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1. Introduction 

With the present thesis we will deal with the portfolio optimization problem.  The concepts of portfolio 

optimization and diversification have been instrumental in the development and understanding of financial 

markets and financial decision making. The major step toward quantitative management of portfolio was made 

by Harry Markowitz in his paper “Portfolio Selection” published in 1952 in the Journal of Finance. When Harry 

Markowitz, William Sharpe and Merton Miller were awarded in 1990 of the Nobel Prize in Economics, it was 

clear the need of a new scientific discipline, the “theory of finance. The theory of finance has become increasingly 

mathematical, to the point that problems in finance are now driving research in mathematics. The theory, popularly 

referred to as Modern Portfolio Theory, gave a response to the crucial question of how an investor should allocate 

funds among the possible investment choices.  Markowitz proposed that agents ought to consider risk and return 

together and then decide the allocation of funds among investment alternatives based on the trade-off between 

them. Markowitz’s ideas pose the base of what is now called mean-variance optimization and Modern Portfolio 

Theory (Hull et al.,2002)  

In 1969, Robert Merton published “Lifetime Portfolio Selection Under Uncertainty: The Continuous-Time Case”, 

here Robert Merton introduced stochastic calculus into the study of finance. He presented another approach to 

deal with portfolio optimization not subject to the static nature of Markowitz mean-variance approach. 

Specifically, we will focus on the Merton Problem. 

This thesis is divided into three main sections: First section aims at giving an introduction of probability and 

stochastic processes and some notations required to understand the following sections. In particular, Markov 

Processes will be introduced as well as Geometric Brownian Motion and its property. 

In the second section we deal with portfolio theory, given a brief illustration of classic Markowitz theory, that 

founded Modern Portfolio Theory and then enter in a specific discussion about the Merton Problem that is, optimal 

investment and consumption problem. In brief, let’s take into account a financial market in which we have only a 

risk-free asset and a risky asset. In the former the price grows at a fixed rate, while in the latter the price follows 

a Geometric Brownian motion. An investor can allocate his wealth in two different ways: consumption and 

investment. Since the agent wants to maximize his expected utility from intermediate consumption and terminal 

wealth, he had to decide how much to consume and how to allocate his wealth between the risky asset and risk-

free one. Robert Merton in his paper formulated the optimal investment and consumption problem as a stochastic 

optimal control problem. As a result, it leads to the Hamilton-Jacobi-Bellman equation, a fully non linear partial 

differential-equation (PDE). (Merton, 1992). 
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In the third section we analyze the complex Robust Merton Problem. Robust optimization is the mathematical 

discipline that takes into account the uncertainty of the problem parameters and solve the underline problem 

providing a solution which is the best response to data uncertainty given that uncertainty in the parameters may 

have a great impact on the final result. It is a technique that addresses the same type of problems as stochastic 

programming does but present a different approach to handling data uncertainty. It used to make relatively general 

assumptions on the probability distributions of the uncertain parameters so as to preserve the computational 

tractability. “In robust optimization, one makes the problem well-defined by assuming that the uncertain 

parameters vary in a particular set defined by one’s knowledge about their probability distributions, and then 

takes a worst-case (max-min) approach: find portfolio weights such that the portfolio return is maximized even 

when the vector of realizations for the asset returns takes its “worst” value over the uncertainty set.”(Fabozzi et 

al., 2007).  In order to extend the Merton Problem to a Robust Merton Problem, we will begin explaining the 

portfolio optimization framework, and then we will apply it to the case of an agent that is diffident about mean 

and volatility returns. We will see that the result provided is based on a max-min Hamilton-Jacobi-Bellman-Isaacs, 

a partial differential equation that is central to optimal control theory.  

2. Stochastic processes 

2.1 Probability model 

In order to formulate mathematics models in finance we need the stochastic calculus that is based on probability 

theory. For this reason, the scope of this chapter is to recall some fundamental concepts of this theory. 

A variable whose value changes over time in an uncertain way is said to follow a stochastic process. Stochastic 

process can be divided into discrete-time processes and continuous-time processes. In the former, the value of the 

variable can change so it can assume different values only in determined points, In the latter, the value can change 

at any point.  

Stochastic process can also be divided in continuous-variable and discrete variables. In the former the variable 

can assume all the values that are in a certain range, in the later the variable can assume only a finite number of 

values.  

Stocks, in particular, follow a continuous time and stochastic process. For example, we know stocks are not traded 

continuously, they are traded when the market is open, and stocks we know can take discrete values. (Borrelli, 

2012).  

Nevertheless, reasoning in continuous terms is very important in achieving our result. 
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2.2 The sample space of a probability model 

To elaborate probabilistic model first of all we need to fix a probability space. To give a rigorous definition, we 

will recall some definitions.  

Definition 2.1 We define Probability Space the measure space (Ω,ℱ,ℙ) where:  

Ω is the set of all possible outcomes for some experiment. 

ℱ is a sigma-algebra of subsets of Ω, called events, which are relevant to us and which we would like to measure. 

It is defined as sigma-algebra and it represents the historical but not future (ℱ is non-anticipative) information 

available on our stochastic process.  

ℙ is a definite measure on ℱ, called probability measures such that ℙ(Ω) = 1.  

ℙ must have properties that:  

• ℙ: ℱ → [0,1] 

• ℙ(Ω) = 1 (normalization property) 

• ℙ is countably additive: if (𝐴𝑛)𝑛 is a sequence of disjoint events, then: 

 

ℙ(⊔𝑛 𝐴𝑛) =∑ℙ

𝑛

(𝐴𝑛) 

These axioms imply that if 𝐴𝑐 is the complement of A, then: 

ℙ(𝐴𝑐) = 1 − ℙ(𝐴) 

And the principle of inclusion and exclusion: 

ℙ(𝐴 ∪ 𝐵) =  ℙ(𝐴) + ℙ(𝐵) − ℙ(𝐴 ∩ 𝐵) 

Even if A and B are not disjoint. 

Another way to describe a probability, given a probability space, is that of associate at each state a real number 

or 𝑛 real numbers, so to define a value function in ℝ o in ℝ𝑛  on the set of the states. 

If a function satisfies what we called an appropriate hypothesis it is called a random variable. Such characteristics 

of the probability space are strictly linked to the specific topic we are dealing with and, thus, vary with different 

processes meaning different (Ω,ℱ,ℙ). The basic concept in probability theory is that of a random variable. Let’s 

start by considering a real random variable 𝑋. 
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A random variable is a function of the basic outcomes in a probability space. 

Definition 2.2. A real random variable on (Ω,ℱ) is a function on Ω which takes values in ℝ: 

 X : Ω → ℝ  

and is ℱ-measurable. This means that the counter-image of any half line (−∞,x] is an event:  

 {𝑋 ≤ 𝑥} ∈ ℱ for all x ∈ ℝ .  

The information we possess up to a certain point x generates what is called a sigma-algebra, which we define as 

follows: 

𝜎(𝑋):= 𝜎({𝑋 ≤ 𝑥} ∣ 𝑥 ∈  ℝ 

  

all the events that can be expressed in terms of X, for example {𝑎 ≤ 𝑋 ≤ 𝑏} belong to 𝜎(𝑋). 

2.3 Stochastic processes 

We begin by emphasizing that while in deterministic processes we study a phenomenon that depends on time, of 

which we are able to predict the exact evolution over time, in order to describe those phenomena whose evolution 

is influenced by random events classical analysis is no longer adequate and it is necessary to introduce the 

stochastic processes, based on probability theory (Gallagher, 2013).  

Particularly in the financial sector, it is not possible to accurately predict the future price of a given risky title, for 

example a share, knowing its past history, because this is influenced by randomness. Indeed, unpredictable events, 

such as the failure of a company, the collapse of a government, a terrorist action, can produce considerable 

fluctuations in the Stock price on the stock exchange. Due to frequent and intense variations, due to random 

events, the function that associates the value of an action to the variable 𝑡 is not derivable and therefore cannot be 

a solution of an ordinary differential equation. (Borrelli, 2012).  

In mathematical terms a stochastic process is a sequence of real random variables, defined on the sample space, 

from (Ω, ℱ) to ℝ.  

In a filtered space Ω, ( ℱ𝑡)𝑡≤𝑇 , ℙ) , if at time 𝑡 we know the value of a real-valued stochastic process 𝑆 = (𝑆(𝑡))𝑡,   

then 𝑆(𝑡) is 𝐹-measurable, or, in other words, 𝑆 is adapted to the filtration. 

For 𝑆 to be an adapted process the following conditions must hold: 

For any fixed time 𝑡,  
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𝑆(𝑡) :  Ω → ℝ 

 

For all fixed reals 𝑥, the set {𝑆(𝑡) ≤ 𝑥 }  belongs to ℱ𝑡 . 

2.4 Expected values 

The expectation for a random variable 𝑋, is essentially the average value it expected to take on. So, the expected 

value E[X]  , also known as the mean, is calculated as the weighted average of the outcomes of 𝑋(𝜔). This leads 

to the defining formula: E[X] = ∑ 𝑥𝑖𝑖 ℙ(X = 𝑥𝑖)  for a discrete random variable;  

For continuous random variables, with density 𝑝𝑋, then ℙ(𝑥 <  𝑋 ≤  𝑥 +  𝑑𝑥) =  𝑝𝑋(𝑥)𝑑𝑥  and the expectation 

is:  

E[X] = ∫𝑥 𝑝𝑥 (𝑥)𝑑𝑥   

Note that the distribution, and thus the expectation of a random variable, strongly depends upon ℙ. A change in 

our probabilistic views results in a change of distribution and expectation, for all the random 𝑋 on Ω. Expectation 

is a linear operation, meaning that the expectation of a linear combination is the linear combination of the 

expectations:  

𝐸[𝑎𝑋 + 𝑏𝑌] = 𝑎𝐸[𝑋] + 𝑏𝐸[𝑌] 

So, an expectation over a linear combination of X and Y may be computed without knowing the joint distribution 

𝑡 of the two variables. The same cannot be said, for example, for the computation of 𝐸[𝑋𝑌]. In this case a 

covariance matrix is required, or, at most, assumptions over the independence of the two variables. Assume we 

have a continuous random variable, 𝑋, and function of such variable, 𝑌. Then we can write: 

𝑌 = 𝑔(𝑋) 

 In some case it might be useful to compute the expectation of 𝑌 based on our knowledge of the distribution of 𝑋. 

There is no rule guaranteeing that 𝑌 necessarily has a density. Whether or not this is the case clearly depends on 

𝑔. If we were to face a 𝑔 that is of the Bernoulli type, for instance, this wouldn’t be the case. But, given a 𝑌 is 

invertible and differentiable, with 𝑔′ ≠ 0,   we can state that has density, 𝑝𝑌 , with:  

𝑝𝑌(𝑦) = 𝑝𝑋(𝑔
−1(𝑦))

1

∣ 𝑔′(𝑔−1(𝑦)) ∣
 

We take now an expected value of 𝑌 and by means of substitution we arrive to the following: 
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𝐸[𝑌] = 𝐸[𝑔(𝑋)] = ∫𝑦𝑝𝑋(𝑔
−1(𝑦))

1

∣ 𝑔′(𝑔−1(𝑦)) ∣
𝑑𝑦 = ∫𝑔(𝑥)𝑝𝑋(𝑥)𝑑𝑥 

bearing in mind that by definition 𝑥 = 𝑔−1(𝑦) .  

Note, moreover, that this last formula, being only dependent on 𝑥, is always valid and applicable to 𝑌, even when 

it does not have a density. 

2.5 Independence 

Two random variables are independent if the joint density factors into the product of their marginal densities: 

𝑝(𝑥,𝑦) = 𝑝𝑋(𝑥)𝑝𝑌(𝑦) 

For all 𝑥,𝑦. 

If 𝑋 and 𝑌 are independent, then:  

𝐸[𝑋𝑌] = 𝐸[𝑋]𝐸[𝑌] 

And they are also uncorrelated: 

𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])] = 0 

We can state that if two random variables are independent, then they are also uncorrelated. Independence always 

implies uncorrelation, but the opposite is not true, as two variables that are uncorrelated are not necessarily 

independent. (Block, 2008).  

2.6 Conditional expectations 

We now introduce a very subtle concept: conditional expectation. The simplest definition is expectation of a 

random variable X conditioned on an event.  

Conditional expectations are more precise in making a guess over a random variable than expected values as they 

allow us to take into account more information that may be useful for the goal.  

Some basic properties of conditional expectation are: 

• 𝐸[𝐸[𝑌 ∣ 𝑋]] = 𝐸[𝑌] 

• Additivity: 𝐸[𝑌1 + 𝑌2] ∣ 𝑋] = 𝐸[𝑌1 ∣ 𝑋] + 𝐸[𝑌2 ∣ 𝑋] 

• random variables known when X is known can be considered as constants and taken out of the expectation, 

𝐸[𝑓(𝑋)𝑌 ∣ 𝑋] = 𝑓(𝑋)𝐸[𝑌 ∣ 𝑋] 
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• if two variables 𝑋 and 𝑌 are independent we can state:  𝐸[𝑌 ∣ 𝑋] = 𝐸[𝑌] 𝑎𝑛𝑑 𝐸[𝑋 ∣ 𝑌] = 𝐸[𝑋] 

Now we consider the case in which ℱ𝑇 ,the sigma algebra of a filtered space, represents the information over a 

relative specific event at time 𝑡 < 𝑇 so if we have a set of information ℱt1 our best guess is to find the conditional 

expectation given the set of information we already have. 

So, consider: 

𝐸[𝑌|ℱ𝑡1] 

In this case the value of 𝑌 is known at time 𝑡2, and this is our best guess at time 𝑡1 given the information we have. 

And 𝐸[𝑌|ℱ𝑡1] is a random variable itself, known, at least at some time 𝑇.  

When information about the process 𝑌 are absent, we define the trivial sigma algebra ℱ0 as: 

ℱ0 = {0, Ω} 

Given that the information in the bracket are constant we can say:  

𝐸[𝑌 ∣ ℱ0] = 𝐸𝑊[𝑌 ∣ 𝑐] = 𝐸[𝑌] 

It’s now useful to list some properties of conditional expectations, taking two random variables, 𝑌 and 𝑊, known, 

at least, at some time 𝑇. By fixing a timeline such that 0 ≤ 𝑡0 < 𝑡1 < 𝑡2 ≤ 𝑇 we have: 

• 𝐸 [𝐸[ 𝑌 ∣∣ ℱ𝑡1 ]] = 𝐸[𝑌] 

• if Y is known by time t1, 𝐸[𝑌 ∣∣ ℱ𝑡1 ] = 𝑌  

• additivity: 𝐸[𝑌 +  𝑊|ℱ𝑡1] =  𝐸[𝑌|ℱ𝑡1] +  𝐸[𝑊|ℱ𝑡1] 

• for any Z known at time t1 ,𝐸[𝑍𝑌|ℱ𝑡1] =  𝑍𝐸[𝑌|ℱ𝑡1]  

• if Y is independent of ℱ𝑡1, then 𝐸[𝑌|ℱ𝑡1] =  𝐸[𝑌 ] which is constant. 

• tower law: 𝐸[𝑌|ℱ𝑡1] =  𝐸[𝐸[𝑌|ℱ𝑡1]|ℱ𝑡0]; this means that our best prediction at time t0 can be made dir

ectly or through an intermediate step, which is computing first the best prediction of 𝑌 for t1 and then for

 t0.  

2.7 Martingales  

The concept of a martingale plays an important role on the modern theory of probability and in theoretical finance. 

By intuition, a stochastic process behaves as a martingale if his trajectories don’t show, on average, a particular 

“trend”, it behaves as a submartingale if, on average, the “trend” is increasing, and as a supermartingale if, on 

average, the “trend” is decreasing. (Borrelli, 2012). We will now begin our formal study of martingales: 
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𝐸[𝑀(𝑡) ∣ ℱ𝑡] = 𝑆(𝑡) 

For all 0 ≤ 𝑠 < 𝑡 ≤ 𝑇. 

We claim that a martingale defines what we call “a fair game”, then the conditional expectation of the future 

payoff 𝑋 at time 𝑡 is exactly its current price: 

𝐸[𝑆(𝑇)|ℱ𝑡] =  𝑆(𝑡) 

As we stated before, by intuition, a martingale is a process that is “constant on average”. Given all information 

up to time 𝑠, the best guess for the value of the process at time 𝑡 ≥ 𝑠. is the current value. Likewise, the concept 

of supermartingale and submartingale are similar and can be considered as an extension of this concept. We can 

give a mathematical definition. 

1. A submartingale has the form 

𝐸[𝑋𝑛+1 ∣ 𝑋1, … , 𝑋𝑛] ≥ 𝑋𝑛 

2. A supermartingale has the form  

𝐸[𝑋𝑛+1 ∣ 𝑋1, … , 𝑋𝑛] ≤ 𝑋𝑛 

 (Borrelli, 2012).  

2.8 Markov process 

In order to determine the stocks returns, Markov process is a helpful stochastic process. 

Markov processes have no memory. Roughly speaking, it means that the prediction of the future is independent 

of its past, given its present value. Consequently, the variable’s past history and also the path through which a 

certain situation has been generated is not relevant. (Hull, 2002).  

Stock prices in general are assumed to follow a Markov process, for example if the current price of a stock 𝑆t = 

100, this is the only relevant piece of information.  

 An adapted process, 𝑆, is a Markov process if for any 𝑡, δ𝑡 we have:  

𝐸[𝑆𝑡+∆𝑡| 𝜎(𝑆𝑠 ∶  𝑠 ≤  𝑡)]  ≡  𝑓(𝑆𝑡)  

for an appropriate deterministic function 𝑓.  

This definition makes clearer what we stated above showing how the expected value of our process 𝑆𝑡, the price 

of the stock, after an increase ∆𝑡, is dependent only on the current time, 𝑡. In the definition above, past information 



12 
 

is indicated with the expression σ, which represents the entire history of the process 𝑆 up to the point of time 𝑠. A 

specific type of Markov stochastic process in a continuous time setting is the Wiener Process.    

2.9 Brownian Motion 

The term Brownian derives from the name of the botanist Robert Brown that in 1827 observed that the movement 

of pollen grain suspended in a liquid (e.g. water) follows chaotic and irregular movements. The particle is much 

bigger than liquid molecules so we can see only the particle. As the molecules are moving, they hit to the particle 

producing a very small energy, but together it can move with the particle. Since we are not able to calculate motion 

equation for every molecule, we cannot say where will the particle move, but we can for example know what the 

probability is to find a particle in some area. Albert Einstein in 1905 formulated a mathematic model of Brownian 

Motion. But already in 1900 L.Bachelier had used Brownian Motion to describe the movement of stock prices 

and other financial indices on the Paris stock market (Borrelli, 2012). The random motion of a particle in a fluid 

subject to collision and influence of other particle is called Brownian Motion. One of the mathematical models of 

this motion is the Wiener Process (Krishnan, 2006). 

In mathematical terms we say that in a filtered space (Ω, (ℱ𝑡)𝑡∈[0,𝑇],ℙ), taken 𝑡 as a continuous time parameter, 

𝑊 =  (𝑊(𝑇))𝑡≤𝑇 is a Brownian motion if:  

• W(0) = 0 

• W is adapted to the filtration 

• for any 𝑠<𝑡, the increment W(𝑡)−W(𝑠) is independent of ℱs, and has distribution 𝑁(0, 𝑡 − 𝑠)  

• W(t) has continuous sample paths 

 

From this definition we can say that:  

• marginal distributions are Gaussian, for any t we can write W(t)−W(0) which is normally distributed with 

N(0,t) 

• Brownian Motions have increments identically independent: for any u < s we can conclude that 

𝑊(𝑢),𝑊(𝑡) −𝑊(𝑠) are independent and therefore have a joint normal distribution 

𝑁((
0
0
) , (

𝑢 0
0 𝑡 − 𝑠

)) 

         In general, fixing 0 ≤  𝑡1 < 𝑡2 <  . . .  <  𝑡𝑛 ≤  𝑇 we obtain 𝑛 increments 

𝑊(𝑡1),𝑊(𝑡2) −  𝑊(𝑡1), . . . ,𝑊(𝑡𝑛) −𝑊(𝑡𝑛−1) independent and jointly Gaussian distributed, with: 
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𝑁

(

 
 
(
0
⋮
0
) , (

𝑡1 0 … … 0
0 𝑡2 − 𝑡1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 𝑡𝑛 − 𝑡𝑛−1

)

)

 
 

 

 In addition to being Markov processes, Brownian motion are also martingales. We prove it by considering two 

different dates 𝑠 < 𝑡 and write 𝑊(𝑡)  =  𝑊(𝑡) −𝑊(𝑠) +𝑊(𝑠). The conditional expectation is: 

𝐸[𝑊(𝑡) |ℱ𝑠]  =  𝐸[𝑊(𝑡) −𝑊(𝑠)  +  𝑊(𝑠) |ℱ𝑠]  =  𝑊(𝑠)  +  𝐸[𝑊(𝑡) −𝑊(𝑠)]  =  𝑊(𝑠) 

 

We now prove that a Brownian Motion is a martingale. Fixed two dates s < t we can write W(t) as 

W(t)−W(s)+W(s). We use this particular expedient to reach the conclusion that: 

𝐸[𝑊(𝑡)|𝐹𝑠]  =  𝐸[𝑊(𝑡) −𝑊(𝑠)  +  𝑊(𝑠)|𝐹𝑠]  =  𝑊(𝑠)  +  𝐸[𝑊(𝑡) −𝑊(𝑠)]  =  𝑊(𝑠) 

 

2.10 Linear and Geometric Brownian motion 

A linear transform of W, the standard Brownian motion, is: 

𝐵(𝑡) = µ𝑡 + 𝜎𝑊(𝑡) 

This is also referred to as Brownian Motion with drift. 

Geometric Brownian Motion 

Just as Brownian Motion is a Markov process, so is geometric Brownian motion, so the future given the present 

state is independent of the past.  

Let’s take a Brownian Motion with drift µ and volatility σ which describes the path of a process Y.  

The exponential transform is: 

𝑌 (𝑡) =  𝑒𝑥𝑝(𝑋(𝑡)) =  𝑒𝑥𝑝(µ𝑡 +  𝜎𝑊(𝑡)) 

This expression is called Geometric Brownian Motion and, since it is the exponential of a Gaussian variable, it 

has a lognormal distribution.  

Then we demonstrate that Geometric Brownian Motion are also Martingales: if we write 𝑊(𝑡) =  𝑊(𝑡) −

𝑊(𝑠) +  𝑊(𝑠),  𝑓𝑜𝑟 𝑠 <  𝑡 we get the expectation:  
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𝐸[𝑒𝑥𝑝(µ𝑡 +  𝜎𝑊(𝑡))|ℱ𝑠] =  𝑒𝑥𝑝(µ𝑡 +  𝜎𝑊(𝑠))𝐸[𝑒𝑥𝑝(𝜎(𝑊(𝑡) −𝑊(𝑠))] 

and the expectation is a Gaussian variable and has a normal distribution: 𝑁 ∼  (0, 𝑡 − 𝑠), therefore is equal to 

𝑒𝑥𝑝(
𝜎2

2
 (𝑡 − 𝑠)) , in fact we obtain:  

𝐸[𝑒𝑥𝑝(µ𝑡 +  𝜎𝑊(𝑡))|ℱ𝑠] =  𝑒𝑥𝑝(µ𝑡 +
𝜎2

2
(𝑡 − 𝑠) +  𝜎𝑊(𝑠))  

We can notice that the Geometric Brownian Motion is a Martingale if and only if the drift 

 𝜇 = −
𝜎2

2
 because:  

𝐸[𝑒𝜎(√𝑡−𝑠)𝑥] 

Where 𝑥 is an extraction from a random normal distribution and:  

∫𝑒𝜎(√𝑡−𝑠)𝑥
𝑒−
1
2
𝑥2

√2П
𝑑𝑥 

∫
𝑒
−
1
2
(𝑥2−2𝜎(√𝑡−𝑠)+(𝜎(√𝑡−𝑠))

2
)+
(𝜎(√𝑡−𝑠))

2

2

√2П
𝑑𝑥 

𝑒
(𝜎(√𝑡−𝑠))

2

2 ∫
𝑒−
1
2
(𝑥−𝜎(√𝑡−𝑠))

2

√2П

+∞

−∞

𝑑(𝑥 − 𝜎(√𝑡 − 𝑠)) 

 

given that the argument of the integral is the density function of a normal variable 

(𝑥 − 𝜎(√𝑡 − 𝑠)) it simplies to 1 given that the interval of validity is [−∞,+∞ ] and we get that:  

𝐸[𝑒𝜎(√𝑡−𝑠)𝑥] = 𝑒
(𝜎(√𝑡−𝑠))

2

2  

So, it is demonstrated that the Geometric Brownian Motion is a Martingale since all term depending on 𝑡 

disappears. 
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2.11 Ito process 

An Ito process is another type of stochastic process, it is a generalized Wiener process in which parameters 𝑎 and 

𝑏 are functions of the underlying value of the variable 𝑥 and of the time variable 𝑡; the process is expressed with 

the equation: 

𝑑𝑥𝑡  =  𝑎(𝑥𝑡, 𝑡)𝑑𝑡 +  𝑏(𝑥𝑡, 𝑡)𝑑𝑧𝑡 

where 𝑎 and 𝑏 are respectively drift and standard deviation.  

Either the expected drift rate and the variance rate of an Ito process can change value over time. The Ito’s Lemma, 

named after the mathematician K.Ito, is an important process in the understanding of the behavior of functions of 

stochastic variable. (Borrelli,2012). Assuming that a variable 𝑥 follows the Ito process: 

𝑑𝑥 =  𝑎(𝑥𝑡, 𝑡)𝑑𝑡 +  𝑏(𝑥𝑡, 𝑡)𝑑𝑧 

Ito’s lemma shows that a function F of 𝑥 and 𝑡 follows the process according to the equation:  

𝑑𝐹(𝑡, 𝑥)  =  𝐹𝑡(𝑡, 𝑥)𝑑𝑡 + 𝐹𝑥(𝑡, 𝑥)𝑑𝑥 

Using the Taylor expansion, we make a second-order approximation:  

𝑑𝐹(𝑡, 𝑥) = 𝐹𝑡(𝑡, 𝑥)𝑑𝑡 + 𝐹𝑥(𝑡, 𝑥)𝑑𝑥 +
1

2
(𝐹𝑥𝑥(𝑡, 𝑥)(𝑑𝑥)

2 + 2𝐹𝑡𝑥(𝑡, 𝑥)𝑑𝑡𝑑𝑥 + 𝐹𝑡𝑡(𝑡, 𝑥)(𝑑𝑡)
2) 

Usually second order elements of an approximation are negligible and are rarely considered. We now take 𝑡 as 

the time parameter and consider a function 𝑌 which depends on time and on a Brownian motion 𝑊. We consider 

the following: 

𝑌 (𝑡)  =  𝐹(𝑡,𝑊(𝑡)) 

 

Using our second order approximation we consider the following variation for 𝑌 in terms of 𝑡 and W: 

𝐹𝑡(𝑡,𝑊(𝑡))𝑑𝑡 + 𝐹𝑥(𝑡,𝑊(𝑡))𝑑𝑊(𝑡) +
1

2
(𝐹𝑥𝑥(𝑡,𝑊)(𝑑𝑊(𝑡))2 + 2𝐹𝑡𝑥(𝑡,𝑊(𝑡))𝑑𝑡𝑑𝑊(𝑡)

+ 𝐹𝑡𝑡(𝑡,𝑊(𝑡))(𝑑𝑡)2) 

Following the intuition that 𝑑𝑊(𝑡)  =  𝑊(𝑡 + 𝑑𝑡) −𝑊(𝑡)  ∼  𝑁(0, 𝑑𝑡), we can approximate the square 

increment (𝑊(𝑡))2 with its mean: 

                                                            (𝑊(𝑡))2  ∼  𝑑𝑡  
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Ito’s Lemma sums up what our findings where so far, and stated the following:  

Let 𝐹(𝑡, 𝑥) be a smooth function. The Markov process defined by: 

                                                      F(t,W(t)) 

has dynamics given by the following stochastic differential equation: 

𝑑𝐹(𝑡,𝑊(𝑇)) = (𝐹𝑡(𝑡,𝑊(𝑡)) +
1

2
𝐹𝑥𝑥(𝑡,𝑊(𝑡))) 𝑑𝑡 + 𝐹𝑥(𝑡,𝑊(𝑡)𝑑𝑊(𝑡) 

Another name given to an Ito process, diffusion process, is any adapted process Y whose dynamics may be written 

as: 

𝑑𝑌 (𝑡)  =  𝛼(𝑡)𝑑𝑡 +  𝛽(𝑡)𝑑𝑊(𝑡) 

where α and β are two coefficients. The first one, α, is referred to as the drift of the process. In reality though, in 

Finance the practice is to call drift the fraction 
𝛼(𝑡)

𝑌(𝑡)
  . The second coefficient, β, is the diffusion of the process. In 

the case of Brownian motions with drift and Geometric Brownian motions (S) we have the following conditions. 

B verifies: 

𝑑𝐵(𝑡)  =  µ𝑑𝑡 +  𝜎𝑑𝑊(𝑡) 

while the Geometric Brownian motion, 𝑆(𝑡)  =  𝑒𝑥𝑝(𝑏𝑡 +  𝜎𝑑𝑊(𝑡)) satisfies: 

 𝑑𝑆(𝑡)  = (𝑏 + 
𝜎2

2
) 𝑆(𝑡)𝑑𝑡 +  𝜎𝑆(𝑡)𝑑𝑊(𝑡)  

where sometimes we can call µ =  (𝑏 +
𝜎2

2
  ). 

2.12 Black-Scholes 

Here we want to present Black-Scholes model, usually for pricing derivative. In order to derive some solution, 

we have to simplify the model that we would be able to formulate with mathematical structure we already know.  

Let’s say we have only two assets, a risk-free asset (B, the “bond”) and a risky stock. The former pays continuously 

an interest 𝑟 ≥ 0 and has the following characteristics:  

 

{
𝑑𝐵(𝑡) = 𝑟𝐵(𝑡)𝑑𝑡

𝐵(0) = 1
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Or 𝐵(𝑡) ≥ 𝑒𝑟𝑡 .  

The latter on the other hand satisfies a stochastic differential equation with an initial condition (Cauchy’s 

Problem). It is described as: 

{
𝑑𝑆(𝑡) = µ𝑆(𝑡)𝑑𝑡 +  𝜎𝑆(𝑡)𝑑𝑊(𝑡)

𝑆(0) = 𝑆0
 

here, 𝑆0  is the observed, current, market price of the risky stock and the terms µ and σ are constants, with 𝜎 ≥ 0, 

respectively called drift and volatility.  

Solving the Cauchy problem and finding its unique solution, leads us to find out that 𝑆 must satisfy:  

𝑆(𝑡)  =  𝑆0𝑒
(𝜇−

𝜎2

2
)𝑡+𝜎𝑊(𝑡)

 

because of the lognormal property of the Geometric Brownian motion, we state that the marginals of the process 

𝑆(𝑡) satisfy: 

𝑙𝑛
𝑆(𝑡)

𝑆0
~𝑁((𝜇 −

𝜎2

2
) 𝑡, 𝜎2) 

meaning that the mean and the variance of the stock logreturns grow over time linearly. Given these properties m 

is defined as the exponential growth of the average stock price, while volatility is the standard deviation of the 

annual log return.  

2.13 Lognormal property  

If we take a function 𝑌 of 𝑆 such that: 

                                                           𝑌 = 𝑙𝑛 𝑆 

practically we want to derive the process of the 𝑙𝑛 𝑆, where 𝑑𝑆 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊(𝑡). 

Using Ito’s Lemma we can state that the process followed by 𝑌 is:  

𝑑𝑌 = (𝜇 −
𝜎2

2
)𝑑𝑡 + 𝜎𝑑𝑊(𝑡) 

Because: 

𝛿𝐺

𝛿𝑆
=
1

𝑆
       

𝛿2𝐺

𝛿𝑆2
= −

1

𝑆2
        

𝛿𝐺

𝛿𝑡
= 0 
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It implies that:  

𝑙𝑛𝑆𝑡 − 𝑙𝑛𝑆0  ∼  𝑁 ((𝜇 −
𝜎2

2
))𝑇, 𝜎2𝑇 

And 

𝑙𝑛𝑆𝑇~𝑁 (𝑙𝑛𝑆0 + (𝜇 −
𝜎2

2
)𝑇, 𝜎2𝑇) 

Since ln(𝑆(𝑡)) has normal distribution and 𝑆(𝑇) is log-normal, it holds that the stock price at time T has a log-

normal distribution.  

 

3. Portfolio Optimization 

3.1 Portfolio theory  

Portfolio optimization is a major area in finance. We know that a basic premise of economics is that, due to the 

scarcity of resources, all economics decisions are made in the face of trade off. The trade-off facing the investors 

are risk versus expected return. The investment decisions are not merely which securities to own, but how to 

divide investor’s wealth among securities, given that the main objective is to maximize the yield and at the same 

time minimize the risk. This is the problem of “Portfolio Optimization”. The publication of Harry Markowitz’s 

landmark paper, “Portfolio Selection”, in 1952 in the Journal of Finance, can be considered the moment of the 

birth of modern financial economics (Rubinstein, 2002). He suggested one way to optimizing a portfolio and in 

1990 his work earned him a share of 1990 Nobel Prize in Economic Science for his pioneering theoretical 

contribution to portfolio theory, together with Merton Miller and William Sharp (Amu, Millegard , 2009). Though 

widely applicable, mean-variance optimization has had the most influence in the practice of portfolio 

management. In his work Markowitz poses the underpinning for Modern Portfolio Theory, providing a framework 

to construct and select an investment portfolio, that, as we stated before, is based on the maximization of expected 

returns and simultaneous minimization of investment risk. The foundation for this theory was then expanded by 

William Sharpe, awarded of the Nobel Prize, known for his Capital Asset Pricing Model on the theory of financial 

asset price formation (Mangram, 2013). 

As a matter of fact, after the initial selection procedure, the agent become a passive agent as he can only be a 

spectator of price fluctuations. It is however relevant to introduce Markowitz model before the discussion of a 

more advance intertemporal model.  
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3.2 Markowitz portfolio 

The primary goal of the Modern Portfolio Theory established by Markowitz in his article “Portfolio Selection” 

(Markowitz, 1952) was the description of the impact of asset allocation that is commonly known as portfolio 

diversification by the number of securities within the portfolio and their covariance relationship. The ideas 

introduced in this article have come to build the basis of what is now called mean-variance analysis and Modern 

Portfolio Theory. (Fabozzi et al., 2007) 

Markowitz developed mean-variance analysis in the context of selecting a portfolio of common stock. Mean- 

variance analysis requires knowledge of expected return and standard deviation on each asset, as well as the 

correlation of returns for each pair of assets because of the opportunity to reduce total portfolio risk comes from 

the lack of correlation across assets. We will describe more in detail Markowitz Model.  

First, as with any model, we have to underline the assumptions on which the model is based: 

 “1. Investors are rational, so they seek to maximize the expected return while minimizing risk. 

 2. All investors have the same expected single period investment horizon. 

 3. All investors are risk-adverse, that is they are only willing to accept greater risk if they are compensated with 

a higher expected return. 

 4. Investors base their investment decisions on the expected return and risk, so they receive all pertinent 

information. 

 5. Markets are perfectly efficient.” (Mangram, 2013). 

Mean- variance analysis is based on a single period model of investment. This means that the investor, at the 

beginning of the period is active, and he decides how to allocate his wealth among various assets, during the 

period he is an observer and each asset generates a rate of return, at the end of the period, final time T, his wealth 

has been changed and the investor collect the results of his investment. (Rubinstein, 2002). 

We consider a market with d securities with prices 𝑝1, 𝑝2, . . , 𝑝𝑑 >  0 at time 0 and final prices 𝑃1, 𝑃2, . . , 𝑃𝑑 at 

the final time T. the securities are not feasible. They are random variables over the probability space (Ω, ℱ, ℙ ), 

the return is: 

 𝑅𝑖(𝑇) =
𝑃𝑖(𝑇)

𝑝𝑖
, 𝑤𝑖𝑡ℎ 𝑖 = 1, . . , 𝑑. 

Then we assume that the mean and the covariance are given, where: 𝐸[𝑅𝑖(𝑇)] = 𝜇𝑖 and 𝑐𝑜𝑣(𝑅𝑖(𝑇), 𝑅𝑗(𝑇) = 𝜎𝑖𝑗. 
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Assuming that each security is perfectly divisible, that is we can hold 𝜑i𝜖𝑅 of security 𝑖, 𝑖 = 1,.…,𝑑.  

An investor with an initial wealth 𝑋 >0 is assumed to hold 𝑤𝑖 ≥ 0 shares of security 𝑖 with  

∑𝑤𝑖𝑃𝑖 = 𝑋

𝑑

𝑖=1

 

.  

Then the portfolio vector is 𝜋 = (𝜋1, 𝜋2,…, 𝜋𝑑) and the portfolio return 𝑅𝜋 are given as: 

 𝜋𝑖 =
 𝑤𝑖𝑃𝑖

𝑋
   

𝑅𝜋  =  ∑𝜋𝑖𝑅𝑖(𝑇)

𝑑

𝑖=1

 

The component of the portfolio vector represents the fraction of wealth which are invested in the corresponding 

assets of securities.  

We can now write the mean and variance of the portfolio as:   

𝐸(𝑅𝜋)  =  ∑𝑤𝑖𝜇𝑖

𝑑

𝑖=1

  

𝑣𝑎𝑟(𝑅𝜋) =∑∑𝜋𝑖𝜎𝑖𝑗𝜋𝑖

𝑑

𝑗=1

𝑑

𝑖=1

  

As we stated above, Markowitz reasoned that investor should decide on the basis of a trade-off between risk and 

expected return. He suggested that risk should be measured by the variance of returns, while the return by the 

portfolio mean.   

Following Markowitz, the investors’ problem is a constrained minimization problem in the sense that an investor 

who seeks to minimize the variance of the portfolio given a lower bound C2 must seek:  

min𝑉𝑎𝑟(𝑅𝑖) 

Subject to: 𝑤𝑖 ≥ 0,∑ 𝑤𝑖 = 1, 𝐸(𝑅𝑖) ≥ 𝐶2, 𝑖 = 1. . 𝑛  
𝑛
𝑖=1  

For an investor who seeks to maximize the portfolio return, given an upper bound C1, the problem will be 

formulated as: 
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max𝐸[𝑅𝑖] 

Subject to the constraints:  𝑤𝑖 ≥ 0,∑ 𝑤𝑖 = 1
𝑛
𝑖=1 , 𝑉𝑎𝑟(𝑅𝑖) ≤ 𝐶1, 𝑖 = 1. . 𝑛   

To solve these problems first order conditions are used.  

3.3 Introduction to Merton Problem  

A more advanced approach to portfolio selection which accommodates for the risk aversion of the investor and is 

not subject to the static nature of the Markowitz mean-variance approach was presented by Robert Merton in 

1969. In order to have a clear environment, first we introduce the CRRA utility function.   

3.4 Preferences and risk aversion 

We introduce the form and discuss the properties of the utility functions that investors are assumed to possess in 

this model. They play a key role in determining how to maximize the outcome by means of our strategy. Merton 

in the formulation of his theory takes into consideration the CRRA utility function, that is the constant relative 

risk aversion function. CRRA are a specific set of utility function which belongs to the family of HARA. The idea 

is that the HARA form is the only form of function able to satisfy some optimization related economic principles. 

(Perets et al.  2013). The only functions of this wider set of functions that satisfy the CRRA property are referred 

to as isoelastic functions and are of the form: 

𝑢(𝑡, 𝑥) = 𝑒−𝜌𝑡
𝑥1−𝑅

1 − 𝑅
 

Or: 

𝑢(𝑡, 𝑥) = −𝛾−1exp (−𝜌𝑡 − 𝛾𝑥) 

Where 𝜌, 𝛾, 𝑅 > 0 𝑎𝑛𝑑 𝑅 ≠ 1 and R represents the risk aversion of the consumer.  

In analyzing Merton Problem we will make use of the first type of utility. 

The use of a CRRA utility is convenient as we can take advantage of the scaling properties as we will see after. 

3.5 Merton Problem 

Merton considered a situation in which the investor had the limited choice of investing his wealth in only two 

different assets: a risky asset and a risk-free asset. We have to underline that, given a limited time horizon, the 

investor’s objective, who is risk averse, was to maximize the expected utility of his wealth at the end of the time 
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range taken into account. Merton’s goal was to determine how the investor should allocate and reallocate his 

wealth at each time point in order to achieve the previously selected goal. (Merton, 1992).  

We characterize the dynamics of the agent’s wealth trough the equation:  

𝑑𝑤𝑡 = 𝑟𝑡𝑤𝑡𝑑𝑡 + 𝑛𝑡(𝑑𝑆𝑡 − 𝑟𝑡𝑆𝑡𝑑𝑡 + 𝛿𝑡𝑑𝑡) + 𝑒𝑡𝑑𝑡 − 𝑐𝑡𝑑𝑡) 

= 𝑟𝑡(𝑤𝑡 − 𝑛𝑡𝑆𝑡) +𝑛𝑡(𝑑𝑆𝑡 + 𝛿𝑡𝑑𝑡) + 𝑒𝑡𝑑𝑡 − 𝑐𝑡𝑑𝑡 

For some given initial wealth w0. Here e and c are respectively an endowment stream and a consumption stream, 

the process r is an adapted process, interpreted as the riskless rate of interest. D, S, r and e will generally be 

assumed given, as the initial wealth w0. The agent can control the portfolio process n and the consumption process 

c. The model allows for changes in the quantity of wealth consumed and in the number of stocks purchased at 

time t. The investor initially chooses how much of w0 to invest in stocks and how much in the risk-free asset. We 

can think of the latter as wealth in bank account that returns an interest r, after setting such values, the total worth 

of the stocks bought will be 𝑛0𝑆0  and the bank account will add up to 𝑤0 − 𝑛0𝑆0. Because the values chosen for 

c and n can change over time, due to portfolio adjustments, it is important to specify that the pair (𝑛, 𝑐) which 

makes up the investor’s strategy on how much to invest and to consume, has to be admissible at any time. (Rogers, 

2013). 

The definition for this condition if the following: a pair (𝑛𝑡, 𝑐𝑡)𝑡≥0 is said to be admissible for initial w0 if the 

above process stays non-negative at all times. We will write the set of all admissible strategies as:  

𝒜 ≡∪𝑤>0 𝒜(𝑤) 

The portfolio of an investor can be characterized by the number of units of the asset held, or by the cash values 

invested in the different assets. Depending on the particular context, either one may be preferable. As a convention 

we say that n stays for the number of assets and θ for what the holding of assets is worth. Thus, if at time t we 

hold 𝑛𝑡
𝑖

  units  of asset i, whose time t-price is 𝑆𝑡
𝑖, then we have the identity:  

𝜃𝑡
𝑖 = 𝑛𝑡

𝑖𝑆𝑡
𝑖 

we can also characterize the portfolio held in terms of the proportion of wealth assigned to each of the assets. And 

so, given that 𝜋𝑡
𝑖  is the proportion of wealth invested in asset i at time t, we will write the notations as:  

𝜃𝑡
𝑖 = 𝑛𝑡

𝑖𝑆𝑡
𝑖 = 𝜋𝑡

𝑖𝑤𝑡 

We now suppose that the problem for the agent is to choose the pair (𝑛, 𝑐) such that: 
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sup
(𝑛,𝑐)∈𝒜(𝑤0)

𝐸 [∫ 𝑢(𝑡, 𝑐𝑡)𝑑𝑡 + 𝑢(𝑇,𝑤𝑇)
𝑇

0

] 

Where the function u is assumed to be concave increasing in its second argument, and measurable in its first. The 

time horizon T is taken to be a positive constant. The investor aims to maximize the final expected value of the 

intertemporal and final utilities over a specific time horizon.  

We can include some special cases:  

-The infinite-horizon problem:  

sup
(𝑛,𝑐)∈𝒜(𝑤0)

𝐸 [∫ 𝑢(𝑡, 𝑐𝑡)𝑑𝑡
∞

0

] 

And the terminal wealth problem:  

sup
(𝑛,0)∈𝒜(𝑤0)

𝐸[𝑢(𝑤𝑇)] 

 

We now introduce the Davis-Varaija Martingale Principle of Optimal Control to solve the agent’s problem of 

achieving his objective such that the wealth process w generated by his dynamics remains non-negative. We can 

use several methods, but an important principle underlying many of the approaches is the Martingale Principle of 

Optimal Control. It states:  

Suppose we have an objective of the form 

sup
(𝑛,𝑐)∈𝒜

𝐸 [∫ 𝑢(𝑡, 𝑐𝑡)𝑑𝑡 + 𝑢(𝑇,𝑤𝑇)
𝑇

0

] 

And there exists a function 𝑉 ∶  [0, 𝑇] × ℝ+ → ℝ  which is continuous in at least its second derivative and such 

that 𝑉(𝑇,∙) = 𝑢(𝑇,∙). Suppose also that for any (𝑛, 𝑐) ∈ 𝒜(𝑤0): 

𝑌𝑡 ≡ 𝑉(𝑡, 𝑤𝑡) + ∫ 𝑢(𝑠, 𝑐𝑠)𝑑𝑠  is a supermartingale 
𝑡

0

 

Then for some (𝑛∗, 𝑐∗) ∈ 𝒜, the process Y is a martingale. Then such pair (𝑛∗, 𝑐∗) is optimal and the value of the 

problem starting from 𝑤0 is therefore:  

𝑉(0,𝑤0) = sup
(𝑛,𝑐)∈𝒜(𝑤0)

𝐸 [∫ 𝑢(𝑡, 𝑐𝑡)𝑑𝑡 + 𝑢(𝑇,𝑤𝑇)
𝑇

0

] 
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We prove it from the supermartingale property of Y. For any (𝑛, 𝑐) ∈ 𝒜(𝑤0): 

𝑌 = 𝑉(0,𝑤0) ≥ 𝐸[𝑌𝑇] = 𝐸 [∫ 𝑢(𝑡, 𝑐𝑡)𝑑𝑡 + 𝑢(𝑇,𝑤𝑇)
𝑇

0

] 

Holds. Making use of 𝑉(𝑇,∙) = 𝑢(𝑇,∙) , so the value is not greater than 𝑉(0,𝑊0) and in the case of (𝑛∗, 𝑐∗) the 

inequality becomes an equality, therefore (𝑛∗, 𝑐∗) is optimal. (Rogers, 2013). 

3.6 The value function approach 

The value function approach is the classical methodology for solving a stochastic optimal control problem, based 

on the Martingale Principle of Optimal Control. We suppose that our asset follows a Geometric Brownian Motion 

and its dynamics are the following:  

𝑑𝑆𝑡
𝑖 = 𝑆𝑡

𝑖 (∑𝜎𝑖𝑗𝑑𝑊𝑡
𝑗
+ 𝜇𝑖𝑑𝑡

𝑁

𝑗=1

) 

Where 𝜎𝑖𝑗 and 𝜇𝑖 are constants and W is a d-dimensional Brownian Motion and our risk-less rate r is constant 

and that the endowment e and the dividend payout δ are both equal to zero. To make it more compact we re-write 

the equation as: 

𝑆𝑡 = 𝑆𝑡(𝜎 ∙ 𝑑𝑊 + 𝜇𝑑𝑡) 

And now we can express the wealth dynamics in terms of θ (recall that 𝜃𝑡
𝑖 = 𝑛𝑡

𝑖𝑆𝑡
𝑖): 

𝑑𝑤𝑡 = 𝑟𝑤𝑡𝑑𝑡 + 𝜃𝑡 ∙ (𝜎𝑑𝑊𝑡 + (𝜇 − 𝑟)𝑑𝑡) − 𝑐𝑡𝑑𝑡 

Given that we want to find a function that satisfies the MPOC condition we proceed by writing down our process 

Y and perform an Ito expansion, assuming that V is sufficiently regular: 

𝑑𝑌𝑡  =  𝑉𝑡𝑑𝑡 + 𝑉𝑤𝑑𝑤 +
1

2
 𝑉𝑤𝑤(𝑑𝑤)

2  +  𝑢(𝑡, 𝑐)𝑑𝑡 

= 𝑑𝑌𝑡  =  𝑉𝑤𝜃 · 𝜎𝑑𝑊 + {𝑢(𝑡, 𝑐)  +  𝑉𝑡  + 𝑉𝑤(𝑟𝑤 +  𝜃 · (µ − 𝑟) − 𝑐)  + 
1

2
|𝜎𝑇𝜃|2𝑉𝑤𝑤} 𝑑𝑡 

the condition for the Ito expansion to be a supermartingale is that the drift be non-positive, where the drift is equal 

to zero, the Ito expansion is a martingale. This happens at the optimal strategy (θ*,c*), at this point the funtion V 

is our value function. So we consider: 

0 = sup
𝜃,𝑐
 [𝑢(𝑡, 𝑐) + 𝑉𝑡 + 𝑉𝑤(𝑟𝑤 + 𝜃 ∙ (𝜇 − 𝑟) − 𝑐) +

1

2
∣ 𝜎𝑇𝜃 ∣2 𝑉𝑤𝑤  
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This (non-linear) partial differential equation (PDE) for the unknown value function V is called Hamilton-Jacobi-

Bellman (HJB) equation and it will be fundamental for finding a solution.  Anyway, we have to deal with some 

questions: Is there any solution to the partial differential equation? If so, is there a unique solution that satisfy the 

boundary conditions? Is the supremum attained? Is V actually the value function? 

To answer these questions HJB is a good way, in fact if we can find a function V which solves the HJB equation 

then, by direct means, it will be possible to verify that this function V is the value function. (Rogers,2013) 

In any case, also if is possible to answer the questions above, we just know that there is a value function and that 

it is the unique solution, we miss some information:  how the optimal value (θ*,c*) will looks or how the solutions 

will change when we change any of the input parameters. Usually in order to find a more explicit solution we 

have to assume a simple form of utility that is: 

𝑢(𝑡, 𝑥) ≡ 𝑒−𝜌𝑡𝑢(𝑥) ≡ 𝑒−𝜌𝑡
𝑥1−𝑅

1 − 𝑅
 

(Rogers, 2013). 

3.7 Infinite horizon Merton Problem  

We now analyze the infinite-horizon Merton Problem. We focus on and we assume the case of CRRA utility (with 

the properties we stated above) form for u, so we write:  

𝑢(𝑡, 𝑥) ≡ 𝑒−𝜌𝑡𝑢(𝑥) ≡ 𝑒−𝜌𝑡
𝑥1−𝑅

1 − 𝑅
 

Thus, we wish to solve for  

𝑉(𝑤) = sup
(𝑛,𝑐)∈𝒜

𝐸 [∫ 𝑒−𝜌𝑡
𝑐𝑡
1−𝑅

1 − 𝑅
𝑑𝑡

∞

0

] 

 

And the admissible (𝑛, 𝑐) which attains the supremum. 

 

This problem can be solved using a specific methodology: 

1. Make a guess on the form of the solution 

2. Make use of HJB equation to find the solution  

3. Find a simple bound for the value of the underlined problem 
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4. Verify that for the optimal solution the bound is attained  

STEP 1: 

We can write down the form of the solution easily because of the scaling property, by linearity of our wealth 

equation (we will explain this right after) and so we can now state that:  

𝑉(𝑤) = 𝛾𝑀
−𝑅𝑢(𝑤) ≡ 𝛾𝑀

−𝑅
𝑤1−𝑅

1 − 𝑅
 

For some constant γM > 0. The problem is reduced as the finding of such γM.. 

By linearity of wealth equation, it for any 𝑘 > 0 

𝑉(𝑘𝑤) = sup
(𝑛,𝑐)∈𝒜(𝑘𝑤)

𝐸 [∫ 𝑒−𝜌𝑡𝑢(𝑐𝑡)𝑑𝑡
∞

0

] 

= sup
(𝑛,𝑐)∈𝒜(𝑘𝑤)

𝐸 [∫ 𝑒−𝜌𝑡𝑢(𝑘𝑐𝑡)𝑑𝑡
∞

0

] 

 

= sup
(𝑛,𝑐)∈𝒜(𝑘𝑤)

𝑘1−𝑅 𝐸 [∫ 𝑒−𝜌𝑡𝑢(𝑐𝑡)𝑑𝑡
∞

0

] 

 

= 𝑘1−𝑅𝑉(𝑤) 

 

STEP 2: 

Using the HJB equation we can identify γM . To find the unknown constant γM we take: 

𝑉 (𝑡, 𝑤)  =  sup
(𝑛,𝑐)∈𝒜(𝑤)

𝐸 [∫ 𝑒−𝜌𝑡
𝑐𝑠
1−𝑅

1 − 𝑅
𝑑𝑠 ∣ 𝑤𝑡 = 𝑤

∞

0

]  

because of the time-homogeneity of the problem: 

𝑉 (𝑡, 𝑤)  =  𝑒−𝜌𝑡𝑉 (𝑤) 

Where V is defined as:  

𝑉(𝑤) = sup
(𝑛,𝑐)∈𝒜(𝑤)

𝐸 [∫ 𝑒−𝜌𝑡
𝑐𝑡
1−𝑅

1 − 𝑅
𝑑𝑡

∞

0

] 

and because of the scaling form of the solution: 
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𝑉(𝑤) = 𝛾𝑀
−𝑅𝑢(𝑤) ≡ 𝛾𝑀

−𝑅
𝑤1−𝑅

1 − 𝑅
 

we conclude that:  

𝑉(𝑡, 𝑤) = 𝑒−𝜌𝑡𝛾𝑀
−𝑅𝑢(𝑤) 

Now that we have the form of the solution, we just must identify the value of the constant. We make use of the 

HJB equation that involves optimize over the two factors that make up the investment strategy, θ and c.  

Optimization over θ:   

(𝜎𝜎𝑇)𝜃𝑉𝑤𝑤 = −(𝜇 − 𝑟)𝑉𝑤 

From here 𝜃∗ : 

𝜃∗ = −
𝑉𝑤
𝑉𝑤𝑤

(𝜎𝜎𝑇)−1(𝜇 − 𝑟) 

Using 𝑉(𝑡, 𝑤) = 𝑒−𝜌𝑡𝛾𝑀
−𝑅𝑢(𝑤)  we end up with the optimal wealth allocation in each asset i: 

𝜃∗  =  𝑤𝑅−1 (𝜎𝜎𝑇)−1(𝜇 − 𝑟) 

and now we can introduce the notation: 

𝜋𝑀  ≡  𝑅
−1 (𝜎𝜎𝑇)−1(𝜇 − 𝑟) 

a constant N-vector as the Merton Portfolio. 

𝜃∗  =  𝑤𝑅−1 (𝜎𝜎𝑇)−1(𝜇 − 𝑟) tells us that for each asset i and for all time t > 0 the cash value of the optimal 

holding of asset i will be proportional to the current wealth 𝑤𝑡 with 𝜋𝑀
𝑖  as constant of proportionality. So we will 

have:  

(𝜃𝑡
∗)𝑖 =  𝑤𝑡𝜋𝑀

𝑖  

Optimization over c is achieved through the introduction of the following convex dual function of u: 

˜ 

�̃�(𝑦)  ≡  𝑠𝑢𝑝{𝑢(𝑥) − 𝑥𝑦} 

Then we have for 𝑢(𝑥)  =  
𝑥1−𝑅

1−𝑅
 that: 

�̃�(𝑦)  =  −
𝑦1−�̃�

1 − �̃�
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where �̃�  =  𝑅−1.So the optimization over c becomes as: 

sup
𝑐
{𝑢(𝑡, 𝑐) − 𝑐𝑉𝑤}   =  𝑒

−𝜌𝑡 sup
𝑐
{𝑢(𝑐) − 𝑐𝑒𝜌𝑡𝑉𝑤}  =  𝑒

−𝜌𝑡�̃�(𝑒𝜌𝑡𝑉𝑤) 

As we did for θ we now substitute 𝑉(𝑡, 𝑤) = 𝑒−𝜌𝑡𝛾𝑀
−𝑅𝑢(𝑤)  and we obtain:  

 sup
𝑐
{𝑢(𝑡, 𝑐) − 𝑐𝑉𝑤}  =  𝑒

𝜌𝑡(𝛾𝑀
𝑤)−𝑅)  =  −𝑒−𝜌𝑡

(𝛾𝑀𝑤)
1−𝑅

1 − �̃�
= 𝑒−𝜌𝑡

𝑅

1 − 𝑅
 (𝛾𝑀𝑤)

1−𝑅 

Again, what we obtain is an optimizing c* proportional to w: 

𝑐∗  =  𝛾𝑀𝑤 

This does not come as a surprise because of the scaling property of the objective.  

We now put all together and return the candidate value function 𝑉 (𝑡, 𝑤)  =  𝑒−𝜌𝑡𝛾𝑀
−𝑅 𝑢(𝑤) to the Hamilton-

Jacobi-Bellman equation as a result we have:  

0 =  𝑒−𝜌𝑡[ 
𝑅

1 − 𝑅
 (𝛾𝑀𝑤)

1−𝑅  − 𝜌𝛾𝑀
−𝑅 𝑢(𝑤)  +  𝑟𝑤𝛾𝑀

−𝑅𝑤−𝑅 + 
1

2
𝛾𝑀
−𝑅 𝑤1−𝑅

|𝜅|2

𝑅
 

=
𝑒−𝜌𝑡𝑤

1−𝑅
𝛾𝑀
−𝑅

1 − 𝑅
 [𝑅𝛾𝑀  − 𝜌 − (𝑅 − 1)(𝑟 +

1

2

|𝜅|2

𝑅
] 

where 𝜅 ≡  𝜎−1(µ − 𝑟) is the market price of risk vector. From this the value of γM is: 

𝛾𝑀  =  𝑅
−1 {𝜌 + (𝑅 − 1)(𝑟 + 

1

2
 
|𝜅|2

𝑅
 }  

The value function of the Merton Problem then is 𝑉𝑀(𝑤)  ≡  𝑉 (𝑡, 𝑤), 

𝑉𝑀(𝑤)  =  𝛾𝑀
−𝑅 𝑢(𝑤) 

We now can write down the form of the optimal solution over the infinite-horizon problem thus, we believe that, 

we invest proportionally to wealth and we also consume proportionally to wealth. The constants of proportionality 

are given by the θ* and c* we computed.  

To conclude two issues must be taken into account:   

What happens if the expression 𝛾𝑀  =  𝑅
−1 {𝜌 + (𝑅 − 1)(𝑟 + 

1

2
 
|𝜅|2

𝑅
 }  for γM is negative? And can we prove 

that γM is actually the optimal solution? 

The first question relates directly to whether the Merton Problem is well-posed or not. 
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The second one is more general for this reason  we will first answer to this one, to answer we first should make 

the assumption that γM > 0, where γM is given by 𝛾𝑀  =  𝑅
−1 {𝜌 + (𝑅 − 1)(𝑟 + 

1

2
 
|𝜅|2

𝑅
 }. 

Suppose we are given the initial w0 we consider the wealth evolution w* under the conjectured optimal control. 

What we see is: 

𝑑𝑤∗𝑡 =  𝑤𝑡
∗{𝜋𝑀  · 𝜎𝑑𝑊𝑡  +  (𝑟 + 𝜋𝑀  · (µ − 𝑟) − 𝛾𝑀)𝑑𝑡} 

= 𝑤𝑡
∗{𝑅−1𝜅 · 𝑑𝑊𝑡  + (𝑟 + 𝑅

−1|𝜅|2  − 𝛾𝑀)𝑑𝑡} 

which is solved by: 

𝑤𝑡
∗ = 𝑤0𝑒𝑥𝑝[𝑅

−1𝜅 · 𝑊𝑡  +  (𝑟 + 
1

2
 𝑅−2|𝜅|2(2𝑅 − 1) − 𝛾𝑀)𝑡] 

STEP 3: 

The proof of optimality is based on a trivial inequality: 

𝑢(𝑦) ≤ 𝑢(𝑥) + (𝑦 − 𝑥)𝑢′(𝑥) 

for (𝑥, 𝑦) > 0 which express the fact that the tangent to the concave function u at 𝑥 > 0 lies everywhere above 

the graph of u. if we consider any admissible (𝑛, 𝑐) then we can bound the objective to  

𝐸 [∫ 𝑒−𝜌𝑡
∞

0

𝑢(𝑐𝑡)𝑑𝑡] ≤ 𝐸 [∫ 𝑒−𝜌𝑡
∞

0

{𝑢(𝑐𝑡
∗) + (𝑐𝑡 − 𝑐𝑡

∗)𝑢′( 𝑐𝑡
∗)𝑑𝑡] 

= 𝐸 [∫ 𝑒−𝜌𝑡𝑢(𝑐𝑡
∗)𝑑𝑡

∞

0

] + 𝐸 [∫ (𝑐𝑡 − 𝑐𝑡
∗)𝜁𝑡𝑑𝑡

∞

0

] 

That we can simplified as: 

𝜁𝑡 ≡ 𝑒
−𝜌𝑡𝑢(𝑐𝑡

∗) ∝ exp (−𝑘 ∙ 𝑊𝑡 − (𝑟 +
1

2
∣ 𝑘 ∣2 𝑡) 

Now 𝜁𝑡 is the state-price density, also named stochastic discount factor. A property related is that for any 

admissible (𝑛, 𝑐): 

 𝑌𝑇  ≡  𝜁𝑡𝑤𝑡  + ∫𝜁𝑠𝑐𝑠𝑑𝑠  

is a local martingale.  
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This is provable through Ito’s calculus from the wealth equation. And from here we can be sure, given that wealth 

and consumption are non-negative, that Y is a non-negative supermartingale and thus:  

𝑤0  =  𝑌0  ≥  𝐸[𝑌∞]  ≥  𝐸 [∫ 𝜁𝑠𝑐𝑠𝑑𝑠
∞

0

] 

STEP 4: 

Last step is to verify that: 

𝑤0  = 𝐸 [∫ 𝜁𝑠𝑐𝑠
∗𝑑𝑠

∞

0

]   

That is, verifying that the optimal supreme is attained. Here c* is the optimal consumption process. We combine 

the bound condition and the conditions for w0 so finally we can write down that for ay admissible (𝑛, 𝑐):  

𝐸 [∫ 𝑒−𝜌𝑡𝑢(𝑐𝑡)𝑑𝑡
∞

0

] ≤ 𝐸 [∫ 𝑒−𝜌𝑡𝑢(𝑐𝑡
∗)𝑑𝑡

∞

0

] 

Which verifies that (𝑛∗, 𝑐∗) is the optimal solution. (Rogers, 2013) 

3.8 Finite horizon Merton Problem 

The same technique we used for the infinite horizon can be used here, so the solution to the finite horizon Merton 

problem will be like the infinite horizon case. The first that constant relative risk aversion (CRRA) holds in 

consumption and that the utility function u is separable. The agent’s goal is therefore: 

 

sup𝐸 [∫ ℎ(𝑡)𝑢(𝑐𝑡)𝑑𝑡 + 𝐴𝑢(𝑤𝑡)
𝑇

0

] 

for strictly positive function h and constant 𝐴 >  0. Moreover, 𝑢’(𝑥)  =  𝑥−𝑅 for some 𝑅 >  0, 𝑅 ≠ 1. We can 

again take advantage of the scaling properties of the CRRA functions and get that the value function: 

𝑉(𝑡, 𝑤) = sup [∫ ℎ(𝑡)𝑢(𝑐𝑡)𝑑𝑡 + 𝐴𝑢(𝑤𝑇) ∣ 𝑤𝑡 = 𝑤
𝑇

𝑡

] 

which for some function f, must have the form: 

𝑉 (𝑡, 𝑤)  =  𝑓(𝑡)𝑢(𝑤) 

The Hamilton-Jacobi-Bellman equation for this problem is: 
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0 = sup
𝜃,𝑐
 [𝑢(𝑡, 𝑐) + 𝑉𝑡 + 𝑉𝑤(𝑟𝑤 + 𝜃 ∙ (𝜇 − 𝑟) − 𝑐) +

1

2
∣ 𝜎𝑇𝜃 ∣2 𝑉𝑤𝑤  

If we substitute our scaled form 𝑉 (𝑡, 𝑤) =  𝑓(𝑡)𝑢(𝑤)  of the function into the previous equation, we obtain: 

0 = sup
𝑦,𝑞
 𝑢(𝑤)[𝑓′ + (𝑟 + 𝑦(𝜇 − 𝑟) − 𝑞)(1 − 𝑅)𝑓 −

1

2
𝑅(1 − 𝑅)𝜎2𝑦2𝑓 + ℎ𝑞1−𝑅]  

where 𝑦 =  𝜃/𝑤 and 𝑞 =  𝑐/𝑤. The conditions for optimality are now given by: 

𝑦 =  𝜋𝑀    𝑎𝑛𝑑  𝑓 = ℎ𝑞
−𝑅 

 We can then conclude that investment is actually the same, but in general now we are not consuming at a constant 

rate multiple of the initial wealth. So in conclusion: 

𝜃𝑡
∗  =  𝜋𝑀𝑤𝑡 𝑎𝑛𝑑 𝑐𝑡

∗ = 𝑤𝑡 (
ℎ(𝑡)

𝑓(𝑡)
)

1/𝑅

 

Comparing to the infinite horizon case, we have the same investment strategy but now we no longer consume at 

a constant rate proportional to initial wealth. (Rogers, 2013) 

 

4 Robust Merton 

4.1 Introduction 

P.Huber presented the idea of robustness with regards to statistical estimation of an unknown parameter. Huber 

presented the so-called gross error and demonstrated that an optimal estimate is a maximum likelihood estimate 

developed for the least favourable distribution. What does this analytically mean?  it implies that we have to solve 

a minimax problem. In mathematical finance, most approaches and methodologies implicitly assume that the 

underlying asset model is completely determined: the parameters, trend and volatility, of the model are known. 

(Tevzadze et al, 2013.).   The term “robust” is often interpreted to mean “minimax”, that is, the opponent chooses 

which probability model from a pre-specified set will be used in order to make your value as small as possible.  

(Rogers, 2013). In other words, when we are dealing with robust optimization, we have to take a worst case that 

is, as we stated above, a max-min approach. This means that we should find portfolio weights such that the return 

is maximized even when the asset return takes its worst value over the set, given that the uncertainty of the 

parameters varies in specific set, determined by the knowledge of the probability distribution. (Fabozzi et al., 

2007). 
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Generally, financial modelling depends on the choice of an underlying P. P express the stochastic nature of market 

price evolutions, and the underlying risk factors, such as stock prices or interest rates, have been modeled as 

Markovian diffusion. Anyway, multifaceted nature of the global economic and financial dynamics renders 

imprecise the identification of P. So, we incorporate model uncertainty by replacing the single P by a set of 

probabilities 𝒫, consisting of plausible models. (Biagini,Pinar, 2017). 

The goal of the agent is maximize uncertainty averse utility from consumption and terminal wealth, in this case 

the investor has a pessimistic view of the odds, and takes a max-min way to deal with the problem, first minimizing 

a utility functional from wealth X over the plausible models 𝒫 and then maximizes wealth X(θ) over portfolio 

strategies θ. We can see the robust problem as a zero-sum, two players game between the representative agent 

and the adverse market. A main distinction to be drawn in the literature on robust portfolio selection is the 

dominates vs nondominated family: 

1) Case 𝒫 is a dominated family. We say that family 𝒫 is dominated if all 𝑃 ∈ 𝒫 are absolutely continuous 

with regard to a reference probability P0, 𝑃 ≪ 𝑃0.  

We provide a definition of an absolutely continuous function:  

Definition 4.1 A function 𝑓 ∶ [𝑎, 𝑏] → ℝ  is said to be absolutely continuous on [𝑎, 𝑏] if, given 𝜀 > 0, there exists 

some 𝛿 > 0 such that  

∑ ∣ 𝑓(𝑦𝑖) − 𝑓(𝑥𝑖) ∣< 𝜀

𝑛

𝑖=1

 

Whenever {[𝑥𝑖, 𝑦𝑖]: 𝑖 = 1, . . 𝑛} is a finite collection o mutually disjoint subintervals of [𝑎, 𝑏] with ∑ ∣ 𝑦𝑖 − 𝑥𝑖 ∣
𝑛
𝑖=1

< 𝛿.  

Clearly, an absolutely continuous function on [𝑎, 𝑏] is uniformly continuous on [𝑎, 𝑏] is uniformly continuous. 

Moreover, a Lipschitz continuous function on [𝑎, 𝑏] is absolutely continuous. Let 𝑓 and 𝑔 be two absolutely 

continuous functions [𝑎, 𝑏]. Then 𝑓 + 𝑔, 𝑓 − 𝑔 𝑎𝑛𝑑 𝑓𝑔 are absolutely continuous on [𝑎, 𝑏]. If, in addition, there 

exist a constant C > 0 such that ∣ 𝑔(𝑥) ∣≥ 𝐶 for all 𝑥 ∈ [𝑎, 𝑏], then 𝑓/𝑔 is absolutely continuous on [𝑎, 𝑏]. 

If 𝑓 is integrable on [𝑎, 𝑏], then the function F defined by  

𝐹(𝑥) ≔  ∫ 𝑓(𝑡)𝑑𝑡,       𝑎 ≤ 𝑥 ≤ 𝑏
𝑥

𝑎

 

Is absolutely continuous on [𝑎, 𝑏]. 
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A family 𝒫 is dominated if all 𝑃 ∈ 𝒫 are absolutely continuous with regard to a reference probability P0,  𝑃 ≪

𝑃0.  

      This happens when: 

• Ω is discrete, 𝑃0 = 𝛴𝑛≥1
1

2𝑛
𝛿𝜔𝑛 

• 𝒫 is finite or countable; dominating 𝑃0 = 𝛴𝑛𝑐𝑛𝑃𝑛 

• In a diffusion context; when there is uncertainty only in the drift. 

2) Case 𝒫 is nondominated. This is the case when we estimate the volatility coefficient. Estimation comes 

with error intervals. We now specify the model in the non dominated case and the consumption/investment 

problem formulation. We assume that the asset prices process is a n-dimensional diffusion, wih a n-

dimensional Wiener process. The agent is diffident about the constant drift and volatility estimates 

�̂� and �̂�. Thus  she consider as plausible all the covariances matrix lying in a given compact set K, fairly 

general, satisfying a uniform ellipticity condition min
𝛴∈𝐾

𝑦′𝛴 𝑦 ≥ ℎ2‖𝑦‖2, ℎ > 0. 

The agent then considers all the drift which take values in a ellipsoid centered at µ̂, shaped by Σ 

𝑈𝜖(𝛴) =  {𝑢 ∈  ℝ
𝑛 |(𝑢 − µ̂)′𝛴

−1
(𝑢 − µ̂) ≤ 𝜖2 } 

In which 𝜖 ≥ 0 is the radius of ambiguity. 

For a given path of 𝜎, let 𝛴𝑡(𝜔)  =  𝜎𝑡(𝜔)𝜎𝑡(𝜔)′. Then  

µ𝑡(𝜔)  ∈  𝑈𝜖(𝛴𝑡(𝜔)) ∀𝑡, 𝜔 

.4.2 The general Merton Problem under ambiguity averse agent 

Let’s consider an agent that invest in n risky assets and riskless asset. In particular we are dealing with the Black-

Scholes-Merton market model assumptions, where r, our riskless rate, is constant and the n traded risky dynamics 

are: 

𝑑𝑆𝑡
𝑖 = 𝑆𝑡

𝑖 (∑𝜎𝑖𝑗𝑑𝑊𝑡
𝑗
+ 𝜇𝑖𝑑𝑡

𝑁

𝑗=1

) 

Where 𝜎𝑖𝑗 and 𝜇𝑖 are constants and W is a standard, n-dimensional Brownian motion on a filtered space 

 (Ω, (ℱ𝑡)𝑡≥0, 𝑃). We now rewrite the equation in a matrix-vector form so: 

𝑑𝑆𝑡  =  𝐷𝑖𝑎𝑔(𝑆𝑡)(µ𝑑𝑡 +  𝜎𝑑𝑊𝑡) 
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Where 𝐷𝑖𝑎𝑔(𝑆𝑡) the diagonal 𝑛 𝑥 𝑛 matrix with i-th diagonal element equal to 𝑆𝑡
𝑖,μ is a n-vector and σ is 𝑛 𝑥 𝑛 

Matrix. Also, σ is required to be invertible, so that the instantaneous covariance matrix 𝛴 =  𝜎𝜎’ is also invertible. 

Given the initial endowment 𝑥 > 0, the investor is allowed to trade and consume in a self-financing way. To be 

explicit, let ℎ =  (ℎ𝑡)𝑡 denote the n-dimensional progressively measurable process, representing the number of 

shares of each asset held in portfolio, and let the progressively measurable, non-negative, scalar process c indicate 

the consumption stream. Assume also that  ∫ ℎ′𝑠𝛴ℎ𝑠
.

0
𝑑𝑠 and  ∫ 𝑐𝑠

.

0
𝑑𝑠 are finite P−a.s. The wealth process X is 

governed by the following stochastic differential equation:  

𝑑𝑋𝑡  =  (𝑟𝑋𝑡  +  ℎ𝑡
′𝐷𝑖𝑎𝑔(𝑆𝑡)(𝜇 −  𝑟𝟏)  − 𝑐𝑡)𝑑𝑡 + ℎ𝑡

′  𝐷𝑖𝑎𝑔(𝑆𝑡)𝜎𝑑𝑊𝑡 

The pair (𝜃𝑡, 𝑐𝑡) if the solution to the above equation, which is defined P-a.s., remains P-a.s. non-negative at all 

times., given the initial wealth x. Let 𝒜𝑃(𝑥) be the set of all admissible (𝜃, 𝑐) pairs for initial wealth x. Given a 

time horizon T, the agent is trying to choose (𝜃 , 𝑐)  ∈  𝒜𝑃(𝑥) so as to maximize the expected utility from running 

consumption and terminal wealth:  

sup
(𝜃 ,𝑐)∈𝒜𝑃 (𝑥)

𝐸 [∫ 𝑢(𝑡, 𝑐𝑡)𝑑𝑡 +  𝑢(𝑇, 𝑋𝑇 )
𝑇

0

] 

This class of stochastic control problems is known under the name of Merton problem.  

The utility function:  

The utility function 𝑢 ∶ (0,∞) × ℝ𝑛 → (−∞,∞) is jointly measurable. For fixed 𝑡, 𝑢(𝑡, 𝑥) is concave and 

increasing in x and satisfies the Inada condition at ∞: 

lim
𝑥→∞

𝑢′(𝑡, 𝑥) = 0 

However now the agent is diffident about the constant estimates �̂� and �̂�, for the drift and volatility matrix 

respectively and so things change. 

We introduce the robust framework by assuming e from now on that Ω is the n-dimensional Wiener space of 

continuous functions, with the natural filtration F = (ℱ𝑡)0≤𝑡≤𝑇 . Let K be some fixed compact set of 𝑛 ×  𝑛 

symmetric and positive definite matrices, containing �̂� and verifying a uniform ellipticity condition: 

 𝛴 ∈  𝐾 ⇒  ∃𝑎 >  0 𝑠. 𝑡. 𝑦′𝛴𝑦 ≥  𝑎2‖𝑦‖2∀y ∈  ℝ𝑛.  

 The specification via Σ for the ambiguity in the volatility is in line with empirical practice, as the (instantaneous) 

covariance matrix 𝛴 is the estimated object, and not the volatility σ. The Cholesky factorization offers a one-to-
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one correspondence between symmetric and positive definite matrices 𝛴 and lower triangular matrices σ with 

positive diagonal elements, so that 𝛴 =  𝜎 𝜎′ . Therefore, if (𝛴𝑡)𝑡  =  (𝜎𝑡𝜎𝑡
′)𝑡 , the plausible volatilities are: 

 𝑆 =  {𝜎 progr.meas. | 𝜎𝑡(𝜔) is lower triangular, with positive diagonal and 𝛴𝑡(𝜔) ∈  𝐾 for all 𝜔, 𝑡}.  

The uncertain drift is also assumed to be progressively measurable. For a given realization of the volatility 𝜎𝑡(𝜔), 

or equivalently of the instantaneous covariance matrix 𝛴𝑡(𝜔) it is allowed to vary in 

 𝑈𝜖(𝛴𝑡(𝜔))  =  {𝑢 ∈  ℝ
𝑛 | (𝑢 − �̂�)′𝛴𝑡

−1(𝜔)(𝑢 − �̂�)  ≤  𝜖2} 

 that is, in an ellipsoid shaped by 𝛴𝑡(𝜔) ,centered at �̂� and with constant radius 𝜖 ≥  0. Let us denote the set of 

plausible processes by 

𝛶 ∶=  {(µ, 𝜎) 𝑝𝑟𝑜𝑔𝑟.𝑚𝑒𝑎𝑠. | 𝜎 ∈  𝑆, µ𝑡(𝜔)  ∈  𝑈𝜖(𝛴𝑡(𝜔))} 

Let 𝑆 be the canonical process Ω, 𝐅 namely 𝑆𝑇(𝜔)  =  𝜔(𝑡). 

The plausible set P of probabilities is the set of Ps such that S satisfies the SDE: 

𝑑𝑆𝑡 =  𝐷𝑖𝑎𝑔(𝑆𝑡)(µ𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡
𝑃 ) 

in which WP denotes an n dimensional P-Brownian motion, for some (µ, 𝜎)  ∈  𝛶 

Given the initial wealth 𝑥 >  0, the investment/consumption pair (𝜃 , 𝑐) is called (robust) admissible if the 

measurability, integrability and nonnegativity assumptions hold P-a.s. for all P ∈ 𝒫. Namely, 

 𝒜𝑟𝑜𝑏(𝑥) ∶= ∩𝑃∈𝒫 𝒜
𝑃(𝑥).  

So, the wealth X has P-dynamics given by: 

𝑑𝑋𝑡 =  (𝑟𝑋𝑡 +  𝜃′(�̂� − 𝑟𝟏) − 𝑐𝑡)𝑑𝑡 + 𝜃𝑡
′ 𝜎𝑡𝑑𝑊𝑡

𝑃 

The ambiguity averse investor takes a prudential worst case approach, or alternatively she plays a game against 

the adverse market. The agent faces now the robust version of the Merton problem: 

𝑉(0, 𝑥) ∶ =  sup
(𝜃,𝑐)∈𝐴𝑟𝑜𝑏(𝑥)

inf
𝑃∈𝒫

𝔼𝑃 [∫  𝑢(𝑡, 𝑐𝑡)𝑑𝑡 + 𝑈(𝑇, 𝑋𝑇)
𝑇

0

  ] 

 

Robust verification theorem. Suppose that: 

1. there exists a function 𝑣 ∶  [0, 𝑇] × ℝ+ →  ℝ continuous on [0, 𝑇] × ℝ+ and 𝐶1,2 on [0, 𝑇) × ℝ+  

verifying 𝑣(𝑇,·) =  𝑈(·); 
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2. for any (𝜃, 𝑐)  ∈  𝐴𝑟𝑜𝑏(𝑥) there exist an optimal 𝑃(θ,c) ∈  𝒫 of the inner minimization, such that 

𝑌𝑡  =  𝑌𝑡
(θ,c)

 ≡  𝑣(𝑡, 𝑋𝑡)  +  ∫ 𝑢(𝑠, 𝑐𝑠 )𝑑𝑠
𝑡

0

 

Is a 𝑃(𝜃,𝑐)-supermartingale; 

3. there exist some  (�̅�, 𝑐̅)  ∈  𝐴𝑟𝑜𝑏(𝑥) such that the corresponding �̅� is a 𝑃(θ̅,c̅) – martingale 

Then (�̅�, 𝑐̅, 𝑃(θ̅,c̅)) is an optimizer for the robust Merton problem and 𝑣(0, 𝑥)  =  𝑉(0, 𝑥). 

HJB-Isaacs equation for the candidate value function:  

Using the Ito’s formula under P ∈ 𝒫, the any process Y verifies the SDE: 

𝑑𝑌𝑡 = (𝑢(𝑡, 𝑐) + 𝑣𝑡 + 𝑣𝑥(𝑟𝑥 + (𝜃′(�̂� − 𝑟𝟏) − 𝑐𝑡) +
1

2
𝑣𝑥𝑥𝜃′𝛴𝜃) 𝑑𝑡 + 𝑣𝑥𝜃𝑡

′𝜎 

By Ito’s Lemma, we derive a drift condition: the sup over the agent’s controls of the inf over Nature’s controls of 

Y ’s drift must be zero. Thus, a sup-inf non linear PDE arises of HJBI type:  

sup
(𝜃,𝑐)

inf
(𝛴,𝜇)

{𝑢(𝑡, 𝑐) + 𝑣𝑡 + 𝑣𝑥(𝑟𝑥 + (𝜃′(�̂� − 𝑟𝟏) − 𝑐) +
1

2
𝑣𝑥𝑥𝜃′𝛴𝜃} = 0 

Which is of the HJBI type, where (𝜃, 𝑐)  ∈  𝑅𝑁 × 𝑅+, and 𝛴 ∈  𝐾, µ ∈  𝑈𝜖(𝛴) ,  

Under the assumptions on u and K, the supremum and the infimum in the HJBI equation 

sup
(𝜃,𝑐)∈𝑅𝑛×𝑅+

inf
𝛴∈𝐾,𝜇∈𝑈𝜖(𝛴)

{𝑢(𝑡, 𝑐) + 𝑣𝑡 + 𝑣𝑥(𝑟𝑥 + (𝜃′(�̂� − 𝑟𝟏) − 𝑐) +
1

2
𝑣𝑥𝑥𝜃′𝛴𝜃} = 0 

Are attained for any 𝑣 ∈  𝐶1,2 on (0, 𝑇) × ℝ+ with 𝑣𝑥  >  0, 𝑣𝑥𝑥 <  0.  

Proof: we first minimize first over µ ∈  𝑈𝜖(𝛴) for Σ fixed. 

 This amounts to the minimization of the linear function: 

𝑣𝑥𝜃′µ 

over the ellipsoid, and is just an exercise in constrained optimization.  

 The optimizer is unique when 𝜃 ≠ 0 

𝜇(𝜃) ∶= µ̂  −  𝜖 
𝛴𝜃

√𝜃′𝛴𝜃
 

Substituting it back in the Hamiltonian of the HJBI equation, we get 
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sup
(𝜃,𝑐)∈𝑅𝑛×𝑅+

inf
𝛴∈𝐾

{𝑢(𝑡, 𝑐) + 𝑣𝑡 + 𝑣𝑥(𝑟𝑥 + (𝜃′(�̂� − 𝑟𝟏) −  𝜖 √𝜃′𝛴𝜃) +
1

2
𝑣𝑥𝑥𝜃′𝛴𝜃} = 0 

Which covers also the case θ=0. From this, the minimization over K: 

inf
𝛴∈𝐾

[−𝜖𝑣𝑥 𝑡√𝜃′𝛴𝜃 +
1

2
𝑣𝑥𝑥𝜃′𝛴𝜃]   

Set 𝑠 =  √𝜃′𝛴𝜃. Then the above is the restriction of the concave parabola: 

𝑦(𝑠)  =  −𝜖𝑣𝑥  𝑠 +  
1

2
 𝑣𝑥𝑥 𝑠

2 

 

to a compact subset of the positive axis. Since the vertex has negative abscissa, the minimum is reached for the 

maximum s.  It follow that  the optimizers are those 𝛴 ∈  𝐾 for which 𝜃′𝛴𝜃 is maximal.  

Call 𝑀(𝜃) ∶=  max𝐾 𝜃′ 𝛴𝜃 — continuous function of θ. 

The last step is the maximization in the HJBI equation: 

Sup
(𝜃,𝑐)∈ℝ𝑛×ℝ+

[𝑢 (𝑡, 𝑐) + 𝑣𝑡 + 𝑣𝑥(𝑟𝑥 + 𝜃′(µ̂ − 𝑟𝟏) − 𝜖 √𝑀(𝜃) − 𝑐) + 
1

2
𝑀(𝜃)𝑣𝑥𝑥  =  0 ] 

The maximization can be split into the sum of:  

1. sup𝑐∈ℝ+(𝑢(𝑡, 𝑐) + 𝑣𝑡 − 𝑐𝑣𝑥)  

Concavity of 𝑢 −  𝑣𝑥 >  0 and the Inada on u imply lim→+∞[𝑢(𝑡, 𝑐)  +  𝑣𝑡  −  𝑐𝑣𝑥] = −∞. 

By continuity, sup is a max. 

2. sup𝜃𝜖ℝ𝑛  (𝑣𝑥(𝜃′(�̂� − 𝑟𝟏)) − 𝜖√𝑀(𝜃))  + 
1

2
𝑀(𝜃)𝑣𝑥𝑥)  

v𝑥(𝜃′(�̂� − 𝑟𝟏)) − 𝜖√𝑀(𝜃))  + 
1

2
𝑀(𝜃)𝑣𝑥𝑥)   ≤ 

≤ v𝑥(𝜃′(�̂� − 𝑟𝟏)) − 𝜖h‖𝜃‖)  + 
1

2
h2‖𝜃‖2𝑣𝑥𝑥)    

Coercitivity when ‖𝜃‖  →  ∞. The sup is then attained by some �̅�  since the objective function is continuous. 

 

So let’s now analyze what will happen in the case of finite horizon and infinite horizon for non ambiguous σ. The 

result is based on a max-min Hamilton-Jacobi-Bellman-Isaacs equation. In this section we want to derive a closed 
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form portfolio optimization rule for an investor who is diffident about the drift and has a CRRA utility. The result 

depends on a max-min Hamilton-Jacobi-Bellman-Isaacs PDE, which broadens the classical Merton problem. As 

we assume that ambiguity is present only in the drift, as a matter of first importance we have to specify that the 

lack of uncertainty in the square volatility matrix may be justified by the consideration that mean returns are 

subject to imprecision to a much higher extent than volatilities. (Biagini, Pinar, 2017). 

First, we modify the notation so as to remove the hat over �̂� . The set ϒ becomes: 

 {(𝜇, 𝜎 ) | 𝜇 𝑝𝑟𝑜𝑔𝑟.𝑚𝑒𝑎𝑠. 𝑎𝑛𝑑 𝜇𝑡(𝜔)  ∈  𝑈𝜖(𝛴) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔}.  

We call 𝒫𝛴the set of plausible probabilities, to underline that Σ is fixed  

Thus, we solve and find the explicit solutions to the robust problems for the infinite and finite horizon planning.  

4.3 The infinite horizon planning for non ambiguous σ:  

We assume that the agent has CRRA utility. We fix the positive constants ρ and R, representing the time 

impatience rate and relative risk aversion, respectively. Follow that the utility is of the form:  

 𝑢(𝑡, 𝑥) =  𝑒−𝜌𝑡
 𝑥1−𝑅

1−𝑅
, with 𝑅 ≠ 1, or  

  𝑢(𝑡, 𝑥)  =  𝑒−𝜌𝑡 ln 𝑥 if 𝑅 =  1.  

 In the infinite horizon case, we wish to find the solution of: 

𝑉𝛴(0, 𝑥)  =  sup
(𝜃,𝑐)∈𝐴𝑟𝑜𝑏(𝑥)

inf
𝑃∈𝒫𝛴

𝔼𝑃 [ 𝑢(𝑠, 𝑐𝑠) 𝑑𝑠 ] 

We assume for now that this problem is finite valued, and that both the inner infimum (for a fixed (𝜃 , 𝑐)  ∈

 𝐴𝑟𝑜𝑏(𝑥)) and the outer supremum are attained. As we seen in the classical case, a guess at the value function 

takes the form: 

 𝑣(𝑡, 𝑥)  =  (𝛾𝜖 )
−𝑅𝑒−𝜌𝑡  

𝑥1−𝑅

1−𝑅
 , 𝑅 ≠ 1 and 

  𝑣(𝑡, 𝑥)  =  𝑒−𝜌𝑡 (
ln 𝑥

𝜌
 +  𝑘𝜖  ), 𝑅 =  1,  

 where 𝛾𝜖 and 𝑘𝜖 are positive constants to be determined. We use 𝜖 as subscript to stress t the dependence on the 

radius of drift ambiguity 𝜖  . The candidate 𝑣 verifies the condition by which: the supremum and the infimum in 

the HJBI equation are attained for any 𝑣 ∈  𝐶1,2 on (0, 𝑇) × ℝ+ with 𝑣𝑥  >  0, 𝑣𝑥𝑥 <  0, so that the optima are 

attained in the HJBI equation. Substituting the optimal μ(θ) as we stated before with:  
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𝜇(𝜃) ∶= µ̂  −  𝜖 
𝛴𝜃

√𝜃′𝛴𝜃
 

,  

the residual optimization is given by: 

Sup
(𝜃,𝑐)∈ℝ𝑛×ℝ+

[𝑢 (𝑡, 𝑐) + 𝑣𝑡 + 𝑣𝑥(𝑟𝑥 + 𝜃′(µ̂ − 𝑟𝟏) − 𝜖 √𝑀(𝜃) − 𝑐) + 
1

2
𝑀(𝜃)𝑣𝑥𝑥  =  0 ] 

 

By maximizing over c we obtain: 

𝑐̅  =  𝛾𝜖  𝑥 in the power case 

 𝑐̅ =  𝜌𝑥 in the logarithmic case,  

And the optimal value is given by:  

max
𝑐
{𝑢(𝑡, 𝑐)  −  𝑐𝑣𝑥 }  =  𝑒

−𝜌𝑡𝜓𝜖(𝑥, 𝑅),  

in which we set: 

 𝜓𝜖  (𝑥, 𝑅)  =  
𝑅

1−𝑅
 (𝛾𝜖 𝑥)

1−𝑅, ≠ 1  

 𝜓𝜖  (𝑥, 1)  =  ln 𝜌𝑥 −  1 𝑓𝑜𝑟 𝑅 =  1.   

Based on what we stated above, the function that we have to maximized is: 

max
𝜃
[𝑒−𝜌𝑡 𝜓𝜖 (𝑥, 𝑅)  + 𝑣𝑡 + 𝑣𝑥 (𝑟𝑥 +  𝜃′(�̂� −  𝑟𝟏)  −  𝜖√𝜃′𝛴𝜃) + 

1

2
𝜃′𝛴𝜃𝑣𝑥𝑥]  

It is concave in θ, and smooth in 𝑅𝑛 \ {0}. The first order conditions are thus necessary and sufficient for 

optimality in 𝜃 ≠  0. So, by equating the gradient to zero we obtain: 

𝜃 (𝑠)  =  
−𝑠𝑣𝑥

𝑠𝑣𝑥𝑥 − 𝑣𝑥𝜖
 𝛴−1(�̂�  −  𝑟𝟏) 

, 

 where 𝑠 ∶=  √𝜃′ 𝛴𝜃. We are left with: 

𝑠2  =  𝜃 (𝑠)′𝛴𝜃(𝑠)  

Set 
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 𝐻 ∶=  √(�̂�  −  𝑟𝟏)′ 𝛴−1((�̂�  −  𝑟𝟏), 𝐻𝜖 ∶=  𝐻 − 𝜖 

The root of the equation is positive and is given by:  

 �̅�  =  
−𝑣𝑥 𝐻𝜖
𝑣𝑥𝑥

  

if and only if 𝐻𝜖  >  0. If 𝐻𝜖 ≤  0, the optimal solution thus is necessarily �̅� =  0. Finally, if 𝐻𝜖
+ denotes the 

positive part of 𝐻𝜖 we can rewrite the optimal solution in a more compact form both for the power and logarithmic 

case.  

�̅�  =  𝑥 
𝐻𝜖
+ 

𝑅𝐻
𝛴−1(�̂� −  𝑟𝟏)  

 The value of the constants 𝛾𝜖 , 𝑘𝜖 is found by substituting these 𝑐̅ and �̅�  back into: 

Sup
(𝜃,𝑐)∈ℝ𝑛×ℝ+

[𝑢 (𝑡, 𝑐) + 𝑣𝑡 + 𝑣𝑥(𝑟𝑥 + 𝜃′(µ̂ − 𝑟𝟏) − 𝜖 √𝑀(𝜃) − 𝑐) + 
1

2
𝑀(𝜃)𝑣𝑥𝑥  =  0 ] 

 and we solve the equation. By calculating it we obtain:   

𝛾𝜖 = 
𝜌+(𝑅−1) (𝑟+ 

1

2
 
(𝐻𝜖
+ )2

𝑅
 )

𝑅
  and  

 𝑘 =  
1

𝜌2
  [𝜌 𝑙𝑛 𝜌 +  𝑟 −  𝜌 + 

(𝐻𝜖
+)2

2
 ]  

which for 𝜖 = 0 fall back to the constants 𝛾0 =
𝜌+(𝑅−1)[ 𝑟+ 

1

2
 
𝐻2

𝑅
]

𝑅
 , 𝑘0 =

1

𝜌2
[𝜌ln𝜌 + 𝑟 − 𝜌 +

𝐻2

2
] of the classic cases. 

For specification of the well-posedness conditions and the verification that  𝑉𝛴(0, 𝑥) = 𝑣(0. 𝑥) see [4]. 

4.4 The finite horizon planning for non ambiguous σ 

Now the investor has a CRRA power utility both from intertemporal and terminal consumption at time T < ∞:  

𝑢(𝑡, 𝑥) =  𝑒−𝜌𝑡  
𝑥 1−𝑅

1 − 𝑅
𝑓𝑜𝑟 0 ≤  𝑡 <  𝑇 𝑎𝑛𝑑 𝑢(𝑇, 𝑥) =  𝐴 

𝑥1−𝑅

1 − 𝑅
  

In which A is a fixed positive constant.  

We call 𝒫𝛴 the set of plausible probabilities, to stress that Σ is fixed. 
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Here, we set the deterministic scaling of the CRRA power utility identical to that of the infinite horizon case. But 

pay attention that if 𝑒−𝜌𝑡 is replaced by an integrable, positive and deterministic function ℎ(𝑡) what is written 

below will also holds. We want to find the solution of 

𝑉𝛴(0, 𝑥)  =  sup
(𝜃,𝑐)∈𝐴𝑟𝑜𝑏(𝑥)

inf
𝑃∈𝒫𝛴

𝔼𝑃 [ ∫ 𝑒−𝜌𝜎
𝑐𝑠
1−𝑅

1 − 𝑅

𝑇

0

]  𝑑𝑠 +  𝐴 
𝑋𝑇

1−𝑅

1 − 𝑅
] 

Using the scaling properties of the CRRA utility, the guess to the value function takes the form: 𝑣(𝑡, 𝑥) =

𝑓(𝑡)
𝑥1−𝑅

1−𝑅
 for some positive, differentiable function satisfying 𝑓(𝑇) = 𝐴.  

Follow that now the HJBI equation is:  

max
(𝜃,𝑐)∈ℝ𝑛×𝑅+

[𝑒−𝜌𝑡
 𝑐1−𝑅 

1−𝑅
+ 𝑓′(𝑡)

 𝑥1−𝑅

1−𝑅
+ 𝑓(𝑡)𝑥−𝑅 (𝑟𝑥 + 𝜃′(µ̂ − 𝑟𝟏) − 𝜖√𝜃′𝛴𝜃 − 𝑐) − 

𝑅

2
 𝑓(𝑡)𝑥−𝑅−1𝜃′𝛴𝜃] =  0.  

Proceeding as in the previous part, we get 

𝑐̅(, 𝑥)  =  𝑥 (
𝑒−𝜌𝑡 

𝑓(𝑡)
 )

1/𝑅

�̅�  =  𝑥𝜋𝜖 . 

Substituting the above into the HJBI equation results in a first order ODE for 𝑓: 

{𝑓
′(𝑡) + 𝑘𝜖𝑓(𝑡) + 𝑅𝑒

−
𝜌

𝑅
𝑡(𝑓(𝑡))1−

1

𝑅 = 0

𝑓(𝑇) = 𝐴
  

With 

 𝑘𝜖 ∶=  (1 −  𝑅)  (𝑟 + 𝜋𝜖
′  (µ̂  −  𝑟𝟏)  −  𝜖√ 𝜋𝜖′  𝛴𝜋𝜖  −  

𝑅

2
𝜋𝜖
′𝛴𝜋𝜖)  =  (1 −  𝑅)(𝑟 + 

(𝐻𝜖
+)

2𝑅
. 

With the substitution 𝑓(𝑡)  =  𝑔(𝑡)𝑅 , the ODE can be linearized and easily solved: 

 𝑔(𝑡)  =  𝐴
1
𝑅𝑒𝑥𝑝 (

𝑘𝜖
𝑅
(𝑇 −  𝑡)) + 𝑒

−𝑘𝜖
𝑅
𝑡   ∫ exp (

𝑘𝜖 − 𝜌

𝑅
𝑠) 𝑑𝑠

𝑇

𝑡

 

.  

Obviously for an ambiguity neutral investor with 𝜖 = 0 we fall back to the finite horizon solution of the Merton 

problem. (Biagini, Pinar 2017). 
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5. CONCLUSIONS 

In this thesis we aim at giving a better understanding of the Merton Problem. Merton mathematically solved 

the typical question of an investor who wants to maximize the expected utility of the portfolio with his 

investment strategy by using stochastic control. Merton considered a situation in which the agent has limited 

choice of investing his wealth in a risky asset and a risk-free one, the agent is risk averse and is objective is 

to maximize the expected utility of his wealth. Merton found that the optimal allocation strategy is to keep 

a constant fraction of the wealth in the risky asset. Merton used Ito process to derive Hamilton-Jacobi-

Bellman equations. Thus, he provide a solution for finite and infinite horizon Merton Problem. Then in 

order to address parameter uncertainty issues, we developed a robust max-min version of Merton problem 

under ambiguity aversions, that is, an agent diffident about mean and return estimates, under ellipsoidal 

representation of ambiguous parameters. Solutions to the robust problem to both infinite horizon and finite 

horizon version, under a CRRA utility function, were derived based on a max-min Hamilton-Jacobi-

Bellman-Isaacs, a partial differential equation that is central to optimal control theory equation. 
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