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Abstract 

The current study was conducted in order to investigate different approaches to price European 

Options in Complete and Incomplete Market Models. 

After the required Probability Fundamentals, the study introduces Stochastic processes and defines 

their main characteristics and, by the end of the paragraph it gives a first statement of Martingale 

processes. The following focus on Brownian motion is driven by the great importance they have with 

the models then discussed, in particular when facing the Black Scholes model. 

From here the discussion moves towards the analysis of market models for the pricing of Options, 

firstly in Discrete-time, considering the Binomial tree model. Once the structure of the model is given, 

the concept of Arbitrage is presented. To state the completeness of the model two different approaches 

are used: Replicating strategy and Martingale measure. 

The study goes on introducing the Trinomial tree model, which in contrast with the Binomial tree 

model features incompleteness, still addressed by both the previous approaches. 

From Discrete-time models, then the study considers Continuous-time models and particularly deals 

with the famous Black-Scholes Model. The Black-Scholes Partial Differential Equation is derived 

through the Replicating strategy approach and considering the boundaries for an European Call 

Option a demonstration for the closed formulas is proposed. Furthermore, for an European Options 

without dividends, it shows a convergence of the Binomial tree model to Black-Scholes closed 

formulas. 

In the end the study proposes a numerical example of a Monte Carlo Simulation, which is then tested 

with the Black-Scholes model. 
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1 Introduction    
 

Options are a financial contract offering the buyer the right to buy or sell the underlying asset at a 

specified price, called strike price, on a specified date. An underlying options security can be a stock, 

an index, a currency or even another derivative and the value of the derivative, in our case the option, is 

based on the underlying, meaning that price movements of the underlying necessarily affects all the 

derivatives written on it.  

The option which gives the investor the ability to buy the underlying asset at a certain price is called 

Call Option, while the one which instead gives the investor the possibility to sell the underlying asset at 

a certain price is called Put Option. 

For example, a trader which expects the price of a stock to increase in the next future can hedge against 

this raise by entering in a Long Call Option with strike price equal to the spot market price. If the 

investor’s expectation turns out to be right and the stock’s price increases over the strike price agreed in 

the contract, then he would exercise his option and would receive a positive cash flow, exactly equal to 

the difference in prices. Furthermore, if the option contract is of an American-style the investor would 

be entitled to exercise his option at any time until the expiration date, while if it is of an European-style 

then it would only be possible for the investor to exercise his option on the exact expiration date.  

Differently from a Forward contract, which is binding on the investor and has initial cost equal to 0, an 

Option contract gives the investor the right, not the obligation of exercise and in this sense, options 

always have an initial non-negative price. 

The determination of the ‘fair’ initial price, also called premium, is exactly the aim of the models 

proposed in this study. 

The main idea to avoid mispricing between the option’s price and the underlying is that options cannot 

be priced arbitrarily, i.e. by computing the expected value of the discounted stochastic future payoff, 

but rather their values need to be determined in a way that is consistent with the market prices of the 

underlying.   
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2 An Introduction to the Stochastic Processes in Continuous time 

2.1 Fundamentals 

2.1.1 Probability Space 
A Probability Space is defined as the set of {,  ℱ, ℙ} , where: 

-   is the set of all possible outcomes 

- ℱ the sigma-algebra on  

- ℙ is the probability attached to each event.  

Being the Probability Space the base of our discussion it is important to well define all its characteristics. 

• The set of all possible outcomes  , in considering our case is the path space of the 

possible future prices. 

• ℱ, the -algebra of the set , is a collection of subsets having the following properties: 

1- Ø, the empty set, and  are contained in  ℱ 

2- For a subset A in ℱ, then its complementary Ac is in  ℱ 

3- If A1, A2, A3 are in ℱ, then their union is in ℱ (i.e. A1A2) 

 

The Borel Set is the smallest possible -algebra of a set X, that is  (A1) 

 

(A1) = { Ø, X, A1, Ac
1} 

 

If ℱ is a -algebra of X, then (X, ℱ) is a measurable space. 

 

- The probability ℙ is a non-negative normalized measure which possess certain properties: 

1- ℙ of  ℱ = [0,1] 

2- ℙ () = 1 (normalization property) 

3- ℙ is countably additive: the probability of disjoints event in sequence is equal to the sum of 

each probability’s event:  

ℙ(⊔𝑛 𝐴𝑛) =  ∑ℙ

𝑛

(𝐴𝑛) 

From the properties described:  
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ℙ(𝐴𝑐) = 1 − ℙ(𝐴) 

 

where 𝐴𝑐  denotes the complement Ω ∖ 𝐴 of the event 𝐴, and that ℙ(∅) = 0. 

 

As the space (𝑋, ℱ) is measurable, so the triplet (, ℱ,  ℙ). 

2.1.2 Random Variables 
 

A Random Variable 𝑋 on (, ℱ) is a function on , which can take values in ℝ.  

 

      𝑋 ∶  Ω →  ℝ 

 

and is ℱ-measurable, meaning that the counter-image of any half line (-∞, 𝑥] is an event : 

  

     {𝑋 ≤ 𝑥 }  ∈  ℱ 

for all 𝑥 ∈  ℝ.  

If ℱ is too big, it is also possible to define a sub-sigma-algebra 𝐺 of ℱ, a sigma algebra in its turn. Still 

if 𝑋 verifies:  

{𝑋 ≤ 𝑥 }  ∈  𝐺, for all 𝑥 ∈  ℝ 

then 𝑋 is 𝐺-measurable. 

Also, the sigma-algebra generated by a random variable 𝑋 is: 

 

𝜎(𝑋) ∶= ({𝑋 ≤ 𝑥}|𝑥 ∈  ℝ) 

 

which is a sub-sigma-algebra of ℱ, in its turn closed for countable unions of events and complement. 

All the events which can be expressed in terms of 𝑋,  

for example: 

 {𝑎 ≤ 𝑋 ≤ 𝑏}  

belong to 𝜎(𝑋) and is the smallest space where 𝑋 is measurable on .  

All the elements present in the starting set are mapped to an element of the final set. 

2.1.3 Filtration  
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Denoted precisely as ℱ𝑡
𝑋, it means the information generated by 𝑋 in the interval [0, 𝑡]. 

A Filtration on a set  is an increasing collection of sub--algebras, ℱ𝑡 (where t ≥ 0) such that: 

     𝐹𝑡1 ⊆ 𝐹𝑡2,       for any 𝑡1 < 𝑡2 

𝑡 is a time parameter either discrete or continuous and for every couple (𝑡, 𝐴∈ℱ) it is possible to 

evaluate ℙ(𝐴). 

Also, if  𝑌 is a stochastic process such that:  

 

𝑌(𝑡) = ℱ𝑡
𝑋,    for all 𝑡 ≥ 0 

 

then the process is adapted to the Filtration {ℱ𝑡
𝑋}𝑡≥0 and it is possible to define a filtered probability 

space, the triplet {, ℱ(𝑡≤[0,𝑇]) , ℙ }. 

2.2 The Stochastic process  
A stochastic process is defined as the path followed by variables changing values overtime. This can 

either be: 

1- A discrete process in which the variables are evaluated in certain instant of time  

2- A continuous process in which instead variables are evaluated over intervals of time 

Also, it can have:  

1- Discrete-variable: the variables can only have determined values 

2- Continuous-variable: the variables can take a value over a range 

Considering a Filtered Probability Space {, ℱ(𝑡≤[0,𝑇]) , ℙ }, then a Stochastic Process 𝑆 =  (𝑆(𝑡))
𝑡
 

is a collection of measurable Random Variables from {, ℱ𝑡} to ℝ. 

In order for the process to be random and non-anticipative and to be ℱ-measurable, S has to be: 

1- 𝑆(𝑡)t : Ω → ℝ, for any fixed time t.  

2- For all fixed real x, the set {S(t)  x} belongs to ℱt 

Furthermore, the process 𝑆 is a function of time 𝑡 and oucome 𝜔, 𝑆 =  (𝑡, 𝜔), but  
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1- For a fixed 𝑡 → 𝑡∗, the result is the random variable 𝑆(𝑡∗) = 𝑆(𝑡∗, ∙ ), or 𝑡-marginals. 

2- For a fixed 𝑥 → 𝑥∗ the result is a deterministic function of time 𝑆( ∙ , 𝜔) ∶  [0, 𝑇] →  ℝ. 

2.2.1 Distribution  
The Cumulative Distribution Function (c.d.f.) of the process S(t) is: 

      ℙ(𝑆𝑡 ≤ 𝑥) 

But in order to reconstruct the whole distribution of the process 𝑆, also the Joint Distribution functions 

of  𝑆(𝑡1), 𝑆(𝑡2) need. In our adapted process:  

ℙ(𝑆(𝑡1) ≤ 𝑥1, 𝑆(𝑡2) ≤ 𝑥2) 𝑎𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡𝑠 {𝑆(𝑡1) ≤ 𝑥1} ⋂ {𝑆(𝑡2) ≤ 𝑥2} 

for any 𝑥𝑖 belonging to  ℱ𝑡2 ⊆ ℱ𝑇 = ℱ. Thus, they are events and can be measured by ℙ. 

2.2.2 Expectation  
The Expected Value is the average value of a random variable X possible outcomes, weighted by their 

probability.  

For a discrete random variable X : 

 E[X] = ∑ xii ⋅ pi   

For a continuous random variable, with density 𝒫𝑥, then ℙ ( 𝑥 < 𝑋 ≤ 𝑥 + 𝑑𝑥 ) =  𝒫𝑥(𝑥)𝑑𝑥, such 

that:  

     𝐸[𝑋] =  ∫ 𝑥𝑝𝑋(𝑥)𝑑𝑥 

Expectation is a linear operation, hence the expectation of a linear combination of random variables is 

the linear combination of the expectations:  

    Ε [𝑎𝑋 + 𝑏𝑌] = 𝑎Ε[𝑋] + 𝑏𝐸[𝑌] 

A consequence of the linearity is it is possible to know the expectation of a linear combination without 

knowing their joint distribution.  

Note this doesn’t hold for the computation of Ε[𝑋𝑌]. 

Consider a continuous random variable, , and a deterministic function of such variable, Y:  
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      𝑌 = 𝑔(𝑋) 

 

If, for example,  is the price of a stock at time T and 𝑔 represents the payoff function of this stock, then one 

way to compute the price of the option at time 0 is to calculate the expected value of function Y.  

But in case that the function 𝑔 is of a Bernulli type, Y would not have density. Nevertheless, if the function 𝑔 is 

invertible and differentiable with 𝑔′ ≠ 0, the density of y is given by:   

 

    𝑝𝑌(𝑦) = 𝑝𝑋(𝑔
−1(𝑦))

1

|𝑔′(𝑔−1(𝑦))|
 

Then the expected value of Y is: 

     Ε(𝑌) = ∫𝑦𝑝𝑌(𝑦)𝑑𝑦 

and when 𝑔 is regular and invertible, substituting back: 

             𝛦(𝑌) =  ∫𝑔(𝑥)𝑝𝑋(𝑥)𝑑𝑥 

This last formula can be always used because it is based on the density of X so, also if Y is just an 

indicator and has discrete values, as in Bernulli type, it gives us the expected value useful to price the 

option.  

2.2.3 Independence 
Two real random variables X, Y are independent if for any couple of intervals I1, I2 the probability of 

the intersection X  I1, Y  I2 factorizes into the product of the probabilities: 

                 ℙ(𝑋 ∈ 𝐼1, 𝑌 ∈ 𝐼2) = ℙ(𝑋 ∈ 𝐼1)ℙ(𝑌 ∈ 𝐼2) 

Meaning that their joint density is the product of their marginal densities: 

 𝑝(𝑥,𝑦) = 𝑝𝑋(𝑥)𝑝𝑌(𝑦) 

If the variables are independent, then:  

  Ε[𝑋𝑌] = Ε[𝑋]Ε[𝑌],                 

 and thus, they are uncorrelated 
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Ε(𝑋 − Ε(𝑋))(𝑌 − Ε(𝑌)) = 0 

Note that the opposite relationship uncorrelation, independence does not hold. 

2.2.4 Conditional Expectation 
The conditional expectation (c.e.) of a random variable X, is the average of the possible outcomes, 

conditional to certain information know at the time of the estimation. 

In our case the sigma algebra ℱ𝑡   of a Filtered space {, ℱ(𝑡≤[0,𝑇]) , ℙ } represents the information 

accessible relative to a particular event at time t < T . 

So, if we have a set of information ℱ𝑡1 and we are interested in finding the expectation of the process  

Y which value is known at t2, the conditional expectation of Y at t1 < t2 is expressed as:  

Ε[𝑌|ℱ𝑡1] 

The Trivial sigma algebra ℱ0  , when we don’t have relevant information about our process Y is 

equal to:  

ℱ0 =  {0,Ω} 

and, given that the parameters in the brackets are both constants: 

Ε[𝑌|ℱ0] = Ε[𝑌|𝑐] =  Ε[𝑌] 

Given a Filtered space, consider 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 and let Y, Z be two random variables, then the 

following properties hold: 

1. Ε[Ε[𝑌|ℱ𝑡1]] = Ε[𝑌] 

2. For Y known at time t1, then Ε[𝑌|ℱ𝑡1] = 𝑌 

3. Additivity: Ε[𝑌 + 𝑍|ℱ𝑡1] =  Ε[𝑌|ℱ𝑡1] + Ε[𝑍|ℱ𝑡1] 

4. For any constant C known at time t1: Ε[𝐶𝑌|ℱ𝑡1] = 𝐶Ε[𝑌|ℱ𝑡1] 

5. If the random variable Y is independent from ℱ𝑡1, then  

Ε[𝑌|ℱ𝑡1] 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑗𝑢𝑠𝑡 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  Ε[𝑌] 
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6. Tower law:  

Ε[𝑌|ℱ𝑡1] = Ε[Ε[𝑌|ℱ𝑡1] |ℱ𝑡0] 

The tower law states that the best prediction of Y possible at time 0 can be made directly, the 

former, or passing through our best prediction in t0. The same holds for any time interval.  

Recall that the practice in Finance is to set ℱ0 = 0, meaning that at time o there aren’t any information 

available and it is only possible to see the set as a whole, .  

2.2.5 Martingale Processes 

An adapted process 𝑀 is said to be a Martingale if 

Ε[𝑀(𝑡)|ℱ𝑠] =  𝑀(𝑠) , for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 

Games which do follow this kind of process are said to be ‘fair’, since the entry current price is exactly 

equal to the conditional expectation of the future payoff. In another way martingales are not subjected 

to drift. 

A process satisfying the following inequality:  

Ε[𝑀(𝑡)|ℱ𝑠] ≤  𝑀(𝑠) , for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 

is called Supermartingale, while if it follows:  

Ε[𝑀(𝑡)|ℱ𝑠] ≥  𝑀(𝑠), for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 

is said Submartingale. 

2.2.6 The Markov processes  

Also, an adapted process 𝑆 is said to be a Markov process if for any deterministic function                

𝑔 = 𝑔(𝑥) 𝑎𝑛𝑑 𝑎𝑛𝑦  𝑡, 𝛿𝑡, its conditional expectation 𝑔(𝑆(𝑡)) coincides with:  

Ε[ 𝑔(𝑆(𝑡))|ℱ𝑡 ] = Ε[ 𝑔(𝑆(𝑡))|𝑆𝑡 ] =  �̅�(𝑆(𝑡))  
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Coherent with the Weak form of Market Efficiency, in the Markov processes the stock’s prices do 

already reflect in their values all past information, accessible to investors, so that none of them can 

“beat the market” by exploiting historical series.  It is in fact the competition among them which 

assures the efficiency.  

In this sense, Markov processes are memoryless, no past information can help predicting the future and 

the probabilistic distribution is independent from the historical path.   

2.3 Different processes 

2.3.1 Standard Brownian Motions 
Also called Wiener process or just “Random Walk” process, Standard Brownian Motion are a 

particular type of Markov process with zero drift and unit variance rate.   

In particular, in a filtered probability space {, ℱ(𝑡≤[0,𝑇]) , ℙ } where t is continuous,                            

𝑊 = (𝑊(𝑇))tT  is a Brownian Motions if: 

- 𝑊(0) = 0. 

- 𝑊 is adapted to the Filtration.  

- For any 𝑠 < 𝑣, the increment 𝑊(𝑣) −𝑊(𝑠) is independent of 𝐹𝑠 and its distribution is 

𝑁(0, 𝑣 − 𝑠), respectively the mean and variance.  

- The paths 𝑊(∗,𝜔) are continuous.  

Thus,  

- Marginal distributions are Gaussian, since it is possible for any 𝑡 to write 𝑊(𝑡) −𝑊(0) 

and obtain a distribution of 𝑁(0, 𝑡) 

- For any 𝑢 < 𝑠, the increments  𝑊(𝑢),𝑊(𝑡) −𝑊(𝑠) are independent and have a joint 

normal distribution  𝑁 ((0
0
), (
𝑢 0
0 𝑡 − 𝑠

)). The zero-column vector is still the mean and, 

in the variance-covariance matrix, there is uncorrelation and variance equal to the 

interval of time.  

The same reasoning applies to infinitive number of increments. 

A variable 𝑧 is said to follow a Brownian Motion if for a small increment of time ∆𝑡,   
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∆𝑧 =  𝜀√∆𝑡 

where  is a Random Variable taken from a standard normal with 𝜑(0,1) and thus ∆𝑧 has null mean 

and variance equal to ∆𝑡.  

The null mean shows exactly the idea of Martingale: the expected value of 𝑧 at any time is equal to its 

current value. 

Also, the values of ∆𝑧 and ∆𝑡 are independent, thus 𝑧 follows a Markov process. 

2.3.2 Linear Brownian Motion 
Linear Brownian Motion 𝐵 are a linear transformation of the Standard Brownian Motion W.  

The stochastic differential is:  

     𝐵(𝑡) =  𝜇𝑡 + 𝜎𝑊(𝑡) 

Where still  is the deterministic term Drift and  > 0, the Variance rate on the Brownian Motion.  

2.3.3 Geometric Brownian Motion 
Or Generalized Wiener process, are an Exponential transformation of the Linear Brownian Motion. 

A Generalized Wiener process 𝑥 can be expressed in terms of 𝑎, 𝑏 𝑎𝑛𝑑 𝑑𝑧: 

     𝑑𝑥 = 𝑎 𝑑𝑡 + 𝑏 𝑑𝑧    

where 𝑎, 𝑏 are constants called coefficient of the stochastic differential equation. 

So that, for a small increment of time ∆𝑡,  

∆𝑥 = 𝑎 ∆𝑡 + 𝑏𝜀√∆𝑡 

Still, 𝜀 is a Random Variable Standard Normal, thus ∆𝑥 will have mean 𝑎∆𝑡 and variance 𝑏2∆𝑡, say 𝑎 

is the drift rate and 𝑏2 the variance rate. 

Considering a mean and variance of the stock’s price proportional to the stock price, the model 

becomes:  
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𝑑𝑆 =  𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧 

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑧        𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠      ln 𝑆 = 𝜇𝑡 + 𝜎𝑧    →     𝑆 = 𝑒𝜇𝑡+𝜎𝑧 

More formally, the process 𝒴 can be written as:  

    𝒴 =  𝑒𝑥𝑝(𝐵(𝑡)) = 𝑒𝑥𝑝(𝜇𝑡 + 𝜎𝑊(𝑡)) 

Being an exponential transformation of a Linear Brownian Motion, normally distributed, its marginal 

distributions are lognormal: the logarithm of the marginal distributions is normally distributed 

The equation is the most used to model stock’s prices and can be considered as the limit of the 

Binomial tree when the intervals of time tend to infinity, as it will be shown later on.  

In a Discrete time model, the resulting version of the motion is defined:  

Δ𝑆

𝑆
= 𝜇Δ𝑡 + 𝜎𝜀√Δ𝑡 

2.3.4 Ito’s Processes  
An It’s process, or a diffusion is an adapted process in which 𝑎, 𝑏, are not constants, but rather are 

functions of the underlying variable 𝑥, and of time 𝑡.  

𝑑𝑥 = 𝑎(𝑥, 𝑡) 𝑑𝑡 + 𝑏(𝑥, 𝑡) 𝑑𝑧 

Such that when 𝑡, 𝑡 + ∆𝑡 also 𝑥 goes to 𝑥 + ∆𝑥 and the increments are defined by: 

𝑑𝑥 = 𝑎(𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑥, 𝑡)𝜀√∆𝑡 

Note that in the interval drift and variances remain constants.  

2.3.5 Ito’s Lemma  
The Ito’s Lemma states that:  

For a given Ito’s process of the form 𝑑𝑥 = 𝑎(𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑥, 𝑡)𝑑𝑧, the function 𝐺(𝑥, 𝑡) follows the 

process: 
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 𝑑𝐺 = (
𝜕𝐺

𝜕𝑥
𝑎 +

𝜕𝐺

𝜕𝑡
+
1

2

𝜕2𝐺

𝜕𝑥2
𝑏2) 𝑑𝑡 +

𝜕𝐺

𝜕𝑥
𝑏𝑑𝑧 

A non-rigorous demonstration: 

For a continuous, twice-differentiable function 𝐺(𝑥, 𝑦):  

𝑑𝐺 ≈
𝜕𝐺

𝜕𝑥
𝑑𝑥 +

𝜕𝐺

𝜕𝑦
𝑑𝑦 

The Taylor series is:  

𝑑𝐺 =
𝛿𝐺

𝛿𝑥
𝑑𝑥 +

𝛿𝐺

𝛿𝑦
𝑑𝑦 +

1

2

𝛿2𝐺

𝛿𝑥2
(𝑑𝑥)2 +

𝛿2𝐺

𝛿𝑥𝛿𝑦
𝑑𝑥𝑑𝑦 +

1

2

𝜕2𝐺

𝜕𝑦2
(𝑑𝑦)2  + ⋯ 

for 𝑑𝑥, 𝑑𝑡 going to 0, second order factors can be eliminated, such that: 

𝑑𝐺 =  
𝜕𝐺

𝜕𝑥
𝑑𝑥 +

𝜕𝐺

𝜕𝑡
𝑑𝑡 

Considering now an Ito’s process 𝑥 as:  

𝑑𝑥 = 𝑎(𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑥, 𝑡)𝜀√∆𝑡 

The expansion in a Taylor series is:  

𝑑𝐺 =
𝛿𝐺

𝛿𝑥
𝑑𝑥 +

𝛿𝐺

𝛿𝑡
𝑑𝑡 +

1

2

𝛿2𝐺

𝛿𝑥2
(𝑑𝑥)2 +

𝛿2𝐺

𝛿𝑥𝛿𝑡
𝑑𝑥𝑑𝑡 +

1

2

𝜕2𝐺

𝜕𝑦2
(𝑑𝑡)2+… 

Differently from the previous situation, here the series must comprehend the term (𝑑𝑥)2 cannot be 

ignored when taking the limits, since containing a component 𝑑𝑡. 

Hence the equation becomes: 

𝑑𝐺 =
𝜕𝐺

𝜕𝑥
𝑑𝑥 +

𝜕𝐺

𝜕𝑡
𝑑𝑡 +

1

2

𝜕2𝐺

𝜕𝑥2
𝑏2𝑑𝑡 

This is the Ito’s Lemma and substituting back 𝑑𝑥, 𝑑𝐺 becomes: 
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  𝑑𝐺 = (
𝜕𝐺

𝜕𝑥
𝑎 +

𝜕𝐺

𝜕𝑡
+
1

2

𝜕2𝐺

𝜕𝑥2
𝑏2) 𝑑𝑡 +

𝜕𝐺

𝜕𝑥
𝑏𝑑𝑧  

Note that both the processes 𝑥, 𝐺 are influenced by the same source of risk 𝑑𝑧. 

2.3.6 Lognormal distribution 
Assuming 𝐺(𝑆, 𝑡) = ln 𝑆 and applying the Lemma:  

𝜕𝐺

𝜕𝑆
=
1

𝑆
,      

𝜕2𝐺

𝜕𝑆
= −

1

𝑆2
,    
𝜕𝐺

𝜕𝑡
= 0             𝑓𝑜𝑟 {

𝑎 = 𝜇𝑆
𝑏 = 𝜎𝑆

 

then,  

𝑑𝐺 = 𝑑(ln 𝑆) = (
1

𝑆
𝜇𝑆 −

1

2𝑆2
𝜎2𝑆2)𝑑𝑡 +

1

𝑆
𝜎𝑆𝑑𝑧 

Simplifying and rearranging the process followed by 𝐺 results to be:  

     𝑑𝐺 = (𝜇 −
𝜎2

2
) 𝑑𝑡 + 𝜎𝑑𝑧 

Being 𝜇 and 𝜎 two constants, the process G is also a Generalized Weiner process in which its variation 

between 𝑡0 and 𝑇 will have: 

• Drift rate: (𝜇 −
𝜎2

2
)𝑇 

• Variance rate: 𝜎2𝑇 

Integrating the stochastic differential equation: 

𝑑(ln 𝑆) =  (𝜇 −
𝜎2

2
)𝑑𝑡 + 𝜎𝜀√𝑑𝑡 

Such that:   

𝑑 (ln 𝑆𝑇) ~ 𝑁 ((𝜇 −
𝜎2

2
)𝑇 ; 𝜎2𝑇) 

ln 𝑆𝑇 − ln 𝑆0 ~ 𝑁 [(𝜇 −
𝜎2

2
)𝑇 ; 𝜎2𝑇 ]      
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                                         ln 𝑆𝑇 ~ [(ln 𝑆0 + (𝜇 −
𝜎2

2
)𝑇 ; 𝜎2𝑇)]                                               

Meaning that, it is ln 𝑆𝑇 that has a normal distribution, hence 𝑆𝑇 has a lognormal distribution.   

Graphically:  

 

 
 

3 Market models in Discrete time 

 3.1 Binomial tree   
Binomial trees are a common method for Option valuations, a similar model to the one proposed in the 

late 70s by Cox, Ross and Rubinstein.  

3.1.1 Model 
It is a Discrete time model defined over today (𝑡 = 0), and tomorrow (𝑡 = 1).  Consider that in the 

market there exit only two assets: a risky Stock and a riskless Bond. 

- The Bond price process is {
𝐵0 = 1         
𝐵1 = 1 + 𝑟𝑓

 

 

- The Stock price process is {

𝑆0 = 𝑠                                                                                            

𝑆1 =   {
𝑠𝑢, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑞𝑢            
𝑠𝑑, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑞𝑑             

   ; 𝑠𝑎𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑍
 

Define 𝑢 as the up movement, and 𝑑 as the down movement. The process 𝑍 is of a Bernoulli type. 
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Also, the following assumptions hold:  

• Short positions and fractional holdings are allowed  

• No Bid-Ask spread 

• No transaction costs 

• 𝑑 < 𝑢 

Consider a portfolio ℎ =  (𝑥, 𝑦) having a deterministic value at 𝑡 = 0 and a stochastic value at 𝑡 = 1. 

In particular the Value Process of the portfolio is:  

𝑉𝑡
ℎ = 𝑥𝐵𝑡 + 𝑦𝑆𝑡    𝑓𝑜𝑟 𝑡 =  (0,1) →     {

𝑎𝑡 𝑡 = 0 →     𝑉0
ℎ = 𝑥 + 𝑦𝑠                   

𝑎𝑡 𝑡 = 1  →    𝑉1
ℎ = 𝑥(1 + 𝑟𝑓) + 𝑦𝑠𝑍

      

3.1.2 Arbitrage 
A portfolio is said to be an Arbitrage portfolio if:  

- {
𝑉0
ℎ = 0                                                                                                     

𝑉1
ℎ ≥ 0,    𝑎𝑛𝑑 ℙ(𝑉1

ℎ > 0) > 0                                                         
 

The Binomial tree model respects the Non-Arbitrage Condition if and only if:  

𝑑 < 1 + 𝑟𝑓 < 𝑢 

which simply says that the return on the stock is not allowed to dominate the return on the bond and 

vice versa.  

i.e. if 𝑑 < 𝑢 <  𝑟𝑓, then a strategy such as ℎ = (𝑠, −1) would have:  

𝑉0
ℎ = 0  𝑎𝑡 𝑡 = 0, 𝑎𝑛𝑑       𝑉1

ℎ =  𝑠(1 + 𝑟𝑓) − 𝑠𝑍  

which for assumption is strictly positive, thus an arbitrage opportunity.  

3.1.3 Replicating Strategy (Hedging) 
Exploiting the Law of One Price, insured by the NA condition, it is possible to price any Derivative 

written on the Stock. 
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An Option contract is a unilateral contract in which the investor has the right to decide until the 

expiration whether to exercise it or not. In this sense an European Call Option, gives the buyer the 

possibility to hedge against increasing prices, giving him the option to exercise the contract and recover 

the losses generated by the increase in prices.  

 Consider now a European Call Option 𝐶 written on the stock, such that:  

𝐶 =  𝜙(𝑍),          𝑤ℎ𝑒𝑟𝑒 𝑍 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑝𝑟𝑖𝑐𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 

For a Strike price 𝐾,           𝐶 = max(𝑆𝑡 − 𝐾;0) =  {
𝑠𝑢 − 𝐾,      𝑖𝑓 𝑍 = 𝑢 →  𝜙(𝑢) = 𝑠𝑢 − 𝐾

0,                 𝑖𝑓 𝑍 = 𝑑 →  𝜙(𝑑) = 0           
 

Graphically:  

 

 
 

 

For a given derivative 𝐶, a hedging portfolio is the one able to reach exactly:  𝑉1
ℎ = 𝐶            

For this reason, the pricing principle states that the only price process for 𝐶 can be:  

 𝑉𝑇
ℎ = 𝑓(𝑇 ;  𝑆) ,       𝑓𝑜𝑟 𝑇 =  (0, 𝑡) 

since any price at today 𝑇 = 0, different by 𝑉0
ℎ would lead to an arbitrage possibility. 

Moreover, if all derivatives are replicable, then the market is complete.   

Considering the system {
𝜙(𝑢) = (1 + 𝑟𝑓)𝑥 + 𝑠𝑢𝑦

𝜙(𝑑) = (1 + 𝑟𝑓)𝑥 + 𝑠𝑑𝑦
 

Since by assumption 𝑑 < 𝑢, then the system has a unique solution given by: 

Here, for 𝑆𝑡 on the x-axis and C on the y-axis, if  𝑆𝑡 < 𝐾, (here 

K=50) the investor would not exercise the contract, such that its 

value would be C=0. As 𝑆𝑡 > K, the investor would exercise the 

contract which would lead to a positive payoff C > 0.  
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𝑥 =
1

1 + 𝑟𝑓
(
𝜙(𝑑)𝑢 − 𝜙(𝑢)𝑑

𝑢 − 𝑑
)     𝑤ℎ𝑖𝑙𝑒   𝑦 =  

1

𝑠
(
𝜙(𝑢) − 𝜙(𝑑)

𝑢 − 𝑑
) 

Such that at 𝑇 = 0, the price process:  

 𝑓(0 ; 𝑆) =  𝑉0
ℎ = 𝑥 + 𝑠𝑦    →      

1

1 + 𝑟𝑓
{
(1 + 𝑟𝑓) − 𝑑

𝑢 − 𝑑
𝜙(𝑢) +

𝑢 − (1 + 𝑟𝑓)

𝑢 − 𝑑
𝜙(𝑑)} 

Note: the number of Stock shares used in the replicating portfolio for each Bond is often called 

the ∆ of the derivative.  

3.1.4 Completeness  
When any Option’ payoffs can be replicated by a combination of Bond and Stock, we say that the 

model is complete. Nevertheless, if at any time the risky asset could assume not only two but three (or 

more) different values, such new market model would not any longer be complete.  

More in general, assume a market composed by a Bond and n risky assets 𝑆1, 𝑆2, … 𝑆𝑛 and two 

intermediate dates 𝑡 = 0, 𝑡 = 1. 

The Bond price is a deterministic function:  

𝐵1 = 𝐵0(1 + 𝑟)       

The Stock price is random:  

𝑆1
𝑖 = 𝑆1

𝑖(𝜔)  , 𝑓𝑜𝑟 𝑖 = 1, 2, …𝑛 

with 𝜔 𝜖 Ω =  {𝜔1, 𝜔2, … , 𝜔𝑚} and 𝑚 𝜖 ℕ, a finite simple space.  

 Then it is possible to state that a model is complete if and only if the matrix:  

(

 

𝐵1(𝜔1) 𝑆1
1(𝜔1)

𝐵1(𝜔2) 𝑆1
1(𝜔2)

⋯
𝑆1
𝑛(𝜔1)

𝑆1
𝑛(𝜔2)

⋮ ⋱ ⋮
𝐵1(𝜔𝑚) 𝑆1

1(𝜔𝑚) ⋯ 𝑆1
𝑛(𝜔𝑚))
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has rank equal to the cardinality of Ω, that is 𝑚: the number of underlying assets equals the 

number of outcomes in the sample space.   

3.1.5 Risk-Neutral approach 
In order to determine the ‘fair’ price today of any Derivative in a Binomial tree model it is also possible 

to consider another point of view, using the popular Risk-Neutral approach. Based on the concept of 

martingale, in the one period Binomial Tree model, a probability measure ℚ is called a Martingale 

measure (or risk-neutral measure) if: 

𝑆0 = 𝑠 =
1

1 + 𝑟𝑓
𝐸ℚ[𝑆1|ℱ0] 

since it makes the whole discounted process a Martingale in its turn: 

𝐸ℚ [
𝑆1

1 + 𝑟𝑓
|ℱ0] = 𝑆0 

Such ℚ, which is not necessarily unique, is defined as Equivalent Martingale Measure (EMM) for the 

process 𝑆.  

3.1.6 Martingale Measure   
Moreover, Martingale Measures have a key role in determining features of market models, such as 

Non-Arbitrage Condition and Completeness. 

 Introduce the Fundamental Theorems of Asset Pricing (FTAPs):  

1. The First Fundamental Theorem of Asset Pricing (FTAP1) states that Non-Arbitrage is 

equivalent to the existence of at least one probability ℚ on ℱt with the martingale property 

derived above.  

2. The Second Fundamental Theorem of Asset Pricing (FTAP2) moreover specifies that the 

market is complete only if the Equivalent Martingale Measure exists and is unique.  

For a Binomial tree model, a Martingale probability measure ℚ(𝑍 = 𝑢) = 𝑞𝑢 ;  ℚ(𝑍 = 𝑑) = 𝑞𝑑 is:  

- a probability measure, hence:    {

𝑞𝑢 ≥ 0          
𝑞𝑑 ≥ 0          
𝑞𝑢 + 𝑞𝑑 = 1
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- a Martingale measure for the process, hence:  

1

1 + 𝑟𝑓
𝐸ℚ[𝑆1|ℱ0] = 𝑆0,   𝑤ℎ𝑒𝑟𝑒 {

𝐸ℚ[𝑆1|𝐹0] = 𝑠𝑢𝑞𝑢 + 𝑠𝑑𝑞𝑑
𝑆0 = 𝑠                                    

 

- Equivalent to ℙ, thus ℚ(𝐴) = 0, if and only if ℙ(𝐴) = 0, hence in particular  𝑞𝑖 > 0. 

The system to solve has two equations and two unknows, hence a unique solution. 

{

1

1 + 𝑟𝑓
(𝑠𝑢𝑞𝑢 + 𝑠𝑑𝑞𝑑) = 𝑠

𝑞𝑑 = 1 − 𝑞𝑢                         

  →    {

1

1 + 𝑟𝑓
(𝑞𝑢𝑢 + (1 − 𝑞𝑢)𝑑) = 1

𝑞𝑑 = 1 − 𝑞𝑢                                 

  →    {
𝑞𝑢𝑢 + 𝑑 − 𝑞𝑢𝑑 = 1 + 𝑟𝑓
𝑞𝑑 = 1 − 𝑞𝑢                      

 

the unique possible values for 𝑞𝑢, 𝑞𝑑 are given by: 

{
 
 

 
 
𝑞𝑢 =  

(1 + 𝑟𝑓) − 𝑑

𝑢 − 𝑑
                  

𝑞𝑑 = 1 − 𝑞𝑢 = 
𝑢 − (1 + 𝑟𝑓)

𝑢 − 𝑑

 

note that, in order to have 𝑞𝑢 ≥ 0, 𝑞𝑑 ≥ 0, we find out again the Non-Arbitrage condition:  

𝑢 > 1 + 𝑟𝑓 > 𝑑 

• i.e. for:   𝑟𝑓 = 2, 𝑢 = 5, 𝑑 = 1 

o 𝑞𝑢 = 
1+2−1

5−1
=

1

2
 ,    𝑞𝑑 =

1

2
 

Also, recalling the formula for the value today of the replicating portfolio  

 𝑓(0 ; 𝑆) =  𝑉0
ℎ = 𝑥 + 𝑠𝑦    →      

1

1 + 𝑟𝑓
{
(1 + 𝑟𝑓) − 𝑑

𝑢 − 𝑑
𝜙(𝑢) +

𝑢 − (1 + 𝑟𝑓)

𝑢 − 𝑑
𝜙(𝑑)} 

we find exactly the Martingale probabilities 𝑞𝑢 , 𝑞𝑑. 

In some sense, the replicable derivatives are redundant: they can be synthetically reproduced using Stocks 

and Bonds, hence these concepts are more useful as pricing tools, i.e. when placing a new Derivative on 

the market and looking for the unique fair, non-arbitrage price. 
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Note, here we have introduced the model considering only one period, but the principle of evaluating 

the Option in a risk-neutral-world keep holding as the number of states grow. At any point the Option’s 

price is equal to its expected value in a risk-neutral-world, actualized with the risk-free rate. 

3.1.7 Volatility 
Note that in order for the tree to be coherent with the volatility of the underlying stock, the parameters 

𝑢, 𝑑 must be chosen correctly.  

Considering that the variance rate of the Stock is 𝜎2∆𝑡 and that the variance of a Random Variable is 

𝐸(𝑋2) − [𝐸(𝑋)2], in a given interval of time ∆𝑡:  

𝜎2∆𝑡 = 𝑞𝑢𝑢
2 + 𝑞𝑑𝑑

2 − [𝑞𝑢𝑢 + 𝑞𝑑𝑑]
2 

Substituting 𝑞𝑢, 𝑞𝑑 from previous and considering and expansion in series before the terms of order ∆𝑡2 

and superior, the solutions proposed by Cox, Ross and Rubinstein for 𝑢, 𝑑 are:  

𝑢 =  𝑒𝜎√∆𝑡     𝑎𝑛𝑑      𝑑 =  𝑒−𝜎√∆𝑡 ,              𝑛𝑜𝑡𝑒: 𝑢 =
1

𝑑
 

3.1.8 Delta 
Equating the initial and the future payoffs and solving for ∆, the ratio of the rate of change of the 

Option over the rate of change of the Stock in an interval, we get: 

Δ = 
𝜙(𝑢) − 𝜙(𝑑)

𝑠𝑢 − 𝑠𝑑
 

Furthermore, the ∆ is exactly the 𝑦 used before as the number of Stocks to invest into for each Option 

shorted. Being a Linear function, the ∆ of the portfolio is a linear combination of the ∆𝑠 of each 

position.                                                                                                                                                   

Note, it is 0 < ∆ < 1 for Call Options and  −1 < ∆ < 0 for Put Options. 

3.2 Trinomial Tree  
It can be thought as an extension of the Binomial Tree and it is conceptually similar.                                        

3.2.1 Model 
Still in a Discrete one time model, the market comprises of the previous two assets, but now the Stock 

price is allowed for a future third middle state 𝑚.  



 25 

Such that:  

- The Bond price process is  {
𝐵0 = 1         
𝐵1 = 1 + 𝑟𝑓

 

 

- The Stock price process is  {

𝑆0 = 𝑠                                                                                            

𝑆1 =  {

𝑠𝑢,    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑞𝑢                   
𝑠𝑚,   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑞𝑚                   
𝑠𝑑,     𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑦 𝑞𝑑                      

                     
 

say process 𝑇. 

Then a financial derivative as  𝑋 =  𝜙(𝑇) would solve the system:  

{

(1 + 𝑟)𝑥 + 𝑠𝑢𝑦 = 𝜙(𝑢)  
(1 + 𝑟)𝑥 + 𝑠𝑚𝑦 = 𝜙(𝑚)

(1 + 𝑟)𝑥 + 𝑠𝑑𝑦 = 𝜙(𝑑)  

 

Considering the completeness statement, the resulting matrix would be:  

(

(1 + 𝑟) 𝑠𝑢 𝜙(𝑢)

(1 + 𝑟) 𝑠𝑚 𝜙(𝑚)

(1 + 𝑟) 𝑠𝑑 𝜙(𝑑)
) 

3.2.2 Incompleteness 
It is not true that this matrix never has solution, but since the completeness condition requests that it 

must be always possible to replicate any Option payoffs by going short and long on a certain number of 

Bonds and Stocks, then the trinomial tree model is incomplete. There are two underlying assets for 

three possible outcomes.  

3.2.3 Martingale Measure 
In a Trinomial Model a Martingale probability measure ℚ, being:                                                                            

ℚ(𝑇 = 𝑢) = 𝑞𝑢 ; ℚ(𝑇 = 𝑚) = 𝑞𝑚  ; ℚ(𝑇 = 𝑑) = 𝑞𝑑 

is a probability, hence:   {
𝑞𝑖 ≥ 0    
∑ 𝑞𝑖 = 1

     

and a Martingale measure for the process hence: 



 26 

1

1 + 𝑟𝑓
𝐸ℚ[𝑆1|ℱ0] = 𝑆0,   𝑤ℎ𝑒𝑟𝑒 {

𝐸ℚ[𝑆1|𝐹0] = 𝑠𝑢𝑞𝑢 + 𝑠𝑚𝑞𝑚 + 𝑠𝑑𝑞𝑑
𝑆0 = 𝑠                                                     

 

The resulting system has two equations and three unknows, hence infinite solutions. 

{

1

1 + 𝑟𝑓
(𝑠𝑢𝑞𝑢 + 𝑠𝑚𝑞𝑚 + 𝑠𝑑𝑞𝑑) = 𝑠

𝑞𝑑 = 1 − 𝑞𝑢 − 𝑞𝑚                               

  =  {𝑞𝑢 =  
(1 + 𝑟𝑓) + 𝑑𝑞𝑚 −𝑚𝑞𝑚 − 𝑑

𝑢 − 𝑑
𝑞𝑑 = 1 − 𝑞𝑢 − 𝑞𝑚                               

 

This implies that the Trinomial tree model still respects the First Fundamental Theorem of Asset 

Pricing, but not the Second, thus also under this method it results incomplete.  

• i.e. for:  𝑟𝑓 = 2, 𝑢 = 5, 𝑑 = 1, 𝑚 = 4 

o if 𝑞𝑚 = 
1

2
   →     {

𝑞𝑢 =
3+

1

2
−2−1

4
=

1

8
   

𝑞𝑑 = 1 −
1

8
−
1

2
=

3

8

  

o if 𝑞𝑚 = 
1

4
   →        {

𝑞𝑢 =
3+

1

4
−1−1

4
=

5

16
     

𝑞𝑑 = 1 −
1

4
−

5

16
=

7

16

  

both the triplet are Martingale measures for the process.  

 

4 Market models in Continuous time 

 

4.1 The Black-Scholes Model   
The model awarded with a Nobel Prize in Economic sciences in 1997 is a milestone of Finance.      

4.1.1 Model 
For the binomial assumptions still holding, (perfect market) consider a market composed of only two 

financial instruments:  

- A riskless Bond 𝐵 continuously paying the risk-free rate 𝑟 ≥ 0 

𝑝𝑟𝑖𝑐𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 {   
𝐵(0) = 1                                                  

𝑑𝐵(𝑡) = 𝑟𝐵(𝑡)𝑑𝑡     , 𝑓𝑜𝑟 𝐵(𝑡) = 𝑒𝑟𝑡 
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- A risky Stock 𝑆 satisfying the Stochastic Differential Equation with initial condition 

(Cauchy Problem): 

{   
𝑆(0) = 𝑆0                                         

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡)
 

where 𝑆0 is the initial empirical market price, and  𝜇 , 𝜎 (𝜎 > 0)  are constants respectively called drift 

and volatility. 

The unique solution for 𝑆 to the Cauchy problem is:  

𝑆(𝑡) = 𝑆0𝑒
(𝜇−

𝜎2

2
)𝑡+𝜎𝑊(𝑡)

 

Where the marginals of 𝑆(𝑡), recalling the lognormal distribution for generalized Wiener processes, is:  

ln
𝑆(𝑡)

𝑆0
 ~ 𝑁((𝜇 −

𝜎2

2
) 𝑡 ; 𝜎2𝑡) 

Hence 

ln 𝑆(𝑡) ~ 𝑁 [ ln 𝑆0 + (𝜇 −
𝜎2

2
) 𝑡 ;  𝜎2𝑡] 

The logreturn of mean and variance grow linearly with time.  

Differently from normal distribution, lognormal distribution is positively asymmetric: the mode is 

smaller than the median, in its turn smaller than the mean.  

In particular 𝜇 is the exponential growth rate of the average stock price:  

𝐸[𝑆(𝑡)] = 𝑆0𝑒
𝜇𝑡 

and 𝜎 is the standard deviation of the annual logreturn: 

𝑣𝑎𝑟(𝑆𝑡) = 𝑆0
2𝑒2𝜇𝑡(𝑒𝜎2𝑡 − 1) 
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4.1.2 Black-Scholes differential equation 

Considering the price process of the Stock 

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡) 

and an Option  𝑆 with price 𝑓(𝑆, 𝑡), applying the Ito’s Lemma, we know that:  

𝑑𝑓 = (
𝜕𝑓

𝜕𝑆
𝜇𝑆 +

𝜕𝑓

𝜕𝑡
+
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)𝑑𝑡 +

𝜕𝑓

𝜕𝑆
𝜎𝑆𝑑𝑊 

recall that the process 𝑑𝑊 in both the stock and the option prices, is the same, and this is the key idea 

on which to build the hedging portfolio.  

4.1.3 Replicating portfolio (Delta-Hedging) 

The value today of a portfolio made by a short position on one Option 𝑓 and a long position on  
𝜕𝑓

𝜕𝑆
  

Stocks would be:  

Π =  −𝑓 +
𝜕𝑓

𝜕𝑆
𝑆,     𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑙𝑦 𝑏𝑒𝑐𝑜𝑚𝑒𝑠:        𝑑Π = −𝑑𝑓 +

𝜕𝑓

𝜕𝑆
𝑑𝑆 

Substituting 𝑑𝑓 from previous, the portfolio becomes riskless:  

𝑑Π = (−
𝜕𝑓

𝜕𝑡
−
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)𝑑𝑡 

The source of risk which was in the Geometric Brownian motion gets canceled out.  

Since now the portfolio is void of risk, for the NA condition its return needs to be the same of a risk-

free asset. That is:  

𝑑Π = 𝑟Π𝑑𝑡         →     (
𝜕𝑓

𝜕𝑡
+
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)𝑑𝑡 = 𝑟 (𝑓 −

𝜕𝑓

𝜕𝑆
𝑆) 𝑑𝑡 

Finally:  
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𝜕𝑓

𝜕𝑡
+ 𝑟𝑆

𝜕𝑓

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑓

𝜕𝑆2
= 𝑟𝑓 

This is the famous Differential equation of Black-Scholes. 

note that here  
𝜕𝑓

𝜕𝑡
  varies continuously, so that the portfolio needs to be rebalanced accordingly.  

The solution of this equation can be found by considering the boundary conditions of each derivative 

written on the stock.  

4.1.4 The Black-Scholes Closed Formulas 

If we keep developing these concepts for a European Call Option, the boundary condition would be:  

𝑓 = 𝑚𝑎𝑥(𝑆 − 𝐾, 0) 

In order to solve the Partial Differential Equation, it is possible to adopt a so-called heuristic reasoning, 

or the Feynman-Kac formula. We now briefly show one other approach to derive the closed formulas 

for European Call Option.  

Consider 𝑔(𝑆) the density of 𝑆, and  𝑠 =  𝜎√𝑇, 

then  

𝐸[𝑚𝑎𝑥(𝑆 − 𝐾, 0)] = ∫ (𝑆 − 𝐾)𝑔(𝑆)𝑑(𝑆)
∞

𝐾

 

knowing that the Stock has lognormal distribution, it can be shown that its mean is 

𝑚 = ln[𝐸(𝑆)] −
𝑠2

2
 

Introduce a new variable 𝒬, being 

𝒬 =
ln(𝑆) − 𝑚

𝑠
 

Having a Normal distribution ℎ(𝒬), with null mean and unit standard deviation: 
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ℎ(𝒬) =
1

√2𝜋
𝑒−

1
2𝒬

2
 

such that it is possible to change the variable of integration from 𝑆, to 𝒬  

𝐸[𝑚𝑎𝑥(𝑆 − 𝐾, 0)] = ∫ (𝑆 − 𝐾)𝑔(𝑆)𝑑(𝑆)
∞

𝐾

= ∫ (𝑒𝒬𝑠+𝑚 −𝐾)ℎ(𝒬)𝑑𝒬
∞

ln(𝐾)−𝑚
𝑠

 

which can also be rewritten as 

𝐸[𝑚𝑎𝑥(𝑆 − 𝐾, 0)] = ∫ 𝑒𝒬𝑠+𝑚ℎ(𝒬)𝑑𝒬 − 𝐾
∞

ln(𝐾)−𝑚
𝑠

   ∫ ℎ(𝒬)𝑑𝒬
∞

ln(𝐾)−𝑚
𝑠

 

Also, for  

𝑒𝒬𝑠+𝑚ℎ(𝒬) =
1

√2𝜋
𝑒
(−𝒬2+2𝒬𝑠+2𝑚)

2  = 1

√2𝜋
𝑒
[−(𝒬−𝑠)2+2𝑚+𝑠2]

2 =
𝑒
𝑚+𝑠2

2

√2𝜋
𝑒
[−(𝒬−𝑠)2]

2   

hence 

𝑒𝑚+
𝑠2

2 ℎ(𝒬 − 𝑠) 

The equation becomes  

𝐸[𝑚𝑎𝑥(𝑆 − 𝐾, 0)] = 𝑒𝑚+
𝑠2

2     ∫ ℎ(𝒬 − 𝑠)𝑑𝒬 − 𝐾
∞

ln(𝐾)−𝑚
𝑠

∫ ℎ(𝒬)𝑑𝒬
∞

ln(𝐾)−𝑚
𝑠

 

Define 𝑁(𝑥), the probability that a normal random variable is smaller than 𝑥, the first integral results to 

be 

1 − 𝑁 {
[ln(𝐾) −𝑚]

𝑠
− 𝑠} 

substituting 𝑚 from previous  
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𝑁(𝑑1) = 𝑁 {
ln[𝐸(𝑆)/𝐾] + 𝑠2/2

𝑠
} 

and similarly for 𝑁(𝑑2), such that, once substituted back 𝑚 too, the equation becomes 

𝐸[𝑚𝑎𝑥(𝑆 − 𝐾, 0)] = 𝐸(𝑆)𝑁(𝑑1) − 𝐾𝑁(𝑑2)  

with 

 {
𝑑1 =

ln[𝐸(𝑆)/𝐾]+𝑠2/2

𝑠

𝑑2 =
ln[𝐸(𝑆)/𝐾]−𝑠2/2

𝑠
 
 

In particular for 𝐸(𝑆) = 𝑆0𝑒
𝑟𝑇 and, recall 𝑠 =  𝜎√𝑇 

𝑐 =  𝑆0𝑁(𝑑1) − 𝐾𝑒
−𝑟𝑇𝑁(𝑑2)           𝑓𝑜𝑟 

{
 
 

 
 
𝑑1 =

ln[𝑆0/𝐾] + (𝑟 +
𝜎2

2 ) 𝑇

𝜎√𝑇

𝑑2 =
ln[𝑆0/𝐾] + (𝑟 −

𝜎2

2 )𝑇

𝜎√𝑇

 

Those are the closed formulas proposed by Black and Scholes for the evaluation of European Call 

Options.  

4.1.5 Convergence of Binomial tree model to Black-Scholes model 

It is possible to derive the Black-Scholes Partial Differential Equation also by extending the Binomial 

Tree.  

Considering a Binomial tree market model 

𝑓(0; 𝑆) =   
1

1 + 𝑟𝑓
{
(1 + 𝑟𝑓) − 𝑑

𝑢 − 𝑑
𝜙(𝑢) +

𝑢 − (1 + 𝑟𝑓)

𝑢 − 𝑑
𝜙(𝑑)} 

with changes in an interval of time, 𝑡 + 𝑑𝑡  being reflected in the stock price as 



 32 

𝑆𝑡+𝑑𝑡 =

{
 
 

 
 𝑢𝑆𝑡    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑞𝑢 = (

𝑒𝑟𝑑𝑡 − 𝑑

𝑢 − 𝑑
)

𝑑𝑆𝑡   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑞𝑑 = (
𝑢 − 𝑒𝑟𝑑𝑡

𝑢 − 𝑑
)

 

the Binomial tree model closed formula can be written:  

𝑓 (0 ;  𝑆) =  𝑒−𝑟𝑡{𝑞𝑢𝜙(𝑢) + 𝑞𝑑𝜙(𝑑)} = 𝑞𝑢(𝜙(𝑢) − 𝜙(𝑑)) + 𝜙(𝑑) 

Consider Taylor expansions up to 𝑑𝑡 of 𝜙(𝑢),𝜙(𝑑), 𝑒𝑟𝑑𝑡 , 𝑢 𝑎𝑛𝑑 𝑑: 

- 𝜙(𝑢) ≈ 𝑓 +
𝜕𝑓

𝜕𝑆
(𝑆𝑡+𝑑𝑡

𝑢 − 𝑆𝑡) +
1

2

𝜕2𝑓

𝜕𝑆2
(𝑆𝑡+𝑑𝑡

𝑢 − 𝑆𝑡)
2 +

𝜕𝑓

𝜕𝑡
𝑑𝑡        

= 𝑓 +
𝜕𝑓

𝜕𝑆
𝑆𝑡(𝑢 − 1) +

1

2

𝜕2𝑓

𝜕𝑆2
𝑆𝑡
2(𝑢 − 1)2 +

𝜕𝑓

𝜕𝑡
𝑑𝑡       

similarly: 

- 𝜙(𝑑) ≈ 𝑓 +
𝜕𝑓

𝜕𝑆
𝑆𝑡(𝑑 − 1) +

1

2

𝜕2𝑓

𝜕𝑆2
𝑆𝑡
2(𝑑 − 1)2 +

𝜕𝑓

𝜕𝑡
𝑑𝑡        

- 𝑒𝑟𝑑𝑡 ≈ 1 + 𝑟𝑑𝑡 

- 𝑢 ≈ 1 + 𝜎√𝑑𝑡 +
1

2
𝜎2𝑑𝑡 

- 𝑑 ≈ 1 −  𝜎√𝑑𝑡 +
1

2
𝜎2𝑑𝑡 

note that (𝑢 − 1)2 ≈ (𝑑 − 1)2 ≈ 𝜎2𝑑𝑡, such that:  

- 𝑞𝑢(𝜙(𝑢) − 𝜙(𝑑)) = 𝑞𝑢(𝑢 − 𝑑)
𝜕𝑓

𝜕𝑆
𝑆𝑡 =  (𝑟𝑑𝑡 + 𝜎√𝑑𝑡 −

1

2
𝜎2𝑑𝑡)

𝜕𝑓

𝜕𝑆
𝑆𝑡 

substituting 𝜙(𝑢), 𝜙(𝑑) in this latter equation  

𝑓(1 + 𝑟𝑑𝑡) = 𝑟𝑆𝑡
𝜕𝑓

𝜕𝑆
𝑑𝑡 + 𝑓 +

1

2
𝜎2𝑆𝑡

2
𝜕2𝑓

𝜕𝑆2
+
𝜕𝑓

𝜕𝑡
𝑑𝑡  

which removing 𝑓 from both sides and dividing by 𝑑𝑡, becomes exactly:  
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𝜕𝑓

𝜕𝑡
+ 𝑟𝑆𝑡

𝜕𝑓

𝜕𝑆
+
1

2
𝜎2𝑆𝑡

2
𝜕2𝑓

𝜕𝑆2
= 𝑟𝑓 

5 Monte Carlo Simulation 

This latter section is dedicated to the application of Monte Carlo methods, a popular tool to evaluate 

and analyze portfolios, investments or in our case financial instruments.  

 5.1 Theory  

In particular the Monte Carlo Simulation is one of the computational algorithms classified as Monte 

Carlo methods which relies on repeated random sampling able to obtain numerical results. Essentially 

it exploits randomness to solve deterministic problems.   

The technique used to value Options begins by simulating a large number of possible random price 

paths of the underlying Stock. From here it is possible calculate the correspondent exercise value 

(payoff) of the Option for each path and discounting the average value at today, we derive a consistent 

price for the Option.  

In Excel, in order to generate random values 𝑌 with the desired gaussian distribution 𝐹 it is possible to 

combine two different functions: 

1- Function RAND(), which returns number uniformly distributed between [0,1] 

2- Function NORM.S.INV(RANDOM()), which returns the inverse of the standard cumulative 

distribution  

This technique exploits the following relation:  

For a Random Variable 𝑋, uniformly distributed [0,1], if for assumption 𝐹 is invertible, then               

𝑌 ∶= 𝐹−1(𝑋), has distribution exactly 𝐹, since:  

𝑃( 𝑌 ≤ 𝑦) = 𝑃(𝐹−1(𝑋) ≤ 𝑦) = 𝑃(𝑋 ≤ 𝐹(𝑦)) = 𝐹(𝑦) 

Further, the price path of the Stock evolves according to a Geometric Brownian Motion in [0, 𝑇], as 

introduced earlier.  
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recall the equation:  

𝑑𝑆𝑡 =  𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 

yielding:    𝑆(𝑡) = 𝑆0𝑒
(𝜇−

𝜎2

2
)𝑡+𝜎𝑊(𝑡)

  

Finally, to calculate the value of the Call Option impose the condition 𝐶 = max (𝑆𝑡 −𝐾, 0)  

 5.2 Numerical Example  

 

In an Excel spreadsheet construct a table [𝐵2:𝐵6] with the following values:  

𝑟𝑓 = 3%, 𝜎 = 15%, 𝑆𝑜 = 100, 𝐾 = 95, 𝑡 = 0,25 

Then, as shown here by the firsts 10 values of a table of 1000, build the Monte Carlo table 

 
random ε S(t) Call Option  

0,06324243 -1,5281115 89,5905031 0 

0,46755881 -0,0814078 99,8582918 4,85829183 

0,83925151 0,99138633 108,224921 13,2249207 

0,34192442 -0,4072167 97,4477594 2,44775942 

0,01100189 -2,2903026 84,6127522 0 

0,60153733 0,2573283 102,427713 7,42771278 

0,42533534 -0,1882627 99,0612138 4,06121376 

0,67984772 0,46727302 104,053289 9,05328901 

0,50710399 0,017808 100,604128 5,60412752 

 

To obtain the third column with the possible values of the stock, report :  

i.e. in G2:      = $𝐵$4 ∗ 𝐸𝑋𝑃(($𝐵$2 − $𝐵$3^2/2) ∗ $𝐵$6 + $𝐵$3 ∗ 𝑆𝑄𝑅𝑇($𝐵$6) ∗ 𝐹2) 

where F2 is the adjacent value of 𝜀. 

The last column with the values of the Call Option is built by:  

i.e. in H2:         = 𝑀𝐴𝑋(𝐺2 − $𝐵$5;  0) 

Taking the average of all possible values of 𝐶, [𝐻2:𝐻1002], the price tomorrow would be 6,706166, 

which discounted at today by the risk-free rate:  

= 6,706166 ∗ 𝐸𝑋𝑃(−𝐵2 ∗ 𝐵6) 

results: 6,64940849. 
 
In our example the RAND function results distributed:          
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so that combined with the second column 𝜀 obtain: 

 

 

 

  

5.3 Comparison to Black-Scholes Model 
 

In order to verify the strength of the simulation, it is possible to calculate for the same values what 

would be the price of the Option in a Black-Scholes model.  

For the same assumed values, now in [Q4:Q8]:   

 

{
𝑑1 = (𝐿𝑁(𝑄6/𝑄7) + (𝑄4 + 𝑄5^2/2) ∗ 𝑄8)/(𝑄5 ∗ 𝑆𝑄𝑅𝑇(𝑄8))  

𝑑2 = 𝑆2 − 𝑄5 ∗ 𝑆𝑄𝑅𝑇(𝑄8)                                                                     
 

where S2 = 𝑑1. 

Respectively 𝑑1 = 0,82141059, 𝑑2 =0,74641059 

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2

The figure represents the distribution 

function multiplier, which is the inverse 

of the standard normal distribution 
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 To derive instead 𝑁(𝑑1),𝑁(𝑑2), use the function NORM.S.DIS() which selecting the value and 

imposing True, returns the cumulative normal distribution function of the chosen value.  

such that:  

{
𝑁(𝑑1) = 0,7942938 
𝑁(𝑑2) = 0,7722903 

 

applying the closed formula proposed by Black and Scholes for the evaluation of European Call Option 

 

𝐶 = (𝑄6 ∗ 𝑆6) − 𝑄7 ∗ 𝐸𝑋𝑃(−𝑄4 ∗ 𝑄8) ∗ 𝑈6 = 6,60999948 
  

where S6 = N(d1), U6 = N(d2).  

The price today for the European Call Option given by the Monte Carlo Simulation and the closed 

formula by Black and Scholes are equal until the first decimal. To get a more appropriate price 

simulation the number of random paths needs to increase (consider 100.000 random samples to round 

to the second decimal).  

 

5.4 Conclusion 
 

The determination of an option’s price is complex and requires the analysis of many variables in 

addition to the underlying. All methods anyway share common concepts such as risk neutrality, time 

value or put-call parity. In the current study three different forms of valuation are used:  

1. Lattice models: Binomial tree model and Trinomial tree model 

2. Closed model: Black-Scholes model  

3. Monte Carlo methods  

Moreover it is possible to state that Monte Carlo simulations are a very useful tool when evaluating 

options with multiple sources of risk or with complicated features (i.e. Asian options or lookback 

options), but in general, when an analytical technique for the evaluation exist, then Monte Carlo would 

become too slow to be competitive. 
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