. Moreover, we can note that S; has a lognormal law,
which imply that (S;) is a solution of an equation of the type (4.24) if and only if the process
(log (St)) is a Brownian motion. Therefore, we can find three properties, which can express
in concrete terms the hypotheses of Black and Scholes on the behavior of the stock price.
Hence, the risky asset has the following properties:

i. continuity of the sample paths;

ii. independence of the relative increments: if u < ¢, the relative increments (S; —S,,)/S.,
is independent of the o-algebra o(S,,v < u);

"Defined in the appendix A.7
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iii. stationary of the relative increments: if u < t, the law of the relative increments
(St — Su)/ Sy is identical to the law of (S;_, — So)/So.

Now, we need to show that there exist a probability equivalent to P under which the dis-
counted stock price is a martingale. Therefore, we need to introduce the following theorem,
called Girsanov theorem:

Theorem 4.2 (theorem 4.2.2 in [1]) Let (0, F, (Ft)o<i<T,P) be a filtered probability space
and (Bi)o<i<r an Fi-standard Brownian motion. Let (6;)o<i<r be an adapted process sat-

isfying fOT 0%ds < 0o a.s. and such that the process (L;)o<i<T defined by

t 1 t
L, =exp (—/ 0,dB, — 5/ Hgds) (4.26)
0 0

is a martingale. Then, under the probability P\X) with density Ly with respect to P, the
process (Wy)o<i<r defined by Wy = By + fot 0sds is an Fy-standard Brownian motion.

A detailed proof can be found in chapter 5 of "Stochastic Calculus for Finance II" written
by Shreve

If we define the discounted value as S; = e~ "S,, we find:
dS; = —re "' Sydt + e~ "'dS,
We can substitute inside the above equation the equation (4.24) and we find:

dS; = —re " Sdt + e "H(S, (udt + odBy))
= —re "'S,dt + e " S pdt + et S,0d B,
= e Sy (—rdt + pdtodBy)
=S, ((p — r)dt + 0dBy)

If we set Wy = By(u — r)t/o, we can rewrite the above result as:
dS’t = StO'th (427)

Now, if we apply the theorem 4.2 with §# = (u—r) /0, we will find the probability Q equivalent
to P under which (W;)o<;<7r is a standard Brownian motion. Then, under the probability
Q, we can note from (4.27) that (S;) is a martingale and that:

~ ~ 24
S = Spe?™We 5

Finally, we can price an option and, in particular, we will focus on European option and for
simplicity we use the notation of h = f(z) = (z — K)T for the call option. Moreover, we
will focus only on admissible strategies defined as:

Definition 4.1 (definition 4.3.1 in [1]) A strategy ¢ = (Hy, Hi)o<i<T is admissible if it is
self-financing and if the discounted value Vt(qﬁ) =H + H,S, of the corresponding portfolio
is, for all t, non-negative, and such that SUP4e0,7] V, is square-integrable under Q.

Hence, an option is said to be replicable if its payoff at maturity is equal to the final value
of an admissible strategy. It easy to note that an option defined by h is replicable, if it is
square-integralbe under Q. In particular, when we consider a call option, this property hold
since Eg[S%]; on the other hand, if we consider a put option, h is bounded.

Theorem 4.3 (theorem 4.3.2 in [1]) In the Black-Scholes model, any option defined by a non-
negative, Fr-measurable random variable h, which is square-integrable under the probability
Q, is replicable and the value at time t of any replicating portfolio is given by:

Vi = Bole "™ VhF)

A detailed proof can be found in chapter 4 of "Introduction to Stochastic Calculus applied
to Finance" written by Lamberton and Lapeyre.
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Hence, the option value at time t can be defined by the expression Eg [e*T(T’t)h | ]-'t].
When the random variable h can be written as h = f(Sr), we can express the option value
V; at time t as a function of t and S;. Then, we have:

Vi = Bq [T f(Sr)

ft]]

= Eg [e—r(T—t)f (SteT(T—t)ea(WT—Wt —“—;(T—t)) ‘ ]_-t]

We can note that the random variable S; is F;-measurable and, under the probability Q,
Wy — Wy is independent of F;. Therefore, we conclude that:

‘/t = F(taSt)

where )
F(t,z) = Eg [e_T(T_t)f (a:e7'(T_t)e”(WT_W‘ _%(T_t))} (4.28)

Since, underQ, W — W, is a zero-mean normal variable with variance T — t, we have:

efr(Tft) 0
v 21 o

Consider a call option, where F(z) = (x — K)™, then the equation (4.28) can be rewritten:

F(t,z) = f (xe(rf%(Tft)wym) e,gdy

F(t, 1,‘) = EQ |:6T(Tt)f (zeG(WT*Wt)ﬂ’(T*%)(Tft) _ K) +:|
el

where ¢ is a standard Gaussian variable and 6§ =T —t. Then, we can set:

1n(£)—|— 7“+"—2 0
Ay = — 2 g\(/a 2) and dy = dy — o\/0

Therefore, we find with this notation

02
F(t,x) =F K:ce‘”/gg*Te - Kefre) 1g+d220]

?/2

+o0 2 -5

_ oVog—22 o 77'0) e 2
= e 2 Ke dy
/dz < vV 2T

_v2

do 2
_ oVbg— 22 —7‘9) e 2
= ze 2 — Ke d
/_OC< 2T Y

_y2 _y2
2

da 5 Y da
_ 0’\/@97079> e 2 o —ro\ €
= xe 2 — Ke 7(1
/ ( V2T _ ( ) V2 Y

— 00 oo

M)

Now, in the first integral we use a change of variable with z = y+0+v/0 and the last equation
above become:
F(t,z) = xN(dy) — Ke " N(dy) (4.29)
1 d
where N(d) = F/ e~ /2dz is the Gaussian cumulative distribution function. The
™ J—c0

equation (4.29) is the price of the call option in the Black-Scholes model. On the other hand,
the price of a put in the Black-Scholes model is equal to:

F(t,z) = Ke " N(—dy) — xN(—d) (4.30)
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4.2.2 Pricing European Option in exponential-Lévy models

Let (St)o<t<T be a stochastic process, which describe the asset price behavior and let
(Q, F, (Ft)+, P) be a probability space, where P; represents the history of the asset price. We
saw in the previous section that, in the Black-Scholes model, the dynamic of an asset price
is given by equation (4.25), which can be rewritten as:

Sy = SpeB (4.31)
where BY = (u — %2) t + oW;. If we apply the Ito formula, we will find:

ds
?t = pdt + odW, = dB} (4.32)
t
where B} = ut + oW,. Therefore, we find two ways to define the risk neutral dynamics:
select the exponential as in (4.31) or select the stochastic exponential as in (4.32). If we
replace the Brownian motion with drift by a Lévy process, we will find a class of risk neutral
models with jumps. Hence, if we make this substitution in (4.31), we will find:

Sy = Spet

This model is called exponential-Lévy model. In order to use this model to price an option,
we want that the discounted value of stock price is a martingale. Hence, we need to impose
an additional restrictions on the characteristic triplet (o2, v,~) of X:

/ e*v(dz) < +o0
|z]>1

o2
Therefore, we can conclude that (X;)¢>o is a Lévy process such that Egl[eXt] =1 for all ¢.
On the other hand, we can replace B} in (4.32) by a Lévy process Z; and we find:

dS; = rSy-dt + Sy-dZ,

then S; corresponds to the stochastic exponential of Z. If we want that the discounted stock
price is a martingale, we need that the Lévy process Z; satisfy F[Z;] = 1.

The price of a call option can be expressed as the risk-neutral conditional expectation of
the payoff:
Ci(T, K) = e """V Eg[(Sr — K)*|F) (4.33)

In an exponential-Lévy model with the stationary and independence of increments property,
the equation (4.33) could be rewritten as an expectation of the process at time § =T — :

C(T=t+6,K)=e"E[(Sr — K)"|S; = 5]
= e_reE[(Sere+X9 - K)*1]
= Ke "E[(e®tX —1)7] (4.34)

where z = In (%) + 70 is the log-forward-moneyness. When the option is at the money, x is
equal to 0. Therefore, we can note that the call option price in the exponential-Lévy model
depends on the time remaining until maturity and it is a homogeneous function of order 1
of S and K.

Now, if we define the relative-forward option price, we can see that the structure of the
option price in exponential-Lévy models is parametrized by only two variables. Therefore,
we define the relative-forward price in terms of the relative variables u(7, z):

0 _
u(0,z) = = el ;(t +6K)

(4.35)
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and if we substitute in the above equation the result in (4.34), we can conclude that the
structure of the option price is:

u(,x) = El(e" — 1)*]

This result is a consequence of temporal and spatial homogeneity of Lévy processes. More-
over, we can rewritten u(6,-) as the convolution product between the payoff function h and
the transition density of the Lévy process pg: u(f,) = pg * h. Thus, if the process has
smooth transition densities, u(f,-) will be smooth, even if the payoff function A is not.

Now, consider an exponential price process of the form:
St — Soeut+0'Wt+Yt

where Y; is compound Poisson process, defined in chapter 2 (definition 2.2). Therefore, the
process S can be written as:

Nt
Sy = Spexp (ut + oW + Z Zi>

i=1

Ny
= Soeut+UWt H €Zi

i=1

= GpetttoW H eAYt, te Rt
0<s<t

from relation AY; = Zn, AN, (defined in chapter 2). The process (St):er is equivalently
given by the log-returns dynamics:

dlog S; = pdt + odWy + dY; te Rt
Then, in exponential model we have:

2 2
S, — Soe(u%)t+owtf%+n

and the process S, satisfies the stochastic differential equation:
2
dSt = (/,L + 2) Stdt + O'Stth + St— (eAY" — 1)dNt
2
= (lu + (;) Stdt + O'Stth + St— (BZNt — 1)dNt

We can see that the process S; has jump size equal to: S, (e?N+ — 1). In order for the
discounted price process (e7"tSy)ter to be a martingale, we need to choose a drift parameter
ii € R, intensity A > 0 and jump distribution 7 satisfying the equation:
p—r=0ofi—\E|Z]
Therefore:
u—i—?—rzoﬂ—)\E;,[e —1]

under this condition we can choose a risk-neutral probability P; 5 ; under which (e™""S¢)ier
is a martingale, for simplicity of notation we denoted the probability IP’/1 5.5 With Q. Then,
the discounted expected value with respect the new probability measure represent a non-
unique arbitrage price at time ¢ € [0,T] for the contingent claim with payoff f(St), hence

we have
e "D Eg [ £(ST)|F)
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Set § =T — t. Then, we can express this arbitrage price as:

e TV Eg[f(S7)|F] = 7" Eg[f (Soe! T+ VT YT | F]
_ e—rGEQ[f(Soeu(T—t)—i-o(WT—Wt)—i-WT—Yt)|]:t]

N
f <ac exp (,uQ +o(Wpr —Wy) + Z ZZ>>

i=Ni+1
o—TO—0X Z Eo |f <x6H9+U(WTWt) exp (Z Z))
=1 s
Z,

f (xeuo-‘ra(WT_Wt) exp <Z Z>>
=1

= e_TGEQ

_ o —0(r4N) ()\e)n
=€ Z 771! E@
n=0

4.2.3 Implied Volatility

One of the main advantages of the Black-Scholes formula is the fact that the pricing formula,
as well as the hedging formula, depend only on one non-observable parameter: the volatility
o. In fact, the drift parameter p disappears by changing the probability measure. In the
Black-Scholes model ¥ = 0 and the call option prices are uniquely given by the equation
(4.29):

F(t,z) = CB% =aN(d)) — Ke "' N(dy)

If we fixed all the parameters of the equation (4.29), we see that the value of the call
in the Black-Scholes model is an increasing continuous function of o, mapping ]0, co| into
1(S; — Ke~"?)*,S[. The last interval represent an arbitrage bound for a call option prices.
Therefore, we can defined the Black-Scholes implied volatility of the option, denoted by

IV(T,K), as the value of the volatility of the underlying instrument, which when sub-
stituted into the Black-Scholes formula, will return the correct option prices, denoted by
CHT, K):

NeV(T,K) >0, CPYS,K,0,6IV (T, K))=C;(K,T)

We can note that, for fixed (T, K), the implied volatility is in general a stochastic process.
Furthermore, if we fixed ¢, we will ﬁnd the implied volatility surface at date ¢, which is
equal at the function of" : (T, K) — o!V(T, K). This means that, for fixed ¢, the implied
volatility value depends on the characteristics of the option such as the maturity and the
strike price, respectively equal to T and K. Moreover, if we substitute the moneyness m (i.e
m = S%) into the implied volatility surface, it can be represented as a function of moneyness
and time to maturity: I,(6,m) = ofV (t+6,mS(t)). In general, the implied volatility surface
I,(0, m) may depend not only on the maturity of options but also on the current date or
the spot price. However, in the exponential-Lévy models the evolution in time of implied
volatilities is particularly simple, as shown by the following proposition:

Proposition 4.11 (Proposition 11.1 in [2]) When the risk neutral dynamics is given by an
exponential-Lévy process, the implied volatility for a given meneyness level m = Sﬁt and time
to maturity 0, i.e 0 =T — t, does not depend on time:

vVt >0, IL(0,m)=1Iy(0,m)

Proof
Consider the value of a call in an exponential-Lévy model, given by the equation (4.34):

C(T=t+0,K)=Ke "E[(e*"Xe —1)7]
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If we divided both term by S; and we substituted the moneyness and the log-forward-
moneyness, we find:

C(T=t+6,K) Ke "E[(e"tXe —1)¥]
St St
— mefr0E[(61n(%)+r9+Xg _ 1)+]
mefreE[(mflereJng o 1)+}

= g(arm)

that is, the ratio of option price to the underlying which depends only on the moneyness and
time to maturity. We can do the same for the price of the call option in the Black-Scholes
model and we find:
CBS
St

this is true because the Black-Scholes model is a particular case of the exponential-Lévy
model. Therefore, the implied volatility I;(6, m) is defined by solving the equation:

=g"”%(0,m,0)

CP% = Si9(0,m) < g"%(0,m, 1,(6,m)) = g(0,m)

Since each side does not depend on ¢ but depends only on (6, m), we can conclude that the
implied volatility for a given time to maturity 8 and moneyness m does not evolve in time:

vVt >0, I,(0,m)=1y(0,m)
]

However, we can note that the implied volatility for a given strike price, K, is not constant
in time. In fact, it evolves stochastically according to:

K

We can note that the implied volatility surface I; does not vary with ¢, therefore we can study
only the case in which ¢ = 0. This study explain some features of the implied volatility surface
in the exponential-Lévy model. First, a negative skewed jump distribution give rise to a
skew in implied volatility, hence the skew decrease characteristic with respect to moneyness.
On the other hand, a strong variance of jumps leads to a curvature in the implied volatility,
hence we can see smile pattern. Second, exponential-Lévy models and, in general, model
with jumps in the price lead to a strong short term skew contrarily to diffusion models which
have small skew for short maturities. Finally, in a Lévy process with finite variance we can
see the effect called aggregation normality, which is when long maturity prices of options
will be cloeser to Black-Scholes price and the implied volatility smile will become flat as
T — oo. In particular, the central limit theorem shows that when the maturity 7" is large,
the distribution of (X7 — E[X7])/VT becomes approximately Gaussian. This effect is more
pronounced in exponential-Lévy models respect to the actual market prices.

4.3 Hedging Strategy

Consider an asset prices (S¢)¢cjo,r] and a market described by a filtered probability space
(2, F, (Ft)eepo,), P), where (Fi)ie(o, 1) is the history of the assets, P represents the so-called
real-word measure and S; will be one dimensional. We assume that there are two assets in
the market: a riskless asset, described by the following differential equation dS) = rSpdt,
and a risky asset, S;. Let SY = €™ be a numeraire. Then, we denoted by V; the value of a
portfolio and by V; its discounted value, which is equal to V; = V,/Sy.
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4.3.1 Black-Scholes Hedging
Consider the Black-Scholes model, which is described above (4.2.1). Therefore, the behavior
of the stock price is represent by equation (4.25) :

2
St = SQG(M_67)75_'_01/‘/t

and the price of call option in the Black-Scholes model are equal to the equation (4.29):

CBS(t,8) = SN(d) — Ke "N (dy) (4.36)
In(£) + (7‘+%2>9
and dy = di — oV/0.
oy 2 1
Let V be the value of a portfolio of derivative securities on one underlying asset. The rates

of change of the value of the portfolio with respect to the spot price S of the underlying
asset is important for hedging purpose. This change is called "Delta" and is equal to:

where 6 =T — ¢t and d; =

ov

Then, the delta of the call option described in equation (4.36) is equal to:

acBS’
A BSy _
(€)= —g
= N(d) + S oL (N(dh)) ~ Ke ™" - (N(dy)) (4.37)
I TSR as+ 2 ‘
If we apply the chain rule, we obtain that:
0 0dy
(V) = N'(d) S
0 . Ody
SS(V(da) = N'(da) 52
Therefore, we can write equation (4.37) as
A(CB%) = N(dy) + SN’(dl)@ - Ke *T"N’(dg)adQ (4.38)
oS oS
Now, recall that d; and ds are equal to:
d 7ln(%)"_(?“’_%)oiln(%)—i—reJrU\/é (4.39)
e oo - oo 2 '
In (i) +r0 oo
dy = dy — oV = —K - 4.40
2 1—0 U\/@ 9 ( )

Lemma 4.1 Let d; and dy be given by equation (5.4) and (5.5). Then, we have the following
result:
SN'(dy) = Ke "' N'(dy)

Proof

Recall that N(d) = —
\ﬁ

/ ~2*/24 is the Gaussian cumulative distribution function. Tt
is easy to see that N'(d) =

1 —d?)2
752¢ , hence we find

1
N,(dl) = 7%67d?/2

1
N’(dQ) = 7%67d§/2
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Therefore, we need to show that the following formula is true:

2 2
Se—d1/2 — Fe—r0,—d3/2

can also be written as
Sere

K

Now, if we substitute equation (4.39) and (4.40) in the left term of the above equation, we
find:

_ (d—d3)/2

2
& d2=d? - (dl—a\/§>
=& — d? + %0 4 2d10V0

1n(§)—|—7‘0 oV
—2( 5\/5 + 2)0\/07029

2 (m (f;) " ra)
ro o o
SL — e(d1_d2)/2

e (in(£) 40)

Therefore, we have

_ Ser&
K
O
From (4.39) and (4.40), we find that
Ody  0dy 1
b 4.41
S — 9S50 (441
Using equation (4.41) and lemma 4.1 in the equation (4.38), we find that
od ad
BS\ __ / e —7r0 N/ o2
Ody  0dy
p— / —_—
= N(dy) (4.42)

Hence, we have found that the delta for an European call option in the Black-Scholes model
is equal to the cumulative distribution function of a standard normal variable evaluated in d;.

The delta in an option is important because helps to build the so-called "delta hedging".
Assume that we go long in one call option. If the price of the underlying asset declines,
the value of the call decreases and the long call position loses money. To protect against a
downturn in the price of the underlying asset, we can sell short A units of the underlying
asset. The goal of the delta hedging is to choose A in such a way that the value of the
portfolio is not sensitive to small changes in the price of the underlying asset. Therefore, if
V' is the value of the portfolio, the value of the hedge portfolio is

V =C(tS)— AS,

We can note that a portfolio is delta-neutral only over a short period of time. When the
price of the underlying asset changes, the porfolio might become unbalanced.
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4.3.2 Merton Approach

The delta hedging in the Black-Scholes model is always possible since the market is complete
and, therefore, exists only one equivalent risk neutral probability. This is the main assump-
tion in the Black-Scholes model. Unfortunately, the market is not complete and there is not a
unique risk neutral probability because the asset has discontinuities, i.e jumps, in their paths.

The first application of jump process in option pricing was introduced by Merton®.
Merton considered the following jump diffusion model defined in the filtered probability
space (2, F, (Ft)eepo,1), P):

Ny
St = SO exp (/}Jt + O'Wt + Z K) (443)

i=1

where W, is a standard Wiener process, NV, is a Poisson process with intensity A independent
from W and Y; ~ N(m,§?) are i.i.d. random variables independent from W and N. Since
the model is incomplete, there exists many possible choices for a risk-neutral measure and
Merton proposed to change the drift of the Wiener process and keep the other variable
unchanged. Therefore, u is chosen such that S, = Se " is a martingale under the new
probability measure Q, which is the equivalent probability measure to P, and is equal to

2 2 2
uM:r—(;—)\E[eYi—l}:r—UQ—A[exp(m—&—(;)—l}

The equivalent martingale measure is obtained by shifting the drift of the Brownian motion
but leaving the jump part unchanged. Merton justified this choice by assuming that the
jump risk is diversificable and, therefore, no risk premium is attached to it. Then, an
European call option with payoff f(St) can be priced according to:

CM(t,8,) = e TV Eg[f(S1)| ] (4.44)
Set 8 =T —t. Then, we can express this arbitrage price as:

CM(t,Sy) = e "I EG[f(Sr — K)F|S, = 8]

= eireE[f (eNM9+UWIJV—t+E£V:T1_t YL)}

By conditioning on the number of jumps N;, we can express the value of the call option as
a weighted sum of Black-Scholes price, therefore we find:

f <Sexp <uM9+UW9M+Zn:Y¢>>

CM(t,S) =e" Z Q(Nt =n)Eg

n>0 i=1
— 6 n 2
=t O g [ (s et o)
-0 n
—) e NN ps
—e §>:07n! CP5(8,8,,00) (4.45)

where
. n 2.
LY, Y~ N(nm, nd?);
.o 2
i 02 =024 2

n

iii. S, = Sexp (nm + ”752 — Aexp(m + %) + )\9);

8 A brief introduction about the Merton model is given in chapter 2
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iv. 0B5(8,8,0) = e ™E [ f (se“—%)“o%)].

The point iv. is the value of the European call option with time to maturity € and payoff
f in a Black-Scholes model with volatility . We can note that if A = 0 then CM (¢, S) =
CPBS5(t,9), indeed all the terms appearing in the sum (4.45) are equal to 0, except for j = 0,
when Sp = S and o9 = 0.

The hedging portfolio proposed by Merton is the self-financing strategy (¢?, ¢;) given by:

M
o= (t,5,) (4.46)
t
o =05~ [ gas (4.47)
0

which means that we choose to hedge only the risk represented by the diffusion part. This
approach is justified if we assume that the investor holds a portfolio with many assets for
which the diffusion components may be correlated but the jumps components are indepen-
dent across assets. This hypothesis would imply that in a large market a diversified portfolio
such as S&P500 would not have jumps. Finally, the assumption of diversifiability of jump
risk is not justifiable if we are pricing index options, in fact a jump in the index is not
diversificable.

We can note that in model with jumps, contrarily to diffusion models, a pricing measure
cannot, be simply obtained by adjusting the drift coefficient.

4.3.3 Quadratic Hedging

We can define the quadratic hedging as the choice of a hedging strategy which minimizes
the hedging error in a mean square losses. This imply that losses and gains are treated in a
symmetric manner, therefore we measure the risk in terms of variance.

Consider a risk-neutral model (S¢);c(0,7] given by S; = €™, where X, is a Lévy process on
the filtered probability space (€2, F, (Ft):ep0,77, Q). We assume that S is a square integrable
martingale, therefore the following condition is satisfied:

/ ey (dy) < oo
ly|>1

Moreover, we assume that X; has finite variance and its characteristic function can be
expressed as:

2,2

E [ei“X‘] = exp {t [—0 Y

with by chosen such that S = eX is a martingale. As we have seen in the previous chapter,
Sy can also be written as a stochastic exponential of another Lévy process (Z;):

+bxt + /ux(dy) (e™v —1— iuy)] }

dS, = S,dZ,

where Z is a martingale with jumps size greater than —1 and it is also a Lévy process. Let
(99, ®t)ieo, 1) be a salf-financing strategy. In order to apply the quadratic hedging criteria,
we need to find portfolio such that its terminal value has a well-defined variance. Therefore,
we want that the asset S is in the set of all the admissible strategies defined as:

T 2
/ ¢td§t ] < o0
0

Using preposition 3.5 and the proposition 3.11, the above condition is equivalent to:

S = { ¢ caglad predictable and E

E

T T i
/ |¢t3’t|2dt+/ /22|¢t§t|2dtu(dz) < oo (4.48)
0 o Jr
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Let L?(S) be the set of process ¢ which verify the above condition (4.48). Therefore, the
terminal payoff of such strategy is equal to:

T T
Gﬂ@:A7¢W+1;@&w%

We can note that S, is a martingale under the probability measure Q and that ¢ € LQ(S),
therefore the discounted gain process, equal to GT(cb) = fg gf)dS’ , is also a square integrable

martingale. Using proposition 2.23 we find that G7(¢) is given by the martingale part of
the above equation:

T T
GT(d’) = /0 GiSi-odWy +/0 /ij(dt X dx)xdSs-
T T
= /0 D1Ss- odWy -I-/O /RjZ(dt X dz)p:S;- (7 — 1)

where J is the jump measure®. Now, we can written the quadratic hedging problem as:

inf  Eg [|C:T(¢) TV — ffﬂ (4.49)
beL?(S)

where H is defined by the equation (4.3), i.e H=Vy+ fOT $¢dS; Q-a.s. We can note that

the expectation of the hedging error is equal to Vy — Eg[H], therefore if we decomposed the
above equation into

Eq |[Vo — EolH]?| + Varg (Gr(¢) — H)

we will se that the optimal value for the initial capital is: Vo = Eg[f(ST)]-
Proposition 4.12 (proposition 10.5 in [2]) Consider the risk neutral dynamics

Q: dS, = S,-dz, (4.50)

where Z is a Lévy process with Lévy measure vy and diffusion coefficient o > 0. For a
European option with payoff f(St) where f : R* — R verifies

K >0, [f(z) - fy)| < K|z —y|

the risk minimizing hedge, solution of (4.49), amounts to holding a position in the underlying
equal to ¢ = A(t, Si-) where:

028C(t,8) + L [vz(dy)z[C(t, S(1 + 2)) — C(t,S)]

A(t,S5,-) = o2 + [ 22vz(dy)

(4.51)

with C(t,S) = e=" =Y Eg[f(S7)|S: = S].

Proof
We know that the discounted price S, is a martingale under the risk-neutral measure Q.
Consider a self-financing strategy given by a nonanticipating caglad process (¢, ¢;) with
¢ € L2(S). The discountend value of the portfolio (V;) is then a martingale whose terminal
value is given by:

~ T ~ T A
= / bud S — / 6.5, dZ,
0 0

T T
= / ¢t‘§tgth +/ / ¢tSthZ(dt X dZ) (452)
0 0 R

9Defined in chapter 2
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Now, we can define the function

C(t,8) = e 7TV Eg[f (S1)|Fi] = e " T~ Eg[f(S7)|S: = 9]
and its discountend value by C(t, S) = e~ "*C(t, S). We can note that C(t, S) = e~ " Eg[f(S7)|F]
is a square integrable martingale by construction and that C(t,.S) is continuously differen-

tiable with respect to ¢ ans twice continuously differentiable with respect to S. Therefore,
we can applied the Tto formula to C(t,S;) = e " C(t, S;) in the interval [0, ], and we find:

) . toc
C(t.80) = C(0,50) = | 5 (.5, )Su-0dW,
0

// (4, Su- (14 2)) = O, S )T (du x d2)

:/0 BS(US )Sy-odW,

+/0 /R [C(u, Sy-€") — C(u, Sy-)]JIx (du x dx) (4.53)

where (X;) is a Lévy process such that S, = Xt for all t. The payoff function f(Sr) is
Lipschitz continuous, this imply that also C' is Lipschizt continuous with respect to the
second variable:

Clt,z) — Clt,y) =" T-VE {f (zer(T—t)JrXT_t) _f <yer(T7t)+XT_t>}
< K|z —y|E [eX7t] = K|z — y|

since eXt is a martingale. Therefore, the predictable random function (¢, z) = [C(u, S, (1+
z)) — C(u, S,-)] verifies

t /ont /Rvddz)wu,z)p] _

E /0 alt/RuZ(dz)HC’(u,Su_(l—l-Z))—C(%Su—)“2

T
/ dt/zszl/(dz)] < 00
0 R

so from proposition 3.11, the compensated Poisson integral in (4.53) is a square integral
martingale. Then, if we subtract the equation (4.52) from the equation (4.53), we will find
the hedging error:

<FE

T
o) = [ (08 5 Ggte50)) o

+/0T dt/RjZ(dt x d2) 2008 — (C(1,5i-(1+2) — O(t,5,))]

where each stochastic integral is a well-defined, zero-mean random variable with finite vari-
ance. Finally, we can compute the variance of the hedging error thanks to the isometry
formula given by the preposition 3.5 and 3.11:

Bl =8| [ af uz<dz>|c<ust-<1+z>>—c<t,st->—zqstsit-F]

/0 52 <¢>t 8C(t S, )>202dt1 (4.54)

+FE
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We can note that the terms under the integral in the equation (4.54) are positive process
which are a quadratic function of ¢; with coefficients depending on (¢, S;-). Therefore, the
optimal risk-minimizing hedge is obtained by minimizing this equation respect to ¢, which
means that we find the first order condition:

P oC A .
St27 (¢t oS (t St )) / VZ(dZ)ZStf I:Z¢t5t7 — C"(t7 Stf (1 + Z)) — C(t, Stf) =0
R
whose solution is given by the equation (4.51).

O

If we consider an exponential-Lévy model, i.e. S; = Spe™*+X¢, the optimal quadratic hedge
can be expressed in terms of the Lévy measure vx of X as

azgg(t S)+ % [vx(dz) (e® — 1) [C(t, Se®) — C(t,5)]

A(t,S-) = o2 +f (e® — 1) vx (dz)

We can note that we have also found an expression for the residual risk of a hedging
strategy (47, ¢):

oC

¢ = 5o

T 2 .
Re(9) = E / (t, 5 >’ 8¢ at

T
VB /0 dt/sz(dz)|C(t,St7(1+z))—C(t,Stf)—z¢tSt7|

The residual risk allows us to examine whether there are any cases where the hedging error
can be reduced to zero, hence where we can achieve a perfect hedge. We find that in only
two case is possible achieve a perfect hedge. The first one, is when there are no jumps, i.e
v = 0. In this case, the residual risk is equal to:

T 80 2
/O (@St 5 S (1,5, >) dt]

and we find that £(¢) = 0 a.s when ¢; is equal to the Black-Scholes delta hedging. The
second case, is when o = 0 and there is a single jump size v = §, : X; = alVy, where N is a
Poisson process. In this case

e(¢)=FE

Ry(¢) = E |

/T dtStQ* |C(t7 St* (1 + a)) - C<t7 St*) - ¢t|2]

C(t,8, (1+a))—C(t,S, )

if we choose ¢; = =5

— and @) = e"'S;p; — et fot ¢¢dS;, we will obtain a
self-financing strategy (¢, ¢° which is a replication strategy:

T _ - T
f(ST)=V0+/O ott.5-0 J;;z) o 5, )dst+/0 réldt

We can note that the quadratic hedge achieves a mean-variance trade-off between the risk
due to the diffusion part and the jump risk.

Another solution proposed by Foller and Schweizer was to find a new martingale measure
Q¥ which is orthogonal to the probability P. If S, = M; + A; where M is the martingale
component of S under P, any martingale (N;) which is orthogonal to (M;) under P should
remain a martingale orthogonal to S under QFS. Such probability QFS is called minimal
martingale measure.

Consider now a jump diffusion model:

ds ol
S—t where Z; = ut + oW, + Z Y; (4.55)
t i=1
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with Y; ~ F' i.i.d random variable and N a Poisson process with intensity A, which implies
that E[N,] = At. Moreover, we assume that E[Y;] = m and Var(Y;) = 6%. In this case, the
minimal martingale measure exists if and only if

L+ Am—r
—l=n=5 w5 S
02 + A(62 +m?)
Zhang show this result in 1994'°.This assumption means that the risk premium in the asset
return should be negative. When this condition is verified, the minimal martingale measure
QF% is equal to
N,
dQFS B \  o2y2 t
5 —e onWr+AnmT =T H (1 o nt)NT
j=1

Therefore, the risk-neutral dynamics of the asset under Q" can be expressed as:

ds
i = rdt + dU,
N/
Up = Afp(m?® + 6%) = mjt + oW/ + Y~ AU; (4.56)
=1

where under QF¥: W/ is a standard Wiener process, N/ is a Poisson process with intensity
XN = A1 — nm) and the jump sizes (AU;) are i.i.d with distribution Fyy where dFy =
f:;’:;dF (z). Then, the locally risk minimizing hedge for a European option with payoff
f(ST), which verify the Lipschitz continuous property, for this jump diffusion model (4.55)
is given by ¢, = A(¢, S;-) where

o?28(t,8) + % [ Fdy)y(1 —ny)[C(t, S(1 +y)) — C(¢,9)]
o+ X [y?(1 —ny)F(dy)

with C(t,9) = e "IV Eyrs[f(Sr)|S: = S] is the expected discounted payoff taken with
respect to (4.56).

A(t7 St*) =

10in his PhD thesis "Analyse Numérique des Options Américaines dans un Modéle de Diffusion avev
Sauts"
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4.4 Comparison

We want to show that the hedging in the Merton model outperforms the hedging in the
Black and Scholes model, which are described in the section above. Before we talk about the
hedging strategy, we show that the Marton model also outperform the Black-Scholes model
to replicate the stock behavior from historical data. We consider the daily log-returns of
the Standard & Poor’s 500 Index (S&P500) in the period from 31-12-2009 to 29-01-20009.
There is a total of 2273 daily closing price and we have to deal with n=2272 log-returns.
Moreover, from the S&P500 data it is possible to find the following information:

ESP ~ 0.00036;
M5 ~0.0095;
5P ~ —0.4666 < 0:
k5P ~ 75614 > 3;
where F is the mean, s is the skewness and k is the kurtosis. In order to find a relationship
among the two models and the statistical result of the S&P500, we will work with an interval

of amplitude At, which can be defined as At = 1/252 ~ 0.004 where the denominator 252
represent the trading days in a year. Therefore, we can write the Black-Scholes model as

Alog S; = upsAT + ops AW, (4.57)

where AW, ~ N(0, At). While the Merton model can be written as:
Alog Sy = ppy AT 4 oy AW, + VAN, (4.58)
where V is the price ratio (> 0) associated with the i-th jump along the path of the stock

price and is equal to V' = log <;;Ti > ~ N(m, %) and AN; ~ Po(AAt). Then, the following

theorem described the relation arhong the parameter of the two model:
Theorem 4.4 (theorem 1 in [12]) Consider the equation (4.57), we find the following rela-
tion:

EPS = ppsit;
MPS = g% At;
MSBS:O:>SBS: 7MSBSS 2;
(fs)”
MBS
MP® =30pgAt> = k75 = —L .
(M)
while for the equation (4.58) we have
EM — iy At + mAAL;
My = o3 At + (62(1 + AAL) + m?®) AAY;
MM
MM = m(36% + m*)AAL + 6md*(AAL)?2 = M = 3 375
(hg1)”

MM = 3(02, A1) + (m* + 36 + 6m?52)NAL + (3m* + 216 + 30m?6%)(\AL)?
+ 603, At(85% + m?*)AAL + (1867 + 6m25?) (AAL)? + 603,52 At(AAL)?
MM
(p31)*

+ 3504 (MAYY = kM =

Proof
The quantities £%% and MP? can be derived immediately applying the properties of the

97



Brownian motion'!'. For the central moments MP° we recall that

MP® = E [(upsAt + 055 AW; — ppsAt)'] = opg E[AW]]

K2

since E[AW/] can be computed using the characteristic function of the normal random
variable AWy, i.e paw, (y) = 6*92%, we have

E[AW}?] =0, E[AW}]=3At?

this prove also the skewness and the kurtosis for the Black and Scholes model.

Switching to the Merton model, the mean term E* can be obtained recalling that AN, ~
Po(\At), while the central moments in M3, MM and MM are derived applying the fol-
lowing formula

MM = E [(uar At + 03, AW, + VAN, — ppg At — mAAt)Y]
=B [(03,AW; + VAN, — mAAt)]

We omit the detailed computation term by term for the above equation, however we can note
that we assumed that every variable is independent of the other. Moreover, the moments

X 2.2
of V and AN, are derived using the characteristic functions, i.e ¢y (y) = emy="4= and

dan, (y) = A =1) from which

E[V? =m?+§*
E[V3] = 3(m? + delta®)m — 2m3
E[V*4] = 36* 4+ 6m?(m? + delta®) — 5m*
and
E[AN?] = AAt + X2 At?
E[AN}?] = MAt + 3X2A + N3 AP
E[AN]] = MAt + TA2AL + 603 A 4 A A
0

Therefore, if we apply the theorem 4.4, we can find the vector of parameter for the Black
and Scholes model (ups,ops) and for the Merton model (upg,0ps, A, m,0). For the Black-
Scholes model we assume:

EBS — ESP M2BS — MéSP

so that
sp
= —— ~0.0922
UBS AL
MQSP
= ~ (.1
0BS A7 0.1507

we can recall that a normal distribution is completely determined by its mean and variance.
On the other hand, in the Merton model we have 5 parameters to estimate. We can reduce
this set assuming that

EM =B My = MFT

which implies that

B ESP —mAAt
UM = N
\/M25P — (62(1 + AAL) + m2) AA¢
oM = At

HDescribed in chapter 1
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hence, the diffusion paramters are expressed as function of the jumps ones and we have only 3
parameters to estimate. We use the Multinomial Maximum Likelihood approach to estimate
this 3 parameters, which can be represented as a 3-dimensional vectors n = (A, m,d). The
step of the Multinomial Maximum Likelihood approach can be summarized as follows:

1. sort empirical data into n < n bins, in order to get a computationally tractable prob-
lem. Then, for each of these bins, extract the sample frequency f°F, i =1, ... 7;

2. construct the theoretical jump diffusion frequency function
fiM(n)in/ baclysmdy i=1,...,7
B;

where B; is the i-th bin and ¥a¢(y;n) is the log-return probability density function
for the Merton model (described in chapter 2), i.e

s (At)j exp {f (y*(#fAkféé)t,jm)z }

2(02t+3562)

Gly) =e ™) /2 (ot + j6?)

Jj=0

3. minimize the objective function
7
== P log (FM (m).
i=1

Therefore, by the Multinomial Maximum Likelihood algorithm we obtain that
A~ 62.752; m ~ —0.006323; ¢ ~ 0.006291

hence, in the Merton model p, o, skewness and kurtosis are equal to:

ESP — mAAt

== T~ 0.48678

%378 AL
SP __ 2 2
_ \/M2 (2(1+ AAL) +m2) MAL o
At
M~ 1.4261

kM ~ 7.9952

We can note that the skewness is bigger than the one obtained using the real S&P500 data,
i.e. 1.4261 > —0.4666, but, unlike in the Black and Scholes model where s#9 = 0, the Mer-
ton approach tents to capture a clear absence of symmetry with the same sign. Moreover,
the kurtosis in the Merton model is very close to the one obtained using the real S&P500
data, while the Black and Scholes model provides poor result. Hence, we can conclude that
the log-normal jump diffusion model represents a substantial and concrete improvement
when compared to the Black and Scholes model.

Now, we compare the Black and Scholes hedging strategy, i.e. Delta hedging, with the
Merton hedging for the jump diffusion process. We consider the closing price of the S&P500
from 29-12-2017 to 29-01-2019 and we consider a call option with underlying the S&P500,
strike price equal to 2700 and maturity at 01-02-2019. Moreover, we assume that the risk-
free rate is equal to 2,98%, denoted by r.

For these period, we have a total of 272 daily closing price and we have to deal with n = 271
log-returns. From the log-returns we find the following information from the S&P500 data:

ESP ~ —0.0000468;
M5 ~0.0109;
s9P ~ —0.4333 < 0;
k5P ~ 59362 > 3;
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Therefore, the Black and Scholes parameters can be estimated as follow:

ES’P
= —— ~—0.011
1Bs AL 0.0118
MﬁgP
= ~ 0.172
OBS At 0.1723

The Merton parameter can be estimated using the Multinomial Maximum Likelihood algo-
rithm and we obtain that

A~ 3.1596; m ~ —0.04942; § ~ 0.0076

hence, in the Merton model pu, o, skewness and kurtosis are equal to:

ESP — mAAt
== 7T ~0.1444
Hy At
MSP — (62(1 4+ \At 2) AAEL
aM:\/ 2 — (A +mAAAL
At
sM ~ 1.5929
EM ~ 7.8115

We can note that also in these case the Merton model represents a substantial and concrete
improvement when compared to the Black and Scholes model. Therefore, we can expect
that the hedging in the Merton model perform better than the delta hedging in the Black
and Scholes.

Then, consider the following hedging strategy for the Black-Scholes model: we assume
that we go long in the call option and to protect against a downturn in the price of the
underlying asset we will sell short A unit of the underlying asset. The goal is to choose A
in such a way that the value of the portfolio is not sensitive to small changes in the price of
the underlying asset. If we denoted with IT the value of the portfolio, then Il = C' — AS or,
equivalently, II(S) = C(S) — AS. To implement the Delta hedging we assume that if the
Delta is negative we will go long on the asset and short the call option. We can note that
a portfolio is Delta neutral only over a short period of time. We recall that the Delta of a
call option is equal to the equation (4.42):

A(CP5) = N(dv)

In(£ r 22 0 1 d
where d; = L\/;z) and N(d) = Wors / e~ /2dz is the Gaussian cumulative dis-
o T J oo

tribution function. To implement the Black-Scholes formula, equation (4.36), the cumulative
distribution N (d) of the standard normal variable x must be estimated numerically and we
use the algorithm proposed by Abramowitz and Stegun in 1970 which has an approximation
error smaller than 7.5-10~7 at any point on the real axis. Abramowitz and Stegun proposed:

N(d)=P(G <d)
where G is a real Gaussian random variable with mean 0 and variance 1. Therefore N(d) =
1ot
— ~"2dz. 1f d > 0 we have that
e . we have tha
V 2 [oo
1
ous

2
€T (bit + bot? + bat® + byt* + bst®)
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where

p = 0.231641900
by = 0.319381530
by = —0.356563782

by = 1.781477937
by = —1.821255978
bs = 1.330274429
1
T 1+pd

On the other hand, for the Merton jump diffusion model we consider the hedging prosed
by Merton. Therefore, we find that the price of the call option in this model is equal to the
equation (4.45)

-0 n
M5y =0y 0 0ns (0,5, )

n>0

where

ii. 0'220'24'7;
iii. S, = Sexp nm—i—"%z—)\exp(m—i—%)—k)ﬁ);

v, CBS(Q,S,U) — T [f (Se(T*%)9+UW9):|;
v. 0=T—1t.

The point iv. is the value of the European call option with time to maturity 6 and payoff
f in a Black-Scholes model with volatility o. The hedging portfolio proposed by Merton is
the self-financing strategy (¢?, ¢;) given by:

ocM

¢t = W(tv St_)

t
ot =05~ [ oas

which means that we choose to hedge only the risk represented by the diffusion part.
The result of these two hedging strategy can be seen in the table below which report the
return and the variance:

Return  Variance (02)
Black-Scholes Hedging  6.40% 0.1589%
Merton Hedging  6.49% 0.1589%

We can see that the two hedging strategy have the same variance and the return are more or
less the same, the Merton return is a greater only of 0.09 respect to the Black-Scholes return.
One possible explanation is that we consider a trading strategy only for one year and, as said
before, a portfolio is Delta neutral over a short period of time. Despite this, we can say that
the hedging strategy also confirms the above: the Merton model represents a substantial
and concrete improvement when compared to the Black and Scholes model. In fact, we can
safely say that no-one would choose the Delta hedging compared to Merton hedging as the
second has a bigger return, even if small, with the same variance. Therefore, the Merton
hedging dominates the Black-Scholes hedging since Merton considers in the stock process a
jump component.
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Conclusion

In this dissertation we have introduced and explained the jump diffusion process, which are
obtained from the Black and Scholes model by adding a compensated compound Poisson
process. Moreover, we have seen that the Poisson process produce discontinuities in the
stock process and this imply that the market is not complete. Therefore, in the market did
not exists a unique risk neutral probability for the option pricing as it was assumed in the
Black-Scholes model. In chapter 4, we have seen how pricing an option when the underlying
asset is driven by a jump diffusion process and we have seen the impossibility to completely
hedge the risk carried by the introduction of sudden and unpredictable moves in the in the
stock price, i.e the presence of the random jump component. Finally, we compare the Black
and Scholes model to the Merton approach to the jump diffusion process. The results show
us that the Merton model turns out to outperform the Black-Scholes one, when we take into
account the performances of the two with respect to real financial data. We have also seen
that the addition of the jump parameters brings a great improvement in option pricing and
hedging. In future work, we will drop the assumption of independence in jump and we will
study how correlated jump affect the option pricing and the hedging in the jump diffusion
process.
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Appendix

A.1 Poisson property

The superposition property say that if (N}!);>o and (N?);>0 are two independent Poisson
processes with intensities A1, A2, then (N} + N7?);>¢ is a Poisson process with intensity
A1+ Ao

Proof:

Let N' ~ po(A1) and N? ~ po()z). Consider the characteristic function for N! and N?:

o (1) = Ele™™'] = exp { (€™ ~ 1)}
. 2 .
on, (t) = Ele™N] = exp {Aa(e™ — 1)}
Since N' and N? are two independent Poisson process we have that:
PNy +8: (1) = o, (Do, () = exp {M(e™ — 1)} eap {Aa(e™ — 1)} =
exp {(A\1 + A2)(e™ — 1)}
As the characteristic function completely determines the distribution, we can conclude that
Ni 4 Nz ~ po(A1 + X2).
|
The following is the proof of the thinning property:
Proof:
First of all, we recall that the generating function of the binomial distribution with parameter
n and p and the generating function of the Poisson distribution with parameter A are equal
to:
Ix(t) = (¢ +pt)" where g =1 —p
e N Ao

Therefore

efAAn
Et*] =3 —(g+pt)" =

n>0
= exp {(A\g + Apt) — A}
= exp {A\pt — Ap}

Hence, it follow that X has the Poisson distribution with parameter Ap

The expected value of N; can be computed as:

E[N,] = i EP(N; = k) = e M i k(Akt')k
k=0 k=0 )

i (A e, (A
— e Z(k_l)!:)\te A kZ:okT

k=1

=\t
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A.2 Donsker’s invariance principle

Let (&,)nen are iid. with E[§;] = 0 and E[¢?] = 1. Then, we define X, := >""" | & with
Xo := 0 and it satisfies the Central Limit Theorem (CLT), i.e. % = N(0,1). We can
extend the weak convergence result to the continuous process (X;);>o defined by:

X; = XUJ + (t* LtJ)(X\_tJ""l 7X\-tJ)

which linearly interpolates (X,),enugo} between integer times. Then, we have the following
theorem which is an extension of the CLT to the path level:

Theorem: [Donsker’s invariance principle] Let (§,)nen and (X;)i>0 be defined as

above. Then (ﬁXnt)ogtgl = (B)o<i<1 as C([0,1],R)-valued random variables, where By

is a standard Brownian motion.

A.3 Convolution power

The convolution power is the n-fold iteration of the convolution (is a mathematical operation
of two functions to produce a third function that expresses how the shapre of one is modified
by the other) with itself. Thus, if x is a function on R? and n € N, then the convolution
power is defined by:

M =gxr*---xx, z*0=4d
—
n

where * denotes the convolution operation of functions on R? and ¢ is the Dirac delta
distribution, which is a linear function that maps every function to its value at zero.

A.4 Dirac measure

A Dirac measure is a measure 0, on a set X (with any o— algebra of subsets of X) defined
for a given x € X and any set A C X by:

_ 0 xz¢ A
Therefore, the Dirac measure is a probability measure, and in terms of probability it repre-

sents the almost sure outcome z in the sample space X. Moreover, we have: / fly)dd.(y) =
X

/ F@)b.(w)dy = f ().
X

A.5 Cumulants

The cumulants of X are defined by:

1 0"¥x

enlX) = 22X (0)
where Wy is the cumulant generating function or log-characteristic function of X and is
defined in a neighbothood of zero such that: ¥x(0) =0 and ¢¥x(u) = exp[Vx(u)].

A.6 Fourier transform

The Fourier transform decomposes a function of time into the frequencies that it make it
up. Let f: R~ C, the Fourier transform is equal to:

fle) = / f(z)e ?™@dy Ve € R
Under suitable condition, f is determined by f via the inverse transform:

Fa) = [ T
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A.7 Lipschitz Continuous

Definition [Lipschitz continuous] A function h: X — Y, X, Y (usually, but not nec-

essarily, subset of R™) is Lipschitz continuous in X if there exists a constant M > 0 such
that:

dy(h(xl)fh(l’g)) Sde(xl 7x2), Vl‘l,l’g cX

h is locally Lipschitz continuous in X if for every x € X there exists a neighborhood of it
where h is Lipschitz continuous
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Introduction

The mathematical modeling of financial market start with Louis Bachelier, who was the first
to introduce the Brownian motion as a model for the price fluctuation of a liquid traded
financial asset with his doctoral thesis in 1900. In 1973 Fisher Black and Myron Scholes
given a great contribution with the article "The Pricing of Option and Corporate Liabilities",
which gave a new dimension to the use of probability theory in finance. The option pricing
methodology introduced by Black and Scholes is unique in that distributional assumptions
alone suffice to generate well-specified option pricing formulas involving mostly observable
variable and parameters. One assumption is that the price of the underlying asset follows
a diffusion process and an additional assumption is that the instantaneous risk-free rate
is nonstochastic and constant. Under these plus other "frictionless market" assumptions,
the option’s payoff can be replicated by a continuously adjusted hedge portfolio composed
of the underlying asset and short-term bonds. This imply that the key assumption in the
Black-Scholes model is that the market is complete. In a complete market models probabil-
ity does not really matter, in fact the objective evolution of the asset is only there to define
the set of impossible events and serves to specify the class of equivalent measures. Hence,
two statistical models with equivalent measures lead to the same option prices in a complete
market setting. Therefore, the option pricing formula generated by Black and Scholes de-
pends critically upon the distributional restriction on the volatility of the underlying asset.
The result of that restriction is that the systematic risk of the option is a function of the
systematic risk of the underlying asset only.

Jump diffusion process and more in general Lévy models generalize the Black and Scholes
work by allowing the stock price to jump while preserving the independence and stationary
of returns. Hence, the jump diffusion process described the observed reality of financial
markets in a more accurate way than models based only on Brownian motion. In the real
world, we observe that the asset price processes have jumps or spikes. Therefore, we can find
three main reason for introducing jumps in financial modeling. First, asset price processes
have jumps and some risks cannot, be handled with a continuous path model but we need to
study a discontinuous models. Second, the presence in the option market of the phenomenon
of implied volatility smile which shows that the risk-neutral returns are non-gaussian and
leptokurtic. Moreover, in continuous path models the law of returns for shorter maturities
becomes closer to the Gaussian distribution, on the other hand in models with jumps returns
actually become less Gaussian as the maturity becomes shorter. Finally, the jump process
correspond to incomplete markets, hence we did not find a unique equivalent probability
measure for the option pricing but there are many possible choice. This imply that a perfect
hedge, i.e. the Black and Scholes Delta hedging, is not longer possible in jump models and
the hedging in jump process achieves a trade-off between the risk due to the diffusion part
and the jump risk.



1 Jump Process

In this chapter we introduce and explain a family of discontinuous process called Lévy
processes. We begin with the definition of a Poisson process, which is the main building
block for stochastic process with discontinuous trajectories. Then, we talk about compound
Poisson process, which is use to built a jump-diffusion model, and we study its property.
The second section of the chapter, start with the definition of Lévy process, then we discuss
its infinitely divisible distribution and we present the Lévy-Khintchine formula, which links
processes to distributions.

The last section uses the Lévy processes and its properties to built a model for financial
applications, which can be decomposed in two main categories: the jump diffusion model
and the infinite activity models. Here, we give some example of jump diffusion model and we
explain the properties and the relationship between the ordinary and stochastic exponential
models.

1.1 Poisson Process

1.1.1 Definition and Properties

Definition 1.1 [Poisson Process] (definition 7.1.1 in [1]) Let (T;)i>1 be a sequence of
independent, identically, exponentially distributed random wvariables with parameters A(\ >
0) and let T, = Z?:l T;. We call Poisson process with intensity A the process Ny defined by:

n>1 n>1

Where N; indicates the number of points of the sequence (7,,),>1 which are smaller than or
equal to t. Let (IV¢)¢>0 be a Poisson process and it has the following properties:

1) For all ¢ > 0, Ny is almost surely (a.s.) finite;

2) The trajectories of N (in other words: Vw, the sample path ¢ — N;(w)) are piecewise
constant with jumps of size 1;

3) The trajectories are right continuous with left limit (cadlag);

4) YVt > 0, N;- = N, with probability 1;

5) Vt > 0, N, follows a Poisson distribution with parameter At:
YneN, P(N; =n) = e”‘t%

6) The characteristic function of N is
E[e®Nt] = exp {/\t(ei“ — 1)}, Yu € R;

7) Independence of increments: for all 0 < ¢y < t; < --- < t, and n > 1 the increments

Ny — Nygy oo oy Npy — Ny
are mutually independent random variables. In other words, if s > 0, Ny, — NV, is
independent of the o-algebra Fi;

8) Stationarity of increments: Ngyp — Ngyp has the same distribution as N; — Ny for
all h > 0 and 0 < s < t. Hence, the law of N;;, — Ny is identical to the law of
Ns - NO = Ns;



The right continuity, cadlag property, of the Poisson process is not really a "property".
In fact, we have defined N; in such a way that at a discontinuity point N; = N+ but a
function could be caglad (left continuous with right limit, in this case we have f(t) = f(¢7)
and Ny = N, ). There is a difference between a cadlag and a caglag process especially
in the context of financial modeling. In fact, if a right continuous function has a jump at
time t, then the value f(¢) is not predictable by following the trajectory up to time t and
the discontinuity is seen as a sudden event. On the other hand, if the function was left
continuous, an observer approaching t along the path could predict the value at t. Hence,
jumps represent unexpected, unforeseeable events and the assumption of right-continuity is
natural. By contrast, we should use a caglad process if we want to model a discontinuous
process whose values are predictable. This will be the case when we want built trading
strategies.

1.1.2 Compensated Poisson Processes

The compensated Poisson process define the "centered" version of the Poisson process N
by

N; = N; — At.

where At is the expected value of the Poisson process. (Nt) has centered increments because
it has the expected value equal to zero. Moreover, (N) follows a centered version of the
Poisson law with characteristic function:

Vg, (u) = exp[At(e™ — 1 — iu)]

(Nt)tzo is called a compensated Poisson process and (At);>¢ is called the compensator of
(N¢)e>0 and it is the quantity which has to be subtracted from N, in order to obtain a
martingale. Moreover, the compensated Poisson process is no longer integer valued because
it is not a counting process unlike the Poisson process.

1.1.3 Compound Poisson Process

The Poisson process itself appears to be too limited to develop realistic asset prices model
because the assumption that the jumps size are always equal to 1 is too restrictive, but it
can be used as building block to built richer models. Therefore, there is some interest in
considering jump processes that can have random jump sizes.

Definition 1.2 [Compound Poisson Process] The compound Poisson process with jump
intensity A and jump size distribution p is a stochastic process (X;)i>o defined by:

Ny
X =YY,
=1

where (Y;)i>1 is a sequence of independent random variable with law p and Ny is a Poisson
process with intensity X independent from (Y;);>1.

This definition means that a compound Poisson process is a piecewise constant process which
jumps at jump times of a standard Poisson process and whose jump size are i.i.d random
variables with a given law.

Proposition 1.1 (Characteristic function of the compound Poisson process) (proposition
3.4 1in [2]) Let (X;)t>0 be a compound Poisson process with jump intensity A and jump size
distribution . Then X is a piecewise constant Lévy process and its characteristic function
s given by:

E[e™Xt] = ezp {/\t / (e l)u(dx)} . (1)

— 00



1.1.4 Poisson Random Measures

The definition of the Poisson random measure is a key point for the theory of Lévy processes,
which are described in the next section of this chapter.

Definition 1.3 [Random measure] Let (0, P, F) be a probability space and let (E,E) be
a measurable space. Then M : Q x £ — R is a random measure if:

o for every w € Q, M(w, ) is a measure on &;
o for every A€ &, M(-,A) is measurable.

We can express a Poisson process in terms of the random measure M in the following
way:

Ni(w) = M(w,[0,t]) = |

0,4] M(w,ds)

where M is called the random jump measure associated to the Poisson process N.
Definition 1.4 [Jump measure] Let X be a RY—valued cadlag process. The jump measure
of X is a random measure on B([0,00) x R?) defined by

IJx(A)=#{t: AX; #0 and (t,AX;) € A}. (2)

This definition means that the jump measure of a set of the form [s,¢] X A counts the
number of jumps of X between s and t such that their amplitude belongs to A. In other
words, Jx contains all the information about the discontinuities, i.e. jumps, of the process
X. It tells us when the jumps occur and how big they are. Therefore, Jx does not tell us
anything about the continuous component of X, which has continuous sample path if and
only if Jx = 0 almost surely. This means that there are no jumps in the process.

For a counting process, since the jumps size is always equal to 1, the jump measure can be
seen as a random measure on [0, c0).

Proposition 1.2 Let X be a Poisson process with intensity \. Then, Jx is a Poisson random
measure on [0,00) with intensity A X dt.

Proposition 1.3 (Jump measure of a compound Poisson process) (proposition 3.5 in [2])
Let (Xy)i>0 be a compound Poisson process with intensity A and jump size distribution f.
Its jump measure Jx is a Poisson random measure on R? x [0,00) with intensity measure
wu(dzr x dt) = v(dx)dt = \f(dz)dt.

This proposition implies that every compound Poisson process can be represented in the
following form:

Xi= ) AX,= / aJx (ds x dx)
s€[0,¢] [0,t] xR%

where Jx is a Poisson random measure with intensity measure v(dz)dt. In this equation, we
have rewritten the process X as the sum of its jumps and since it is a compound Poisson
process, it has almost surely a finite number of jumps in the interval [0,¢]. Moreover, the
stochastic integral in the equation is a finite sum, hence there are no convergence problems.

1.2 Lévy Processes
1.2.1 Definition and Properties

Definition 1.5 [Lévy process] (definition 3.1 in [2]) A cadlag stochastic process (Xi)i>o
on (Q, F,P) with values in R such that Xo = 0 is called a Lévy process if it possesses the
following properties:

1) Independent increments: for every increasing sequence of times i, ..., t,, the random
variables Xy, X, — Xiy, .-+, Xt, — X¢,,_, are independent;

2) Stationary increments: the law of X, — X; does not depend on t;

3) Stochastic continuity: Ve > 0, }llin%) P(|X¢en — X¢| > €) =0.
—



Proposition 1.4 (Characteristic function of a Lévy process) (proposition 3.2 in [2]) Let
(Xt)t>0 be a Lévy process on R?. There exists a continuous function 1 : R* — R called the
characteristic exponent of X, such that:

Ele™Xt] = e 4 € RY

Where 1) is the cumulant generating function of X;. The cumulant generating function
¥(t) is the natural logarithm of the moment generating function:

W(t) = log Ble™]

The proposition regarding the Jump measure of a compound Poisson process can be used to
define the Lévy measure for all the Lévy process. Therefore, we give the following definition:
Definition 1.6 [Lévy measure] (definition 3.4 in [2]) Let (X;);>0 be a Lévy process on
R?. The measure v on R?* defined by:

V(A) = E[#{t € [0,1]: AX, £0, AX, € A}], A€ BRY)

is called the Lévy measure of X. v(A) is the expected number, per unit time, of jumps whose
size belongs to A.

Proposition 1.5 (Lévy-Ito decomposition) (proposition 3.7 in [2]) Let (X;);>0 be a Lévy
process on RY and v its Lévy measure. Then:

e the Lévy measure v satisfies the integrability condition:
[ el A 1)w(da) < oo
Rd

o the jump measure Jx of X is a Poisson random measure on [0, 00) x R% with intensity
dt x v = v(dz)dt;

o there exists v € R% and a d-dimensional Brownian motion (Bt)e>0 with covariance
matriz A such that:

X, =~t+ By + Ny + M;, where (3)

N = / xJx (ds X dx)
|z|>1,s€[0,]

M, = / x{Jx(ds x dx) — v(dx)ds}
0<|z|<1,s€[0,]

= / xJx (ds x dx)
0<|z|<1,s€[0,t]

The three terms in (1.3) are independent and the convergence in the last term is almost sure
and uniform in t on [0,T).

The Lévy-Tto decomposition say that for every Lévy process there exist a vector v (drift), a
positive definite matrix A and a positive measure v that uniquely determine its distribution.
We call the triplet (A, v, ) characteristic triplet or Lévy triplet of the process X;.

The following theorem give to us the second fundamental result of the structure of the path
of Poisson process and it announces the expression of the characteristic function of a Lévy
process in terms of its characteristic triplet (A,v,~) :

Theorem 1.1 [Lévy-Khinchin representation] (theorem3.1 in [2]) Let (X;);>0 be a Lévy
process on RY with characteristic triplet (A,v,v). Then:

EleiwX0)] = (W) g ¢ RY (4)

with  ¥(u) =i{y,u) — %(u,Au) + /Rd (eX®®) — 1 — i (u,x) 11<1)v(dz).

This theorem imply that since X has stationary and independent increments, we have that
E [ei<“’Xt>] = {E [e““’Xl)] }t , Vt € R and by the right continuity of X, Vt.



Definition 1.7 [Semimartingale] A semimartingale is a stochastic process (Xi)o<i<T
which admits the decomposition:

X=Xo+M+A (5)

where Xq is finite and Fo-measurable, M is a local martingale with My = 0 and A is a finite
variation process with Ay = 0.

If A is predictable, then X is a special semimartingale and all special semimartingale have
a "canonical decomposition" equal to:

X =Xo+B+X+a(Jx —v¥) (6)
where X is the continuous martingale part of X and x(Jx —v*) is the purely discontinuous
martingale part of X. In particular, Jx is the jump measure of X and v¥ is called the
compensator of Jx.

1.3 Jump Diffusion Model

The financial models with jumps can be decomposed in two main categories: the jump-
diffusion model and the infinite activity models. The jump-diffusion model the evolution
of prices are given by a diffusion process which has jumps at random intervals. Here, the
jumps represent rare events such as crashes and large drawdown. Since the distribution of
jump sizes is known, the dynamic structure of the jump process is easy to understand and
describe. The jump-diffusion models perform well for implied volatility smile interpolation.

1.3.1 Exponential Lévy Models

In order to construct an exponential Lévy model for the process X, we need to start from
the Black-Scholes model and how it describes the evolution of an asset price. Here, the asset
price (S;) follow a geometric Brownian motion:

S, = SyetttoW: (7)

If we replace ut + oW, by a Lévy process Xy, we obtain the class of the exponential Lévy
models:
S, = SpeXt (8)

Now, consider a Lévy process of jump-diffusion type with the following form:

Nt
Xt:7t+aWt—|—ZY1 9)

i=1

where (IV;);>0 is the Poisson process which counting the jumps of X and Y; are the jump
sizes, which are i.i.d. variables. Therefore, the evolution of the asset price becomes:

Sy = SperttTWer S (10)

We need to specify the distribution of jump sizes vp(z) in order to define the parametric
model completely. Is is important to specify the tail behavior of vy(x) correctly because the
tail behavior of the jump measure determines the tail behavior of the probability density of
the process.

In the Merton model (introduced by Merton in 1973 with the article "Option pricing when
underlying stock return are discontinuous™) we have that the process is equal to the equation
(1.10) and the jumps are assumed to have a Gaussian distribution, therefore Y; ~ N (u, 62).
This allows to obtain the probability density of X; as a quickly converging series. In fact,

P(X, € A) = ip(xt € AN, = k)P(N, = k)
k=0



then the probability density of X; satisfies the equation:

At T 2(02t+k02)
r)=¢e
Pi() kZ:o kN 2m(0?t 4+ ké2)

The Lévy density of the model is equal to:

0o ()xt)kexp{ (r*'yt*kuf}

v(z) W}

A
Yo QWexp{— 552

One last thing to note is the moment of the process in the Merton model. Hence, we have
that the characteristic exponent of the characteristic function is equal to:

2u2 5242

+x{em 1}

P(u) = iyu -

It follows that: E[X;] = t(y + Au) and Var(X;) = t(0? + M2 + Au?). If we analyze the
moment, we can note the tail behavior of the probability density, which are heavier than
Gaussian but all the exponential moments are finite.

In the Kou model (introduced by Kou in 2002 with the article "A jump-diffusion model
for option pricing”) we have that the process X; is equal as in the Merton model but the
distribution of jumps sizes is an asymmetric exponential (i.e. has a double exponential
distribution, therefore Y; ~ DbExp(p, 61,02)) with a density of the form:

vo(dx) = [p91€_91x1w>0 +(1- p>92€_92‘$‘1x<0} dx (11)
where 0; > 0, 03 > 0 represent the decay of the tails for the distribution of positive and

negative jump sizes, respectively, and p € [0, 1] represent the probability of an upward jump.
Therefore, we can easily find the Lévy measure of the process:

v(x) = pMie "% 1,00 4+ (1 — p)Aae= %1711,

The first two moments of the process are equal to: E[X;] = ¢ (’er g‘—f — )‘(197;1’)) and
Var(X;) =t (o2 + % — % . We find these two result from the characteristic function
1 2
of the process, which has characteristic exponent equal to:
2,2
. oou . p 1—p
u) = ivu — + ful — — ;
¥(u) g 2 {91—zu Qg—i—zu}

In this case, the probability distribution of returns has semi-heavy exponential tails. On

one hand, we have that p(z) ~ ¢~%% when z — 400, on the other hand, we have that

p(z) ~ e %1%l when z — —o0.

The advantage of the Kou model compared to the Merton model is that analytical expres-

sions for expectations involving first passage times may be obtained due to the memoryless

property of exponential random variables.

The following proposition told us the condition of the exponential Lévy process to be a

semimartingale:

Proposition 1.6 (Exponential Lévy process) (proposition 8.20 in [2]) Let (X;)i>0 be a

Lévy process with Lévy triplet (o2, v,7) verifying / eYv(dy) < oo. Then, Y; = eXt is a
>1

semimartingale with decomposition Yy = My + Ay ullyz‘(;m the martingale part is given by:

t
Mt:1+/ stadWS—l—/ Y,- (ez—l)jx(dsxdz)
0 [0,t] xR

and the continuous finite variation drift part is given by:

t 2 oo
0

— 00



(Yy) is a martingale if and only if

o? >
’7+7+/ (ez—1—21|z|21) V(dZ)ZO

1.3.2 Stochastic exponential of Jump process

The stochastic exponential was introduced by Doléans-Dade and it can be found using the
Tto formula in the geometric Brownian motion (equation (1.7)) and substituting a Lévy
process. Hence, if we apply the Ito formula in (1.7) we obtain:

dSt 0'2
?t = (,U+2> dt + cdW,

Then, we can define B} = (i + "72)75 + oW, and the above equation becomes:

s,
— =dB 12
St t ( )

If we substitute B} by a Lévy process X, we obtain the stochastic exponential. Therefore,
with the following proposition we can introduce a generic stochastic exponential for a process
(Zt)it>0-

Proposition 1.7 (Stochastic exponential) (proposition 8.21 in [1]) Let (X;);>o be a Lévy

process with Lévy triplet (02,v,7). Then, there exists a unique cadlag process (Z;)i>o such
that:

dZ, = Z,-dX
t = aAt (13)
Zy=1
Where Z is given by:
7, = eXe— 4S5 olds [I +ax)e 2% (14)
0<s<t

1
If/ |z|v(dx) < oo, then the jumps of X have finite variation and the stochastic exponential
1

of)g can be expressed as:

o2t
Zy = e7Wetot=5t T (14 AX,)

0<s<t

1
where vg = — / zv(dx).
-1

Z is called the stochastic exponential of X and is denoted by Z = £(X).

We can note that the stochastic exponential is always nonnegative if all the jumps of X,
are greater than —1, i.e. v((—o0,—1]) =0.
Goll and Kallsen have shown that the stochastic exponential is equivalent to the ordinary
exponential. In fact, if Z > 0 is the stochastic exponential of a Lévy process, it is also the
ordinary exponential of another Lévy process (it is also true the opposite case). Therefore,
the two exponential end up by giving us the same class of positive processes. The following
proposition shows the relation between ordinary and stochastic exponential:
Proposition 1.8 (Relation between ordinary and stochastic exponential) (proposition 8.22
in [2])

1. Let (X;)t>0 be a real valued Lévy process with Lévy triplet (02,v,7) and Z = £(X) its
stochastic exponential. If Z > 0 almost surely, then there exists another Lévy process



(L¢)t>0 with triplet (02 ,vL,7vL) such that Z; = elt where:

2
¢
Ltzant:Xt—%—i- (In(1+AX,) — AX,

0>s>t

o =0

v(A) =v{z:In(1+2) € A}) = /lA(ln (14 2))v(dx)
2

YL =7 — % + / [In (1 +2)1_11y(In (1 + 2)) — 21—y 1)(2)]v(dz)

2. Let (Ly)¢>0 be a real valued Lévy process with Lévy triplet (0%, vr,vr) and Sy = el its
exponential. Then, there exists a Lévy process (Xi)i>o0 such that Sy is the stochastic
exponential of X : S = E(X) where:

2
Xt:Lt+U—t+ (e2Fs —1— ALy)

2
0<s<t
Therefore, the Lévy triplet (o2, v,v) of X is given by:
g =0],

v(A)=vr({z:(e* =1) € A}) = /1,4(6“ — Dy (dz)
2

Y=L - %L + / [(e” = D1y yy(e” = 1) — 21y y)(2)]vr (dz)

3. Let (Xi)i>0 be a Lévy process and a martingale. Then, its stochastic exponential
Z = E(X) is also a martingale. Therefore, for every Lévy process X with E[|X|] < oo
we have:

EIE(Xy)] = ePXd ¢ >0

This property is also known as Martingale preserving property.

2 Stochastic Calculus for Jump Process

We can define an arbitrage strategy as a self-financing strategy ¢ with zero initial value and
non-zero final value with probability equal to 1. Moreover, a strategy is called self-financing if
the following equation is satisfied for all ¢ : (¢, S¢) = (¢¢41,St) . Therefore, we can consider
an investor who trades at times 7p = 0 < T} < --- < T, < Tj,41 = T and detaining a
quantity ¢; of an asset whose price is S during the period (7}, T;4+1]- Then, we can definite
the capital gain G¢(¢) as:

Gi(¢) ==Y _ i(Sr,,, — Sr,) (15)
=0

We can write the quantity which represents the capital gain of the investors following the
strategy ¢ as :

Gild) = 3 ou(Sns = 51) = [ ouas, (16)

7=

0
where the last term in equation (3.2) represent the stochastic integral ¢ with respect to S.

2.1 Stochastic integral

Consider a vector of asset whose price S is described by a stochastic process, i.e. S; =
(S}, 52,...58%) and a portfolio ¢ = (¢!, ¢?, ..., %) which describes the amount of each asset

10



held by the investor. Therefore, the value of such portfolio at time t is equal to:

d
Vi(g) = 67SF = (61, S1) (17)

k=1

We also assume a dynamic trading strategy, which consist in buying and selling assets at
different dates, and we consider an investor who trades at times Ty = 0 < 171 < -+ <
T, < Th+1 = T. We also assume that the strategy is self-financing and that between two
transaction dates T; and T;y; the portfolio remains unchanged. The meaning of the self-
financing assumption is that at time ¢ the investors readjusts his position from ¢; to ¢¢41
without bringing or consuming any wealth. Moreover, if we dropped this assumption, we
would had arbitrage opportunities because a portfolio which is empty at time 0 but to which
cash (> 0) is added, without any liability, would trivially be an arbitrage portfolio. The
second assumption told us that the investor did not know in advance the transaction dates
but he will decide to buy or sell at T;; depending on the information revealed before T} ;.
Hence, the transaction date T;41 is a stopping time. In the first chapter, we assume that the
processes are cadlag (i.e. right continuous with left limits), whereas here we have that the
trading strategy is caglad (i.e. left continuous with right limits). We have the left continuity
in the process because if the investor decides to make a transaction at ¢ = T}, the portfolio
will take the new value at ¢; before that the value of the portfolio is still described by
#i—1. Therefore, we have that (¢¢)¢c[o,7] is a predictable process and we have the following
definition:

Definition 2.1 [Simple Predictable Process] (definition 8.1 in [2]) A stochastic process
(¢t)teo,1) 15 called a simple predictable process if it can be represented as:

¢t = Ppoli=o + Z il (1, 1,41 (t) (18)

=0

where Tp =0 < Ty < --- < T, <Thy1 =T are nonanticipating random times and each ¢;
is bounded random variable whose value is revealed at T; (i.e. Fr,-measurable).

The stochastic process Gt(¢) can be expressed as the stochastic integral of the simple pre-
dictable process ¢ with respect to S and it is equal to:

t n
/0 GudSy = <¢)Oa SO> + <¢z’ (ST1‘+1/\t - Squ/\t)> (19)
=0

?

Since the self-financing assumption imply that the cost of the process is equal to zero, we
have that the value of the portfolio, V;(¢), is equal to:

t t

where the first term is the initial value of the portfolio and the second term is the capital gain
between 0 and t. Therefore, for an investors the only source of variation of the portfolio’s
value is the variation of the asset values.

Proposition 2.1 (Martingale preserving property) (proposition 8.1 in [2]) If (S¢)ie[o,7]

t

is a martingale, then for any predictable process ¢ the stochastic integral Gy = / @dS is
0

also a martingale.

This proposition imply that if the asset follows a martingale then the the value of any

self-financing strategy is a martingale.

2.1.1 Semimartingale

Since a Lévy process X is not stable under stochastic integration or non-linear transforma-
tions, we need to consider the class of samimartingales, which are a larger class of stochastic
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processes. These kind of class are both stable under stochastic integration and non-linear
transformation. Moreover, they are also stable under other operation such as change of fil-
tration and change of measure. Now, we give the definition of semimartingale with respect
a simple predictable process.

Definition 2.2 [Semimartingale] (definition 8.2 in [2]) A nonanticipating cadlag pro-
cess S is called a semimartingale if the stochastic integral of simple predictable process with
respect to S:

n T n
¢ = ¢oli=o + Z Gil(r, 1) / ¢dS = ¢oSo + Z ¢i(ST,1 — St)
i=0 0 i=0

verifies the following continuity property: for every ¢™, ¢ € S([0,T]) if:

sup  [¢f(w) — de(w)] — 0
(t,w)€[0,T]xQ n—»o0

then "
/ o"dS SELIEEN ¢dS (20)

n—oo
where S([0,T7]) is a set of simple predictable processes on [0,T].
The class of semimartingales satisfy the stability property: a small change in the portfolio
should lead to a small change in the gain process.
Proposition 2.2 (proposition 8.3 in [2]) If (S¢)icjo,1) is @ semimartingale then for every

¢", ¢ € S([0,T]):

if sup [} (w) = ¢e(w)] — 0 (21)
(t,w)€[0,T]xQ n—00

h "dS — dS 22

e s [ [Coras— [ ois| 2o .

Moreover, we have that any linear combination of a finite number of semimartingales is
a semimartingales. In fact, all the Lévy processes are semimartingale because it can be
decomposed into a sum of square integrable martingale (the Wiener process) and a finite
variation process (the Poisson process). Finally, we can note that all the new processes
constructed from semimartingales using stochastic integration are again semimartingales
due to associativity property, which helps us to show that a stochastic integral with respect
to a semimartingale is a semimartingale. And that every semimartingale is the sum of a
finite variation process and a local martingale, which can be defined as the process (X;) in
which there exists a sequence of stopping times (7;);>1 such that 7; — oo when i — oo and
for each i, (X, ;) is a martingale.

2.1.2 Stochastic integral with respect to Brownian motion

Consider the simple predictable process ¢ defines in equation (2.4). Then, we can define the
Brownian stochastic integral as:

T n
/ GedWy = > ¢(Wr,,, — Wr,) (23)
0 =0

Proposition 2.3 (Isometry formula) (proposition 8.5 in [2]) Let (¢)o<i<r be a simple
predictable process and (Wy)o<i<1 be a Wiener process. Then:

T
/0 qﬁtth] =0, (24)

T 2 T
| / bW, EU |¢t|2dt] (25)
0 0
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We can use the isometry formula to built stochastic integrals with respect to the Wiener
process for predictable processes. We need that the predictable processes (¢;)¢cjo, 1) verify:

T
/ |¢t|2dt1 < o0
0

T
/ |¢?¢t|2dt] — 0.
0 n—oo

Therefore, we have the following proposition for Brownian integrals:
Proposition 2.4 (Isometry formula for Brownian integrals) (proposition 8.6 in [2]) Let
(¢t)o<t<T be a predictable process which satisfy:

T
/ |¢>t|2dt] < o0
0

Then, fot ¢dW; is a square integrable martingale and

T
/ ¢tth] - 07
0
2 T
=E 24t
[ / 64 ]

2.1.3 Quadratic variation and covariation

E

E

E

E

T
E ‘/ PdWy
0

Consider a process observed on a time grid # = (tg =0 < t; < -+ < tp41 = T), then we
can define the realized variance as:

VX(W) = Z (Xti+1 - Xti)2
t;em

We can define the quadratic of the variation process:
Definition 2.3 [Quadratic Variation] (definition 8.3 in [2]) The quadratic variation
process of a semimartingale X is the nonanticipating cadlag process defined by:

t
(X, X] = | X * - 2/ X, -dX, (26)
0
Is important to specify that the quadratic variation is a random variable and not a number.

Moreover, if 7" = (t§ =0 <t} < --- <t} =T) is a sequence of partitions of [0,T] such
that |7"| = supy, [t} —t}_,| — 0 as n — oo, then

0<t; <t
2 P
; (Xti+1 _Xti) n—>oo> [X, X]t

where the convergence is uniform in .

Consider a Brownian motion B, = ocW;, where W is a standard Wiener process, then the
quadratic variation of the Brownian motion is equal to [B, B]; = o?t.

In the quadratic variation, we consider only one process X but, in the reality, we can see
more stochastic process. Therefore, we need to introduce the multidimensional counterpart
of the quadratic variation: the quadratic covariation.

Definition 2.4 [Quadratic Covariation] (definition 8.4 in [2]) Given two semimartin-
gales X, Y. The quadratic covariation process [X,Y] is the semimartingale defined by:

t t
XY, = X,Y, - Xp¥ — / X, dY, - / Y, dX, (27)
0 0
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Consider two Brownian motion: B} = o;W;}! and B? = 0oW}?, where W', W? are two
standard wiener processes with correlation p (typically, with differential notation we define
the correlation between two standard Wiener process as: dW'dW?2 = pdt.

2.2 Stochastic Integral with Jumps
2.2.1 Stochastic Integral with respect to Poisson process

Consider the relation, for the Poisson process: AX; = Yxn,AN;. Then, we can define the
stochastic integral of a stochastic process (¢1)¢>0 with respect to (X¢)i>0 by:

T T Nt
| odxi= [ ovvanei=y onyi (28)
0 0 k=1

The meaning of the above equation is that the value at time T of a portfolio containing
a quantity ¢, of an asset at time t, whose price evolves according to random returns Y,
generate capital gain or losses equal to ¢, Y at random times Tj.

Consider a compound Poisson process (X;);>0, it admits stochastic integral representation
equal to:

X; = X0+ZYk—YO+/ Vi, dN,
k=1
Consider a counting process N; with jump times 7; and with random variables observed
at T; describe by Y;. Let X; be a process defined by X; = Zf\il Y;, hence the quadratic
variation of the process is equal to:

Ny
X.X) = Y (AX) = Y v

s<t

We can note that the same formula holds for every finite variation process X. Moreover,
the predictable quadratic variation of the process (i.e. "angle bracket") is the compensator
of [X, X], namely:

(X, X), = ME[Y?]

For the quadratic covariation we need to consider another counting process N7, which has
jump times T} and random variables observed at 7}, described by Y-b . Then, we consider the

process Z; = Z j=1 ] Now, we make the assumption that X and Z have finite variation
processes whose jumps times are almost surely disjoint, hence they did not jump at the same
time, therefore the quadratic covariation is equal to:

(X, Zi =Y AX,AZ, =0

s<t

The assumption of disjoint jumps is a strong assumption and we consider it only for the
stock price behavior. In fact, if we consider the exchange rate we drop this assumption and
we consider correlated jumps between the rate.

2.2.2 Stochastic Integral with respect to Poisson random measure

Consider a Poisson random measure M on [0, T] x R? with intensity p(dt x dz). Let M be the
compensated random measure defined as the centered version of M: M(A) = M(A)—u(A) =
M(A) — E[M(A)], where A C R4,

We can define the simple predictable process with respect to the Poisson random measure
as:

ZZ¢ZJ (T3, Ti41] )]'Aj(y) (29)

=1 j=1
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where ¢ : Q x [0,7] x R? — R is a simple predictable functions, (¢;;);j=1,..m are bounded
Fr,-measurable random variables, T3 < Ty < -.- < T, are non anticipating random times
and (A;);j=1,.m are disjoint subsets of R? with ;([0,7] x A;) < oco. The disjoint subset
implies that the compensated random measure is a martingale with respect to A; and that
if AN B =10, then M;(A) and M;(B) are independent.

Proposition 2.5 (Martingale preserving property) (proposition 8.7 in [2]) For any simple
predictable function ¢ : Qx[0, T|xR? — R the process (Xt)iepo,1) defined by the compensated
integral:

t ~
X, = / o(s,y) M (ds x dy)
0 R4

is a square integrable martingale and verifies the isometry formula:

BIIX, ] = [// o) x d)| (30)

We can extend the isometry formula to square integrable predictable functions and we have
the following proposition:

Proposition 2.6 (Compensated Poisson integrals) (proposition 8.8 in [2]) For any pre-
dictable random function ¢ : Q x [0, T] x RY — R werifying

B[ [ 1otsPutas < )] < o

the following property hold:

ot / o(s,y)M (ds x dy) is a square integrable martingale;
Ra

e[ [ eenius <] o

Consider a Lévy process (X;);>o with Lévy measure v and a Poisson random measure
Jx with intensity p(dt x dx) = dtv(dz).

+ 2
’ / P(s,y)u(ds x dy)
0 R4

2.3 Change of variable formula

Let f:R — R be a C? function and let g : [0,7] — R be a C! function. Then, the change
of variables formula for smooth function is:

Fla(t)) — F(g(0)) = / F(g(s))g'(s)ds = / F(g(s))dg(s) (32)

Now, we can consider the Brownian integral defined as: X; = fot 0sdWs and the function f
defined as above. Then, if we apply the Ito formula at X; we find:

f(X, / F(X.)oudW, + / 17X (33)

2.3.1 Calculus for finite jump processes

Let 2 : [0,7] — R be a function with a finite number of discontinuities at time 0 = Ty <
T <Ty, <--- <T, <T,y1 =T and the function z is smooth on each interval, defines
as (T;,T;+1). Moreover, we can define z(T;) := z(T;"), which means that z is cadlag at
the discontinuity points. Let f : R — R be a C! function. Since z is smooth on each
interval (T;,T;41), f(x(t)) is also smooth. Then, the following proposition summarized the
Ito formula for finite activity jump process where the counting process N; is a martingale:
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Proposition 2.7 (Ito formula for finite activity jump processes) (proposition 8.13 in [2])
Let X be a jump process with values in R defined by:

t Ny
Xt:/ bsds—i-ZY;-
0 i=1

where bs is a nonanticipating cadlag process, Ny is a counting process representing the number
of jumps between 0 and t and Y; is the size of the i-th jump. Denote by (T),)n>1 the jump
times of X; and Jx the random measure on [0,T] x R associated to the jumps of X*. Then,
for any measurable function f:[0,T] x R — R we have:

tro 0
ft,Xy) — f(0,Xp) = /o <8‘£(5,XS) + bsa‘i(s,Xs)dL@)
+ D (s, Xe- + AX,) — f(s, X,0))
n>1,T,<T

_/Ot <g£(s,Xs_)+bsg£(s,Xs_)ds>
o t | X ) = J6 X)) Txls ) (3

where Az; = x(T;) — (T, ). Moreover, if Ny is a Poisson process with E[N;] = A\t, with

7

Y, ~ F arei.i.d. and f is boundend, then'Y; = f(t,Y:) = Vi+ M;, where M is the martingale
or noise component and V is the continuous finite variation drift. This two component are
respectively equal to:

Me :/o /Z (f(5, Xo= +y) — f(5. X,-)) Jx (ds x dy) (35)

where Jx (ds x dy) = Jx (dt x dy) — \F(dy)dt
"(of of
‘/t - A (ag(sts_) +bsax(87Xs_)ds>

n / ds / F(dy) (f(s. Xo- +y) = F(5.X,)) (36)

2.3.2 Ito formula for jump diffusion and Lévy process

Consider a jump-diffusion process defined in chapter 1, i.e. X; =yt + oW + Zf\[:tl Y;. We
can write this process with a different notation:

N
Xy =qt+ oW+ > AX; = X(t) +J; (37)
=1
Xc(t) ———

Jt

where AX; := X(T;) — X(T;"). Let f be a C? function on R and let T}, i = 1,..., Ny, be
the jump times of X. Then, we can define Y; = f(X;) and we can say that X, between T;
and T;41, evolves according to the differential equation equal to:

dXy = dX; = ydt + odW;

The following proposition summarized the result for the jump-diffusion processes when o is
a nonanticipating square-integrable process:

LJx can be defined as: Jx = Z O(T,,,Y,)s Where 0 is the dirac measure.
n>1,Tp <T
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Proposition 2.8 (Ito formula for jump-diffusion processes) (proposition 8.14 in [2]) Let X
be a diffusion process with jumps defined as:

t t Ny
X, = X, +/ bsds+/ o dW, + Y AX;
0 0 i=1

where Zf\[:tl AX; is a compound Poisson process and by and o; are continuous nonanticipat-
ing processes with satisfy the condition:
t
=F [/ det] < o0
0

o[f oo

Then, for any C*? function f :[0,T] x R — R, the process Y; = f(t, X;) can be represented
as:

2

K,
X0 - 50,50 = [ |60+ Gexn ] as
0
1 [t ,0%f ¢ af
+*/UgﬁsX +/0% s)osdW
Y (FOG AKX — f(Xp)) (38)
i>1,T1<t
The equation (2.24) can be written in differential notation as:
3f 3f 2f
0
. i(t.xaatdwt e Ax) S (39)

ox

3 Hedging Strategy

This chapter describe how to compute the option price in an jump diffusion model. The
first section talk about the measure transformation, which represent the main tool to find
the risk-neutral probability to compute the option pricing. The second part of the chapter
introduces the concept of option and, in particular, of European call option. Then, we will
see how to use an European call option for hedging purpose. The last part of this chapter is
entirely focused on compare the hedging in the Black and Scholes model with the hedging
in the Merton model for the jump diffusion process

3.1 Measure Transformation

One normal assumption in each model built in finance is that the market is complete, which
means that every contingent claim in the market is attainable. Hence, there exist only one
risk-neutral probability in the market. Unfortunately, the complete market assumption is
not true in the real market because the asset prices have jumps, which imply that there is
not a unique risk-neutral probability but we can find a much greater variety of equivalent
measure by changing the distribution of jumps.

In the Black-Scholes model to find the equivalent measure we use the Radon-Nikodym
theorem. Hence, we need to introduce the concempt of equivalent measure. Let (Q,F) be
a measurable space and let Q, P be two probability measure on F. Then, we say that Q is
absolutely continuous respect to P (P > Q) if:

VAe F PA)=0=Q(4) =
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Therefore, we can say that two probability measure Q, P on F are equivalent (P ~ Q) if
P> Q and Q > P, hence if Q and P define the same set of impossible events:

VAe F  Q(A)=0aP(A) =0 (40)

Therefore, we have the following theorem:

Theorem 3.1 [Radon-Nikodym Theorem] Let P > Q, then ezist a random vari-
able A, F-measurable, with non-negative value such that for every random variable X (F-
measurable) integrable under P the following relation is true:

Eo[X] = Ep[AX] = /A AdP

In particular:
VA e F Q(A) = E[P(AlA).

Let (Q, F,P) be a probability space which describe a market between 0 and 7. Then, we
can define the underlying asset S by a nonanticipating (cadlag) process:

S:[0,T] x Qs RT!
(t,w) = (SP (), S¢ (W), SF(w), - -, SF (W)

where S}(w) represent the value of the asset i in the market scenario w and SP(w) is a
numeraire (we define it as SY (w) = €™, where r is the interest rate) A self-financing strategy
(09, ¢¢), in the Black-Scholes model, is said to be a perfect hedge or a replication strategy
for a contingent claim H, if we have the following;:

T T
H=1, +/ $¢dS; +/ #dS) P —a.s. (41)
0 0

where S; is the asset price. Moreover, we can say that a market is complete if any contingent
claim H, admits a replicating portfolio which means that for any H € H there exists a self-
financing strategy (49, ¢;) such that the equation (3.2) holds with probability 1 under P.
If the equation (3.2) holds with probability 1, it also holds with probability 1 under any
equivalent martingale measure Q ~ P. Therefore, we find the following proposition:
Proposition 3.1 A market defined by the asset (SY, S}, ..., Si)o<i<r described as stochastic
processes on (Q, F, (Ft),P) is complete if and only if there is a unique martingale measure
Q equivalent to P.

If we consider a discount factor equal to B(t,T) = e~"(T=*) then we can write the discounted
value of H (equation (4.2)) as:

T
H="V,+ / ¢dS;  Q—a.s. (42)
0

3.1.1 Equivalence measures in jump processes

We will study such changes of measure in the jump process. When we consider Lévy process
the equivalence of their measures, gives relations between their parameters.

Consider two Poisson process defined by jump size, respectively, equal to a1, as and jump
intensity, respectively, equal to A1, Ao. Then, the following proposition shows the equivalence
of measure for Poisson processes:

Proposition 3.2 (Equivalence of measure for Poisson processes) (proposition 9.5 in [2]) Let
(N,Py,) and (N,Py,) be Poisson process on (2, F;) with intensities \1 and Aoy and jump
sizes a1 and as. Then, we have:

1. if a1 = ag, then Py, is equivalent to Py, with Radon-Nikodym density:

Py,
P>,

=exp|(A2 —A\1)T — Nrln % (43)
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2. if a1 # aq, then Py, is not equivalent to P, .

This proposition told us that if we want the equivalence measure of two Poisson process,
we can freely change the intensity of the jumps but the jump size must remain the same.
In other word, the intensity of a Poisson process can be modified without changing the
jump size of the process, but with changing the size of the jumps, which generates a new
measure. This new measure assigns nonzero probability to some events which otherwise
were impossible under the old one. We can note that two Poisson processes with different
intensities define equivalent measures only on a finite time interval.

Now, consider two compound Poisson process and the following proposition gives us the
equivalence of measure in this case:

Proposition 3.3 (Equivalence of measure for compound Poisson processes) (proposition 9.6
in [2]) Let (X,P) and (X,Q) be compound Poisson processes on (2, F;) with Lévy measure
vp and vg. The probability P and Q are equivalent if and only if vp and vy are equivalent.
In this case, the Radon-Nikodym derivative is:

d
D = % =exp [ T(Ap — Ag) + KZT P(AXS) (44)

where A\p = vp(R) and A\g = vp(R) are the jumps intensities of the two processes and

¢=1In (% .
The last important change of measure with respect the Brownian motion with drift and the
following proposition gives us the equivalence of measure in this case:

Proposition 3.4 (Equivalence of measure for Brownian motion with drift) (proposition 9.7
in [2]) Let (X,P) and (X,Q) be two Brownian motion on (Q, F;) with volatilities op > 0
and og > 0 and drift up and pg. The probability P and Q are equivalent if and only if
op = og > 0 and singular otherwise. Then, when they are equivalent the Radon-Nikodym

derivative is: d0 L 2
HQ — Up HQ — HP
o = X, = T 4

dP exp( 02 =3 o2 > (45)

With the Cameron-Martin theorem can rewrite the equation (4.9) as an exponential mar-
tingale equal to:
d - 1 — pp)?
Q_ <MWT _ MT>
o

where Wp = @ is a standard Brownian motion under the probability P. This result

shows that the drift and the volatility play a crucial roles in defining a diffusion model.

3.2 Option Pricing

The modern finance is centered on the pricing of derivative instruments, which are instru-
ments whose payoff is a function of the value of another financial instruments (such as
commodities, currency, bond, stock), also called underlying asset. One of the most popular
derivative contract in the world is the option contract. An option is a contract between a
buyer and a seller that gives at the purchaser of the option the right, but not the obligation,
to buy or to sell a particular asset at an exercise date at an agreed price (exercise price).
Later in this chapter, we denote with K the strike or exercise price, with T' the exercise date
or maturity and with Sy the value of the asset at the maturity. On one hand, we have a
call option when we have the right to buy an asset S for K at time T and we can represent
its payout at time T as:

CT ZmaX(ST—K,O) = (ST—K)+ (46)

on the other hand, we have a put option when we have the right to sell an asset S for K at
time T and we can represent its payout at time T as:

PT = Imax (K - ST,O) = (K - ST)+ (47)
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In the market we can find two type of option contract: European option and American
option. In the European option, we can exercise the option only at the maturity, instead in
the American one, we can exercise the option at any time ¢, with ¢ < T.

Let Vi(T, K) be the value at time ¢ of the forward contract ? with delivery price K. Then,
we can define the forward price F(¢,T) at current time ¢ < T to be the delivery price K
such that Vi(T, K) = 0, in other words, such that the forward contract has zero value at
time t. Therefore, we find the following relationship:

Vi(T,K) = (F(t,T) — K)e """

Now, we can find how the price of a call and a put of the same strike are related with the
value of the forward:
CT,K) — P(T,K) = V(T K) (48)

The above equation is called Put-Call Parity, which states that long one call and short one
put is equal to go long to one forward. After some transformation, the Put-Call Parity can
be written as:

C{T,K) — P,(T,K) =8, — Ke "I~ (49)

The Put-Call Parity is important for three reason. First, it is an arbitrage-free condition.
In fact, any violation of the Put-Call Parity leads to an arbitrage opportunity. Second,
when we want pricing an option, we can focus only in a call (for example) and then find the
price of the put using the Put-Call Parity. Third, the Put-Call Parity is model-independent,
which means that this parity relationship between the values of put and call options holds,
regardless of the model assumed for the evolution of the price of the underlying asset or
arbitrage opportunities occur.

3.2.1 Pricing European Option in Black-Scholes model

In the Black and Scholes model the behavior of prices is a continuous time model with the
assumption of one risky asset (denoted by S; at time ¢) and a riskless asset (denoted by S
at time t). Moreover, we assume that the risky asset will not pay dividend and that the
behavior of the riskless asset is expressed by the following ordinary differential equation:

dsY = rSYdt (50)

where 7 is an instantaneous interest rate and it is a non-negative constant. We also set that
S§, which imply that SP = e for t > 0. On the other hand, the behavior of the risky asset
is determined by the following stochastic differential equation:

where B, is a standard Brownian motion defined in the probability space (Q, F, (F;)o<i<T, P)
and p and o (called the volatility of the asset) are two constant, which are bounded and
locally Lipschitz continuous. We consider the model valid for the time interval [0, 7], where
T is the maturity date of the option. Equation (3.12) has a closed-form solution equal to:

2
Sy = Soe(M—T)H‘UBt (52)

where Sy is the spot price at time 0. Now, we need to show that there exist a probability
equivalent to P under which the discounted stock price is a martingale. Therefore, we need
to introduce the following theorem, called Girsanov theorem:

Theorem 3.2 (theorem 4.2.2 in [1]) Let (0, F, (Ft)o<i<T,P) be a filtered probability space
and (By)o<i<r an Fi-standard Brownian motion. Let (0,)o<i<r be an adapted process sat-

isfying fOT 02ds < oo a.s. and such that the process (Li)o<t<r defined by

t 1 t
L, = exp (— / ,dBs — 3 / eids) (53)
0 0

2A forward contract (or forward) is an agreement between two counterparties to trade a specific asset at
a certain future time T, called maturity, and at a certain price K, called delivery price.
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is a martingale. Then, under the probability P'Y) with density Lp with respect to P, the
process (Wy)o<i<r defined by Wy = By + fot 0sds is an Fy-standard Brownian motion.
If we define the discounted value as S; = e S, we find:
dS; = —re " Sydt + e dS;
We can substitute inside the above equation the equation (3.13) and we find:
dS; = —re "8 dt + (S (udt + odBy))
= S,((u—r)dt + cdBy)
If we set Wy = Bi(u — r)t/o, we can rewrite the above result as: dS; = S,ocdW,. Now, if

we apply the theorem 3.2 with § = (4 — r)/o, we will find the probability Q equivalent to
P under which (W})o<¢<r is a standard Brownian motion. Then, under the probability Q,

(§t) is a martingale and is equal to: S, = S’Oe"Wt_#. Finally, we can price an option and,
in particular, we will focus on European option and for simplicity we use the notation of
h = f(x) = (x — K)¥ for the call option.

Theorem 3.3 (theorem 4.3.2 in [1]) In the Black-Scholes model, any option defined by a non-
negative, Fr-measurable random variable h, which is square-integrable under the probability
Q, is replicable and the value at time t of any replicating portfolio is given by:

Vi = Egle " Yh|F]

Hence, the option value at time t can be defined by the expression Eg [e "T=Dh| F].
When the random variable h can be written as h = f(St), we can express the option value
V; at time t as a function of t and S;. Then, we have:

7|
— EQ [e—r(T—t)f (SteT(T_t)eU(WT_Wf —é(T—t)) ‘ }—t]

We can note that the random variable S; is F;-measurable and, under the probability Q,
Wy — W, is independent of F;. Therefore, we conclude that: V; = F (¢, S;) where

Flt,z) = Fq [e—r(T—t)f (xer(T—t)eo(WT—Wt)—é(T—t))} (54)

Vi = B [T f(Sr)

Since, underQ, Wp — W, is a zero-mean normal random variable with variance T' — t and if
we consider a call option, where F(z) = (z — K)T, then the equation above can be written
as:

F(t,xz) = Eg [e_T(T_t)f (me“wT_WtH(r_%ﬂT_t) — K) +]
Nz »20 +
= [(we" b9—%2 —Ke_’“g) }

(7_2
=F [(xea\/@g—Te — Ke_Te) 1g+d220:|

ds _y do _v?
_ o’\/ég—ﬁ e 2 _/ K —ro\ € 2 d
/_Oc(xe 2)\/% _Oo(e )—my

In (%) + (r+5)0
oV

di — 0+v/0. Now, in the first integral we use a change of variable with z = y + 0v/0 and the

last equation above become:

where g is a standard Gaussian variable, § =T — ¢, d; = and dy =

F(t,x) = xN(dy) — Ke "' N(dy) (55)

1 d
where N(d) = Nor / e™*/2dz is the Gaussian cumulative distribution function. The
T J—oc0

equation (4.29) is the price of the call option in the Black-Scholes model. On the other hand,
the price of a put in the Black-Scholes model is equal to: F(t,z) = Ke "N (—dy)—xN(—d,)
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3.2.2 Pricing European Option in jump diffusion process

Let (St)o<t<T be a stochastic process, which describe the asset price behavior and let
(Q, F, (Ft)+, P) be a probability space, where P; represents the history of the asset price. We
saw in the previous section that the dynamic of an asset price can be written as: Sy = SoeB?,

where BY = (u — %2) t + oW;. Consider an exponential price process of the form:
S, = Soeut-%on,-&-Yf,

where Y; is compound Poisson process. Therefore, the process S; can be written as:

Ny
Sy = Spexp (ut + oWy + Z Zi>
i=1
N
_ Soe,u,t+o'Wt H eZi
i=1
= GpetttoW H eAYe te Rt
0<s<t

from relation AY; = Zy, AN;. The process (S:)ter is equivalently given by the log-returns
dynamics: dlogS; = pdt + odW; + dY; with t € RT. Then, in exponential model we have:

o2 _to?
Sy = Soe(H 2 )HUWt T and the process S; satisfies the stochastic differential equation:

2
dSt = (M + 2) Stdt + O'Stth + St_ (eAYt - ].)dNt

2
= (/,L + (;) Stdt + O'Stth + St‘ (€ZN‘ — 1)dNt

We can see that the process S; has jump size equal to: S, (eZM — 1). In order for the
discounted price process (e7"S;)ier to be a martingale, we need to choose a drift parameter
it € R, intensity A > 0 and jump distribution » satisfying the equation:

p—r=0fl— \E[Z]

Therefore: )

u+%—T:o[L75\E9[ezfl]

under this condition we can choose a risk-neutral probability P 5 ; under which (eS8} )ter
is a martingale, for simplicity of notation we denoted the probability Psxs with Q. Then,
the discounted expected value with respect the new probability measure represent a non-
unique arbitrage price at time ¢t € [0, 7] for the contingent claim with payoff f(S7), hence
we have

e "I Bg[f(ST)|Fi)

Set 8 =T —t. Then, we can express this arbitrage price as:

eI Bolf(S1)IFi] = ¢ BolF (Sact W )
_ 677*6EQ[f(Soep,(Tft)Jra(WT7Wt)+WT7Yt)|];~t]

Ny
f<mexp<,u6’+0(WTWt)+ Z Zz))

i=N¢+1 =5,

f <$6119+0(WT—Wt) exp (Z Z,L>>
=1

= eireE@

__—0(r+XN) - (5\9)n
=€ 2)77“ EQ

=5,
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3.2.3 Implied Volatility

One of the main advantages of the Black-Scholes formula is the fact that the pricing formula,
as well as the hedging formula, depend only on one non-observable parameter: the volatility
o. In fact, the drift parameter u disappears by changing the probability measure. In the
Black-Scholes model v = 0 and the call option prices are uniquely given by the equation:

F(t,z) = CB% = 2N (dy) — Ke "' N(dy)

If we fixed all the parameters of the equation (3.16), we see that the value of the call
in the Black-Scholes model is an increasing continuous function of o, mapping |0, o[ into
1(S¢ — Ke™"%)*", S,[. The last interval represent an arbitrage bound for a call option prices.
Therefore, we can defined the Black-Scholes implied volatility of the option, denoted by
olV(T,K), as the value of the volatility of the underlying instrument, which when sub-
stituted into the Black-Scholes formula, will return the correct option prices, denoted by
CHT,K):
NolV(T,K) >0, CP9S, K,0,0lV(T,K))=C;(K,T)

We can note that, for fixed (T, K), the implied volatility is in general a stochastic process.
Furthermore, if we fixed ¢, we will find the implied volatility surface at date ¢, which is
equal at the function o/" : (T, K) — 0!V (T, K). This means that, for fixed ¢, the implied
volatility value depends on the characteristics of the option such as the maturity and the
strike price, respectively equal to T and K. Moreover, if we substitute the moneyness m (i.e

m = Sﬁt) into the implied volatility surface, it can be represented as a function of moneyness

and time to maturity: (0, m) = ofV (t+6,mS(t)). In general, the implied volatility surface
I;(6,m) may depend not only on the maturity of options but also on the current date or
the spot price. However, in the exponential-Lévy models the evolution in time of implied
volatilities is particularly simple, as shown by the following proposition:

Proposition 3.5 (Proposition 11.1 in [2]) When the risk neutral dynamics is given by an
exponential-Lévy process, the implied volatility for a given meneyness level m = S% and time

to maturity 0, i.e 0 =T —t, does not depend on time:
YVt >0, I(0,m)=Iy(0,m)

However, we can note that the implied volatility for a given strike price, K, is not constant
in time. In fact, it evolves stochastically according to: of" = I, (%,T — t) . We can note

that the implied volatility surface I; does not vary with ¢, therefore we can study only the
case in which ¢ = 0. This study explain some features of the implied volatility surface in
the exponential-Lévy model. First, a negative skewed jump distribution give rise to a skew
in implied volatility, hence the skew decrease characteristic with respect to moneyness. On
the other hand, a strong variance of jumps leads to a curvature in the implied volatility,
hence we can see smile pattern. Second, exponential-Lévy models and, in general, model
with jumps in the price lead to a strong short term skew contrarily to diffusion models which
have small skew for short maturities. Finally, in a Lévy process with finite variance we can
see the effect called aggregation normality, which is when long maturity prices of options
will be cloeser to Black-Scholes price and the implied volatility smile will become flat as
T — oo. In particular, the central limit theorem shows that when the maturity 7" is large,
the distribution of (X7 — E[X7])/VT becomes approximately Gaussian. This effect is more
pronounced in exponential-Lévy models respect to the actual market prices.

3.3 Hedging Strategy

Consider an asset prices (S¢):cjo,r] and a market described by a filtered probability space
(0 F, (Fe)iepo,1), P), where (F;)ic(o,r is the history of the assets, P represents the so-called
real-word measure and S; will be one dimensional. We assume that there are two assets in
the market: a riskless asset, described by the following differential equation dSy = rSpdt,
and a risky asset, S;. Let SY = €™ be a numeraire. Then, we denoted by V; the value of a
portfolio and by V; its discounted value, which is equal to V; = V;/SY2.
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3.3.1 Black-Scholes Hedging

Consider the Black-Scholes model. The behavior of the stock price is represent by equation:
2
S, = Spelr=F)tHoWe and the price of call option in the Black-Scholes model are equal to
the equation:
CB5(t,8) = SN(dy) — Ke " N(dy) (56)
ln(i) =+ <T+L2)9
o 2/ and dy = dy — o/8.
o
Let V be the value of a portfolio of derivative securities on one underlying asset. The rates

of change of the value of the portfolio with respect to the spot price S of the underlying
asset is important for hedging purpose. This change is called "Delta" and is equal to:

_ov
98

Then, the delta of the call option described in equation (3.17) is equal to:

8CBS
aS

Hence, we have found that the delta for an European call option in the Black-Scholes model
is equal to the cumulative distribution function of a standard normal variable evaluated in
dy. The delta in an option is important because helps to build the so-called "delta hedging".
Assume that we go long in one call option. If the price of the underlying asset declines,
the value of the call decreases and the long call position loses money. To protect against a
downturn in the price of the underlying asset, we can sell short A units of the underlying
asset. The goal of the delta hedging is to choose A in such a way that the value of the
portfolio is not sensitive to small changes in the price of the underlying asset. Therefore, if
V is the value of the portfolio, the value of the hedge portfolio is equal to: V = C(t, S)—AS;.

where § =T —t and dy =

A(V)

A(CP?) = = N(d1) (57)

3.3.2 Merton Approach

The delta hedging in the Black-Scholes model is always possible since the market is complete
and, therefore, exists only one equivalent risk neutral probability. This is the main assump-
tion in the Black-Scholes model. Unfortunately, the market is not complete and there is not
a unique risk neutral probability because the asset has discontinuities, i.e jumps, in their
paths.

The first application of jump process in option pricing was introduced by Merton. He
considered the following jump diffusion model defined in the filtered probability space
Q,7F, (]:t)te[o,T]vP):

Ny
S; = Sy exp </ﬂf + oW, + Z Yi> (58)

i=1
where W; is a standard Wiener process, /V; is a Poisson process with intensity A independent
from W and Y; ~ N(m,§?) are i.i.d. random variables independent from W and N. Since
the model is incomplete, there exists many possible choices for a risk-neutral measure and
Merton proposed to change the drift of the Wiener process and keep the other variable
unchanged. Therefore, 4™ is chosen such that S; = S,e~"* is a martingale under the new
probability measure Q, which is the equivalent probability measure to P, and is equal to

2

2 2
;LM—TJ2/\E[enl}—r(;)\[exp<m+62>l}

The equivalent martingale measure is obtained by shifting the drift of the Brownian motion
but leaving the jump part unchanged. Merton justified this choice by assuming that the
jump risk is diversifiable and, therefore, no risk premium is attached to it. Then, an european
call option with payoff f(S7) can be priced according to:

CM(t,S,) = e "D Eg[f(ST)|F] (59)
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Set § =T — t and by conditioning on the number of jumps N;, we can express the value of
the call option as a weighted sum of Black-Scholes price, therefore we find:. Then, we can
express this arbitrage price as:

CM(t,8;) = e "I Eg[f(ST — K) T[S, = ]
= e_TgE[f (e#M9+UW%£t+Z§V=117t Y7)]

f (Sexp (uMH—I-UWe]M—i—iE))

i=1

=e "> QN =n)Eg

n>0

-0 n
_ -0 e (N)" ps
=e E — C7°(0,Sn,0n) (60)

n>0

where: "1 | V; ~ N(nm,né?); o2 = 02—&—”752; Sp = Sexp (nm + "752 — Aexp(m + %) + AG)

and CP9(0,5,0) = e™FE {f (Se(r_a*;)“”wﬂ)}. We can note that the last condition is the

value of the European call option with time to maturity 6 and payoff f in a Black-Scholes
model with volatility 0. We can note that if A\ = 0 then CM (¢, 5) = CP3(t, 5), indeed all
the terms appearing in the sum (3.21) are equal to 0, except for j = 0, when Sy = S and
ogp = 0.

The hedging portfolio proposed by Merton is the self-financing strategy (¢9, ¢;) given by:
oy = %(t, S;-) and ¢Y = ¢S — f(f ¢dS. This means that we choose to hedge only the risk
represented by the diffusion part. This approach is justified if we assume that the investor
holds a portfolio with many assets for which the diffusion components may be correlated
but the jumps components are independent across assets. This hypothesis would imply that
in a large market a diversified portfolio such as S&P500 would not have jumps. Finally, the
assumption of diversifiability of jump risk is not justifiable if we are pricing index options,
in fact a jump in the index is not diversifiable.

3.3.3 Quadratic Hedging

We can define the quadratic hedging as the choice of a hedging strategy which minimizes
the hedging error in a mean square losses. This imply that losses and gains are treated in a
symmetric manner, therefore we measure the risk in terms of variance.

Consider a risk-neutral model (S;)¢c(o,7] given by Sy = et X¢ where X, is a Lévy process on
the filtered probability space (€2, F, (Ft):ep0,77, Q). We assume that S is a square integrable
martingale, therefore the following condition is satisfied:

/ ey (dy) < 0o
ly[>1

Moreover, we assume that X; has finite variance and its characteristic function can be
expressed as:

2,2
E [ei“X‘] = exp {t [—0 Y

+bxt + /ux(dy) (e™v —1— iuy)] }

with by chosen such that S = eX is a martingale. As we have seen in the previous chapter,
Sy can also be written as a stochastic exponential of another Lévy process (Z;):

Sy = SydZ,
where Z is a martingale with jumps size greater than —1 and it is also a Lévy process. Let
(07, d¢)iejo,r) be a salf-financing strategy. In order to apply the quadratic hedging criteria,
we need to find portfolio such that its terminal value has a well-defined variance. Therefore,
we want that the asset S is in the set of all the admissible strategies defined as:

T 2
/ ¢td5*t] < o0
0

S = { ¢ caglad predictable and E
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Using preposition 2.4 and the proposition 2.5, the above condition is equivalent to:

T T
E /0 |¢t‘§t|2dt+/0 /RZ2|¢tS't|2dtu(dz)] < 00 (61)

Let L?(S) be the set of process ¢ which verify the above condition (3.22). Therefore, the
terminal payoff of such strategy is equal to:

T T
Gr(g) = /0 réddt + /0 605, dZ,

We can note that S; is a martingale under the probability measure Q and that ¢ € L2(5Y ),
therefore the discounted gain process, equal to Gr(¢) = fot @dS, is also a square integrable
martingale. Using proposition 1.8 we find that G‘T(qb) is given by the martingale part of the

above equation:
/ (tht O'th / /JX dt X dx x(tht—

¢tSt O'th / / JZ dt x dz)(thtf (6 — 1)
0

0

where J is the jump measure. Now, we can written the quadratic hedging problem as:

inf N EQ |:|éT(¢) + V() — }AI|2} (62)
¢eL?(S)

where H is defined by the equation: H = Vj + fOT $,dS; Q-a.s.
Proposition 3.6 (proposition 10.5 in [2]) Consider the risk neutral dynamics

Q: dS; = S,-dz, (63)

where Z is a Lévy process with Lévy measure vz and diffusion coefficient o > 0. For a
FEuropean option with payoff f(St) where f : Rt — R verifies

K >0, |f(z) = fly) < Klz -yl

the risk minimizing hedge, solution of (3.23), amounts to holding a position in the underlying
equal to ¢ = A(t, S;-) where:

o B—C(t S) + + [vz(dy)z[C(t, S(1 + z)) — C(t, 5)]

A(t, St,) = o2 + f ZQVZ(dy)

(64)

with C(t,S) = e T Eg[f(S7)|S: = 9]

If we consider an exponential-Lévy model, i.e. S; = Spe"*tX¢, the optimal quadratic
hedge can be expressed in terms of the Lévy measure vx of X as

o298(t,8) + £ [vx(dz) (e® — 1) [C(t,Se®) — C(t, 5)]
o2 + [ (er —1)° vx(dx)

A(tv St*) =

We can note that we have also found an expression for the residual risk of a hedging
strategy (¢?, ¢):

8C’

T ~
RT(¢>:E/O b0 S (t,5,)| St

T B i
+E /0 dt/Rz/(dz)|C(t,St—(l+z)) Clt,S0-) — 2648, |
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The residual risk allows us to examine whether there are any cases where the hedging error
can be reduced to zero, hence where we can achieve a perfect hedge. We find that in only
two case is possible achieve a perfect hedge. The first one, is when there are no jumps, i.e
v = 0. In this case, the residual risk is equal to:

T aC 2
/ (@St—stﬁs(um) dt]

and we find that e(¢) = 0 a.s when ¢, is equal to the Black-Scholes delta hedging. The
second case, is when ¢ = 0 and there is a single jump size v = 0, : X; = alN¢, where N is a
Poisson process. In this case

e(¢)=E

Rr(¢)=FE
0

[ st i s vy s - @F]

C(t,S,_ (14a))—C(t,S, )

aS,—

and @) = e"'S;p; — et fg ¢¢dS;, we will obtain a
self-financing strategy (¢, ¢ which is a replication strategy:

T T
fomy =vi s [ ST =ClS) g [T

if we choose ¢; =

We can note that the quadratic hedge achieves a mean-variance trade-off between the risk
due to the diffusion part and the jump risk.

3.4 Comparison

We want to show that the hedging in the Merton model outperforms the hedging in the
Black and Scholes model, which are described in the section above. Before we talk about the
hedging strategy, we show that the Marton model also outperform the Black-Scholes model
to replicate the stock behavior from historical data. We consider the daily log-returns of the
Standard & Poor’s 500 Index (S&P500) in the period from 31-12-2009 to 29-01-2009. There
is a total of 2273 daily closing price and we have to deal with n=2272 log-returns. Moreover,
from the S&P500 data it is possible to find the following information: EST ~ 0.00036;
MZFP ~ 0.0095; s°F ~ —0.4666 < 0 and k°F ~ 7.5614 > 3; where E is the mean, s is the
skewness and k is the kurtosis. In order to find a relationship among the two model and the
statistical result of the S&P500, we will work with an interval of amplitude At, which can
be defined as At = 1/252 ~ 0.004 where the denominator 252 represent the trading days in
a year. Therefore, we can write the Black-Scholes model as

AIOgSt = ,uBsAT+ opsAW, (65)
where AW, ~ N(0, At). While the Merton model can be written as:
Alog Sy = AT + oy AW, + VAN, (66)

where V is the price ratio (> 0) associated with the i-th jump along the path of the stock

SSTTi > ~ N(m, %) and AN; ~ Po(AAt). Then, the following

price and is equal to V' = log

theorem described the relation among the parameter of the two model:
Theorem 3.4 (theorem 1 in [12]) Consider the equation (3.26), we find the following rela-
tion:

EPY = ppsAt;  My® = ohgAt;
MPS =0, MPS =30} 5At?

MBS MBS
. SBS _ 3 BS 4

_MpE _MPS
(MFs)*? (MPS)
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while for the equation (3.27) we have

EM = py At + mAAt M = o3 At + (6% (14 AAL) + m?) AAE
Mgt
(M2M)3/2’
MM = 3(02,At)? + (m* + 36* + 6m26%)AAL + (3m* + 215* + 30m26%)(\AL)?
+ 607, A% + m*)AAL + (1857 + 6m?6%)(AAL)® + 607,02 At(AAL)?
M
(Mp1)*

M3 =m(36% + m?)AAL + 6md?(AAL)? = sM =

+ 304 (\A)* = kM =

Therefore, if we apply the theorem 3.4, we can find the vector of parameter for the Black
and Scholes model (ups,ops) and for the Merton model (upg, 053, A, m,0). For the Black-
Scholes model we assume: EBS = ESP and MPS = M5T we find that

ESP MSP
== ~0.0922 = 2 ~0.1507
KBS Al s OBS At

we can recall that a normal distribution is completely determined by its mean and variance.
On the other hand, in the Merton model we have 5 parameters to estimate. We can reduce
this set assuming that EM = ESF and M) = M5” which implies that

_ ESP —mAAt B \/MQSP — (82(1 + AAL) + m2) AA¢

hence, the diffusion paramters are expressed as function of the jumps ones and we have
only 3 parameters to estimate. We use the Multinomial Maximum Likelihood approach
to estimate this 3 parameters, which can be represented as a 3-dimensional vectors n =
(A,m, ). The step of the Multinomial Maximum Likelihood approach can be summarized as
follows: first, sort empirical data into 77 < n bins, in order to get a computationally tractable
problem. Then, for each of these bins, extract the sample frequency f°F, i = 4,...,7.
Second, construct the theoretical jump diffusion frequency function

fiM(n)in/ Yaclysn)dy i=1,...,7
B;

where B; is the i-th bin and ¥a¢(y;n) is the log-return probability density function for the

; (y—(n=Ak—%o)t—jm)?
J — 2
(A1) EXP{ 2(021.55%) }

J/2m (o2t +562)
Third, minimize the objective function: () = — 31" | £ log (fM(n)).
Therefore, by the Multinomial Maximum Likelihood algorithm we obtain that

Merton model (described in chapter 1), i.e. 1;(y) = e Z;io

A~ 62.752; m ~ —0.006323; ¢ ~ 0.006291
hence, in the Merton model pu, o, skewness and kurtosis are equal to:
par ~ 048678, o ~0.1301, sM ~1.4261 kM ~7.9952

We can note that the skewness is bigger than the one obtained using the real S&P500 data,
i.e. 1.4261 > —0.4666, but, unlike in the Black and Scholes model where s#9 = 0, the Mer-
ton approach tents to capture a clear absence of symmetry with the same sign. Moreover,
the kurtosis in the Merton model is very close to the one obtained using the real S&P500
data, while the Black and Scholes model provides poor result. Hence, we can conclude that
the log-normal jump diffusion model represents a substantial and concrete improvement
when compared to the Black and Scholes model.
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Now, we compare the Black and Scholes hedging strategy, i.e. Delta hedging, with the

Merton hedging for the jump diffusion process. We consider the closing price of the S&P500
from 29-12-2017 to 29-01-2019 and we consider a call option with underlying the S&P500,
strike price equal to 2700 and maturity at 01-02-2019. Moreover, we assume that the risk-
free rate is equal to 2,98%, denoted by r.
For these period, we have a total of 272 daily closing price and we have to deal with n = 271
log-returns. From the log-returns we find the following information from the S&P500 data:
ESP ~ —0.0000468, M5T ~ 0.0109, s°F ~ —0.4333 < 0 and k5T ~ 5.9362 > 3. Therefore,
the Black and Scholes parameters can be estimated as follow:

ESP MSP
= —— ~ 0011 = 2 ~0.172
HUBS At 0.0 8, oBs At 0.1723

The Merton parameter can be estimated using the Multinomial Maximum Likelihood algo-
rithm and we obtain that

A~ 3.1596; m ~ —0.04942; § ~ 0.0076
hence, in the Merton model p, o, skewness and kurtosis are equal to:
par =~ 0.1444, o ~0.1476, sM ~1.5929, kM ~7.8115

We can note that also in these case the Merton model represents a substantial and concrete
improvement when compared to the Black and Scholes model. Therefore, we can expect
that the hedging in the Merton model perform better than the delta hedging in the Black
and Scholes.

Then, consider the following hedging strategy for the Black-Scholes model: we assume
that we go long in the call option and to protect against a downturn in the price of the
underlying asset we will sell short A unit of the underlying asset. The goal is to choose A
in such a way that the value of the portfolio is not sensitive to small changes in the price
of the underlying asset. If we denoted with II the value of the portfolio, then I = C — AS
or, equivalently, II(S) = C(S) — AS. To implement the Delta hedging we assume that if
the Delta is negative we will go long on the asset and short the call option. We can note
that a portfolio is Delta neutral only over a short period of time. We recall that the Delta
of a call option is equal to the equation (3.18). To implement the Black-Scholes formula
the cumulative distribution N(d) of the standard normal variable x must be estimated
numerically and we use the algorithm proposed by Abramowitz and Stegun in 1970 which
has an approximation error smaller than 7.5-10~7 at any point on the real axis.

On the other hand, for the Merton jump diffusion model we consider the hedging prosed
by Merton. Therefore, we find that the price of the call option in this model is equal to
the equation (3.21) and then we use the hedging portfolio proposed by Merton is the self-
financing strategy (¢Y, ¢;) given by: ¢; = %(t, S,-) and ¢Y = ¢;S; — fot ¢dS; which means
that we choose to hedge only the risk represented by the diffusion part.
The result of these two hedging strategy can be seen in the table below which report the
return and the variance:
Return  Variance (o?)
Black-Scholes Hedging  6.40% 0.1589 %
Merton Hedging  6.49% 0.1589 %

We can see that the two hedging strategy have the same variance and the return are more or
less the same, the Merton return is a greater only of 0.09 respect to the Black-Scholes return.
One possible explanation is that we consider a trading strategy only for one year and, as said
before, a portfolio is Delta neutral over a short period of time. Despite this, we can say that
the hedging strategy also confirms the above: the Merton model represents a substantial
and concrete improvement when compared to the Black and Scholes model. In fact, we can
safely say that no-one would choose the Delta hedging compared to Merton hedging as the
second has a bigger return, even if small, with the same variance. Therefore, the Merton
hedging dominates the Black-Scholes hedging since Merton considers in the stock process a
jump component.
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