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What we know about the global financial crisis is that we don’t know very much.

Paul Samuelson, Nobel Prize for Economics in 1970

4



5



LUISS "GUIDO CARLI" & EIEF

Abstract

"RoME" Master of Science in Economics

Measuring Systemic Risk in the Italian Banking Ecosystem

by Andrea BO

During the last decade we have witnessed how distress can spread quickly through

the financial system and threaten financial stability. Hence there has been increased fo-

cus on developing systemic risk indicators that can be used as policy tools. Adrian

and Brunnermeier (2016) have introduced a new methodology in measuring spillover

effects and sistemic risk contributions of institutions through the measure of Condi-

tional Value at Risk (CoVaR), the value at risk of the financial system conditional on

institutions being in distress. The purpose of this thesis is to apply the CoVaR model

to the Italian financial market to identify which are the institutions that contribute the

most to the build-up of systemic risk and its best predictors. We provide forecast of a

forward looking measure of sistemic risk contribution showing that it is able to predict

half of realized covariances during the financial crisis.

6



7



Contents

1 Introduction 10

2 Literature Review 13

3 Theoretical Framework 14

3.1 Quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Conditional quantile and quantile regression . . . . . . . . . . . . . . . . 15

3.3 Value at Risk (VaR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 CoVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Estimation Methodology 20

4.1 Unconditional ∆CoVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Conditional ∆CoVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Dataset 23

6 Results 24

6.1 Unconditional estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 Time-varying estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Forward-∆ CoVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Conclusion 39

8



9



1 Introduction

Technological progress has gifted us with an interconnected and globalised world, a

sprawling network of agents that are able to interact directly or indirectly with each

other: nowadays, it is very hard to find a situation in which one exceptional event hap-

pens for some economic agents without having any impact on other economic agents.

This happens also in financial markets, where in the recent years we have witnessed

how during times of financial crisis distress can spread quickly through institutions

threatening financial stability. The subprime crisis, the collapse of Lehman Brothers

and the Greece’s sovereign debt crisis are the most notable examples of such events,

which happened in the financial world and have made disastrous repercussions on a

number of economies.

The spreading of distress gives rise to systemic risk - the risk that the intermedia-

tion capacity of the entire financial system is impaired, with severe consequences for

the supply of credit in the real economy. These systemic effects are generated from

spillovers across institutions that arise due to contractual links between counterpar-

ties, exposures or more general macro-factors such as price effects and liquidity spirals.

These facts made crucial for regulators to take adequate measures in order to prevent

the collapse of the financial system. To do so, regulators need sustainable systemic risk

indicators that also monitor the level of contagion among financial institutions.

One of these measures, that has been used for a long time, is the Value at Risk

(VaR), which focuses on the risk of a single financial institution in isolation. It is de-

fined as the maximum loss of institution i for some confidence level q. The main issue

with this approach is that a single institution’s risk does not necessarily reflects its con-
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tribution to systemic risk. Indeed, an institution may be individually systemic because

large and interconnected, or could be relatively small in term of size but still be systemic

as a part of a herd. Moreover, systemic risk shows a time-series dimension by its very

nature, where it typically builds up in time of low volatility in terms of bubbles and

imbalances and materializes in time of crisis. A proper systemic risk measure should

capture this build-up.

In this context, Adrian and Brunnermeier (2016) have developed a new measure of

risk which can be applied to quantify systemic risk. It is the Conditional Value at Risk

(CoVaR) which represents the VaR of a financial system (or of a single institution) con-

ditionally on the fact that a financial institution is in distress. By defining the ∆CoVaR

as the difference between the above mentioned CoVaR and the CoVaR when the institu-

tion is in a normal financial situation, we are able to capture the marginal contribution

of a particular institution on the systemic risk as a whole. Projecting the obtained mea-

sures of ∆CoVaR on robust and reliable lagged characteristics of institutions - such as

balance sheet items - we will estimate the Forward-∆CoVaR, a forward looking mea-

sure of risk that can be used as a monitoring tool for the prediction of systemic risk.

Being tied to frequent and robust characteristics, the Forward-∆CoVaR tries to address

the problem that empirical risk measures suffer from the rarity of tail event, leading to

inaccuracies in capturing systemic risk.

The objective of this thesis is to use the mentioned methodology to estimate sys-

temic risk contribution in the Italian banking system analyzing listed financial insti-

tutions in the Italian Stock Exchange. Doing so, we will try to answer the following

questions:

• Which are the the institutions who contribute the most (and the less) to the sys-

temic risk in Italy, and which are the most exposed in the case of a crisis?
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• What are the best predictors of systemic risk contribution and how such charac-

teristics could be addressed in a regulatory framework and used to construct a

predictive measure of systemic risk?

This thesis tries to provide an original contribution to the CoVaR and systemic risk liter-

ature by applying the presented methodology to the Italian case, analyzing a relevant

topic in the banking sector debate given the high level of sovereign local debt held by

Italian banks, highly exposed to non-performing positions and risks.

Unconditional and conditional ∆CoVaR are calculated using weekly data from 1999Q1

to 2019Q1 for all listed Italian banks plus the two biggest insurance company by mar-

ket capitalization. The conditional ∆CoVaR is modelled as a function of state variables

that captures the evolution of tail risk dependence over time, such as the implied mar-

ket volatility from the FTSE IVI, credit and liquidity spread, market returns. We are

able to capture and understand which are the Italian banks that contribute the most to

systemic risk, and the most exposed one to financial crisis by reversing the direction-

ality in the computation of the ∆CoVaR.

In a successive step, we relate those ∆CoVaR - in a predictive sense - to institution’s

balance sheet characteristics using panel regressions. We show not only that size, lever-

age, maturity mismatch and other characteristics are good predictors of systemic risk,

but the predicted values of those regressions have out of sample predictive power, be-

ing able to capture half of the realized covariance between institutions and the system

during the financial crisis of 2008.

Outline. The remainder of the thesis is divided in 6 sections. The following paragraph

will review the literature on systemic risk measures. Section 3 covers the theoret-

ical background and the methodology used to apply the CoVaR model. Section 4

12



describes the data used as an input to model. The results are presented in Section

5. Finally in Section 6 conclusions are drawn.

2 Literature Review

The literature on systemic risk can be divided into two strands: one that looks at spe-

cific sources of systemic risk - called the source-specific approach - and the other that

aims to derive global measures of systemic risk, more statistical in nature and does not

take a particular stand on the causes of systemic risk - called the global approach.

The first one, very rich in contributes, studies distress-spreading mechanism such

as liquidity spirals (Shleifer and Vishny (1992), Duarte and Eisenbach (2015)), balance

sheet contagion (Allen and Gale (2000)), informational panic (Chen (1999)).

The ∆CoVaR model belongs to the latter approach, together with other measures

such as the Marginal Expected Shortfall (MES) and its expansion Systemic Expected

Shortfall (SES) of Acharya et al. (2010) and Systemic Risk Measure (SRISK) of Acharya,

Engle, and Richardson (2012) and Brownlees and Engle (2015). By defining the Expected

Shortfall of the system as the expected average returns of the institutions in the system

weighted by their market capitalization, the MES measures the increase in the risk of

the system induced by a marginal increase in the weight of a single firm in the sys-

tem. The SES and SRISK are extensions that take into account the sizes and liabilities

of financial institutions. Those multiple measures of systemic risk when used in anal-

ysis provide different results as showed in Benoit, Colliard et al. (2015), due to the basic

different approach used to study systemic risk:

• The MES/SES/SRISK are marginal risk measures, as they are defined with the

first derivative of the ES of the system with respect to the market value of an
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institution, while the ∆CoVaR is an incremental risk measure, since it is the differ-

ence between two conditional VaR

• They are based on two different conditioning events: the MES/SES/SRISK are

fundamentally tied to the sensitivity of institutions returns to the one of the sys-

tem while the ∆CoVaR capture the sensitivity of market returns to variation of

the returns of a single institution

Hence, it is difficult to understand what is the "best" measure: we prefer ∆CoVaR as

it is more broad in capturing determinants of tail risk, since we condition on all the

available information summarized in a large set of financial variables - mixing high-

frequencies quantitative market indicator with more qualitative and robust items

such as leverage or balance sheet reports.

3 Theoretical Framework

3.1 Quantile

Define Y as a real valued random variable with cumulative distribution function FY(y) =

P(Y ≤ y). The τth quantile of Y is given by

QY(τ) = F−1
Y (τ) = inf{y : FY(y) ≥ τ} (1)

where τ ∈ (0, 1). Define the loss function1 as ρτ(y) = y
(
τ − Iy<0

)
where I is an indi-

cator function. Just as we can define the sample mean as the solution to the problem of

minimizing a sum of squared residuals - which can be viewed as a specific version of a

loss function - we can define the median as the solution to the problem of minimizing

1In mathematical optimization and decision theory, a loss function or cost function is a function that
maps an event or values of one or more variables onto a real number intuitively representing some "cost"
associated with the event. An optimization problem seeks to minimize a loss function.
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a sum of absolute residuals. If the symmetric loss function yields the median, a spe-

cific quantile can then be found just by minimizing the tilted expected loss/absolute

residuals Y− u with respect to u - a scalar:

min
u

E (ρτ(Y− u)) = min
u

{
(τ − 1)

∫ u

−∞
(y− u)dFY(y) + τ

∫ ∞

u
(y− u)dFY(y)

}
(2)

This can be shown by setting the derivative of the expected loss function to equal to 0

and imposing qτ to be the solution of

0 = (1− τ)
∫ qτ

−∞
dFY(y)− τ

∫ ∞

qτ

dFY(y)

This equation can be reduced to

0 = FY(qτ)− τ → FY(qτ) = τ → qτ = F−1
Y (τ)

Hence qτ is the τth unconditional quantile of the random variable Y and can be de-

fined as

qτ = arg min
q∈R

E (ρτ(Y− u)) (3)

3.2 Conditional quantile and quantile regression

Given the definition of unconditional quantiles as an optimization problem, it is easy

to define conditional quantiles in an analogous fashion. To understand why, consider

the least square regression that offers a model for how to proceed. Again, if we are

presented with a random sample {y1, y2, . . . , yn}, we solve

min
µ∈R

n

∑
i=1

(yi − µ)2

and obtain the sample mean, an estimate of the unconditional population mean, E(Y).

If we now replace the scalar µ by a parametric function µ(x, β) and solve

min
β∈Rk

n

∑
i=1

(yi − µ(xi, β))2
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we obtain an estimate of the conditional expectation function E(Y|x).

In quantile regression we proceed exactly in the same way. To obtain an estimate of

the conditional quantile function, we simply replace the scalar µ in 2 by the parametric

function u(xi, β) and then set the desired τth quantile.

For the familiar framework of linear functions of parameters as in a regression,

suppose that the τth conditional quantile function is QY|X(τ) = Xβτ where X is a

vector of predictor variables and β the vector of coefficients. Given the distribution

function of Y, then βτ can be obtained by solving - equivalently as 3 -

βτ = arg min
β∈Rk

E (ρτ(Y− Xβ)) (4)

which is the conditional quantile of the random variable Y.

The regression coefficients vector βτ describes how much QY|X(τ) changes due to

an unit change in one of the predictor variables contained in the vector X.

Sample quantile. In a similar fashion of the unconditional case, solving the sample

analog of 4 gives the estimator of β:

β̂τ = arg min
β∈Rk

E (ρτ(Yi − Xiβ))

This last equation can be solved very efficiently by linear programming methods

by using 2n slack variables (u+, u−) to represent positive and negative vectors of

residuals and minimizing

min
(β,u+,u−)∈Rk×R2n

+

{
τ1′nu+ + (1− τ)1′nu−|Xβ + u+ − u− = Y

}
where X is the n × k regression matrix of p predictive variables and the solu-

tion β̂τ is a vector of the τ-quantile regression parameter estimates. This linear

program can be solved using the simplex method or interior point methods.
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3.3 Value at Risk (VaR)

Value at Risk is a well-known and widely used risk measure by financial institutions.

Value at Risk measures the potential loss in the value of a risky asset or portfolio over a defined

period for a given confidence interval.

More formally, p-VaR is defined such that the probability of a loss greater than

VaR is (at most) p while the probability of a loss less than VaR is (at least) 1− p. For

example, if a portfolio of stocks has a one-day 5%-VaR of e 1 million, that means that

there is a 0.05 probability that the portfolio will fall in value by more than e 1 million

over a one-day period. Informally, a loss of e 1 million or more on this portfolio is

expected on 1 day out of 20 days, because of 5% probability (Jorion (2006)).

Definition 1 If Xi represents a variable of interest of institution i - for example, a profit and

losses distribution or portfolio return - with a generic distribution FXi(xi), then given a confi-

dence level (1− q), VaRi
q can be defined as:

VaRi
q = inf {x : FXi(xi) ≥ q} (5)

VaR is essentially the q-quantile of the return distribution FXi(xi) as defined by equation (1).

VaR can also be implicitly defined by:

Pr
(

Xi ≤ VaRi
q

)
= q (6)

meaning that there is a (100× q%) chance of the variable Xi to become less than VaRi
q over a

defined period or in other words, with confidence level (1− q), Xi will not be less than VaRi
q.

There are different models to estimate the VaR of a portfolio or return distribution,

either parametrically 2 (for example, variance-covariance VaR or delta-gamma VaR)

2As showed in Mabrouk S. and Saadi S. (2012): Parametric Value-at-Risk analysis: Evidence from stock
indices (The Quarterly Review of Economics and Finance, 52(3), pp. 305-321)

17



or nonparametrically3 (for examples, historical simulation VaR or resampled VaR) that

are briefly discussed below.

Variance-Covariance Method: Made popular by JP Morgan at the start of the ’90s, it

is one of the fastest and easiest method to estimate the VaR. It relies on the fact

that the only risk factor of a portfolio is the value of the factors contained in the

portfolio itself. It it based on two fundamental assumptions:

• The distribution of returns of the risk factors (for example, securities in a

portfolio) is a normal distribution.

• The movements in the portfolio’s value is a linear combination of the move-

ments of the securities that make it up. This implies that the movements in

the value of the portfolio are also distributed according to a normal distri-

bution.

Hence, once estimated the correlation matrix of returns between the securities

from the historical series of the risk factors, given the properties of the normal

distribution it is easy to obtain the desired percentile of the distribution of the

movements of the expected values of the portfolio. This approach presents a va-

riety of issues, mainly the fact that the hypothesis of normality of returns is irreal-

istic - usually returns distribution is leptokurtic4 - and the hypothesis of linearity

that automatically excludes all those instruments with non-linear payoffs.

Monte Carlo Method: A simulation technique that, given some assumptions on the

3As showed in Markovich N. (2007): Nonparametric analysis of univariate heavy-tailed data (Wiley Series
in Probability and Statistics)

4Leptokurtic distributions are statistical distributions where there is a relevant presence of extreme
points resulting in a higher kurtosis than found in a normal distribution. These extreme values evidence
of “fat tails” relative to the normal distribution’s tail. A distribution is leptokurtic when the kurtosis
value is a large positive number (a "rule of thumb" is a kurtosis coefficient higher than 3).
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distribution of returns and their correlation, forecasts a series of different sets of

possible future values of the securities in a portfolio. For each set of values, the

portfolio is then re-evaluated and from the vector of expected returns the desired

percentile is extracted.

Historical Simulation Method: This approach uses historical data of returns to gen-

erate an empirical distribution. It then assumes that the empirical distribution

can be used as a prediction for future returns. It is considered one of the best

approach both because it does not involve any a priori hypothesis on the distri-

bution of returns and because the correlation between risk factors is implicitly

captured without the need of an ad hoc estimation.

A report made by McKinsey published in 2012 estimated that almost 85% of large

banks in the world were using historical simulation while the remaining part Monte

Carlo simulations. Therefore, for its properties, in this thesis we will use the Historical

Simulation Method.

3.4 CoVaR

CoVaR stands for Conditional Value at Risk; the CoVaR of the financial system (or a

particular bank, portfolio of asset, etc.) is defined as the VaR of the financial system,

conditional on some scenario at a particular bank or a set of banks.

Definition 2 We denote by CoVaRj|i
q the VaR of institution j (or the financial system) condi-

tional on some particular event C(X) of institution i. That is, CoVaRj|i
q is implicitely defined

by the q-quantile of the conditional probability distribution:

Pr
(

X j ≤ CoVaRj|C(X)
q |C(X)

)
= q

19



For the most of this thesis, we will focuse on the conditioning event
{

C(X) = VaRi
q

}
simplifying the notation to CoVaRj|i

q . Moreover, we mainly study the case of j =

system, i.e. when the return of the portfolio of all financial institutions is at its VaR

level. In this case, we drop the superscript j. Informally, we could say that there is a

q% chance of the system returns X j becoming less than CoVaRj|i
q within a specified time

period given that returns of bank i are at its q%-VaR level. Finally, we define a state

of distress for an institution or financial system when its returns Xi hits their 1%-VaR

level5 while its normal situation is where returns are at their median level (the 50%-

quantile). Therefore, to measure how much institution i contributes to the financial

system (or bank j) VaR during stressful times we will look at the difference between

the system VaR conditional on bank i being at its 1%-VaR level minus the system VaR

conditional on bank i being at its median level.

Definition 3 We denote institution i’s contribution to j by

∆CoVaRj|i
q = CoVaR

j|Xi=VaRi
q

q − CoVaRj|Xi=Mediani

q

The directionality of the ∆CoVaR model could be reversed, i.e. by studying the

∆CoVaRi|j
q with j = system we are able to understand which institution are most at risk

if a financial crisis occur - we call this the Exposure-∆CoVaR.

4 Estimation Methodology

Quantile regression is an efficient way to estimate CoVaR and is used here. It is not

the only way, as GARCH models could be implemented to estimate the CoVaR, but it

is one of the most feasible and it is proved to provide results strongly correlated with

5It could be done also by taking the 5%-VaR level; the lower the desired quantile, the more severe the
state of distress.
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the GARCH method. As showed in the previous section, quantile regression models

the relationship between a a set of predictor variables and specific quantiles of the re-

sponse variable. The difference with the more standard Ordinary Least Squares (OLS)

regression is that its coefficients estimates the change in the mean of the response vari-

able produced by a one-unit change in the predictor variable, keeping other predictor

variables fixed. However, a quantile regression coefficient estimates the change in a

specified quantile of the response variable produced by a one unit change in the pre-

dictor variable. This enables comparison of how different quantiles of the response

variable may be affected by the predictor variable. As we will show later, when esti-

mating CoVaR the focus is on a specific low quantile of a distribution and hence it is

automatic to use quantile regression here.

4.1 Unconditional ∆CoVaR

Consider a quantile regression of the financial sector returns Xsys on a particular insti-

tution i’s returns for the qth− quantile

Xsys
q = αi

q + βi
qXi

The quantile regression coefficient βi
q estimates the change in a specified quantile q of

Xsys
q produced by a one unit change in Xi, i.e.

X̂sys
q = α̂i

q + β̂i
qXi (7)

where by X̂sys we denoted the predicted value of such regression for a particular quan-

tile conditional on institution i. From the definition of VaR - which is a quantile - it

follows that

X̂sys
q = VaRsys

q |Xi (8)
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which means that the predicted value from the regression is the q%-VaR of the financial

system conditional on Xi.

By conditioning with Xi = VaRi
q we obtain the unconditional CoVaR measure

CoVaR
sys|Xi=VaRi

q
q := VaRsys

q |VaRi
q = α̂i

q + β̂i
qVaRi

q (9)

=⇒ ∆CoVaRsys|i
q = β̂i

q(VaRi
q −VaRi

50%) (10)

4.2 Conditional ∆CoVaR

In order to capture time variation in the joint distributions of Xi, Xsys (i.e. time-varying

risk) we estimate the conditional distribution as a function of state variables that repli-

cate the information set available to the regulator. We separately regress asset returns

for each bank i and for the system on a number of lagged state variable included in the

matrix M as follows

Xi
t = αi + γi Mt−1 + εi

t (11)

Xsys
t = αsys|i + βsys|iXi

t + γsys|i Mt−1 + ε
sys|i
t (12)

The predicted values from the quantile regression correspond to the VaR and CoVaR

of bank i at time t as follows:

VaRi
t(q) = α̂i

q + γ̂i
qMt−1 (13)

CoVaRi
t(q) = α̂sys|i + β̂sys|iVaRi

t(q) + γ̂sys|i Mt−1 (14)

=⇒ ∆CoVaRi
t(q) = CoVaRi

t(q)− CoVaRi
t(50%) (15)

= β̂sys|i(VaRi
t(q)−VaRi

t(50%)) (16)

The systematic state variables are conditioning variables that shift the conditional mean

and volatility of the risk measure, where different firms loads on them in different di-

rections.
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5 Dataset

The dataset is composed by quarterly observation of balance sheet characteristics on

all listed Italian banks as 2019Q1, for a total of 18 institutions (16 banks + 2 insur-

ance company), ranging from 1998Q1 to 2019Q1, taken from Thomson Reuters Datas-

tream software. By focusing only on listed banks we are still able to capture the entire

system since they are the biggest by market capitalization and represent 85% of the

domestic bank market6. In particular, the balance sheet characteristics include total as-

sets, liabilities and shareholders equity for each institutions including some particular

assets/liabilities-class such as loans, intangibles, long and short term debt, that will be

used to construct several characteristics indicator.

Our variable of interest for institutions returns is the growth rate of weekly share

price, since it is closely related to the market value of assets which is in turn related to

the supply of credit of the real economy. The growth rate of share price Xi
t for bank i at

time t is defined by:

Xi
t =

Share Pricei
t − Share Pricei

t−1

Share Pricei
t−1

(17)

where each time period (time t) – (time t− 1) is one week.

The state variables added to the model are:

• FTSE MIB IVI: the implied volatility of the FTSE MIB index anticipated on the

derivative sector to account for the volatility in financial markets7

• Liquidity Spread: represent the short-term risk generated by a run to rise liquid-

ity and is computed as the difference between the 3m Euribor rate and the 3m

Italian Government bond yield

6"The Italian Banking Sector", Banca Intesa Report, 2014
7The 30-days IVI is available only from 2010; therefore we use estimated values for the period before

by regressing it on the VDAX, the IVI for the DAX index - in which both shows strong correlations
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• 3m Bond change: the change in the 3m Italian Government bond yield

• Term spread: computed as the yield spread between the 10y and 3m Italian Gov-

ernment bond yield to account for possible business cycles

• ITA-DEU Spread: the spread between the yield of the 10y German Government

bond and 10y Italian Government bond, a "default-risk" indicator that became

popular in the last years for agents of financial markets

• Credit Spread: the change in the 10y BAA-rated European Corporate Bond and

the 10y Italian Government bond - captures the extent to which a risk premium

could be generated by investing in the private sector rather than the public one

• Market Return: computed as the weekly percentage returns on the FTSE MIB

index

• Real Estate Excess Returns: computed as the excess return of the FTSE MIB Real

Estate index over the FTSE MIB index8, to account for possible effects on the

housing market, given that institutions are exposed directly to it either through

investments or indirectly with collaterals

6 Results

6.1 Unconditional estimation

We start by computing the unconditional VaR and ∆CoVaR of each bank using the full

sample. We drop institutions with less than 250 observation for the variable Xi (around

8The FTSE RE is available only from the 2010 - hence a regression of it over the FTSE MIB was
performed, showing strong correlaction, to predict the values over the entire time range
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Table 1: Summary statistics for the state variables

Variable Mean Std. Dev. Min Max

FTSE IVI 26.89 5.49 12.52 54.14
Liquidity Spread -3.5 84.9 -675.1 220.1
3m Bond change -0.57 23.2 -313.6 283.2
Term spread 205.8 117.9 -91.5 547.7
ITA-DEU Spread 110.7 109.9 6.3 528
Credit Spread 8.79 115.6 -217.6 459
Market return 0.04 3.23 -21.7 21.6
Real Estate Excess 0.009 2.62 19.01 45.98

The spreads and spread changes are expressed in
weekly basis points (highlighted in grey), and re-
turns are in weekly percent

5 years). Figure (1) plots them for the full period of interest. While the reported mea-

sures do not take into account information that comes from other financial variables

and assume each bank risk’s contribution is constant over time, they are informative

on the relationship between VaR and ∆CoVaR. The scatter plot shows the positive but

highly weak relationship between the two: hence a regulator that relies only on the

VaR measure might over/under estimates systemic risk contribution
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Figure 1: Scatter plot between the 1%-VaRi and ∆CoVaRi of institution i reported
in weekly percent returns. 1%-VaRi is the 1% quantile of firm returns, and ∆CoVaRi

gives the percentage point change in the financial 1%-VaR when a particular institution
realizes its own 1%-VaRi

6.2 Time-varying estimation

We proceed to the next step by computing the time-varying VaR and ∆CoVaR esti-

mating the predicted value for the 1% and 5% quantile of the regressions (13), (14).

The complete output of those regression are reported in Appendix9; Table (2) shows

the average significance of the coefficients for the 1%-VaR and 1%-CoVaR regressions,

computed as the fraction of the banks in the sample, over the total, on which the ex-

planatory variable is statistically significant at least at the 10% level. At the bank level,

most of the VaRi
t variation is driven on average by the spread between Italian and

German government bonds, the credit spread and the market return in the FTSE MIB,

9The output of the quantile regressions are reported in the Appendix in Table (11)-(14)
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while at the system level most of the CoVaRi
t variation is driven by the volatility in the

FTSE MIB, the market return, the liquidity and credit spread, and the excess returns on

the housing market. As expected, a strong determinant of the system VaR is also the

event of one bank being in distress.

Table 2: Average significance of state variables exp-
sosure and effect for the 1%-VaR and 1%-CoVaR re-
gressions

Variables Relevance (%)

VaRi
t CoVaRi

t Effect on risk
FTSE IVI 25 88 Increase
Liquidity Spread 13 81 Increase
3m Bond Change 25 13 Not defined
Term Spread 25 25 Decrease
ITA-DEU Spread 88 25 Increase
Credit Spread 63 88 Increase
Market return 56 81 Decrease
Real Estate Return 19 75 Decrease
Bank Return - 63 Decrease
Constant 25 31

Relevance stands for the overall significance of the
coefficients of the model: it is computed as the
fraction of the banks in the sample, over the total,
on which the explanatory variable is statistically
significant at least at the 10% level

A higher FTSE IVI, liquidity spread, Italian-German government bond yield spread,

credit spread tend to be associated with more negative risk measure. In addition, lower

term spread, market returns, real estate and bank returns are associated with larger

risk. Interestingly, the 3m Italian bond change seems not to be relevant for measure of

risk and its effect on risk varies differently with respect to the bank considered. Over-

all, the average significance of the conditioning variables shows that they proxy for
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time variation in quantiles and particularly in CoVaR.

Figure 2: Time-series evolution of the average returns of institutions of the sample
(in green), the average 1%-VaR (in orange), the average 1%-∆CoVaR. All risk mea-
sures are in percent weekly returns.

As visible from Figure (2), in the time series dimension, the average 1%-VaR and its

related ∆CoVaR shows a strict relation in their evolution: a way to interpret ∆CoVaRs

is by viewing them as cross sectional allocation of system wide risk to the various

institutions. On average, ∆CoVaR is lower in magnitude than the VaR counterpart

and less volatile: it is a first possible signal of the over/under estimation of isolated

risk taking into account the VaR. Summary statistics for the estimated risk measure at

the 1%-quantile are reported in Table (3).

Table 3: Summary statistics for the estimated risk measures.

Variable (×100 ) Obs. Mean Std. Dev. Min Max

Bank returns Xi 17,340 0,03 5,63 -68,59 233,70
1%-Vari

t 16,976 -11,84 6,39 -79,78 2,65
1%-Varsystem

t 1,061 -9,29 3,93 -31,66 -2,21
1%-∆CoVaRi

t 16,976 -4,21 2,89 -25,97 1,93

All quantities are expressed in units of weekly percent re-
turns
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In Table (4) we report the estimated risk contribution for each individual institution.

The q%-∆CoVaR measure indeed how much bank i adds to the system VaR when

that bank i moves from its median state to its q%-VaR level. As an example, the 1%-

∆CoVaRsys|BPER = −5, 12% indicates that BPER adds 5, 12% to the system 1%-VaR

when its moves from the median state to a distress situation.

Table 4: Contribution to systemic risk by Italian banks when in distress situation.

1%− ∆CoVaRsys|Bank 5%− ∆CoVaRsys|Bank

Banks Mean Std. Dev. Min Max Mean Std. Dev. Min Max SIFI

Assicurazioni Gen. -5,80 2,08 -18,43 0,79 -4,78 1,96 -16,02 -0,11
BPER -5,26 2,22 -16,20 0,28 -3,49 1,69 -13,14 0,01

Banca Finnat -1,39 0,40 -3,75 0,08 -0,94 0,21 -2,14 -0,53
Banca Popolare -5,14 1,70 -16,21 -0,25 -3,20 1,05 -8,69 -1,80

Banca Profilo -1,06 0,43 -3,35 -0,23 -0,46 0,14 -1,26 0,04
Banco BPM -5,09 2,17 -15,11 -1,24 -3,80 1,43 -11,01 -1,22

Banco di Desio -1,93 0,59 -6,56 -0,22 -2,24 0,48 -5,59 -0,79
Banco di Sardeg. -3,54 1,46 -11,48 -0,60 -1,50 0,60 -4,83 -0,17
Credito Emiliano -5,26 2,25 -20,72 1,93 -3,62 1,58 -13,58 -0,77

Credito Valtell. -1,64 1,01 -7,88 0,39 -2,42 1,13 -7,06 -0,35
Intesa -6,68 3,05 -23,15 1,40 -5,01 2,38 -17,80 -0,31 X

MPS -3,87 1,84 -16,83 -1,01 -3,32 0,83 -7,53 -0,36 X
Mediobanca -5,59 1,60 -15,36 -0,25 -4,81 1,25 -11,00 -1,71

Unicredit -5,43 2,54 -25,97 -1,09 -4,54 1,84 -16,10 -1,89 X
Unione di Banche -7,06 2,47 -18,08 0,62 -4,80 1,73 -13,31 -1,80

Unipol Sai -0,60 0,25 -1,29 -0,11 -1,59 0,48 -3,60 -0,62

All quantities are expressed in units of weekly percent returns

The relative most systemic risk contributors banks are, on average, Generali, BPM,

Credito Emiliano, Intesa, Unicredit, Mediobanca, UBI. It is interesting to notice that

only 2 of them - Intesa and Unicredit - are reported as systemic by the Financial Stability

Board’s SIFI as of 201810. By the same reasoning, banks such Mediobanca, UBI, BPER

should be indexed as SIFI as well.
10The Systemically Important Financial Institutions index elaborated by the FBS is a regulatory response

to the financial crisis of the 2008 that require the indexed banks to respect stricter capital and liquidity
requirements
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By reversing the directionality of the study, i.e. computing the 1%-∆CoVaRBank|sys,

we are able to compute the so called Exposure-∆CoVaR, which capture the extent to

which institutions are most at risk in the case of a systemic financial crisis. Infact, it

reports the increase in the VaR of institution i conditional on the system being at its

VaR level, i.e. in a distress situation. Such measures are reported in Table (5).

Table 5: Increase in Italian bank’s VaR in the case of a financial crisis

1%-∆CoVaRBank|sys 5%-∆CoVaRBank|sys

Banks Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Assicurazioni Gen. -5,65 2,78 -20,13 -1,53 -4,05 1,90 -17,56 -1,53
BPER -5,57 2,44 -19,43 -0,39 -3,83 1,73 -13,51 -0,81

Banca Finnat -5,58 2,46 -19,33 -0,56 -3,83 1,71 -13,36 -0,72
Banca Popolare -4,52 1,99 -15,52 -0,40 -3,11 1,37 -11,00 -0,42

Banca Profilo -6,80 2,98 -23,59 -0,47 -4,68 2,08 -15,86 -0,81
Banco BPM -11,14 4,83 -39,10 0,07 -7,72 3,31 -25,61 -1,77

Banco di Desio -3,06 1,34 -10,51 -0,31 -2,10 0,93 -7,45 -0,36
Banco di Sardeg. -3,37 1,48 -11,59 -0,32 -2,31 1,03 -8,19 -0,41
Credito Emiliano -9,78 4,22 -33,25 -0,84 -6,75 3,05 -22,99 -1,24

Credito Valtell. -5,18 2,27 -17,84 -0,52 -3,55 1,57 -12,77 -0,52
Intesa -8,69 3,16 -29,67 -0,73 -5,98 2,47 -20,04 -2,49

MPS -8,68 3,98 -31,98 2,16 -5,87 2,73 -20,34 -1,02
Mediobanca -8,92 3,91 -30,72 -0,65 -6,15 2,85 -23,87 -0,87

Unicredit -10,89 4,78 -37,30 0,18 -7,44 3,38 -29,79 -0,84
Unione di Banche -12,38 5,43 -43,41 -0,65 -8,38 3,77 -30,24 -1,27

Unipol Sai -4,92 2,14 -16,91 -0,40 -3,32 1,50 -11,93 -0,50

All quantities are expressed in units of weekly percent returns

As an example, the 1%-∆CoVaRBPER|sys = −5, 74% indicates that the system adds

5, 74% to the BPER 1%-VaR when its moves from the median state to a distress situa-

tion.

As visible, the banks that might be relatively more vulnerable in the case of a fi-

nancial crisis are UBI, Unicredit, Credito Emiliano, MPS, Banco BPM. This could be

relevant in order to tailor policy tools to protect such banks in the case of potentially

dangerous systemic events.
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6.3 Forward-∆ CoVaR

In this section we will try to understand which are good predictors of systemic risk

contribution at the bank level; we perform a pooled OLS regression of ∆CoVaR over

several balance sheet characteristics and then present out of sample test. Moreover,

doing so let us address a key issue of systemic risk regulation: measurament accuracy.

Infact, risk measures analyse tail events of particular returns distribution that tend to

be tend to be rarely observed at high frequencies. Hence, they might be imprecise by

nature. By relating ∆CoVaR with more robust and easy-to-observe characteristics of in-

stitutions, such as balance sheet items, allows for a more precise inference of ∆CoVaR.

The predicted value of the regression with different lags will provide us the forward

looking forecast of ∆CoVaR at different horizons; the so-called Forward-∆CoVaR.

We will use the following set of characteristics, measured at the quarterly-level -

since it is the highest frequency available for balance sheet items:

• Leverage: measure the degree of debt recursion of an institution, defined as

Total Asset
Total Equity

• Maturity mismatch: an indicator for the liquidity position of an institution11,

defined as Short-term debt
Total debt

• Size: defined as the log of total book equity

• Market-to-book ratio: defined as the ratio of the market to the book value of total

equity, useful to capture the agents’ valuation of a particular institution

11A maturity mismatch is a financial situation of an institution or firm in which assets held to meet
future liabilities are not aligned in terms of maturity/expiration time. When there is a maturity mis-
match, a liquidity squeeze could arise: for example, the mismatch between the maturities of banks’
deposits and loans makes banks susceptible to bank runs where long-term loans are not available to
repay debtors.
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• Equity return volatility: computed as the variance of weekly equity return within

each quarter for each bank

• Market β: computed as the covariance of the bank’s return with the market re-

turns over the variance of the market returns

Table 6: Summary statistics for the quarterly balance sheet characteristics of Italian
banks used in the Forward-∆CoVaR regression

Variable Obs Mean Std. Dev. Min Max

Leverage (%) 17,300 15,58 0,07 1,08 80,00
Maturity Mismatch (%) 16,778 17,88 0,13 0,00 76,00
Log Equity 17,300 14,71 1,73 8,90 17,98
Volatility (%) 17,368 0,32 0,01 0,00 50,86
Market β 17,824 0,80 0,26 0,36 1,28
Market-to-book 17,018 1,28 0,94 0,07 9,83

We generate a quarterly measure of ∆CoVaR by summing its weekly measure inside

each quarter (this is possible since ∆CoVaR is by construction a yield measure that can

be capitalized) to relate it to the above quarterly-characteristics.

We regress the 1%-∆CoVaR and the 5%-∆CoVaR on the 1 quarter, 1 year and 2

year lagged bank characteristics in-sample until 2018. In the regression are added as

independend variable also: the lagged VaR - given that there is a weak but still positive

relation with ∆CoVaR both in a cross-sectional and time-series dimension; the lagged

∆CoVaR - to check for persistance. Results are presented in Table (7).

Almost all the explanatory variable are significant at the 1% level, showing con-

sistence in the sign both in the different lagged periods and when changing the quan-

tile of the ∆CoVaR. The coefficients have to be interpreted as different sensitivities of

∆CoVaR with respect to the examined characteristics.
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Table 7: ∆CoVaRi Forecasts for all Italian institutions in the dataset. The table reports
the coefficient from the forecasting regression of ∆CoVaRi at the 1% and 5% quantile
level. All regressions include time effects.

Panel A: 1%-∆CoVaR Panel B: 5%-∆CoVaR
(1) (2) (3) (4) (5) (6)

Lagged Variables 1 Quarter 1 Year 2 Years 1 Quarter 1 Year 2 Years

Leverage 0.01932* -0.00530 -0.04840** 0.04227*** 0.07430*** 0.04179**
(0.011) (0.020) (0.024) (0.008) (0.014) (0.017)

Maturity Mismatch -0.07800*** -0.29356*** -0.39909*** -0.03701*** -0.11666*** -0.13143***
(0.006) (0.012) (0.015) (0.005) (0.008) (0.010)

Log Book Equity -0.00954*** -0.03662*** -0.05213*** -0.00720*** -0.02533*** -0.03334***
(0.001) (0.002) (0.002) (0.001) (0.001) (0.002)

Market β -0.01230** -0.05806*** -0.12512*** -0.03733*** -0.15417*** -0.26949***
(0.005) (0.010) (0.012) (0.004) (0.007) (0.009)

Market-to-book -0.00199** -0.00492*** -0.00646*** -0.00386*** -0.01415*** -0.02273***
(0.001) (0.002) (0.002) (0.001) (0.001) (0.002)

Volatility 0.50154*** 1.81617*** 2.70845*** 0.52548*** 2.07192*** 3.18110***
(0.056) (0.105) (0.129) (0.050) (0.090) (0.107)

∆CoVaR 0.91336*** 0.66005*** 0.46943*** 0.88271*** 0.53282*** 0.28052***
(0.004) (0.007) (0.009) (0.006) (0.010) (0.012)

VaR -0.00756*** -0.03950*** -0.07145*** -0.01325*** -0.03810*** -0.06948***
(0.002) (0.003) (0.004) (0.003) (0.006) (0.007)

Constant 0.08362*** 0.31883*** 0.43670*** 0.05857*** 0.20794*** 0.25863***
(0.012) (0.023) (0.028) (0.009) (0.017) (0.019)

Observations 15,498 14,922 14,154 15,498 14,922 14,154
R-squared 0.933 0.775 0.686 0.929 0.784 0.722

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Institutions with higher maturity mismatch, larger size, market β, market-to-book

ratio and VaR are associated with larger systemic risk contribution one quarter, one

year and two year later both at the 1% and 5% level. Instead, higher market return,

volatility and leverage reduce contribution to systemic risk. The size-only approach

usually discussed, famouse for the debate on the "too big too fail institutions" fails to

recognize all the other predictors of systemic risk contribution.

The ∆CoVaR coefficient is significantly different from zero, meaning that risky
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banks tends to stay risky and the significant negative coefficient for VaR means that

banks that increase their exposure tends to increase systemic risk contribution at dif-

ferent future lags.

As an example, an increase in the maturity mismatch forecast - from 10% to 11%

- at the one-quarter horizon implies an increase of systemic risk contribution of 7.8%:

for a bank with e 1 billion of total asset this imply e 4ì78 millions of risk contribution.

We expand the set of available characteristics to more typical balance sheet items of

banks, both on the assets and liabilities side. By doing so we drop the two insurance

companies of the dataset. The new characteristics are:

• Loans: all the active loans of the banks excluded the non-performing ones

• Non-performing loans: loans on which the repayment is considered to be un-

likely - usually they are expired since 90 days and represent one of the main

component of risk in the bank’s business

• Intangible assets: assets that lack physical substance, such as patents, goodwill,

trademark, franchises

• Deposits (excl. DD): deposits such as money market accounts, saving accounts,

time and call deposits

• Demand deposits: The most common form of deposits, the standard checking

accounts
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Table 8: ∆CoVaRi Forecasts for all Italian banks with added bank characteristics. The
table reports the coefficient from the forecasting regression of ∆CoVaRi at the 1% and
5% quantile level. All regressions include time effects.

Panel A: 1%-∆CoVaR Panel B: 5%-∆CoVaR
(1) (2) (3) (4) (5) (6)

Lagged Variables 1 Quarter 1 Year 2 Years 1 Quarter 1 Year 2 Years

Leverage 0.00766 -0.12837*** -0.29087*** 0.04548*** 0.01465 -0.13183***
(0.014) (0.026) (0.031) (0.010) (0.018) (0.020)

Maturity Mismatch -0.10216*** -0.40960*** -0.61265*** -0.03839*** -0.15713*** -0.21212***
(0.011) (0.020) (0.024) (0.008) (0.013) (0.015)

Log Book Equity -0.00985*** -0.04233*** -0.06885*** -0.00548*** -0.02685*** -0.04437***
(0.001) (0.002) (0.003) (0.001) (0.002) (0.002)

Market β -0.00780 -0.00103 0.02223 -0.04648*** -0.14935*** -0.19629***
(0.007) (0.013) (0.016) (0.005) (0.009) (0.011)

Market-to-book -0.00194 -0.01445*** -0.03698*** 0.00002 -0.00722*** -0.02974***
(0.002) (0.003) (0.003) (0.001) (0.002) (0.002)

Volatility 0.67771*** 2.81297*** 3.50021*** 0.98572*** 4.66488*** 6.52531***
(0.095) (0.174) (0.206) (0.095) (0.165) (0.185)

∆CoVaR 0.90956*** 0.64082*** 0.44233*** 0.85489*** 0.36608*** 0.06683***
(0.004) (0.008) (0.010) (0.009) (0.015) (0.017)

VaR -0.01073*** -0.06044*** -0.10810*** -0.00715 0.01074 -0.01884**
(0.002) (0.004) (0.004) (0.005) (0.008) (0.009)

Loans (excl. NPL) -0.00639 0.00791 -0.12163*** 0.01725* 0.11687*** 0.10519***
(0.013) (0.024) (0.029) (0.010) (0.017) (0.019)

Non-performing loans -0.12041*** -0.65102*** -0.95151*** -0.11205*** -0.41633*** -0.57359***
(0.025) (0.049) (0.063) (0.018) (0.034) (0.040)

Intangible Assets -0.30361*** -2.08990*** -3.80145*** -0.15112** -1.36236*** -2.87774***
(0.100) (0.185) (0.221) (0.072) (0.127) (0.144)

Deposits (excl. DD) -0.01980 -0.04481 -0.01652 0.02090 0.12093*** 0.28390***
(0.018) (0.033) (0.039) (0.013) (0.023) (0.026)

Demand Deposits 0.04746** 0.19142*** 0.27909*** 0.02394* 0.08198*** 0.04967*
(0.019) (0.035) (0.043) (0.014) (0.024) (0.028)

Constant 0.08478*** 0.34010*** 0.66384*** -0.00595 0.00559 0.11360***
(0.020) (0.036) (0.043) (0.014) (0.024) (0.028)

Observations 12,698 12,266 11,690 12,698 12,266 11,690
R-squared 0.920 0.745 0.664 0.918 0.767 0.726

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

As showed in Table (8) the assets items of the balance sheet all are good predictors

of systemic risk and tend to increase their contribution: this could be because, for ex-
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ample, an increase in loans volumes is equivalent to an increase in the exposures of a

bank that might be subject to defaulting. Conditioning on non-performing loans, we

see that they are the true driver of systemic risk in the loan asset-class, being the more

prone to default thus generating risk: this is a significant results given the high levels

of NPL in Italian banks. On the liabilities side, deposits decrease systemic risk con-

tribution (expecially the demand deposits type) since they are more stable resource of

funding with respect to debt.

Out-of-sample Forward-∆CoVaR

The above regression were run in-sample until 2018. We re-perform the regression now

using the entire time span of the dataset and proceed to compare the in-sample and

ou-of-sample predicted value of Forward-∆CoVaR at different periods. As visible from

Figure (3), the out of sample estimates replicates reasonably well the in sample one,

with an expected decrease in accuracy when the time horizon of forecasting increase,

showing the good predictive power of the Forward-∆CoVaR.

(a) Average 5%-∆CoVaR estimates in and
out of sample for 1 quarter lag.

(b) Average 5%-∆CoVaR estimates in and
out of sample for 2 year lag.

Figure 3: Comparison between in-sample and out of sample predicted values of the
Forward-∆CoVaR regressions at different time horizons. Measures are in quarterly
percent returns.
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Moreover, by comparing the realized quarterly average ∆CoVaR with the two-year

average Forward-∆CoVaR as in Figure (4), we notice that the two measures shows neg-

ative correlation, expecially from 2008. When the contemporaneous ∆CoVaR - is small -

the realized systemic risk contribution is low - the Forward-∆CoVaR is large (in abso-

lute value) - the future systemic risk contribution is high. This result captures the idea

that systemic risk build-up in the background during time of lower volatility; there-

fore policies based on that measure are countercyclical. This allows us to solve the

procyclicality "issue" where regulation based in contemporaneous risk measures tends

to be excessively tight after adverse events and loose in period of stability, amplifying

the impact of a crisis and indirectly enhancing risk taking in normal conditions12.

Figure 4: Two year 5% Forward-∆CoVaR comparison with contemporaneous 5% −
∆CoVaR. The graph shows the average 2-year forward and contemporaneous ∆CoVaR
computed at the 5% quantile level. Measures are in quarterly percent returns. The
Forward-∆CoVaR at any given date uses the data available at that time to predict
∆CoVaR two years in the future.

In another test to evalute the performance of the Forward-∆CoVaR, we use it to
12Studies on the procyclicality of capital regulation can be found in Estrella (2004), Kashyap and Stein

(2004)
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forecast the cross section of a measure of realized systemic risk contribution: as a

proxy, we compute covariances of financial institutions returns with the system return

during the financial crisis (2007Q1-2009Q1). We regress the Forward-∆CoVaR with

data as of 2006Q4 at different time horizons over the crisis covariance: as a result, the

2-year Forward-∆CoVaR is able to explain over 50% of the cross sectional covariance

in the next two years, during the crisis, proving strong predictive power. By changing

the horizon of prediction, with the 1-year or 1-quarter Forward-∆CoVaR, coefficients

slightly change as well as the R-squared, but still showing robust results; the 2-year

Forward-∆CoVaR seems to be the strongest predictor of the future crisis covariance.

Morover, by adding to the 2-year Forward-∆CoVaR regressions lagged balance sheet

characteristics the R-squared does not change (and two out of three coefficients are not

significant), meaning that the Forward-∆CoVaR is already able to capture balance sheet

characteristics effects on systemic risk contribution.

Table 9: ∆CoVaR forecasts during the financial crisis. The table reports a regression of
the realized crisis covariance during the 2007Q1-2009Q1 (estimated from weekly data)
on the Forward-∆CoVaR as of 2006Q4.

(1) (2) (3) (4)
Variables Covariance during the crisis

2Y Forward CoVaR -0.214***
1Y Forward CoVaR -0.055***
1Q Forward CoVaR -0.054***
Maturity Mismatch -0.0002
Leverage -0.0005***
Log Book Equity -0.00002

Observation 1,443 1,443 1,443 1,443
R-squared 53,66% 42,75% 45,59% 53.89%
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7 Conclusion

During financial crisis, tail events tend to spill across institutions. With the ∆CoVaR

model, that is built to measure systemic risk, we are able to capture these effects. In

this thesis we estimate the contribution to systemic risk of Italian listed banks for the

period 1999-2019, identifying both the riskier banks and the most exposed to bad finan-

cial shocks. Moreover, we find that the informations contained in ∆CoVaR are different

from those contained in the VaR, hence regulators should take it into account to moni-

tor the systemic risk posed by banks.

Recent policy debate has been developed around the danger posed by large banks.

By relating ∆CoVaR to institutions’ characteristics we identified what are good predic-

tors of systemic risk other than size: balance sheet items such as leverage, NPL, mar-

ket β, maturity mismatch. Therefore any financial regulation aimed only at limiting

banks’ size could not completely eliminate systemic risk. The regression coefficients

roughly identifies the effects on systemic risk contribution of curbing one institution’s

characteristics. This makes the ∆CoVaR a useful tool for policy making and regulation.

Moreover, given that the conditional measures of systemic risk are time varying and

affected by market-based risk factors, macro prudential regulation should also monitor

informations provided by financial markets.

An interesting way to expand this work would be to compute the ∆CoVaRs be-

tween each possible couple of banks, i.e. to compute the VaR of institution i when

institution j is in distress (i 6= j), and viceversa. This would let us obtain the pairwise

connection between each banks and with some specific Granger-causality tests it could

be possible to capture a network effect between each institution by understanding which

banks push the risk profile of its counterparties.
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Another avenue of research could be to add additional macro variables to the re-

turns when estimating the CoVaR. As already suggested by Adrian and Brunnermeier

(2016) it could be possible to take into account variables which are presumed to explain

stock returns as business cycle or investor sentiment.

Finally, from the predicted value of the ∆CoVaR regressions we constructed a for-

ward looking measure of systemic risk, called Forward-∆CoVaR, that provides reliable

forecasts of future systemic risk contribution at different time horizons. To test its per-

formance, we find that it is able to explain half of the realized crisis covariance during

the financial crisis.

Hence, we conclude that ∆CoVaR is a very useful and relevant policy tool for reg-

ulators that can estimate which factors are more relevant in terms of contribution to

systemic risk, being able to access wider and more granular information set.
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Appendix

Table 10: Full list of Italian financial institutions in the sample with their average returns, av-
erage unconditional 1%-VaR and 1%-∆CoVaR (constant in time) and average conditional/time-
varying 1%-VaR and 1%-∆CoVaR.

Banks Returns Uncond. 1%-VaR Uncond. 1%-∆CoVaR 1%-VaR 1%-∆CoVaR

Assicurazioni Gen. -0,01 -10,27 -9,03 -8,27 -5,80

BPER 0,04 -12,05 -6,52 -10,78 -5,26

Banca Finnat 0,01 -11,02 -2,52 -10,17 -1,39

Banca Popolare 0,06 -8,80 -6,33 -8,18 -5,14

Banca Profilo -0,25 -13,86 -3,22 -11,79 -1,06

Banco BPM 0,14 -16,87 -7,98 -12,60 -5,09

Banco di Desio 0,06 -9,66 -3,86 -8,19 -1,93

Banco di Sardeg. 0,06 -12,17 -3,75 -8,85 -3,54

Credito Emiliano 0,15 -12,05 -7,19 -11,20 -5,26

Credito Valtell. -0,05 -17,03 -6,11 -14,53 -1,64

Intesa 0,05 -14,84 -9,20 -11,94 -6,68

MPS -0,40 -17,67 -5,90 -15,65 -3,87

Mediobanca 0,14 -11,29 -7,38 -10,83 -5,59

Unicredit -0,07 -15,79 -8,43 -12,14 -5,43

Unione di Banche 0,00 -13,59 -8,90 -11,77 -7,06

Unipol Sai 0,25 -17,24 -2,07 -11,85 -0,60

All quantities are expressed in units of weekly percent returns
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During the last decade we have witnessed how distress can spread quickly

through the financial system and threaten financial stability. Hence there

has been increased focus on developing systemic risk indicators that can

be used as policy tools. Adrian and Brunnermeier (2016) have introduced

a new methodology in measuring spillover effects and sistemic risk con-

tributions of institutions through the measure of Conditional Value at

Risk (CoVaR), the value at risk of the financial system conditional on in-

stitutions being in distress. The purpose of this thesis is to apply the

CoVaR model to the Italian financial market to identify which are the in-

stitutions that contribute the most to the build-up of systemic risk and its

best predictors. We provide forecast of a forward looking measure of sis-

temic risk contribution showing that it is able to predict half of realized

covariances during the financial crisis.
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Introduction

Technological progress has gifted us with an interconnected and globalised world, a

sprawling network of agents that are able to interact directly or indirectly with each

other: nowadays, it is very hard to find a situation in which one exceptional event hap-

pens for some economic agents without having any impact on other economic agents.

This happens also in financial markets, where in the recent years we have witnessed

how during times of financial crisis distress can spread quickly through institutions

threatening financial stability. The subprime crisis, the collapse of Lehman Brothers

and the Greece’s sovereign debt crisis are the most notable examples of such events,

which happened in the financial world and have made disastrous repercussions on a

number of economies.

The spreading of distress gives rise to systemic risk - the risk that the intermedia-

tion capacity of the entire financial system is impaired, with severe consequences for

the supply of credit in the real economy. These systemic effects are generated from

spillovers across institutions that arise due to contractual links between counterpar-

ties, exposures or more general macro-factors such as price effects and liquidity spirals.

These facts made crucial for regulators to take adequate measures in order to prevent

the collapse of the financial system. To do so, regulators need sustainable systemic risk

indicators that also monitor the level of contagion among financial institutions.

One of these measures, that has been used for a long time, is the Value at Risk

(VaR), which focuses on the risk of a single financial institution in isolation. It is de-

fined as the maximum loss of institution i for some confidence level q. The main issue

with this approach is that a single institution’s risk does not necessarily reflects its con-

tribution to systemic risk. Indeed, an institution may be individually systemic because
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large and interconnected, or could be relatively small in term of size but still be systemic

as a part of a herd. Moreover, systemic risk shows a time-series dimension by its very

nature, where it typically builds up in time of low volatility in terms of bubbles and

imbalances and materializes in time of crisis. A proper systemic risk measure should

capture this build-up.

In this context, Adrian and Brunnermeier (2016) have developed a new measure of

risk which can be applied to quantify systemic risk. It is the Conditional Value at Risk

(CoVaR) which represents the VaR of a financial system (or of a single institution) con-

ditionally on the fact that a financial institution is in distress. By defining the ∆CoVaR

as the difference between the above mentioned CoVaR and the CoVaR when the institu-

tion is in a normal financial situation, we are able to capture the marginal contribution

of a particular institution on the systemic risk as a whole. Projecting the obtained mea-

sures of ∆CoVaR on robust and reliable lagged characteristics of institutions - such as

balance sheet items - we will estimate the Forward-∆CoVaR, a forward looking mea-

sure of risk that can be used as a monitoring tool for the prediction of systemic risk.

Being tied to frequent and robust characteristics, the Forward-∆CoVaR tries to address

the problem that empirical risk measures suffer from the rarity of tail event, leading to

inaccuracies in capturing systemic risk.

The objective of this thesis is to use the mentioned methodology to estimate sys-

temic risk contribution in the Italian banking system analyzing listed financial insti-

tutions in the Italian Stock Exchange. Doing so, we will try to answer the following

questions:

• Which are the the institutions who contribute the most (and the less) to the sys-

temic risk in Italy, and which are the most exposed in the case of a crisis?
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• What are the best predictors of systemic risk contribution and how such charac-

teristics could be addressed in a regulatory framework and used to construct a

predictive measure of systemic risk?

This thesis tries to provide an original contribution to the CoVaR and systemic risk liter-

ature by applying the presented methodology to the Italian case, analyzing a relevant

topic in the banking sector debate given the high level of sovereign local debt held by

Italian banks, highly exposed to non-performing positions and risks.

Theoretical Framework

Value at Risk (VaR)

Value at Risk is a well-known and widely used risk measure by financial institutions.

Value at Risk measures the potential loss in the value of a risky asset or portfolio over a defined

period for a given confidence interval.

More formally, p-VaR is defined such that the probability of a loss greater than VaR

is (at most) p while the probability of a loss less than VaR is (at least) 1− p.

Definition 1 If Xi represents a variable of interest of institution i - for example, a profit and

losses distribution or portfolio return - with a generic distribution FXi(xi), then given a confi-

dence level (1− q), VaRi
q can be defined as:

VaRi
q = inf {x : FXi(xi) ≥ q} (1)

VaR is essentially the q-quantile of the return distribution FXi(xi) as defined by equation (??).

VaR can also be implicitly defined by:

Pr
(

Xi ≤ VaRi
q

)
= q (2)
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meaning that there is a (100× q%) chance of the variable Xi to become less than VaRi
q over a

defined period or in other words, with confidence level (1− q), Xi will not be less than VaRi
q.

CoVaR

CoVaR stands for Conditional Value at Risk; the CoVaR of the financial system (or a

particular bank, portfolio of asset, etc.) is defined as the VaR of the financial system,

conditional on some scenario at a particular bank or a set of banks.

Definition 2 We denote by CoVaRj|i
q the VaR of institution j (or the financial system) condi-

tional on some particular event C(X) of institution i. That is, CoVaRj|i
q is implicitely defined

by the q-quantile of the conditional probability distribution:

Pr
(

X j ≤ CoVaRj|C(X)
q |C(X)

)
= q

For the most of this thesis, we will focuse on the conditioning event
{

C(X) = VaRi
q

}
simplifying the notation to CoVaRj|i

q . Moreover, we mainly study the case of j =

system, i.e. when the return of the portfolio of all financial institutions is at its VaR

level. In this case, we drop the superscript j. Informally, we could say that there is a

q% chance of the system returns X j becoming less than CoVaRj|i
q within a specified time

period given that returns of bank i are at its q%-VaR level. Finally, we define a state

of distress for an institution or financial system when its returns Xi hits their 1%-VaR

level1 while its normal situation is where returns are at their median level (the 50%-

quantile). Therefore, to measure how much institution i contributes to the financial

system (or bank j) VaR during stressful times we will look at the difference between

the system VaR conditional on bank i being at its 1%-VaR level minus the system VaR

conditional on bank i being at its median level.

1It could be done also by taking the 5%-VaR level; the lower the desired quantile, the more severe the
state of distress.
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Definition 3 We denote institution i’s contribution to j by

∆CoVaRj|i
q = CoVaR

j|Xi=VaRi
q

q − CoVaRj|Xi=Mediani

q

The directionality of the ∆CoVaR model could be reversed, i.e. by studying the

∆CoVaRi|j
q with j = system we are able to understand which institution are most at risk

if a financial crisis occur - we call this the Exposure-∆CoVaR.

Estimation Methodology and Results

Quantile regression is an efficient way to estimate CoVaR and is used here: it models

the relationship between a a set of predictor variables and specific quantiles of the re-

sponse variable. The difference with the more standard Ordinary Least Squares (OLS)

regression is that its coefficients estimates the change in the mean of the response vari-

able produced by a one-unit change in the predictor variable, keeping other predictor

variables fixed. However, a quantile regression coefficient estimates the change in a

specified quantile of the response variable produced by a one unit change in the pre-

dictor variable. This enables comparison of how different quantiles of the response

variable may be affected by the predictor variable. As we will show later, when esti-

mating CoVaR the focus is on a specific low quantile of a distribution and hence it is

automatic to use quantile regression here.

Unconditional ∆CoVaR

Consider a quantile regression of the financial sector returns Xsys on a particular insti-

tution i’s returns for the qth− quantile

Xsys
q = αi

q + βi
qXi
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The quantile regression coefficient βi
q estimates the change in a specified quantile q of

Xsys
q produced by a one unit change in Xi, i.e.

X̂sys
q = α̂i

q + β̂i
qXi (3)

where by X̂sys we denoted the predicted value of such regression for a particular quan-

tile conditional on institution i. From the definition of VaR - which is a quantile - it

follows that

X̂sys
q = VaRsys

q |Xi (4)

which means that the predicted value from the regression is the q%-VaR of the financial

system conditional on Xi.

By conditioning with Xi = VaRi
q we obtain the unconditional CoVaR measure

CoVaR
sys|Xi=VaRi

q
q := VaRsys

q |VaRi
q = α̂i

q + β̂i
qVaRi

q (5)

=⇒ ∆CoVaRsys|i
q = β̂i

q(VaRi
q −VaRi

50%) (6)

0.1 Conditional ∆CoVaR

In order to capture time variation in the joint distributions of Xi, Xsys (i.e. time-varying

risk) we estimate the conditional distribution as a function of state variables that repli-

cate the information set available to the regulator. We separately regress asset returns

for each bank i and for the system on a number of lagged state variable included in the

matrix M as follows

Xi
t = αi + γi Mt−1 + εi

t (7)

Xsys
t = αsys|i + βsys|iXi

t + γsys|i Mt−1 + ε
sys|i
t (8)
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The predicted values from the quantile regression correspond to the VaR and CoVaR

of bank i at time t as follows:

VaRi
t(q) = α̂i

q + γ̂i
qMt−1 (9)

CoVaRi
t(q) = α̂sys|i + β̂sys|iVaRi

t(q) + γ̂sys|i Mt−1 (10)

=⇒ ∆CoVaRi
t(q) = CoVaRi

t(q)− CoVaRi
t(50%) (11)

= β̂sys|i(VaRi
t(q)−VaRi

t(50%)) (12)

The systematic state variables are conditioning variables that shift the conditional mean

and volatility of the risk measure, where different firms loads on them in different di-

rections.

Unconditional and conditional ∆CoVaR are calculated using weekly data from 1999Q1

to 2019Q1 for all listed Italian banks plus the two biggest insurance company by mar-

ket capitalization. The conditional ∆CoVaR is modelled as a function of state variables

that captures the evolution of tail risk dependence over time, such as the implied mar-

ket volatility from the FTSE IVI, credit and liquidity spread, market returns. We are

able to capture and understand which are the Italian banks that contribute the most

to systemic risk (Table (1) is an example of the output of the analysis), and the most

exposed one to financial crisis by reversing the directionality in the computation of the

∆CoVaR.
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Table 1: Contribution to systemic risk by Italian banks when in distress situation.

1%− ∆CoVaRsys|Bank 5%− ∆CoVaRsys|Bank

Banks Mean Std. Dev. Min Max Mean Std. Dev. Min Max SIFI

Assicurazioni Gen. -5,80 2,08 -18,43 0,79 -4,78 1,96 -16,02 -0,11
BPER -5,26 2,22 -16,20 0,28 -3,49 1,69 -13,14 0,01

Banca Finnat -1,39 0,40 -3,75 0,08 -0,94 0,21 -2,14 -0,53
Banca Popolare -5,14 1,70 -16,21 -0,25 -3,20 1,05 -8,69 -1,80

Banca Profilo -1,06 0,43 -3,35 -0,23 -0,46 0,14 -1,26 0,04
Banco BPM -5,09 2,17 -15,11 -1,24 -3,80 1,43 -11,01 -1,22

Banco di Desio -1,93 0,59 -6,56 -0,22 -2,24 0,48 -5,59 -0,79
Banco di Sardeg. -3,54 1,46 -11,48 -0,60 -1,50 0,60 -4,83 -0,17
Credito Emiliano -5,26 2,25 -20,72 1,93 -3,62 1,58 -13,58 -0,77

Credito Valtell. -1,64 1,01 -7,88 0,39 -2,42 1,13 -7,06 -0,35
Intesa -6,68 3,05 -23,15 1,40 -5,01 2,38 -17,80 -0,31 X

MPS -3,87 1,84 -16,83 -1,01 -3,32 0,83 -7,53 -0,36 X
Mediobanca -5,59 1,60 -15,36 -0,25 -4,81 1,25 -11,00 -1,71

Unicredit -5,43 2,54 -25,97 -1,09 -4,54 1,84 -16,10 -1,89 X
Unione di Banche -7,06 2,47 -18,08 0,62 -4,80 1,73 -13,31 -1,80

Unipol Sai -0,60 0,25 -1,29 -0,11 -1,59 0,48 -3,60 -0,62

All quantities are expressed in units of weekly percent returns

In a successive step, we relate those ∆CoVaR - in a predictive sense - to institution’s

balance sheet characteristics using panel regressions. We show not only that size, lever-

age, maturity mismatch and other characteristics are good predictors of systemic risk,

but the predicted values of those regressions have out of sample predictive power, be-

ing able to capture half of the realized covariance between institutions and the system

during the financial crisis of 2008.

Conclusion

During financial crisis, tail events tend to spill across institutions. With the ∆CoVaR

model, that is built to measure systemic risk, we are able to capture these effects. In

this thesis we estimate the contribution to systemic risk of Italian listed banks for the

period 1999-2019, identifying both the riskier banks and the most exposed to bad finan-

cial shocks. Moreover, we find that the informations contained in ∆CoVaR are different

from those contained in the VaR, hence regulators should take it into account to moni-
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tor the systemic risk posed by banks.

Recent policy debate has been developed around the danger posed by large banks.

By relating ∆CoVaR to institutions’ characteristics we identified what are good predic-

tors of systemic risk other than size: balance sheet items such as leverage, NPL, mar-

ket β, maturity mismatch. Therefore any financial regulation aimed only at limiting

banks’ size could not completely eliminate systemic risk. The regression coefficients

roughly identifies the effects on systemic risk contribution of curbing one institution’s

characteristics. This makes the ∆CoVaR a useful tool for policy making and regulation.

Moreover, given that the conditional measures of systemic risk are time varying and

affected by market-based risk factors, macro prudential regulation should also monitor

informations provided by financial markets.

An interesting way to expand this work would be to compute the ∆CoVaRs be-

tween each possible couple of banks, i.e. to compute the VaR of institution i when

institution j is in distress (i 6= j), and viceversa. This would let us obtain the pairwise

connection between each banks and with some specific Granger-causality tests it could

be possible to capture a network effect between each institution by understanding which

banks push the risk profile of its counterparties.

Another avenue of research could be to add additional macro variables to the re-

turns when estimating the CoVaR. As already suggested by Adrian and Brunnermeier

(2016) it could be possible to take into account variables which are presumed to explain

stock returns as business cycle or investor sentiment.

Finally, from the predicted value of the ∆CoVaR regressions we constructed a for-

ward looking measure of systemic risk, called Forward-∆CoVaR, that provides reliable

forecasts of future systemic risk contribution at different time horizons. To test its per-

formance, we find that it is able to explain half of the realized crisis covariance during
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the financial crisis.

Hence, we conclude that ∆CoVaR is a very useful and relevant policy tool for reg-

ulators that can estimate which factors are more relevant in terms of contribution to

systemic risk, being able to access wider and more granular information set.
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