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Introduction

The mathematical modeling of �nancial market start with Louis Bachelier, who was the �rst
to introduce the Brownian motion as a model for the price �uctuation of a liquid traded
�nancial asset with his doctoral thesis in 1900. In 1973 Fisher Black and Myron Scholes
given a great contribution with the article "The Pricing of Option and Corporate Liabilities",
which gave a new dimension to the use of probability theory in �nance. The option pricing
methodology introduced by Black and Scholes is unique in that distributional assumptions
alone su�ce to generate well-speci�ed option pricing formulas involving mostly observable
variable and parameters. One assumption is that the price of the underlying asset follows
a di�usion process and an additional assumption is that the instantaneous risk-free rate
is nonstochastic and constant. Under these plus other "frictionless market" assumptions,
the option's payo� can be replicated by a continuously adjusted hedge portfolio composed
of the underlying asset and short-term bonds. This imply that the key assumption in the
Black-Scholes model is that the market is complete. In a complete market models probabil-
ity does not really matter, in fact the objective evolution of the asset is only there to de�ne
the set of impossible events and serves to specify the class of equivalent measures. Hence,
two statistical models with equivalent measures lead to the same option prices in a complete
market setting. Therefore, the option pricing formula generated by Black and Scholes de-
pends critically upon the distributional restriction on the volatility of the underlying asset.
The result of that restriction is that the systematic risk of the option is a function of the
systematic risk of the underlying asset only.
Jump di�usion process and more in general Lévy models generalize the Black and Scholes
work by allowing the stock price to jump while preserving the independence and stationary
of returns. Hence, the jump di�usion process described the observed reality of �nancial
markets in a more accurate way than models based only on Brownian motion. In the real
world, we observe that the asset price processes have jumps or spikes. Therefore, we can �nd
three main reason for introducing jumps in �nancial modeling. First, asset price processes
have jumps and some risks cannot be handled with a continuous path model but we need to
study a discontinuous models. Second, the presence in the option market of the phenomenon
of implied volatility smile which shows that the risk-neutral returns are non-gaussian and
leptokurtic. Moreover, in continuous path models the law of returns for shorter maturities
becomes closer to the Gaussian distribution, on the other hand in models with jumps returns
actually become less Gaussian as the maturity becomes shorter. Finally, the jump process
correspond to incomplete markets, hence we did not �nd a unique equivalent probability
measure for the option pricing but there are many possible choice. This imply that a perfect
hedge, i.e. the Black and Scholes Delta hedging, is not longer possible in jump models and
the hedging in jump process achieves a trade-o� between the risk due to the di�usion part
and the jump risk.

This thesis is structured as follows. The �rst chapter contains a brief review of the main
concept of probability theory and the last section gives the de�nition of stochastic process
and, in particular, we de�ne and explain the most well-known continuous stochastic process:
the Brownian motion.
The second chapter is dedicated to the theoretical treatment of the jump di�usion process.
We start the chapter introducing the Poisson process, which is the main building block of
discontinuity process. Then, we talk in general about the Lévy process and we study the
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main features about their distributions. And we conclude the chapter talking about the
jump di�usion model and we give some example about it.
The third chapter describes the stochastic integral and the main tool to explain the time
evolution of a derivative instrument. The �rst section is dedicated to the concept of stochas-
tic integral and then we see how change the stochastic integral when is driven by a jump
di�usion process.
The last chapter is focused on hedging strategy. We start by talking about the measure
transformation, which is a key tool to �nd equivalent probability measure in option pricing.
The second section is dedicated to the option pricing in jump di�usion model and here we see
how the option pricing is di�erent between the Black and Scholes model and a jump process.
Finally, we talk about the hedging strategy. We start by describing the Delta hedging in
the Black-Scholes model and then we start to talk about the hedging in discontinuous-path
process. First, we introduce the Merton approach proposed in 1976, then we described the
more general concept of hedging in the Lévy process: the Quadratic Hedging. We conclude
the fourth chapter with a comparison between the Merton model and the Black and Scholes
model.
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Chapter 1

Probability Theory

This �rst chapter presents an introduction to probability theory and stochastic process. We
start with the de�nition of probability space and measure, which is important in the study of
stochastic process in general and, in particular, in the jump process. Then, we describe the
probability law and how it converges. Moreover, we introduce the characteristic function,
which is central tool in the second chapter, and we state some properties, then we give an
example of characteristic function for a normal distribution.
The second part of the chapter introduce the concept of stochastic process. In particular,
we talk about the construction of stochastic process and about the stopping time. Then,
we de�ne the most well-known continuous stochastic process: the Brownian motion, which
is the core concept of the Black-Scholes model and it is one of the component of the jump
di�usion process, which is described in the second chapter. Finally, we de�ne the martingale
and the property associate to it. We start to de�ne the martingale in discrete time and,
then, we extend the result for the continuous time case.

1.1 Probability Concept

1.1.1 Random Variable

De�nition 1.1 [Probability Space] A probability space is a triple (Ω,F ,P) where: Ω is
the sample space corresponding to outcomes of some experiment; F is a σ-algebra of subset
of Ω and P is a probability measure on F such that P(Ω) = 1.

Moreover, P is a function with domain F and range [0, 1] such that P(A) ≥ 0 for all A ∈ F
and if {An, n ≥ 1} are events in F that are disjoint, then P (

⋃∞
n=1An) =

∑∞
n=1 P(An). In this

case, we say that P is σ-additive. Finally, we say that an event A with probability P(A) = 1
occurs almost surely and, on the other hand, if P(A) = 0 the event A is impossible.
In the de�nition of Probability space, we saw a σ-algebra, the following two de�nition helps
us to understand this concept.
De�nition 1.2 [Algebra] (de�nition 1.5.2 in [12]) A algebra or a �eld is a non-empty class
of subsets of Ω closed under �nite union, �nite intersection and complements.
Hence, a minimal set of postulates for A to be a �eld is:

1. Ω ∈ A;

2. A ∈ A implies Ac ∈ A;

3. A,B ∈ A implies A ∪B ∈ A.

De�nition 1.3 [σ-Algebra] (de�nition 1.5.3 in [12]) A σ-algebra or a σ-�eld is a non-empty
class of subsets of Ω closed under countable union, countable intersection and complements.
Hence, a minimal set of postulates for B to be a σ-�eld is:

1. Ω ∈ B;
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2. B ∈ B implies Bc ∈ B;

3. Bi ∈ B, i ≥ 1 implies
⋃∞
i=1Bi ∈ B and

⋂∞
i=1Bi ∈ B.

De�nition 1.4 [Measurable space] A measurable space is a couple (E, E) where: E is a
space and E is a σ-algebra of subset of E.
De�nition 1.5 [Measure] (de�nition 2.1 in [2]) A (positive) measure on (E, E) is de�ned
as a function

µ :E → [0,∞)

A 7→ µ(A)

such that:

• µ(∅) = 0;

• For any sequence of disjoint sets An ∈ E: µ
(⋃

n≥1An

)
=
∑
n≥1 µ(An);

An element A ∈ E is called a measurable set and µ(A) its measure.

Suppose Ω = R and let C = {(a, b], .∞ ≤ a ≤ b < ∞}. Then, we can de�ne the Borel
subset of R, denoted by B(R), as:

B(R) := σ(C)

Thus the Borel subset of R are elements of the σ-�eld generated by intervals that are open
on the left and closed on the right.
Let (Ω,F ,P) be a probability space and (E, E) be a measurable space. Then, a random
variable is a function X : Ω → E measurable such that X−1(A) ∈ F every time A ∈ E . A
special case occurs when E = R and E = B(R), in this case X is a real random variable.
Therefore, for a real random variable X on (Ω,F ,P), we can always de�ne its integral.
Many integrations results are proved by �rst showing they hold for simple functions and then
extending the result to more general functions. Recall that a function on the probability
space (Ω,F ,P): X : Ω 7→ R is simple if it has a �nite range. Hence, we can assume that a
simple function is measurable and this kind of function can always be written in the forms:

X(ω) =

k∑
i=1

ai1Ai(ω)

where ai ∈ R and Ai ∈ F and A1, . . . , Ak are disjoint and
∑k
i=1Ai = Ω.

Let (Ω,F ,P) be a probability space and

X : (Ω,F) 7→ R̃,B(R̃)

where R̃ = (−∞,∞). Then, we can de�ne the expectation of X, denoted by E(X), as:

E[X] =

∫
Ω

XdP =

∫
Ω

X(ω)P(dω) (1.1)

This integral is also known as the Lebesgue-Stieltjes integral of X with respect to P. For
example, if X is a simple random variable equal to: X =

∑n
i=1 ai1Ai , where |ai| < ∞ and∑k

i=1Ai = Ω. The expectation of X can be de�ned as:

E[X] =

∫
XdP =:

k∑
i=1

aiP(Ai)

We can note that for a simple function the expectation is computed by taking a possible
value, multiplying by the probability of the possible value and then summing over all possi-
ble values. Moreover, we can see that this example de�ne the expected value for a discrete
random variables.

6



On the other hand, we say that X is a continuous random variable if there exists a nonneg-
ative function f , de�ned for all real x ∈ (−∞,∞), having the property that, for any set B
of real numbers:

P(X ∈ B) =

∫
B

f(x)dx (1.2)

where f(x) is called the probability density functions of the random variable X. Therefore,
we can de�ne the expected value of X as:

E[X] =

∫ ∞
−∞

xf(x)dx

We can de�ne the Lp spaces, with 1 ≤ p ≤ +∞, as the norm of X. More precisely, we

have that ‖X‖p = E[|X|p]
1
p . We say that two random variable X and Y are equivalent if

P(X = Y ) = 1. We can note that if X and Y are equivalent, then we have ‖X‖p = ‖Y ‖p
and that Lp is the set of equivalence classes of random variable X such that ‖X‖p < +∞.
In particular, Lp is the set of equivalence classes and it is not the set of random variable.
Let X be a real random variable in L2. Then, we can de�ne the variance of X, denoted by
V ar(X), as the quantity:

V ar(X) = E[(X − E[X])2] = E[X2]− E[X]2

If α > 0, the quantity
∫
|x|αµ(dx) is called the absolute moment of order α of µ. Moreover,

if α is a positive integer, the quantity
∫
xαµ(dx) is called the moment of order α of µ.

Now, consider two random variable X and Y in L2. The covariance of X and Y can be
de�ned as:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ]) = E[XY ]− E[X]E[Y ]

We can note that if X = Y , then Cov(X,Y ) = V ar(X) and that if X ⊥ Y , then
E[XY ] = E[X]E[Y ] and consequently Cov(X,Y ) = 0. If Cov(X,Y ) = 0, we say that
X and Y are not correlated.

We need to introduce the following inequalities because they are useful in the following
chapter to study the behavior of the stochastic process.

• Jensen Inequality: Let X be a random variable in Rm and let Φ : Rm → R ∪ {+∞}
be a convex function. Also suppose that X and Φ(X) are integrable. Then:

E[Φ(X)] ≥ Φ(E[X])

Proof
Suppose that Φ is twice di�erentiable. We know that its second derivative is always
positive. Therefore, by Taylor expansion, for any x, we have:

Φ(x) ≥ Φ(E[X]) + (x− E[X])Φ′(E[X])

Putting x = X(ω) and taking expectations, we will �nish the proof.

�

• Markov Inequality: Let X ∈ L1 and for any δ > 0, β > 0, we have that:

P(|X| ≥ δ) ≤ E[|X|β ]

δβ

Proof
Let β is equal to 1. Then, we have:

1·1[ |X|δ ≥1] ≤
|X|
δ
·1[ |X|δ ≥1] ≤

|X|
δ

7



�

• Chebyshev Inequality: Let X ∈ L2. Then, for any α > 0 we have:

P(|X − E[X]| ≥ α) ≤ V ar(X)

α2

Proof

P(|X − E[X]| ≥ α) = P(|X − E[X]|2 ≥ α2)

≤ E[X − E[X]]2

α2
=
V ar(X)

α2

where the last inequality is an application of the Markov inequality.

�

The Chebyshev inequality imply that the variance of one random variable is a quantity
which is as much larger as bigger is the value of X from his mean E[X].

• Hölder Inequality: Let Z and W be real random variable ≥ 0 and α, β real numbers
≥ 0 such that α+ β = 1. Then, we have:

E[ZαW β ] ≤ E[Z]αE[W ]β

From the inequality above, we �nd that if X, Y are real random variable and p, q are
numbers ≥ 0 such that 1

q + 1
p = 1, then we have the Hölder inequality:

E[XY ] ≤ E[|X|p]
1
pE[|X|q]

1
q = ‖X‖p · ‖Y ‖q

Proof

Let ω ∈ Ω and let x = |X(ω)|
‖X‖p

and y = |Y (ω)|
‖Y ‖q

. Then, we consider the following

inequality: xy ≤ xp

p + yq

q for x, y > 0 and we have:

xy ≤ 1

p

(
|X|
‖X‖p

)p
+

1

q

(
|Y |
‖Y ‖q

)q

E[XY ] ≤ 1

p
E

[
|X|p

‖X‖pp

]
+

1

q
E

[
|Y |q

‖Y ‖qq

]
=

1

p
+

1

q
= 1

�

• Minkowski Inequality: Let p ≥ 1 and let X, Y are real random variable such that
E[|X|p] <∞ and E[|Y |p] <∞. Then:

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p
Proof
If ‖X + Y ‖p = 0 there is nothing to prove. Therefore, we prove that ‖X + Y ‖p > 0.

We can note that (p − 1)q = p and p
q = p−1. Hence, we obtain by triangular and

Hölder inequality that:

‖X + Y ‖pp = E
[
|X + Y |p−1|X + Y |

]
≤ E

[
|X + Y |p−1|X|

]
+ E

[
|X + Y |p−1|Y |

]
≤
∥∥|X + Y |p−1

∥∥
q
‖X‖p +

∥∥|X + Y |p−1
∥∥
q
‖Y ‖q

=
(
E[|X + Y |(p−1)q]

) 1
q

(‖X‖p + ‖Y ‖q)

= ‖X + Y ‖p/qp (‖X‖p + ‖Y ‖q)

Then, dividing both members by ‖X + Y ‖p/qp we will �nish the proof.
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The Minkowski inequality imply that Lp, for p ≥ 1, is a vector space. Moreover, if
p > q from the Jensen inequality with the convex function Φ(x) = |x|p/q, we will �nd:

‖X‖pp = E[|X|p] = E[Φ(|X|q)] ≥ Φ(E[|X|q]) = E[|X|q]p/q

and applying the p-root, we �nd

‖X‖p ≥ ‖X‖q

Therefore, we can conclude that if p ≥ q then Lp ⊂ Lq.

Let X be a random variable which takes value on the measurable space (E, E). Then, it
is easy to see that the function Q de�ne on E by

Q(A) = P(X−1(A)) = P([ω : X(ω) ∈ A])

is a probability measure, Q is also call the law of X. In words this means that we de�ne the
probability that the random variable X falls into a Borel set as the probability (on (Ω,F))
of the inverse image of this Borel set. The following proposition is useful to compute the
integral with respect to the inverse image.
Proposition 1.1 Let X : (Ω,F ,P) → (E, E) be a random variable, f : (E, E) → (R,B(R))
be a measurable function and Q be the law of X. Then, f is Q-integrable if and only if f ◦X
is P -integrable. Therefore, we have∫

E

f(x)Q(dx) =

∫
Ω

f ◦X(ω)P (dω) (1.3)

In particular, if X is a real random variable and µ is its law, the following relation hold:

E[X] =

∫
xµ(dx), E[|X|α] =

∫
|x|αµ(dx)

Therefore, X ∈ Lp if and only if its law has absolute moment of order p �nite .

Let X be a real random variable. Then, it can be decomposed in a positive and in a
negative part: X = X+ − X−. We call X quasi-integrable if at least one of E[X+] and
E[X−] is �nite. In this case, we can de�ne the expectation of X as:

E[X] := E[X+]− E[X−]

If E[X+] and E[X−] are both �nite, we call X integrable. If E[X+] <∞ but E[X−] =∞,
then E[X] = −∞. If E[X+] = ∞ but E[X−] < ∞, then E[X] = ∞. If E[X+] = ∞ but
E[X−] =∞, then E[X] does not exist.

1.1.2 Conditional Probability and Independence

If E and E ′ are σ-algebra of events of E, we can denote with E ∨ E ′ the smallest σ-algebra,
which contains E and E ′.
Let X be a random variable such that (Ω,F ,P) → (E, E). We denote with σ(X) the σ-
algebra generated by X, hence it is the smallest sub-σ-algebra of F such that X is still
measurable. The following lemma describes the situation when one random variable is a
function of another one by the inclusion of the σ-�eld generated by the random variable.
Lemma 1.1 (Doob's measurable criterion) Let X be a random variable such that (Ω,F ,P)→
(E, E). Then, all the real random variables σ(X)-measurable has the form f(X), where f is
a measurable operation from (E, E) to (R,B(R)).

9



Considerm random variable,X1, . . . , Xm, which take values respectively in (E1, E1), . . . , (Em, Em).
We say that they are independent if, for any A′1 ∈ E1, . . . , A′m ∈ Em, we have

P(X1 ∈ A′1, . . . , Xm ∈ A′m) = P(X1 ∈ A′1) . . .P(Xm ∈ A′m)

The events A1, . . . , Am ∈ F are independent if and only if

P(Ai1 ∩ · · · ∩Ail) = P(Ai1) . . .P(Ail)

for any 1 ≤ l ≤ m and for any 1 ≤ i1 < i2 < · · · < il ≤ m. This de�nition is equivalent to
say that the random variable 1A1 , . . . ,1Am are independent.
If F1, . . . ,Fm are sub-σ-algebra of F , they are independent if, for any A1 ∈ F1, . . . , Am ∈
Fm, we have:

P(A1 ∩ · · · ∩Am) = P(A1) . . .P(Am)

We can note that the random variable X1, . . . , Xm are independent if and only if also the
σ-algebra generated by σ(X1), . . . , σ(Xm) are independent. Finally, we say that the random
variable X is independent from the σ-algebra G if and only if the σ-algebra σ(X) and G
are independent. This happen when X is independent from each random variable W G-
measurable.

Now, we need to introduce the relationship between the independence and the law of the
random variable. If µi is the law of Xi and we set E = E1× · · · ×Em, E = E1⊗ · · · ⊗ Em on
the space (E, E), we can consider the product law µ = µ1 ⊗ · · · ⊗ µm.
Proposition 1.2 Consider tha above notation. Then, the random variable X1, . . . , Xm

are independent if and only if the law of X on (E, E) is the product law µ, with X =
(X1, . . . , Xm).
The proof of this proposition use the following theorem:
Theorem 1.1 [Carathéodory's criterion] Let (E, E) be a measurable space and let µ1, µ2

be two �nite measure on (E, E). Let C be a family of subset of E stable under �nite inter-
section and which built E . If µ1(E) = µ2(E) and µ1, µ2 are equal on C, then they are also
equal on all E .
Proof (proposition 1.2)
Let ν be the law of X and let C be the set of parts of E of the form A1 × · · · × Am with
Ai ∈ Ei, i = 1, . . . ,m. C is table under �nite intersection and built E , by de�nition. Then,
the de�nition of independence told us that µ and ν are equal on C, therefore they are also
equal over all E , by the Carathéodory criterion.

�

Let (Ω,F ,P) be a probability space. Then, we have the following de�nition for conditional
probability:
De�nition 1.6 [Conditional Probability] Let A,B ∈ F be two events and suppose that
P(A) > 0. The conditional probability on (Ω,F) of B given A is de�ned as:

PA(B) = P(B|A) =
P(A ∩B)

P(A)
(1.4)

The conditional probability thus measures the probability of B given that we know that A
has occurred.
Let X be a real random variable and Z be a random variable which takes value in a mea-
surable set E such that P(Z = z) > 0 for all z ∈ E. Then, for every A ⊂ R and for every
z ∈ E, we have:

n(z,A) = P(X ∈ A|Z = z) =
P(X ∈ A,Z = z)

P(Z = z)
(1.5)

For every z ∈ E, A→ n(z,A) is a probability on R and it is called the conditional law of X
given Z = z. Hence, A→ n(z,A) is the law given at the random variable X when we know
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that the event {Z = z} has occurred.
The conditional expectation of X given Z = z is de�ned as:

E[X|Z = z] =

∫
xn(z, dx) =

1

P(Z = z)

∫
{Z=z}

XdP =
E[X1{Z=z}]

P(Z = z)

Theorem 1.2 Let X be a quasi-integrable random variable, D be a sub-σ-algebra of F .
We call conditional expectation of X respect to D and it is denoted by E[X|D] the class of
equivalence random variable Z, D-measurable and quasi-integrable, such that for any B ∈ D:∫

B

ZdP =

∫
B

XdP

A detailed proof can be found in chapter 3 of "Equazioni di�erenziali stocastiche e appli-
cazioni" written by Baldi.

A random variable Z with these property exists always and it is unique unless there exist
an equivalent probability measure.

Proposition 1.3 Let X, X1, X2 be integrale random variable and α, β ∈ R. Then:

a) E[αX1 + βX2|D] = αE[X1|D] + βE[X2|D] almost surely (a.s);

b) if X ≥ 0 a.s, then E[X|D] ≥ 0 a.s;

c) E[E[X|D]] = E[X];

d) if D′ ⊂ D, E[E[X|D]|D′] = E[X|D′] a.s;

e) if Z is D-measurable, then E[ZX|D] = ZE[X|D] a.s;

f) if X is independent from D, E[X|D] = E[X] a.s.

Proof
we prove only the last three point because the �rst three are just immediate applications of
the de�nition.
d) the random variable E[E[X|D]|D′] is D′-measurable; moreover, if W is D′-measurable,
then it is also D-measurable and:

E[WE[E[X|D]|D′]] = E[WE[X|D]] = E[WX]

e) ZE[X|D] is D-measurable. If W is D-measurable also ZW is D-measurable, thanks to c)
we have:

E[ZWE[X|D]] = E[E[ZWX|D]] = E[ZWX]

f) the random variable ω → E[X] is constant and, hence, D-measurable. If W is D-
measurable, it is also independent from X and

E[WX] = E[W ]E[X] = E[WE[X]]

therefore E[X] = E[X|D] a.s

�

Let H be a σ-algebra and X be a random variable H-measurable. If Z is a random variable
independent from H, we know that, if X and Z are integrable,

E[XZ|H] = XE[Z]

The equation above is a particular case of the following lemma:
Lemma 1.2 Let (Ω,F ,P) be a probability space, (E, E) be a measurable space, G and H
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sub-σ-algebra of F . Moreover, G is independent from H. Let X be a random variable H-
measurable which takes value in (E, E) and ψ(x, ω) be a function on E×Ω, E⊗G-measurable
such that ω → ψ(X(ω), ω) is integrable. Then

E[ψ(X, ·)|H] = Φ(X)

where Φ(X) = E[ψ(x, ·)]
A detailed proof can be found in chapter 3 of "Equazioni di�erenziali stocastiche e appli-
cazioni" written by Baldi.

1.1.3 Probability Law

Let µ be a probability law on Rn and πi : Rm → R his projection on the i-coordinate. Then,
we call marginal law of µ the image of the law µ through πi.
Let X = (X1, . . . , Xm) be a random variable on Rn with probability law µ. We can note
that the marginal law is the same of the law µi of Xi. Therefore, the marginal law can be
expressed as:

µi(A) =

∫
1A(xi)µ(dx1, . . . , dxm)

The probability µ on Rm admits density with respect the Lebesgue measure, if there exists
a borel function f , ≥ 0, such that for each A ∈ B(Rm) we have:

µ(A) =

∫
A

f(x)dx (1.6)

Consder two random variable X, Y on Rm with two independent probability law, respec-
tively, equal to µ and ν. We call convolution product of µ and ν, denoted µ∗ν, the probability
law of X + Y . We can note that this de�nition depends only on µ and ν and not on X and
Y . In fact, µ ∗ ν is the image law on Rm through the operation (x, y)→ x+ y of the law of
(X,Y ) on Rm × Rm.
Proposition 1.4 Let µ and ν be two probability measure on Rm with density f and g,
respectively. Then, µ ∗ ν has density h equal to:

h(x) =

∫
Rm

f(z)g(x− z)dz

Proof

µ ∗ ν(A) =

∫
1A(z)µ ∗ ν(dz) =

∫
1A(x+ y)µ(dx)ν(dy)

=

∫
1A(x+ y)f(x)g(x)dxdy =

∫
A

dx

∫
Rm

f(z)g(x− z)dz

�

Now, we need to introduce how we can study the asymptotic behavior of a sequence of
random variables. Let Xn, with n ∈ N, and X be a random variable on the probability
space (Ω,F ,P) which take value in (E,B(E)). Then, there are several di�erent notions of
convergence:

i. Let (µn)n be a sequence of �nite measure on the measurable space (E,B(E)). Then,
µ converges strictly (or weakly) if for each continuous and bounded function f on E
we have:

lim
n→∞

∫
fdµn =

∫
fdµ.

ii. We say that (Xn)n converges almost surely (a.s) to X, written Xn
a.s−→ X, if there

exists an event n ∈ F with P(N) = 0 (N is called the exception set) such that

lim
n→∞

Xn(ω) = X(ω) ∀ω /∈ N
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iii. Let E = Rm. We say that (Xn)n converges in Lp to X, written Xn
Lp−→ X, if X ∈ Lp

and
lim
n→∞

E[|Xn −X|p] = 0.

iv. We say that (Xn)n converges in probability (i.p) to X, written Xn
P−→ X, if for any

δ > 0
lim
n→∞

P(|Xn −X| > δ) = 0.

v. We say that (Xn)n converges in distribution to X, written Xn
d−→ X, if µn converges

weakly to µ, where µn and µ are, respectively, the law of Xn and X. We can note that
for this case the random variable X and Xn can be de�ned in di�erent probability
space.

The following proposition explain the relation among the above converges.

Proposition 1.5 If Xn
Lp−→ X, then Xn

P−→ X. If Xn
a.s−→ X, then Xn

P−→ X. If Xn
P−→ X,

then Xn
d−→ X. If Xn

P−→ X, then exists a sub-sequences (Xnk)k which converges almost
surely to X.
A detailed proof can be found in chapter 7 of "A Probability Path" written by Resnick.
The last sentence of the proposition 1.5 imply the uniqueness of the limit in probability.

Let X be a random variable in Rm and µ be its law. We can de�ne the characteristic
function (or the Fourier transform) of µ as:

µ̂(θ) =

∫
ei〈θ,x〉µ(dx) = E

[
ei〈θ,X〉

]
, θ ∈ Rm (1.7)

The characteristic function is de�ned for all probability µ on Rm and has the following
properties:

1. µ̂(0) = 1 and |µ̂(θ)| ≤ 1, ∀θ ∈ Rm;

2. (µ̂ ∗ ν̂)(θ) = µ̂(θ)ν̂(θ);

3. µ̂ is uniformly continuous;

4. If µ has moment of order 1 �nite, µ̂ admits derivatives and

∂µ̂

∂θj
(θ) = i

∫
xje

i〈θ,x〉µ(dx) (1.8)

In particular,
∂µ̂

∂θj
(0) = i

∫
xjµ(dx)

hence µ̂′(0) = iE[X];

5. If µ has moment of order 2 �nite, µ̂ admits second derivatives and

∂2µ̂

∂θj∂θk
(θ) = −

∫
xjxke

i〈θ,x〉µ(dx) (1.9)

In particular,
∂2µ̂

∂θj∂θk
(0) = −

∫
xjxkµ(dx)

If m = 1 the above equation becomes µ̂′′(0) = −E[X2];

6. If µ̂(θ) = ν̂(θ) for each θ ∈ Rm, then µ = ν;
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7. Let X1, . . . , Xm be random variable with law µ1, . . . , µm, respectively. Then, they are
independent if and only if the law µ of X, de�ned as X = (X1, . . . , Xm), could be
expressed as:

µ̂(θ1, . . . , θm) = µ̂1(θ1) . . . µ̂m(θm);

8. If µn −→
n→∞

µ strictly, then µ̂n(θ) −→
n→∞

µ̂(θ), ∀θ. In fact, x → ei〈θ,x〉 is a continuous

function and its real and imaginary part are bounded. Vice versa, if

lim
n→∞

µ̂n(θ) = ψ(θ) ∀θ ∈ Rm

and if ψ is continuous at θ = 0, then ψ is the characteristic function of the probability
law µ and, moreover, µn −→

n→∞
µ strictly (Lévy theorem).

A detailed proof can be found in chapter 9 of "A Probability Path" written by Resnick.

For example, consider normal distribution, denoted by N(a, σ2), with mean a ∈ R and
standard deviation σ > 0. Its density function can be expressed as:

f(x) =
1√
2πσ

exp

{
− (x− a)2

2σ2

}
(1.10)

Therefore, we can easily compute its characteristic function:

µ̂(θ) =

∫
ei〈θ,x〉µ(dx)

=
1√
2πσ

∫ +∞

−∞
eiθxexp

{
− (x− a)2

2σ2

}
dx

=
eiθa√
2πσ

∫ +∞

−∞
eiθxe−

x2

2σ2 dx

Set u(θ) = 1√
2πσ

∫ +∞
−∞ eiθxe−

x2

2σ2 dx, we �nd µ̂(θ) = u(θ)eiθa and, by integration by parts, we

have:

u′(θ) =
1√
2πσ

∫ ∞
−∞

ixeiθxe−
x2

2σ2 dx

=

[
1√
2πσ

(−iσ2)eiθxe−
x2

2σ2

]+∞

−∞
− σ2θ√

2πσ

∫ ∞
−∞

eiθxe−
x2

2σ2 dx

= −σ2θu(θ)

We �nd a di�erential equation of �rst order. If we make the integral and if we set the
condition u(0) = 1, we will �nd

u(θ) = e−
1
2σ

2θ2

µ̂(θ) = eiθae−
1
2σ

2θ2

1.2 Stochastic Process

1.2.1 Construction of Stochastic Process

A stochastic process is a family (Xt)0≤t≤T of random variables indexed by time. For each
realization of the randomness ω, the trajectory X(ω) : t → Xt(ω) de�nes a function of
time, called the sample path of the process. Thus stochastic processes can also be viewed
as random functions, hence random variables raking values in function spaces.

14



De�nition 1.7 [Stochastic process]We call stochastic process an object with the form:

X = (Ω,F , (Ft)t∈T , (Xt)t∈T ,P)

where: T is a subset of R+; F is a σ-algebra in Ω; P is a probability law on (Ω,F); (Ft)t∈T
is a �ltration, hence it is an increasing family of sub-σ-algebra of F in t such that if s ≤ t,
Fs ⊂ Ft and (Xt)t∈T is a family of random variable on (Ω,F) which takes value in a mea-
surable space (E, E) such that, for any t, Xt is Ft-measurable. In this case, we say that
(Xt)t is adapted to the �ltration (Ft)t.

Ft is then interpreted as the information known at time t, which increases with time.
We denoted by F∞ the smallest σ-algebra of parts of Ω, which is in

⋃
t Ft. Moreover, an Ft-

measurable random variable is a random variable whose value will be revealed at time t. A
process whose value at time t is revealed by the information Ft is said to be nonanticipating:
De�nition 1.8 [Nonanticipating process] (de�nition 2.12 in [2]) A stochastic process
(Xt)0≤t≤T is said to be nonanticipating with respect to the information structure (Ft)0≤t≤T
or Ft-adapted if, for each t ∈ [0, T ], the value of Xt is revealed at time t: the random variable
Xt is Ft-measurable.
If the only observation available is the past values of a stochastic process X, then the
information is represented by the history, also called the natural �ltration, of X de�ned as
follows:
De�nition 1.9 [History of a process] (de�nition 2.13 in [2]) The history of a process X
is the information �ows (FXt )0≤t≤T , where FXt is the σ-algebra generated by the past values
of the process, completed by the null sets:

FXt = σ(Xs, s ∈ [0, t])
∨
N

where N = {A;A ∈ F ,P(A) = 0}.

A process is continuous if for any ω, the trajectory t→ Xt(ω) is continuous. Moreover,
X is said measurable if the operation (t, ω)→ Xt(ω) is measurable from (T ×Ω,B(T )⊗F)
to (E,B(E)). In the next chapter, we will make the assumption that the processes are
discontinuous functions. Therefore, we need to introduce the class of càdlàg function:
De�nition 1.10 [Càdlàg function] (de�nition 2.10 in [2]) A function f : [0, T ]→ Rd is
said to be càdlàg if it is right-continuous with left limits: for each t ∈ [0, T ] the limits:

f(t−) = lim
s→t,s<t

f(s), f(t+) = lim
s→t,s>t

f(s)

exists and f(t) = f(t+).
We can note that any continuous function is càdlàg but càdlàg functions can have disconti-
nuities. If t is a discontinuity point we denote by

∆f(t) = f(t)− f(t−)

the jump of f at t. A càdlàg function f can have at most a countable number of discon-
tinuities, therefore, {t ∈ [0, T ], f(t) 6= f(t−)} is �nite or countable. Also, for any ε > 0
the number of jumps on the interval [0, T ] larger than ε should be �nite. Hence, a càdlàg
function on [0, T ] has a �nite number of "large jumps" and a possibly in�nite but countable
number of small jumps. An example of càdlàg function could be a step function having a
jump at some point T0, whose value at T0 is de�ned to be the value after the jump, hence
f = 1[T0,T )(t). In this case, f(T−0 ) = 0, f(T+

0 ) = f(T0) = 1 and ∆f(T0) = 1. More gen-
erally, given a continuous function g : [0, T ] → R and constants fi, i = 0, . . . , n − 1 and
t0 = 0 < t1 < · · · < tn = T , the following function is càdlàg:

f(t) = g(t) +

n−1∑
i=0

fi1[t1,ti+1)(t) (1.11)
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The function g can be interpreted as the continuous component of t to which the jumps
have been added, hence the jumps of f occur at ti, i ≥ 1 with ∆f(ti) = fi−fi−1. Therefore,
càdlàg functions are natural model for the trajectories of processes with jumps.

De�nition 1.11 [Stopping Times] Let (Ft)t∈T be a �ltration. A random variable
τ : Ω → T ∪ {+∞} is called stopping times if, for each t ∈ T, {τ ≤ t} ∈ Ft. Moreover, we
set

Fτ = {A ∈ F∞, A ∩ {τ ≤ t} ∀t ∈ T}

where F∞ =
∨
t Ft.

We can note that Fτ is the σ-algebra of the events, which at time τ are occurred or not.
The following proposition tells us some properties of the stopping time:
Proposition 1.6 Let σ and τ be two stopping time. Then:

a) τ is Fτ -measurable;

b) σ ∨ τ, σ ∧ τ are stopping times;

c) if σ ≤ τ, Fσ ⊂ Fτ ;

d) Fσ∧τ = Fσ ∩ Fτ .

Proof
a)
For each s ≥ 0, {τ ≤ s} ∈ Fτ . Its clear that {τ ≤ s} ∈ Fτ ⊂ F∞.
For each t, {τ ≤ s} ∩ {τ ≤ t} ∈ Ft.
If t ≤ s, we have that {τ ≤ s} ∩ {τ ≤ t} = {τ ≤ t} ∈ Ft.
If t > s, we have that {τ ≤ s} ∩ {τ ≤ t} = {τ ≤ s} ∈ Fs ⊂ Ft.
b)
{σ ∧ τ ≤ t} = {σ ≤ t} ∪ {τ ≤ t} ∈ Ft =⇒ is a stopping time.
{σ ∨ τ ≤ t} = {σ ≤ t} ∩ {τ ≤ t} ∈ Ft =⇒ is a stopping time.
c)
If A ∈ Fσ, then for each t : A ∩ {σ ≤ t} ∈ Ft. Therefore, {τ ≤ t} ⊂ {σ ≤ t} :

A ∩ {τ ≤ t} = A ∩ {σ ≤ t}︸ ︷︷ ︸
∈Ft

∩{τ ≤ t}︸ ︷︷ ︸
∈Ft

d)
Let A ∈ Fσ ∩ Fτ , then A ∈ F∞, A ∩ {τ ≤ t} ∈ Ft and A ∩ {τ ≤ s} ∈ Ft. Therefore, we
have:

A ∩ {σ ∧ τ ≤ t} = A ∩ ({σ ≤ t} ∪ {τ ≤ t})
= (A ∩ {σ ≤ t}) ∪ (A ∩ {τ ≤ t}) ∈ Ft

Therefore, A ∈ Fσ∧τ .

�

Proposition 1.7 Let X be a measurable process and σ : Ω → R+ be a random variable.
Then Xσ : ω → Xσ(ω)(ω) is a random variable. If τ is a �nite stopping time almost surely
and X is measurable, then Xτ is Fτ -measurable.
A detailed proof can be found in chapter 1 of "Equazioni di�erenziali stocastiche e appli-
cazioni" written by Baldi.

1.2.2 Brownian motion

De�nition 1.12 [Brownian Motion] A real-valued process B = (Ω,F , (Ft)t≥0, (Bt)t≥0,P)
is a Brownian motion if
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i) B0 = 0 a.s;

ii) for each 0 ≤ s ≤ t, the random variable Bt −Bs is independent of Fs = σ(Bu, u ≤ s);

iii) for each 0 ≤ s ≤ t, Bt −Bs has law N(0, t− s).

The Brownian motion is a continuous stochastic process, in fact, the map s 7→ Bs(ω) is
continuous. We can note that the Brownian motion is a Gaussian process and we de�ne a
Gaussian process as:
De�nition 1.13 Let I be a family of random variable in Rd de�ned on the probability
space (Ω,F ,P). Then, we say that I is a Gaussian process if, for each X1, . . . , Xm ∈ I and
γ1, . . . , γm ∈ Rd, the random variable 〈γ1, X1〉+ · · ·+ 〈γm, Xm〉 is Gaussian.
Moreover, the point iii) imply that the Brownian motion has stationary increments, there-
fore, if s ≤ t, Bt − Bs and Bt−s − B0 have the same probability law. We shall also need a
de�nition of a Brownian motion with respect to a �ltration (Ft).
De�nition 1.14 (de�nition 3.2.5 in [1]) A real-valued, continuous stochastic process is an
(Ft)-Brownian motion if it satis�es:

a) for any t ≥ 0, Bt is Ft- measurable;

b) if s ≤ t, Bt −Bs is independent of the σ-algebra Fs;

c) if s ≤ t, Bt −Bs and Bt−s −B0 have the same law.

We can note that if B is a (Ft)t-Brownian motion, it is also a Brownian motion with
respect other �ltration (F ′t)t smaller than (Ft)t. Finally, we say that we have a natural
Brownian motion when (Ft)t is a natural �ltration.
Proposition 1.8 If B is a Brownian motion, then

1) B0 = 0 a.s;

2) for each 0 ≤ t1 < · · · < tm, (Bt1 , . . . , Btm) is "centered" normal random variable in
Rm;

3) E[BsBt] = s ∧ t.

Vice versa, if 1), 2) and 3) are true, then B is a natural Brownian motion. Proof
1)
If B is a Brownian motion, B0 = 0 by de�nition.
2)
is a consequence of the de�nition 1.13 and the point iii) of the de�nition 1.12
3)
is s ≤ t

E[BsBt] = E[(Bt −Bs)Bs] + E[B2
s ] = s = s ∧ t

Vice versa, if B satisfy 1), 2) and 3), then i) of the de�nition 1.12 is clear. Moreover, if
0 ≤ s < t, Bt − Bs is a normal random variable as linear function of (Bs, Bt) and it is
centered because Bt and Bs are centered; since

E[(Bt −Bs)2])E[B2
t ] + E[B2

s ]− 2E[BtBs] = t+ s− 2s = t− s

hence, Bt −Bs has distribution N(0, t− s) and iii) is satisfy. Finally, if u ≤ s ≤ t

E[(Bt −Bs)Bu)] = E[BtBu]− E[BsBu] = t ∧ u− s ∧ u = 0

hence, Bt −Bs is independent of σ(Bu, u ≤ s).

�
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We say that a Brownian motion is standard if B0 = 0 and its �rst two moment are, respec-
tively, equal to: E[Bt] = 0 and [B2

t ] = t.
Now, we need to study the behavior of the trajectories of the Brownian motion. Therefore,
we need to introduce the following corollary:
Corollary 1.1 Let X be a process which takes value in Rd such that exists an α > 0, β >
0, c > 0 such that, for each s, t,

E[|Xt −Xs|β ] ≤ c|t− s|1+α

Then, exist a modi�cation Y of X which is continuous. Moreover, if for each γ < α
β , the

trajectories of Y has Hölder exponent γ in each bounden time interval.
We can note that a Brownian motion admits always a continuity modi�cation of it, which
still remain a Brownian motion. Let t > s, since Bt − Bs ∼ N(0, t − s), we have that
Bt −Bs = (t− s)1/2Z, where Z ∼ N(0, 1). Therefore, for p ≥ 0,

E[|Bt −Bs|2p] = (t− s)pE[|Z|2p]

We can note that E[|Z|2p] < ∞ for each p > 0, then we can apply the corollary 1.1 with
β = 2p, α = p − 1 and we �nd that for any Brownian motions exist always a continuity
modi�cation. Moreover, these are Hölder with exponent γ, therefore γ < p−1

2p which imply

that γ < 1
2 .

We have seen that a Brownian motion admits always a continuity version and it is Hölder
with exponent γ, for each γ < 1

2 . Now, we need to study the behavior of the trajectories
and we denote with X = (Ω,F , (Ft)t, (Xt)t,P) a continuous Brownian motion.
De�nition 1.15 Let I ⊂ R be an interval and f : I → R be a continuous function. we call
modulus of continuity of f the function, for x, y ∈ I,:

w(δ) = sup
|x−y|≤δ

|f(x)− f(y)|

Theorem 1.3 (P. Lévy) For each T > 0

P

(
lim
δ→0+

sup
0≤s<t≤T ;t−s≤δ

|Xt −Xs|
(2δ log 1

δ )1/2
= 1

)
= 1

A detailed proof can be found in chapter 1 of "Equazioni di�erenziali stocastiche e appli-
cazioni" written by Baldi.
The P-Lévy theorem say that the trajectories can not be Hölder with exponent γ = 1

2 on
the interval [0, T ] for each T .

De�nition 1.16 [Total Variation] Given a function f : R→ R, we call total variation
of f in [a, b] the quantity:

V ab f = sup
π

∑
|f(xi+1)− f(xi)|

where π changes among all the partitions a = x0 < x1 < · · · < xn+1 = b on the interval
[a, b]. Moreover, f is said �nite if V ab f < +∞ for each a, b ∈ R.
Proposition 1.9 Let π = {t0, . . . , tm} with s = t0 < t1 < · · · < tm = t be a partition on the
interval [s, t], |π| = max0≤k≤m−1 |tk+1 − tk|. Then, if we set

Sπ =

m−1∑
k=0

|Xtk+1
−Xtk |2

we have that
lim
|π|→0+

Sπ = t− s ∈ L2 (1.12)

Therefore, the trajectories of a Brownian motion have not �nite total variation in any time
interval, almost surely.
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Proof
Let τ = t− s, then τ =

∑m
k=0 tk+1 − tk and

Sπ − τ =

m−1∑
k=0

[(Xtk+1
−Xtk)2 − (tk+1 − tk)]

since the random variable (Xtk+1
− Xtk)2 − (tk+1 − tk) are independent and centered, we

have:

E[(Sπ − τ)2] =

m−1∑
k=0

E[
(
(Xtk+1

−Xtk)2 − (tk+1 − tk)
)2

]

Therefore, we have:

E[(Sπ − τ)2] =

m−1∑
k=0

(tk+1 − tk)2E

[(
(Xtk+1

−Xtk)2

tk+1 − tk
− 1

)2
]

but for each k the random variable
Xtk+1

−Xtk
tk+1−tk is N(0, 1), hence the quantity

c = E

[(
(Xtk+1

−Xtk)2

tk+1 − tk
− 1

)2
]

is �nite and is not depend on k. Therefore

E[(Sπ − τ)2] = c

m−1∑
k=0

(tk+1 − tk)2 ≤ c|π|
m−1∑
k=0

|tk+1 − tk| = c|π|(t− s) =→ 0

which proves the equation (1.12). Moreover,

Sπ =

m−1∑
k=0

|Xtk+1
−Xtk |2 ≤ max

0≤i≤m−1
|Xti+1

−Xti |
m−1∑
k=0

|Xtk+1
−Xtk |

Therefore, the trajectories are continuous,

lim
|π→0+

max
0≤i≤m−1

|Xti+1 −Xti | = 0

hence, if the trajectories have �nite total variation on the interval [s, t] for ω in a set A, then
in A we can have:

lim
|π|→0+

m−1∑
k=0

|Xtk+1
−Xtk | < +∞

and, in conclusion, lim|π|→0+ Sπ(ω) = 0, which contradict the proposition 1.9

�

We can note that if a function f has �nite total variation, then we can de�nite the integral∫ T

0

φ(t)df(t)

for each bounded borel function φ. But the proposition 1.9 say that we can not make
the integral ω for ω because the trajectories of the Brownian motion have not �nite total
variation. Therefore, in the following chapter, we need to introduce the stochastic integral:∫ T

0

φ(t)dXt(ω)

19



1.2.3 Martingale

De�nition 1.17 [Martingale] A real-valued process M = (Ω,F , (Ft)t∈T , (Mt)t∈T ,P) is a
martingale if Mt is integrable for each t ∈ T and

E[Mt|Fs] = Ms ∀s ≤ t (1.13)

it is a supermartingale if
E[Mt|Fs] ≤Ms ∀s ≤ t

it is a submartingale if
E[Mt|Fs] ≥Ms ∀s ≤ t

It is clear that linear combination of martingale are still martingale. If (Mt)t is a super-
martingale, then (−Mt)t is a submartingale, and vice versa. If (Mt)t is a martingale, then
(|Mt|)t is a submartingale. Moreover, if M is a martingale (respectively a submartingale)
and Φ : R → R is a convex function (respectively an increasing convex function) such that
Φ(Mt) is integrable, then (Φ(Mt))t is a submartingale. This is a consequence of Jensen's
inequality. Finally, we say that a martingale (Mt)t is in L

p, p ≥ 1, if Mt ∈ Lp for each t and
we say that a martingale is square integrable for p = 2.

Now, we give some result for martingale in discrete time and then we extend it to the
continuous one. Let T = N. A process (An)n adapted to the �ltration (Fn)n is called
increasing predictable process if A0 = 0, An ≤ An+1 and An+1 is Fn measurable. Let
(Xn)n be a (Fn)n-submartingale and we set

A0 = 0; An+1 = An + E[Xn+1|Fn]−Xn

By construction (An)n is an increasing predictable process. If Mn = Xn −An, then

E[Mn+1|Fn] = E[Xn+1|Fn]−An+1 = Xn −An = Mn

Therefore (Mn)n is a martingale. Consider another decomposition of (Xn)n: Xn = M ′n+A′n,
whereM ′ is the martingale part and A′ is the increasing predictable process. Then, we have
A0 = A′0 = 0 and

A′n+1 −A′n = Xn+1 −Xn − (M ′n+1 −M ′n)

If we take the conditional expectation respect to Fn, we �nd:

A′n+1 −A′n = E[Xn+1|Fn]−Xn

therefore A′n = An and M ′n = Mn. This result is called Doob's decomposition, which shows
that each submartingale (Xn)n can be decomposed in a sum of predictable increasing pro-
cess (An)n and martingale part (Mn)n.

If (Xn)n is a martingale, also the stopping process Xτ
n = Xn∧τ is a martingale; in this

notation τ is a stopping time of the �ltration (Fn)n. In fact, by de�nition of stopping time
{τ ≥ n+ 1} = {τ ≤ n}c ∈ Fn and, since, Xτ

n+1 = Xτ
n on {τ ≤ n}, we have

E[Xτ
n+1 −Xτ

n |Fn] = E[(Xn+1 −Xn)1{τ≥n+1}|Fn]

= 1{τ≥n+1}E[Xn+1 −Xn|Fn]

= 0

Theorem 1.4 (Sampling Theorem) Let X = (Ω,F , (Fn)n, (Xn)n,P) be a supermartingale
and let τ1 and τ2 be two stopping time associated to the �ltration (Fn)n, bounded a.s and
such that τ1 ≤ τ2 a.s. Then, the random variable Xτ1 and Xτ2 are integrable and

E[Xτ2 |Fτ1 ] ≤ Xτ1 (1.14)

Proof
The integrability of the random variableXτ1 andXτ2 are obviuos because, for i = 2, 2, |Xτi | ≤
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∑k
j=1 |Xj |, where k is a number which is added to τ2.

Let τ2 ≡ k ∈ N and let A ∈ Fτ1 . Since A ∩ {τ1 = j} = Fj , we have, for j ≤ k,∫
A∩{τ1=j}

Xτ1dP =

∫
A∩{τ1=j}

XjdP ≥
∫
A∩{τ1=j}

XkdP

and, making the sum respect to j, with 0 ≤ j ≤ k, we �nd∫
A

Xτ1dP =

k∑
j=0

∫
A∩{τ1=j}

XjdP ≥
k∑
j=0

∫
A∩{τ1=j}

XkdP =

∫
A

Xτ2dP

Hence, we have shown that the theorem hold if τ2 is a constant stopping time. Now, we
change the hypothesis above with τ2 ≤ k. If we apply the result �nd in the �rst part of this
proof at the martingale (Xτ2

n )n, at the stopping time τ1 and at k, we �nd∫
A

Xτ1dP =

∫
A

Xτ2
τ1 dP ≥

∫
A

Xτ2
k dP =

∫
A

Xτ2dP

which ends the proof.

�

Corollary 1.2 Consider the hypothesis of theorem 1.4. If X is a martingale, then we have

E[Xτ2 |Fτ1 ] = Xτ1 (1.15)

A process (Xt)t∈[0,T ] is called a local martingale if there exists a sequence of stopping times
(τn) with τn → ∞ a.s such that (Xt∧τn)t∈[0,T ] is a martingale. Thus a local martingale
behaves like a martingale up to some stopping time τn, which can be chosen as large as one
wants. Moreover, any martingales are a local martingale but there exists local martingales
which are not martingales.

A martingale M is bounded in Lp if supnE[|Mn|p] < +∞. Then, we have the following
theorem:
Theorem 1.5 (Doob's inequality) Let X = (Ω,F , (Fn)n, (Mn)n,P) be a bounded martingale
in Lp, p > 1. Then, let M∗ = supn |Mn| ∈ Lp and

‖M∗‖p ≤ q sup
n
‖Mn‖p

where q = p
p−1 .

This theorem is a consequence of the following lemma:
Lemma 1.3 If X is a positive submartingale, then for each α > 1 and n ∈ N :

E

[
max

0<≤i≤n
Xα
i

]
≤
(

α

α− 1

)α
E[Xα

n ]

A detailed proof can be found in chapter 4 of "Equazioni di�erenziali stocastiche e appli-
cazioni" written by Baldi.
Theorem 1.6 Let X be a supermartingale such that supn≥0E[X−n ] < +∞. Then, X con-
verges a.s and it has �nite limit.
A detailed proof can be found in chapter 4 of "Equazioni di�erenziali stocastiche e appli-
cazioni" written by Baldi.
If M is a martingale bounded in Lp, then it has supn≥0M

−
n ≤ M∗. Therefore, the

martingale M converges a.s to a random variable M∞ such that |M∞| ≤ M∗. Since
|Mn−M∞|p ≤ 2p−1(|Mn|p + |M∞|p) ≤ 2pM∗p, we can apply the Lebesgue theorem and we
�nd

lim
n→∞

E[|Mn −M∞|p] = 0

Hence, for p > 1, the following theorem told us the behavior of a martingale bounded in Lp:
Theorem 1.7 If p > 1, a martingale bounded in Lp converges a.s and in Lp.
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Now, we need to study the converges of martingale in L1 and we need to introduce the
de�nition of uniformly integrable:
De�nition 1.18 Let H be a family of random variable in R. We say that H is uniformly
integrable if:

lim
c→+∞

sup
Y ∈H

∫
{|Y |>c}

|Y |dP = 0

Consider a set built with one random variable, this is the easiest example of set uniformly
integrable. Therefore, we have limc→+∞ |Y |1{|Y |>c} = 0 a.s and, since |Y |1{|Y |>c} ≤ |Y |
and for the Lebesgue theorem, we have

lim
c→+∞

∫
{|Y |>c}

|Y |dP = 0

Hence, H is uniformly integrable if there exists a real integrable random variable Z such
that Z ≥ |Y | for each Y ∈ H. Therefore, in this case we have:∫

{|Y |>c}
|Y |dP ≤

∫
{Z>c}

ZdP

Then the following theorem is an extension of the Lebesgue theorem:
Theorem 1.8 Let (Yn)n be a sequence of random variable convergent a.s to Y . A necessary
and su�cient condition for Y to be integrable and to be convergent in L1 is that (Yn)n is
uniformly integrable.
A detailed proof can be found in chapter 6 of "A Probability Path" written by Resnick.
In any case, a family H uniformly integrable is bounded in L1. In fact, let c > 0 such that
supY ∈H

∫
{|Y |>c} |Y |dP ≤ 1, then we have, for each Y ∈ H,

E[|Y |] =

∫
{|Y |>c}

|Y |dP +

∫
{|Y |≤c}

|Y |dP ≤ c+ 1

We can note that if (Fn)n is a �ltration on the probability space (Ω,F ,P) and Y ∈
L1, (E[Y |Fn])n is a uniform integrable martingale. Vice versa, if M = (Mn)n is a uni-
form integrable martingale, then it is bounded in L1. Therefore, the theorem 1.6 is satisfy
and M converges a.s to a random variable Y . Moreover, by theorem 1.8, Y ∈ L1 and it
converges in L1. Hence, we have

Mm = E[Mn|Fm] −→
n→∞

E[Y |Fm] ∈ L1

Therefore, we have already proved the following theorem:
Theorem 1.9 A martingale (Mn)n is uniformly integrable if and only it it has the form
Mn = E[Y |Fn], where Y ∈ L1(Ω,F ,P). In this case, (Mn)n converges a.s and in L1.

Finally, we change the assumption from T ∈ R to T ∈ R+. Hence, we consider the
martingale in continuous time. The theorem above are still valid for the continuous time
case but, in this case, we require that the martingale is right continuous. We can rewrite
the theorem 1.4 for the continuous martingale as:
Theorem 1.10 (Optimal Sampling theorem) (theorem 3.3.4 in [1]) If (Mt)t≥0 is a continu-
ous martingale with respect to the �ltration (Ft)t≥0, and if τ1 and τ2 are two stopping time
such that τ1 ≤ τ2 ≤ K, where K is a �nite real number, then Mτ2 is integrable and

E[Mτ2 |Fτ1 ] = Mτ1 a.s (1.16)

This result implies that if τ is a bounded stopping time, then E[Mτ ] = E[M0]. Moreover,
let M = (Ω, ,(Ft)t, (Mt)t,P) be a right continuous martingale and let τ be a stopping time.
Then (Mt∧τ )t is a martingale respect to the �ltration (Ft)t.
We need to study if the Doob's decomposition is true for submartingale in continuous time.
Therefore, we introduce the following theorem (we did not prove the theorem but a detailed
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proof can be found in chapter 1 of "Brownian Motion and Stochastic Calculus, 2nd edition"
written by Karatzas and Shreve):
Theorem 1.11 Let M be a continuous square integrable martingale respect to the �ltration
(Ft)t completed with the null set. Then, exists an unique continuous increasing process A,
with A0 = 0, such that (M2

t − At)t is a martingale. If π = {0 = t0 < t1 < · · · < tm = t} is
a partition on the interval [0, t], then we have

At = lim
|π|→0

m−1∑
k=0

|Mtk+1
−Mtk |2

We call the process (At)t of the theorem 1.11 an increasing process respect to the square
integrable martingaleM and we use the notation 〈M〉t.We can note that the increasing pro-
cess respect to a continuous martingale does not depend on the �ltration of the martingale.
Hence, if we have two �ltration completed with the null set, (Ft)t and (F̃t)t, then (Mt)t is a
martingale respect both �ltration and the increasing process respect the two �ltration (Ft)t
and (F̃t)t are equal. Moreover, the increasing process A respect to a Brownian motion is
equal to At = t.
Theorem 1.11 imply that all the continuous square integrable martingale have not �nite
total variation. Therefore, we have the following proposition:
Proposition 1.10 Let M be a continuous square integrable martingale, then on {〈M〉t >
0}M has not �nite total variation on the interval [0, t] a.s. On the other hand, on {〈M〉t =
0}M is constant on the interval [0, t] a.s.
Proof
The �rst part of the proof is exactly the same of preposition 1.9. We have, for each partition
π = {0 = t0 < t1 < · · · < tm = t}

m−1∑
k=0

|Mtk+1
−Mtk |2 ≤ sup

1≤i≤m−1
|Mti+1 −Mti |

m−1∑
k=0

|Mtk+1
−Mtk |

On {〈M〉t > 0}, the left term converges to 〈M〉t > 0 and the right term, if t → Mt(ω) has
total variation, converges to 0 for |π| → 0. This conclude the �rst part of the proof.
For the second part of the proof we can suppose that M0 = 0 because (Mt −M0)t is still a
martingale with the same increasing process. Let τ = inf {t; 〈M〉t > 0} be a stopping time
and, since 〈M〉s = 0 for s ≤ τ and Xt = M2

t − 〈M〉t is a null martingale in 0, we have

E[M2
t∧τ ] = E[M2

t∧τ − 〈M〉t∧τ ] = E[Xt∧τ ] = E[X0] = 0

If we apply the following inequality:

λP
(

inf
0≤t≤T

Mt ≤ −λ
)
≤
∫
{inf0≤t≤T Xt≤−λ}

−MT dP ≤ E[|MT |]

at the negative supermartingale (−M2
t∧τ )t, we �nd that the supermartingale is equal to 0

a.s. This conclude the second part of the proof.

�

23



Chapter 2

Jump Process

In the previous chapter we have seen the most well-known continuous process: the Brownian
motion. Here, we introduce and explain a family of discontinuous process called Lévy
processes. We begin with the de�nition of a Poisson process, which is the main building
block for stochastic process with discontinuous trajectories. Then, we talk about compound
Poisson process, which is use to built a jump-di�usion model, and we study its property.
The second section of the chapter, starts with the de�nition of Lévy process, then we discuss
its in�nitely divisible distribution and we present the Lévy-Khintchine formula, which links
processes to distributions. The opposite way, from distribution to processes, is the subject
of the Lévy-Ito decomposition of a Lévy process. The Lévy measure, which is responsable
for the richness of the class of Lévy processes, is studied in some detail and we use it to
draw some conclusions about the path and the moment of a Lévy process.
The last section uses the Lévy processes and its properties to built a model for �nancial
applications, which can be decomposed in two main categories: the jump di�usion model
and the in�nite activity models. Here, we give some example of jump di�usion model and we
explain the properties and the relationship between the ordinary and stochastic exponential
models.

2.1 Poisson Process

2.1.1 De�nition and Properties

De�nition 2.1 [Poisson Process] (de�nition 7.1.1 in [1]) Let (Ti)i≥1 be a sequence of
independent, identically, exponentially distributed random variables 1 with parameters λ(λ >
0) and let τn =

∑n
i=1 Ti. We call Poisson process with intensity λ the process Nt de�ned by:

Nt =
∑
n≥1

1{τn≤t} =
∑
n≥1

n1{τn≤t<τn+1}

Where Nt indicates the number of points of the sequence (τn)n≥1 which are smaller than
or equal to t. Moreover, a poisson process can be described as a counting process. Given
an increasing sequence of random times {τn, n ≥ 1} with P(τn →∞) = 1, we can de�ne the
associated counting process (Xt)t≥0 with

Xt =
∑
n≥1

1{τn≤t} = # {n ≥ 1, τn ≥ t}

The condition P(τn →∞) = 1 told that Xt is well-de�ned, hence �nite, for any t ≥ 0 with
probability 1. Therefore, the Poisson process counts the number of random times (τn) which

1A positive random variable X follow an exponential distribution with parameter λ > 0 if it has a
probability density function equal to

λe−λx1{x>0}
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occur between 0 and t, where (τn − τn−1)n≥1 is an independent and identically distributed
(i.i.d.) sequence of exponential variables.
Let (Nt)t≥0 be a Poisson process and it has the following properties:

1) For all t ≥ 0, Nt is almost surely (a.s.) �nite;

2) The trajectories of N (in other words: ∀ω, the sample path t 7→ Nt(ω)) are piecewise
constant with jumps of size 1;

3) The trajectories are right continuous with left limit (càdlàg2);

4) ∀t > 0, Nt− = Nt with probability 1;

5) (Nt) is continuous in probability:

∀t > 0, Ns
P−−−→
s→t

Nt;

6) ∀t > 0, Nt follows a Poisson distribution with parameter λt:

∀n ∈ N, P(Nt = n) = e−λt (λt)n

n!

7) The characteristic function of Nt is

E[eiuNt ] = exp
{
λt(eiu − 1)

}
, ∀u ∈ R;

8) Independence of increments: for all 0 ≤ t0 < t1 < · · · < tn and n ≥ 1 the increments

Nt1 −Nt0 , . . . , Ntn −Ntn−1

are mutually independent random variables. In other words, if s > 0, Ntn −Ntn−1
is

independent of the σ-algebra Ft;

9) Stationarity of increments: Nt+h − Ns+h has the same distribution as Nt − Ns for
all h > 0 and 0 ≤ s ≤ t. Hence, the law of Nt+s − Nt is identical to the law of
Ns −N0 = Ns;

10) (Nt) has the Markov property:

∀t > s, E[f(Nt)|Nu, u ≤ s] = E[f(Nt)|Ns];

11) The Poisson process is a Lévy process.

A detailed proof of this property can be found in chapter 2 of "Financial Modeling with
Jump Process" written by Cont and Tankov.

The right continuity, càdlàg property, of the Poisson process is not really a "property".
In fact, we have de�ned Nt in such a way that at a discontinuity point Nt = Nt+ but a
function could be càglàd (left continuous with right limit, in this case we have f(t) = f(t−)
and Nt = Nt− ). There is a di�erence between a càdlàg and a càglàg process especially
in the context of �nancial modeling. In fact, if a right continuous function has a jump at
time t, then the value f(t) is not predictable by following the trajectory up to time t and
the discontinuity is seen as a sudden event. On the other hand, if the function was left
continuous, an observer approaching t along the path could predict the value at t. Hence,
jumps represent unexpected, unforeseeable events and the assumption of right-continuity is
natural. By contrast, we should use a càglàd process if we want to model a discontinuous
process whose values are predictable. This will be the case when we want built trading
strategies.

Theorem 2.1 Assume that the counting process (Nt)t∈R+ satis�es the independence and
the stationary of increments property. Then for all �xed 0 ≤ s ≤ t we have:

2De�ned in chapter 1
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P(Nt −Ns = k) = e−λ(t−s) (λ(t−s))k
k! , k ∈ N,

for some constant λ > 0.
The parameter λ > 0 is called the intensity of the Poisson process (Nt)t∈R+ and can be
found as

λ := lim
h→0

1

h
P(Nh = 1)

There are other two important properties of Poisson process: the superposition property
and the thinning property. The superposition property said that a sum of independent Pois-
son process is again a Poisson process. Hence, let (N1

t )t≥0 and (N2
t )t≥0 are two independent

Poisson processes with intensities λ1, λ2, then (N1
t + N2

t )t≥0 is a Poisson process with in-
tensity λ1 + λ2

3. The other property de�ne a new process Xt by "thinning" Nt, which is
a Poisson process with intensity λ. In particular, it takes all the jump events (τn, n ≥ 1)
corresponding to N and it keeps them with probability 0 < p < 1 or delete them with
probability 1−p, independently from each other. Therefore, we can collect and order all the
points which have not been deleted: τ ′1, . . . , τ

′
n, . . . and we can de�ne the new process as:

Xt =
∑
n≥1

1{τ ′n≥t}

Then the new process X is still a Poisson process but it has intensity equal to pλ 4. In
other words, if the arrival τn of each event in the Poisson process N has probability p,
independently from event to event, then the process of joint events thus obtained is again
a Poisson process whose intensity is equal to the intensity of N but it is decreased by the
marking probability: λX = pλ.

2.1.2 Compensated Poisson Processes

The compensated Poisson process de�ne the "centered" version of the Poisson process Nt
by

Ñt = Nt − λt.

where λt is the expected value of the Poisson process5. (Ñt) has centered increments because
it has the expected value equal to zero. Moreover, (Ñ) follows a centered version of the
Poisson law with characteristic function:

ψÑt(u) = exp[λt(eiu − 1− iu)]

In addition, the compensated Poisson process (Nt − λt)t∈R+ has independent increments
and we can show that:

E[Nt|Ns, s ≤ t] = E[Nt −Ns +Ns|Ns]
= E[Nt −Ns] +Ns = λ(t− s) +Ns

so (Ñt) is a martingale with respect to it's generated �ltration Ft ( Ft := σ(Ns : s ∈
[0, t]), t ∈ R+):

E[Ñt|Ñs] = Ñs ∀t > s

proof

E[Nt+s − λ(t− s)|Ft] = E[Nt+s −Ns +Ns − λ(t− s)|Ft]
= E[Nt − λt+Ns − λs|Ft]
= Nt − λt

3See the appendix A.1 for the proof.
4See the appendix A.1 for the proof.
5The expected value is computed in the appendix A.1.
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(Ñt)t≥0 is called a compensated Poisson process and (λt)t≥0 is called the compensator of
(Nt)t≥0 and it is the quantity which has to be subtracted from Nt in order to obtain a
martingale. Moreover, the compensated Poisson process is no longer integer valued because
it is not a counting process unlike the Poisson process.

The rescaled version of the compensated Poisson process, i.e. Ñt
λ , has the same �rst two

moments as a standard Brownian motion:

E
[
Ñt
λ

]
= 0 V ar

[
Ñt
λ

]
= t

Moreover, when the intensity of the jumps increases the interpolated compensated Poisson
process converges in distribution to a Wiener process:(

Ñt
λ

)
t∈[0,T ]

λ→∞
=⇒ (Wt)t∈[0,T ]

This result is a consequence of the Donsker invariance principle6 and it can be seen as a
"functional" central limit theorem.

2.1.3 Compound Poisson Process

The Poisson process itself appears to be too limited to develop realistic asset prices model
because the assumption that the jumps size are always equal to 1 is too restrictive, but it
can be used as building block to built richer models. Therefore, there is some interest in
considering jump processes that can have random jump sizes.

De�nition 2.2 [Compound Poisson Process] The compound Poisson process with
jump intensity λ and jump size distribution µ is a stochastic process (Xt)t≥0 de�ned by:

Xt =

Nt∑
i=1

Yi,

where (Yi)i≥1 is a sequence of independent random variable with law µ and Nt is a Poisson
process with intensity λ independent from (Yi)i≥1.

This de�nition means that a compound Poisson process is a piecewise constant process
which jumps at jump times of a standard Poisson process and whose jump size are i.i.d
random variables with a given law.
Proposition 2.1 (Characteristic function of the compound Poisson process) (proposition
3.4 in [2]) Let (Xt)t≥0 be a compound Poisson process with jump intensity λ and jump size
distribution µ. Then X is a piecewise constant Lévy process and its characteristic function
is given by:

E[eiuXt ] = exp

{
λt

∫ ∞
−∞

(eiux − 1)µ(dx)

}
. (2.1)

A detailed proof can be found in chapter 3 of "Financial Modeling with Jump Process"
written by Cont and Tankov.

Let Xt− denote the left limit, i.e. Xt− := lim
s↗t

Xs with t > 0, then we note that the jump

size (∆Xt := Xt −Xt− ,with t ∈ R+) of (Xt)t∈R+
at time t is equal to:

∆Xt = YNt∆Nt t ∈ R+

where ∆Nt (:= Nt−Nt− ∈ [0, 1] and t ∈ R+) denotes the jump size of the standard Poisson
process Nt and Nt− is the left limit.
We know that the n (NT = n) jump sizes of (Xt)t∈R+

on [0, T ] are independent random
variables which are distributed on R according to ν(dx). Therefore, we can compute the

6The Donsker invariance principle is described in the appendix A.2.
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moment generating function of the increments XT −Xt with the following proposition:

Proposition 2.2 For any t ∈ [0, T ] we have:

E[exp(α(XT −Xt)] = exp

(
λ(T − t)

∫ ∞
−∞

(eαx − 1)ν(dx)

)
α ∈ R.

Proof:

E[exp(α(XT −Xt)] = E

[
exp

(
α

NT∑
i=Nt+1

Yi

)]
= E

[
exp

(
α

NT−Nt∑
i=1

Yi

)]

=

∞∑
n=0

E

[
exp

(
α

n∑
i=1

Yi

)
| NT −Nt = n

]
P(NT −Nt = n)

= e−λ(T−t)
∞∑
n=0

(T − t)nλ
n

n!
E

[
exp

(
α

n∑
i=1

Yi

)]

= e−λ(T−t)
∞∑
n=0

(T − t)nλ
n

n!

n∏
i=1

E[exp(αYi)]

= e−λ(T−t)
∞∑
n=0

(T − t)nλ
n

n!
(E[exp(αYi)])

n

= exp(λ(T − t)(E[exp(αY )]− 1))

= exp

(
λ(T − t)

∫ ∞
−∞

eαyν(dy)− λ(T − t)
∫ ∞
−∞

ν(dy)

)
= exp

(
λ(T − t)

∫ ∞
−∞

(eαy − 1)ν(dy)

)
Since the probability distribution ν(dy) of Y satis�es:

E[exp(αY )] =

∫ ∞
−∞

eαyν(dy) and

∫ ∞
−∞

ν(dy) = 1

�

Now, we can compute the expectation of Xt, for �xed t, as the product of the mean number
of jump times (E[Nt] = λt) and the mean jump size (E[Y ]). This is equal to:

E[Xt] = ∂
∂αE[eαXt ]|α=0 = λt

∫ ∞
−∞

xν(dx) = E[Nt]E[Y ] = λtE[Y ]

The equation above make the assumption that the moment generation function takes �nite
values for all α in a certain neighborhood (−ε, ε) of 0 because so it is possible to exchange
the di�erentiation and the expectation operators. On the other hand, the variance is equal
to:

V ar(Xt) = λt

∫ ∞
−∞

x2ν(dx) = λtE[|Y |2] = E[Nt]E[|Y |2]

Moreover, the compound Poisson process has independent increments if for any �nite se-
quence of times t0 < t1 < · · · < tn, the increments:

Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

are mutually independent random variables.
By construction, the compound Poisson processes only have a �nite number of jumps on any
interval, therefore, they belong to the family of Lévy processes which may have an in�nite
number of jumps on any �nite time interval.
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2.1.4 Poisson Random Measures

The de�nition of the Poisson random measure is a key point for the theory of Lévy processes,
which are described in the next section of this chapter.
De�nition 2.3 [Random measure] Let (Ω,P,F) be a probability space and let (E, E) be
a measurable space. Then M : Ω× E → R is a random measure if:

• for every ω ∈ Ω, M(ω, · ) is a measure on E;

• for every A ∈ E , M(· , A) is measurable.

We can express a Poisson process in terms of the random measure M in the following
way:

Nt(ω) = M(ω, [0, t]) =
∫

[0,t]
M(ω, ds)

where M is called the random jump measure associated to the Poisson process N. Fur-
thermore, the properties of the Poisson process must be translated to �t the measure M.
Therefore, we have the following properties for disjoint intervals [t1, t

′
1], . . . , [tn, t

′
n] :

1) M([tn, t
′
n]) is the number of jumps of the Poisson process in [tn, t

′
n] : it is a Poisson

random variable with parameter λ(t′k − tk);

2) for two disjoint intervals j 6= k, M([tj , t
′
j ]) ans M([tk, t

′
k]) are independent random

variables;

3) for any measurable set A, M(A) follows a Poisson distribution with parameter λ|A|
where |A| =

∫
A
dx is the Lebesgue measure of A.

We can give another interpretation to the random measure M which is the "derivative" of
the Poisson process. Hence, its derivative (in the sense of distributions) is a positive measure
because each trajectory t 7→ Nt(ω) of a Poisson process is an increasing step function. In
fact, it is simply the superposition of Dirac masses located at the jump times:

∂
∂tNt(ω) = M(ω, [0, t]) where M =

∑
i≥1

δTi(ω)

De�nition 2.4 [Radon measure] (de�nition 2.2 in [2]) Let E ⊂ Rd. A Radon measure
on (E,B) is a measure µ such that for every compact measurable set B ∈ B, µ(B) <∞

De�nition 2.5 [Poisson random measure] (de�nition 2.18 in [2]) Let (Ω,P,F) be
a probability space, (E, E) be a measurable space and µ a measure on (E, E). Then

M : Ω× E → R
(ω,A) 7→M(ω,A),

is a Poisson random measure with intensity µ if:

1. for (almost all) ω ∈ Ω, M(ω, · ) is an integer-valued Radon measure on E: for any
bounded measurable A ⊂ E, M(A) <∞ is an integer valued random variable;

2. for all A ∈ E with µ(A) <∞, M(A) follows the Poisson law with parameter E[M(A)] =
µ(A) :

∀k ∈ N, P(M(A) = k) = e−µ(A) (µ(A))k

k!

3. for any disjoint measurable sets A1, . . . , An ∈ E , the variables M(A1), . . . ,M(An) are
independent.
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In particular, the following preposition show as the Poisson random measure can be
constructed as the counting measure of randomly scattered points.
Proposition 2.3 (Construction of Poisson random measures) (proposition 2.14 in [2]) Let µ
be a σ-�nite measure on a measurable subset E of Rd. Then, there exists a Poisson random
measure M on E with intensity µ.

Proof:
1. Assume that µ(E) <∞. Let (Xi)i≥1 be a sequence of independent random variables such

that P(Xi ∈ A) = µ(A)
µ(E) , ∀i and ∀A ∈ B(E), and let M(E) be a Poisson random variables

with intensity µ(E) independent from (Xi)i≥1. Then, it is easy to see that the random
measure M de�ned by:

M(A) :=

M(E)∑
i=1

1A(Xi), ∀A ∈ B(E)

is a Poisson random measure on E with intensity µ.
2. Assume that µ(E) =∞. Then, we choose a sequence of disjoint measurable sets (Ei)i≥1

such that µ(Ei) < ∞, ∀i and
⋃
iEi = E. We can built a Poisson random measure Mi on

each Ei as described above and de�ne:

M(A) :=

∞∑
i=1

Mi(A), ∀A ∈ B(E)

�

The following proposition is useful to study the convergence of Poisson random measures:
Proposition 2.4 (Convergence of Poisson random measures) (proposition 2.15 in [2]) Let
(Mn)n≥1 be a sequance of Poisson random measure on E ⊂ Rd with intensities (µn)n≥1.
Then, (Mn)n≥1 converges in distribution if and only if the intensities (µn) converge to a
Radon measure µ. Hence, Mn ⇒ M, where M is a Poisson random measure with intensity
µ.

In the same way as we have de�ned the compensated Poisson process, we can construct
the compensated Poisson random measure M̃ by subtracting from M its intensity measure:

M̃(A) = M(A)− µ(A)

Moreover, from the de�nition of Poisson random measures, we can note that for disjoint
compact sets (A1, . . . , An ∈ E) the variables M̃(A1), . . . , M̃(An) are independent and have
the following two moments:

E[M̃(Ai)] = 0 V ar[M̃(Ai)] = µ(Ai).

Corollary 2.1 (Exponential formula) Let M be a Poisson Random measure on (E, E) with
intensity µ, B ∈ E and let f be a measurable function with

∫
B
|ef(x) − 1|µ(dx) <∞. Then:

E
[
e
∫
B
f(x)M(dx)

]
= exp

[∫
B

(ef(x) − 1)µ(dx)
]

De�nition 2.6 [Jump measure] Let X be a Rd−valued càdlàg process. The jump
measure of X is a random measure on B([0,∞)× Rd) de�ned by

JX(A) = # {t : ∆Xt 6= 0 and (t,∆Xt) ∈ A} . (2.2)

This de�nition means that the jump measure of a set of the form [s, t] × A counts the
number of jumps of X between s and t such that their amplitude belongs to A. In other
words, JX contains all the information about the discontinuities, i.e. jumps, of the process
X. It tells us when the jumps occur and how big they are. Therefore, JX does not tell us
anything about the continuous component of X, which has continuous sample path if and
only if JX = 0 almost surely. This means that there are no jumps in the process.
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For a counting process, since the jumps size is always equal to 1, the jump measure can be
seen as a random measure on [0,∞).
Proposition 2.4 Let X be a Poisson process with intensity λ. Then, JX is a Poisson random
measure on [0,∞) with intensity λ× dt.
Proposition 2.5 (Jump measure of a compound Poisson process) (proposition 3.5 in [2])
Let (Xt)t≥0 be a compound Poisson process with intensity λ and jump size distribution f.
Its jump measure JX is a Poisson random measure on Rd × [0,∞) with intensity measure
µ(dx× dt) = ν(dx)dt = λf(dx)dt.
A detailed proof can be found in chapter 3 of "Financial Modelling with Jump Process"
written by Cont and Tankov.
This proposition implies that every compound Poisson process can be represented in the
following form:

Xt =
∑
s∈[0,t]

∆Xs =

∫
[0,t]×Rd

xJX(ds× dx)

where JX is a Poisson random measure with intensity measure ν(dx)dt. In this equation, we
have rewritten the process X as the sum of its jumps and since it is a compound Poisson
process, it has almost surely a �nite number of jumps in the interval [0, t]. Moreover, the
stochastic integral in the equation is a �nite sum, hence there are no convergence problems.

2.2 Lévy Processes

2.2.1 De�nition and Properties

De�nition 2.7 [Lévy process] (de�nition 3.1 in [2]) A càdlàg stochastic process (Xt)t≥0

on (Ω,F ,P) with values in Rd such that X0 = 0 is called a Lèvy process if it possesses the
following properties:

1) Independent increments: for every increasing sequence of times t0, . . . , tn, the random
variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1

are independent;

2) Stationary increments: the law of Xt+h −Xt does not depend on t;

3) Stochastic continuity: ∀ε > 0, lim
h→0

P(|Xt+h −Xt| ≥ ε) = 0.

The last properties does not imply that the sample path are continuous as it is in the
Poisson process. The stochastic continuity serves to exclude processes with jump at �xed
times, which can be regarded as "calendar e�ects". Therefore, it means that for given time
t, the probability of seeing a jump at t is zero, discontinuities occur at random times:

∀t, P(Xt− = Xt) = 1.

The simplest Lévy process is the linear process is the linear drift, a deterministic process.
Brownian motion is the only (non-deterministic) Lévy process with continuous sample paths.
Other examples of Lévy processes are the Poisson and the compound Poisson processes.
Moreover, the sum of a linear drift, a Brownian motion and a compound Poisson process is
again a Lévy process and it is called a "jump-di�usion process."

We say that a probability distribution F on Rd is in�nitely divisible if for any integer
n ≥ 2, there exists n i.i.d. random variables Y1, . . . , Yn such that Y1+· · ·+Yn has distribution
F . Hence, if X is a Lévy process, the distribution of Xt is in�nitely divisible for any t > 0.
Therefore, the distribution of increments of a Lévy process has to be in�nitely divisible,
this puts a constraint on the possible choices of distribution for Xt. Gaussian distribution,
Gamma distribution and Poisson distribution are common examples of in�nitely divisible
laws. A random variable having any of these distributions can be decomposed into a sum
of n i.i.d. parts having the same distribution but with modi�ed parameters.
Proposition 2.6 (proposition 3.1 in [2]) Let (Xt)t≥0 be a Lévy process. Then, Xt has
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an in�nitely divisible distribution for every t. Conversely, if F is an in�nitely divisible
distribution then there exists a Lévy process (Xt) such that the distribution of X1 is a given
by F .
Proposition 2.7 (Characteristic function of a Lévy process) (proposition 3.2 in [2]) Let
(Xt)t≥0 be a Lévy process on Rd. There exists a continuous function ψ : Rd 7→ R called the
characteristic exponent of X, such that:

E[eiuXt ] = etψ(u), u ∈ Rd.

Where ψ is the cumulant generating function of X1. The cumulant generating function
ψ(t) is the natural logarithm of the moment generating function:

ψ(t) = logE[etX ]

The law of Xt is determined by the knowledge of the law of X1 because the cumulant gen-
erating function of Xt varies linearly in t. Therefore, the only degree of freedom that we
have to specify is the distribution of Xt for a single time (t = 1).

The proposition regarding the Jump measure of a compound Poisson process can be
used to de�ne the Lévy measure for all the Lévy process. Therefore, we give the following
de�nition:
De�nition 2.8 [Lévy measure] (de�nition 3.4 in [2]) Let (Xt)t≥0 be a Lévy process on
Rd. The measure ν on Rd de�ned by:

ν(A) = E[# {t ∈ [0, 1] : ∆Xt 6= 0, ∆Xt ∈ A}], A ∈ B(Rd)

is called the Lévy measure of X. ν(A) is the expected number, per unit time, of jumps whose
size belongs to A.

Lévy processes are basically processes with jumps. In fact, it can be shown that any
Lévy process which has continuous trajectories is a Brownian motion with drift a.s.
Proposition 2.8 Let X be a continuous Lévy process. Then, there exists γ ∈ Rd and a
symmetric positive de�nite matrix A such that:

Xt = γt+Wt

where W is a Brownian motion with covariance matrix A.
This preposition is important for understand the Lévy processes. Hence, we give a proof for
the one-dimensional case.
Proof
We need to show that X1 has Gaussian law because the rest will follow from the stationary
and independence of increments.
a). Let ξkn := X k

n
−X k−1

n
and bn = P(|ξ1

n| > ε). The continuity of X implies that:

lim
n→∞

P(sup
k
|ξkn| > ε) = 0, ∀ε

Since

P(supk |ξkn| > ε) = 1− [1− P(|ξ1
n| > ε)]n

We �nd that lim
n→∞

(1− bn)n = 1, from which it follows that lim
n→∞

n log (1− bn) = 0. But

n log (1− bn) ≤ −nbn ≤ 0. Therefore, we have:

lim
n→∞

nP(|X 1
2
| > ε) = 0. (2.3)

b). We use the property of the independence and stationary of increments to show that:

lim
n→∞

nE[cosX 1
n
− 1] =

1

2

{
logE[eiX1 ] + logE[e−iX1 ]

}
:= −A; (2.4)

lim
n→∞

nE[sinX 1
n

] =
1

2i

{
logE[eiX1 ]− logE[e−iX1 ]

}
:= γ. (2.5)
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The equation (2.3) and (2.4) allow to prove that for every function f such that f(x) = o(|x|2)
in a neighborhood of 0, lim

n→∞
nE[f(X 1

n
)] = 0, which implies that ε > 0:

lim
n→∞

nE[X 1
n
1|X 1

n
|≤ε] = γ,

lim
n→∞

nE[X2
1
n
1|X 1

n
|≤ε] = A,

lim
n→∞

nE[|X 1
n
|31|X 1

n
|≤ε] = 0.

c). Putting together the di�erent equations, we �nd:

logE[eiuX1 ] = n logE[e
iuX 1

n 1X 1
n
≤ε] + o(1)

= n log

{
1 + iuE[X 1

n
1X 1

n
≤ε]−

u2

2
E[X2

1
n
1X 1

n
≤ε] + o(

1

n
)

}
+ o(1)

= iuγ − Au2

2
+ o(1) −−−−→

n→∞
iuγ − Au2

2

where o(1) denotes a quantity which tends to 0 as n→∞.

�

Now, consider a Brownian motion with drift γt+Wt, independent from X0, the sum Xt =
X0 + γt+Wt de�nes another Lévy process, which can be decomposed as:

Xt = γt+Wt +
∑
s∈[0,t]

∆Ss = γt+Wt +

∫
[0,t]×Rd

xJX(ds× dx)

where JX is a Poisson random measure on [0,∞)× Rd with intensity ν(dx)dt, where ν is a
�nite measure de�ned by:

ν(A) = E[#
{
t ∈ [0, 1] : ∆X0

t 6= 0, ∆X0
t ∈ A

}
], A ∈ B(Rd).

For every Lévy process Xt we can de�ne its Lévy measure ν as above. For any compact
set A such that 0 /∈ A, ν(A) is still �nite. Otherwise, the process would have an in�nite
number of jumps of �nite size on [0, T ], which contradicts the càdlàg property. Hence, ν
de�nes a Radon measure on Rd \ {0}. On the contrary, ν is not necessarily a �nite measure,
the above restriction still allows it to blow up at zero and X may have an in�nite number
of small jumps on [0, T ]. In this case, the sum of the jumps becomes an in�nite series and
its convergence imposes some conditions on the measure ν, under which which we obtain a
decomposition of X given by the following proposition.
Proposition 2.9 (Lévy-Ito decomposition) (proposition 3.7 in [2]) Let (Xt)t≥0 be a Lèvy
process on Rd and ν its Lèvy measure. Then:

• the Lévy measure ν satis�es the integrability condition:∫
Rd

(‖x‖2 ∧ 1)ν(dx) <∞;

• the jump measure JX of X is a Poisson random measure on [0,∞)×Rd with intensity
dt× ν = ν(dx)dt;

• there exists γ ∈ Rd and a d-dimensional Brownian motion (Bt)t≥0 with covariance
matrix A such that:

Xt = γt+Bt +Nt +Mt, where (2.6)

Nt =

∫
|x|>1,s∈[0,t]

xJX(ds× dx)

Mt =

∫
0<|x|≤1,s∈[0,t]

x{JX(ds× dx)− ν(dx)ds}

≡
∫

0<|x|≤1,s∈[0,t]

xJ̃X(ds× dx)
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The three terms in (2.6) are independent and the convergence in the last term is almost sure
and uniform in t on [0, T ].
A detailed proof can be found in chapter 3 of "Financial Modeling with Jump Process"
written by Cont and Tankov.

The Lévy-Ito decomposition say that for every Lévy process there exist a vector γ (drift),
a positive de�nite matrixA and a positive measure ν that uniquely determine its distribution.
We call the triplet (A, ν, γ) characteristic triplet or Lévy triplet of the process Xt.
The term in the equation (2.6) have the following meaning: γt+Bt is a continuous Gaussian
Lévy process and every Gaussian Lévy process is continuous and it can be written in this
form Moreover, it can be described by the drift γ and the covariance matrix of the Brownian
motion A. The other two terms, Nt+Mt, are discontinuous processes incorporating the jumps
of Xt and they are described by the Lévy measure ν. The integrability condition can be also
written as:

ν is a Radon measure on Rd \ {0} and verify:

∫
|x|≤1

|x|2ν(dx) <∞,
∫
|x|≥1

ν(dx) <∞

The integral

∫
|x|≥1

ν(dx) <∞ means that X has a �nite number of jumps with absolute

value greater or equal to 1. So, the sum:

Nt =

|∆Xs|≥1∑
0≤s≤t

∆Xs

contains a �nite number of terms and Nt is a compound Poisson process almost surely. ν
can have a singularity in zero, which means that there can be in�nitely many small jumps
and that their sum does not necessarily converge. In order to obtain convergence, we replace
the jump integral by its compensated version, which is a martingale, and it is equal to:

Mt =
∫

0<|x|≤1,s∈[0,t]
xJ̃X(ds× dx).

Mt can be seen as an in�nite superposition of independent compensated.
An important result of the Lévy-Ito decomposition is that every Lévy process is a combina-
tion of a Brownian motion with drift and a possibile in�nite sum of independent compound
Poisson process. Therefore, every Lévy process can be approximated by a jump-di�usion
process, which is equal to the sum of Brownian motion with drift and a compound Poisson
process.

Proposition 2.10 Let (Xt, Yt) be a Lévy process such that Y is a piecewise constant and
∆Xt∆Yt = 0 for all t a.s. Then, X and Y are independent.
Proof
It is enough show thatX1 and Y1 are independent due to the independence and the stationary

of increments. Let Mt = eiuXt

E[eiuXt ]
and Nt = eiuYt

E[eiuYt ]
. Then, M and N are martingales on

[0, 1]. From the independence and stationary of increments, we know that for every Lévy
process Z:

E[eiuZt ] = E[eiuZ1 ]t and E[eiuZ1 ] 6= 0,∀u.

This means that M is bounded. Since (Nt) is a Lévy process and a counting process then
(Nt) is a Poisson process, therefore, the number of jumps of Y on [0, 1] is a Poisson random
variable. Hence, N has integrable variation on this interval and by the martingale property
and by the dominated convergence, we �nd:

E[M1N1]− 1 = E

[
n∑
i=1

(M i
n
−M (i−1)

n
)(N i

n
−N (i−1)

n
)

]

→ E

 ∑
0≤t≤1

∆Mt∆Nt


which implies that E[eiuX1+ivY1 ] = E[eiuX1 ]E[eivY1 ].
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The following theorem give to us the second fundamental result of the structure of the path
of Poisson process and it announces the expression of the characteristic function of a Lévy
process in terms of its characteristic triplet (A, ν, γ) :
Theorem 2.2 [Lévy-Khinchin representation] (theorem3.1 in [2]) Let (Xt)t≥0 be a Lévy
process on Rd with characteristic triplet (A, ν, γ). Then:

E[ei〈u,Xt〉] = etψ(u), u ∈ Rd (2.7)

with ψ(u) = i 〈γ, u〉 − 1

2
〈u,Au〉+

∫
Rd

(ei〈u,x〉 − 1− i 〈u, x〉1|x|≤1)ν(dx).

A detailed proof can be found in chapter 3 of "Financial Modeling with Jump Process"
written by Cont and Tankov.
For real-valued Lévy processes, the equation (2.7) becomes:

E[eiuXt ] = etψ(u), u ∈ Rd (2.8)

with ψ(u) = iγu− 1

2
Au2 +

∫
Rd

(eiux − 1− iux1|x|≤1)ν(dx).

When ν(Rd) = ∞, we are in the in�nite activity case and the set of jumps times of ev-
ery trajectory of the Lévy process is countably in�nite and dense in [0,∞). The countably
follows directly from the fact that the path are càdlàg. The following theorem gives the
characteristic function of in�nitely divisible distributions:
Theorem 2.3 [Characteristic function of in�nitely divisible distributions] (theo-
rem3.2 in [2]) Let F be an in�nitely divisible distribution on Rd. Its characteristic function
can be represented as:

ΦF (u) = etψ(u), u ∈ Rd

ψ(u) = i 〈γ, u〉 − 1

2
〈u,Au〉+

∫
Rd

(ei〈u,x〉 − 1− i 〈u, x〉1|x|≤1)ν(dx) (2.9)

where A is a symmetric positive n × n matrix, γ ∈ Rd and ν is a positive Radon measure
on Rd \ {0} verifying: ∫

|x|≤1

|x|2ν(dx) <∞,
∫
|x|≥1

ν(dx) <∞

where ν is called the Lévy measure of the distribution F .
This theorem imply that since X has stationary and independent increments, we have

that E
[
ei〈u,Xt〉

]
=
{
E
[
ei〈u,X1〉

]}t
, ∀t ∈ R and by the right continuity of X, ∀t. Moreover,

the exponent (8) is called the Lévy exponent of the Lévy process (Xt)t≥0. Note that the �rst
term is the Lévy exponent of the Lévy process γt. The second term, is the Lévy exponent
of the Lévy process ΣBt, where Bt are d-independent Brownian processes and Σ is a d× d
lower triangular matrix in the Cholesky decomposition A = ΣΣT . The last term in the Lévy
exponent can be decomposed into two terms:

ψcp(u) =

∫
|x|>1

(
ei〈u,x〉 − 1

)
ν(dx),

ψlccp(u) =

∫
|x|≤1

(
ei〈u,x〉 − 1− i 〈u, x〉

)
ν(dx).

The �rst equation above is the Lévy exponent of a compound Poisson process (indicated with
"cp") Xcp with Lévy measure: ν1(dx) := 1|x|>1ν(dx). The second term corresponds to the
limit in distribution of compensated compound Poisson process (indicated with "lccp"). Sup-
pose that X(ε) is a compound Poisson process with Lévy measure νε(dx) := 1ε<|x|≤1ν(dx),
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then the process Xε
t −E [Xε

t ] converges in distribution to a process with characteristic func-
tion exp

{
tψlccp

}
. The Lévy-Khinchin representation implies that, in distribution, X is the

superposition of four independent Lévy processes:

Xt
D⇒ γt︸︷︷︸

Drift

+ ΣBt︸︷︷︸
Brownian component

+ Xcp
t︸︷︷︸

CompoundedPoisson

+ lim
ε→0

(Xε
t − E [Xε

t ])︸ ︷︷ ︸
Limit of compensated compoundedPoisson

.

The condition in the theorem on ν of the characteristic function of in�nitely divisible dis-
tribution guarantees that the Xcp is indeed well de�ned and the compensated compound
Poisson process converges in distribution.

2.2.2 Pathwise properties

We know that almost all the trajectories of a Lévy process are piecewise constant if and
only if it is of compound Poisson type. Combining this with the characteristic function of a
compound Poisson process (equation (2.1)), we obtain the following proposition:
Proposition 2.11 (proposition 3.8 in [2]) A Lévy process has piecewise constant trajectories
if and only if its characteristic triplet satis�es the following condition:

• A = 0,

•
∫
Rd
ν(dx) <∞,

• γ =

∫
|x|≤1

xν(dx) <∞

or, equivalently, if its characteristic exponent is equal to:

ψ(u) =

∫ ∞
−∞

(eiux − 1)ν(dx) with ν(R) <∞.

The meaning of the condition above is that the Lévy process has covariance matrix of
the Brownian motion (A) equal to 0, the drift parameter (γ) must be �nite and the second
condition told us that the process has a �nite number of jumps.
Moreover, a Lévy process is said to be of �nite variation7 if its trajectories are functions of
�nite variation with probability 1. Therefore, we have the following proposition for �nite
variation Lévy processes:
Proposition 2.12 (Finite variation Lévy processes) (proposition 3.9 in [2]) A Lévy process
is of �nite variation if and only if its characteristic triplet (A, ν, γ) satis�es:

A = 0 and

∫
|x|≤1

|x|ν(dx) <∞.

A detailed proof can be found in chapter 3 of "Financial Modeling with Jump Process"
written by Cont and Tankov.
The preposition above said that in the �nite variation case the Lévy-Ito decomposition and
the Lévy-Khinchin representation can be simpli�ed with the following corollary:
Corollary 2.2 (Lévy-Ito decomposition and Lévy-Khinchin representation in the �nite vari-
ation case) (corollary 3.1 in [2]) Let (Xt)t≥0 be a Lévy process of �nite variation with char-
acteristic triplet given by (0, ν, γ). Then, X can be expressed as the sum of its jumps between
0 and t and a linear drift term. So, we �nd:

Xt = bt+

∫
[0,t]×Rd

xJX(ds× dx) = bt+

∆Xs 6=0∑
s∈[0,t]

∆Xs (2.10)

7De�ned in chapter 1.
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and its characteristic function can be expressed as:

E
[
ei〈u,Xt〉

]
= exp t

{
i 〈b, u〉+

∫
Rd

(
ei〈u,x〉

)
ν(dx)

}
, (2.11)

where b = γ −
∫
|x|≤1

xν(dx) is such that P
(

lim
t→0

Xt

t
= b

)
= 1.

We can highlight that the Lévy triplet of X in not given by (0, ν, b) instead by (0, ν, γ).
Indeed, γ is not an intrinsic quantity and depends on the truncation function used in the
Lévy-Khinchin representation while bt has an intrinsic interpretation as the continuous part
of X. For every bounded measurable function g : Rd → R satisying g(x) = 1 + o(|x|) as
x→ 0 and g(x) = o( 1

|x| ) as x→∞, we can write the Lévy-Khinchin representation as:

E[ei〈u,Xt〉] = etψ(u), u ∈ Rd

with ψ(u) = i 〈γg, u〉 − 1

2
〈u,Au〉+

∫
Rd

(
ei〈u,x〉 − 1− i 〈u, xg(x)〉

)
ν(dx).

the function g is called the truncation function and the Lévy triplet (A, ν, γg) is called the
characteristic triplet of X with respect to the truncation function g. Di�erent choices of g
do not a�ect A and ν which are intrinsic parameters of the Lévy process, but γ depends on
the choice of truncation function.

Proposition 2.13 Let (Xt)t≥0 be a Lévy process on R. The following conditions are
equivalent:

a. Xt ≥ 0 a.s.for some t > 0;

b. Xt ≥ 0 a.s.for every t > 0;

c. Sample path of (Xt) are almost surely nondecreasing: t ≥ s⇒ Xt ≥ Xs;

d. The characteristic triplet of (Xt) satis�es A = 0, ν((−∞, 0]) = 0,
∫∞

0
(x ∧ 1)ν(dx) <∞

and b ≥ 0. Then, (Xt) has no di�usion component, only positive jumps of �nite vari-
ation and positive drift.

Proof
Here, we give only a short proof of the equivalence between the condition c and d, for the
rest point look in chapter 3 of "Financial Modeling with Jump Process" written by Cont
and Tankov.
Since, the trajectories are nondecreasing they are of �nite variation, so A = 0 and∫∞
−∞ (x ∧ 1)ν(dx) < ∞. On the other hand, the trajectories are nonincreasing if there will
be no negative jumps, therefore ν((−∞, 0]) = 0. If a function is nondecresing then after
removing some of its jumps, we obtain another nondecreasing function. When we remove
all jumps from a trajectory of Xt, we obtain a deterministic function bt, which must be
nondecreasing. This allows to conclude that b ≥ 0.

�

Increasing Lévy processes are called subordinators because they can be used as time changes
for other Lévy process. The following proposition gives an important example of subordi-
nator:
Proposition 2.14 (proposition 3.11 in [2]) Let (Xt)t≥0 be a Lévy process on Rd and let
f : Rd → [0,∞) be a positive function such that f(x) = o(|x|2) when x → 0. Then, the
process (St)t≥0 is a subornitator and is de�ned by:

St =
∑

s≤t,∆Xs 6=0

f(∆Xs).

If there exists a Lévy processes without di�usion and with negative jumps, it will satisfy

the condition:
∫ 1

0
|x|ν(dx) = ∞. The above proposition entails that these processes cannot

have increasing trajectories. whatever drift coe�cient they may have.
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2.2.3 Distribution Properties

Let (Xt)t≥0 be a Lévy process then the distribution of Xt is in�nitely divisible and has a
characteristic function as in equation (2.7) for any t > 0. However, the Lévy process Xt does
not always have a density, in fact, if we have a compound Poisson process we �nd:

P(Xt = 0) = e−λt > 0.

Hence, the probability distribution of Xt has an atom at zero for all t. On the other hand,
if Xt is not a compound Poisson process, then it has a continuous density.
Proposition 2.15 (Existence of a smooth density) (proposition 3.12 in [2]) Let X be a
real-valued Lévy process with characteristic triplet (σ2, ν, γ). Then:

i. If σ > 0 or ν(R) =∞, Xt has a continuous density pt(.) on Rd;

ii. If the Lévy measure ν veri�es: ∃β ∈ (0, 2), lim inf
ε→0

ε−β
∫ ε

−ε
|x|2dν(x) > 0, then for

each t > 0, Xt has a smooth density pt(.) on Rd such that:

pt(.) ∈ C∞(R)∀n ≥ 1, ∂npt
∂xn (t, x) −−−−→

|x|→∞
0.

Now, we focus on the relation between probability density function and the Lévy density.
In particular, in the compound Poisson process there is a simple relation between probability
distribution at time t and the jump size distribution or the Lévy measure. Let (Xt)t≥0 be a
compounded Poisson process with intensity λ and jump size distribution f and (Nt)t≥0 be
the number of jumps of X on [0, t]. Then:

P(Xt ∈ A) =

∞∑
n=0

P(Xt ∈ A|Nt = n)
e−λt(λt)n

n!

= e−λtδ0 +

∞∑
n=1

f∗n(A)
e−λt(λt)n

n!
,

where f∗n denotes the n-th convolution power of f and δ0 is the Dirac measure concentrated
at 0.8

As note before, this probability measure has not a density because P(Xt = 0) > 0. Recall
that a Lebesgue measure λ is a measure on (R,R), satisfying: λ((a, b]) = b−a forall a <
b, a, b ∈ R. Therefore, if we consider jump size distribution with Lebesgue measure and if
it has a density, then the law of Xt is absolutely continuous except at zero. Therefore, the
law of Xt can be decomposed as:

P(Xt ∈ A) = e−λt10∈A +

∫
A

pact (x)dx

where

pact =

∞∑
n=1

f∗n(x)
e−λt(λt)n

n!
∀x 6= 0,

and we denote the jump size density by f(x) and by pact the density, which is conditioned
on the fact that the process has jumped at least once. Then, we can conclude with the
following asymptotic relation:

lim
t→0

1

t
pact (x) = λf(x) = ν(x), ∀x 6= 0

where ν(x) is the Lévy density, which describes the small time behavior of the probability
density. Moreover, from this relation we can �nd the small time behavior for expectation of
function Xt, given any bounded measurable function of f such that f(0) = 0 we have:

8The convolution power and the Dirac measure are explain in the appendix A.3 and A.4.
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lim
t→0

1

t
E[f(Xt)] = lim

t→0

1

t

∫
Rd
f(x)pt(dx) =

∫
Rd
f(x)ν(dx).

Another important property to say is what is the tail behavior of the distribution of the
Lévy process and how its moments are determined by the Lévy measure. Therefore, we
consider the following proposition:
Proposition 2.16 (Moments and cumulants of a Lévy process) (proposition 3.13 in [2])
Let (Xt)t≥0 be a Lévy process on R with characteristic triplet (A, ν, γ). The n-th absolute
moment of Xt, E[|Xt|n] is �nite for some t or, equivalently, for every t > 0 if and only if∫
|x|≥1

|x|nν(dx) < ∞. In this case, moments of Xt can be computed from its characteristic

function by di�erentiation. Therefore, using the cumulants9 of Xt we have:

E[Xt] = t

(
γ +

∫
|x|≥1

xν(dx)

)

c2(Xt) = V ar(Xt) = t

(
A+

∫ ∞
−∞

x2ν(dx)

)
cn(Xt) = t

∫ ∞
−∞

xnν(dx), for n ≥ 3.

We can note that all the in�nitely distribution are leptokurtic10 since c4(Xt) > 0 and also
the cumulants of the distributions of Xt increase linearly with t. In particular, the kurtosis
and skewness of the increments Xt+∆ −Xt or X∆ are given by:

s(X∆) = c3(X)√
c2(X)3

= s(X1)√
∆
, κ(X∆) = c4(X∆)

c2(X∆)2 = κ(X1)
∆ .

Therefore, the increments of a Lévy process or of all in�nitely divisible distributions are
always leptokurtic but the skewness (if there is any) and the kurtosis decreases with the
time scale over which increments are computed by 1√

∆
and 1

∆ , respectively.

With the following proposition we de�ne the exponential moments of a Lévy process:
Proposition 2.17 (Exponential moments) (proposition 3.14 in [2]) Let (Xt)t≥0 be a Lévy
process on R with characteristic triplet (A, ν, γ) and let u ∈ R. We call E

[
euXt

]
the expo-

nential moment which is �nite for some t or for all t > 0 if and only if

∫
|x|≥1

euxν(dx) <∞.

In this case, we have:

E
[
euXt

]
= etψ(−iu)

where ψ is the characteristic exponent of the Lévy process de�ned in equation (2.7).
For a detailed proof theorem 25.17 in "Lévy Process and In�nitely Divisible Distribution"
written by Stato.

One last thing to note is how the Lévy measure ν can be inferred from the characteristic
function ΦF (u) of the Lévy process (equation (2.9)). First, we need to say that the unique-
ness of the matrix A, given by the Lévy triplet (A, ν, γ), is a consequence of the following
equation:

lim
h→0

h log ΦXt

(
u√
h

)
= − t

2
〈u,Au〉. (2.12)

In term of the process X, this result implies that:{
1√
hXht

}
t≥0

d−−−→
h→0

{ΣWt}t≥0

where W is a d-dimensional Wiener processes and Σ is a lower triangular matrix such that
A = ΣΣT . This means that the short-term increments (X(k+1)h−Xkh)nk=1, properly scaled,

9De�ned in the appendix A.5.
10X is said to be leptokurtic or "fat-tailed" if κ(X) > 0 (κ(X) is called the excess kurtosis of X).
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behave like the increments of a Wiener process, when Σ 6= 0.
Now, we recover 〈u,Au〉 from equation (2.12) and we can �nd:

Υ(u) := log ΦX1
(u) +

1

2
〈u,Au〉

Then, it turns out that:

∫
[−1,1]d

(Υ(u)−Υ(u+ w))dw =

∫
Rd
ei〈u,x〉 2d

1−
d∏
j=1

sinxj
xj

 ν(dx)

︸ ︷︷ ︸
=:ν̃(dx)

(2.13)

where
sin xj
xj

is equal to 1 when xj = 0 and ν̃ is a �nite measure which can be recovered from

the inverse Fourier transform11 of the left-hand side of the above equation.
Proof
We can note that:

(Υ(u)−Υ(u+ w)) =

∫
Rd

(
ei〈u,x〉 − ei〈u+w,x〉 + i 〈w, x〉1|x|≤1

)
ν(dx)− i 〈γ,w〉

moreover, we know that the argument inside the integral has the following relation:

|ei〈u,x〉 − ei〈u+w,x〉 + i 〈w, x〉 | ≤ |1− ei〈u+w,x〉 + i 〈w, x〉 |+ | 〈w, x〉 ||1− e〈u,x〉|

≤ 1

2
|w|2|x|2 + |w||x|2|u|

Therefore, we can use Fubini Theorem and we get:∫
[−1,1]d

(Υ(u)−Υ(u+ w))dw =

∫
Rd
ei〈u,x〉ν(dx)

∫
[−1,1]d

(
1− ei〈w,x〉

)
dw

which shows equation (2.13).
Now, let show that ν̃(dx) is �nite. It is �nite since:

d∏
j=1

sinxj
xj

= 1− 1

6
|x2|+O(|x|4) as |x| → 0

�

2.2.4 Lévy processes as Markov process and martingales

From the independent of increments property of the Lévy process, we can built di�erent
martingales. Therefore, we can introduce the following proposition:
Proposition 2.18 (proposition 3.17 in [2]) Let (Xt)t≥0 be a real-valued process with inde-
pendent increments. Then:

1)
(

eiuXt

E[eiuXt ]

)
t≥0

is a martingale, ∀u ∈ R;

2) if for some u ∈ R, E
[
euXt

]
<∞, ∀t ≥ 0, then

(
eiuXt

E[eiuXt ]

)
t≥0

is a martingale;

3) if E[Xt] <∞, ∀t ≥ 0, then Mt = Xt−E[Xt] is a martingale and also a process with
independent increments;

4) if V ar(Xt) < ∞, ∀t ≥ 0, then (Mt)
2 − E[(Mt)

2] is a martingale and M is de�ned
as in the point 3).

11Described in the appendix A.6.
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Let (Xt) is a Lévy process. Therefore, it is a martingale if its corresponding moments are
�nite for one value of t.
The proposition 2.18 with the Lévy-Khinchin formula imply the following proposition:
Proposition 2.19 (proposition 3.18 in [2]) Let (Xt)t≥0 be a Lévy process on R with char-
acteristic triplet (A, ν, γ). Then:

1. (Xt) is a martingale if and only if

∫
|x|≥1

|x|ν(dx) <∞ and

γ +

∫
|x|≥1

xν(dx) = 0

2. exp(Xt) is a martingale if and only if

∫
|x|≥1

exν(dx) <∞ and

A

2
+ γ +

∫ ∞
−∞

(
ex − 1− x1|x|≤1

)
ν(dx) = 0

The above proposition told us the necessary and su�cient conditions for a Lévy process
or its exponential to be a martingale.

De�nition 2.9 [Semimartingale] A semimartingale is a stochastic process (Xt)0≤t≤T
which admits the decomposition:

X = X0 +M +A (2.14)

where X0 is �nite and F0-measurable, M is a local martingale with M0 = 0 and A is a �nite
variation process with A0 = 0.
If A is predictable, then X is a special semimartingale and all special semimartingale have
a "canonical decomposition" equal to:

X = X0 +B +Xc + x(JX − νX) (2.15)

where Xc is the continuous martingale part of X and x(JX−νX) is the purely discontinuous
martingale part of X. In particular, JX is the jump measure of X (de�ned in equation (2.2))
and νX is called the compensator of JX .
Every Lévy processes are also a samimartingale, which follows from the de�nition of semi-
martingale (equation (2.14) and from the Lévy-Ito decomposition (equation (2.6)). On the
other hand, every Lévy processes with �nite �rst moment are also special samimartingale
and all the Lévy processes which are a special semimartingale, have a �nite �rst moment.
Therefore, we have the following lemma:
Lemma 2.1 Let (Xt)t≥0 be a Lévy process with Lévy triplet (A, ν, γ). Then, the following
conditions are equivalent:

• X is a special semimartingale;

•
∫
Rd

(|x| ∧ |x|2)ν(dx) <∞;

•
∫
Rd

(|x|1|x|≥1)ν(dx) <∞.

Another important property of the Lévy process is the Markov property. It states that an
Ft-adapted process (Xt)t≥0 satis�es the Markov property if, for any bounded Borel function
f and for any s and t, such that s ≤ t, we have:

E[f(Xt)|Fs] = E[f(Xt)|Xs]

In other words, the meaning of the Markov property is that the future behavior of the
process (Xt)t≥0 after t depends only on the value Xt and is not in�uenced by the history of
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the process before t.
We can de�ne the transitional kernel of the process Xt as:

Ps,t(x,B) = P(Xt ∈ B|Xs = x) ∀B ∈ B. (2.16)

Moreover, the markov property implies the Champam-Kolmogorov equations:

Ps,u(x,B) =

∫
Rd
Ps,t(x, dy)Pt,u(y,B)

An important result from these condition is that the Lévy processes are the only Markov
processes which are homogeneous in space and in time. In fact, the Lévy processes satisfy
a stronger version of the Markov property: for all t, the increments (Xt+s −Xt)s≥0 has the
same law as the process (Xs)s≥0 and is independent from (Xs)a≤s≤t. Therefore, the strong
Markov property of Lévy processes allows to replace the nonrandom time t by any random
time which is nonanticipating with respect to the history of X. If τ is a nonanticipating
random time, then the process Yt = Xt+τ −Xτ is again a Lévy process, independent from
Fτ and with the same law as (Xt)t≥0.

2.3 Jump-Di�usion Model

The �nancial models with jumps can be decomposed in two main categories: the jump-
di�usion model and the in�nite activity models. We focus only in the �rst category but we
make a short description also of the second type.
The in�nite activity models consists in a model with in�nite number of jumps in every
interval, therefore we did not need to introduce a Brownian component since the process
moves essentially by jumps. This imply that the distribution of the jump size does not
exist because jumps arrive in�nitely often. The in�nite activity model gives a more realistic
description of the historical price process.
On the other hand, in the jump-di�usion model the evolution of prices are given by a di�usion
process which has jumps at random intervals. Here, the jumps represent rare events such
as crashes and large drawdown. Since the distribution of jump sizes is known, the dynamic
structure of the jump process is easy to understand and describe. The jump-di�usion models
perform well for implied volatility smile interpolation.

2.3.1 Exponential Lévy Models

In order to construct an exponential Lévy model for the process X, we need to start from
the Black-Scholes model and how it describes the evolution of an asset price. Here, the asset
price (St) follow a geometric Brownian motion:

St = S0e
µt+σWt (2.17)

If we replace µt + σWt by a Lévy process Xt, we obtain the class of the exponential Lévy
models:

St = S0e
Xt (2.18)

Now, consider a Lévy process of jump-di�usion type with the following form:

Xt = γt+ σWt +

Nt∑
i=1

Y1 (2.19)

where (Nt)t≥0 is the Poisson process which counting the jumps of X and Yi are the jump
sizes, which are i.i.d. variables. Therefore, the evolution of the asset price becomes:

St = S0e
γt+σWt+

∑Nt
i=1 Y1 (2.20)

We need to specify the distribution of jump sizes ν0(x) in order to de�ne the parametric
model completely. Is is important to specify the tail behavior of ν0(x) correctly because the
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tail behavior of the jump measure determines the tail behavior of the probability density of
the process.

In theMerton model (introduced by Merton in 1973 with the article "Option pricing when
underlying stock return are discontinuous") we have that the process is equal to the equation
(2.20) and the jumps are assumed to have a Gaussian distribution, therefore Yi ∼ N(µ, δ2).
This allows to obtain the probability density of Xt as a quickly converging series. In fact,

P(Xt ∈ A) =

∞∑
k=0

P(Xt ∈ A|Nt = k)P(Nt = k)

then the probability density of Xt satis�es the equation:

pt(x) = e−λt
∞∑
k=0

(λt)kexp
{
− (x−γt−kµ)2

2(σ2t+kδ2)

}
k!
√

2π(σ2t+ kδ2)

The Lévy density of the model is equal to:

ν(x) =
λ

δ
√

2π
exp

{
− (x− µ)2

2δ2

}
One last thing to note is the moment of the process in the Merton model. Hence, we have
that the characteristic exponent of the characteristic function is equal to:

ψ(u) = iγu− σ2u2

2
+ λ

{
e−

δ2u2

2 +iµu − 1
}

It follows that: E[Xt] = t(γ + λµ) and V ar(Xt) = t(σ2 + λγ2 + λµ2). If we analyze the
moment, we can note the tail behavior of the probability density, which are heavier than
Gaussian but all the exponential moments are �nite.

In the Kou model (introduced by Kou in 2002 with the article "A jump-di�usion model
for option pricing") we have that the process Xt is equal as in the Merton model but the
distribution of jumps sizes is an asymmetric exponential (i.e. has a double exponential
distribution, therefore Yi ∼ DbExp(p, θ1, θ2)) with a density of the form:

ν0(dx) =
[
pθ1e

−θ1x1x>0 + (1− p)θ2e
−θ2|x|1x<0

]
dx (2.21)

where θ1 > 0, θ2 > 0 represent the decay of the tails for the distribution of positive and
negative jump sizes, respectively, and p ∈ [0, 1] represent the probability of an upward jump.
Therefore, we can easily �nd the Lévy measure of the process:

ν(x) = pλθ1e
−θ1x1x>0 + (1− p)λθ2e

−θ2|x|1x<0

The �rst two moments of the process are equal to: E[Xt] = t
(
γ + λt

θ1
− λ(1−p)

θ2

)
and

V ar(Xt) = t
(
σ2 + λt

θ2
1
− λ(1−p)

θ2
2

)
. We �nd these two result from the characteristic function

of the process, which has characteristic exponent equal to:

ψ(u) = iγu− σ2u2

2
+ iuλ

{
p

θ1 − iu
− 1− p
θ2 + iu

}
In this case, the probability distribution of returns has semi-heavy exponential tails. On
one hand, we have that p(x) ∼ e−θ1x when x → +∞, on the other hand, we have that
p(x) ∼ e−θ2|x| when x→ −∞.
The advantage of the Kou model compared to the Merton model is that analytical expres-
sions for expectations involving �rst passage times may be obtained due to the memoryless
property of exponential random variables.
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In the Kou and in the Merton model the intensity of the jump is assume to be constant. If
we want to implement the model building of the price evolution of an asset, we can consider
the Doubly stochastic Poisson process, also known as Cox processes. Here, we want that the
intensity λ of the counting process N is stochastic, therefore we want that λ = (λ)0≤t≤T .
One approach is to computing the probability that an event arrives at time t given the
information we have at time s, hence is to de�ne P(Nt −Ns = n|F) where F is the natural
�ltration generated by (N,λ). Therefore, we have the following property:

P (Nt −Ns = n|Fs ∨ σ((λu)s≤u≤t)) = exp

{
−
∫ t

s

λudu

} (∫ t
s
λudu

)n
n!

so that

P (Nt −Ns = 0|Fs) = E

exp{−∫ t

s

λudu

} (∫ t
s
λudu

)n
n!

∣∣∣∣∣∣ Fs


where σ((λu)s≤u≤t) denotes the smallest σ−algebra generated by the intensity process λ
over the time interval [s, t], and Fs ∨ σ((λu)s≤u≤t) represents the information contained on
the entire path of λ up to time t, but excluding the information on the N process on the
interval (s, t]. Therefore, we can note that the Cox process is conditionally (conditioned on
σ((λu)s≤u≤t)) an inhomogeneous Poisson process with the conditionally known intensity.
Some examples of driver of the intensity process might be an independent di�usion, an
independent jump process or a counting process itself.
Now, we can give few examples of the intensity process λ:

1. Feller process:

dλt = k(θ − λt)dt+ η
√
λtdWt

2. Ornstein-Uhlenbeck process:

dλt = −kλtdt+ γdJt

3. Jump-di�usion:

dλt = k(θ − λt)dt+ η
√
λtdWt + γdJt

4. Hawkes process:

λt =

∫ t

0

g(t− s)dNs

where W is an independent Brownian motion, θ is the long-run mean, k is the rate of mean
reversion and J is an independent compound Poisson process with non-negative jumps and
with intensity λj and i.i.d. jumps ε with distribution function F . The �rst three processes
exhibit mean-reversion. The second process mean-reverts to 0, while the �rst and the third
mean revert to θ. However, if we consider the jump in the process, the mean-reversion level
does not re�ect the long-run behavior. Hence, we should rewrite the process in terms of
their compensated version and we introduce the following proposition:
Proposition 2.20 (Compensated Doubly stochastic Poisson process) Ñ = (Ñt)0≤t≤T is a

martingale if Ñt = Nt −
∫ t

0

λsds.

Therefore, in terms of the compensated Doubly stochastic Poisson process we have:

1. Ornstein-Uhlenbeck process:

dλt = k

(
γλj
k
E[ε]− λt

)
dt+ γdJ̃t

2. Jump-di�usion:

dλt = k

(
θ +

γλj
k
E[ε]− λt

)
dt+ η

√
λtdWt + γdJ̃t

44



Then, we can see that the expected average intensities in the long run are
γλj
k E[ε] and

θ +
γλj
k E[ε], respectively. Therefore, the expected long run intensity is the mean-reversion

level plus the jump correction terms
γλj
k E[ε].

The following proposition told us the condition of the exponential Lévy process to be a
semimartingale:
Proposition 2.21 (Exponential Lévy process) (proposition 8.20 in [2]) Let (Xt)t≥0 be a

Lévy process with Lévy triplet (σ2, ν, γ) verifying

∫
|y|≥1

eyν(dy) < ∞. Then, Yt = eXt is a

semimartingale with decomposition Yt = Mt +At where the martingale part is given by:

Mt = 1 +

∫ t

0

Ys−σdWs +

∫
[0,t]×R

Ys− (ez − 1) J̃X(ds× dz)

and the continuous �nite variation drift part is given by:

At =

∫ t

0

Ys−

[
γ +

σ2

2
+

∫ ∞
−∞

(
ez − 1− z1|z|≥1

)
ν(dz)

]
ds.

(Yt) is a martingale if and only if

γ +
σ2

2
+

∫ ∞
−∞

(
ez − 1− z1|z|≥1

)
ν(dz) = 0

Proof
Let (Xt)t≥0 be a Lévy process with jump measure JX and let Yt = eXt . Then, we apply the
Ito formula to Yt and we �nd:

Yt = 1 +

∫ t

0

Ys−σdXs +
σ2

2

∫ t

0

Ys−ds+
∑

0≤s≤t;∆Xs 6=0

(
eXs−+∆Xs − eXs− −∆Xse

Xs−
)

= 1 +

∫ t

0

Ys−σdXs +
σ2

2

∫ t

0

Ys−ds+

∫
[0,t]×R

Ys− (ez − 1− z) J̃X(ds× dz)

We can make the assumption that E[|Yt|] = E[eXt ] <∞ which is equivalent to

∫
|y|≥1

eyν(dy) <

∞. Therefore, we can decompose Yt into a martingale part and a drift part, where the mar-
tingale part is the sum of an integral with respect to the Brownian component of X and a
compensated sum of jump terms:

1 +

∫ t

0

Ys−σdWs +

∫
[0,t]×R

Ys− (ez − 1) J̃X(ds× dz)

while the drift term is given by:∫ t

0

Ys−

[
γ +

σ2

2
+

∫ ∞
−∞

(
ez − 1− z1|z|≥1

)
ν(dz)

]
ds

Then, Y is a martingale if and only if E[eXt ] = E[Yt] = 1 but E[eXt ] = etψX(−i), where ψX
is the characteristic exponent of X. Hence, we obtain that:

ψX(−i) = γ +
σ2

2
+

∫ ∞
−∞

(
ez − 1− z1|z|≥1

)
ν(dz) = 0

�
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2.3.2 Stochastic exponential of Jump process

The stochastic exponential was introduced by Doléans-Dade and it can be found using the
Ito formula in the geometric Brownian motion (equation (2.17)) and substituting a Lévy
process. Hence, if we apply the Ito formula in (2.17) we obtain:

dSt
St

=

(
µ+

σ2

2

)
dt+ σdWt

Then, we can de�ne B1
t = (µ+ σ2

2 )t+ σWt and the above equation becomes:

dSt
St

= dB1
t (2.22)

If we substitute B1
t by a Lévy process X, we obtain the stochastic exponential. Therefore,

with the following proposition we can introduce a generic stochastic exponential for a process
(Zt)t≥0.
Proposition 2.22 (Stochastic exponential) (proposition 8.21 in [1]) Let (Xt)t≥0 be a Lévy
process with Lévy triplet (σ2, ν, γ). Then, there exists a unique càdlàg process (Zt)t≥0 such
that: {

dZt = Zt−dXt

Z0 = 1
(2.23)

Where Z is given by:

Zt = eXt−
1
2

∫ t
0
σ2
sds

∏
0≤s≤t

(1 + ∆Xs)e
−∆Xs (2.24)

If

∫ 1

−1

|x|ν(dx) <∞, then the jumps of X have �nite variation and the stochastic exponential

of X can be expressed as:

Zt = eσWt+γ0t−σ
2t
2

∏
0≤s≤t

(1 + ∆Xs)

where γ0 = γ −
∫ 1

−1

xν(dx).

Z is called the stochastic exponential of X and is denoted by Z = E(X).
Proof

The �rst step is to show that the following process exists and is of �nite variation:

Vt =
∏

0≤s≤t;∆Xs 6=0

(1 + ∆Xs)e
−∆Xs

So, we decompose the process Vt as the product of two terms:

Vt = V at V
b
t

where:

V at =
∏

0≤s≤t;|∆Xs|≤1/2

(1 + ∆Xs)e
−∆Xs

V bt =
∏

0≤s≤t;|∆Xs|>1/2

(1 + ∆Xs)e
−∆Xs

Let's start to analyze V bt . Since, for every t, it is a product of �nite number of factors follows
that it is of �nite variation. Now, we look to V at . We consider its logarithm because it is
positive and we have:

lnV at =
∑

0≤s≤t;|∆Xs|≤1/2

(ln (1 + ∆Xs)−∆Xs)
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Each terms of this sum satis�es: 0 > ln(1 + ∆Xs)−∆Xs > −∆X2
s . Therefore, the series is

decreasing and bounded fro, below by −
∑

0≤s≤t ∆X2
s , which is �nite for every Lévy process.

Hence, lnV at exists and is a decreasing process. Finally, we can say that Vt exists and has
trajectories of �nite variation.
In the second step, we consider:

Zt = eXt−
1
2

∫ t
0
σ2
sdsVt

now, if we apply the Ito formula at the equation de�ne above, we �nd in di�erential form:

dZt = −σ
2
t

2
eXt−

1
2

∫ t
0
σ2
sdsVtdt+ eXt−−

1
2

∫ t
0
σ2
sdsVt−dXt

+
σ2
t

2
eXt−

1
2

∫ t
0
σ2
sdsVtdt+ eXt−

1
2

∫ t
0
σ2
sdsVt

− eXt−− 1
2

∫ t
0
σ2
sdsVt− − eXt−−

1
2

∫ t
0
σ2
sdsVt−∆Xt − eXt−−

1
2

∫ t
0
σ2
sds∆Vt

Since Vt is a pure jump process we have that: dVt ≡ ∆Vt = Vt−
(
e∆Xt(1 + ∆Xt)− 1

)
. Then,

substituting into the above equation and make some calculus, we �nd the equation (2.23).

�

We can note that the stochastic exponential is always nonnegative if all the jumps of Xt are
greater than −1, i.e. ν((−∞,−1]) = 0.
Goll and Kallsen have shown that the stochastic exponential is equivalent to the ordinary
exponential. In fact, if Z > 0 is the stochastic exponential of a Lévy process, it is also the
ordinary exponential of another Lévy process (it is also true the opposite case). Therefore,
the two exponential end up by giving us the same class of positive processes. The following
proposition shows the relation between ordinary and stochastic exponential:
Proposition 2.23 (Relation between ordinary and stochastic exponential) (proposition 8.22
in [2])

1. Let (Xt)t≥0 be a real valued Lévy process with Lévy triplet (σ2, ν, γ) and Z = E(X) its
stochastic exponential. If Z > 0 almost surely, then there exists another Lévy process
(Lt)t≥0 with triplet (σ2

L, νL, γL) such that Zt = eLt where:

Lt = lnZt = Xt −
σ2t

2
+
∑

0≥s≥t

(ln (1 + ∆Xs)−∆Xs

σL = σ

νL(A) = ν({x : ln (1 + x) ∈ A}) =

∫
1A(ln (1 + x))ν(dx)

γL = γ − σ2

2
+

∫
[ln (1 + x)1[−1,1](ln (1 + x))− x1[−1,1](x)]ν(dx)

2. Let (Lt)t≥0 be a real valued Lévy process with Lévy triplet (σ2
L, νL, γL) and St = eLt its

exponential. Then, there exists a Lévy process (Xt)t≥0 such that St is the stochastic
exponential of X : S = E(X) where:

Xt = Lt +
σ2t

2
+
∑

0≤s≤t

(
e∆Ls − 1−∆Ls

)
Therefore, the Lévy triplet (σ2, ν, γ) of X is given by:

σ = σL

ν(A) = νL({x : (ex − 1) ∈ A}) =

∫
1A(ex − 1)νL(dx)

γ = γL −
σ2
L

2
+

∫
[(ex − 1)1[−1,1](e

x − 1)− x1[−1,1](x)]νL(dx)
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3. Let (Xt)t≥0 be a Lévy process and a martingale. Then, its stochastic exponential
Z = E(X) is also a martingale. Therefore, for every Lévy process X with E[|Xt|] <∞
we have:

E[E(Xt)] = eE[Xt] t > 0

This property is also known as Martingale preserving property.

A detailed proof can be found in chapter 8 of "Financial Modeling with Jump Process"
written by Cont and Tankov.
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Chapter 3

Stochastic Calculus for Jump

Process

In �nancial market there are two type of strategies related to the price of a �nancial asset:
trading strategies and hedging strategies.
If we want to describe a trading strategy, we need to consider a dynamic portfolio resulting
from buying and selling the assets which satis�es the non-arbitrage assumption. We can
de�ne an arbitrage strategy as a self-�nancing strategy φ with zero initial value and non-
zero �nal value with probability equal to 1. Moreover, a strategy is called self-�nancing if
the following equation is satis�ed for all t : 〈φt, St〉 = 〈φt+1, St〉 . Therefore, we can consider
an investor who trades at times T0 = 0 < T1 < · · · < Tn < Tn+1 = T and detaining a
quantity φi of an asset whose price is S during the period (Ti, Ti+1]. Then, we can de�nite
the capital gain Gt(φ) as:

Gt(φ) :=

n∑
i=0

φi(STi+1 − STi) (3.1)

We can write the quantity which represents the capital gain of the investors following the
strategy φ as :

Gt(φ) =

n∑
i=0

φi(STi+1 − STi) =

∫ T

0

φtdSt (3.2)

where the last term in equation (3.2) represent the stochastic integral φ with respect to S.
In this chapter, we describe the stochastic integral and the main tools to explain the time

evolution of a derivative instrument. The �rst section introduces the concept of stochastic
integral. We describe its properties in the case is built with a semimartingale of respect to
a Brownian motion. Then, we give the de�nition of quadratic variation and covariation for
the stochastic integral. The second part of the chapter is entirely focused on the stochastic
integral with jump and, in particular, we talk about the stochastic integral with respect to
a Poisson process and to a Poisson Random measure. The last section talks about the Ito's
formula, which is the key tool to describe the time evolution of a derivative instruments.
Before we de�ne the Ito's formula for a jump-di�usion and, in general for a Lévy process,
then the introduce the Ito's formula for martingale and semimartingale.

3.1 Stochastic integral

Consider a vector of asset whose price S is described by a stochastic process, i.e. St =
(S1
t , S

2
t , . . . S

d
t ) and a portfolio φ = (φ1, φ2, . . . , φd) which describes the amount of each asset

held by the investor. Therefore, the value of such portfolio at time t is equal to:

Vt(φ) =

d∑
k=1

φdSkt ≡ 〈φt, St〉 (3.3)
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We also assume a dynamic trading strategy, which consist in buying and selling assets at
di�erent dates, and we consider an investor who trades at times T0 = 0 < T1 < · · · <
Tn < Tn+1 = T . We also assume that the strategy is self-�nancing and that between two
transaction dates Ti and Ti+1 the portfolio remains unchanged. The meaning of the self-
�nancing assumption is that at time t the investors readjusts his position from φt to φt+1

without bringing or consuming any wealth. Moreover, if we dropped this assumption, we
would had arbitrage opportunities because a portfolio which is empty at time 0 but to which
cash (> 0) is added, without any liability, would trivially be an arbitrage portfolio. The
second assumption told us that the investor did not know in advance the transaction dates
but he will decide to buy or sell at Ti+1 depending on the information revealed before Ti+1.
Hence, the transaction date Ti+1 is a stopping time. In the �rst chapter, we assume that the
processes are càdlàg (i.e. right continuous with left limits), whereas here we have that the
trading strategy is càglàd (i.e. left continuous with right limits). We have the left continuity
in the process because if the investor decides to make a transaction at t = Ti, the portfolio
will take the new value at φi before that the value of the portfolio is still described by
φi−1. Therefore, we have that (φt)t∈[0,T ] is a predictable process and we have the following
de�nition:
De�nition 3.1 [Simple Predictable Process] (de�nition 8.1 in [2]) A stochastic process
(φt)t∈[0,T ] is called a simple predictable process if it can be represented as:

φt = φ01t=0 +

n∑
i=0

φi1(Ti,Ti+1](t) (3.4)

where T0 = 0 < T1 < · · · < Tn < Tn+1 = T are nonanticipating random times and each φi
is bounded random variable whose value is revealed at Ti (i.e. FTi-measurable).
We can de�ne the gain process of the strategy φ followed by an investor as the stochastic
process (Gt(φ))t∈[0,T ] equal to:

Gt(φ) = 〈φ0, S0〉+

j−1∑
i=0

〈
φi, (STi+1

− STi)
〉

+
〈
φj , (St − STj )

〉
for Tj < t ≤ Tj+1

where (STi+1 − STi) represent the asset price movement between time Ti+1 and Ti. We can
write the equation above with stopping time notation, therefore we �nd a more compact
equation:

Gt(φ) = 〈φ0, S0〉+

n∑
i=0

〈
φi, (STi+1∧t − STi∧t)

〉
(3.5)

where Ti+1 ∧ t represent the minimum between Ti+1 and t. Hence, the stochastic process
Gt(φ) can be expressed as the stochastic integral of the simple predictable process φ with
respect to S and it is equal to:∫ t

0

φudSu := 〈φ0, S0〉+

n∑
i=0

〈
φi, (STi+1∧t − STi∧t)

〉
(3.6)

Since the self-�nancing assumption imply that the cost of the process (de�ned as Ct(φ) =

Vt(φ)−Gt(φ) = 〈φ0, St〉−
∫ t

0
φudSu) is equal to zero, we have that the value of the portfolio,

Vt(φ), is equal to:

Vt(φ) =

∫ t

0

φudSu = φ0S0 +

∫ t

0+

φudSu

where the �rst term is the initial value of the portfolio and the second term is the capital gain
between 0 and t. Therefore, for an investors the only source of variation of the portfolio's
value is the variation of the asset values.

Proposition 3.1 (Martingale preserving property) (proposition 8.1 in [2]) If (St)t∈[0,T ]

is a martingale, then for any predictable process φ the stochastic integral Gt =

∫ t

0

φdS is
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also a martingale.
Proof
Consider the process de�ned in the equation (3.4). We need to prove that E[GT |Fs] = Gt but
is su�cient to show that E[φi(STi+1 − STi)|Ft] = φi(STi+1∧τ − STi∧τ ) for each i. Therefore,
we have that:

E[φi(STi+1 − STi)|Ft] = E[1t>Ti+1φi(STi+1 − STi)|Ft]
+ E[1(Ti,Ti+1](t)φi(STi+1 − STi)|Ft]
+ E[1t≤Tiφi(STi+1 − STi)|Ft]

Since 1t>Ti+1 ,1(Ti,Ti+1] and 1t≤Ti are Ft-measurable because Ti and Ti+1 are stopping times,
we can bring out the indicator function from the conditional expectation and, in the third
term, we need to use the law of iterated expectation. Hence, the three terms in the above
equation become:

E[1t>Ti+1
φi(STi+1

− STi)|Ft] = 1t>Ti+1
φi(STi+1

− STi)
E[1(Ti,Ti+1](t)φi(STi+1

− STi)|Ft] = 1(Ti,Ti+1](t)φiE[(STi+1
− STi)|Ft]

= 1(Ti,Ti+1](t)φi(St − STi)
E[1t≤Tiφi(STi+1

− STi)|Ft] = 1t≤TiE[E[φi(STi+1
− STi)|FTi ]|Ft]

= 1t≤TiE[φiE[(STi+1
− STi)|FTi ]|Ft]

= 1t≤TiE[φi(E[STi+1
|FTi ]︸ ︷︷ ︸

=STi

−E[STi |FTi ]︸ ︷︷ ︸
=STi

)|Ft]

= 0

Therefore, putting all together we have:

E[φi(STi+1
− STi)|Ft] = 1t>Ti+1

φi(STi+1
− STi) + 1(Ti,Ti+1](t)φi(St − STi)

= φi(STi+1∧τ − STi∧τ )

�

This proposition imply that if the asset follows a martingale then the the value of any self-
�nancing strategy is a martingale.

Now, consider a nonanticipating càdlàg process (Xt)t∈[0,T ], we can built a new stochastic
processes by choosing various simple predictable processes (σt)t∈[0,T ], hence the new process
is equal to: ∫ t

0

σudXu

where Xt represents the "source of randomness" and σt is the "volatility coe�cient". There-
fore, we have the following proposition:
Proposition 3.2 (Associativity) (proposition 8.2 in [2]) Let (Xt)t∈[0,T ] be a real-valued
nonanticipating càdlàag process and (σt)t≥0 and (φt)t≥0 be a real-valued predictable pro-

cesses. Then, St =
∫ t

0
σdX (which can be written in di�erential notation as dSt = σtdXt)

is a nonanticipating càdlàg process and∫ t

0

φudSu =

∫ t

0

φuσudXu. (3.7)

The associativity proposition means that the gain process of any strategy involving S,
de�ned as stochastic integral with respect to a source of randomness (i.e. St =

∫ t
0
σdX),

can be expressed as a stochastic integral with respect to X.
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3.1.1 Semimartingale

Since a Lévy process X is not stable under stochastic integration or non-linear transforma-
tions, we need to consider the class of samimartingales, which are a larger class of stochastic
processes. These kind of class are both stable under stochastic integration and non-linear
transformation. Moreover, they are also stable under other operation such as change of
�ltration and change of measure. We have already given the de�nition of semimartingale
(de�nition 2.9) but now, we give the de�nition of semimartingale with respect a simple pre-
dictable process.
De�nition 3.2 [Semimartingale] (de�nition 8.2 in [2]) A nonanticipating càdlàg pro-
cess S is called a semimartingale if the stochastic integral of simple predictable process with
respect to S:

φ = φ01t=0 +

n∑
i=0

φi1(Ti,Ti+1] 7→
∫ T

0

φdS = φ0S0 +

n∑
i=0

φi(STi+1
− STi)

veri�es the following continuity property: for every φn, φ ∈ S([0, T ]) if:

sup
(t,ω)∈[0,T ]×Ω

|φnt (ω)− φt(ω)| →
n→∞

0

then ∫ T

0

φndS
P−−−−→

n→∞

∫ T

0

φdS (3.8)

where S([0, T ]) is a set of simple predictable processes on [0, T ].
The class of semimartingales satisfy the stability property: a small change in the portfolio
should lead to a small change in the gain process. If this property does not hold, it means
that a small change in the portfolio can lead to large change in the gain process. Therefore,
we need to use stochastic processes which are semimartingales and the following proposition
shows that the stability property holds for process de�ned by stochastic integral:
Proposition 3.3 (proposition 8.3 in [2]) If (St)t∈[0,T ] is a semimartingale then for every
φn, φ ∈ S([0, T ]):

if sup
(t,ω)∈[0,T ]×Ω

|φnt (ω)− φt(ω)| →
n→∞

0 (3.9)

then sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

φndS −
∫ t

0

φdS

∣∣∣∣ P−−−−→
n→∞

0. (3.10)

Moreover, we have that any linear combination of a �nite number of semimartingales
is a semimartingales. In fact, all the Lévy processes are semimartingale because it can be
decomposed into a sum of square integrable martingale (the Wiener process) and a �nite
variation process (the Poisson process). We can easily see that for a �nite variation process
S, we always have:

sup
t∈[0,T ]

∫ t

0

φdS ≤ TV (S) sup
(tω)∈[0,T ]×Ω

|φt(ω)|

where TV (S) is the total variation1 of S on [0, T ]. Then, for a square integrable martingale

1De�ned in chapter 1
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M we have that:

E

[(∫ t

0

φdM

)2
]

= E

(φ0M0 +

n∑
i=0

φi(MTi+1∧τ −MTi∧τ )

)2


= E

[
φ2

0M
2
0 +

n∑
i=0

φ2
i (MTi+1∧τ −MTi∧τ )2

]

≤ sup
t,ω
|φs(ω)|E

[
M2

0 +

n∑
i=0

(MTi+1∧τ −MTi∧τ )2

]

≤ sup
t,ω
|φs(ω)|E

[
M2

0 +

n∑
i=0

(M2
Ti+1∧τ −M

2
Ti∧τ )

]
≤ sup

t.ω
|φs(ω)| sup

s
E[M2

s ]

To show this result we have used the Optional Sampling Theorem (Theorem 1.10). Moreover,
the above inequality implies the convergence in probability because the stochastic integrals
converge in L2, uniformly in t.

Finally, we can note that all the new processes constructed from semimartingales using
stochastic integration are again semimartingales due to associativity property, which helps
us to show that a stochastic integral with respect to a semimartingale is a semimartingale.
And that every semimartingale is the sum of a �nite variation process and a local martingale,
which can be de�ned as the process (Xt) in which there exists a sequence of stopping times
(τi)i≥1 such that τi →∞ when i→∞ and for each i, (Xτi∧t) is a martingale.

3.1.2 Stochastic integral with respect to Brownian motion

Consider the simple predictable process φ de�nes in equation (3.4). Then, we can de�ne the
Brownian stochastic integral as:∫ T

0

φtdWt =

n∑
=0

φi(WTi+1
−WTi) (3.11)

Proposition 3.4 (Isometry formula) (proposition 8.5 in [2]) Let (φt)0≤t≤T be a simple
predictable process and (Wt)0≤t≤T be a Wiener process. Then:

i.

E

[∫ T

0

φtdWt

]
= 0, (3.12)

ii.

E

∣∣∣∣∣
∫ T

0

φtdWt

∣∣∣∣∣
2
 = E

[∫ T

0

|φt|2dt

]
(3.13)

Proof
The �rst equation is easy to prove sinceWt is a martingale, then also

∫ t
0
φdW is a martingale.

Therefore, E[
∫ t

0
φdW ] = 0.

To show the second equation, we compute the second moment due to the independent of
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increments in W . Therefore, we have:

E

∣∣∣∣∣
∫ T

0

φtdWt

∣∣∣∣∣
2
 = V ar

(
n∑

=0

φi(WTi+1
−WTi)

)

=

n∑
=0

E[φ2
i (WTi+1

−WTi)
2]

+ 2
∑
>j

Cov(φi(WTi+1
−WTi), φj(WTj+1

−WTj ))

=

n∑
=0

E[E[φ2
i (WTi+1

−WTi)
2|FTi ]]

+ 2
∑
>j

E[E[φiφj(WTi+1 −WTi)(WTj+1 −WTj )|FTj ]]

=

n∑
=0

E[E[φ2
i (WTi+1

−WTi)
2|FTi ]] + 0

=

n∑
i=0

E[φ2
i ](Ti+1 − Ti) = E

[∫ t

0

φ2
tdt

]
�

We can use the isometry formula to built stochastic integrals with respect to the Wiener
process for predictable processes. We need that the predictable processes (φt)t∈[0,T ] verify:

E

[∫ T

0

|φt|2dt

]
<∞

E

[∫ T

0

|φnt − φt|2dt

]
−→
n→∞

0.

Therefore, we have the following proposition for Brownian integrals:
Proposition 3.5 (Isometry formula for Brownian integrals) (proposition 8.6 in [2]) Let
(φt)0≤t≤T be a predictable process which satisfy:

E

[∫ T

0

|φt|2dt

]
<∞

Then,
∫ t

0
φdWt is a square integrable martingale and

i.

E

[∫ T

0

φtdWt

]
= 0,

ii.

E

∣∣∣∣∣
∫ T

0

φtdWt

∣∣∣∣∣
2
 = E

[∫ T

0

|φt|2dt

]

We can note that φ can not be interpreted as a "trading strategy" even if
∫ t

0
φdWt is

a well-de�ned random variable. Moreover, its integral can not be represented as a limit of
Riemann sums, which can be de�ned with the following proposition:
Proposition 3.6 (Stochastic integral via Riemann sums) (proposition 8.4 in [2]) Let S be
a semimartingale, φ be a càdlàg process and πn = (Tn0 = 0 < Tn1 < · · · < Tnn+1 = T )
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a sequence of random partitions of [0, T ] such that |πn| = supk |Tnk − Tnk−1| → 0 a.s when
n→∞. Then:

φ0S0 +

n∑
k=0

φTk(STk+1∧t − STk∧t)
P−−−−→

n→∞

∫ t

0

φu−dSu (3.14)

uniformly in t on [0, T ].
We can note that in the sum the variation of S is multiplied by the value of φ at the left
endpoint of the interval. We use the stochastic integrals via Riemann sums when we want
make a stochastic integrals for càglàd processes.

3.1.3 Quadratic variation and covariation

Consider a process observed on a time grid π = (t0 = 0 < t1 < · · · < tn+1 = T ), then we
can de�ne the realized variance as:

VX(π) =
∑
ti∈π

(Xti+1
−Xti)

2

We can rewrite the realized variance as a Riemann sum:

VX(π) = X2
T −X2

0 − 2
∑
ti∈π

Xti(Xti+1
−Xti)

If X is a semimartingale with X0 = 0, it will be a nonanticipating right-continuous process
with left limits. Therefore, we can de�ne the càdlàg process X− = (Xt−)t∈[0,T ]. We can
note that the Riemann sum de�ned above converge in probability to a random variable: the
quadratic variation. Hence, we can give the following de�nition of the quadratic variation
process:
De�nition 3.3 [Quadratic Variation] (de�nition 8.3 in [2]) The quadratic variation
process of a semimartingale X is the nonanticipating càdlàg process de�ned by:

[X,X]t = |Xt|2 − 2

∫ t

0

Xu−dXu (3.15)

Is important to specify that the quadratic variation is a random variable and not a number.
Moreover, if πn = (tn0 = 0 < tn1 < · · · < tnn+1 = T ) is a sequence of partitions of [0, T ] such
that |πn| = supk |tnk − tnk−1| → 0 as n→∞, then

0≤ti<t∑
tiπn

(Xti+1
−Xti)

2 P−−−−→
n→∞

[X,X]t

where the convergence is uniform in t. Then, the following proposition summarizes some
properties of the quadratic variation:
Proposition 3.7 (Properties of quadratic variation) Consider [X,X]t = |Xt|2−2

∫ t
0
Xu−dXu.

Then, we have the following properties:

a) ([X,X]t)t∈[0,T ] is an increasing process. This allows to de�ne integrals
∫ t

0
φd[X,X] ;

b) the jumps of [X,X] are related to the jumps of X by: ∆[X,X]t = |∆Xt|2. In particular,
[X,X] has continuous sample paths if and only if X does;

c) if X is continuous and has �nite variation, then [X,X] = 0;

d) if X is a martingale and [X,X] = 0 then X = X0 almost surely.

Proof
We give a proof for the property a) and c).
a). Since [X,X] is de�ned as a limit of a positive sum [X,X]t ≥ 0, for t > s and since
[X,X]t − [X,X]s is again a limit of positive sums [X,X]t ≥ [X,X]s. We can conclude that
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[X,X] is an increasing process.
c). If X is continuous and has paths of �nite variation, we obtain:∑

tiπn

(Xti+1 −Xti)
2 ≤ sup

i
|Xti+1 −Xti |

∑
ti∈π
|Xti+1 −Xti |

≤ sup
i
|Xti+1

−Xti |TV (X) −→
|π|→0

0

where TV (X) is the total variation of X on [0, T ]. Therefore, [X,X] = 0. In particular,
for a smooth (C1) function, [f, f ] = 0. Moreover, this result is no longer true for processes
with discontinuous sample paths since, in this case, |Xti+1

−Xti | will not go to zero when
|Xti+1

−Xti | → 0.

�

The property d) imply that if we have a continuous square-integrable martingale with path
of �nite variation, it will be constant with probability 1. This implication allows to say
that if a process is decomposed into the sum of a square-integrable martingale term and a
continuous process with �nite variation (i.e. Xt = Mt +

∫ t
0
a(t)dt), then this decomposition

is unique.

Consider a Brownian motion Bt = σWt, where W is a standard Wiener process, then
the quadratic variation of the Brownian motion is equal to [B,B]t = σ2t. We can note that
the quadratic variation is equal to the variance of the process in the Brownian motion. To
prove this statement, consider a sequence of partitions of [0, T ], i.e. πn = (tn0 = 0 < tn1 <
· · · < tnn+1 = T ), such that |πn| = supk |tnk − tnk−1| → 0. We can see that VB(πn) − σ2T =∑
πn (Bti+1

−Bti)2−σ2(ti+1−ti) is a sum of independent terms with mean zero. Therefore,
we have:

E
[
|VB(πn)− σ2T |2

]
=
∑
πn

E
[
(Bti+1

−Bti)2 − σ2(ti+1 − ti)
]2

=
∑
πn

σ4|ti+1 − ti|2E

[(
(Bti+1

−Bti)2

σ2(ti+1 − ti)
− 1

)2
]

= σ4
∑
πn

|ti+1 − ti|2E[(Z2 − 1)2] whereZ ∼ N(0, 1)

≤ E[(Z2 − 1)2σ4T |πn]→ 0

Hence, E
[
|VB(πn)− σ2T |2

]
→ 0 implies convergence in probability of VB(πn) to σ2T.

On the other hand, if we consider a Lévy process X with characteristic triplet (σ2, ν, γ), the
quadratic variation is equal to:

[X,X]t = σ2t+
∑

s∈[0,t],∆Xs 6=0

|∆Xs|2

= σ2t+

∫
[0,t]

∫
R
y2JX(ds× dy)

In the quadratic variation, we consider only one process X but, in the reality, we can see
more stochastic process. Therefore, we need to introduce the multidimensional counterpart
of the realized volatility: the realized covariance. Consider a time grid π = (t0 = 0 < t1 <
· · · < tn+1 = T ) and two process X and Y . Then, we can de�ne the realized covariance as:∑

ti∈π
(Xti+1 −Xti)(Yti+1 − Yti) (3.16)

As we do for the realized variance, we can rewrite the sum above as a Riemann sum and we
�nd:

XTYT −X0Y0 −
∑
ti∈π

(
Yti(Xti+1

−Xti) +Xti(Yti+1
− Yti)

)
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If X,Y are semimartingale, the expression above convergence in probability to the random
variable called quadratic covariation, which can be de�ned as:
De�nition 3.4 [Quadratic Covariation] (de�nition 8.4 in [2]) Given two semimartin-
gales X,Y . The quadratic covariation process [X,Y ] is the semimartingale de�ned by:

[X,Y ]t = XtYt −X0Y0 −
∫ t

0

Xs−dYs −
∫ t

0

Ys−dXs (3.17)

Consider the quadratic covariance de�ned in the expression (3.16). It discrete approxima-
tions converge in probability to [X,Y ] uniformly on [0, T ]. Therefore, we have that:

ti<t∑
ti∈π

(Xti+1
−Xti)(Yti+1

− Yti)
P−−−−→

|π|→0
[X,Y ]t (3.18)

The following proposition summarizes some important properties of the quadratic covaria-
tion:
Proposition 3.8 (Properties of the quadratic covariation) Consider the quadratic covaria-

tion [X,Y ]t = XtYt−X0Y0−
∫ t

0
Xs−dYs−

∫ t
0
Ys−dXs. Then, we have the following properties:

a) [X,Y ] is a nonanticipating càdlàg process with path of �nite variation;

b) Polarization identity: [X,Y ] = 1
4 ([X + Y,X + Y ]− [X − Y,X − Y ]);

c) The quadratic covariation [X,Y ] is not modi�ed if we add to X or Y continuous
processes with �nite variation, i.e random drift terms. It is only sensitive to the
martingale parts, i.e. noise terms, or jumps in X and Y ;

d) If X,Y are semimartingales and φ, ψ are integrable predictable processes then:[∫
φdX,

∫
ψdY

]
t

=

∫ t

0

φψd[X,Y ];

e) Product di�erentiation rule: if X,Y are semimartingales, then:

XtYt = X0Y0 +

∫ t

0

Xs−dYs +

∫ t

0

Ys−dXs + [X,Y ]t

Consider two Brownian motion: B1
t = σ1W

1
t and B2

t = σ2W
2
t , where W

1, W 2 are two
standard wiener processes with correlation ρ (typically, with di�erential notation we de�ne
the correlation between two standard Wiener process as: dW 1dW 2 = ρdt. Hence, we can
show that:

[B1
t , B

2
t ]t =

1

4

(
[B1
t +B2

t , B
1
t +B2

t ]− [B1
t −B2

t , B
1
t −B2

t ]
)

=
1

4

(
[σ1W

1
t + σ2W

2
t , σ1W

1
t + σ2W

2
t ]− [σ1W

1
t − σ2W

2
t , σ1W

1
t − σ2W

2
t ]
)

=
1

4

(
(σ1W

1
t )2 + 2σ1σ2W

1
t W

2
t + (σ2W

2
t )2 − (σ1W

1
t )2 + 2σ1σ2W

1
t W

2
t − (σ2W

2
t )2
)

=
1

4

(
4σ1σ2W

1
t W

2
t

)
= σ1σ2W

1
t W

2
t

= ρσ1σ2t

3.2 Stochastic Integral with Jumps

3.2.1 Stochastic Integral with respect to Poisson process

Consider the relation, for the Poisson process, described in chapter 2, i.e. ∆Xt = YNt∆Nt.
Then, we can de�ne the stochastic integral of a stochastic process (φt)t≥0 with respect to
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(Xt)t≥0 by: ∫ T

0

φtdXt =

∫ T

0

φtYNtdNt :=

NT∑
k=1

φTkYk (3.19)

The meaning of the above equation is that the value at time T of a portfolio containing
a quantity φt of an asset at time t, whose price evolves according to random returns Yk,
generate capital gain or losses equal to φTkYk at random times Tk.
Consider a compound Poisson process (De�nition 2.2) (Xt)t≥0, it admits stochastic integral
representation equal to:

Xt = X0 +

Nt∑
k=1

Yk = Y0 +

∫ t

0

YNsdNs

Proposition 3.9 (Smoothing formula) (proposition 15.9 in [6]) Let (φt)t≥0 be a process
adapted to the �ltration generated by (Xt)t≥0 and such that:

E

[∫ T

0

|φt|dt

]
<∞

Then, the expected value of the compensated Poisson stochastic integral is equal to:

E

[∫ T

0

φt−dXt

]
= E

[∫ T

0

φt−YtdNt

]
= λE[Y ]E

[∫ T

0

φtdt

]
(3.20)

where φt is the left limit of the process.
The equation (3.20) holds only for the left limit of the process φ, otherwise if we consider
the full process φ we can have arbitrage opportunities.
Proof
From chapter 2, we already known that the compensated compound Poisson process is a
martingale, therefore the stochastic integral is also a martingale due to the adaptedness of
(φt)t≥0 to the �ltration generated by (Xt)t≥0, which makes the process (φt−)t≥0 predictable
(i.e. Ft− := σ(Xs : s ∈ [0, t))). In fact, we have:

E

[∫ T

0

φt−dXt

]
=

∫ T

0

φt−d(Xs − λE[Y ]s) =

∫ T

0

φt−(YNsdNs − λE[Y ]ds)

Now, we need to show that the expectation of a martingale remains constant over time.
Therefore:

0 = E

[∫ T

0

φt−d(Xt − λE[Y ]t)

]

= E

[∫ T

0

φt−dXt

]
− λE[Y ]

[∫ T

0

φt−dt

]

= E

[∫ T

0

φt−dXt

]
− λE[Y ]

[∫ T

0

φtdt

]

�

Proposition 3.10 Let (φt)t≥0 be a process adapted to the �ltration generated by (Xt)t≥0

and such that

E

[∫ T

0

|φt|2dt

]
<∞
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Then, the expected value of the squared compensated Poisson stochastic integral is equal to:

E

(∫ T

0

φt−(dXt − λE[Y ]dt)

)2
 = λE[|Y |2]E

[∫ T

0

|φt|2dt

]
(3.21)

We can see that only the generic jump size Y is squared whereas the intensity of the jump,
i.e. λ, is not.

Consider a counting process Nt with jump times Ti and with random variables observed
at Ti describe by Yi. Let Xt be a process de�ned by Xt =

∑Nt
i=1 Yi, hence the quadratic

variation of the process is equal to:

[X,X]t =
∑
s≤t

(∆Xs)
2 =

Nt∑
i=1

Y 2
i

We can note that the same formula holds for every �nite variation process X. Moreover,
the predictable quadratic variation of the process (i.e. "angle bracket") is the compensator
of [X,X], namely:

〈X,X〉t = λtE[Y 2
1 ]

For the quadratic covariation we need to consider another counting process N b
t , which has

jump times Tj and random variables observed at Tj , described by Y
b
j . Then, we consider the

process Zt =
∑Nbt
j=1 Y

b
j . Now, we make the assumption that X and Z have �nite variation

processes whose jumps times are almost surely disjoint, hence they did not jump at the same
time, therefore the quadratic covariation is equal to:

[X,Z]t =
∑
s≤t

∆Xs∆Zs = 0

The assumption of disjoint jumps is a strong assumption and we consider it only for the
stock price behavior. In fact, if we consider the exchange rate we drop this assumption and
we consider correlated jumps between the rate.

3.2.2 Stochastic Integral with respect to Poisson random measure

Consider a Poisson random measure 2 M on [0, T ] × Rd with intensity µ(dt × dx). Let
M̃ be the compensated random measure de�ned as the centered version of M : M̃(A) =
M(A)− µ(A) = M(A)− E[M(A)], where A ⊂ Rd.
We can de�ne the simple predictable process with respect to the Poisson random measure
as:

φ(t, y) =

n∑
i=1

m∑
j=1

φij1(Ti,Ti+1](t)1Aj (y) (3.22)

where φ : Ω × [0, T ] × Rd → R is a simple predictable functions, (φij)j=1,...,m are bounded
FTi-measurable random variables, T1 ≤ T2 ≤ · · · ≤ Tn are non anticipating random times
and (Aj)j=1,...,m are disjoint subsets of Rd with µ([0, T ] × Aj) < ∞. The disjoint subset
implies that the compensated random measure is a martingale with respect to Aj and that
if A ∩B = ∅, then Mt(A) and Mt(B) are independent.
Now, we can de�ne the stochastic integral with respect to Poisson process as the random
variable: ∫ T

0

∫
Rd
φ(s, y)M(ds× dy) =

n,m∑
i,j=1

φijM ((Ti, Ti+1]×Aj)

=

n∑
i=1

m∑
j=1

φij [MTi+1
(Aj)−MTi(Aj)] (3.23)

2De�ned in chapter 2
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If we want that the the stochastic integral is a càdlàg, nonanticipating process, we need to
de�ne the process t 7→

∫ t
0

∫
Rd φ(t, y)M(dt× dy) by:∫ t

0

∫
Rd
φ(s, y)M(ds× dy) =

n,m∑
i,j=1

φij [MTi+1∧t(Aj)−MTi∧t(Aj)]

Similarly, we can de�ne the stochastic integral with respect to the compensated Poisson
process, which can be de�ned as the random variable:∫ T

0

∫
Rd
φ(s, y)M̃(ds× dy) =

n,m∑
i,j=1

φijM̃ ((Ti, Ti+1]×Aj)

=

n∑
i=1

m∑
j=1

φij [M ((Ti, Ti+1]×Aj)− µ ((Ti, Ti+1]×Aj)] (3.24)

As we do for the equation (3.23), the equation (3.24) can be written in stopping times
notation by restricting the terms with Ti ≤ t, therefore we obtain a stochastic process equal
to: ∫ t

0

∫
Rd
φ(s, y)M̃(ds× dy) =

n,m∑
i,j=1

φij [M̃Ti+1∧t(Aj)− M̃Ti∧t(Aj)] (3.25)

We have introduced the stochastic integral with respect to the compensated Poisson process
because we use it to show the martingale preserving property.
Proposition 3.11 (Martingale preserving property) (proposition 8.7 in [2]) For any simple
predictable function φ : Ω×[0, T ]×Rd → R the process (Xt)t∈[0,T ] de�ned by the compensated
integral:

Xt =

∫ t

0

∫
Rd
φ(s, y)M̃(ds× dy)

is a square integrable martingale and veri�es the isometry formula:

E[|Xt|2] = E

[∫ t

0

∫
Rd
|φ(s, y)|2µ(ds× dy)

]
(3.26)

Proof
First, de�ne a process Y jt , with j = 1, . . . ,m, as Y jt = M̃ ((0, t]×Aj) = M̃t(Aj). We know

that (Y jt )t∈[0,T ] is a martingale with independent increments and that the process Y j are
mutually independent since Aj are disjoint. Therefore, we can write the argument inside

the sum in the equation (3.25), (i.e.[M̃Ti+1∧t(Aj)− M̃Ti∧t(Aj)]), as Y
j
Ti+1∧t − Y

j
Ti∧t. Hence,

we �nd that the compensated integral Xt is equal to:

Xt =

n,m∑
i,j=1

φij(Y
j
Ti+1∧t − Y

j
Ti∧t)

=

m∑
j=1

n∑
i=1

φij(Y
j
Ti+1∧t − Y

j
Ti∧t)

=

m∑
j=1

∫ t

0

φjdY j

where φj =
∑n
i=1 φij1(Ti,Ti+1]. We can note that φj is a simple predictable process, therefore

its stochastic integral (
∫ t

0
φjdY j) is a martingale by the martingale preserving property

(proposition 3.1), which allow us to conclude that also Xt is a martingale. Now, we need to
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compute the �rst two moment of Xt: the mean and the variance.

E[Xt] = E

 m∑
j=1

∫ t

0

φjdY j


=

m∑
j=1

E

[∫ t

0

φjdY j
]

=

m∑
j=1

E

[
E

[∫ t

0

φjdY j
∣∣∣∣ FTi]]

= 0

E[|Xt|2] = V ar

(∫ t

0

∫
Rd
φ(s, y)M̃(ds× dy)

)
=

n,m∑
i,j=1

E
[
|φij |2(Y jTi+1∧t − Y

j
Ti∧t)

2
]

=

n,m∑
i,j=1

E
[
E
[
|φij |2(Y jTi+1∧t − Y

j
Ti∧t)

2|FTi
]]

=

n,m∑
i,j=1

E
[
|φij |2E

[
(Y jTi+1∧t − Y

j
Ti∧t)

2|FTi
]]

=

n,m∑
i,j=1

E
[
|φij |2µ ([Ti, Ti+1]×Aj)

]
which yields (3.26). Finally, we can say that Xt is a square integrable martingale because
E[|Xt|2] ≤ E[|XT |2] ≤ ∞.

�

We can extend the isometry formula (equation (3.26)) to square integrable predictable func-
tions and we have the following proposition:
Proposition 3.12 (Compensated Poisson integrals) (proposition 8.8 in [2]) For any pre-
dictable random function φ : Ω× [0, T ]× Rd → R verifying

E

[∫ t

0

∫
Rd
|φ(s, y)|2µ(ds× dy)

]
<∞

the following property hold:

• t 7→
∫ t

0

∫
Rd
φ(s, y)M̃(ds× dy) is a square integrable martingale;

•

E

[∣∣∣∣ ∫ t

0

∫
Rd
φ(s, y)µ(ds× dy)

∣∣∣∣ 2
]

= E

[∫ t

0

∫
Rd
|φ(s, y)|2µ(ds× dy)

]
(3.27)

Consider a Lévy process (Xt)t≥0 with Lévy measure ν and a Poisson random measure
JX with intensity µ(dt × dx) = dtν(dx). Then, for a predictable random function φ the
integral in equation (3.23) is equal to:

∫ T

0

∫
Rd
φ(s, y)M(ds× dy) =

∆Xt 6=0∑
t∈[0,T ]

φ(t,∆Xt)
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The meaning of the above equation is that the integral of the predictable function is a sum
of terms involving jump times (t) and jump sizes (∆Xt).

Let M be a Poisson random measure on [0, T ] × Rd with intensity µ(ds × dy) and let
φ : [0, T ]× Rd 7→ R. Then, we can de�ne the process X as the integral of φ with respect to
M :

Xt =

∫ t

0

∫
Rd
φ(s, y)M(ds× dy)

Therefore, the quadratic variation of X is equal to:

[X,X]t =

∫ t

0

∫
Rd
|φ(s, y)|2M(ds× dy)

Now, consider a Wiener process (Wt)t∈[0,T ] independent fromM and two process X. Hence,
the process Xt can be written as

Xi
t = Xi

0 +

∫ t

0

σisdWs +

∫ t

0

∫
Rd
φi(s, y)M(ds× dy) i = 1, 2

Hence, the quadratic covariation of the two process is equal to:

[X1, X2]t =

∫ t

0

σ1
sσ

2
sds+

∫ t

0

∫
Rd
φ1(s, y)φ2(s, y)M(ds× dy) i = 1, 2

3.3 Change of variable formula

In this section we talk about the change of variable formula for the jump processes. But
�rst, we need to remind the change of variables formula for smooth functions and the Ito
formula for Brownian integrals. Let f : R→ R be a C2 function and let g : [0, T ]→ R be a
C1 function. Then, the change of variables formula for smooth function is:

f(g(t))− f(g(0)) =

∫ t

0

f ′(g(s))g′(s)ds =

∫ t

0

f ′(g(s))dg(s) (3.28)

Now, we can consider the Brownian integral de�ned as: Xt =
∫ t

0
σsdWs and the function f

de�ned as above. Then, if we apply the Ito formula at Xt we �nd:

f(Xt) = f(0) +

∫ t

0

f ′(Xs)σsdWs +
1

2

∫ t

0

f ′′(Xs)ds (3.29)

3.3.1 Calculus for �nite jump processes

Let x : [0, T ] → R be a function with a �nite number of discontinuities at time 0 = T0 ≤
T1 ≤ T2 ≤ · · · ≤ Tn ≤ Tn+1 = T and the function x is smooth on each interval, de�nes as
(Ti, Ti+1). Moreover, we can de�ne x(Ti) := x(T+

i ), which means that x is càdlàg at the
discontinuity points. Let f : R → R be a C1 function. Since x is smooth on each interval
(Ti, Ti+1), f(x(t)) is also smooth. Then, the change of variable formula for piecewise smooth
functions is given by the following proposition:
Proposition 3.13 (Change of variable formula for piecewise smooth functions) (proposition
8.12 in [2]) If x is a piecewise C1 function given by:

x(t) =

∫ t

0

b(s)ds+
∑

{i.Ti≤t}

∆xi with i = 1, . . . , n+ 1

where ∆xi = x(Ti)− x(T−i ). Then, for every C1 function f : R→ R we have:

f(x(T ))− f(x(0)) =

∫ T

0

b(t)f ′(x(t−))dt

+

n+1∑
i=1

(
f(x(T−i ) + ∆xi)− f(x(T−i ))

)
(3.30)
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Proof

Consider the function x represented by: x(t) =

∫ t

0

b(s)ds +
∑

{i.Ti≤t}

∆xi. We apply the

change of variable formula for smooth function, ie. equation (3.28), and we �nd:

f(x(T−i+1))− f(x(Ti)) =

∫ T−i+1

Ti

f ′(x(t))x′(t)dt =

∫ T−i+1

Ti

f ′(x(t))b(t)dt

Now, we need to study what happen at each discontinuity point at the function f(x(t)),
which has jumps equal to:

f(x(Ti))− f(x(T−i ) = f(x(T−i ) + ∆Xi)− f(x(T−i ))

Therefore, we can write the variation of f between 0 and t as:

f(x(T ))− f(x(0)) =

n∑
i=0

(f(x(Ti+1))− f(x(Ti)))

=

n∑
i=0

(
f(x(Ti+1)) + f(x(T−i+1)) + f(x(T−i+1))− f(x(Ti))

)

=

n+1∑
i=0

f(x(T−i ) + ∆Xi)− f(x(T−i ))︸ ︷︷ ︸
Jump part

+

n∑
i=0

∫ T−i+1

Ti

b(t)f ′(x(t))dt

=

∫ T

0

b(t)f ′(x(t−))dt+

n+1∑
i=1

f(x(T−i ) + ∆xi)− f(x(T−i ))

�

We can note that if b is continuous, then x is piecewise C1 and if b = 0, then x is piecewise
constant and the integral term is equal to zero.
Now, consider a stochastic process (Xt)t∈[0,T ] de�ned by:

Xt =

∫ t

0

bsds+

Nt∑
i=1

∆Xi

where ∆Xi := X(Ti) − X(T−i ) represent the jump size and Nt is the random number of
jumps. Then by the proposition above, the following change of variable formula holds almost
surely:

f(XT )− f(X0) =

∫ T

0

b(t)f ′(Xt)dt+
∑
i,Ti≤t

(
f(XT−i

+ ∆Xi)− f(XT−i
)
)

=

∫ T

0

b(t−)f ′(Xt−)dt+

∆Xt 6=0∑
0≤t≤T

(
f(x(T−i ) + ∆Xt)− f(Xt−i

)
)

We can note that this change of variable formula is valid independently of the probabilistic
structure of the process X. Moreover, the following proposition summarized the Ito formula
for �nite activity jump process where the counting process Nt is a martingale:
Proposition 3.14 (Ito formula for �nite activity jump processes) (proposition 8.13 in [2])
Let X be a jump process with values in R de�ned by:

Xt =

∫ t

0

bsds+

Nt∑
i=1

Yi

where bs is a nonanticipating càdlàg process, Nt is a counting process representing the number
of jumps between 0 and t and Yi is the size of the i-th jump. Denote by (Tn)n≥1 the jump

63



times of Xt and JX the random measure on [0, T ]× R associated to the jumps of X3Then,
for any measurable function f : [0, T ]× R→ R we have:

f(t,Xt)− f(0, X0) =

∫ t

0

(
∂f

∂s
(s,Xs−) + bs

∂f

∂x
(s,Xs−)ds

)
+

∑
n≥1,Tn≤T

(f(s,Xs− + ∆Xs)− f(s,Xs−))

=

∫ t

0

(
∂f

∂s
(s,Xs−) + bs

∂f

∂x
(s,Xs−)ds

)
+

∫ t

0

∫ ∞
−∞

(f(s,Xs− + y)− f(s,Xs−)) JX(ds× dy) (3.31)

Moreover, if Nt is a Poisson process with E[Nt] = λt, with Yi ∼ F are i.i.d. and f is
boundend, then Yt = f(t, Yt) = Vt +Mt, where M is the martingale or noise component and
V is the continuous �nite variation drift. This two component are respectively equal to:

Mt =

∫ t

0

∫ ∞
−∞

(f(s,Xs− + y)− f(s,Xs−)) J̃X(ds× dy) (3.32)

where J̃X(ds× dy) = JX(dt× dy)− λF (dy)dt

Vt =

∫ t

0

(
∂f

∂s
(s,Xs−) + bs

∂f

∂x
(s,Xs−)ds

)
+

∫ t

0

ds

∫
Rd
F (dy) (f(s,Xs− + y)− f(s,Xs−)) (3.33)

3.3.2 Ito formula for jump-di�usion and Lévy process

Consider a jump-di�usion process de�ned in chapter 2 by the equation (2.19) (i.e. Xt =

γt+ σWt +
∑Nt
i=1 Yi). We can write this process with a di�erent notation:

Xt = γt+ σWt︸ ︷︷ ︸
Xc(t)

+

Nt∑
i=1

∆Xi︸ ︷︷ ︸
Jt

where ∆Xi := X(Ti)−X(T−i ). Therefore, the equation above can be write as:

Xt = Xc(t) + Jt (3.34)

Let f be a C2 function on R and let Ti, i = 1, . . . , NT , be the jump times of X. Then, we
can de�ne Yt = f(Xt) and we can say that X, between Ti and Ti+1, evolves according to
the di�erential equation equal to:

dXt = dXc
t = γdt+ σdWt

therefore, by applying the Ito formula in the Brownian case, which is described in equation
(3.29), we �nd:

YT−i+1
− YTi =

∫ T−i+1

Ti

σ2

2
f ′′(Xt)dt+

∫ T−i+1

Ti

f ′(Xt)dXt

=

∫ T−i+1

Ti

(
σ2

2
f ′′(Xt)dt+ f ′(Xt)dX

c
t

)
3JX can be de�ned as: JX =

∑
n≥1,Tn≤T

δ(Tn,Yn), where δ is the dirac measure (see appendix A.4)
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since we consider the behavior of the function inside the interval (Ti, Ti+1), we have that
dXt = dXc

t . Now, we need to analyze what happen at Yt when a jump of size ∆Xt occurs.
Hence, the change in Yt is equal to: f(Xt− + ∆Xt) − f(Xt−). Therefore, if we add these
two contributions, we will �nd the total change in Yt:

f(Xt)− f(X0) =

∫ t

0

f ′(Xs)dX
c
s +

∫ t

0

σ2

2
f ′′(Xs)ds

+

∆Xs 6=0∑
0≤s≤t

(f(Xs− + ∆Xs)− f(Xs−)) (3.35)

The equation (3.35) can be rewritten in a more general form. If we replace dXc
s by dXs −

∆Xs, we �nd:

f(Xt)− f(X0) =

∫ t

0

f ′(Xs)dXs +

∫ t

0

σ2

2
f ′′(Xs)ds

+

∆Xs 6=0∑
0≤s≤t

(f(Xs− + ∆Xs)− f(Xs−)−∆Xsf
′(Xs−)) (3.36)

This equation becomes equivalent to the equation (3.35), when the number of jumps is �nite.
Moreover, in (3.36) the stochastic integral and the sum over the jumps are well-de�ned for
any semimartingale, even if we have an in�nite number of jumps. Instead, the equation
(3.35) could not converge if jumps have an in�nite variation.
The following proposition summarized the result for the jump-di�usion processes when σ is
a nonanticipating square-integrable process:
Proposition 3.15 (Ito formula for jump-di�usion processes) (proposition 8.14 in [2]) Let
X be a di�usion process with jumps de�ned as:

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs +

Nt∑
i=1

∆Xi

where
∑Nt
i=1 ∆Xi is a compound Poisson process and bt and σt are continuous nonanticipat-

ing processes with satisfy the condition:

E

[∫ t

0

σtdt

]2

= E

[∫ t

0

σ2
t dt

]
<∞

Then, for any C1,2 function f : [0, T ]×R→ R, the process Yt = f(t,Xt) can be represented
as:

f(t,Xt)− f(0, X0) =

∫ t

0

[
∂f

∂s
(s,Xs) +

∂f

∂x
(s,Xs)bs

]
ds

+
1

2

∫ t

0

σ2
s

∂2f

∂x2
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs)σsdWs

+
∑

i≥1,T1≤t

(
f(XT−i

+ ∆Xi)− f(XT−i
)
)

(3.37)

The equation (3.37) can be written in di�erential notation as:

dYt =
∂f

∂t
(t,Xt)dt+ bt

∂f

∂x
(t,Xt)dt+

σ2
t

2

∂2f

∂x2
(t,Xt)dt

+
∂f

∂x
(t.Xt)σtdWt + (f(Xt− + ∆Xt)− f(Xt−)) (3.38)
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More in general, when we consider a Lévy process we can have an in�nite number of
jumps in each interval, which imply that the above result could be not true. Therefore, we
need to study the conditions under which the sum in the equation (3.36) converges. Suppose
that f and its two derivatives are bounded by a constant C, hence we can see that the sum
in the equation (3.36) using proposition 2.14 is equal to:

| (f(Xs− + ∆Xs)− f(Xs−)−∆Xsf
′(Xs−)) | ≤ C∆X2

s

which means that the sum in the equation (3.36) is �nite. Therefore, we have the following
proposition for the Lévy processes:
Proposition 3.16 (Ito formula for scalar Lévy processes) (proposition 8.15 in [2]) Let
(Xt)t≥0 be a Lévy process with Lévy triplet (σ2, ν, γ) and f : R→ R a C2 function. Then:

f(Xt) = f(0) +

∫ t

0

f ′(Xs)dXs +

∫ t

0

σ2

2
f ′′(Xs)ds

+

∆Xs 6=0∑
0≤s≤t

(f(Xs− + ∆Xs)− f(Xs−)−∆Xsf
′(Xs−)) (3.39)

The equation (3.39) can be written in di�erential notation as:

df(Xt) =
σ2

2
f ′′(Xt)dt+ f ′(Xt−)dXt + f(Xt)− f(Xt−)−∆Xtf

′(Xt−)

If we have that the Lévy process is of �nite variation, we do not need to subtract ∆Xsf
′(Xs−)

from each term of the sum in the equation (3.39). In this case, we have the following propo-
sition that summarizes the Ito formula for Lévy processes with �nite variation:
Proposition 3.17 (Ito formula for Lévy processes with �nite variation jumps) (proposition
8.17 in [2]) Let X be a �nite variation Lévy process with characteristic exponent equal to:

ψX(u) = ibu+

∫ ∞
−∞

(
eiuy − 1

)
ν(dy)

where the Lévy measure ν veri�es
∫
|y|ν(dy) <∞. Then, for any C1 function f : [0, T ]×R→

R we have:

f(t,Xt)− f(0, X0) =

∫ t

0

(
∂f

∂s
(s,Xs−) + b

∂f

∂x
(s,Xs−)

)
ds

+

∆Xs 6=0∑
0≤s≤t

(f(Xs− + ∆Xs)− f(Xs−)) (3.40)

If f and its �rst derivative in x are bounded, then Yt = f(t, Yt) is the sum of a martingale
part and a drift part. This two component are respectively equal to:

Mt =

∫ t

0

∫ ∞
−∞

(f(s,Xs− + y)− f(s,Xs−)) J̃X(ds× dy) (3.41)

Vt =

∫ t

0

(
∂f

∂s
(s,Xs−) + bs

∂f

∂x
(s,Xs−)ds

)
+

∫ t

0

ds

∫
R
ν(dy) (f(s,Xs− + y)− f(s,Xs−)) (3.42)

3.3.3 Ito formula for martingale and semimartingale

If we use the change of variable formula in Yt = f(t,Xt), we �nd that the process Yt is not
anymore a Lévy process even if Xt is de�ned as Lévy process. One solution could be written
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Yt as a stochastic integral, which imply that the process Yt is a semimartingale. Therefore,
our new problem is �nd a change of variable formula for semimartingale. The following
proposition shows us the Ito formula for semimartingales:
Proposition 3.18 (Ito formula for semimartingale) (proposition 8.19 in [2]) Let (Xt)t≥0 be
a martingale and let f : [0, T ]×R→ R be a C2 function. Then, the Ito formula is equal to:

f(t,Xt)− f(0, X0) =

∫ t

0

∂f

∂s
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs−)dXs

+
1

2

∫ t

0

∂2f

∂x2
(s,Xs−)d[X,X]cs

+

∆Xs 6=0∑
0≤s≤t

(
f(s,Xs)− f(s,Xs−)−∆Xs

∂f

∂x
(s,Xs−)

)
(3.43)

where [X,X]c is the continuous part of the quadratic variation [X,X], which it can be split
into a jump part and a continuous part because it is an increasing process.
Proof
Consider a partition T0 = 0 < T1 < · · · < Tn < Tn+1 = t and consider a second order Taylor
expansion4. Then, we can write f(Xt) as the sum of increments and we �nd:

f(Xt)− f(X0) =
n∑
i=0

(f(XTi+1
)− f(XTi))

then, we apply the second order Taylor expansion at the equation above and we �nd:

n∑
i=0

(f(XTi+1
)− f(XTi)) =

=

n∑
i=0

f ′(Xti)(XTi+1
−XTi) +

1

2

n∑
i=0

f ′′(Xti)(XTi+1
−XTi)

2

+

n∑
i=0

r(XTi+1
, XTi)

We can note that X has a well de�ned quadratic variation, hence
∑

∆X2
s converges almost

surely. Then, let A ⊂ [0, T ] × Ω such that
∑

0≤s≤t

∆X2
s < ε on A for ε > 0 and B{(s, ω) /∈

A,∆Xs 6= 0}. Therefore, the sum above can be rewritten as:

f(Xt)− f(X0) =

n∑
i=0

f ′(Xti)(XTi+1 −XTi) +
1

2

n∑
i=0

f ′′(Xti)(XTi+1 −XTi)
2

+
∑

B∩(Ti,Ti+1) 6=0

(f(XTi+1
)− f(XTi)− f ′(Xti)(XTi+1

−XTi)

− 1

2
f ′′(Xti)(XTi+1 −XTi)

2) +
∑

B∩(Ti,Ti+1) 6=0

r(XTi+1 , XTi)

Now, let sup |Ti+1− Ti| → 0 a.s, then the �rst three terms converge to the following expres-
sions:

a)
n∑
i=0

f ′(Xti)(XTi+1 −XTi)→
∫ t

0

f ′(Xs)dXs

4A second order Taylor expansion is equal to: f(y) = f(x) + f ′(x)(y − x) + f ′′(x)(y−x)2
2

+ r(x, y)
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b)

1

2

n∑
i=0

f ′′(Xti)(XTi+1 −XTi)
2 → 1

2

∫ t

0

f ′′(Xs)d[X,X]s

c) ∑
B∩(Ti,Ti+1) 6=0

(f(XTi+1)− f(XTi)− f ′(Xti)(XTi+1 −XTi)−
1

2
f ′′(Xti)(XTi+1 −XTi)

2)

→
∑
B

(f(Xs)− f(Xs−)−∆Xsf
′(Xs−)− f ′′(Xs−)|∆Xs|2)

the �rst two term (i.e a) and b)) are Riemann sum. Now, we need to analyze the last term:
the remainder. We can note that the remainder veri�es:

r(x, y) ≤ (y − x)2α(|x− y|) with α(u)→ 0 as u→ 0

Moreover, the remainder's sum only contain term with B∩ (Ti, Ti+1) 6= 0, then we have that
|XTi+1

−XTi | ≤ ε when sup |Ti+1 − Ti| → 0. Therefore, we have that:∑
B∩(Ti,Ti+1)6=0

|r(XTi+1
, XTi)| ≤ α(2ε)

∑
i

(XTi+1
−XTi)

2

≤ α(2ε)[X,X]t → 0 as sup |Ti+1 − Ti| → 0

Hence, we sum all the terms together and we �nd:

f(Xt)− f(X0) =

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d[X,X]s

+
∑

0≤s≤t

(f(Xs)− f(Xs−)−∆Xsf
′(Xs−)− f ′′(Xs−)|∆Xs|2)

and since: ∫ t

0

f ′′(Xs)d[X,X]s =

∫ t

0

f ′′(Xs)d[X,X]cs +
∑

0≤s≤t

f ′′(Xs−)|∆Xs|2

we �nally obtain the equation (3.43).

�
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Chapter 4

Hedging Strategy

This chapter describe how to compute the option price in an exponential-Lévy model. The
�rst section talk about the measure transformation, which represent the main tool to �nd
the risk-neutral probability to compute the option pricing. The second part of the chapter
introduces the concept of option and, in particular, of European call option. We show how
is built the pricing of European option in the Black-Scholes model and, then, we de�ne the
pricing of European option on exponential-Lévy model. Moreover, we give an example of
option pricing for a jump di�usion process. Then, we brie�y describe the concept of implied
volatility and we describe some feature. Finally, we will see how to use an European call
option for hedging purpose. We start by describing the hedging in the Black-Scholes model,
in particular, we will talk about the delta hedging. Then, we will introduce the Merton
hedging for a jump di�usion process and we will compare the result with the hedging in
the Black-Scholes model. Finally, we will generalize the hedging strategy for jump di�usion
process, therefore we will introduce and explain the quadratic hedging in jump di�usion
process. The last part of this chapter is entirely focused on empirical result and we compare
the hedging in the Black and Scholes model with the hedging in the Merton model for the
jump di�usion process

4.1 Measure Transformation

One normal assumption in each model built in �nance is that the market is complete, which
means that every contingent claim in the market is attainable. This imply that there is only
one arbitrage-free way to value an option, which is a linear combination between a risky
asset and a riskless one (i.e. is called the replicating portfolio). Hence, there exist only one
risk-neutral probability in the market. Unfortunately, the complete market assumption is
not true in the real market because the asset prices have jumps, which imply that there is
not a unique risk-neutral probability but we can �nd a much greater variety of equivalent
measure by changing the distribution of jumps. Therefore, the perfect hedges do not exists
(i.e. the delta hedging in the Black-Scholes model) since it is impossible replicate an option
by trading in the underlying asset due to the presence of jumps in the price behavior.

In the Black-Scholes model to �nd the equivalent measure we use the Radon-Nikodym
theorem. Hence, we need to introduce the concempt of equivalent measure. Let (Ω,F) be
a measurable space and let Q, P be two probability measure on F . Then, we say that Q is
absolutely continuous respect to P (P� Q) if:

∀A ∈ F P(A) = 0⇒ Q(A) = 0

Therefore, we can say that two probability measure Q, P on F are equivalent (P ∼ Q) if
P� Q and Q� P, hence if Q and P de�ne the same set of impossible events:

∀A ∈ F Q(A) = 0⇔ P(A) = 0 (4.1)
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Therefore, we have the following theorem:
Theorem 4.1 [Radon-Nikodym Theorem] Let P � Q, then exist a random vari-
able Λ, F-measurable, with non-negative value such that for every random variable X (F-
measurable) integrable under P the following relation is true:

EQ[X] = EP[ΛX] =

∫
A

ΛdP

In particular:
∀A ∈ F Q(A) = EP(Λ1A).

Λ is called the Radon-Nikodym derivative and, usually, it is written as:

Λ =
dQ
dP

We can note that the variable Λ is unique. In fact, if Λ′ is another Radon-Nikodym derivative,
then we have the following equality:

EP[Λ− Λ′] = 0

Moreover, the Radon-Nikodym derivative satisfy the following relation:

EP[Λ] = EP

[
dQ
dP

]
= 1

Instead, P and Q are orthogonal is there exist an event A such that P(A) = 1 and Q(A) = 0.
This imply that if P and Q are orthogonal, it will not be possible �nd that one probability
measure is absolutely continuous respect to the other one.

Let (Ω,F ,P) be a probability space which describe a market between 0 and T . Then,
we can de�ne the underlying asset S by a nonanticipating (càdlàg) process:

S : [0, T ]× Ω 7→ Rd+1

(t, ω) 7→ (S0
t (ω), S1

t (ω), S2
t (ω), . . . , Sdt (ω))

where Sit(ω) represent the value of the asset i in the market scenario ω and S0
t (ω) is a

numeraire (we de�ne it as S0
t (ω) = ert, where r is the interest rate) A self-�nancing strategy

(φ0
t , φt), in the Black-Scholes model, is said to be a perfect hedge or a replication strategy

for a contingent claim H, if we have the following:

H = V0 +

∫ T

0

φtdSt +

∫ T

0

φ0
tdS

0
t P− a.s. (4.2)

where St is the asset price. Moreover, we can say that a market is complete if any contin-
gent claim H, admits a replicating portfolio which means that for any H ∈ H there exists a
self-�nancing strategy (φ0

t , φt) such that the equation (4.2) holds with probability 1 under
P. If the equation (4.2) holds with probability 1, it also holds with probability 1 under any
equivalent martingale measure Q ∼ P. Therefore, we �nd the following proposition:
Proposition 4.1 A market de�ned by the asset (S0

t , S
1
t , . . . , S

d
t )0≤t≤T described as stochastic

processes on (Ω,F , (Ft),P) is complete if and only if there is a unique martingale measure
Q equivalent to P.

If we consider a discount factor equal to B(t, T ) = e−r(T−t), then we can write the
discounted value of H (equation (4.2)) as:

Ĥ = V0 +

∫ T

0

φtdŜt Q− a.s. (4.3)
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We can note that V0 = EQ[Ĥ]. If the above equation holds for all payo� with �nite variance
(i.e. H ∈ L2(Ft,Q)), then we can represented the above process as:

Ĥ = E[H] +

∫ T

0

φtdŜt

for some predictable process φ, moreover the martingale (Ŝt)0≤t≤T is said to have the pred-
icatable representation property. But this property did not hold for most discontinuous
model used in �nance. Therefore, we need to introduce a representation of Ĥ in terms of
a stochastic integral with respect to Ŝ, which is called the predictable representation with
respect to W, M or predicatable representation property:
Proposition 4.2 (Predictable representation property) (proposition 9.4 in [2]) Let (Wt)0≤t≤T
be a d-dimensional Wiener process and M a Poisson random measure on [0, T ]×Rd, indepen-
dent from W. Then, any random variable Ĥ with �nite variance depending on the �ltration
(Ft)0≤t≤T of W and M between 0 and T can be represented as the sum of a constant, a
stochastic integral with respect to W and a compensated Poisson integral with respect to M.
There exists a predictable process φ : Ω × [0, T ] 7→ R and a predictable random function
ψ : Ω× [0, T ]× Rd 7→ R such that:

Ĥ = E[Ĥ] +

∫ t

0

φsdWs +

∫ t

0

∫
Rd
ψ(s, y)M̃(ds× dy) (4.4)

In particular, equation (4.4) is important when we talk about hedging strategies.

4.1.1 Risk-neutral pricing

Let (Ω,F , (Ft)0≤t≤T ,P) be a probability space, where (Ft)0≤t≤T denote the set of informa-
tion generated by the history of assets up to t and let H be a contingent claim with maturity
T, which can be represented by de�ning its terminal payo� H(ω) in each scenario. We can
note that H is a FT -measurable map H : Ω→ R since H is known at T . We denote the set
of contingent claims of interest by H and we can assume that SiT ∈ H, which means that
the underlying assets themselves can be seen as particular contingent claims whose payo� is
given by the terminal value SiT . Then, we can de�ne a pricing rule as the procedure which
attributes to each contingent claim H ∈ H a value Πt(H) at each point in time. If Πt(H) is
a pricing rule, it satisfy the following requirements:

1. Πt(H) should be a nonanticipating process, therefore we can compute the value of
Πt(H) with the information given at t;

2. Πt(H) should be positive, which means that a claim with positive payo� should nat-
urally have a positive value:

∀ω ∈ Ω, H(ω) ≥ 0⇒ ∀t ∈ [0, T ], Πt(H) ≥ 0;

3. Πt(H) should be linear, which means that the value of a portfolio is given by the sum
of the value of its components:

Πt

 J∑
j=1

Hj

 =

J∑
j=1

Πt(Hj)

This requirement may fail when we consider large portfolio due to the discount prices
on the market.

Consider an event A ∈ F and a random variable 1A, which represents the payo� of a
contingent claim which pays 1 at T if A occurs and zero otherwise, moreover, we will
assume that 1A ∈ H. On one hand, we can start from a pricing rule Π and then we can
construct a probability measure Q. On the other hand, Π can be found from Q: consider
a random payo� of the form H =

∑
ci1Ai , then by the linearity property of Π we have
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that Π0(H) = EQ[H]. Moreover, if the dominated convergence theorem holds on H, we can
conclude that for any random payo� H ∈ H we have:

Π0(H) = e−rTEQ[H]

Therefore, there is a one-to-one correspondence between linear valuation rules Π (verifying
the properties above) and probability measure Q, in fact we have:

Πt(H) = e−r(T−t)EQ[H] (4.5)

Q(A) = er(T−t)Π0(1A) (4.6)

The equation (4.5) is called a risk-neutral pricing formula and means that the value of a
random payo� is given by its discountend expectation under the probability Q. We can note
that the probability Q has nothing to do with the actual or objective probability. Moreover,
if we want that the pricing rule Π is constant over time (the value at 0 of the payo� H at T
is equal to the value at 0 of the payo� Πt(H) at t), then Q should be given by the restriction
of Qt to the �ltration Ft. Hence, we have that:

Πt(H) = e−r(T−t)EQ[H|Ft]

The equation above means that the pricing rule Πt(H) is equal to the discounted condition
expectation under the probability Q.

Now, consider the objective probability P, which represents the probability of future
scenario, de�ned in the probability space (Ω,F , (Ft)0≤t≤T ,P). Then, a fundamental re-
quirement for a pricing rule is that it does not generate arbitrage opportunities. Recall that
an arbitrage opportunity (in probability meaning) is a self-�nancing strategy φ, which can
lead to a positive terminal gain without any probability of intermediate loss, therefore:

P(∀t ∈ [0, T ]. Vt(φ) ≥ 0) = 1, P(VT (φ) > V0(φ)) 6= 0

A consequence of the arbitrage-free assumption is the "Law of One Price" which say that
in the absence of trade frictions (such as transaction cost) two self-�nancing strategies with
the same terminal payo� must have the same value at all times, otherwise the di�erence
would generate an arbitrage opportunity.
Now, recall the de�nition of equivalent probability measure given by the equation (4.1).
Then, we have the following two proposition, where the �rst one is also known as the "Fun-
damental theorem of asset pricing":
Proposition 4.3 Let (Ω,F , (Ft),P) be a probability space which de�ned a market model and
let (St)0≤t≤T be the asset price in the time interval [0, T ]. The asset price is arbitrage-free
if and only if there exists an equivalent probability measure Q ∼ P such that the discounted
asset price (Ŝt)0≤t≤T are martingale with respect to Q.
Proposition 4.4 (Risk-neutral pricing) Let (Ω,F , (Ft),P) be a probability space which de-
�ned a market model under the probability P. Then, any arbitrage-free pricing rule Π can
be expressed as:

Πt(H) = e−r(T−t)EQ[H|Ft]

where Q is an equivalent martingale measure of P.
The following two example can help us to understand the above proposition. Consider a
market with two assets S0 and S1, where S0 is the numeraire. Then, the two asset have
price equal to S1

t and S0
t = ert. Then, consider a buy and hold strategies for the asset S1:

hold the asset until T, which generate a terminal payo� of S1
T , or sold the asset at time

t at the price S1
t and invest the sum at the interest rate r until time T, which generate a

terminal payo� equal to er(T−t)S1
t . We can note that these two strategies are self-�nancing

and that they have the same terminal payo�, therefore, by the "Law of One Price", they
must have the same value at all time t:

EQ[S1
T |Ft] = EQ[er(T−t)S1

t |Ft] = er(T−t)S1
t
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Then, we divide for the numeraire, in particular we consider the time T, and we �nd that
the discounted asset price is:

EQ

[
S1
T

S0
T

∣∣∣∣ Ft] =
er(T−t)S1

t

erT
=
S1
t

S0
t

= Ŝ1
t

Therefore, the absence of arbitrage implies that the discount value (Ŝ1
t = e−rtS1

1 ) of the
asset is a martingale with respect to the probability measure Q, which is called equivalent
martingale measure. This result can be generalized of all the traded assets.
Consider a self-�nancing strategy (φt)0≤t≤T and let Q be a martingale measure. Then, Ŝt
is a martingale under Q. Hence, the value of the portfolio Vt(φ) (Vt(φ) = V0 +

∫ t
0
φdS) is a

martingale and, in particular, EQ[
∫ t

0
φdS] = 0. Therefore, the random variable

∫ t
0
φdS can

take both positive and negative value, this imply that: Q
(
VT (φ)− V0 =

∫ T
0
φtdSt ≥ 0

)
6= 1.

Hence, we can conclude that φ cannot be an arbitrage strategy since P ∼ Q, which entails

that P
(∫ T

0
φtdSt ≥ 0

)
6= 1

4.1.2 Equivalence measures in Lévy processes

We have seen how much important is the equivalent change of measure in de�ning arbitrage-
free pricing models in the Black-Scholes model, now we will study such changes of measure
in the Lévy process. When we consider Lévy process the equivalence of their measures, gives
relations between their parameters.

Consider two Poisson process de�ned by jump size, respectively, equal to a1, a2 and jump
intensity, respectively, equal to λ1, λ2. Then, the following proposition shows the equivalence
of measure for Poisson processes:
Proposition 4.5 (Equivalence of measure for Poisson processes) (proposition 9.5 in [2]) Let
(N,Pλ1

) and (N,Pλ2
) be Poisson process on (Ω,Ft) with intensities λ1 and λ2 and jump

sizes a1 and a2. Then, we have:

1. if a1 = a2, then Pλ1 is equivalent to Pλ2 with Radon-Nikodym density:

dPλ1

dPλ2

= exp

[
(λ2 − λ1)T −NT ln

λ2

λ1

]
(4.7)

2. if a1 6= a2, then Pλ1
is not equivalent to Pλ2

.

Proof
1. Let A ∈ Ft. We need to show that, under the Radon-Nikodym derivative given by
equation (7), the following equality is satisfy:

Pλ1
(A) = EPλ2

[
1A

dPλ1

dPλ2

]
We can note that the left-hand side of the above equation could be rewritten as:

Pλ1
(A) =

∞∑
k=0

e−λ1T (λ1T )k

k!
EPλ1

[1A|NT = k]

on the other hand, the right-hand side of the equation is equal to:

EPλ2

[
1A

dPλ1

dPλ2

]
=

∞∑
k=0

e−λ2T (λ2T )k

k!

(
λ1

λ2

)k
e(λ2−λ1)TEPλ2

[1A|NT = k]

=

∞∑
k=0

e−λ1T (λ1T )k

k!
EPλ2

[1A|NT = k]
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Then, putting all together we �nd:

∞∑
k=0

e−λ1T (λ1T )k

k!
EPλ1

[1A|NT = k] =

∞∑
k=0

e−λ1T (λ1T )k

k!
EPλ2

[1A|NT = k]

EPλ1
[1A|NT = k] = EPλ2

[1A|NT = k]

We can note that the jump times of a Poisson process are uniformly distributed on this
interval, therefore EPλ [1A|NT = k] does not depend on λ.

�

This proposition told us that if we want the equivalence measure of two Poisson process,
we can freely change the intensity of the jumps but the jump size must remain the same.
In other word, the intensity of a Poisson process can be modi�ed without changing the
jump size of the process, but with changing the size of the jumps, which generates a new
measure. This new measure assigns nonzero probability to some events which otherwise
were impossible under the old one. We can note that two Poisson processes with di�erent
intensities de�ne equivalent measures only on a �nite time interval. In fact, if T is in�nity,
the Radon-Nikodym derivative (equation (4.7)) is either zero or in�nity when the intensity
of two Poisson process are di�erent. This result is due to the fact that the intensity cannot
be �nd from a trajectory of �nite length but it can be estimated in an almost sure way from
an in�nite trajectory.

Now, consider two compound Poisson process and the following proposition gives us the
equivalence of measure in this case:
Proposition 4.6 (Equivalence of measure for compound Poisson processes) (proposition 9.6
in [2]) Let (X,P) and (X,Q) be compound Poisson processes on (Ω,Ft) with Lévy measure
νP and νQ. The probability P and Q are equivalent if and only if νP and νQ are equivalent.
In this case, the Radon-Nikodym derivative is:

DT =
dQ
dP

= exp

T (λP − λQ) +
∑
s≤T

φ(∆Xs)

 (4.8)

where λP ≡ νP(R) and λQ ≡ νQ(R) are the jumps intensities of the two processes and

φ ≡ ln
(
dνQ
dνP

)
.

Proof
This proposition is a "if and only if" statement, therefore we need to show �rst the "if" part
and then the "only if".
Hence, we start with the "if" part and we suppose that νP and νQ are equivalent. Now,
conditioning the trajectory of X on the number of jumps on [0, T ], we �nd:

EP[DT ] = EP

exp
T (λP − λQ) +

∑
s≤T

φ(∆Xs)


= e−λQT

∞∑
k=0

(λPT )k

k!
EP

[
eφ(∆X)

]k
= 1

Hence, EP[DT ] is a probability measure. Therefore, we need to show that if X is a compound
Poisson process under P is also a compound Poisson process under Q with Lévy measure
νQ. The �rst step is check that X has Q-independent increments and then check if XT

under the probability Q is a compound Poisson process with Lévy measure TνQ. To prove
the independence of increments, consider two bounded measurable functions f and g and
let s < t ≤ T . We can note that X and lnD are P-Lévy processes and that D is also a
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P-martingale. Hence, we have:

EQ[f(Xs)g(Xt −Xs)] = EP[f(Xs)g(Xt −Xs)Dt]

= EP[f(Xs)Ds]EP

[
g(Xt −Xs)

Dt

Ds

]
= EP[f(Xs)Ds]EP [g(Xt −Xs)Dt]

= EQ[f(Xs)]EQ [g(Xt −Xs)]

which proves the Q-independent increments. Then, if we use the characteristic function on
X, we will �nd:

EP

exp
T (λP − λQ) +

∑
s≤T

φ(∆Xs) + iuXt

 =

= e−λQT
∞∑
k=0

(λPT )k

k!
EP

[
eiu∆X+φ(∆X)

]k
= exp

(
T

∫
(eiux − 1)νQ(dx)

)
Now, we prove the "only if" part and we assume the opposite of the "if" part, therefore we
consider the case when νP and νQ are not equivalent. Then, we can �nd either a set A such
that νP(A) > 0 and νQ(A) = 0 or a set A′ such thatνP(A′) = 0 and νQ(A′) > 0. Assume that
we are in the second case, therefore we �nd that the set of trajectories having at least one
jump size in A′ has positive Q-probability and zero P-probability. Hence, we have shown
that these two measures are not equivalent.

�

Before talk about the change of measure for general Lévy processes, we need to introduce
the last important change of measure with respect the Brownian motion with drift. The
following proposition gives us the equivalence of measure in this case:
Proposition 4.7 (Equivalence of measure for Brownian motion with drift) (proposition 9.7
in [2]) Let (X,P) and (X,Q) be two Brownian motion on (Ω,Ft) with volatilities σP > 0
and σQ > 0 and drift µP and µQ. The probability P and Q are equivalent if and only if
σP = σQ > 0 and singular otherwise. Then, when they are equivalent the Radon-Nikodym
derivative is:

dQ
dP

= exp

(
µQ − µP

σ2
XT −

1

2

(µQ − µP)2

σ2
T

)
(4.9)

With the Cameron-Martin theorem can rewrite the equation (4.9) as an exponential
martingale equal to:

dQ
dP

= exp

(
µQ − µP

σ
WT −

1

2

(µQ − µP)2

σ2
T

)
where WT = Xt−µPt

σ is a standard Brownian motion under the probability P. This result
shows that the drift and the volatility play a crucial roles in de�ning a di�usion model. On
one hand, if we modify the drift, we will reweight the paths of X (the scenario); on the other
hand, if we change the volatility, we will �nd a completely di�erent process, leading to a
new scenarios which were initially impossible.

After this introduction about the change of measure of the Poisson process and the
Brownian motion, we can give a general result of equivalence of measure for Lévy processes.
We can already say that in presence of jumps the class of probabilities equivalent to a given
one is large even if we restrict our attention to structure preserving measures. The following
proposition describes the possible measure changes under which a Lévy process remains a
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Lévy process.
Proposition 4.8 (proposition 9.8 in [2]) Let (Xt,P) and (Xt,Q) be two Lévy processes
on R with characteristic triplets (σ2

P, νP, γP) and (σ2
Q, νQ, γQ). Then, P|Ft and Q|Ft 1 are

equivalent for all t, or equivalently for one t >0, if and only if the following three conditions
are satis�ed:

1) σP = σQ;

2) The Lévy measures are equivalent with∫ ∞
−∞

(
e
φ(x)

2 − 1
)2

ν(dx) <∞ (4.10)

where φ(x) = ln
(
dνQ
dνP

)
;

3) If σ = 0 then in addition we have:

γQ − γP =

∫ 1

−1

x(νQ − νP)dx (4.11)

When P and Q are equivalent, the Radon-Nikodym derivative is:

dQ|Ft
dP|Ft

= eUt (4.12)

with

Ut = ηXc
t −

η2σ2t

2
− ηγt+ lim

ε→0

 ∑
s≤t,|∆Xs|>ε

φ(∆Xs)− t
∫
|x|>ε

(eφ(x) − 1)ν(dx)

 (4.13)

= 〈η,Xc
t 〉+

∫ t

0

∫
Rd

(eφ(x) − 1)J̃X(ds× dx) (4.14)

where Xc
t denotes the continuous martingale (Brownian motion) part of Xt and η is such

that

γQ − γP −
∫ 1

−1

x(νQ − νP)dx = σ2η

if σ > 0 and zero if σ = 0. Finally, Ut is a Lévy process with characteristic triplet
(σ2
U , νU , γU ) given by:

a.
σ2
U = σ2η2

b.
νU = νφ−1

c.

γU = −1

2
σUη

2 −
∫ ∞
−∞

(ey − 1− y1|y|≤1)(νφ−1)dy

If we want that the equivalence measure hold, we cannot freely change the drift of
the process unless a di�usion component is present. Moreover, we can note that we have
freedom to change the distribution of large jumps as long as the Lévy measure is absolutely
continuous with respect to the old one. This is an important result since only the large
jumps are important in option pricing because they a�ect the tail of the return distribution.
On the other hand, we cannot freely change the distribution of the small jumps because
they depend on the behavior of the Lévy measure near zero.

1P|Ft represents the restriction of the probability measure P to Ft and it is a probability measure on Ft
which assigns to all events in Ft the same probability P (the same is true for Q).
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4.1.3 Esscher transform and Relative entropy

When we consider model with jumps, if the Gaussian component is absent, we can �nd a
much variety of equivalent measures by changing the distribution of jumps. Instead, in the
Black-Scholes model we �nd equivalent measure by changing the drift.

One of the main tool to �nd the equivalence measure is used the Esscher transform, which
constructs equivalent martingale measure in exponential-Lévy models2. To �nd this trans-
formation consider a Lévy process X with triplet equal to (σ2, ν, γ), a real number θ ∈ Rd
and a the Lévy measure ν, which satisfy

∫
|x|≥1

eθxν(dx) <∞. Then, we apply the measure

transformation of proposition 4.8 with φ(x) = θX and we obtain an equivalent probability
under which X is a Lévy process with: zero Gaussian component, Lévy measure ν̃(dx) and

drift γ̃, respectively equal to ν̃(dx) = eθxν(dx) and γ̃ = γ +
∫ 1

−1
x(eθx − 1)ν(dx). Hence,

using the proposition 4.8, we can �nd that the Radon-Nikodym derivative corresponding to
the Esscher transform is equal to:

dQ|Ft
dP|Ft

=
eθXt

E[eθXt ]
= eθXt+γ(θ)t

where γ(θ) = − lnE[eθX1 ] is the log of the moment generating function of X1 which, up to
the change of variable θ ↔ −iθ, is given by the characteristic exponent of the Lévy process
X.
In the Esscher transform we consider the exponential-Lévy model via ordinary exponential
to �nd the equivalent measure but we can also consider the exponential-Lévy model via the
stochastic exponential 3 since these two de�nition are equivalent. However, the set of Lévy
processes that lead to arbitrage-free models with the form of ordinary exponential could
be di�erent from the set of arbitrage-free models de�ned with the stochastic exponential.
Therefore, it will be convenient �nd the arbitrage-free condition using the stochastic expo-
nential and then �nd the condition for the ordinary exponential using the transformation
Xt := ln E(Yt). The exponential-Lévy model is arbitrage-free if we have one of the following
case:

i. X has a nonzero Gaussian component: σ > 0;

ii. X has in�nite variation:
∫ 1

−1
|x|ν(dx) =∞;

iii. X has both negative and positive jumps;

iv. X has positve jumps and negative drift or negative jumps and positive drift.

Therefore, the above four case could be written as the following proposition:
Proposition 4.9 (Absence of arbitrage in exponential-Lévy models) Let (X,P) be a Lévy
process. If the trajectories of X are neither almost surely increasing or decreasing, then
the exponential-Lévy model given by St = ert+Xt is arbitrage-free. Therefore, there exists a
probability measure Q equivalent to P under which (e−rtSt)0≤t≤T is a Q-martingale (where
r is the interest rate).
Proof

i. (X has a nonzero Gaussian component) Let X be a Lévy process with characteristic
triplet (σ2, ν, γ). As in the Black-Scholes model, an equivalence martingale measure can be
found by changing the drift and without changing the Lévy measure when σ > 0. Therefore,
we consider the case when σ = 0 and the function φ(x) = −x2. Then, we apply the measure
transformation of the proposition 4.8 at the function φ(x) and we �nd an equivalent prob-
ability measure under which X is a Lévy process with zero Gaussian component, the same
drift coe�cient and Lévy measure equal to ν̃(dx) = e−x

2

ν(dx). Hence, we can assume that

2De�ned in chapter 2.
3De�ned in chapter 2.
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ν has exponential moments of all orders since ν̃ has exponential moments of all orders.

iii. (X has both negative and positive jumps) Consider the Lévy triplet �nd by the

Esscher transform is (0, ν̃, γ̃), with ν̃(dx) = eθxν(dx) and γ̃ = γ +
∫ 1

−1
x(eθx − 1)ν(dx). For

eX to be a martingale under the new probability, the following equation must be satis�ed:

γ̃ +

∫ ∞
−∞

(ex − 1− x1|x|≤1)ν̃(dx) = 0

Therefore, we substitute ν̃ and γ̃ and we �nd:

γ +

∫ 1

−1

x(eθx − 1)ν(dx) +

∫ ∞
−∞

(ex − 1− x1|x|≤1)eθxν(dx) = 0∫ 1

−1

x(eθx − 1)ν(dx) +

∫ ∞
−∞

(ex − 1− x1|x|≤1)eθxν(dx)︸ ︷︷ ︸
=f(θ)

= −γ (4.15)

−γ = f(θ)

By the dominated convergence, we have that f is continuous and that its �rst derivative
is greater or equal to 0: f ′(θ) =

∫∞
−∞ x(ex − 1)eθxν(dx) ≥ 0. This imply that f(θ) is an

increasing functions. Moreover, if ν((0,∞)) > 0 and ν((−∞, 0)) > 0, then f ′ is everywhere
bounded from below by a positive number. Hence, f(+∞) = +∞, f(−∞) = −∞ and we
have a solution.

iv. (X has positive jumps and negative drift or viceversa) We consider only the case
when ν((−∞, 0)) = 0, since the proposition is symmetric. In this case, we still have that
f(+∞) = +∞ but we need that lim

θ→−∞
f(θ) 6= −∞, hence:

lim
θ→−∞

∫ ∞
0

(ex − 1− x1|x|≤1)eθxν(dx)→ 0

lim
θ→−∞

∫ ∞
0

x(eθx − 1)ν(dx) =

∫ ∞
0

xν(dx)

The �rst limit always converges to zero. On the other hand, the second limit above has a
solution if

∫∞
0
xν(dx) =∞ (it goes to −∞ as θ →∞), otherwise it converges to −

∫∞
0
xν(dx)

which is the di�erence between γ and the drift of X in the �nite variation case. Therefore,
in the �nite variation case a solution exists if X has negative drift. Hence, we can conclude
that a solution exists unless ν((−∞, 0)) = 0,

∫∞
0
xν(dx) <∞ and the drift is positive.

�

When we �nd two equivalent probability measure and we want to measure the proximity
of them, we can use the Relative entropy. Let (Ω,F) be the space of real-valued discontinuous
càdlàg function de�ned on [0, T ], Ft be the history of path up to t and P and Q be two
equivalent probability measure on (Ω,F). Then, we can de�ne the relative entropy of Q
with respect to P as:

E(Q,P) = EQ

[
ln
dQ
dP

]
= EP

[
dQ
dP

ln
dQ
dP

]
(4.16)

If we consider a strictly convex function: f(x) = x lnx, we can write the equation (16) as:

E(Q,P) = EP

[
f

(
dQ
dP

)]
We can note that the relative entropy is a convex function of Q and that it is always
nonnegative E(Q,P) ≥ 0 due to the Jensen's inequality 4. In fact, E(Q,P) = 0 if and only if

4De�ned in chapter 1.
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dQ
dP = 1, almost surely.
The following proposition shows the relative entropy of Lévy processes when the measures
are generated by the exponential-Lévy models:
Proposition 4.10 (Relative entropy of Lévy processes) (Proposition 9.10 in [2]) Let Q and
P be equivalent measure on (Ω,F) generated by exponential-Lévy models with Lévy triplet
(σ2, νP.γP) and (σ2, νQ.γQ). Assume σ > 0. Then, the relative entrapy E(Q,P) is given by:

E(Q,P) =
T

2σ2

{
γQ − γP −

∫ 1

−1

x(νQ − νQ)(dx)

}2

+

T

∫ ∞
−∞

(
dνQ
dνP

ln
dνQ
dνP

+ 1− dνQ
dνP

)
νP(dx) (4.17)

If Q and P correspond ro risk-neutral exponential-Lévy models, the equation (4.17) becomes:

E(Q,P) =
T

2σ2

{∫ ∞
−∞

(ex − 1)(νQ − νQ)(dx)

}2

+

T

∫ ∞
−∞

(
dνQ
dνP

ln
dνQ
dνP

+ 1− dνQ
dνP

)
νP(dx) (4.18)

Proof
Let (Xt) be a Lévy process and we can de�ne St = eXt . We can note that the �ltration
generated by Xt and St are the same. Therefore, we can compute the relative entropy of
the log-prices processes. Hence, we use the Radon-Nikodym derivative de�ne in equation
(9) and we �nd:

E =

∫
dQ
dP

ln
dQ
dP

dP = EP
[
UT e

UT
]

where UT is a Lévy process with Lévy triplet (σ2
U , νU , γU ), which are de�ned by the point

a. b. c. of the proposition 4.6. Now, consider the characteristic function φt(z) equal to
φt(z) = EP

[
UT e

izUT
]

= etψ(z), where ψ(z) is the characteristic exponent. Then, we can
write the expectation above as:

EP
[
UT e

UT
]

= −i d
dz
φT (−i) = −iTeTψ(−i)ψ′(−i)

= −iTψ′(−i)EP[eUT ] = −iTψ′(−i)

From the Lévy-Khinchin formula 5 we now that:

ψ′(z) = −aUz + iγU +

∫ ∞
−∞

(
ixeizx − ix1|x|≤1

)
νU (dx)

Then, we substitute and we �nd the relative entropy as follow:

E = −aUT + γUT + T

∫ ∞
−∞

(
ixeizx − ix1|x|≤1

)
νU (dx)

=
σ2T

2
η2 + T

∫
(yey − ey + 1)(νPφ

−1)(dy)

=
σ2T

2
η2 + T

∫ (
dνQ
dνP

ln
dνQ
dνP

+ 1− dνQ
dνP

)
νP(dx)

where η is chosen such that: γQ − γP −
∫ 1

−1
x(νQ − νP)(dx) = σ2η. Since, we assume that

σ > 0 we can write the �rst term on the above equation as:

T

2
σ2η2 =

T

2σ2

{
γQ − γP −

∫ 1

−1

x(νQ − νQ)(dx)

}2

5Theorem 2.2 in chapter 2
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which leads to the equation (4.17).
Now, consider the case where P and Q are martingale measures. Then, we can express the
drift γ using σ and ν as:

T

2
σ2η2 =

T

2σ2

{∫ ∞
−∞

(ex − 1)(νQ − νQ)(dx)

}2

which leads to the equation (4.18).

�

4.2 Option Pricing

The modern �nance is centered on the pricing of derivative instruments, which are instru-
ments whose payo� is a function of the value of another �nancial instruments (such as
commodities, currency, bond, stock), also called underlying asset. The derivative itself is a
contract between two or more counterparties and the derivatives traded directly between two
counterparties are called over-the-counter (OTC) derivatives, which contrast with exchange-
traded derivatives where an exchange matches buyers and sellers and each counterparty faces
the exchange on the contract.
One of the most popular derivative contract in the world is the option contract. An option
is a contract between a buyer and a seller that gives at the purchaser of the option the right,
but not the obligation, to buy or to sell a particular asset at an exercise date at an agreed
price (exercise price). Later in this chapter, we denote with K the strike or exercise price,
with T the exercise date or maturity and with ST the value of the asset at the maturity. On
one hand, we have a call option when we have the right to buy an asset S for K at time T
and we can represent its payout at time T as:

CT = max (ST −K, 0) = (ST −K)+ (4.19)

on the other hand, we have a put option when we have the right to sell an asset S for K at
time T and we can represent its payout at time T as:

PT = max (K − ST , 0) = (K − ST )+ (4.20)

In the market we can �nd two type of option contract: European option and American
option. In the European option, we can exercise the option only at the maturity, instead in
the American one, we can exercise the option at any time t, with t ≤ T .

Consider an asset S and an European call option (for the rest of the chapter we consider
only the European option type) with underlying asset S and maturity T . Let Ct(T,K) be
the price of the call option on S with strike K, ∀t ∈ [0, T ]. Then, follow Merton, we can
decompose the price of the call option in the following way:

Ct(T,K) = max (St −K, 0)︸ ︷︷ ︸
intrinsic value

+Ct(T,K)−max (St −K, 0)︸ ︷︷ ︸
extrinsic value

We use the notation of CIt (T,K) to identify the intrinsic value and CEt (T,K) to identify
the extrinsic value. We can note that for every time t such that 0 ≤ t < T , the extrinsic
value CEt (T,K) is always positive and the intrinsic value CIt (T,K) is never negative. If we
consider the case when t = T , the extrinsic value is zero and the value of the call option is
equal to the intrinsic one:

CT (T,K) = max (ST −K, 0) = CIT (T,K)

Therefore, we can say that a call option at time t is:

• in the money (ITM) if St > K;
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• at the money (ATM) if St = K;

• out of the money (OTM) if St < K;

• deep in the money if St � K;

• deep out of the money if St � K;

• just in the money or just out of the money if St ∼= K;

We can note that for the ATM and OTM call option we have only the extrinsic value and
that this terminology is still valid for the put option with a little bit of change in the notation.

Consider a call and put option at time T . It easy to note that the two payo� are never
negative since we want the maximum between zero and the di�erence between the underlying
asset and the strike price in the call option (vice versa for the put option):

CT (T,K) = max (ST −K, 0) ≥ 0 and PT (T,K) = max (K − ST , 0) ≥ 0

Hence: Ct(T,K) ≥ 0 and Pt(T,K) ≥ 0. Moreover, if we study the behavior of the strike
price, which can go either to zero or in�nity, we will �nd how the put and call option behave:

limk→0 limk→∞
Call max (ST −K, 0) = ST max (ST −K, 0) = 0
Put max (K − ST , 0) = 0 max (K − ST , 0) =∞

Let Vt(T,K) be the value at time t of the forward contract 6 with delivery price K.
Then, we can de�ne the forward price F (t, T ) at current time t ≤ T to be the delivery price
K such that Vt(T,K) = 0, in other words, such that the forward contract has zero value at
time t. Therefore, we �nd the following relationship:

Vt(T,K) = (F (t, T )−K)e−r(T−t)

Now, we can �nd how the price of a call and a put of the same strike are related with the
value of the forward:

Ct(T,K)− Pt(T,K) = Vt(T,K) (4.21)

The above equation is called Put-Call Parity, which states that long one call and short one
put is equal to go long to one forward. After some transformation, the Put-Call Parity can
be written as:

Ct(T,K)− Pt(T,K) = St −Ke−r(T−t) (4.22)

The Put-Call Parity is important for three reason. First, it is an arbitrage-free condition.
In fact, any violation of the Put-Call Parity leads to an arbitrage opportunity. Second,
when we want pricing an option, we can focus only in a call (for example) and then �nd the
price of the put using the Put-Call Parity. Third, the Put-Call Parity is model-independent,
which means that this parity relationship between the values of put and call options holds,
regardless of the model assumed for the evolution of the price of the underlying asset or
arbitrage opportunities occur.

Consider two call option with two di�erent strike price: Ct(T,K1) and Ct(T,K2). If
K1 < K2, then we have that Ct(T,K1) ≥ Ct(T,K2) and Pt(T,K1) ≤ Pt(T,K2). This
result follows from the monotonicity theorem. Moreover, if K1 < K2, we will �nd that
Ct(T,K1)−Ct(T,K2) ≤ e−r(T−t)(K2−K1) and Pt(T,K2)−Pt(T,K1) ≤ e−r(T−t)(K2−K1).
Therefore, combining this two result, it is easy to see that:

Ct(T,K2) ≤ Ct(T,K1) ≤ Ct(T,K2) + e−r(T−t)(K2 −K1)

6A forward contract (or forward) is an agreement between two counterparties to trade a speci�c asset at
a certain future time T, called maturity, and at a certain price K, called delivery price.
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Since e−r(T−t) does not depend on K1 or K2, we can say that Ct(T,K) is a Lipschitz
continuous7 function of K with Lipschitz constant e−r(T−t). Moreover, if K1 6= K2, we have
the following arbitrage relation for the call option:

−e−r(T−t) < Ct(T,K2)− Ct(T,K1)

K2 −K1
< 0

Finally, consider an european call option Ct(T,K) with underlying S and let K1 < K2,
K∗ = λK1 + (1− λ)K2 and let λ ∈ [0, 1]. We can show that the price of the call option is a
convex function of the strike price K; therefore, for each λ ∈ [0, 1], we have:

Ct(T,K
∗) ≤ λCt(T,K1) + (1− λ)Ct(T,K2)

We can note that the function x+ = max (0, x) is convex, hence for each x, y ∈ R and for
each λ ∈ [0, 1], we have that:

λmax (0, x) + (1− λ) max (0, y) ≥ max (0, λx+ (1− λ)y)

therefore, for each ST we have the following inequality:

λ(ST −K1)+ + (1− λ)(ST −K1)+ ≥ (ST − λK1 − (1− λ)K2)+

We see later that when there is a jump in the asset trajectories, the call option in the money
can become out of the money and that the jump could transform the convex payo� into a
concave one. This imply that the delta-hedging is not possible in reality when the jump
occurs.

4.2.1 Pricing European Option in Black-Scholes model

In the Black and Scholes model the behavior of prices is a continuous time model with the
assumption of one risky asset (denoted by St at time t) and a riskless asset (denoted by S0

t

at time t). Moreover, we assume that the risky asset will not pay dividend and that the
behavior of the riskless asset is expressed by the following ordinary di�erential equation:

dS0
t = rS0

t dt (4.23)

where r is an instantaneous interest rate and it is a non-negative constant. We also set that
S0

0 , which imply that S0
t = ert for t ≥ 0. On the other hand, the behavior of the risky asset

is determined by the following stochastic di�erential equation:

dSt = St(µdt+ σdBt) (4.24)

where Bt is a standard Brownian motion de�ned in the probability space (Ω,F , (Ft)0≤t≤T ,P)
and µ and σ (called the volatility of the asset) are two constant, which are bounded and
locally Lipschitz continuous. We consider the model valid for the time interval [0, T ], where
T is the maturity date of the option. Equation (4.24) has a closed-form solution equal to:

St = S0e
(µ−σ2

2 )t+σBt (4.25)

where S0 is the spot price at time 0. Moreover, we can note that St has a lognormal law,
which imply that (St) is a solution of an equation of the type (4.24) if and only if the process
(log (St)) is a Brownian motion. Therefore, we can �nd three properties, which can express
in concrete terms the hypotheses of Black and Scholes on the behavior of the stock price.
Hence, the risky asset has the following properties:

i. continuity of the sample paths;

ii. independence of the relative increments: if u ≤ t, the relative increments (St−Su)/Su
is independent of the σ-algebra σ(Sv, v ≤ u);

7De�ned in the appendix A.7
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iii. stationary of the relative increments: if u ≤ t, the law of the relative increments
(St − Su)/Su is identical to the law of (St−u − S0)/S0.

Now, we need to show that there exist a probability equivalent to P under which the dis-
counted stock price is a martingale. Therefore, we need to introduce the following theorem,
called Girsanov theorem:
Theorem 4.2 (theorem 4.2.2 in [1]) Let (Ω,F , (Ft)0≤t≤T ,P) be a �ltered probability space
and (Bt)0≤t≤T an Ft-standard Brownian motion. Let (θt)0≤t≤T be an adapted process sat-

isfying
∫ T

0
θ2
sds <∞ a.s. and such that the process (Lt)0≤t≤T de�ned by

Lt = exp

(
−
∫ t

0

θsdBs −
1

2

∫ t

0

θ2
sds

)
(4.26)

is a martingale. Then, under the probability P(L) with density LT with respect to P, the
process (Wt)0≤t≤T de�ned by Wt = Bt +

∫ t
0
θsds is an Ft-standard Brownian motion.

A detailed proof can be found in chapter 5 of "Stochastic Calculus for Finance II" written
by Shreve

If we de�ne the discounted value as S̃t = e−rtSt, we �nd:

dS̃t = −re−rtStdt+ e−rtdSt

We can substitute inside the above equation the equation (4.24) and we �nd:

dS̃t = −re−rtStdt+ e−rt(St(µdt+ σdBt))

= −re−rtStdt+ e−rtStµdt+ e−rtStσdBt

= e−rtSt(−rdt+ µdtσdBt)

= S̃t((µ− r)dt+ σdBt)

If we set Wt = Bt(µ− r)t/σ, we can rewrite the above result as:

dS̃t = S̃tσdWt (4.27)

Now, if we apply the theorem 4.2 with θ = (µ−r)/σ, we will �nd the probability Q equivalent
to P under which (Wt)0≤t≤T is a standard Brownian motion. Then, under the probability

Q, we can note from (4.27) that (S̃t) is a martingale and that:

S̃t = S̃0e
σWt−σ

2t
2

Finally, we can price an option and, in particular, we will focus on European option and for
simplicity we use the notation of h = f(x) = (x − K)+ for the call option. Moreover, we
will focus only on admissible strategies de�ned as:
De�nition 4.1 (de�nition 4.3.1 in [1]) A strategy φ = (H0

t , Ht)0≤t≤T is admissible if it is

self-�nancing and if the discounted value Ṽt(φ) = H0
t +HtS̃t of the corresponding portfolio

is, for all t, non-negative, and such that supt∈[0,T ] Ṽt is square-integrable under Q.
Hence, an option is said to be replicable if its payo� at maturity is equal to the �nal value
of an admissible strategy. It easy to note that an option de�ned by h is replicable, if it is
square-integralbe under Q. In particular, when we consider a call option, this property hold
since EQ[S2

T ]; on the other hand, if we consider a put option, h is bounded.
Theorem 4.3 (theorem 4.3.2 in [1]) In the Black-Scholes model, any option de�ned by a non-
negative, FT -measurable random variable h, which is square-integrable under the probability
Q, is replicable and the value at time t of any replicating portfolio is given by:

Vt = EQ[e−r(T−t)h|Ft]

A detailed proof can be found in chapter 4 of "Introduction to Stochastic Calculus applied
to Finance" written by Lamberton and Lapeyre.
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Hence, the option value at time t can be de�ned by the expression EQ
[
e−r(T−t)h

∣∣ Ft].
When the random variable h can be written as h = f(ST ), we can express the option value
Vt at time t as a function of t and St. Then, we have:

Vt = EQ

[
e−r(T−t)f(ST )

∣∣∣ Ft]]
= EQ

[
e−r(T−t)f

(
Ste

r(T−t)eσ(WT−Wt)−σ
2

2 (T−t)
) ∣∣∣ Ft]

We can note that the random variable St is Ft-measurable and, under the probability Q,
WT −Wt is independent of Ft. Therefore, we conclude that:

Vt = F (t, St)

where

F (t, x) = EQ

[
e−r(T−t)f

(
xer(T−t)eσ(WT−Wt)−σ

2

2 (T−t)
)]

(4.28)

Since, underQ, WT −Wt is a zero-mean normal variable with variance T − t, we have:

F (t, x) =
e−r(T−t)√

2π

∫ ∞
−∞

f
(
xe(r−σ2

2 )(T−t)+σy
√
T−t
)
e−

y2

2 dy

Consider a call option, where F (x) = (x−K)+, then the equation (4.28) can be rewritten:

F (t, x) = EQ

[
e−r(T−t)f

(
xeσ(WT−Wt)+(r−σ2

2 )(T−t) −K
)+
]

= EQ

[(
xeσ
√
θg−σ2θ

2 −Ke−rθ
)+
]

where g is a standard Gaussian variable and θ = T − t. Then, we can set:

d1 =
ln
(
x
K

)
+
(
r + σ2

2

)
θ

σ
√
θ

and d2 = d1 − σ
√
θ

Therefore, we �nd with this notation

F (t, x) = E
[(
xeσ
√
θg−σ2θ

2 −Ke−rθ
)
1g+d2≥0

]
=

∫ +∞

−d2

(
xeσ
√
θg−σ2θ

2 −Ke−rθ
) e− y2

2

√
2π

dy

=

∫ d2

−∞

(
xeσ
√
θg−σ2θ

2 −Ke−rθ
) e− y2

2

√
2π

dy

=

∫ d2

−∞

(
xeσ
√
θg−σ2θ

2

) e− y2

2

√
2π
−
∫ d2

−∞

(
Ke−rθ

) e− y2

2

√
2π

dy

Now, in the �rst integral we use a change of variable with z = y+σ
√
θ and the last equation

above become:
F (t, x) = xN(d1)−Ke−rθN(d2) (4.29)

where N(d) =
1√
2π

∫ d

−∞
e−x

2/2dx is the Gaussian cumulative distribution function. The

equation (4.29) is the price of the call option in the Black-Scholes model. On the other hand,
the price of a put in the Black-Scholes model is equal to:

F (t, x) = Ke−rθN(−d2)− xN(−d1) (4.30)
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4.2.2 Pricing European Option in exponential-Lévy models

Let (St)0≤t≤T be a stochastic process, which describe the asset price behavior and let
(Ω,F , (Ft)t,P) be a probability space, where Pt represents the history of the asset price. We
saw in the previous section that, in the Black-Scholes model, the dynamic of an asset price
is given by equation (4.25), which can be rewritten as:

St = S0e
B0
t (4.31)

where B0
t =

(
µ− σ2

2

)
t+ σWt. If we apply the Ito formula, we will �nd:

dSt
St

= µdt+ σdWt = dB1
t (4.32)

where B1
t = µt + σWt. Therefore, we �nd two ways to de�ne the risk neutral dynamics:

select the exponential as in (4.31) or select the stochastic exponential as in (4.32). If we
replace the Brownian motion with drift by a Lévy process, we will �nd a class of risk neutral
models with jumps. Hence, if we make this substitution in (4.31), we will �nd:

St = S0e
Xt

This model is called exponential-Lévy model. In order to use this model to price an option,
we want that the discounted value of stock price is a martingale. Hence, we need to impose
an additional restrictions on the characteristic triplet (σ2, ν, γ) of X:∫

|x|≥1

exν(dx) < +∞

γ +
σ2

2
+

∫
(ey − 1− y1|y|≤1)ν(dy) = 0

Therefore, we can conclude that (Xt)t≥0 is a Lévy process such that EQ[eXt ] = 1 for all t.
On the other hand, we can replace B1

t in (4.32) by a Lévy process Zt and we �nd:

dSt = rSt−dt+ St−dZt

then St corresponds to the stochastic exponential of Z. If we want that the discounted stock
price is a martingale, we need that the Lévy process Zt satisfy E[Z1] = 1.

The price of a call option can be expressed as the risk-neutral conditional expectation of
the payo�:

Ct(T,K) = e−r(T−t)EQ[(ST −K)+|Ft] (4.33)

In an exponential-Lévy model with the stationary and independence of increments property,
the equation (4.33) could be rewritten as an expectation of the process at time θ = T − t:

Ct(T = t+ θ,K) = e−rθE[(ST −K)+|St = S]

= e−rθE[(Serθ+Xθ −K)+]

= Ke−rθE[(ex+Xθ − 1)+] (4.34)

where x = ln
(
S
K

)
+ rθ is the log-forward-moneyness. When the option is at the money, x is

equal to 0. Therefore, we can note that the call option price in the exponential-Lévy model
depends on the time remaining until maturity and it is a homogeneous function of order 1
of S and K.
Now, if we de�ne the relative-forward option price, we can see that the structure of the
option price in exponential-Lévy models is parametrized by only two variables. Therefore,
we de�ne the relative-forward price in terms of the relative variables u(τ, x):

u(θ, x) =
erθCt(T = t+ θ,K)

K
(4.35)
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and if we substitute in the above equation the result in (4.34), we can conclude that the
structure of the option price is:

u(θ, x) = E[(ex+Xθ − 1)+]

This result is a consequence of temporal and spatial homogeneity of Lévy processes. More-
over, we can rewritten u(θ, ·) as the convolution product between the payo� function h and
the transition density of the Lévy process ρθ: u(θ, ·) = ρθ ∗ h. Thus, if the process has
smooth transition densities, u(θ, ·) will be smooth, even if the payo� function h is not.

Now, consider an exponential price process of the form:

St := S0e
µt+σWt+Yt

where Yt is compound Poisson process, de�ned in chapter 2 (de�nition 2.2). Therefore, the
process St can be written as:

St = S0exp

(
µt+ σWt +

Nt∑
i=1

Zi

)

= S0e
µt+σWt

Nt∏
i=1

eZi

= S0e
µt+σWt

∏
0≤s≤t

e∆Yt , t ∈ R+

from relation ∆Yt = ZNt∆Nt (de�ned in chapter 2). The process (St)t∈R is equivalently
given by the log-returns dynamics:

d logSt = µdt+ σdWt + dYt t ∈ R+

Then, in exponential model we have:

St = S0e

(
µσ

2

2

)
t+σWt− tσ

2

2 +Yt

and the process St satis�es the stochastic di�erential equation:

dSt =

(
µ+

σ2

2

)
Stdt+ σStdWt + St−(e∆Yt − 1)dNt

=

(
µ+

σ2

2

)
Stdt+ σStdWt + St−(eZNt − 1)dNt

We can see that the process St has jump size equal to: St−(eZNt − 1). In order for the
discounted price process (e−rtSt)t∈R to be a martingale, we need to choose a drift parameter
µ̃ ∈ R, intensity λ̃ > 0 and jump distribution ν̃ satisfying the equation:

µ− r = σµ̃− λ̃Eν̃ [Z]

Therefore:

µ+
σ2

2
− r = σµ̃− λ̃Eν̃ [eZ − 1]

under this condition we can choose a risk-neutral probability Pµ̃,λ̃,ν̃ under which (e−rtSt)t∈R
is a martingale, for simplicity of notation we denoted the probability Pµ̃,λ̃,ν̃ with Q. Then,
the discounted expected value with respect the new probability measure represent a non-
unique arbitrage price at time t ∈ [0, T ] for the contingent claim with payo� f(ST ), hence
we have

e−r(T−t)EQ[f(ST )|Ft]
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Set θ = T − t. Then, we can express this arbitrage price as:

e−r(T−t)EQ[f(ST )|Ft] = e−rθEQ[f(S0e
µT+σWT+YT )|Ft]

= e−rθEQ[f(S0e
µ(T−t)+σ(WT−Wt)+WT−Yt)|Ft]

= e−rθEQ

[
f

(
x exp

(
µθ + σ(WT −Wt) +

Nt∑
i=Nt+1

Zi

))]
x=St

= e−rθ−θλ̃
∞∑
n=0

(λ̃(T − t))n

n!
EQ

[
f

(
xeµθ+σ(WT−Wt) exp

(
n∑
i=1

Zi

))]
x=St

= e−θ(r+λ̃)
∞∑
n=0

(λ̃θ)n

n!
EQ

[
f

(
xeµθ+σ(WT−Wt) exp

(
n∑
i=1

Zi

))]
x=St

4.2.3 Implied Volatility

One of the main advantages of the Black-Scholes formula is the fact that the pricing formula,
as well as the hedging formula, depend only on one non-observable parameter: the volatility
σ. In fact, the drift parameter µ disappears by changing the probability measure. In the
Black-Scholes model ν = 0 and the call option prices are uniquely given by the equation
(4.29):

F (t, x) = CBS = xN(d1)−Ke−rθN(d2)

If we �xed all the parameters of the equation (4.29), we see that the value of the call
in the Black-Scholes model is an increasing continuous function of σ, mapping ]0,∞[ into
](St −Ke−rθ)+, St[. The last interval represent an arbitrage bound for a call option prices.
Therefore, we can de�ned the Black-Scholes implied volatility of the option, denoted by
σIVt (T,K), as the value of the volatility of the underlying instrument, which when sub-
stituted into the Black-Scholes formula, will return the correct option prices, denoted by
C∗t (T,K):

∃!σIVt (T,K) > 0, CBS(St,K, θ, σ
IV
t (T,K)) = C∗t (K,T )

We can note that, for �xed (T,K), the implied volatility is in general a stochastic process.
Furthermore, if we �xed t, we will �nd the implied volatility surface at date t, which is
equal at the function σIVt : (T,K) → σIVt (T,K). This means that, for �xed t, the implied
volatility value depends on the characteristics of the option such as the maturity and the
strike price, respectively equal to T and K. Moreover, if we substitute the moneyness m (i.e
m = K

St
) into the implied volatility surface, it can be represented as a function of moneyness

and time to maturity: It(θ,m) = σIVt (t+θ,mS(t)). In general, the implied volatility surface
It(θ,m) may depend not only on the maturity of options but also on the current date or
the spot price. However, in the exponential-Lévy models the evolution in time of implied
volatilities is particularly simple, as shown by the following proposition:
Proposition 4.11 (Proposition 11.1 in [2]) When the risk neutral dynamics is given by an
exponential-Lévy process, the implied volatility for a given meneyness level m = K

St
and time

to maturity θ, i.e θ = T − t, does not depend on time:

∀t ≥ 0, It(θ,m) = I0(θ,m)

Proof
Consider the value of a call in an exponential-Lévy model, given by the equation (4.34):

Ct(T = t+ θ,K) = Ke−rθE[(ex+Xθ − 1)+]
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If we divided both term by St and we substituted the moneyness and the log-forward-
moneyness, we �nd:

Ct(T = t+ θ,K)

St
=
Ke−rθE[(ex+Xθ − 1)+]

St

= me−rθE[(eln ( SK )+rθ+Xθ − 1)+]

= me−rθE[(m−1erθ+Xθ − 1)+]

= g(θ,m)

that is, the ratio of option price to the underlying which depends only on the moneyness and
time to maturity. We can do the same for the price of the call option in the Black-Scholes
model and we �nd:

CBS

St
= gBS(θ,m, σ)

this is true because the Black-Scholes model is a particular case of the exponential-Lévy
model. Therefore, the implied volatility It(θ,m) is de�ned by solving the equation:

CBS = Stg(θ,m)⇐⇒ gBS(θ,m, It(θ,m)) = g(θ,m)

Since each side does not depend on t but depends only on (θ,m), we can conclude that the
implied volatility for a given time to maturity θ and moneyness m does not evolve in time:

∀t ≥ 0, It(θ,m) = I0(θ,m)

�

However, we can note that the implied volatility for a given strike price, K, is not constant
in time. In fact, it evolves stochastically according to:

σIVt = I0

(
K

St
, T − t

)
We can note that the implied volatility surface It does not vary with t, therefore we can study
only the case in which t = 0. This study explain some features of the implied volatility surface
in the exponential-Lévy model. First, a negative skewed jump distribution give rise to a
skew in implied volatility, hence the skew decrease characteristic with respect to moneyness.
On the other hand, a strong variance of jumps leads to a curvature in the implied volatility,
hence we can see smile pattern. Second, exponential-Lévy models and, in general, model
with jumps in the price lead to a strong short term skew contrarily to di�usion models which
have small skew for short maturities. Finally, in a Lévy process with �nite variance we can
see the e�ect called aggregation normality, which is when long maturity prices of options
will be cloeser to Black-Scholes price and the implied volatility smile will become �at as
T → ∞. In particular, the central limit theorem shows that when the maturity T is large,
the distribution of (XT −E[XT ])/

√
T becomes approximately Gaussian. This e�ect is more

pronounced in exponential-Lévy models respect to the actual market prices.

4.3 Hedging Strategy

Consider an asset prices (St)t∈[0,T ] and a market described by a �ltered probability space
(Ω,F , (Ft)t∈[0,T ],P), where (Ft)t∈[0,T ] is the history of the assets, P represents the so-called
real-word measure and St will be one dimensional. We assume that there are two assets in
the market: a riskless asset, described by the following di�erential equation dS0

t = rS0
t dt,

and a risky asset, St. Let S
0
t = ert be a numeraire. Then, we denoted by Vt the value of a

portfolio and by Ṽt its discounted value, which is equal to Ṽt = Vt/S
0
t .
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4.3.1 Black-Scholes Hedging

Consider the Black-Scholes model, which is described above (4.2.1). Therefore, the behavior
of the stock price is represent by equation (4.25) :

St = S0e
(µ−σ2

2 )t+σWt

and the price of call option in the Black-Scholes model are equal to the equation (4.29):

CBS(t, S) = SN(d1)−Ke−rθN(d2) (4.36)

where θ = T − t and d1 =
ln
(
S
K

)
+
(
r + σ2

2

)
θ

σ
√
θ

and d2 = d1 − σ
√
θ.

Let V be the value of a portfolio of derivative securities on one underlying asset. The rates
of change of the value of the portfolio with respect to the spot price S of the underlying
asset is important for hedging purpose. This change is called "Delta" and is equal to:

∆(V ) =
∂V

∂S

Then, the delta of the call option described in equation (4.36) is equal to:

∆(CBS) =
∂CBS

∂S

= N(d1) + S
∂

∂S
(N(d1))−Ke−rθ ∂

∂S
(N(d2)) (4.37)

If we apply the chain rule, we obtain that:

∂

∂S
(N(d1)) = N ′(d1)

∂d1

∂S
∂

∂S
(N(d2)) = N ′(d2)

∂d2

∂S

Therefore, we can write equation (4.37) as:

∆(CBS) = N(d1) + SN ′(d1)
∂d1

∂S
−Ke−rθN ′(d2)

∂d2

∂S
(4.38)

Now, recall that d1 and d2 are equal to:

d1 =
ln
(
S
K

)
+
(
r + σ2

2

)
θ

σ
√
θ

=
ln
(
S
K

)
+ rθ

σ
√
θ

+
σ
√
θ

2
(4.39)

d2 = d1 − σ
√
θ =

ln
(
S
K

)
+ rθ

σ
√
θ

− σ
√
θ

2
(4.40)

Lemma 4.1 Let d1 and d2 be given by equation (5.4) and (5.5). Then, we have the following
result:

SN ′(d1) = Ke−rθN ′(d2)

Proof

Recall that N(d) =
1√
2π

∫ d

−∞
e−x

2/2dx is the Gaussian cumulative distribution function. It

is easy to see that N ′(d) = 1√
2π
e−d

2/2, hence we �nd

N ′(d1) =
1√
2π
e−d

2
1/2

N ′(d2) =
1√
2π
e−d

2
2/2
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Therefore, we need to show that the following formula is true:

Se−d
2
1/2 = Ke−rθe−d

2
2/2

can also be written as
Serθ

K
= e(d2

1−d
2
2)/2

Now, if we substitute equation (4.39) and (4.40) in the left term of the above equation, we
�nd:

d2
1 − d2

2 = d2
1 −

(
d1 − σ

√
θ
)2

= d2
1 − d2

1 + σ2θ + 2d1σ
√
θ

= 2

(
ln
(
S
K

)
+ rθ

σ
√
θ

+
σ
√
θ

2

)
σ
√
θ − σ2θ

= 2

(
ln

(
S

K

)
+ rθ

)
Therefore, we have

Serθ

K
= e(d2

1−d
2
2)/2

= exp

(
ln

(
S

K

)
+ rθ

)
=
Serθ

K

�

From (4.39) and (4.40), we �nd that

∂d1

∂S
=
∂d2

∂S
=

1

σS
√
θ

(4.41)

Using equation (4.41) and lemma 4.1 in the equation (4.38), we �nd that

∆(CBS) = N(d1) + SN ′(d1)
∂d1

∂S
−Ke−rθN ′(d2)

∂d2

∂S

= N(d1) + SN ′(d1)

(
∂d1

∂S
− ∂d2

∂S

)
= N(d1) (4.42)

Hence, we have found that the delta for an European call option in the Black-Scholes model
is equal to the cumulative distribution function of a standard normal variable evaluated in d1.

The delta in an option is important because helps to build the so-called "delta hedging".
Assume that we go long in one call option. If the price of the underlying asset declines,
the value of the call decreases and the long call position loses money. To protect against a
downturn in the price of the underlying asset, we can sell short ∆ units of the underlying
asset. The goal of the delta hedging is to choose ∆ in such a way that the value of the
portfolio is not sensitive to small changes in the price of the underlying asset. Therefore, if
V is the value of the portfolio, the value of the hedge portfolio is

V = C(t, S)−∆St

We can note that a portfolio is delta-neutral only over a short period of time. When the
price of the underlying asset changes, the porfolio might become unbalanced.
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4.3.2 Merton Approach

The delta hedging in the Black-Scholes model is always possible since the market is complete
and, therefore, exists only one equivalent risk neutral probability. This is the main assump-
tion in the Black-Scholes model. Unfortunately, the market is not complete and there is not a
unique risk neutral probability because the asset has discontinuities, i.e jumps, in their paths.

The �rst application of jump process in option pricing was introduced by Merton8.
Merton considered the following jump di�usion model de�ned in the �ltered probability
space (Ω,F , (Ft)t∈[0,T ],P):

St = S0 exp

(
µt+ σWt +

Nt∑
i=1

Yi

)
(4.43)

whereWt is a standard Wiener process, Nt is a Poisson process with intensity λ independent
from W and Yi ∼ N(m, δ2) are i.i.d. random variables independent from W and N. Since
the model is incomplete, there exists many possible choices for a risk-neutral measure and
Merton proposed to change the drift of the Wiener process and keep the other variable
unchanged. Therefore, µM is chosen such that Ŝt = Ste

−rt is a martingale under the new
probability measure Q, which is the equivalent probability measure to P, and is equal to

µM = r − σ2

2
− λE[eYi − 1] = r − σ2

2
− λ

[
exp

(
m+

δ2

2

)
− 1

]
The equivalent martingale measure is obtained by shifting the drift of the Brownian motion
but leaving the jump part unchanged. Merton justi�ed this choice by assuming that the
jump risk is diversi�cable and, therefore, no risk premium is attached to it. Then, an
European call option with payo� f(ST ) can be priced according to:

CM (t, St) = e−r(T−t)EQ[f(ST )|Ft] (4.44)

Set θ = T − t. Then, we can express this arbitrage price as:

CM (t, St) = e−r(T−t)EQ[f(ST −K)+|St = S]

= e−rθE[f
(
eµ

Mθ+σWM
T−t+

∑NT−t
i=1 Yi

)
]

By conditioning on the number of jumps Nt, we can express the value of the call option as
a weighted sum of Black-Scholes price, therefore we �nd:

CM (t, St) = e−rθ
∑
n≥0

Q(Nt = n)EQ

[
f

(
S exp

(
µMθ + σWM

θ +

n∑
i=1

Yi

))]

= e−rθ
∑
n≥0

e−λθ(λθ)n

n!
EQ

[
f

(
Senm+nδ2

2 −λ exp(m+ δ2

2 )+λθerθ−
σ2
nθ

2 +σnWθ

)]

= e−rθ
∑
n≥0

e−λθ(λθ)n

n!
CBS(θ, Sn, σn) (4.45)

where

i.
∑n
i=1 Yi ∼ N(nm, nδ2);

ii. σ2
n = σ2 + nδ2

θ ;

iii. Sn = S exp
(
nm+ nδ2

2 − λ exp(m+ δ2

2 ) + λθ
)
;

8A brief introduction about the Merton model is given in chapter 2
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iv. CBS(θ, S, σ) = e−rθE
[
f
(
Se(r−σ2

2 )θ+σWθ

)]
.

The point iv. is the value of the European call option with time to maturity θ and payo�
f in a Black-Scholes model with volatility σ. We can note that if λ = 0 then CM (t, S) =
CBS(t, S), indeed all the terms appearing in the sum (4.45) are equal to 0, except for j = 0,
when S0 = S and σ0 = σ.
The hedging portfolio proposed by Merton is the self-�nancing strategy (φ0

t , φt) given by:

φt =
∂CM

∂S
(t, St−) (4.46)

φ0
t = φtSt −

∫ t

0

φdS (4.47)

which means that we choose to hedge only the risk represented by the di�usion part. This
approach is justi�ed if we assume that the investor holds a portfolio with many assets for
which the di�usion components may be correlated but the jumps components are indepen-
dent across assets. This hypothesis would imply that in a large market a diversi�ed portfolio
such as S&P500 would not have jumps. Finally, the assumption of diversi�ability of jump
risk is not justi�able if we are pricing index options, in fact a jump in the index is not
diversi�cable.
We can note that in model with jumps, contrarily to di�usion models, a pricing measure
cannot be simply obtained by adjusting the drift coe�cient.

4.3.3 Quadratic Hedging

We can de�ne the quadratic hedging as the choice of a hedging strategy which minimizes
the hedging error in a mean square losses. This imply that losses and gains are treated in a
symmetric manner, therefore we measure the risk in terms of variance.
Consider a risk-neutral model (St)t∈[0,T ] given by St = ert+Xt , where Xt is a Lévy process on
the �ltered probability space (Ω,F , (Ft)t∈[0,T ],Q). We assume that S is a square integrable
martingale, therefore the following condition is satis�ed:∫

|y|≥1

e2yν(dy) <∞

Moreover, we assume that Xt has �nite variance and its characteristic function can be
expressed as:

E
[
eiuXt

]
= exp

{
t

[
−σ

2u2

2
+ bXt+

∫
νX(dy)

(
eiuy − 1− iuy

)]}
with bX chosen such that Ŝ = eX is a martingale. As we have seen in the previous chapter,
Ŝt can also be written as a stochastic exponential of another Lévy process (Zt):

dŜt = ŜtdZt

where Z is a martingale with jumps size greater than −1 and it is also a Lévy process. Let
(φ0
t , φt)t∈[0,T ] be a salf-�nancing strategy. In order to apply the quadratic hedging criteria,

we need to �nd portfolio such that its terminal value has a well-de�ned variance. Therefore,
we want that the asset S is in the set of all the admissible strategies de�ned as:

S =

φ caglad predictable and E

[∣∣∣∣∣
∫ T

0

φtdŜt

∣∣∣∣∣
]2

<∞


Using preposition 3.5 and the proposition 3.11, the above condition is equivalent to:

E

[∫ T

0

|φtŜt|2dt+

∫ T

0

∫
R
z2|φtŜt|2dtν(dz)

]
<∞ (4.48)
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Let L2(S) be the set of process φ which verify the above condition (4.48). Therefore, the
terminal payo� of such strategy is equal to:

GT (φ) =

∫ T

0

rφ0
tdt+

∫ T

0

φtSt−dZu

We can note that Ŝt is a martingale under the probability measure Q and that φ ∈ L2(Ŝ),

therefore the discounted gain process, equal to ĜT (φ) =
∫ t

0
φdŜ, is also a square integrable

martingale. Using proposition 2.23 we �nd that ĜT (φ) is given by the martingale part of
the above equation:

ĜT (φ) =

∫ T

0

φtSt−σdWt +

∫ T

0

∫
R
J̃X(dt× dx)xφtSt−

=

∫ T

0

φtSt−σdWt +

∫ T

0

∫
R
J̃Z(dt× dz)φtSt− (ez − 1)

where J is the jump measure9. Now, we can written the quadratic hedging problem as:

inf
φ∈L2(Ŝ)

EQ

[
|ĜT (φ) + V0 − Ĥ|2

]
(4.49)

where Ĥ is de�ned by the equation (4.3), i.e Ĥ = V0 +
∫ T

0
φtdŜt Q-a.s. We can note that

the expectation of the hedging error is equal to V0−EQ[Ĥ], therefore if we decomposed the
above equation into

EQ

[
|V0 − EQ[Ĥ]|2

]
+ V arQ

(
ĜT (φ)− Ĥ

)
we will se that the optimal value for the initial capital is: V0 = EQ[f(ST )].
Proposition 4.12 (proposition 10.5 in [2]) Consider the risk neutral dynamics

Q : dŜt = Ŝt−dZt (4.50)

where Z is a Lévy process with Lévy measure νZ and di�usion coe�cient σ > 0. For a
European option with payo� f(ST ) where f : R+ → R veri�es

∃K > 0, |f(x)− f(y)| ≤ K|x− y|

the risk minimizing hedge, solution of (4.49), amounts to holding a position in the underlying
equal to φt = ∆(t, St−) where:

∆(t, St−) =
σ2 ∂C

∂S (t, S) + 1
S

∫
νZ(dy)z[C(t, S(1 + z))− C(t, S)]

σ2 +
∫
z2νZ(dy)

(4.51)

with C(t, S) = e−r(T−t)EQ[f(ST )|St = S].

Proof
We know that the discounted price Ŝt is a martingale under the risk-neutral measure Q.
Consider a self-�nancing strategy given by a nonanticipating càglàd process (φ0

t , φt) with
φ ∈ L2(Ŝ). The discountend value of the portfolio (V̂t) is then a martingale whose terminal
value is given by:

V̂T =

∫ T

0

φtdŜt =

∫ T

0

φtŜt−dZt

=

∫ T

0

φtŜtσdWt +

∫ T

0

∫
R
φtŜtzJ̃Z(dt× dz) (4.52)

9De�ned in chapter 2
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Now, we can de�ne the function

C(t, S) = e−r(T−t)EQ[f(ST )|Ft] = e−r(T−t)EQ[f(ST )|St = S]

and its discountend value by Ĉ(t, S) = e−rtC(t, S).We can note that Ĉ(t, S) = e−rtEQ[f(ST )|Ft]
is a square integrable martingale by construction and that C(t, S) is continuously di�eren-
tiable with respect to t ans twice continuously di�erentiable with respect to S. Therefore,
we can applied the Ito formula to Ĉ(t, St) = e−rtC(t, St) in the interval [0, t], and we �nd:

Ĉ(t, St)− Ĉ(0, S0) =

∫ t

0

∂C

∂S
(u, Su−)Ŝu−σdWu

+

∫ t

0

∫
R

[C(u, Su−(1 + z))− C(u, Su−)]J̃Z(du× dz)

=

∫ t

0

∂C

∂S
(u, Su−)Ŝu−σdWu

+

∫ t

0

∫
R

[C(u, Su−e
x)− C(u, Su−)]J̃X(du× dx) (4.53)

where (Xt) is a Lévy process such that Ŝt = eXt for all t. The payo� function f(ST ) is
Lipschitz continuous, this imply that also C is Lipschizt continuous with respect to the
second variable:

C(t, x)− C(t, y) = e−r(T−t)E
[
f
(
xer(T−t)+XT−t

)
− f

(
yer(T−t)+XT−t

)]
≤ K|x− y|E

[
eXT−t

]
= K|x− y|

since eXt is a martingale. Therefore, the predictable random function ψ(t, z) = [C(u, Su−(1+
z))− C(u, Su−)] veri�es

E

[∫ T

0

dt

∫
R
νZ(dz)|ψ(t, z)|2

]
=

= E

[∫ T

0

dt

∫
R
νZ(dz)|[C(u, Su−(1 + z))− C(u, Su−)]|2

]

≤ E

[∫ T

0

dt

∫
R
z2S2

t−ν(dz)

]
<∞

so from proposition 3.11, the compensated Poisson integral in (4.53) is a square integral
martingale. Then, if we subtract the equation (4.52) from the equation (4.53), we will �nd
the hedging error:

ε(V0, φ) =

∫ T

0

(
φtŜt− − Ŝt−

∂C

∂S
(t, St−)

)
σdWt

+

∫ T

0

dt

∫
R
J̃Z(dt× dz)

[
zφtŜt− − (C(t, St−(1 + z))− C(t, St−))

]
where each stochastic integral is a well-de�ned, zero-mean random variable with �nite vari-
ance. Finally, we can compute the variance of the hedging error thanks to the isometry
formula given by the preposition 3.5 and 3.11:

E
[
|ε(φ)|2

]
= E

[∫ T

0

dt

∫
R
νZ(dz)|C(t, St−(1 + z))− C(t, St−)− zφtŜt− |2

]

+ E

[∫ T

0

Ŝ2
t−

(
φt −

∂C

∂S
(t, St−)

)2

σ2dt

]
(4.54)
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We can note that the terms under the integral in the equation (4.54) are positive process
which are a quadratic function of φt with coe�cients depending on (t, St−). Therefore, the
optimal risk-minimizing hedge is obtained by minimizing this equation respect to φt, which
means that we �nd the �rst order condition:

Ŝ2
t−

(
φt −

∂C

∂S
(t, St−)

)
+

∫
R
νZ(dz)zŜt−

[
zφtŜt− − C(t, St−(1 + z))− C(t, St−)

]
= 0

whose solution is given by the equation (4.51).

�

If we consider an exponential-Lévy model, i.e. St = S0e
rt+Xt , the optimal quadratic hedge

can be expressed in terms of the Lévy measure νX of X as

∆(t, St−) =
σ2 ∂C

∂S (t, S) + 1
S

∫
νX(dx) (ex − 1) [C(t, Sex)− C(t, S)]

σ2 +
∫

(ex − 1)
2
νX(dx)

We can note that we have also found an expression for the residual risk of a hedging
strategy (φ0

t , φt):

RT (φ) = E

∫ T

0

∣∣∣∣∣ φt − ∂C

∂S
(t, St−)

∣∣∣∣∣
2

Ŝ2
t−dt


+ E

[∫ T

0

dt

∫
R
ν(dz)|C(t, St−(1 + z))− C(t, St−)− zφtŜt− |2

]
The residual risk allows us to examine whether there are any cases where the hedging error
can be reduced to zero, hence where we can achieve a perfect hedge. We �nd that in only
two case is possible achieve a perfect hedge. The �rst one, is when there are no jumps, i.e
ν = 0. In this case, the residual risk is equal to:

ε(φ) = E

[∫ T

0

(
φtSt− − St−

∂C

∂S
(t, St−)

)2

dt

]
and we �nd that ε(φ) = 0 a.s when φt is equal to the Black-Scholes delta hedging. The
second case, is when σ = 0 and there is a single jump size ν = δa : Xt = aNt, where N is a
Poisson process. In this case

RT (φ) = E

[∫ T

0

dtS2
t− |C(t, St−(1 + a))− C(t, St−)− φt|2

]

if we choose φt =
C(t,St− (1+a))−C(t,St− )

aSt−
and φ0

t = ertStφt − ert
∫ t

0
φtdSt, we will obtain a

self-�nancing strategy (φ, φ0 which is a replication strategy:

f(ST ) = V0 +

∫ T

0

C(t, St−(1 + a))− C(t, St−)

aSt−
dSt +

∫ T

0

rφ0
tdt

We can note that the quadratic hedge achieves a mean-variance trade-o� between the risk
due to the di�usion part and the jump risk.

Another solution proposed by Föller and Schweizer was to �nd a new martingale measure
QFS which is orthogonal to the probability P. If Ŝt = Mt + At where M is the martingale
component of S under P, any martingale (Nt) which is orthogonal to (Mt) under P should
remain a martingale orthogonal to Ŝ under QFS . Such probability QFS is called minimal
martingale measure.
Consider now a jump di�usion model:

dSt
St−

where Zt = µt+ σWt +

Nt∑
i=1

Yi (4.55)
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with Yi ∼ F i.i.d random variable and N a Poisson process with intensity λ, which implies
that E[Nt] = λt. Moreover, we assume that E[Yi] = m and V ar(Yi) = δ2. In this case, the
minimal martingale measure exists if and only if

−1 ≤ η =
µ+ λm− r

σ2 + λ(δ2 +m2)
≤ 0

Zhang show this result in 199410.This assumption means that the risk premium in the asset
return should be negative. When this condition is veri�ed, the minimal martingale measure
QFS is equal to

dQFS

dP
= e−σηWT+ληmT−σ

2η2

2 T
Nt∏
j=1

(1− ηUj)NT

Therefore, the risk-neutral dynamics of the asset under QFS can be expressed as:

dSt
St−

= rdt+ dUt

Ut = λ[η(m2 + δ2)−m]t+ σW ′t +

N ′t∑
i=1

∆Ui (4.56)

where under QFS : W ′t is a standard Wiener process, N ′t is a Poisson process with intensity
λ′ = λ(1 − ηm) and the jump sizes (∆Ui) are i.i.d with distribution FU where dFU =
1−ηx
1−ηmdF (x). Then, the locally risk minimizing hedge for a European option with payo�

f(ST ), which verify the Lipschitz continuous property, for this jump di�usion model (4.55)
is given by φt = ∆(t, St−) where

∆(t, St−) =
σ2 ∂C

∂S (t, S) + λ
S

∫
F (dy)y(1− ηy)[C(t, S(1 + y))− C(t, S)]

σ2 + λ
∫
y2(1− ηy)F (dy)

with C(t, S) = e−r(T−t)EQFS [f(ST )|St = S] is the expected discounted payo� taken with
respect to (4.56).

10in his PhD thesis "Analyse Numérique des Options Américaines dans un Modèle de Di�usion avev
Sauts"
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4.4 Comparison

We want to show that the hedging in the Merton model outperforms the hedging in the
Black and Scholes model, which are described in the section above. Before we talk about the
hedging strategy, we show that the Marton model also outperform the Black-Scholes model
to replicate the stock behavior from historical data. We consider the daily log-returns of
the Standard & Poor's 500 Index (S&P500) in the period from 31-12-2009 to 29-01-2009.
There is a total of 2273 daily closing price and we have to deal with n=2272 log-returns.
Moreover, from the S&P500 data it is possible to �nd the following information:

ESP ' 0.00036;

MSP
2 ' 0.0095;

sSP ' −0.4666 < 0;

kSP ' 7.5614 > 3;

where E is the mean, s is the skewness and k is the kurtosis. In order to �nd a relationship
among the two models and the statistical result of the S&P500, we will work with an interval
of amplitude ∆t, which can be de�ned as ∆t = 1/252 ' 0.004 where the denominator 252
represent the trading days in a year. Therefore, we can write the Black-Scholes model as

∆ logSt = µBS∆T + σBS∆Wt (4.57)

where ∆Wt ∼ N(0,∆t). While the Merton model can be written as:

∆ logSt = µM∆T + σM∆Wt + V∆Nt (4.58)

where V is the price ratio (> 0) associated with the i-th jump along the path of the stock

price and is equal to V = log

(
STi
ST
i−

)
∼ N(m, δ2) and ∆Nt ∼ Po(λ∆t). Then, the following

theorem described the relation among the parameter of the two model:
Theorem 4.4 (theorem 1 in [12]) Consider the equation (4.57), we �nd the following rela-
tion:

EBS = µBS∆t;

MBS
2 = σ2

BS∆t;

MBS
3 = 0 =⇒ sBS =

MBS
3(

MBS
2

)3/2 ;

MBS
4 = 3σ4

BS∆t2 =⇒ kBS =
MBS

4(
MBS

2

)2 .
while for the equation (4.58) we have

EM = µM∆t+mλ∆t;

MM
2 = σ2

M∆t+
(
δ2(1 + λ∆t) +m2

)
λ∆t;

MM
3 = m(3δ2 +m2)λ∆t+ 6mδ2(λ∆t)2 =⇒ sM =

MM
3(

MM
2

)3/2 ;

MM
4 = 3(σ2

M∆t)2 + (m4 + 3δ4 + 6m2δ2)λ∆t+ (3m4 + 21δ4 + 30m2δ2)(λ∆t)2

+ 6σ2
M∆t(δ2 +m2)λ∆t+ (18δ2 + 6m2δ2)(λ∆t)3 + 6σ2

Mδ
2∆t(λ∆t)2

+ 3δ4(λ∆t)4 =⇒ kM =
MM

4(
MM

2

)2 .
Proof
The quantities EBS and MBS

2 can be derived immediately applying the properties of the
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Brownian motion11. For the central moments MBS
4 we recall that

MBS
i = E

[
(µBS∆t+ σ2

BS∆Wt − µBS∆t)i
]

= σiBSE[∆W i
t ]

since E[∆W i
t ] can be computed using the characteristic function of the normal random

variable ∆Wt, i.e φ∆Wt
(y) = e−y

2 ∆t
2 , we have

E[∆W 3
t ] = 0, E[∆W 4

t ] = 3∆t2

this prove also the skewness and the kurtosis for the Black and Scholes model.
Switching to the Merton model, the mean term EM can be obtained recalling that ∆Nt ∼
Po(λ∆t), while the central moments in MM

2 , MM
3 and MM

4 are derived applying the fol-
lowing formula

MM
i = E

[
(µM∆t+ σ2

M∆Wt + V∆Nt − µM∆t−mλ∆t)i
]

= E
[
(σ2
M∆Wt + V∆Nt −mλ∆t)i

]
We omit the detailed computation term by term for the above equation, however we can note
that we assumed that every variable is independent of the other. Moreover, the moments

of V and ∆Nt are derived using the characteristic functions, i.e φV (y) = eimy−
δ2y2

2 and

φ∆Nt(y) = eλ∆t(eiy−1), from which

E[V 2] = m2 + δ2

E[V 3] = 3(m2 + delta2)m− 2m3

E[V 4] = 3δ4 + 6m2(m2 + delta2)− 5m4

and

E[∆N2
t ] = λ∆t+ λ2∆t2

E[∆N3
t ] = λ∆t+ 3λ2∆t2 + λ3∆t3

E[∆N4
t ] = λ∆t+ 7λ2∆t2 + 6λ3∆t3 + λ4∆t4

�

Therefore, if we apply the theorem 4.4, we can �nd the vector of parameter for the Black
and Scholes model (µBS , σBS) and for the Merton model (µBS , σBS , λ,m, δ). For the Black-
Scholes model we assume:

EBS = ESP MBS
2 = MSP

2

so that

µBS =
ESP

∆t
' 0.0922

σBS =

√
MSP

2

∆t
' 0.1507

we can recall that a normal distribution is completely determined by its mean and variance.
On the other hand, in the Merton model we have 5 parameters to estimate. We can reduce
this set assuming that

EM = ESP MM
2 = MSP

2

which implies that

µM =
ESP −mλ∆t

∆t

σM =

√
MSP

2 − (δ2(1 + λ∆t) +m2)λ∆t

∆t

11Described in chapter 1

98



hence, the di�usion paramters are expressed as function of the jumps ones and we have only 3
parameters to estimate. We use the Multinomial Maximum Likelihood approach to estimate
this 3 parameters, which can be represented as a 3-dimensional vectors η

.
= (λ,m, δ). The

step of the Multinomial Maximum Likelihood approach can be summarized as follows:

1. sort empirical data into ñ < n bins, in order to get a computationally tractable prob-
lem. Then, for each of these bins, extract the sample frequency fSPi , i = i, . . . , ñ;

2. construct the theoretical jump di�usion frequency function

fMi (η)
.
= n

∫
Bi

ψ∆t(y; η)dy i = 1, . . . , ñ

where Bi is the i-th bin and ψ∆t(y; η) is the log-return probability density function
for the Merton model (described in chapter 2), i.e.

ψt(y) = e−λt
∞∑
j=0

(λt)j exp
{
− (y−(µ−λk− 1

2σ)t−jm)2

2(σ2t+jδ2)

}
j!
√

2π(σ2t+ jδ2)
;

3. minimize the objective function

l(η)
.
= −

ñ∑
i=1

fSPi log
(
fMi (η)

)
.

Therefore, by the Multinomial Maximum Likelihood algorithm we obtain that

λ ' 62.752; m ' −0.006323; δ ' 0.006291

hence, in the Merton model µ, σ, skewness and kurtosis are equal to:

µM =
ESP −mλ∆t

∆t
' 0.48678

σM =

√
MSP

2 − (δ2(1 + λ∆t) +m2)λ∆t

∆t
' 0.1301

sM ' 1.4261

kM ' 7.9952

We can note that the skewness is bigger than the one obtained using the real S&P500 data,
i.e. 1.4261 > −0.4666, but, unlike in the Black and Scholes model where sBS = 0, the Mer-
ton approach tents to capture a clear absence of symmetry with the same sign. Moreover,
the kurtosis in the Merton model is very close to the one obtained using the real S&P500
data, while the Black and Scholes model provides poor result. Hence, we can conclude that
the log-normal jump di�usion model represents a substantial and concrete improvement
when compared to the Black and Scholes model.

Now, we compare the Black and Scholes hedging strategy, i.e. Delta hedging, with the
Merton hedging for the jump di�usion process. We consider the closing price of the S&P500
from 29-12-2017 to 29-01-2019 and we consider a call option with underlying the S&P500,
strike price equal to 2700 and maturity at 01-02-2019. Moreover, we assume that the risk-
free rate is equal to 2,98%, denoted by r.
For these period, we have a total of 272 daily closing price and we have to deal with n = 271
log-returns. From the log-returns we �nd the following information from the S&P500 data:

ESP ' −0.0000468;

MSP
2 ' 0.0109;

sSP ' −0.4333 < 0;

kSP ' 5.9362 > 3;
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Therefore, the Black and Scholes parameters can be estimated as follow:

µBS =
ESP

∆t
' −0.0118

σBS =

√
MSP

2

∆t
' 0.1723

The Merton parameter can be estimated using the Multinomial Maximum Likelihood algo-
rithm and we obtain that

λ ' 3.1596; m ' −0.04942; δ ' 0.0076

hence, in the Merton model µ, σ, skewness and kurtosis are equal to:

µM =
ESP −mλ∆t

∆t
' 0.1444

σM =

√
MSP

2 − (δ2(1 + λ∆t) +m2)λ∆t

∆t
' 0.1476

sM ' 1.5929

kM ' 7.8115

We can note that also in these case the Merton model represents a substantial and concrete
improvement when compared to the Black and Scholes model. Therefore, we can expect
that the hedging in the Merton model perform better than the delta hedging in the Black
and Scholes.

Then, consider the following hedging strategy for the Black-Scholes model: we assume
that we go long in the call option and to protect against a downturn in the price of the
underlying asset we will sell short ∆ unit of the underlying asset. The goal is to choose ∆
in such a way that the value of the portfolio is not sensitive to small changes in the price of
the underlying asset. If we denoted with Π the value of the portfolio, then Π = C −∆S or,
equivalently, Π(S) = C(S) − ∆S. To implement the Delta hedging we assume that if the
Delta is negative we will go long on the asset and short the call option. We can note that
a portfolio is Delta neutral only over a short period of time. We recall that the Delta of a
call option is equal to the equation (4.42):

∆(CBS) = N(d1)

where d1 =
ln ( SK )+

(
r+σ2

2

)
θ

σ
√
θ

and N(d) =
1√
2π

∫ d

−∞
e−x

2/2dx is the Gaussian cumulative dis-

tribution function. To implement the Black-Scholes formula, equation (4.36), the cumulative
distribution N(d) of the standard normal variable x must be estimated numerically and we
use the algorithm proposed by Abramowitz and Stegun in 1970 which has an approximation
error smaller than 7.5 ·10−7 at any point on the real axis. Abramowitz and Stegun proposed:

N(d) = P(G ≤ d)

where G is a real Gaussian random variable with mean 0 and variance 1. Therefore N(d) =

1√
2π

∫ d

−∞
e−x

2/2dx. If d > 0 we have that

N(d) ≈ 1− 1√
2π
e−

d2

2

(
b1t+ b2t

2 + b3t
3 + b4t

4 + b5t
5
)
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where

p = 0.231641900

b1 = 0.319381530

b2 = −0.356563782

b3 = 1.781477937

b4 = −1.821255978

b5 = 1.330274429

t =
1

1 + pd

On the other hand, for the Merton jump di�usion model we consider the hedging prosed
by Merton. Therefore, we �nd that the price of the call option in this model is equal to the
equation (4.45)

CM (t, St) = e−rθ
∑
n≥0

e−λθ(λθ)n

n!
CBS(θ, Sn, σn)

where

i.
∑n
i=1 Yi ∼ N(nm, nδ2);

ii. σ2
n = σ2 + nδ2

θ ;

iii. Sn = S exp
(
nm+ nδ2

2 − λ exp(m+ δ2

2 ) + λθ
)
;

iv. CBS(θ, S, σ) = e−rθE
[
f
(
Se(r−σ2

2 )θ+σWθ

)]
;

v. θ = T − t.

The point iv. is the value of the European call option with time to maturity θ and payo�
f in a Black-Scholes model with volatility σ. The hedging portfolio proposed by Merton is
the self-�nancing strategy (φ0

t , φt) given by:

φt =
∂CM

∂S
(t, St−)

φ0
t = φtSt −

∫ t

0

φdS

which means that we choose to hedge only the risk represented by the di�usion part.
The result of these two hedging strategy can be seen in the table below which report the
return and the variance:

Return Variance (σ2)
Black-Scholes Hedging 6.40% 0.1589%

Merton Hedging 6.49% 0.1589%

We can see that the two hedging strategy have the same variance and the return are more or
less the same, the Merton return is a greater only of 0.09 respect to the Black-Scholes return.
One possible explanation is that we consider a trading strategy only for one year and, as said
before, a portfolio is Delta neutral over a short period of time. Despite this, we can say that
the hedging strategy also con�rms the above: the Merton model represents a substantial
and concrete improvement when compared to the Black and Scholes model. In fact, we can
safely say that no-one would choose the Delta hedging compared to Merton hedging as the
second has a bigger return, even if small, with the same variance. Therefore, the Merton
hedging dominates the Black-Scholes hedging since Merton considers in the stock process a
jump component.
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Conclusion

In this dissertation we have introduced and explained the jump di�usion process, which are
obtained from the Black and Scholes model by adding a compensated compound Poisson
process. Moreover, we have seen that the Poisson process produce discontinuities in the
stock process and this imply that the market is not complete. Therefore, in the market did
not exists a unique risk neutral probability for the option pricing as it was assumed in the
Black-Scholes model. In chapter 4, we have seen how pricing an option when the underlying
asset is driven by a jump di�usion process and we have seen the impossibility to completely
hedge the risk carried by the introduction of sudden and unpredictable moves in the in the
stock price, i.e the presence of the random jump component. Finally, we compare the Black
and Scholes model to the Merton approach to the jump di�usion process. The results show
us that the Merton model turns out to outperform the Black-Scholes one, when we take into
account the performances of the two with respect to real �nancial data. We have also seen
that the addition of the jump parameters brings a great improvement in option pricing and
hedging. In future work, we will drop the assumption of independence in jump and we will
study how correlated jump a�ect the option pricing and the hedging in the jump di�usion
process.
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Appendix

A.1 Poisson property

The superposition property say that if (N1
t )t≥0 and (N2

t )t≥0 are two independent Poisson
processes with intensities λ1, λ2, then (N1

t + N2
t )t≥0 is a Poisson process with intensity

λ1 + λ2.
Proof:
Let N1 ∼ po(λ1) and N2 ∼ po(λ2). Consider the characteristic function for N1 and N2:

ϕN1(t) = E[eiuN
1

] = exp
{
λ1(eiu − 1)

}
ϕN2

(t) = E[eiuN
2

] = exp
{
λ2(eiu − 1)

}
Since N1 and N2 are two independent Poisson process we have that:

ϕN1+N2(t) = ϕN1(t)ϕN2(t) = exp
{
λ1(eiu − 1)

}
exp

{
λ2(eiu − 1)

}
=

exp
{

(λ1 + λ2)(eiu − 1)
}

As the characteristic function completely determines the distribution, we can conclude that
N1 +N2 ∼ po(λ1 + λ2).

�

The following is the proof of the thinning property:
Proof:
First of all, we recall that the generating function of the binomial distribution with parameter
n and p and the generating function of the Poisson distribution with parameter λ are equal
to:

ΠX(t) = (q + pt)n where q = 1− p

ΠX(t) =
∑
k≥0

e−λλk

k!
tk = e−λ(1−t)

Therefore

E[tXN ] =
∑
n≥0

e−λλn

n!
(q + pt)n =

= exp {(λq + λpt)− λ}
= exp {λpt− λp}

Hence, it follow that X has the Poisson distribution with parameter λp

�

The expected value of Nt can be computed as:

E[Nt] =

∞∑
k=0

kP(Nt = k) = e−λt
∞∑
k=0

k
(λt)k

k!

= e−λt
∞∑
k=1

(λt)k

(k − 1)!
= λte−λt

∞∑
k=0

k
(λt)k

k!

= λt
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A.2 Donsker's invariance principle

Let (ξn)n∈N are i.i.d. with E[ξi] = 0 and E[ξ2
i ] = 1. Then, we de�ne Xn :=

∑n
i=1 ξi with

X0 := 0 and it satis�es the Central Limit Theorem (CLT), i.e. Xn√
n
⇒ N(0, 1). We can

extend the weak convergence result to the continuous process (Xt)t≥0 de�ned by:

Xt := Xbtc + (t− btc)(Xbtc+1 −Xbtc)
which linearly interpolates (Xn)n∈N∪{0} between integer times. Then, we have the following
theorem which is an extension of the CLT to the path level:

Theorem: [Donsker's invariance principle] Let (ξn)n∈N and (Xt)t≥0 be de�ned as
above. Then ( 1√

n
Xnt)0≤t≤1 ⇒ (Bt)0≤t≤1 as C([0, 1],R)-valued random variables, where Bt

is a standard Brownian motion.

A.3 Convolution power

The convolution power is the n-fold iteration of the convolution (is a mathematical operation
of two functions to produce a third function that expresses how the shapre of one is modi�ed
by the other) with itself. Thus, if x is a function on Rd and n ∈ N, then the convolution
power is de�ned by:

x∗n = x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n

, x∗0 = δ0

where ∗ denotes the convolution operation of functions on Rd and δ0 is the Dirac delta
distribution, which is a linear function that maps every function to its value at zero.

A.4 Dirac measure

A Dirac measure is a measure δx on a set X (with any σ− algebra of subsets of X) de�ned
for a given x ∈ X and any set A ⊆ X by:

δx(A) = 1A(x) =

{
0 x /∈ A
1 x ∈ A

Therefore, the Dirac measure is a probability measure, and in terms of probability it repre-

sents the almost sure outcome x in the sample spaceX. Moreover, we have:

∫
X

f(y)dδx(y) =∫
X

f(y)δx(y)dy = f(x).

A.5 Cumulants

The cumulants of X are de�ned by:

cn(X) =
1

in
∂nΨX

∂un
(0)

where ΨX is the cumulant generating function or log-characteristic function of X and is
de�ned in a neighbothood of zero such that: ΨX(0) = 0 and ψX(u) = exp [ΨX(u)] .

A.6 Fourier transform

The Fourier transform decomposes a function of time into the frequencies that it make it
up. Let f : R 7→ C, the Fourier transform is equal to:

f̂(ε) =

∫ ∞
−∞

f(x)e−2πixεdx ∀ε ∈ R

Under suitable condition, f is determined by f̂ via the inverse transform:

f(x) =

∫ ∞
−∞

f̂(ε)e2πixεdε ∀x ∈ R
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A.7 Lipschitz Continuous

De�nition [Lipschitz continuous] A function h : X → Y, X, Y (usually, but not nec-
essarily, subset of Rn) is Lipschitz continuous in X if there exists a constant M > 0 such
that:

dY (h(x1)− h(x2)) ≤MdX(x1 − x2), ∀x1, x2 ∈ X

h is locally Lipschitz continuous in X if for every x ∈ X there exists a neighborhood of it
where h is Lipschitz continuous

105



Bibliography

[1] Damien Lamberton, Bernard Lapeyre, Introduction to Stochastic Calculus Applied to
Finance, Second edition, Chapman and Hall/CRC, UK.

[2] Rama Cont, Peter Tankov, Financial Modelling with Jump Processes, Second edition,
Chapman and Hall/CRC, UK (2004).

[3] José E. Figueroa-Lopez, Jump-Di�usion models driven by Lévy processes,

[4] Antonis Papapantoleon An Introduction to Lévy processes with application in Finance,
Lectures Notes, TU Vienna (2008).

[5] Ken-Iti Sato, Lévy Processes and In�nitely Divisible Distributions, Cambridge University
Press, UK (1994).

[6] Andrea Pascucci, PDE and Martingale Methods in Option Pricing, Springer, Bocconi
university press, Milano (2010).

[7] Stephen Blyth, An Introduction to Quantitative Finance, Oxford university press (2014).

[8] Giuseppe Curci, Mario Dell'Era, Finanza quantitativa e Modelli Matematici, Seconda
edizione, Pisa university press (2016).

[9] Paolo Baldi, Equazioni Di�erenziali Stocastiche e Applicazioni, Pitagora Editrice,
Bologna (2000).

[10] Dan Stefanica, A Primer for the Mathematics of Financial Engineering, Second edition,
FE Press, New York (2011).

[11] Steven E. Shreve, Stochastic Calculus fof Finance II, a continuous-time models,
Springer, USA (2004).

[12] Resnik, A Probability path,

[13] Allan Gut, Probability: a graduate course,

[14] Nicola Gugole, Merton Jump-di�usion model versus the Black and Scholes approach
for the log-returns and volatility smile �tting, International Journal of Pure and Applied
Mathematics, volume 109, pp 719-736.

[15] Barbara Grunewald, Siegfried Tratmann, Option Hedging in the Presence of Jump Risk,
Department of Law and Economics, Johannes Gutenberg-Universitat Mainz, (1996).

106



DEPARTMENT OF ECONOMICS AND FINANCE

SUBJECT: MATHEMATICAL METHODS FOR ECONOMICS AND
FINANCE

HEDGING STRATEGIES IN

JUMP DIFFUSION PRICING MODELS

SUMMARY

SUPERVISOR

Prof. Fausto Gozzi

CANDIDATE

Marco Gregnanin

Id. Number: 689941

CO-SUPERVISOR

Prof.ssa Sara Biagini

ACADEMIC YEAR 2018/2019



Contents

Introduction 2

1 Jump Process 3
1.1 Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 De�nition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Compensated Poisson Processes . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Compound Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Poisson Random Measures . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Lévy Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 De�nition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Jump Di�usion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Exponential Lévy Models . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Stochastic exponential of Jump process . . . . . . . . . . . . . . . . . 9

2 Stochastic Calculus for Jump Process 10
2.1 Stochastic integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Semimartingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Stochastic integral with respect to Brownian motion . . . . . . . . . . 12
2.1.3 Quadratic variation and covariation . . . . . . . . . . . . . . . . . . . 13

2.2 Stochastic Integral with Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Stochastic Integral with respect to Poisson process . . . . . . . . . . . 14
2.2.2 Stochastic Integral with respect to Poisson random measure . . . . . . 14

2.3 Change of variable formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Calculus for �nite jump processes . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Ito formula for jump di�usion and Lévy process . . . . . . . . . . . . . 16

3 Hedging Strategy 17
3.1 Measure Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Equivalence measures in jump processes . . . . . . . . . . . . . . . . . 18
3.2 Option Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Pricing European Option in Black-Scholes model . . . . . . . . . . . . 20
3.2.2 Pricing European Option in jump di�usion process . . . . . . . . . . . 22
3.2.3 Implied Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Hedging Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Black-Scholes Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Merton Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Quadratic Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

References 30

1



Introduction

The mathematical modeling of �nancial market start with Louis Bachelier, who was the �rst
to introduce the Brownian motion as a model for the price �uctuation of a liquid traded
�nancial asset with his doctoral thesis in 1900. In 1973 Fisher Black and Myron Scholes
given a great contribution with the article "The Pricing of Option and Corporate Liabilities",
which gave a new dimension to the use of probability theory in �nance. The option pricing
methodology introduced by Black and Scholes is unique in that distributional assumptions
alone su�ce to generate well-speci�ed option pricing formulas involving mostly observable
variable and parameters. One assumption is that the price of the underlying asset follows
a di�usion process and an additional assumption is that the instantaneous risk-free rate
is nonstochastic and constant. Under these plus other "frictionless market" assumptions,
the option's payo� can be replicated by a continuously adjusted hedge portfolio composed
of the underlying asset and short-term bonds. This imply that the key assumption in the
Black-Scholes model is that the market is complete. In a complete market models probabil-
ity does not really matter, in fact the objective evolution of the asset is only there to de�ne
the set of impossible events and serves to specify the class of equivalent measures. Hence,
two statistical models with equivalent measures lead to the same option prices in a complete
market setting. Therefore, the option pricing formula generated by Black and Scholes de-
pends critically upon the distributional restriction on the volatility of the underlying asset.
The result of that restriction is that the systematic risk of the option is a function of the
systematic risk of the underlying asset only.
Jump di�usion process and more in general Lévy models generalize the Black and Scholes
work by allowing the stock price to jump while preserving the independence and stationary
of returns. Hence, the jump di�usion process described the observed reality of �nancial
markets in a more accurate way than models based only on Brownian motion. In the real
world, we observe that the asset price processes have jumps or spikes. Therefore, we can �nd
three main reason for introducing jumps in �nancial modeling. First, asset price processes
have jumps and some risks cannot be handled with a continuous path model but we need to
study a discontinuous models. Second, the presence in the option market of the phenomenon
of implied volatility smile which shows that the risk-neutral returns are non-gaussian and
leptokurtic. Moreover, in continuous path models the law of returns for shorter maturities
becomes closer to the Gaussian distribution, on the other hand in models with jumps returns
actually become less Gaussian as the maturity becomes shorter. Finally, the jump process
correspond to incomplete markets, hence we did not �nd a unique equivalent probability
measure for the option pricing but there are many possible choice. This imply that a perfect
hedge, i.e. the Black and Scholes Delta hedging, is not longer possible in jump models and
the hedging in jump process achieves a trade-o� between the risk due to the di�usion part
and the jump risk.
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1 Jump Process

In this chapter we introduce and explain a family of discontinuous process called Lévy
processes. We begin with the de�nition of a Poisson process, which is the main building
block for stochastic process with discontinuous trajectories. Then, we talk about compound
Poisson process, which is use to built a jump-di�usion model, and we study its property.
The second section of the chapter, start with the de�nition of Lévy process, then we discuss
its in�nitely divisible distribution and we present the Lévy-Khintchine formula, which links
processes to distributions.
The last section uses the Lévy processes and its properties to built a model for �nancial
applications, which can be decomposed in two main categories: the jump di�usion model
and the in�nite activity models. Here, we give some example of jump di�usion model and we
explain the properties and the relationship between the ordinary and stochastic exponential
models.

1.1 Poisson Process

1.1.1 De�nition and Properties

De�nition 1.1 [Poisson Process] (de�nition 7.1.1 in [1]) Let (Ti)i≥1 be a sequence of
independent, identically, exponentially distributed random variables with parameters λ(λ >
0) and let τn =

∑n
i=1 Ti. We call Poisson process with intensity λ the process Nt de�ned by:

Nt =
∑
n≥1

1{τn≤t} =
∑
n≥1

n1{τn≤t<τn+1}

Where Nt indicates the number of points of the sequence (τn)n≥1 which are smaller than or
equal to t. Let (Nt)t≥0 be a Poisson process and it has the following properties:

1) For all t ≥ 0, Nt is almost surely (a.s.) �nite;

2) The trajectories of N (in other words: ∀ω, the sample path t 7→ Nt(ω)) are piecewise
constant with jumps of size 1;

3) The trajectories are right continuous with left limit (càdlàg);

4) ∀t > 0, Nt− = Nt with probability 1;

5) ∀t > 0, Nt follows a Poisson distribution with parameter λt:

∀n ∈ N, P(Nt = n) = e−λt (λt)n

n!

6) The characteristic function of Nt is

E[eiuNt ] = exp
{
λt(eiu − 1)

}
, ∀u ∈ R;

7) Independence of increments: for all 0 ≤ t0 < t1 < · · · < tn and n ≥ 1 the increments

Nt1 −Nt0 , . . . , Ntn −Ntn−1

are mutually independent random variables. In other words, if s > 0, Ntn −Ntn−1
is

independent of the σ-algebra Ft;

8) Stationarity of increments: Nt+h − Ns+h has the same distribution as Nt − Ns for
all h > 0 and 0 ≤ s ≤ t. Hence, the law of Nt+s − Nt is identical to the law of
Ns −N0 = Ns;
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The right continuity, càdlàg property, of the Poisson process is not really a "property".
In fact, we have de�ned Nt in such a way that at a discontinuity point Nt = Nt+ but a
function could be càglàd (left continuous with right limit, in this case we have f(t) = f(t−)
and Nt = Nt− ). There is a di�erence between a càdlàg and a càglàg process especially
in the context of �nancial modeling. In fact, if a right continuous function has a jump at
time t, then the value f(t) is not predictable by following the trajectory up to time t and
the discontinuity is seen as a sudden event. On the other hand, if the function was left
continuous, an observer approaching t along the path could predict the value at t. Hence,
jumps represent unexpected, unforeseeable events and the assumption of right-continuity is
natural. By contrast, we should use a càglàd process if we want to model a discontinuous
process whose values are predictable. This will be the case when we want built trading
strategies.

1.1.2 Compensated Poisson Processes

The compensated Poisson process de�ne the "centered" version of the Poisson process Nt
by

Ñt = Nt − λt.

where λt is the expected value of the Poisson process. (Ñt) has centered increments because
it has the expected value equal to zero. Moreover, (Ñ) follows a centered version of the
Poisson law with characteristic function:

ψÑt(u) = exp[λt(eiu − 1− iu)]

(Ñt)t≥0 is called a compensated Poisson process and (λt)t≥0 is called the compensator of
(Nt)t≥0 and it is the quantity which has to be subtracted from Nt in order to obtain a
martingale. Moreover, the compensated Poisson process is no longer integer valued because
it is not a counting process unlike the Poisson process.

1.1.3 Compound Poisson Process

The Poisson process itself appears to be too limited to develop realistic asset prices model
because the assumption that the jumps size are always equal to 1 is too restrictive, but it
can be used as building block to built richer models. Therefore, there is some interest in
considering jump processes that can have random jump sizes.
De�nition 1.2 [Compound Poisson Process] The compound Poisson process with jump
intensity λ and jump size distribution µ is a stochastic process (Xt)t≥0 de�ned by:

Xt =

Nt∑
i=1

Yi,

where (Yi)i≥1 is a sequence of independent random variable with law µ and Nt is a Poisson
process with intensity λ independent from (Yi)i≥1.
This de�nition means that a compound Poisson process is a piecewise constant process which
jumps at jump times of a standard Poisson process and whose jump size are i.i.d random
variables with a given law.
Proposition 1.1 (Characteristic function of the compound Poisson process) (proposition
3.4 in [2]) Let (Xt)t≥0 be a compound Poisson process with jump intensity λ and jump size
distribution µ. Then X is a piecewise constant Lévy process and its characteristic function
is given by:

E[eiuXt ] = exp

{
λt

∫ ∞
−∞

(eiux − 1)µ(dx)

}
. (1)
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1.1.4 Poisson Random Measures

The de�nition of the Poisson random measure is a key point for the theory of Lévy processes,
which are described in the next section of this chapter.
De�nition 1.3 [Random measure] Let (Ω,P,F) be a probability space and let (E, E) be
a measurable space. Then M : Ω× E → R is a random measure if:

• for every ω ∈ Ω, M(ω, · ) is a measure on E;

• for every A ∈ E , M(· , A) is measurable.

We can express a Poisson process in terms of the random measure M in the following
way:

Nt(ω) = M(ω, [0, t]) =
∫

[0,t]
M(ω, ds)

where M is called the random jump measure associated to the Poisson process N.
De�nition 1.4 [Jump measure] Let X be a Rd−valued càdlàg process. The jump measure
of X is a random measure on B([0,∞)× Rd) de�ned by

JX(A) = # {t : ∆Xt 6= 0 and (t,∆Xt) ∈ A} . (2)

This de�nition means that the jump measure of a set of the form [s, t] × A counts the
number of jumps of X between s and t such that their amplitude belongs to A. In other
words, JX contains all the information about the discontinuities, i.e. jumps, of the process
X. It tells us when the jumps occur and how big they are. Therefore, JX does not tell us
anything about the continuous component of X, which has continuous sample path if and
only if JX = 0 almost surely. This means that there are no jumps in the process.
For a counting process, since the jumps size is always equal to 1, the jump measure can be
seen as a random measure on [0,∞).
Proposition 1.2 Let X be a Poisson process with intensity λ. Then, JX is a Poisson random
measure on [0,∞) with intensity λ× dt.
Proposition 1.3 (Jump measure of a compound Poisson process) (proposition 3.5 in [2])
Let (Xt)t≥0 be a compound Poisson process with intensity λ and jump size distribution f.
Its jump measure JX is a Poisson random measure on Rd × [0,∞) with intensity measure
µ(dx× dt) = ν(dx)dt = λf(dx)dt.
This proposition implies that every compound Poisson process can be represented in the
following form:

Xt =
∑
s∈[0,t]

∆Xs =

∫
[0,t]×Rd

xJX(ds× dx)

where JX is a Poisson random measure with intensity measure ν(dx)dt. In this equation, we
have rewritten the process X as the sum of its jumps and since it is a compound Poisson
process, it has almost surely a �nite number of jumps in the interval [0, t]. Moreover, the
stochastic integral in the equation is a �nite sum, hence there are no convergence problems.

1.2 Lévy Processes

1.2.1 De�nition and Properties

De�nition 1.5 [Lévy process] (de�nition 3.1 in [2]) A càdlàg stochastic process (Xt)t≥0

on (Ω,F ,P) with values in Rd such that X0 = 0 is called a Lèvy process if it possesses the
following properties:

1) Independent increments: for every increasing sequence of times t0, . . . , tn, the random
variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1

are independent;

2) Stationary increments: the law of Xt+h −Xt does not depend on t;

3) Stochastic continuity: ∀ε > 0, lim
h→0

P(|Xt+h −Xt| ≥ ε) = 0.
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Proposition 1.4 (Characteristic function of a Lévy process) (proposition 3.2 in [2]) Let
(Xt)t≥0 be a Lévy process on Rd. There exists a continuous function ψ : Rd 7→ R called the
characteristic exponent of X, such that:

E[eiuXt ] = etψ(u), u ∈ Rd.

Where ψ is the cumulant generating function of X1. The cumulant generating function
ψ(t) is the natural logarithm of the moment generating function:

ψ(t) = logE[etX ]

The proposition regarding the Jump measure of a compound Poisson process can be used to
de�ne the Lévy measure for all the Lévy process. Therefore, we give the following de�nition:
De�nition 1.6 [Lévy measure] (de�nition 3.4 in [2]) Let (Xt)t≥0 be a Lévy process on
Rd. The measure ν on Rd de�ned by:

ν(A) = E[# {t ∈ [0, 1] : ∆Xt 6= 0, ∆Xt ∈ A}], A ∈ B(Rd)

is called the Lévy measure of X. ν(A) is the expected number, per unit time, of jumps whose
size belongs to A.
Proposition 1.5 (Lévy-Ito decomposition) (proposition 3.7 in [2]) Let (Xt)t≥0 be a Lèvy
process on Rd and ν its Lèvy measure. Then:

• the Lévy measure ν satis�es the integrability condition:∫
Rd

(‖x‖2 ∧ 1)ν(dx) <∞;

• the jump measure JX of X is a Poisson random measure on [0,∞)×Rd with intensity
dt× ν = ν(dx)dt;

• there exists γ ∈ Rd and a d-dimensional Brownian motion (Bt)t≥0 with covariance
matrix A such that:

Xt = γt+Bt +Nt +Mt, where (3)

Nt =

∫
|x|>1,s∈[0,t]

xJX(ds× dx)

Mt =

∫
0<|x|≤1,s∈[0,t]

x{JX(ds× dx)− ν(dx)ds}

≡
∫

0<|x|≤1,s∈[0,t]

xJ̃X(ds× dx)

The three terms in (1.3) are independent and the convergence in the last term is almost sure
and uniform in t on [0, T ].
The Lévy-Ito decomposition say that for every Lévy process there exist a vector γ (drift), a
positive de�nite matrix A and a positive measure ν that uniquely determine its distribution.
We call the triplet (A, ν, γ) characteristic triplet or Lévy triplet of the process Xt.
The following theorem give to us the second fundamental result of the structure of the path
of Poisson process and it announces the expression of the characteristic function of a Lévy
process in terms of its characteristic triplet (A, ν, γ) :
Theorem 1.1 [Lévy-Khinchin representation] (theorem3.1 in [2]) Let (Xt)t≥0 be a Lévy
process on Rd with characteristic triplet (A, ν, γ). Then:

E[ei〈u,Xt〉] = etψ(u), u ∈ Rd (4)

with ψ(u) = i 〈γ, u〉 − 1

2
〈u,Au〉+

∫
Rd

(ei〈u,x〉 − 1− i 〈u, x〉1|x|≤1)ν(dx).

This theorem imply that since X has stationary and independent increments, we have that

E
[
ei〈u,Xt〉

]
=
{
E
[
ei〈u,X1〉

]}t
, ∀t ∈ R and by the right continuity of X, ∀t.
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De�nition 1.7 [Semimartingale] A semimartingale is a stochastic process (Xt)0≤t≤T
which admits the decomposition:

X = X0 +M +A (5)

where X0 is �nite and F0-measurable, M is a local martingale with M0 = 0 and A is a �nite
variation process with A0 = 0.
If A is predictable, then X is a special semimartingale and all special semimartingale have
a "canonical decomposition" equal to:

X = X0 +B +Xc + x(JX − νX) (6)

where Xc is the continuous martingale part of X and x(JX−νX) is the purely discontinuous
martingale part of X. In particular, JX is the jump measure of X and νX is called the
compensator of JX .

1.3 Jump Di�usion Model

The �nancial models with jumps can be decomposed in two main categories: the jump-
di�usion model and the in�nite activity models. The jump-di�usion model the evolution
of prices are given by a di�usion process which has jumps at random intervals. Here, the
jumps represent rare events such as crashes and large drawdown. Since the distribution of
jump sizes is known, the dynamic structure of the jump process is easy to understand and
describe. The jump-di�usion models perform well for implied volatility smile interpolation.

1.3.1 Exponential Lévy Models

In order to construct an exponential Lévy model for the process X, we need to start from
the Black-Scholes model and how it describes the evolution of an asset price. Here, the asset
price (St) follow a geometric Brownian motion:

St = S0e
µt+σWt (7)

If we replace µt + σWt by a Lévy process Xt, we obtain the class of the exponential Lévy
models:

St = S0e
Xt (8)

Now, consider a Lévy process of jump-di�usion type with the following form:

Xt = γt+ σWt +

Nt∑
i=1

Y1 (9)

where (Nt)t≥0 is the Poisson process which counting the jumps of X and Yi are the jump
sizes, which are i.i.d. variables. Therefore, the evolution of the asset price becomes:

St = S0e
γt+σWt+

∑Nt
i=1 Y1 (10)

We need to specify the distribution of jump sizes ν0(x) in order to de�ne the parametric
model completely. Is is important to specify the tail behavior of ν0(x) correctly because the
tail behavior of the jump measure determines the tail behavior of the probability density of
the process.

In theMerton model (introduced by Merton in 1973 with the article "Option pricing when
underlying stock return are discontinuous") we have that the process is equal to the equation
(1.10) and the jumps are assumed to have a Gaussian distribution, therefore Yi ∼ N(µ, δ2).
This allows to obtain the probability density of Xt as a quickly converging series. In fact,

P(Xt ∈ A) =

∞∑
k=0

P(Xt ∈ A|Nt = k)P(Nt = k)

7



then the probability density of Xt satis�es the equation:

pt(x) = e−λt
∞∑
k=0

(λt)kexp
{
− (x−γt−kµ)2

2(σ2t+kδ2)

}
k!
√

2π(σ2t+ kδ2)

The Lévy density of the model is equal to:

ν(x) =
λ

δ
√

2π
exp

{
− (x− µ)2

2δ2

}
One last thing to note is the moment of the process in the Merton model. Hence, we have
that the characteristic exponent of the characteristic function is equal to:

ψ(u) = iγu− σ2u2

2
+ λ

{
e−

δ2u2

2 +iµu − 1
}

It follows that: E[Xt] = t(γ + λµ) and V ar(Xt) = t(σ2 + λγ2 + λµ2). If we analyze the
moment, we can note the tail behavior of the probability density, which are heavier than
Gaussian but all the exponential moments are �nite.
In the Kou model (introduced by Kou in 2002 with the article "A jump-di�usion model
for option pricing") we have that the process Xt is equal as in the Merton model but the
distribution of jumps sizes is an asymmetric exponential (i.e. has a double exponential
distribution, therefore Yi ∼ DbExp(p, θ1, θ2)) with a density of the form:

ν0(dx) =
[
pθ1e

−θ1x1x>0 + (1− p)θ2e
−θ2|x|1x<0

]
dx (11)

where θ1 > 0, θ2 > 0 represent the decay of the tails for the distribution of positive and
negative jump sizes, respectively, and p ∈ [0, 1] represent the probability of an upward jump.
Therefore, we can easily �nd the Lévy measure of the process:

ν(x) = pλθ1e
−θ1x1x>0 + (1− p)λθ2e

−θ2|x|1x<0

The �rst two moments of the process are equal to: E[Xt] = t
(
γ + λt

θ1
− λ(1−p)

θ2

)
and

V ar(Xt) = t
(
σ2 + λt

θ21
− λ(1−p)

θ22

)
. We �nd these two result from the characteristic function

of the process, which has characteristic exponent equal to:

ψ(u) = iγu− σ2u2

2
+ iuλ

{
p

θ1 − iu
− 1− p
θ2 + iu

}
In this case, the probability distribution of returns has semi-heavy exponential tails. On
one hand, we have that p(x) ∼ e−θ1x when x → +∞, on the other hand, we have that
p(x) ∼ e−θ2|x| when x→ −∞.
The advantage of the Kou model compared to the Merton model is that analytical expres-
sions for expectations involving �rst passage times may be obtained due to the memoryless
property of exponential random variables.
The following proposition told us the condition of the exponential Lévy process to be a
semimartingale:
Proposition 1.6 (Exponential Lévy process) (proposition 8.20 in [2]) Let (Xt)t≥0 be a

Lévy process with Lévy triplet (σ2, ν, γ) verifying

∫
|y|≥1

eyν(dy) < ∞. Then, Yt = eXt is a

semimartingale with decomposition Yt = Mt +At where the martingale part is given by:

Mt = 1 +

∫ t

0

Ys−σdWs +

∫
[0,t]×R

Ys− (ez − 1) J̃X(ds× dz)

and the continuous �nite variation drift part is given by:

At =

∫ t

0

Ys−

[
γ +

σ2

2
+

∫ ∞
−∞

(
ez − 1− z1|z|≥1

)
ν(dz)

]
ds.
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(Yt) is a martingale if and only if

γ +
σ2

2
+

∫ ∞
−∞

(
ez − 1− z1|z|≥1

)
ν(dz) = 0

1.3.2 Stochastic exponential of Jump process

The stochastic exponential was introduced by Doléans-Dade and it can be found using the
Ito formula in the geometric Brownian motion (equation (1.7)) and substituting a Lévy
process. Hence, if we apply the Ito formula in (1.7) we obtain:

dSt
St

=

(
µ+

σ2

2

)
dt+ σdWt

Then, we can de�ne B1
t = (µ+ σ2

2 )t+ σWt and the above equation becomes:

dSt
St

= dB1
t (12)

If we substitute B1
t by a Lévy process X, we obtain the stochastic exponential. Therefore,

with the following proposition we can introduce a generic stochastic exponential for a process
(Zt)t≥0.
Proposition 1.7 (Stochastic exponential) (proposition 8.21 in [1]) Let (Xt)t≥0 be a Lévy
process with Lévy triplet (σ2, ν, γ). Then, there exists a unique càdlàg process (Zt)t≥0 such
that: {

dZt = Zt−dXt

Z0 = 1
(13)

Where Z is given by:

Zt = eXt−
1
2

∫ t
0
σ2
sds

∏
0≤s≤t

(1 + ∆Xs)e
−∆Xs (14)

If

∫ 1

−1

|x|ν(dx) <∞, then the jumps of X have �nite variation and the stochastic exponential

of X can be expressed as:

Zt = eσWt+γ0t−σ
2t
2

∏
0≤s≤t

(1 + ∆Xs)

where γ0 = γ −
∫ 1

−1

xν(dx).

Z is called the stochastic exponential of X and is denoted by Z = E(X).
We can note that the stochastic exponential is always nonnegative if all the jumps of Xt

are greater than −1, i.e. ν((−∞,−1]) = 0.
Goll and Kallsen have shown that the stochastic exponential is equivalent to the ordinary
exponential. In fact, if Z > 0 is the stochastic exponential of a Lévy process, it is also the
ordinary exponential of another Lévy process (it is also true the opposite case). Therefore,
the two exponential end up by giving us the same class of positive processes. The following
proposition shows the relation between ordinary and stochastic exponential:
Proposition 1.8 (Relation between ordinary and stochastic exponential) (proposition 8.22
in [2])

1. Let (Xt)t≥0 be a real valued Lévy process with Lévy triplet (σ2, ν, γ) and Z = E(X) its
stochastic exponential. If Z > 0 almost surely, then there exists another Lévy process
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(Lt)t≥0 with triplet (σ2
L, νL, γL) such that Zt = eLt where:

Lt = lnZt = Xt −
σ2t

2
+
∑

0≥s≥t

(ln (1 + ∆Xs)−∆Xs

σL = σ

νL(A) = ν({x : ln (1 + x) ∈ A}) =

∫
1A(ln (1 + x))ν(dx)

γL = γ − σ2

2
+

∫
[ln (1 + x)1[−1,1](ln (1 + x))− x1[−1,1](x)]ν(dx)

2. Let (Lt)t≥0 be a real valued Lévy process with Lévy triplet (σ2
L, νL, γL) and St = eLt its

exponential. Then, there exists a Lévy process (Xt)t≥0 such that St is the stochastic
exponential of X : S = E(X) where:

Xt = Lt +
σ2t

2
+
∑

0≤s≤t

(
e∆Ls − 1−∆Ls

)
Therefore, the Lévy triplet (σ2, ν, γ) of X is given by:

σ = σL

ν(A) = νL({x : (ex − 1) ∈ A}) =

∫
1A(ex − 1)νL(dx)

γ = γL −
σ2
L

2
+

∫
[(ex − 1)1[−1,1](e

x − 1)− x1[−1,1](x)]νL(dx)

3. Let (Xt)t≥0 be a Lévy process and a martingale. Then, its stochastic exponential
Z = E(X) is also a martingale. Therefore, for every Lévy process X with E[|Xt|] <∞
we have:

E[E(Xt)] = eE[Xt] t > 0

This property is also known as Martingale preserving property.

2 Stochastic Calculus for Jump Process

We can de�ne an arbitrage strategy as a self-�nancing strategy φ with zero initial value and
non-zero �nal value with probability equal to 1.Moreover, a strategy is called self-�nancing if
the following equation is satis�ed for all t : 〈φt, St〉 = 〈φt+1, St〉 . Therefore, we can consider
an investor who trades at times T0 = 0 < T1 < · · · < Tn < Tn+1 = T and detaining a
quantity φi of an asset whose price is S during the period (Ti, Ti+1]. Then, we can de�nite
the capital gain Gt(φ) as:

Gt(φ) :=

n∑
i=0

φi(STi+1 − STi) (15)

We can write the quantity which represents the capital gain of the investors following the
strategy φ as :

Gt(φ) =

n∑
i=0

φi(STi+1 − STi) =

∫ T

0

φtdSt (16)

where the last term in equation (3.2) represent the stochastic integral φ with respect to S.

2.1 Stochastic integral

Consider a vector of asset whose price S is described by a stochastic process, i.e. St =
(S1
t , S

2
t , . . . S

d
t ) and a portfolio φ = (φ1, φ2, . . . , φd) which describes the amount of each asset
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held by the investor. Therefore, the value of such portfolio at time t is equal to:

Vt(φ) =

d∑
k=1

φdSkt ≡ 〈φt, St〉 (17)

We also assume a dynamic trading strategy, which consist in buying and selling assets at
di�erent dates, and we consider an investor who trades at times T0 = 0 < T1 < · · · <
Tn < Tn+1 = T . We also assume that the strategy is self-�nancing and that between two
transaction dates Ti and Ti+1 the portfolio remains unchanged. The meaning of the self-
�nancing assumption is that at time t the investors readjusts his position from φt to φt+1

without bringing or consuming any wealth. Moreover, if we dropped this assumption, we
would had arbitrage opportunities because a portfolio which is empty at time 0 but to which
cash (> 0) is added, without any liability, would trivially be an arbitrage portfolio. The
second assumption told us that the investor did not know in advance the transaction dates
but he will decide to buy or sell at Ti+1 depending on the information revealed before Ti+1.
Hence, the transaction date Ti+1 is a stopping time. In the �rst chapter, we assume that the
processes are càdlàg (i.e. right continuous with left limits), whereas here we have that the
trading strategy is càglàd (i.e. left continuous with right limits). We have the left continuity
in the process because if the investor decides to make a transaction at t = Ti, the portfolio
will take the new value at φi before that the value of the portfolio is still described by
φi−1. Therefore, we have that (φt)t∈[0,T ] is a predictable process and we have the following
de�nition:
De�nition 2.1 [Simple Predictable Process] (de�nition 8.1 in [2]) A stochastic process
(φt)t∈[0,T ] is called a simple predictable process if it can be represented as:

φt = φ01t=0 +

n∑
i=0

φi1(Ti,Ti+1](t) (18)

where T0 = 0 < T1 < · · · < Tn < Tn+1 = T are nonanticipating random times and each φi
is bounded random variable whose value is revealed at Ti (i.e. FTi-measurable).
The stochastic process Gt(φ) can be expressed as the stochastic integral of the simple pre-
dictable process φ with respect to S and it is equal to:∫ t

0

φudSu := 〈φ0, S0〉+

n∑
i=0

〈
φi, (STi+1∧t − STi∧t)

〉
(19)

Since the self-�nancing assumption imply that the cost of the process is equal to zero, we
have that the value of the portfolio, Vt(φ), is equal to:

Vt(φ) =

∫ t

0

φudSu = φ0S0 +

∫ t

0+

φudSu

where the �rst term is the initial value of the portfolio and the second term is the capital gain
between 0 and t. Therefore, for an investors the only source of variation of the portfolio's
value is the variation of the asset values.

Proposition 2.1 (Martingale preserving property) (proposition 8.1 in [2]) If (St)t∈[0,T ]

is a martingale, then for any predictable process φ the stochastic integral Gt =

∫ t

0

φdS is

also a martingale.
This proposition imply that if the asset follows a martingale then the the value of any
self-�nancing strategy is a martingale.

2.1.1 Semimartingale

Since a Lévy process X is not stable under stochastic integration or non-linear transforma-
tions, we need to consider the class of samimartingales, which are a larger class of stochastic
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processes. These kind of class are both stable under stochastic integration and non-linear
transformation. Moreover, they are also stable under other operation such as change of �l-
tration and change of measure. Now, we give the de�nition of semimartingale with respect
a simple predictable process.
De�nition 2.2 [Semimartingale] (de�nition 8.2 in [2]) A nonanticipating càdlàg pro-
cess S is called a semimartingale if the stochastic integral of simple predictable process with
respect to S:

φ = φ01t=0 +

n∑
i=0

φi1(Ti,Ti+1] 7→
∫ T

0

φdS = φ0S0 +

n∑
i=0

φi(STi+1 − STi)

veri�es the following continuity property: for every φn, φ ∈ S([0, T ]) if:

sup
(t,ω)∈[0,T ]×Ω

|φnt (ω)− φt(ω)| →
n→∞

0

then ∫ T

0

φndS
P−−−−→

n→∞

∫ T

0

φdS (20)

where S([0, T ]) is a set of simple predictable processes on [0, T ].
The class of semimartingales satisfy the stability property: a small change in the portfolio
should lead to a small change in the gain process.
Proposition 2.2 (proposition 8.3 in [2]) If (St)t∈[0,T ] is a semimartingale then for every
φn, φ ∈ S([0, T ]):

if sup
(t,ω)∈[0,T ]×Ω

|φnt (ω)− φt(ω)| →
n→∞

0 (21)

then sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

φndS −
∫ t

0

φdS

∣∣∣∣ P−−−−→
n→∞

0. (22)

Moreover, we have that any linear combination of a �nite number of semimartingales is
a semimartingales. In fact, all the Lévy processes are semimartingale because it can be
decomposed into a sum of square integrable martingale (the Wiener process) and a �nite
variation process (the Poisson process). Finally, we can note that all the new processes
constructed from semimartingales using stochastic integration are again semimartingales
due to associativity property, which helps us to show that a stochastic integral with respect
to a semimartingale is a semimartingale. And that every semimartingale is the sum of a
�nite variation process and a local martingale, which can be de�ned as the process (Xt) in
which there exists a sequence of stopping times (τi)i≥1 such that τi →∞ when i→∞ and
for each i, (Xτi∧t) is a martingale.

2.1.2 Stochastic integral with respect to Brownian motion

Consider the simple predictable process φ de�nes in equation (2.4). Then, we can de�ne the
Brownian stochastic integral as:∫ T

0

φtdWt =

n∑
=0

φi(WTi+1 −WTi) (23)

Proposition 2.3 (Isometry formula) (proposition 8.5 in [2]) Let (φt)0≤t≤T be a simple
predictable process and (Wt)0≤t≤T be a Wiener process. Then:

i.

E

[∫ T

0

φtdWt

]
= 0, (24)

ii.

E

∣∣∣∣∣
∫ T

0

φtdWt

∣∣∣∣∣
2
 = E

[∫ T

0

|φt|2dt

]
(25)
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We can use the isometry formula to built stochastic integrals with respect to the Wiener
process for predictable processes. We need that the predictable processes (φt)t∈[0,T ] verify:

E

[∫ T

0

|φt|2dt

]
<∞

E

[∫ T

0

|φnt − φt|2dt

]
−→
n→∞

0.

Therefore, we have the following proposition for Brownian integrals:
Proposition 2.4 (Isometry formula for Brownian integrals) (proposition 8.6 in [2]) Let
(φt)0≤t≤T be a predictable process which satisfy:

E

[∫ T

0

|φt|2dt

]
<∞

Then,
∫ t

0
φdWt is a square integrable martingale and

i.

E

[∫ T

0

φtdWt

]
= 0,

ii.

E

∣∣∣∣∣
∫ T

0

φtdWt

∣∣∣∣∣
2
 = E

[∫ T

0

|φt|2dt

]

2.1.3 Quadratic variation and covariation

Consider a process observed on a time grid π = (t0 = 0 < t1 < · · · < tn+1 = T ), then we
can de�ne the realized variance as:

VX(π) =
∑
ti∈π

(Xti+1 −Xti)
2

We can de�ne the quadratic of the variation process:
De�nition 2.3 [Quadratic Variation] (de�nition 8.3 in [2]) The quadratic variation
process of a semimartingale X is the nonanticipating càdlàg process de�ned by:

[X,X]t = |Xt|2 − 2

∫ t

0

Xu−dXu (26)

Is important to specify that the quadratic variation is a random variable and not a number.
Moreover, if πn = (tn0 = 0 < tn1 < · · · < tnn+1 = T ) is a sequence of partitions of [0, T ] such
that |πn| = supk |tnk − tnk−1| → 0 as n→∞, then

0≤ti<t∑
tiπn

(Xti+1
−Xti)

2 P−−−−→
n→∞

[X,X]t

where the convergence is uniform in t.
Consider a Brownian motion Bt = σWt, where W is a standard Wiener process, then the
quadratic variation of the Brownian motion is equal to [B,B]t = σ2t.
In the quadratic variation, we consider only one process X but, in the reality, we can see
more stochastic process. Therefore, we need to introduce the multidimensional counterpart
of the quadratic variation: the quadratic covariation.
De�nition 2.4 [Quadratic Covariation] (de�nition 8.4 in [2]) Given two semimartin-
gales X,Y . The quadratic covariation process [X,Y ] is the semimartingale de�ned by:

[X,Y ]t = XtYt −X0Y0 −
∫ t

0

Xs−dYs −
∫ t

0

Ys−dXs (27)
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Consider two Brownian motion: B1
t = σ1W

1
t and B2

t = σ2W
2
t , where W

1, W 2 are two
standard wiener processes with correlation ρ (typically, with di�erential notation we de�ne
the correlation between two standard Wiener process as: dW 1dW 2 = ρdt.

2.2 Stochastic Integral with Jumps

2.2.1 Stochastic Integral with respect to Poisson process

Consider the relation, for the Poisson process: ∆Xt = YNt∆Nt. Then, we can de�ne the
stochastic integral of a stochastic process (φt)t≥0 with respect to (Xt)t≥0 by:∫ T

0

φtdXt =

∫ T

0

φtYNtdNt :=

NT∑
k=1

φTkYk (28)

The meaning of the above equation is that the value at time T of a portfolio containing
a quantity φt of an asset at time t, whose price evolves according to random returns Yk,
generate capital gain or losses equal to φTkYk at random times Tk.
Consider a compound Poisson process (Xt)t≥0, it admits stochastic integral representation
equal to:

Xt = X0 +

Nt∑
k=1

Yk = Y0 +

∫ t

0

YNsdNs

Consider a counting process Nt with jump times Ti and with random variables observed
at Ti describe by Yi. Let Xt be a process de�ned by Xt =

∑Nt
i=1 Yi, hence the quadratic

variation of the process is equal to:

[X,X]t =
∑
s≤t

(∆Xs)
2 =

Nt∑
i=1

Y 2
i

We can note that the same formula holds for every �nite variation process X. Moreover,
the predictable quadratic variation of the process (i.e. "angle bracket") is the compensator
of [X,X], namely:

〈X,X〉t = λtE[Y 2
1 ]

For the quadratic covariation we need to consider another counting process N b
t , which has

jump times Tj and random variables observed at Tj , described by Y
b
j . Then, we consider the

process Zt =
∑Nbt
j=1 Y

b
j . Now, we make the assumption that X and Z have �nite variation

processes whose jumps times are almost surely disjoint, hence they did not jump at the same
time, therefore the quadratic covariation is equal to:

[X,Z]t =
∑
s≤t

∆Xs∆Zs = 0

The assumption of disjoint jumps is a strong assumption and we consider it only for the
stock price behavior. In fact, if we consider the exchange rate we drop this assumption and
we consider correlated jumps between the rate.

2.2.2 Stochastic Integral with respect to Poisson random measure

Consider a Poisson random measureM on [0, T ]×Rd with intensity µ(dt×dx). Let M̃ be the
compensated random measure de�ned as the centered version ofM : M̃(A) = M(A)−µ(A) =
M(A)− E[M(A)], where A ⊂ Rd.
We can de�ne the simple predictable process with respect to the Poisson random measure
as:

φ(t, y) =

n∑
i=1

m∑
j=1

φij1(Ti,Ti+1](t)1Aj (y) (29)
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where φ : Ω × [0, T ] × Rd → R is a simple predictable functions, (φij)j=1,...,m are bounded
FTi-measurable random variables, T1 ≤ T2 ≤ · · · ≤ Tn are non anticipating random times
and (Aj)j=1,...,m are disjoint subsets of Rd with µ([0, T ] × Aj) < ∞. The disjoint subset
implies that the compensated random measure is a martingale with respect to Aj and that
if A ∩B = ∅, then Mt(A) and Mt(B) are independent.
Proposition 2.5 (Martingale preserving property) (proposition 8.7 in [2]) For any simple
predictable function φ : Ω×[0, T ]×Rd → R the process (Xt)t∈[0,T ] de�ned by the compensated
integral:

Xt =

∫ t

0

∫
Rd
φ(s, y)M̃(ds× dy)

is a square integrable martingale and veri�es the isometry formula:

E[|Xt|2] = E

[∫ t

0

∫
Rd
|φ(s, y)|2µ(ds× dy)

]
(30)

We can extend the isometry formula to square integrable predictable functions and we have
the following proposition:
Proposition 2.6 (Compensated Poisson integrals) (proposition 8.8 in [2]) For any pre-
dictable random function φ : Ω× [0, T ]× Rd → R verifying

E

[∫ t

0

∫
Rd
|φ(s, y)|2µ(ds× dy)

]
<∞

the following property hold:

• t 7→
∫ t

0

∫
Rd
φ(s, y)M̃(ds× dy) is a square integrable martingale;

•

E

[∣∣∣∣ ∫ t

0

∫
Rd
φ(s, y)µ(ds× dy)

∣∣∣∣ 2
]

= E

[∫ t

0

∫
Rd
|φ(s, y)|2µ(ds× dy)

]
(31)

Consider a Lévy process (Xt)t≥0 with Lévy measure ν and a Poisson random measure
JX with intensity µ(dt× dx) = dtν(dx).

2.3 Change of variable formula

Let f : R→ R be a C2 function and let g : [0, T ]→ R be a C1 function. Then, the change
of variables formula for smooth function is:

f(g(t))− f(g(0)) =

∫ t

0

f ′(g(s))g′(s)ds =

∫ t

0

f ′(g(s))dg(s) (32)

Now, we can consider the Brownian integral de�ned as: Xt =
∫ t

0
σsdWs and the function f

de�ned as above. Then, if we apply the Ito formula at Xt we �nd:

f(Xt) = f(0) +

∫ t

0

f ′(Xs)σsdWs +
1

2

∫ t

0

f ′′(Xs)ds (33)

2.3.1 Calculus for �nite jump processes

Let x : [0, T ] → R be a function with a �nite number of discontinuities at time 0 = T0 ≤
T1 ≤ T2 ≤ · · · ≤ Tn ≤ Tn+1 = T and the function x is smooth on each interval, de�nes
as (Ti, Ti+1). Moreover, we can de�ne x(Ti) := x(T+

i ), which means that x is càdlàg at
the discontinuity points. Let f : R → R be a C1 function. Since x is smooth on each
interval (Ti, Ti+1), f(x(t)) is also smooth. Then, the following proposition summarized the
Ito formula for �nite activity jump process where the counting process Nt is a martingale:
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Proposition 2.7 (Ito formula for �nite activity jump processes) (proposition 8.13 in [2])
Let X be a jump process with values in R de�ned by:

Xt =

∫ t

0

bsds+

Nt∑
i=1

Yi

where bs is a nonanticipating càdlàg process, Nt is a counting process representing the number
of jumps between 0 and t and Yi is the size of the i-th jump. Denote by (Tn)n≥1 the jump
times of Xt and JX the random measure on [0, T ]×R associated to the jumps of X1. Then,
for any measurable function f : [0, T ]× R→ R we have:

f(t,Xt)− f(0, X0) =

∫ t

0

(
∂f

∂s
(s,Xs−) + bs

∂f

∂x
(s,Xs−)ds

)
+

∑
n≥1,Tn≤T

(f(s,Xs− + ∆Xs)− f(s,Xs−))

=

∫ t

0

(
∂f

∂s
(s,Xs−) + bs

∂f

∂x
(s,Xs−)ds

)
+

∫ t

0

∫ ∞
−∞

(f(s,Xs− + y)− f(s,Xs−)) JX(ds× dy) (34)

where ∆xi = x(Ti) − x(T−i ). Moreover, if Nt is a Poisson process with E[Nt] = λt, with
Yi ∼ F are i.i.d. and f is boundend, then Yt = f(t, Yt) = Vt+Mt, whereM is the martingale
or noise component and V is the continuous �nite variation drift. This two component are
respectively equal to:

Mt =

∫ t

0

∫ ∞
−∞

(f(s,Xs− + y)− f(s,Xs−)) J̃X(ds× dy) (35)

where J̃X(ds× dy) = JX(dt× dy)− λF (dy)dt

Vt =

∫ t

0

(
∂f

∂s
(s,Xs−) + bs

∂f

∂x
(s,Xs−)ds

)
+

∫ t

0

ds

∫
Rd
F (dy) (f(s,Xs− + y)− f(s,Xs−)) (36)

2.3.2 Ito formula for jump di�usion and Lévy process

Consider a jump-di�usion process de�ned in chapter 1, i.e. Xt = γt+ σWt +
∑Nt
i=1 Yi. We

can write this process with a di�erent notation:

Xt = γt+ σWt︸ ︷︷ ︸
Xc(t)

+

Nt∑
i=1

∆Xi︸ ︷︷ ︸
Jt

= Xc(t) + Jt (37)

where ∆Xi := X(Ti) −X(T−i ). Let f be a C2 function on R and let Ti, i = 1, . . . , NT , be
the jump times of X. Then, we can de�ne Yt = f(Xt) and we can say that X, between Ti
and Ti+1, evolves according to the di�erential equation equal to:

dXt = dXc
t = γdt+ σdWt

The following proposition summarized the result for the jump-di�usion processes when σ is
a nonanticipating square-integrable process:

1JX can be de�ned as: JX =
∑

n≥1,Tn≤T

δ(Tn,Yn), where δ is the dirac measure.
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Proposition 2.8 (Ito formula for jump-di�usion processes) (proposition 8.14 in [2]) Let X
be a di�usion process with jumps de�ned as:

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs +

Nt∑
i=1

∆Xi

where
∑Nt
i=1 ∆Xi is a compound Poisson process and bt and σt are continuous nonanticipat-

ing processes with satisfy the condition:

E

[∫ t

0

σtdt

]2

= E

[∫ t

0

σ2
t dt

]
<∞

Then, for any C1,2 function f : [0, T ]×R→ R, the process Yt = f(t,Xt) can be represented
as:

f(t,Xt)− f(0, X0) =

∫ t

0

[
∂f

∂s
(s,Xs) +

∂f

∂x
(s,Xs)bs

]
ds

+
1

2

∫ t

0

σ2
s

∂2f

∂x2
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs)σsdWs

+
∑

i≥1,T1≤t

(
f(XT−

i
+ ∆Xi)− f(XT−

i
)
)

(38)

The equation (2.24) can be written in di�erential notation as:

dYt =
∂f

∂t
(t,Xt)dt+ bt

∂f

∂x
(t,Xt)dt+

σ2
t

2

∂2f

∂x2
(t,Xt)dt

+
∂f

∂x
(t.Xt)σtdWt + (f(Xt− + ∆Xt)− f(Xt−)) (39)

3 Hedging Strategy

This chapter describe how to compute the option price in an jump di�usion model. The
�rst section talk about the measure transformation, which represent the main tool to �nd
the risk-neutral probability to compute the option pricing. The second part of the chapter
introduces the concept of option and, in particular, of European call option. Then, we will
see how to use an European call option for hedging purpose. The last part of this chapter is
entirely focused on compare the hedging in the Black and Scholes model with the hedging
in the Merton model for the jump di�usion process

3.1 Measure Transformation

One normal assumption in each model built in �nance is that the market is complete, which
means that every contingent claim in the market is attainable. Hence, there exist only one
risk-neutral probability in the market. Unfortunately, the complete market assumption is
not true in the real market because the asset prices have jumps, which imply that there is
not a unique risk-neutral probability but we can �nd a much greater variety of equivalent
measure by changing the distribution of jumps.
In the Black-Scholes model to �nd the equivalent measure we use the Radon-Nikodym
theorem. Hence, we need to introduce the concempt of equivalent measure. Let (Ω,F) be
a measurable space and let Q, P be two probability measure on F . Then, we say that Q is
absolutely continuous respect to P (P� Q) if:

∀A ∈ F P(A) = 0⇒ Q(A) = 0
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Therefore, we can say that two probability measure Q, P on F are equivalent (P ∼ Q) if
P� Q and Q� P, hence if Q and P de�ne the same set of impossible events:

∀A ∈ F Q(A) = 0⇔ P(A) = 0 (40)

Therefore, we have the following theorem:
Theorem 3.1 [Radon-Nikodym Theorem] Let P � Q, then exist a random vari-
able Λ, F-measurable, with non-negative value such that for every random variable X (F-
measurable) integrable under P the following relation is true:

EQ[X] = EP[ΛX] =

∫
A

ΛdP

In particular:
∀A ∈ F Q(A) = EP(Λ1A).

Let (Ω,F ,P) be a probability space which describe a market between 0 and T . Then, we
can de�ne the underlying asset S by a nonanticipating (càdlàg) process:

S : [0, T ]× Ω 7→ Rd+1

(t, ω) 7→ (S0
t (ω), S1

t (ω), S2
t (ω), . . . , Sdt (ω))

where Sit(ω) represent the value of the asset i in the market scenario ω and S0
t (ω) is a

numeraire (we de�ne it as S0
t (ω) = ert, where r is the interest rate) A self-�nancing strategy

(φ0
t , φt), in the Black-Scholes model, is said to be a perfect hedge or a replication strategy

for a contingent claim H, if we have the following:

H = V0 +

∫ T

0

φtdSt +

∫ T

0

φ0
tdS

0
t P− a.s. (41)

where St is the asset price. Moreover, we can say that a market is complete if any contingent
claim H, admits a replicating portfolio which means that for any H ∈ H there exists a self-
�nancing strategy (φ0

t , φt) such that the equation (3.2) holds with probability 1 under P.
If the equation (3.2) holds with probability 1, it also holds with probability 1 under any
equivalent martingale measure Q ∼ P. Therefore, we �nd the following proposition:
Proposition 3.1 A market de�ned by the asset (S0

t , S
1
t , . . . , S

d
t )0≤t≤T described as stochastic

processes on (Ω,F , (Ft),P) is complete if and only if there is a unique martingale measure
Q equivalent to P.
If we consider a discount factor equal to B(t, T ) = e−r(T−t), then we can write the discounted
value of H (equation (4.2)) as:

Ĥ = V0 +

∫ T

0

φtdŜt Q− a.s. (42)

3.1.1 Equivalence measures in jump processes

We will study such changes of measure in the jump process. When we consider Lévy process
the equivalence of their measures, gives relations between their parameters.
Consider two Poisson process de�ned by jump size, respectively, equal to a1, a2 and jump
intensity, respectively, equal to λ1, λ2. Then, the following proposition shows the equivalence
of measure for Poisson processes:
Proposition 3.2 (Equivalence of measure for Poisson processes) (proposition 9.5 in [2]) Let
(N,Pλ1) and (N,Pλ2) be Poisson process on (Ω,Ft) with intensities λ1 and λ2 and jump
sizes a1 and a2. Then, we have:

1. if a1 = a2, then Pλ1
is equivalent to Pλ2

with Radon-Nikodym density:

dPλ1

dPλ2

= exp

[
(λ2 − λ1)T −NT ln

λ2

λ1

]
(43)
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2. if a1 6= a2, then Pλ1
is not equivalent to Pλ2

.

This proposition told us that if we want the equivalence measure of two Poisson process,
we can freely change the intensity of the jumps but the jump size must remain the same.
In other word, the intensity of a Poisson process can be modi�ed without changing the
jump size of the process, but with changing the size of the jumps, which generates a new
measure. This new measure assigns nonzero probability to some events which otherwise
were impossible under the old one. We can note that two Poisson processes with di�erent
intensities de�ne equivalent measures only on a �nite time interval.
Now, consider two compound Poisson process and the following proposition gives us the
equivalence of measure in this case:
Proposition 3.3 (Equivalence of measure for compound Poisson processes) (proposition 9.6
in [2]) Let (X,P) and (X,Q) be compound Poisson processes on (Ω,Ft) with Lévy measure
νP and νQ. The probability P and Q are equivalent if and only if νP and νQ are equivalent.
In this case, the Radon-Nikodym derivative is:

DT =
dQ
dP

= exp

T (λP − λQ) +
∑
s≤T

φ(∆Xs)

 (44)

where λP ≡ νP(R) and λQ ≡ νQ(R) are the jumps intensities of the two processes and

φ ≡ ln
(
dνQ
dνP

)
.

The last important change of measure with respect the Brownian motion with drift and the
following proposition gives us the equivalence of measure in this case:
Proposition 3.4 (Equivalence of measure for Brownian motion with drift) (proposition 9.7
in [2]) Let (X,P) and (X,Q) be two Brownian motion on (Ω,Ft) with volatilities σP > 0
and σQ > 0 and drift µP and µQ. The probability P and Q are equivalent if and only if
σP = σQ > 0 and singular otherwise. Then, when they are equivalent the Radon-Nikodym
derivative is:

dQ
dP

= exp

(
µQ − µP

σ2
XT −

1

2

(µQ − µP)2

σ2
T

)
(45)

With the Cameron-Martin theorem can rewrite the equation (4.9) as an exponential mar-
tingale equal to:

dQ
dP

= exp

(
µQ − µP

σ
WT −

1

2

(µQ − µP)2

σ2
T

)
where WT = Xt−µPt

σ is a standard Brownian motion under the probability P. This result
shows that the drift and the volatility play a crucial roles in de�ning a di�usion model.

3.2 Option Pricing

The modern �nance is centered on the pricing of derivative instruments, which are instru-
ments whose payo� is a function of the value of another �nancial instruments (such as
commodities, currency, bond, stock), also called underlying asset. One of the most popular
derivative contract in the world is the option contract. An option is a contract between a
buyer and a seller that gives at the purchaser of the option the right, but not the obligation,
to buy or to sell a particular asset at an exercise date at an agreed price (exercise price).
Later in this chapter, we denote with K the strike or exercise price, with T the exercise date
or maturity and with ST the value of the asset at the maturity. On one hand, we have a
call option when we have the right to buy an asset S for K at time T and we can represent
its payout at time T as:

CT = max (ST −K, 0) = (ST −K)+ (46)

on the other hand, we have a put option when we have the right to sell an asset S for K at
time T and we can represent its payout at time T as:

PT = max (K − ST , 0) = (K − ST )+ (47)
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In the market we can �nd two type of option contract: European option and American
option. In the European option, we can exercise the option only at the maturity, instead in
the American one, we can exercise the option at any time t, with t ≤ T .
Let Vt(T,K) be the value at time t of the forward contract 2 with delivery price K. Then,
we can de�ne the forward price F (t, T ) at current time t ≤ T to be the delivery price K
such that Vt(T,K) = 0, in other words, such that the forward contract has zero value at
time t. Therefore, we �nd the following relationship:

Vt(T,K) = (F (t, T )−K)e−r(T−t)

Now, we can �nd how the price of a call and a put of the same strike are related with the
value of the forward:

Ct(T,K)− Pt(T,K) = Vt(T,K) (48)

The above equation is called Put-Call Parity, which states that long one call and short one
put is equal to go long to one forward. After some transformation, the Put-Call Parity can
be written as:

Ct(T,K)− Pt(T,K) = St −Ke−r(T−t) (49)

The Put-Call Parity is important for three reason. First, it is an arbitrage-free condition.
In fact, any violation of the Put-Call Parity leads to an arbitrage opportunity. Second,
when we want pricing an option, we can focus only in a call (for example) and then �nd the
price of the put using the Put-Call Parity. Third, the Put-Call Parity is model-independent,
which means that this parity relationship between the values of put and call options holds,
regardless of the model assumed for the evolution of the price of the underlying asset or
arbitrage opportunities occur.

3.2.1 Pricing European Option in Black-Scholes model

In the Black and Scholes model the behavior of prices is a continuous time model with the
assumption of one risky asset (denoted by St at time t) and a riskless asset (denoted by S0

t

at time t). Moreover, we assume that the risky asset will not pay dividend and that the
behavior of the riskless asset is expressed by the following ordinary di�erential equation:

dS0
t = rS0

t dt (50)

where r is an instantaneous interest rate and it is a non-negative constant. We also set that
S0

0 , which imply that S0
t = ert for t ≥ 0. On the other hand, the behavior of the risky asset

is determined by the following stochastic di�erential equation:

dSt = St(µdt+ σdBt) (51)

where Bt is a standard Brownian motion de�ned in the probability space (Ω,F , (Ft)0≤t≤T ,P)
and µ and σ (called the volatility of the asset) are two constant, which are bounded and
locally Lipschitz continuous. We consider the model valid for the time interval [0, T ], where
T is the maturity date of the option. Equation (3.12) has a closed-form solution equal to:

St = S0e
(µ−σ22 )t+σBt (52)

where S0 is the spot price at time 0. Now, we need to show that there exist a probability
equivalent to P under which the discounted stock price is a martingale. Therefore, we need
to introduce the following theorem, called Girsanov theorem:
Theorem 3.2 (theorem 4.2.2 in [1]) Let (Ω,F , (Ft)0≤t≤T ,P) be a �ltered probability space
and (Bt)0≤t≤T an Ft-standard Brownian motion. Let (θt)0≤t≤T be an adapted process sat-

isfying
∫ T

0
θ2
sds <∞ a.s. and such that the process (Lt)0≤t≤T de�ned by

Lt = exp

(
−
∫ t

0

θsdBs −
1

2

∫ t

0

θ2
sds

)
(53)

2A forward contract (or forward) is an agreement between two counterparties to trade a speci�c asset at
a certain future time T, called maturity, and at a certain price K, called delivery price.
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is a martingale. Then, under the probability P(L) with density LT with respect to P, the
process (Wt)0≤t≤T de�ned by Wt = Bt +

∫ t
0
θsds is an Ft-standard Brownian motion.

If we de�ne the discounted value as S̃t = e−rtSt, we �nd:

dS̃t = −re−rtStdt+ e−rtdSt

We can substitute inside the above equation the equation (3.13) and we �nd:

dS̃t = −re−rtStdt+ e−rt(St(µdt+ σdBt))

= S̃t((µ− r)dt+ σdBt)

If we set Wt = Bt(µ − r)t/σ, we can rewrite the above result as: dS̃t = S̃tσdWt. Now, if
we apply the theorem 3.2 with θ = (µ − r)/σ, we will �nd the probability Q equivalent to
P under which (Wt)0≤t≤T is a standard Brownian motion. Then, under the probability Q,
(S̃t) is a martingale and is equal to: S̃t = S̃0e

σWt−σ
2t
2 . Finally, we can price an option and,

in particular, we will focus on European option and for simplicity we use the notation of
h = f(x) = (x−K)+ for the call option.
Theorem 3.3 (theorem 4.3.2 in [1]) In the Black-Scholes model, any option de�ned by a non-
negative, FT -measurable random variable h, which is square-integrable under the probability
Q, is replicable and the value at time t of any replicating portfolio is given by:

Vt = EQ[e−r(T−t)h|Ft]

Hence, the option value at time t can be de�ned by the expression EQ
[
e−r(T−t)h

∣∣ Ft].
When the random variable h can be written as h = f(ST ), we can express the option value
Vt at time t as a function of t and St. Then, we have:

Vt = EQ

[
e−r(T−t)f(ST )

∣∣∣ Ft]]
= EQ

[
e−r(T−t)f

(
Ste

r(T−t)eσ(WT−Wt)−σ
2

2 (T−t)
) ∣∣∣ Ft]

We can note that the random variable St is Ft-measurable and, under the probability Q,
WT −Wt is independent of Ft. Therefore, we conclude that: Vt = F (t, St) where

F (t, x) = EQ

[
e−r(T−t)f

(
xer(T−t)eσ(WT−Wt)−σ

2

2 (T−t)
)]

(54)

Since, underQ, WT −Wt is a zero-mean normal random variable with variance T − t and if
we consider a call option, where F (x) = (x−K)+, then the equation above can be written
as:

F (t, x) = EQ

[
e−r(T−t)f

(
xeσ(WT−Wt)+(r−σ22 )(T−t) −K

)+
]

= EQ

[(
xeσ
√
θg−σ2θ2 −Ke−rθ

)+
]

= E
[(
xeσ
√
θg−σ2θ2 −Ke−rθ

)
1g+d2≥0

]
=

∫ d2

−∞

(
xeσ
√
θg−σ2θ2

) e− y22√
2π
−
∫ d2

−∞

(
Ke−rθ

) e− y22√
2π

dy

where g is a standard Gaussian variable, θ = T − t, d1 =
ln
(
x
K

)
+
(
r + σ2

2

)
θ

σ
√
θ

and d2 =

d1 − σ
√
θ. Now, in the �rst integral we use a change of variable with z = y + σ

√
θ and the

last equation above become:

F (t, x) = xN(d1)−Ke−rθN(d2) (55)

where N(d) =
1√
2π

∫ d

−∞
e−x

2/2dx is the Gaussian cumulative distribution function. The

equation (4.29) is the price of the call option in the Black-Scholes model. On the other hand,
the price of a put in the Black-Scholes model is equal to: F (t, x) = Ke−rθN(−d2)−xN(−d1)
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3.2.2 Pricing European Option in jump di�usion process

Let (St)0≤t≤T be a stochastic process, which describe the asset price behavior and let
(Ω,F , (Ft)t,P) be a probability space, where Pt represents the history of the asset price. We

saw in the previous section that the dynamic of an asset price can be written as: St = S0e
B0
t ,

where B0
t =

(
µ− σ2

2

)
t+ σWt. Consider an exponential price process of the form:

St := S0e
µt+σWt+Yt

where Yt is compound Poisson process. Therefore, the process St can be written as:

St = S0exp

(
µt+ σWt +

Nt∑
i=1

Zi

)

= S0e
µt+σWt

Nt∏
i=1

eZi

= S0e
µt+σWt

∏
0≤s≤t

e∆Yt , t ∈ R+

from relation ∆Yt = ZNt∆Nt. The process (St)t∈R is equivalently given by the log-returns
dynamics: d logSt = µdt + σdWt + dYt with t ∈ R+. Then, in exponential model we have:

St = S0e

(
µσ

2

2

)
t+σWt− tσ

2

2 +Yt and the process St satis�es the stochastic di�erential equation:

dSt =

(
µ+

σ2

2

)
Stdt+ σStdWt + St−(e∆Yt − 1)dNt

=

(
µ+

σ2

2

)
Stdt+ σStdWt + St−(eZNt − 1)dNt

We can see that the process St has jump size equal to: St−(eZNt − 1). In order for the
discounted price process (e−rtSt)t∈R to be a martingale, we need to choose a drift parameter
µ̃ ∈ R, intensity λ̃ > 0 and jump distribution ν̃ satisfying the equation:

µ− r = σµ̃− λ̃Eν̃ [Z]

Therefore:

µ+
σ2

2
− r = σµ̃− λ̃Eν̃ [eZ − 1]

under this condition we can choose a risk-neutral probability Pµ̃,λ̃,ν̃ under which (e−rtSt)t∈R
is a martingale, for simplicity of notation we denoted the probability Pµ̃,λ̃,ν̃ with Q. Then,
the discounted expected value with respect the new probability measure represent a non-
unique arbitrage price at time t ∈ [0, T ] for the contingent claim with payo� f(ST ), hence
we have

e−r(T−t)EQ[f(ST )|Ft]

Set θ = T − t. Then, we can express this arbitrage price as:

e−r(T−t)EQ[f(ST )|Ft] = e−rθEQ[f(S0e
µT+σWT+YT )|Ft]

= e−rθEQ[f(S0e
µ(T−t)+σ(WT−Wt)+WT−Yt)|Ft]

= e−rθEQ

[
f

(
x exp

(
µθ + σ(WT −Wt) +

Nt∑
i=Nt+1

Zi

))]
x=St

= e−θ(r+λ̃)
∞∑
n=0

(λ̃θ)n

n!
EQ

[
f

(
xeµθ+σ(WT−Wt) exp

(
n∑
i=1

Zi

))]
x=St
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3.2.3 Implied Volatility

One of the main advantages of the Black-Scholes formula is the fact that the pricing formula,
as well as the hedging formula, depend only on one non-observable parameter: the volatility
σ. In fact, the drift parameter µ disappears by changing the probability measure. In the
Black-Scholes model ν = 0 and the call option prices are uniquely given by the equation:

F (t, x) = CBS = xN(d1)−Ke−rθN(d2)

If we �xed all the parameters of the equation (3.16), we see that the value of the call
in the Black-Scholes model is an increasing continuous function of σ, mapping ]0,∞[ into
](St −Ke−rθ)+, St[. The last interval represent an arbitrage bound for a call option prices.
Therefore, we can de�ned the Black-Scholes implied volatility of the option, denoted by
σIVt (T,K), as the value of the volatility of the underlying instrument, which when sub-
stituted into the Black-Scholes formula, will return the correct option prices, denoted by
C∗t (T,K):

∃!σIVt (T,K) > 0, CBS(St,K, θ, σ
IV
t (T,K)) = C∗t (K,T )

We can note that, for �xed (T,K), the implied volatility is in general a stochastic process.
Furthermore, if we �xed t, we will �nd the implied volatility surface at date t, which is
equal at the function σIVt : (T,K) → σIVt (T,K). This means that, for �xed t, the implied
volatility value depends on the characteristics of the option such as the maturity and the
strike price, respectively equal to T and K. Moreover, if we substitute the moneyness m (i.e
m = K

St
) into the implied volatility surface, it can be represented as a function of moneyness

and time to maturity: It(θ,m) = σIVt (t+θ,mS(t)). In general, the implied volatility surface
It(θ,m) may depend not only on the maturity of options but also on the current date or
the spot price. However, in the exponential-Lévy models the evolution in time of implied
volatilities is particularly simple, as shown by the following proposition:
Proposition 3.5 (Proposition 11.1 in [2]) When the risk neutral dynamics is given by an
exponential-Lévy process, the implied volatility for a given meneyness level m = K

St
and time

to maturity θ, i.e θ = T − t, does not depend on time:

∀t ≥ 0, It(θ,m) = I0(θ,m)

However, we can note that the implied volatility for a given strike price, K, is not constant

in time. In fact, it evolves stochastically according to: σIVt = I0

(
K
St
, T − t

)
. We can note

that the implied volatility surface It does not vary with t, therefore we can study only the
case in which t = 0. This study explain some features of the implied volatility surface in
the exponential-Lévy model. First, a negative skewed jump distribution give rise to a skew
in implied volatility, hence the skew decrease characteristic with respect to moneyness. On
the other hand, a strong variance of jumps leads to a curvature in the implied volatility,
hence we can see smile pattern. Second, exponential-Lévy models and, in general, model
with jumps in the price lead to a strong short term skew contrarily to di�usion models which
have small skew for short maturities. Finally, in a Lévy process with �nite variance we can
see the e�ect called aggregation normality, which is when long maturity prices of options
will be cloeser to Black-Scholes price and the implied volatility smile will become �at as
T → ∞. In particular, the central limit theorem shows that when the maturity T is large,
the distribution of (XT −E[XT ])/

√
T becomes approximately Gaussian. This e�ect is more

pronounced in exponential-Lévy models respect to the actual market prices.

3.3 Hedging Strategy

Consider an asset prices (St)t∈[0,T ] and a market described by a �ltered probability space
(Ω,F , (Ft)t∈[0,T ],P), where (Ft)t∈[0,T ] is the history of the assets, P represents the so-called
real-word measure and St will be one dimensional. We assume that there are two assets in
the market: a riskless asset, described by the following di�erential equation dS0

t = rS0
t dt,

and a risky asset, St. Let S
0
t = ert be a numeraire. Then, we denoted by Vt the value of a

portfolio and by Ṽt its discounted value, which is equal to Ṽt = Vt/S
0
t .
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3.3.1 Black-Scholes Hedging

Consider the Black-Scholes model. The behavior of the stock price is represent by equation:

St = S0e
(µ−σ22 )t+σWt and the price of call option in the Black-Scholes model are equal to

the equation:
CBS(t, S) = SN(d1)−Ke−rθN(d2) (56)

where θ = T − t and d1 =
ln
(
S
K

)
+
(
r + σ2

2

)
θ

σ
√
θ

and d2 = d1 − σ
√
θ.

Let V be the value of a portfolio of derivative securities on one underlying asset. The rates
of change of the value of the portfolio with respect to the spot price S of the underlying
asset is important for hedging purpose. This change is called "Delta" and is equal to:

∆(V ) =
∂V

∂S

Then, the delta of the call option described in equation (3.17) is equal to:

∆(CBS) =
∂CBS

∂S
= N(d1) (57)

Hence, we have found that the delta for an European call option in the Black-Scholes model
is equal to the cumulative distribution function of a standard normal variable evaluated in
d1. The delta in an option is important because helps to build the so-called "delta hedging".
Assume that we go long in one call option. If the price of the underlying asset declines,
the value of the call decreases and the long call position loses money. To protect against a
downturn in the price of the underlying asset, we can sell short ∆ units of the underlying
asset. The goal of the delta hedging is to choose ∆ in such a way that the value of the
portfolio is not sensitive to small changes in the price of the underlying asset. Therefore, if
V is the value of the portfolio, the value of the hedge portfolio is equal to: V = C(t, S)−∆St.

3.3.2 Merton Approach

The delta hedging in the Black-Scholes model is always possible since the market is complete
and, therefore, exists only one equivalent risk neutral probability. This is the main assump-
tion in the Black-Scholes model. Unfortunately, the market is not complete and there is not
a unique risk neutral probability because the asset has discontinuities, i.e jumps, in their
paths.
The �rst application of jump process in option pricing was introduced by Merton. He
considered the following jump di�usion model de�ned in the �ltered probability space
(Ω,F , (Ft)t∈[0,T ],P):

St = S0 exp

(
µt+ σWt +

Nt∑
i=1

Yi

)
(58)

whereWt is a standard Wiener process, Nt is a Poisson process with intensity λ independent
from W and Yi ∼ N(m, δ2) are i.i.d. random variables independent from W and N. Since
the model is incomplete, there exists many possible choices for a risk-neutral measure and
Merton proposed to change the drift of the Wiener process and keep the other variable
unchanged. Therefore, µM is chosen such that Ŝt = Ste

−rt is a martingale under the new
probability measure Q, which is the equivalent probability measure to P, and is equal to

µM = r − σ2

2
− λE[eYi − 1] = r − σ2

2
− λ

[
exp

(
m+

δ2

2

)
− 1

]
The equivalent martingale measure is obtained by shifting the drift of the Brownian motion
but leaving the jump part unchanged. Merton justi�ed this choice by assuming that the
jump risk is diversi�able and, therefore, no risk premium is attached to it. Then, an european
call option with payo� f(ST ) can be priced according to:

CM (t, St) = e−r(T−t)EQ[f(ST )|Ft] (59)
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Set θ = T − t and by conditioning on the number of jumps Nt, we can express the value of
the call option as a weighted sum of Black-Scholes price, therefore we �nd:. Then, we can
express this arbitrage price as:

CM (t, St) = e−r(T−t)EQ[f(ST −K)+|St = S]

= e−rθE[f
(
eµ

Mθ+σWM
T−t+

∑NT−t
i=1 Yi

)
]

= e−rθ
∑
n≥0

Q(Nt = n)EQ

[
f

(
S exp

(
µMθ + σWM

θ +

n∑
i=1

Yi

))]

= e−rθ
∑
n≥0

e−λθ(λθ)n

n!
CBS(θ, Sn, σn) (60)

where:
∑n
i=1 Yi ∼ N(nm, nδ2); σ2

n = σ2+nδ2

θ ; Sn = S exp
(
nm+ nδ2

2 − λ exp(m+ δ2

2 ) + λθ
)

and CBS(θ, S, σ) = e−rθE
[
f
(
Se(r−σ22 )θ+σWθ

)]
. We can note that the last condition is the

value of the European call option with time to maturity θ and payo� f in a Black-Scholes
model with volatility σ. We can note that if λ = 0 then CM (t, S) = CBS(t, S), indeed all
the terms appearing in the sum (3.21) are equal to 0, except for j = 0, when S0 = S and
σ0 = σ.
The hedging portfolio proposed by Merton is the self-�nancing strategy (φ0

t , φt) given by:

φt = ∂CM

∂S (t, St−) and φ0
t = φtSt−

∫ t
0
φdS. This means that we choose to hedge only the risk

represented by the di�usion part. This approach is justi�ed if we assume that the investor
holds a portfolio with many assets for which the di�usion components may be correlated
but the jumps components are independent across assets. This hypothesis would imply that
in a large market a diversi�ed portfolio such as S&P500 would not have jumps. Finally, the
assumption of diversi�ability of jump risk is not justi�able if we are pricing index options,
in fact a jump in the index is not diversi�able.

3.3.3 Quadratic Hedging

We can de�ne the quadratic hedging as the choice of a hedging strategy which minimizes
the hedging error in a mean square losses. This imply that losses and gains are treated in a
symmetric manner, therefore we measure the risk in terms of variance.
Consider a risk-neutral model (St)t∈[0,T ] given by St = ert+Xt , where Xt is a Lévy process on
the �ltered probability space (Ω,F , (Ft)t∈[0,T ],Q). We assume that S is a square integrable
martingale, therefore the following condition is satis�ed:∫

|y|≥1

e2yν(dy) <∞

Moreover, we assume that Xt has �nite variance and its characteristic function can be
expressed as:

E
[
eiuXt

]
= exp

{
t

[
−σ

2u2

2
+ bXt+

∫
νX(dy)

(
eiuy − 1− iuy

)]}
with bX chosen such that Ŝ = eX is a martingale. As we have seen in the previous chapter,
Ŝt can also be written as a stochastic exponential of another Lévy process (Zt):

dŜt = ŜtdZt

where Z is a martingale with jumps size greater than −1 and it is also a Lévy process. Let
(φ0
t , φt)t∈[0,T ] be a salf-�nancing strategy. In order to apply the quadratic hedging criteria,

we need to �nd portfolio such that its terminal value has a well-de�ned variance. Therefore,
we want that the asset S is in the set of all the admissible strategies de�ned as:

S =

φ caglad predictable and E

[∣∣∣∣∣
∫ T

0

φtdŜt

∣∣∣∣∣
]2

<∞


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Using preposition 2.4 and the proposition 2.5, the above condition is equivalent to:

E

[∫ T

0

|φtŜt|2dt+

∫ T

0

∫
R
z2|φtŜt|2dtν(dz)

]
<∞ (61)

Let L2(S) be the set of process φ which verify the above condition (3.22). Therefore, the
terminal payo� of such strategy is equal to:

GT (φ) =

∫ T

0

rφ0
tdt+

∫ T

0

φtSt−dZu

We can note that Ŝt is a martingale under the probability measure Q and that φ ∈ L2(Ŝ),

therefore the discounted gain process, equal to ĜT (φ) =
∫ t

0
φdŜ, is also a square integrable

martingale. Using proposition 1.8 we �nd that ĜT (φ) is given by the martingale part of the
above equation:

ĜT (φ) =

∫ T

0

φtSt−σdWt +

∫ T

0

∫
R
J̃X(dt× dx)xφtSt−

=

∫ T

0

φtSt−σdWt +

∫ T

0

∫
R
J̃Z(dt× dz)φtSt− (ez − 1)

where J is the jump measure. Now, we can written the quadratic hedging problem as:

inf
φ∈L2(Ŝ)

EQ

[
|ĜT (φ) + V0 − Ĥ|2

]
(62)

where Ĥ is de�ned by the equation: Ĥ = V0 +
∫ T

0
φtdŜt Q-a.s.

Proposition 3.6 (proposition 10.5 in [2]) Consider the risk neutral dynamics

Q : dŜt = Ŝt−dZt (63)

where Z is a Lévy process with Lévy measure νZ and di�usion coe�cient σ > 0. For a
European option with payo� f(ST ) where f : R+ → R veri�es

∃K > 0, |f(x)− f(y)| ≤ K|x− y|

the risk minimizing hedge, solution of (3.23), amounts to holding a position in the underlying
equal to φt = ∆(t, St−) where:

∆(t, St−) =
σ2 ∂C

∂S (t, S) + 1
S

∫
νZ(dy)z[C(t, S(1 + z))− C(t, S)]

σ2 +
∫
z2νZ(dy)

(64)

with C(t, S) = e−r(T−t)EQ[f(ST )|St = S].

If we consider an exponential-Lévy model, i.e. St = S0e
rt+Xt , the optimal quadratic

hedge can be expressed in terms of the Lévy measure νX of X as

∆(t, St−) =
σ2 ∂C

∂S (t, S) + 1
S

∫
νX(dx) (ex − 1) [C(t, Sex)− C(t, S)]

σ2 +
∫

(ex − 1)
2
νX(dx)

We can note that we have also found an expression for the residual risk of a hedging
strategy (φ0

t , φt):

RT (φ) = E

∫ T

0

∣∣∣∣∣ φt − ∂C

∂S
(t, St−)

∣∣∣∣∣
2

Ŝ2
t−dt


+ E

[∫ T

0

dt

∫
R
ν(dz)|C(t, St−(1 + z))− C(t, St−)− zφtŜt− |2

]
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The residual risk allows us to examine whether there are any cases where the hedging error
can be reduced to zero, hence where we can achieve a perfect hedge. We �nd that in only
two case is possible achieve a perfect hedge. The �rst one, is when there are no jumps, i.e
ν = 0. In this case, the residual risk is equal to:

ε(φ) = E

[∫ T

0

(
φtSt− − St−

∂C

∂S
(t, St−)

)2

dt

]

and we �nd that ε(φ) = 0 a.s when φt is equal to the Black-Scholes delta hedging. The
second case, is when σ = 0 and there is a single jump size ν = δa : Xt = aNt, where N is a
Poisson process. In this case

RT (φ) = E

[∫ T

0

dtS2
t− |C(t, St−(1 + a))− C(t, St−)− φt|2

]

if we choose φt =
C(t,St− (1+a))−C(t,St− )

aSt−
and φ0

t = ertStφt − ert
∫ t

0
φtdSt, we will obtain a

self-�nancing strategy (φ, φ0 which is a replication strategy:

f(ST ) = V0 +

∫ T

0

C(t, St−(1 + a))− C(t, St−)

aSt−
dSt +

∫ T

0

rφ0
tdt

We can note that the quadratic hedge achieves a mean-variance trade-o� between the risk
due to the di�usion part and the jump risk.

3.4 Comparison

We want to show that the hedging in the Merton model outperforms the hedging in the
Black and Scholes model, which are described in the section above. Before we talk about the
hedging strategy, we show that the Marton model also outperform the Black-Scholes model
to replicate the stock behavior from historical data. We consider the daily log-returns of the
Standard & Poor's 500 Index (S&P500) in the period from 31-12-2009 to 29-01-2009. There
is a total of 2273 daily closing price and we have to deal with n=2272 log-returns. Moreover,
from the S&P500 data it is possible to �nd the following information: ESP ' 0.00036;
MSP

2 ' 0.0095; sSP ' −0.4666 < 0 and kSP ' 7.5614 > 3; where E is the mean, s is the
skewness and k is the kurtosis. In order to �nd a relationship among the two model and the
statistical result of the S&P500, we will work with an interval of amplitude ∆t, which can
be de�ned as ∆t = 1/252 ' 0.004 where the denominator 252 represent the trading days in
a year. Therefore, we can write the Black-Scholes model as

∆ logSt = µBS∆T + σBS∆Wt (65)

where ∆Wt ∼ N(0,∆t). While the Merton model can be written as:

∆ logSt = µM∆T + σM∆Wt + V∆Nt (66)

where V is the price ratio (> 0) associated with the i-th jump along the path of the stock

price and is equal to V = log

(
STi
ST
i−

)
∼ N(m, δ2) and ∆Nt ∼ Po(λ∆t). Then, the following

theorem described the relation among the parameter of the two model:
Theorem 3.4 (theorem 1 in [12]) Consider the equation (3.26), we �nd the following rela-
tion:

EBS = µBS∆t; MBS
2 = σ2

BS∆t;

MBS
3 = 0; MBS

4 = 3σ4
BS∆t2

=⇒ sBS =
MBS

3(
MBS

2

)3/2 ; kBS =
MBS

4(
MBS

2

)2 .
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while for the equation (3.27) we have

EM = µM∆t+mλ∆t; MM
2 = σ2

M∆t+
(
δ2(1 + λ∆t) +m2

)
λ∆t;

MM
3 = m(3δ2 +m2)λ∆t+ 6mδ2(λ∆t)2 =⇒ sM =

MM
3(

MM
2

)3/2 ;

MM
4 = 3(σ2

M∆t)2 + (m4 + 3δ4 + 6m2δ2)λ∆t+ (3m4 + 21δ4 + 30m2δ2)(λ∆t)2

+ 6σ2
M∆t(δ2 +m2)λ∆t+ (18δ2 + 6m2δ2)(λ∆t)3 + 6σ2

Mδ
2∆t(λ∆t)2

+ 3δ4(λ∆t)4 =⇒ kM =
MM

4(
MM

2

)2 .
Therefore, if we apply the theorem 3.4, we can �nd the vector of parameter for the Black
and Scholes model (µBS , σBS) and for the Merton model (µBS , σBS , λ,m, δ). For the Black-
Scholes model we assume: EBS = ESP and MBS

2 = MSP
2 we �nd that

µBS =
ESP

∆t
' 0.0922, σBS =

√
MSP

2

∆t
' 0.1507

we can recall that a normal distribution is completely determined by its mean and variance.
On the other hand, in the Merton model we have 5 parameters to estimate. We can reduce
this set assuming that EM = ESP and MM

2 = MSP
2 which implies that

µM =
ESP −mλ∆t

∆t
, σM =

√
MSP

2 − (δ2(1 + λ∆t) +m2)λ∆t

∆t

hence, the di�usion paramters are expressed as function of the jumps ones and we have
only 3 parameters to estimate. We use the Multinomial Maximum Likelihood approach
to estimate this 3 parameters, which can be represented as a 3-dimensional vectors η

.
=

(λ,m, δ). The step of the Multinomial Maximum Likelihood approach can be summarized as
follows: �rst, sort empirical data into ñ < n bins, in order to get a computationally tractable
problem. Then, for each of these bins, extract the sample frequency fSPi , i = i, . . . , ñ.
Second, construct the theoretical jump di�usion frequency function

fMi (η)
.
= n

∫
Bi

ψ∆t(y; η)dy i = 1, . . . , ñ

where Bi is the i-th bin and ψ∆t(y; η) is the log-return probability density function for the

Merton model (described in chapter 1), i.e. ψt(y) = e−λt
∑∞
j=0

(λt)j exp

{
−

(y−(µ−λk− 1
2
σ)t−jm)2

2(σ2t+jδ2)

}
j!
√

2π(σ2t+jδ2)
.

Third, minimize the objective function: l(η)
.
= −

∑ñ
i=1 f

SP
i log

(
fMi (η)

)
.

Therefore, by the Multinomial Maximum Likelihood algorithm we obtain that

λ ' 62.752; m ' −0.006323; δ ' 0.006291

hence, in the Merton model µ, σ, skewness and kurtosis are equal to:

µM ' 0.48678, σM ' 0.1301, sM ' 1.4261 kM ' 7.9952

We can note that the skewness is bigger than the one obtained using the real S&P500 data,
i.e. 1.4261 > −0.4666, but, unlike in the Black and Scholes model where sBS = 0, the Mer-
ton approach tents to capture a clear absence of symmetry with the same sign. Moreover,
the kurtosis in the Merton model is very close to the one obtained using the real S&P500
data, while the Black and Scholes model provides poor result. Hence, we can conclude that
the log-normal jump di�usion model represents a substantial and concrete improvement
when compared to the Black and Scholes model.
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Now, we compare the Black and Scholes hedging strategy, i.e. Delta hedging, with the
Merton hedging for the jump di�usion process. We consider the closing price of the S&P500
from 29-12-2017 to 29-01-2019 and we consider a call option with underlying the S&P500,
strike price equal to 2700 and maturity at 01-02-2019. Moreover, we assume that the risk-
free rate is equal to 2,98%, denoted by r.
For these period, we have a total of 272 daily closing price and we have to deal with n = 271
log-returns. From the log-returns we �nd the following information from the S&P500 data:
ESP ' −0.0000468, MSP

2 ' 0.0109, sSP ' −0.4333 < 0 and kSP ' 5.9362 > 3. Therefore,
the Black and Scholes parameters can be estimated as follow:

µBS =
ESP

∆t
' −0.0118, σBS =

√
MSP

2

∆t
' 0.1723

The Merton parameter can be estimated using the Multinomial Maximum Likelihood algo-
rithm and we obtain that

λ ' 3.1596; m ' −0.04942; δ ' 0.0076

hence, in the Merton model µ, σ, skewness and kurtosis are equal to:

µM ' 0.1444, σM ' 0.1476, sM ' 1.5929, kM ' 7.8115

We can note that also in these case the Merton model represents a substantial and concrete
improvement when compared to the Black and Scholes model. Therefore, we can expect
that the hedging in the Merton model perform better than the delta hedging in the Black
and Scholes.

Then, consider the following hedging strategy for the Black-Scholes model: we assume
that we go long in the call option and to protect against a downturn in the price of the
underlying asset we will sell short ∆ unit of the underlying asset. The goal is to choose ∆
in such a way that the value of the portfolio is not sensitive to small changes in the price
of the underlying asset. If we denoted with Π the value of the portfolio, then Π = C −∆S
or, equivalently, Π(S) = C(S) − ∆S. To implement the Delta hedging we assume that if
the Delta is negative we will go long on the asset and short the call option. We can note
that a portfolio is Delta neutral only over a short period of time. We recall that the Delta
of a call option is equal to the equation (3.18). To implement the Black-Scholes formula
the cumulative distribution N(d) of the standard normal variable x must be estimated
numerically and we use the algorithm proposed by Abramowitz and Stegun in 1970 which
has an approximation error smaller than 7.5 · 10−7 at any point on the real axis.
On the other hand, for the Merton jump di�usion model we consider the hedging prosed
by Merton. Therefore, we �nd that the price of the call option in this model is equal to
the equation (3.21) and then we use the hedging portfolio proposed by Merton is the self-

�nancing strategy (φ0
t , φt) given by: φt = ∂CM

∂S (t, St−) and φ0
t = φtSt−

∫ t
0
φdS; which means

that we choose to hedge only the risk represented by the di�usion part.
The result of these two hedging strategy can be seen in the table below which report the
return and the variance:

Return Variance (σ2)
Black-Scholes Hedging 6.40% 0.1589 %

Merton Hedging 6.49% 0.1589 %

We can see that the two hedging strategy have the same variance and the return are more or
less the same, the Merton return is a greater only of 0.09 respect to the Black-Scholes return.
One possible explanation is that we consider a trading strategy only for one year and, as said
before, a portfolio is Delta neutral over a short period of time. Despite this, we can say that
the hedging strategy also con�rms the above: the Merton model represents a substantial
and concrete improvement when compared to the Black and Scholes model. In fact, we can
safely say that no-one would choose the Delta hedging compared to Merton hedging as the
second has a bigger return, even if small, with the same variance. Therefore, the Merton
hedging dominates the Black-Scholes hedging since Merton considers in the stock process a
jump component.
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