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Abstract 

During the Third Encuentro Financiero Internacional hosted by Caja Madrid in Madrid July 2003, 

Gertrude Tumpel-Gugerell, member of the Executive Board of the European Central Bank, 

addressing the recent development of stock markets, made the following statement:  

 

Before 1997, the volatility on the leading stock indexes hovered around 15% in France and 

Germany and in the United States, both in terms of historical volatility and of implied volatility. 

From 1997 onwards, the typical value of those volatilities doubled. This doubling was the result of 

a slow but steady rising trend, lasting more than six years. (…) 

Euro area stock market volatility increases at well-known times of financial turmoil. This is 

particularly visible at the times of oil shocks, on Black Monday in October 1987, in correspondence 

with the Latin American-Russian-Asian crises in 1997-98 and after the terrorist attacks on 

September 20011. 

 

In times where financial markets are characterized by high uncertainty, it is crucial for financial 

institutions to be able to forecast losses. This thesis aims at evaluating the two main methodologies 

for market risk estimation, Value at Risk (VaR) and Expected Shortall (ES) under some of the most 

widely used approaches (Simple Moving Average, Exponentially Weighted Moving Average, 

GARCH (1,1), GJR GARCH and Historical Simulation). More specifically, we will compute the 1 

– day VaR and ES estimates at 95% confidence level for an equally weighted portfolio composed 

by the Hang Seng Index and the FTSE Bursa Malaysia KLCI Index under each approach. The 

analysis will be carried out before and after the 1997 – 98 Asian Crisis and, at the end, the 

performances of each model during the two subperiods will be assessed using the Conditional 

Coverage mixed test (VaR), the Traffic Light test (VaR) and the Acerbi & Szekely test (ES). 

For what concerns the structure, the research project is divided in two Chapters. In Chapter 1 we 

will introduce the theoretical framework of Value at Risk and Expected Shortfall under different 

approaches as well as the main backtesting methods. In Chapter 2 we will apply the theory 

illustrated in the first chapter to the empirical study we mentioned in the previous paragraph. 

 

  

 

1 https://www.ecb.europa.eu/press/key/date/2003/html/sp030702.en.html 

https://www.ecb.europa.eu/press/key/date/2003/html/sp030702.en.html
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Chapter 1: Value at Risk, a theoretical framework 

 

1.1 Introduction 

In this chapter we will be discussing some of the main methodologies used in Financial Risk 

Management to estimate market risk, namely Value at Risk and Expected Shortfall. In particular, 

such models can be classified into two categories: parametric approaches and non-parametric 

approaches. 

In the first approach, we assume that stock returns follow a given statistical distribution (e.g. 

Gaussian distribution). The main models belonging to this class that we will be discussing in the 

following paragraphs are 

• Simple Moving Average method, where volatility at time t is computed as the simple 

standard deviations of stock returns n days ahead; 

• Exponentially Moving Average method, where volatility is the squared root of the 

weighted average of squared returns such that exponentially declining weights are assigned 

to each return going back further in time; 

• Stochastic volatility models with a focus on GARCH (1,1) and GJR GARCH models 

where we use historical data to estimate the parameters of the model and then use them to 

forecast future volatility 

As we will discuss later, the parametric approach for Value at Risk calculation is relatively simple 

to implement, however it suffers some major drawbacks (above all non-normality of returns and fat-

tails). 

In the non-parametric approaches we do not make any assumptions on returns distributions because 

we “let the data talk”. The model belonging to this class that will be explained in more details is 

Historical Simulation, where the Value at Risk at a given level of confidence is computed by 

ranking the first n days ahead returns, sorting them from smallest to largest and then picking up the 

quantile that corresponds to the desired confidence level. 

The benefits of such approach rely on the fact that historical data are used in order to estimate Value 

at Risk and Expected Shortfall, thus overcoming the issue of distributional assumptions on financial 

data. However, nothing comes to a cost: in choosing the length of the window size, we must 

carefully evaluate the trade – off between accuracy and adaptability of the model. On the other 

hand, historical data are not always suitable to describe asset prices movements, especially in 

periods of crisis. 
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After describing the main models, we will move onto the potential applications of Value at Risk, its 

strengths and weaknesses and then some of the main backtesting methodologies. 

Finally, at the end of the chapter we will also describe the Basel Regulatory Framework and its 

guidelines regarding market risk evaluation. 
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1.2 Financial Market Risk  

With the term financial risk we usually refer to three types of risks (Jorion, Financial Risk Manager 

Handbook, 2009): 

1. Market risk, which refers to the risk of fluctuation of asset prices with respect to 

movements in market variables (e.g. interest rates, exchange rates and other prices); 

2. Credit risk, the risk of losses associated to the fact that one or more contracting parties 

might not be able to fulfill their contractual obligations; 

3. Operational risk, which denotes the risk of losses resulting from “the risk of loss resulting 

from inadequate or failed internal processes, people and systems or from external events” 

(Basel Committee on Banking Supervision, 2002)2. 

In this dissertation, we will be focusing on the concept of market risk and the risk metrics associated 

to it.  

1.2.1 Coherent risk metrics 

A risk metric is an algorithm that essentially estimates the underlying risk of a financial portfolio. 

The first question that we should ask ourselves when trying to quantify the exposure is: what are the 

features and properties that a good risk metric should posses?  

According to Artzner, Delbaen, Eber, & Heath (1998) a coherent risk measure should have the 

following four properties: 

1. Monotinicity. If asset A has weak dominance over asset B then A is riskier than B3. 

2. Sub-additivity. A coherent risk measure ϑ should be sub additive meaning that the risk of a 

diversified portfolio should not be more than the weighted average of the risks of the single 

components. 

𝜗(𝐴 + 𝐵) ≤ 𝜗(𝐴) + 𝜗(𝐵) 

In other words, the sub-additivity property takes into account the diversification effect when 

we add to our portfolio securities with different risk profiles. 

3. Homogeneity. For any k>0, the homogeneity assumptions requires that 

𝜗(𝑘𝐴) = 𝑘𝜗(𝐴) 

 

2 The definition of operational risk given by the Basel Committee is very broad and encompasses a wide 

range of areas: from internal/external frauds and damages of physical assets to business disruptions and 

system failures. 
3 The term weaklly dominance was mutuated from game theory: a strategy A is weakly dominant if, 

regardless of what the other players do, it will result in a payoff that is equal or greater than all the other 

strategies. 
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In other words, the homogeneity assumption states that if we want to double the investment in a  

specific asset, the risk will be doubled as well. 

4. Risk free condition. Suppose that we invest a portion of our savings in a risky asset A and the 

remaining amount 𝛿 in a risk-free asset. Then, the risk-free condition implies that 

𝜗(𝐴 + 𝛿) = 𝜗(𝐴) − 𝛿 

Let’s suppose that I have a $500.000 of capital of which $100.000 is invested in a risk-free 

asset and $400.000 in a risky asset so that 𝜗($400.000). According to the risk-free 

assumption, the capital at risk is $300.000 since the risk-free capital balances out the 

position in the risky asset, thus decreasing the overall exposure. 

Artzner, Delbaen, Eber, & Heath (1998) also found out that risk measures such as Expected 

Shortfall (ES) are coherent risk metrics, while some of the most common metrics (e.g. simple Value 

at Risk) are coherent only under certain assumptions. These findings will be discussed more in 

detail in paragraph 1.6. 

1.2.2 An introduction to VaR 

Even though the predecessors of VaR can be traced back to the late 19th century4, the credit for the 

use of current VaR is attributed to US investment bank JP Morgan with the release during October 

1994 of a technical document detailing the RiskMetricsTM methodology5. 

As defined by RiskMetricsTM (J.P. Morgan; Reuters, 1996), Value at Risk is defined as: 

(…) a measure of the maximum potential change in value of a portfolio of financial instruments 

with a given probability over a pre-set horizon. 

 

Oftentimes, in VaR calculation it is assumed that the distribution of a portfolio of securities follows 

a normal distribution. Let’s define the return of a portfolio of securities at time 𝑡 + 1 as 

(1) 𝑟𝑡+1 =
𝑉𝑡+1−𝑉𝑡

𝑉𝑡
 

 

4 The first attempts to measure risks is attributed to Francis Edgeworth who stressed on the importance of 

using past data to estimate future probabilities. 
5 RiskMetricsTM contains essentially market risk measurement techniques and data sets of volatility and 

correlations used to estimate the aforesaid risk. In other terms, it assumes that the return of a portfolio of 

securities is normal and used to compute the VaR of a portfolio of investments using the variance-covariance 

method. 
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where 𝑉𝑡+1and 𝑉𝑡 are the values of the portfolio at times 𝑡 + 1 and 𝑡 respectively. By assuming 

normality of returns we can write 

(2) 𝑟𝑡+1~𝑁(𝜇, 𝜎2) 

Where: 

• 𝜇 is the mean or expectation of the distribution (also median and mode); 

• 𝜎2 is the variance of the distribution. 

The Value at Risk for a probability 𝛼 can be defined as follows: 

(3) 𝑃𝑟𝑜𝑏(𝑟𝑡+1 ≤ 𝑉𝑎𝑅𝑡+1
1−𝛼) = 𝛼  

In other terms the 𝑉𝑎𝑅𝑡+1
1−𝛼represents the value of 𝑟𝑡+1 such that there is only 𝛼 probability that the 

random variable assumes a value that is smaller or equal than the aforesaid value. 

Visually speaking, the idea can be described by Figure 1.16 

 

 

Since 𝑟𝑡+1~𝑁(𝜇, 𝜎2), it is possible to standardize 𝑅𝑡+1by subtracting 𝜇 and dividing 𝑅𝑡+1 − 𝜇 with 𝜎 

such that 

(4) 
𝑅𝑡+1−𝜇

𝜎
~𝑁(0,1). 

As a consequence, eq. (3) can be rewritten as 𝑃𝑟𝑜𝑏(𝑍 ≤ 𝑧𝛼) = 𝛼 where 𝑍 is the standard normal 

distribution and 

 

6 Source http://faculty.baruch.cuny.edu/smanzan/FINMETRICS/_book/index.html 

Figure 1.1: VaR at 1 − 𝛼 level 

 

 

 

 

http://faculty.baruch.cuny.edu/smanzan/FINMETRICS/_book/index.html
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(5) 𝑧𝛼 =
𝑉𝑎𝑅𝑡+1

1−𝛼−𝜇

𝜎
. 

Consequently from eq. (5) we can write 

(6) 𝑉𝑎𝑅𝑡+1
1−𝛼 = 𝑧𝛼 ∗ 𝜎 + 𝜇 

For example, for 1 − 𝛼 = 95%, 𝑧𝛼 = −1.64, so that 𝑉𝑎𝑅𝑡+1
95% = −1.64 ∗ 𝜎 + 𝜇7. 

 

 

 

 

 

  

 

7 From now on we will assume that for stock returns 𝜇=0 
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1.3 VaR methods: Parametric Approaches 

One of the most popular approaches to VaR calculation are the parametric approaches where the 

volatilities of the portfolio’s underlying assets are estimated using historical data and an assumption 

about the portfolio’s return’s distribution is made (e.g. normal distribution). The models for 

volatility forecast that will be introduced in the following paragraphs are: 

• Simple Moving Average (SMA) method, where volatility at time t is computed as the 

simple standard deviations of stock returns n days ahead; 

• Exponentially Weighted Moving Average (EWMA) method, where volatility is the 

squared root of the weighted average of squared returns so that exponentially declining 

weights are assigned to each return going back further in time; 

• Stochastic volatility models with a focus on GARCH (1,1) and GJR GARCH models 

where we use historical data to estimate the parameters of the model and then use them to 

forecast future volatility 

1.3.1 Parametric Approach and Simple Moving Average Method 

If the portfolio is made up by only one asset, then the procedure for VaR calculation has been 

already explained in paragraph 1.2.2. In the case of a multi-asset portfolio, VaR can be computed 

using matrix notation. 

The return 𝑅 of a portfolio of 𝑛 assets can be written using matrix notation in the following form: 

(6) 𝑅𝑝 = �̅�′ × 𝑅 

Where 

• �̅� is a 𝑛 × 1 matrix containing the portfolio’s securities’ weights; 

• �̅�′ is the transpose of �̅�; 

• 𝑅 is a 𝑛 × 1 matrix containing the portfolio’s securities’ individual returns. 

The variance of the portfolio is  

(7) 𝑉𝑎𝑟(𝑅𝑝) = 𝑉𝑎𝑟(�̅�′ × 𝑅) = 𝐸(�̅�′ × �̃�)2 

where �̃� = 𝑅 − 𝐸𝑅 and 𝐸 denotes the expectation operator. 

Using linear algebra, eq. (7) becomes: 

(8) 𝑉𝑎𝑟(𝑅𝑝) = �̅�′ × (𝐸�̃��̃�′) × �̅� 

Where 𝐸�̃��̃�′ is the Variance Covariance matrix. 
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(9) 𝐸�̃��̃�′ = (
𝑉𝑎𝑟(𝑅1) ⋯ 𝐶𝑜𝑣(𝑅1, 𝑅𝑛)

⋮ ⋱ ⋮
𝐶𝑜𝑣(𝑅𝑛, 𝑅1) ⋯ 𝑉𝑎𝑟(𝑅𝑛)

) = Σ 

Having estimated the variance of the portfolio’s returns, it is possible to easily compute the VaR for 

a given level of confidence by using the following formula: 

(10) 𝑉𝑎𝑅1−𝛼 = −�̅�’𝜇 + 𝑧𝛼√�̅�Σ�̅�′ 

Where  

• �̅�’�⃗� is the mean return of the portfolio; 

• √�̅�Σ�̅�′ is the standard deviation of the portfolio. 

As we can see, the parametric approach is relatively easy and simple to implement: all we have to 

do is the estimation of the variance-covariance matrix and then assume that returns are multivariate 

normally distributed. However, this simplicity comes to a cost: empirical studies have shown indeed 

that actual returns are characterized by fatter tails than the ones of the normal distribution so that 

VaR might underestimate the downside risk. In fact, as Mandelbrot (Mandelbrot, 1963) pointed out 

“ (…) the empirical distributions of price changes are usually too "peaked" to be relative to 

samples from Gaussian populations” An explanation to this is provided by the fact that the 

assumption of constant volatility is violated in the real world. In other words, volatility is time-

varying (Jorion, Financial Risk Manager Handbook, 2009). 

So, in order to take into account volatility changes through time, we can use the Simple Moving 

Average Method. The procedure is the following: 

1. Choose the length rolling window size n; 

2. Calculate the volatility of the portfolio’s returns at time t as the standard deviation of returns 

between t-1 and t-n-1, the volatility at time t+1 as the standard deviation of returns between 

t and t-n, the volatility at time t+2 as the standard deviation of returns between t+1 and 

 t-n+1 and so on8. In other words, we update the sample period after period by removing the 

oldest observation and adding the newest one; 

3. Compute Value at Risk, assuming that returns are normally distributed 

 𝑉𝑎𝑅𝑡+1
1−𝛼 = 𝑧𝛼 ∗ 𝜎𝑡 

 

8 As we can see, the time difference between the newest observation and the oldest one is constant and equal 

to the rolling window n. 
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1.3.2 EWMA and RiskMetrics 

The exponentially weighted moving average method (EWMA) is the technique implemented by 

RiskMetrics for VaR calculation. It assumes that data collected more recently convey more 

information.  The model can be formalized as follows: 

(11) 𝜎𝑡
2 =

∑ 𝜆𝑖𝑟𝑡−𝑖
2𝑛

𝑖=0

∑ 𝜆𝑖𝑛
𝑖=0

 

As we can see, 𝜎𝑡
2 is simply the weighted average of past squared returns. 

The 𝜆 term is also known as decay factor and expresses the relative weight put on past observation. 

In practice, the EWMA places geometrically decreasing weight so recent observations have greater 

impact compared to data collected far away in the past: the lower is the value of 𝜆 and the quicker 

past observation are forgotten. The parameter is estimated via the Maximum Likelihood method and 

RiskMetrics often set the value of lambda at 0.94. 

Moreover, it can be shown that by factorizing the numerator by (1 − 𝜆) eq. (11) converges to  

(12) 𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑟𝑡−1
2  if 𝑛 →∞ 

Having estimated the volatility, the procedure for VaR calculation is the same as the one for the 

Simple Moving Average, assuming that returns are normally distributed 

𝑉𝑎𝑅𝑡+1
1−𝛼 = 𝑧𝛼 ∗ 𝜎𝑡 

As we will see in the following paragraph, EWMA is just a case of the GARCH (1,1) model where 

we set 𝛼0 = 0, 𝛼1 = 1 − 𝜆 and 𝛽1 = 𝜆. In EWMA Persistence is equal to 1 meaning that shocks to 

volatility are permanent. 

1.3.3 The GARCH model for volatility estimation 

As seen in paragraph 1.3.1, one of the major problems of the simple parametric approach is that it 

assumes constant volatility so that risk can be potentially underestimated / overestimated when the 

actual volatility is high/low. This issue has been tackled by Engle (1982) and Bollerslev (1986) with 

the introduction of the GARCH model for volatility estimation. 

By taking into account time variations in risk, what we assume is that the return of a given security 

at a certain time 𝑡 + 1 follows a normal distribution with 𝜇𝑡=0 and 𝜎𝑡
2 as parameters. So, this idea 

can be formalized as follows9 

 

9 See (Jorion, Financial Risk Manager Handbook, 2009) 
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𝑟𝑡+1~𝑁(0, 𝜎𝑡
2) 

As we can see, both mean and variance are a function of time which means that they can change 

form period to period. In particular, 𝜎𝑡
2 is referred to as “conditional variance” as opposed to the 

“unconditional variance” which is constant through time. 

The GARCH (𝑚, 𝑠) can be represented as follows: 

(13) 𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑧𝑟𝑡−𝑧

2

𝑚

𝑧=1

+ ∑ 𝛽𝑖𝜎𝑡−𝑖
2

𝑠

𝑖=1

 

Where 

• 𝑟𝑡 denotes the return at time 𝑡; 

• 𝜎𝑡 the portfolio’s variance at time 𝑡; 

• the alphas reflect the impact of past random deviations on 𝜎𝑡
2; the betas measure the portion 

of past realized variances that are conveyed in the current period. Both parameters are 

estimated via the Maximum Likelihood method.  

In other terms, current variance is a function of past returns and past variances. 

For the purpose of this dissertation, it is of interest to analyze the GARCH (1,1) model  

 (14) 𝜎𝑡
2 = 𝛼0 + 𝛼1𝑟𝑡−1

2 + 𝛽
1

𝜎𝑡−1
2  

𝑟𝑡 = 𝜎𝑡𝑧𝑡 𝑎𝑛𝑑 𝑧𝑡~𝑁(0,1) 

To derive the unconditional (average) variance we take the expectation of eq. (14) and set 

𝐸(𝑟𝑡−1
2 ) = 𝜎𝑡

2 = 𝜎𝑡−1
2 = 𝜎2.  

(15) 𝜎2 =
𝛼0

1 − (𝛼1 + 𝛽1)
 

With 𝛼0, 𝛼1, 𝛽1 ≥ 0 and (𝛼1 + 𝛽1) ≤ 1. The second condition is essential for stationarity.  

𝛼1 + 𝛽1 = 𝛾 is also called persistence and denotes the speed at which the model reverts back to the 

long run average after a shock. In fact, we can use the GARCH (1,1) to forecast the volatility 𝑛 

steps ahead. Rearranging eq. (14) and iterating for 𝑛 times we can write 

(16) 𝐸𝑡−1(𝑟𝑡+𝑛
2 ) = 𝛼0(1 + 𝛾 + 𝛾2 + ⋯ + 𝛾𝑛−1) + 𝛾𝑛𝜎𝑡

2 = 

𝛼0

(1 − 𝛾𝑛)

1 − 𝛾
+ 𝛾𝑛𝜎𝑡

2 

So, for 𝑛 → ∞, eq. (16) becomes 
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𝐿𝑖𝑚
𝑛→∞

𝐸𝑡−1(𝑟𝑡+𝑛
2 ) = 𝑙𝑖𝑚

𝑛→∞
(𝛼0

(1 − 𝛾𝑛)

1 − 𝛾
+ 𝛾𝑛𝜎𝑡

2) =
𝛼0

1 − (𝛼1 + 𝛽1)
 

The GARCH model assumes that returns are not i.i.d. since they exhibit volatility clustering.  

In conclusion, the 1-α level VaR is computed as follows 

𝑉𝑎𝑅1−𝛼 = 𝑧α ∗ σ�̂� 

Where 

• 𝑧α the percentile at α level; 

• σ�̂� the standard deviation estimated by the GARCH (1,1) model 

1.3.4 The GJR GARCH model for volatility estimation 

The GJR (Glosten-Jagannathan-Runkle) GARCH model is a variation of the standard GARCH 

models introduced by Glosten-Jagannathan-Runkle (1993).  

(17) 𝜎𝑡
2 = 𝛼0 + (𝛼1 + 𝛾𝐼𝑡−1)𝑟𝑡−1

2 + 𝛽𝜎𝑡−1
2  

Where 

• 𝑟𝑡 = 𝜎𝑡𝑧𝑡 𝑎𝑛𝑑 𝑧𝑡~𝑁(0,1) 

• 𝐼𝑡−1 = {
0, 𝑟𝑡−1 ≥ 0
1, 𝑟𝑡−1 < 0

 

𝐼𝑡−1 is a dummy variable which is 0 if 𝑟𝑡−1 ≥ 0 and is 1 if 𝑟𝑡−1 < 0. This implies that the impact on 

volatility of a negative shock on stock returns is greater than the impact of a positive shock. 

Note that if 𝛾 = 0, we have the standard GARCH (1,1) model. 
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1.4 Non – Parametric Approaches 

As opposed to the parametric approaches to Value at Risk calculation, we have another class of 

models, the non – parametric approaches. Such category have been given this name since no 

assumptions about the returns’ distribution is made. By letting the data speak the issues linked to 

the parametric approaches are partially overcome. However, as we delve deeper in the discussion, 

we will discover that new problems arises if we choose this methodology.  

The models for volatility forecast that will be introduced in the following paragraphs are: 

• Historical Simulation, where the Value at Risk at a given level of confidence is computed 

by ranking the first n days ahead returns, sorting them from smallest to largest and then 

picking up the quantile that corresponds to the desired confidence level; 

• Monte Carlo Simulation, where, instead of using historical data, we artificially generate 

stock prices and returns. 

1.4.1 Historical Simulation 

Historical simulation is a non - parametric approach since no assumptions about returns distribution 

are made. Essentially, with this simulation model we are assuming that the empirical distribution of 

returns estimated from historical data is a good approximation of the distribution of future returns.  

Generally speaking, what we need to do is to take the historical 𝑛 returns of the latest 𝑛 periods and 

sort them from smallest to largest into a histogram. The 𝑉𝑎𝑅1−𝛼 is the quantile that corresponds to 

the desired level of confidence, (1 − 𝛼).  

(18) 𝑥𝑡ℎ = 𝛼𝑛 

For example, if 𝑛 = 100, 𝑉𝑎𝑅95% is the fifth smallest observation out of 100.  

The main advantage of historical simulation is that it avoids the parametrization problem: fat-tails, 

skewness and other implications are directly accounted for by the empirical distribution of 

observations.  

However, this method has several shortcomings as well. First of all, extreme values are very 

difficult to estimate in the distribution and large estimation errors are possible if the period of 

analysis is too short. As a result, large observation periods are required. However, as Hendricks 

pointed out (Hendricks, 1996), large sample periods results in flatter VaR implying less reactivity to 

new market conditions. Secondly, with historical simulation we violate the assumption that more 

recent data are more meaningful than observations made far away in the past since we implicitly 

assume that each observation has the same weight. In order to give more weights to more recent 
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returns, we could shorten the period of analysis. However, in doing so we would meet the same 

problems as described earlier in the paragraph. As we can see, the selection of the length of the 

sample period is a major concern (Boudoukh, Richardson, & Whitelaw, 1998). 

1.4.2 Monte Carlo simulation  

Monte Carlo simulation is one of the most widely used tool to simulate assets’ return in finance. For 

the case a portfolio with only one asset, the process can be summarized in the following steps: 

1. Establish the statistical distribution that can better approximate the distribution of returns 

(e.g a normal distribution); 

2. Draw a random number 𝜀𝑡 between 0 and 1 using a uniform distribution with a random 

number generator for k times, where k represents the time-steps from t to the horizon t+k; 

3. Compute the value of the cumulative distribution function of the related function defined in 

1 in correspondence of 𝜀𝑡; 

4. Compute stock prices from t+1 to t+k by assuming that they follow a given random process. 

Normally, a Geometric Brownian Motion is assumed: 

(19) 𝑆𝑡+𝑖 = 𝑆𝑡+𝑖−1 + 𝜇𝑆𝑡+𝑖−1∆𝑡 + 𝜎𝑆𝑡+𝑖−1𝑧𝑡+1−1√∆𝑡 with i=1, 2, …, t+k. 

Where: 

• 𝑆𝑡 is the stock price at time t; 

• 𝑆𝑡+1is the simulated value of the stock price resulted from the process; 

• 𝜇 is the sample mean of the stock price; 

• 𝜎 is the standard deviation of the stock price; 

• 𝑧𝑡 is the value of the cumulative distribution function computed with the random 

number generator; 

• ∆𝑡 is the time horizon we consider. 

5. Compute the simulated returns from t+1 to the end of the analysis period, t+k; 

6. Compute the portfolio value at horizon; 

7. Repeat steps 2, 3, 4, 5 for as many times a necessary in order to generate n paths for stock 

prices (Figure 1.2); 

8. Rank the n terminal portfolio simulated values from smallest to largest and find the VaR 

associated to the desired confidence level. 
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Figure 1.2 : Monte Carlo simulation for Apple Inc. stocks with 1000 scenarios for 𝜇 = 23.09% and 

σ2 = 42.59% (annual volatility)10. 

Monte Carlo is one of the most widely used method in the financial industry because of its 

flexibility. In particular, it can model financial instruments with non-linear payoffs, namely 

derivatives. 

The major drawbacks of the method are: 

• it is subject to model risk, since analysts are required to make assumptions about the 

stochastic process underlying the assets; 

• it is time consuming since we might need to simulate a large number of price paths in order 

to converge to a stable VaR measure; 

• it is resource consuming since we need reasonable computing power to complete the task. 

Jorion (2009) discussed the problem regarding the curse of dimensionality: the covariance 

matrix has N(N+1)/2 dimension and a portfolio made up of 100 assets would require 5050 

entries. Since the risk manager deals with large portfolios, one of the methods that he can 

rely on in order to make the process less time-consuming is the principal-component 

analysis which finds the most relevant risk factors; 

• as the time steps decrease, the variance decreases as well, which implies that large 

discontinuities cannot occur over short periods of time. The model should be adjusted in 

 

10 Source: https://www.pythonforfinance.net/2016/11/28/monte-carlo-simulation-in-python/ 

https://www.pythonforfinance.net/2016/11/28/monte-carlo-simulation-in-python/
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order to take these complications into account especially when we deal commodities, since 

discrete jumps can be observed. 
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1.5 VaR: applications 

According to Sironi (2008) there are three main areas where VaR is implemented: 

1. Benchmarking different types of risks. VaR provides a common risk evaluation 

framework regardless of the nature of the financial asset we are dealing with. It can be 

considered as a lingua franca between different trading desks taking positions in 

different assets (e.g. bonds, derivatives, stocks etc…). The importance of the VaR is 

relevant in the following example: think about a world where VaR does not exists. 

Assuming that we have taken a position in government bonds and stocks, how can we 

compare different risk metrics such as the duration and the beta of a stock portfolio? 

Thanks to VaR we are able to encompass these obstacles. 

2. Limiting risk exposure. VaR can be used to set the operating limits of the trading units 

within a bank. Suppose for example that Bank X has two trading desks: desk 1 (stocks) 

and desk 2 (bonds). The VaR limits for each unit given a confidence level and a trading 

horizon is $200,000 and $100,000 respectively. Since the maximum amount that can be 

invested in a certain position depends on its VaR limit, by changing the latter we can 

change the capital allocation strategy among different business units. 

3. Designing risk-adjusted performance (RAP) metrics. Finally, VaR can be used to 

design risk adjusted performance metrics. One of the most commonly used metrics is the 

RAROC (Risk-adjusted Return on Capital). 

• 𝑅𝐴𝑅𝑂𝐶(𝑒𝑥−𝑎𝑛𝑡𝑒) = 𝐸(𝑃)/𝐶𝑎𝑅(𝑒𝑥−𝑎𝑛𝑡𝑒) 

• 𝑅𝐴𝑅𝑂𝐶(𝑒𝑥−𝑝𝑜𝑠𝑡) = 𝑃/𝐶𝑎𝑅(𝑒𝑥−𝑝𝑜𝑠𝑡) 

where  

➢ 𝐸(𝑃) is the expected profit; 

➢ 𝑃 the realized profit;  

➢ 𝐶𝑎𝑅(𝑒𝑥−𝑎𝑛𝑡𝑒) the capital allocated to a single unit; 

➢ 𝐶𝑎𝑅(𝑒𝑥−𝑝𝑜𝑠𝑡) the undertaken risk; 

RAP metrics have three main different purposes: 

1. Support traders in making investment decisions by analyzing the ex-ante profitability 

and the risk profile of the alternatives; 

2. Establish an incentive scheme that is not profit-based only: 
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3. Compare the ex-post  performance of the different units within a financial institution 

to determine which units are allocationg resources more efficiently and hence 

deserving more capital to invest. 

  



22 
 

1.6 VaR: weaknesses  

Having described the main VaR models that are relevant for the scope of this dissertation, we can 

now ask ourselves: what is the best VaR model in terms of accuracy that we can use for financial 

risk assessment? The answer is simple: by far, there is no one best model for every circumstance 

and it depends on the purpose of the risk manager. For example, if the purpose of the research is to 

analyze the daily risk exposure and the risk-adjusted profitability of a trading unit within a bank, 

then the variance-covariance approach is the most appropriate approach. In fact, the limitations led 

by the assumptions that returns are normally distributed (namely fat tails) is not relevant if the 

purpose is to estimate and limit the risk exposure and the risk-adjusted performance on a daily 

basis. However, it is relevant if the aim is to measure the capital adequacy of the bank since risk is 

underestimated in such assumption. 

According to Sironi (2008), there are three four main critiques to VaR which derive from 

misunderstanding the scope of the model.  

1. Extreme events are not accounted for in VaR models. It is true that extreme events are 

not accounted for in VaR models. However, as mentioned earlier, the main purpose of VaR 

models is not to measure the capital adequacy of banks, but to estimate the risk exposure 

and the operational limits of each trading desk on a daily basis. In other words, VaR is a 

ordinary risk management tool. On the other hand, such rare events must be taken in account 

in capital adequacy assessment. 

2. The magnitude of losses is not accounted for. VaR does not take into account the 

magnitude of losses if a violation occurs. To fix this issue alternative risk metrics were 

introduced, such as Expected Shortfall, which will be discussed in more details in paragraph 

1.8. 

3. VaR models yield divergent outputs. If we change the underlying assumptions of a VaR 

model (e.g. we assume that returns are distributed as a t-student distribution instead of a 

Gaussian distribution and/or we change extend or shorten the sample period etc…) we will 

certainly get different results. However, if, as mentioned before, the aim of the model is to 

evaluate the risk-adjusted performance of the trading units within a bank for capital 

allocation in the units themselves, this issue is not very relevant. In fact, what we need here 

is not an assumptions-independent model but a risk assessment framework that is uniformly 

implemented in all the business units. So even if the model underestimates or overestimates 

the potential losses, there would not be issues at all since the over/under estimation is 

reflected through out all the trading units, not affecting the capital allocation strategy. 
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4. VaR models can potentially decrease the stability of financial markets. If everyone in 

the financial sector has adopted VaR as a risk management tool, then this practice can 

potentially amplify the volatility of the market. This is true because every trader would get 

the same result and try to decrease their exposure thus worsening market conditions. 

However, this should not be considered as a direct implication of VaR models rather than as 

a consequence of human nature.  

 Other than these critiques, which as we have just seen are mainly driven by misunderstandings 

about the scope of the model, there is another major issue that has been mentioned at the beginning 

of the chapter: VaR is not a coherent risk measure, namely the sub-additive property is violated if 

the joint distribution of risk factors is not normally distributed (Artzner, Delbaen, Eber, & Heath, 

1998). So, in this case the following must be true: 

𝑉𝑎𝑅(𝐴 + 𝐵) > 𝑉𝑎𝑅(𝐴) + 𝑉𝑎𝑅(𝐵) 

Let’s consider the following example: We have two identical bonds A and B. Each defaults with a 

probability of 3% and, in that case, the loss is 150. If no default occurs, the loss is 0. The 95%VaR 

of each bond is therefore 0. Hence VaR(A)=VaR(B)=VaR(A)+VaR(B)=0. The example can be 

summarized in the table below: 

 

Probability Bond A Bond B 

3% 150 150 

97% 0 0 

95%VaR 0 0 

 

Let’s now consider a portfolio made up of one bond A and one bond B. We also suppose that 

defaults are independent. In this case, we get a loss of 300 with probability 0.03*0.03=0.0009, a 

loss of 0 with probability 0.97*0.97=0.9409 and a loss of 150 with probability 1-0.9409-

0.0009=0.0582. Hence VaR(A+B)=150>0=VaR(A)+VaR(B). As a result, VaR is not sub – additive. 
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1.7 Backtesting VaR 

The reliability of a specific VaR model can be tested using a backtesting method. The methodology 

provided by the Basel Committee is thought to be too simplistic and more accurate and rigorous 

approaches are needed. 

For the purpose of this dissertation, in the following paragraphs we will be discussing two different 

statistical tests to evaluate VaR models: the Proportion of Failure (POF) test by Kupiec (1995) and 

the Conditional Coverage Independence (CC) test by Christoffersen (1998). 

Both these approaches rely on the hypotheses testing methodology: if the null hypotheses is 

rejected, then the VaR model is regarded as inaccurate and vice-versa, if not as accurate. 

1.7.1 The Proportion of Failure test 

With the POF test we analyze if the frequency of the violations π is significantly different from the 

theoretical one, α. 

If the model is accurate, then π=
𝑥

𝑛
= α, where x is the number of exceptions in the sample over a 

pre-determined time horizon and n the number of observations. So, the null hypothesis that we want 

to test is 𝐻0: π= α. Under 𝐻0, the likelihood function is 

(20) 𝐿0(𝛼) = 𝛼𝑥(1 − 𝛼)𝑛−𝑥 

Under the alternative hypotheses, the likelihood function is 

(21) 𝐿0(𝜋) = 𝜋𝑥(1 − 𝜋)𝑛−𝑥 

In order to carry out the test, we must take the ratio of the aforementioned likelihood functions 

(22) 𝐿𝑅𝑃𝑂𝐹(𝛼) = −2 ln
𝛼𝑥(1 − 𝛼)𝑛−𝑥

𝜋𝑥(1 − 𝜋)𝑛−𝑥
 

The likelihood ratio is asymptotically distributed as a chi-squared distribution with 2 degrees of 

freedom. 

Generally speaking, the null hypothesis that the empirical frequency of VaR breaches is equal to the 

theoretical one has to be rejected if the value of  𝐿𝑅𝑃𝑂𝐹(𝛼) lies beyond the critical value of χ1
2. 

So, if the value of the likelihood ratio is 0.80 for 𝛼 = 1%, the null hypothesis is not rejected and the 

VaR model is regarded to be accurate since the corresponding value of a chi-squared distribution 

with the same significance level is 6.635. 
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1.7.2 The Conditional Coverage Independence test 

The CCI test aims at testing whether VaR exceptions are serially independent or not. In other 

words, a desirable property of VaR models is that the probability for an exception to occur in day t 

should be independent from an exception that had occurred in the previous day. 

Let’s define the following variables: 

(23) 𝐼𝑡 = {
1 if VaR limit is hit in 𝑡

 0 if VaR limit is not hit in 𝑡
 

and 

(24) 𝜋𝑖,𝑗 = Pr (𝐼𝑡−1 = 𝑖|𝐼𝑡 = 𝑗) where i and j= 0,1 

Eq. (23) is a variable that is 0 if there is an exception at time t and is 1 if not. 

Eq. (24) defines the probability that Eq. (23) assumes value j in day t given that in the previous day 

its value was i. So, 

• 𝜋1,1 is the probability that an exception in t-1 is followed by another one in t; 

• 𝜋1,0 is the probability that an exception in t-1 is not followed by another one in t; 

• 𝜋0,1 is the probability that no exceptions in t-1 is followed by an exception in t; 

• 𝜋0,0 is the probability that there are not exception neither in t-1 nor in t. 

If VaR events are serially independent then the following must be true 

 𝜋1,1 = 𝜋0,1 = 𝜋1 

 𝜋0,0 = 𝜋1,0 = 𝜋0 

The first identity means that the probability that an exception occurred a t time t given that it had 

occurred in t-1 is the same as the probability that an exception occurred at time t given that it had 

not in t-1. In other words, the probability that an exception occurred or did not occur in t is 

independent from the fact that it had occurred or had not occurred in t-1. 

Let’s consider a sample of T observations for time t and t-1. Let’s define the following variables: 

• 𝑇1,1 the number of exceptions that are preceded by another exception; 

• 𝑇0,1 the number of exceptions not preceded by another exception; 

• 𝑇1,0 the number of missed exceptions preceded by a period where no exceptions happened; 

• 𝑇0,0 the number of missed exceptions preceded by a period of no exceptions. 
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With these data we can estimate the empirical probabilities: 

𝑃0,1 =
𝑇0,1

𝑇0,1+𝑇0,0
→𝑃0,0 = 1 − 𝑃0,1 

𝑃1,0 =
𝑇1,0

𝑇1,0+𝑇1,1
→𝑃1,1 = 1 − 𝑃1,0 

The likelihood ratio used to test the null hypothesis is 

(25) 𝐿𝑅𝐶𝐶 = −2 ln
𝐿𝐻0

𝐿𝐻1

 

Where 

1. 𝐿𝐻0
= (1 − 𝜋1)𝑇0,1+𝑇0,0𝜋1

𝑇1,0+𝑇1,1. It is the likelihood function under the null hypothesis and  

𝜋1 =
𝑇0,1 + 𝑇1,1

𝑇1,1 + 𝑇0,1 + 𝑇1,0 + 𝑇0,0
 

2. 𝐿𝐻1
= (1 − 𝜋0,1)𝑇0,0𝜋0,1

𝑇0,1(1 − 𝜋1,1)𝑇1,0𝜋1,1
𝑇1,1. It is the likelihood function under the 

alternative hypothesis11. 

𝐿𝑅𝐶𝐶 is asymptotically distributed as a χ1
2. Generally speaking, the null hypothesis of no serial 

correlation has to be rejected if the value of  𝐿𝑅𝐶𝐶𝐼 lies beyond the critical value of χ1
2. 

Notice that 𝐿𝑅𝐶𝐶 does not depend on the confidence level. This means that we must combine the 

two likelihood ratios in order to test that the expected number of VaR violations is correct and that 

these violations are independent from one another. 

The statistic to be used for the conditional coverage mixed test is the following one 

(26) 𝐿𝑅𝑐𝑐𝑚𝑖𝑥𝑒𝑑 = 𝐿𝑅𝑃𝑂𝐹 + 𝐿𝑅𝐶𝐶𝐼 

Which is asymptotically distributed as a χ2
2. 

In conclusion, we must combine Christoffersen’s and Kupiec’s test in order to have a more 

comprehensive assessment. Plus, by splitting the statistic in its two components we are able to 

analyze the reason that caused a given VaR model to be rejected. 

  

 

11 Notice that we can derive 𝐿𝐻0
 from 𝐿𝐻1

 by putting 𝜋1,1 = 𝜋0,1 
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1.8 Expected Shortfall 

The VaR of a portfolio is a risk measure that only tells us the potential losses over a specific period 

of time given a pre-determined confidence level. But what happens if the VaR limit is hit? Are 

losses equal or greater than the limit itself? For example, if we say that the 5 days VaR is $200 with 

a confidence level of 99%, it means that in 100 simulations, we expect that in 99 cases we won’t see 

a loss that is greater than $200. However, what happens if a tail event occurs? Is the loss $201 or 

$300? The simple VaR method cannot answer this question and we should introduce some changes 

to the original model if we want to know the answer. 

 

Figure 1.3: Expected Shortfall for two different distribution with same 95%VaR12 

As we can se from Figure 1.3, the 95%VaR is the same. However, the expected losses are greater in 

the green colored function when the limit is hit. 

The Expected Shortfall (ES) at α level over a specific period of time is the expected portfolio’s loss 

in the worst α cases. In formulas we have 

(27) 𝐸𝑆1−𝛼 = 𝐸(𝑋|𝑋 > 𝑉𝑎𝑅1−𝛼) 

Where 𝑋 is the portfolio’s loss. 

Alternatively, the expected shortfall can be computed as follows: 

• If we assume that losses are continuously distributed, then 

(28) 𝐸𝑆1−𝛼 =
1

𝛼
∫ 𝑥𝑓(𝑥)

𝑉𝑎𝑅

−∞

 

 

12 Source: https://quantdare.com/value-at-risk-or-expected-shortfall/ 

https://quantdare.com/value-at-risk-or-expected-shortfall/
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• If we assume that losses are discretely distributed 

(29) 𝐸𝑆1−𝛼 =
1

𝛼
∑ 𝑥𝑖𝑃(𝑋 = 𝑥𝑖)

𝑥𝑖<𝑉𝑎𝑅

 

As mentioned at the beginning of the chapter, ES is also a coherent risk measure. The sub-additive 

property is indeed satisfied13, so that 

𝐸𝑆1−𝛼(𝐴) + 𝐸𝑆1−𝛼(𝐵) ≥ 𝐸𝑆1−𝛼(𝐴 + 𝐵) 

Now let’s see how the expected shortfall is computed in the approaches described above. 

In the models seen in the previous paragraphs, ES is estimated as follows: 

1. Simple Moving average approach assuming normality of returns14 

(30) 𝐸𝑆1−𝛼 = −�̅�’𝜇𝑡⃗⃗ ⃗⃗ + √�̅�𝛴𝑡�̅�′
𝜙(𝑧𝛼)

𝛼
 

Where  

➢ �̅� is a 𝑛 × 1 matrix containing the portfolio’s securities’ weights; 

➢ �̅�’ is the transpose of �̅�; 

➢ �⃗� is the 𝑛 × 1 vector containing the portfolio’s average returns of the 𝑛 assets 

➢ 𝑧𝛼 is the quantile at α level; 

➢ 𝜙(𝑧𝛼) is the value of the standard normal distribution at α level; 

➢ �̅�’𝜇𝑡⃗⃗ ⃗⃗ 15 and √�̅�𝛴𝑡�̅�′ are the mean and standard deviation of the portfolio at time t 

respectively. 

If the portfolio is made by one asset only, then eq. (11) collapses into 

(31) 𝐸𝑆1−𝛼 = −𝜇𝑡 + 𝜎𝑡

𝜙(𝑧𝛼)

𝛼
 

Where 

➢ 𝜇𝑡 and 𝜎𝑡 are the mean and standard deviation of the asset at time t; 

 

2. GARCH and EWMA assuming normality of returns 

𝐸𝑆1−𝛼 = −𝜇𝑡 + 𝜎𝑡

𝜙(𝑧𝛼)

𝛼
 

Where 

➢ 𝜇𝑡 and 𝜎𝑡 are the mean and standard deviation of the asset at time t 

 

13 For more details please see Acerbi & Tasche (2002) 
14Khokhlov, V. (2016). Conditional Value-at-Risk for Elliptical Distributions 
15 For simplicity we will assume that 𝜇𝑡⃗⃗ ⃗⃗ = 0  
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3. Historical simulation 

As described earlier, in historical simulation we take the 𝑛 returns of the sample period and 

sort them from smallest to largest. The 1 − 𝛼 level VaR is the observation so that its 

position is computed as follows:  

 𝑥𝑡ℎ = 𝛼𝑛 

Given that VaR limit is hit, since we want to know the average loss exceeding VaR, ES is 

calculated as below: 

(32) 𝐸𝑆1−𝛼 =
∑ 𝑋𝑖

𝑛
𝑖=𝑥𝑡ℎ

𝑛−𝑥𝑡ℎ  

Where 𝑋1, 𝑋2, . . . , 𝑋𝑛 are the returns exceeding VaR. 

 

4. Monte Carlo simulation 

ES calculation for Monte Carlo simulation is similar to historical simulations’. What we 

need to do is to filter out the losses exceeding the VaR and compute the average using the 

same formula. 

1.8.1 Backtesting Expected Shortfall 

Acerbi & Szekely (2014) proposed a simple backtesting method for Expected Shortfall. The test 

statistic used for this test is  

(33) 𝑍 =
1

𝑁𝑝𝑉𝑎𝑅
∑

𝑋𝑡𝐼𝑡

𝐸𝑆𝑡
+ 1

𝑛

𝑡=1

 

Where 

• N is the number of periods the test is carried out onto; 

• 𝑋𝑡 is the portfolio return for period t; 

• 𝑝𝑉𝑎𝑅 is the probability of VaR failure defined as 1-VaR level; 

• 𝐸𝑆𝑡 is the estimated expected shortfall for period t; 

• 𝐼𝑡 is the VaR failure indicator on period t with a value of 1 if 𝑋𝑡<−𝑉𝑎𝑅𝑡, and 0 otherwise. 

The test statistic is expected to be 0 and it is negative when risk is underestimated. In fact, as we can 

see from eq. (33) that 𝑍 is sensitive to the number of VaR violations and the magnitude of the losses 

exceeding VaR relative to the ES estimate. As a consequence 
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1. One large VaR violation relative to the estimated ES can cause the model to be rejected; 

2. One large VaR violation on a day where the ES is large as well might not cause the model to 

be rejected; 

3. A period with many relatively small VaR breaches can cause the model to be rejected. 
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1.9 The Basel Accords 

The Basel Accords are a set of agreements and principles on banking supervision established by the 

Basel Committee which is formed by 45 members (central banks and authorities with formal 

authority for the supervision of the banking sector) from 28 countries all over the world. Its main 

purpose is to guarantee the stability of the financial sector by providing guidelines to financial 

institutions regarding risk management procedures and processes. 

The need of such supranational regulation can be traced back to 1974, in the aftermath of Bankhaus 

Herstatt bankruptcy in West Germany which failed due to bad investments in the forex market. 

Herstatt bank accumulated cumulative losses 10 times higher than its capital (DM 470 millions vs 

DM 44 millions) and was liquidated on June 26th 1974. Because of time zones, the offices located in 

New York continued to operate as usual until the closing of the US market and the counterparties 

with which the Bank had commercial agreements had never received any kind of payment. 

The failure of Herstatt Bank proved the inadequacy of the existing national regulatory frameworks 

to deal with transnational affairs and the Basel Committee on Banking supervision was established 

in order to tackle the challenges of an already globalized financial market. 

Since its foundation, the Basel Accords have been constantly updated. Up to now, there are three 

different versions of the agreements, namely Basel I, Basel II and Basel III. 

Basel I was set in 1988 and it was focused on dealing with credit risk. More specifically, a 

minimum on the Capital (C) to Risk Weighted Assets (RWA) was introduced: 

𝐶

∑ 𝐴𝑖𝑅𝑊𝑖
𝑛
𝑖

≥ 8% 

Where 

• 𝐶 is the capital (Tier 1+Tier 2); 

• 𝐴𝑖 is asset i; 

• 𝑅𝑊𝑖 is the risk associated to asset i 

In practice, the ratio means that the total risk-weighted assets cannot exceed the 8% of the capital. If 

a given financial institution wanted to increase its asset base, it had to increase its capital as well in 

order to comply with the target of 8%. 

As for the numerator, Tier 1 is composed by, paid-up share capital/common stock and disclosed 

reserves. Tier 2 is made up of undisclosed reserves, asset revaluation reserves, general 

provisions/general loan-loss reserves, hybrid (debt/equity) capital instruments, subordinated debt. 
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As for the denominator, the risky asset weights are determined according to the asset class. For 

example, the weight for cash is 0% since it is considered as a risk-free asset16. 

However, the evaluation method suffered some major limitations: the same weights were applied 

for different categories of borrowers (banks, firms, government…) each of which has clearly 

different risk exposures and other types of risks were not accounted for. 

In order to solve these problems; Basel II was established in 2004. The New Basel Accord is made 

up of three main pillars: 

• In the First Pillar market risk and operational risk are accounted for the calculation of the 

capital to risk weighted asset ratio; moreover, the risk evaluation system is more flexible 

since two alternative approaches are defined: 

i) The Standard approach where the weighting coefficient are based on the ratings 

provided by rating agencies regarding specific borrowers; 

ii) The Internal-Rating Based approach which distinguishes two different types of losses: 

❖ Expected Loss (EL) 

❖ Unexpected loss (UL) 

The Expected Loss is computed as follows 

EL=EAD×LGD×PD  where 

EAD=loss incurred by the bank if the borrower fully defaults on his debt; 

LGD= loss incurred by the bank when the borrower declares default; 

PD= borrowers’ default probability 

The Unexpected Loss can be interpreted as the standard deviation of the loss distribution. 

Clearly, the IRB approach relies on the VaR logic: the minimum level of capital must be 

such that the probability of unexpected losses is smaller than a threshold over a pre-

determined time horizon. Moreover, the choice of the preferred VaR model to 

implement for market risk assessment is given to the bank. 

• The Second Pillar provides guidelines regarding the supervisory activities of regulatory 

authorities; 

 

16 For more details see Basel Committee on Banking Supervision (1998). International Convergence of 

Capital Measurement and Capital Standards. Basel. 
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• The Third Pillar regulates the obligation of financial institutions to report information to 

the public regarding their financial soundness. 

The 2007-2008 financial crisis has highlighted the faults of Basel II: insufficient capital in terms of 

quantity and quality, lack of regulation regarding specific financial instruments (e.g. subprime 

mortgages) which brought to insufficient reserves to cover the risks deriving from trading activities, 

liquidity deficit and excessive financial leverage. 

Basel 3, which was announced in the post-crisis years, aims at solving these criticalities: Tier 1 

capital must be at least 6% of the total risk-weighted assets and a liquidity coverage ratio and a net 

stable funding ratio have been introduced to withstand liquidity risk. In order to decrease financial 

leverage, Tier 1 capital must be at least 3% of the total assets. 

VaR and capital requirements 

In 1996, the Basel Committee set out a simple backtesting framework to test the accuracy of VaR 

models for financial institutions adopting the internal models approach17. According to the 

Committee,  

• VaR is to be calculated on a daily basis  

• A 99% one tailed confidence level is to be used for the purpose 

• VaR is to be estimated by assuming a holding period of no less than 10 days 

Similarly to the Conditional and Unconditional coverage tests, the backtesting methodology 

proposed by the Basel Committee lies on comparing the number of actual VaR violations with the 

theoretical one. For example, let’s suppose that the theoretical daily VaR is 200 with a confidence 

level of 99%. This means that I am expecting losses greater or equal than 200 in 1% of the cases, 

namely 2.5 days over 250 trading days. If the number of days with a VaR violation is equal or just 

over 2.5 days than, we can conclude that the model is reasonably accurate. Vice versa, if the 

number of days with a VaR violation is much greater than 2.5, than we must investigate the validity 

of the model. Based on this logic, the Committee introduced a multiplier which increases as the 

number of exceptions increases (Figure 1.2) 

 

17 Basel Committee on Banking Supervision. (1996). Supervisory Framework for the use of "Backtesting" in 

conjunction with the Internal Models Approach To Market Risk Capital Requirement. Basel. 
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The capital requirement relative to market risk (C) is thus computed 

(34) 𝐶 = max (𝑉𝑎𝑅𝑡−1; 𝑀 ×
1

60
∑ 𝑉𝑎𝑅𝑡−𝑖

60
𝑖=1 ) + 𝑆𝑅 

Where: 

• 𝑉𝑎𝑅𝑡−1 is the 99% 10-day VaR of the previous day; 

• 𝑀 is the multiplier whose value varies between 3 and 4 according to the accuracy of the 

model (Figure 1.2); 

• 𝑆𝑅 (specific risk) is a risk component that is not accounted for in VaR models. 

Eq. (12) basically says that the capital requirement for market risk is the highest between the 

previous day VaR and the average of the last 60 days VaR, which average is scaled by the 

multiplier. 

In 2013 the Basel Committee stressed the importance of moving from VaR to Expected Shortfall 

because a number of weaknesses have been identified with using VaR for determining regulatory 

capital requirements, including its inability to capture “tail risk” (Basel Committee on Banking 

Supervision, 2013). The confidence interval set by the Committee is 97.5% for the IRB 

methodology 

 

 

Figure 1.2: VaR scaling factors (Basel Committee on Banking Supervision, 1996) 
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Chapter 2: An empirical analysis of Value at Risk during the 

1997-98 Asian Financial Crisis 
2.1 Introduction 

In this chapter of the research project we will analyze the an equally weighted portfolio made up by 

two East Asian stock market indexes, the Hang Seng Index (HSI) and the FTSE Bursa 

Malaysia KLCI Index (FBMKLCI) during the 1997 – 1998 Asian Financial Crisis.  

More specifically, the daily Value at Risk and Expected Shortfall will be computed at a confidence 

level of 95% using the approaches seen Chapter 1 and a backtest will be carried out at the end in 

order to evaluate the performance of the models during the pre – crisis and crisis periods. 
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2.2 Background 

During the 90’s the economies of several South East Asian countries - Malaysia, Indonesia, 

Thailand, South Korea and the Philippines - were characterized by rapid economic growth. The 

expansion was made possible by a number of reasons, some of which turned out to be the causes of 

the following crisis (Radelet, Sachs, Cooper, & Bosworth, 1998): 

• Capital inflows across the South East Asian countries averaged over 6% of GDP between 

1990 and 1996 which increased the dependence of the economies on such inflows causing 

them to be more vulnerable in case of capital flow reversal; 

• Exchange rates pegged to the US dollar. If, on one hand, exchange risk was absorbed by 

central banks encouraging capital inflows, on the other it became a serious issue when the 

Federal Reserve started to increase interest rates and foreign reserve began to scarce; 

• Financial deregulation which led to loan provisions without sufficient scrutiny and build up 

of foreign debt; 

• Slowing export growth due to the devaluation of the Chinese Yuan and Mexican Peso in 

1994. 

In the early months of 1997 the Thai baht came under speculative attack after a major property 

developer Somprasong Land failed to meet a foreign debt repayment signaling a worsening 

economy. Thailand government attempted to defend the peg but without success: on July 2 1997 

after depleting the Central Bank’s foreign reserves, the currency was left to free – float in the 

market and was drastically devaluated due to capital flight. The devaluation made foreign debt 

repayment more expensive and firms began to default. Soon after the negative sentiment of the 

market quickly turned into panic which spread into other countries.  

The IMF intervened to stabilize the crisis through a program of emergency lendings in combination 

with economic reforms which turned out to be ineffective. It is only when the IMF carried out a 

debt rollover plan at the end of January 1998 that the situation began to normalize. 
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2.3 The Data 

The data represented in the dissertation consist of the daily arithmetic returns of an equally 

weighted portfolio made up by two East Asian stock market indexes, the Hang Seng Index (HSI) 

and the  FTSE Bursa Malaysia KLCI Index (FBMKLCI) from January 1st 1996 to December 31st 

2001. The daily returns have been calculated using the daily closing prices of the indexes for the 

sample period. Such prices have been downloaded from Bloomberg. 

 

Figure 2.1: Portfolio returns 1/1/1996 – 31/12/2001 

We decided to use the aforementioned indexes for a number of reasons: 

1. HSI and FBMKLCI are composite indexes. As a consequence, they comprise the 50 and 30 

largest companies listed on the Hong Kong and Malaysian stock markets in terms of market 

capitalization. Therefore, they can be analyzed to track and monitor the performance of the 

constituent companies as well as a benchmark for the national economy overall; 

2. Financial data time series needed for the purpose of such dissertation were fully available 

for HSI and  FBMKLCI for the period 01/01/1996-31/12/2001; 

3. HSI and FBMKLCI are one of the most popular indexes analyzed in the scientific literature 

when dealing with the economy of South-East Asia. 

As we can see from Figure 2.1, we can clearly see volatility clustering: volatility changes through 

time.  

As we have mentioned before, the purpose of this dissertation is to evaluate the accuracy of VaR 

models described in Chapter 1 during the pre-crisis and crisis periods. In order to do so, we need to  

analyze the Hong Kong 3 month Interbank Offered Rate (HIBOR) and the Kuala Lumpur 3 month 
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Interbank Offered Rate (KLIBOR) which will give us a hint on the start and end of the financial 

crisis. 

  

Figure 2.2: 3 month HIBOR and LIBRO trend 1/1/1996 – 31/12/2001 

More specifically, the 3 month HIBOR and KLIBOR are short term (3 months) rates for interbank 

lendings in the Hong Kong and Malaysian interbank markets. According to Furfine (2001) the 

interbank market has two critical roles in the financial system: 

• It is the market where central banks intervene to set their policy rates; 

• It allows the transfer of funds from banks in surplus to banks in need. 

Morevover, such rate is also used as a reference rate for debt instruments. 

Therefore, a hike in the interbank rate can signal the fact that lending banks see their borrowing 

counterparts as riskier, hence increasing the cost of borrowing and inevitably decreasing the 

stability of the financial system. Instability can also lead to decreases in business loans thus 

affecting the real economy overall.  

As we can see from Figure 2.2, the 3-month HIBOR and KLIBOR hiked between May 1997 and 

April 1999. Consequently, we can divide the sample period in two sub-periods: Pre-crisis 

(1/7/1996-30/04/1997) and Crisis (1/5/1997-30/4/1999).  

2.3.1 Forecast window size 

In two of the approaches we implemented for Value at Risk calculation, namely Simple Moving 

Average and Historical Simulation, we used rolling windows of 20, 50, 125 days for volatility 

estimation. The purpose of this differentiation is to investigate the models’ reactivity to new market 
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conditions. While it is intuitive that a shorter window quickly adapts to changes in financial 

markets, we must also be aware of the echo – effect (Figlewsky, 1994): if there is a noticeable 

change in stock prices,  volatility estimation will be susceptible of fluctuations as well. The shorter 

the window, the greater the fluctuation. When the outlier moves out of the sample being replaced by 

newer data, volatility will be subject to the same change seen some periods ago, but in the opposite 

direction. While the first fluctuation is motivated by stock prices variation, the second one occurs 

simply because the outlier is replaced by other data and has no financial meaning. 
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2.4 Pre - Crisis 

2.4.1 Backtesting Value at Risk  

Figure 2.3: Pre – crisis VaR backtest results 

Figure 2.3, shows the outputs for Kupiec’s Proportion of Failures test (POF), Christoffersen’s 

Conditional Coverage Indipendence test (CCI) and the Conditional Coverage mixed (CC) test. 

Recalling the backtest methodology described in Chapter 1, Kupiec’s POF test aims at evaluating 

whether the proportion of failures relative to the number of observations is consistent with the 

model’s confidence level. Christoffersen CCI test aims at detecting whether the VaR breaches are 

independent from one another or not. The CC mixed test is a combination of the first two tests used 

to assess if the average number of breaches is correct and if such breaches are independent from one 

another. 

In Figure 2.3 we can see that the null hypothesis according to which the number of VaR violations 

is consistent with the confidence level and that these violations are serially independent is not 

rejected in any of the models. In essence, the best performing models with the lowest Likelihood 

ratio value are the GARCH (1,1) model and Historical Simulation with rolling window of 125 days. 

On the other hand, the worst performing model with the highest Likelihood ratio value is 

represented by the Simple Moving Average method with rolling window of 50 days followed by the 

Historical Simulation with rolling window of 20 days. By decomposing the CC test Likelihood ratio 

in its two main components, we see  

• A high LR value for the POF test and an even higher value for the CCI test regarding the 

Simple Moving Average with rolling window of 50 days 

• A relatively low LR value for the POF test which is counterbalanced by a high value for the 

CCI test. 

Let’s also take a look to the Traffic Light (TL) test as proposed by the Basel Committee 

VaR Level=95%, 

Approach CC test result LR ratio CC P value CC POF test LR ratio POF P value POF CCI test LR ratio CCI P value CCI Observations Failures

EWMAlambda094 'accept' 1.40 0.50 'accept' 0.19 0.66 'accept' 1.21 0.27 193 11

EWMAlambda097 'accept' 1.40 0.50 'accept' 0.19 0.66 'accept' 1.21 0.27 193 11

GARCH 'accept' 0.83 0.66 'accept' 0.05 0.83 'accept' 0.79 0.38 193 9

GJR_GARCH 'accept' 1.99 0.37 'accept' 1.67 0.20 'accept' 0.32 0.57 193 6

HistSim125days 'accept' 0.83 0.66 'accept' 0.05 0.83 'accept' 0.79 0.38 193 9

HisrSim20days 'accept' 2.46 0.29 'accept' 0.19 0.66 'accept' 2.27 0.13 193 11

HistSim50days 'accept' 1.16 0.56 'accept' 1.11 0.29 'accept' 0.05 0.83 193 13

SMA125days 'accept' 1.37 0.50 'accept' 0.84 0.36 'accept' 0.53 0.47 193 7

SMA20days 'accept' 1.16 0.56 'accept' 1.11 0.29 'accept' 0.05 0.83 193 13

SMA50days 'accept' 2.85 0.24 'accept' 1.11 0.29 'accept' 1.74 0.19 193 13
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VaR Level=95%,      

Approach Observations Failures 
TL test 
results Probability 

EWMAlambda094 193 11 'green' 73.97% 

EWMAlambda097 193 11 'green' 73.97% 

GARCH 193 9 'green' 50.03% 

GJR_GARCH 193 6 'green' 14.71% 

HistSim125days 193 9 'green' 50.03% 

HistSim20days 193 11 'green' 73.97% 

HistSim50days 193 13 'green' 89.42% 

SMA125days 193 7 'green' 24.66% 

SMA20days 193 13 'green' 89.42% 

SMA50days 193 13 'green' 89.42% 

Figure 2.4: Pre – crisis Traffic Light backtest results 

According to Figure 2.4, all the approaches fall into in the green zone. The results of the TL test 

confirm the output of the CC mixed test. 

2.4.2 Backtesting Expected Shortfall 

VaR Level=95%,      

Approach Test result Pvalue Test Statistic 
Critical 
Value 

EWMAlambda094 'reject' 0.01 -0.78 -0.54 

EWMAlambda097 'reject' 0.00 -1.05 -0.54 

GARCH 'accept' 0.50 0.06 -0.54 

GJR_GARCH 'accept' 0.50 0.16 -0.54 

HistSim125days 'accept' 0.18 -0.31 -0.54 

HistSim20days 'reject' 0.01 -0.79 -0.54 

HistSim50days 'reject' 0.00 -1.24 -0.54 

SMA125days 'accept' 0.50 0.04 -0.54 

SMA20days 'reject' 0.02 -0.68 -0.54 

SMA50days 'reject' 0.03 -0.65 -0.54 

Figure 2.5: Pre – crisis ES backtest results 

As we can see from Figure 2.5, the results of the Acerbi & Szekely test are quite different from the 

outputs of the Conditional Coverage mixed test: while the conjoined hypothesis according to which 

the outlined Value at Risk models are coherent with the confidence level and the VaR breaches are 

independent from one another is not rejected for almost all the approaches, the Expected Shortfall 

backtest shows that only four out of ten models are significant, namely GARCH (1,1), GJR 

GARCH, Historical Simulation and Simple moving Average with rolling windows of 125 days. To 

understand what happened in more details, let’s take a look at the following table. 
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Figure 2.6: Pre – crisis ES backtest results details 

Where 

• Observed Confidence Level is the ratio between the number of periods without failures and 

the number of observations; 

• Expected Severity is defined as the average ratio of Expected Shortfall to Value at Risk over 

the periods with VaR violations; 

• Observed Severity as the average ratio between the portfolio losses and Value at Risk over 

the periods with VaR violations 

Let’s also recall eq. (33). Regarding the Acerbi and Szekely test statistic, the following points where 

mentioned: 

1. A period with many relatively small VaR breaches can cause the model to be rejected; 

2. One large VaR violation relative to the estimated ES can cause the model to be rejected; 

3. One large VaR violation on a day where the ES is large as well might not cause the model to 

be rejected. 

With respect to point 1, the models that have been rejected are characterized by: 

❖ A lower Observed Confidence Level relative to theoretical Confidence Level meaning that 

the actual periods with VaR violations is greater than the predicted ones; 

❖ An Observed Number of Failures to Expected Number of Failures ratio greater than 1 

which implies that the number of actual failures is greater than the predicted one; 

With respect to points 2 and 3, the models that have been rejected are characterized by: 

VaR Level=95%, 

Approach
Confidence 

Level

Observed 

Confidence 

Level

Expected 

Severity

Observed 

Severity

Expected # of 

failures

# of failures 

to expected 

# of failures

EWMAlambda094 0.95 0.95 1.25 2.03 10 1.10

EWMAlambda097 0.95 0.95 1.25 2.33 10 1.10

GARCH 0.95 0.92 0.16 0.99 10 1.60

GJR_GARCH 0.95 0.97 1.25 1.76 10 0.60

HistSim125days 0.95 0.92 -0.16 1.07 10 1.60

HisrSim20days 0.95 0.91 0.22 1.13 10 1.80

HistSim50days 0.95 0.90 0.16 1.29 10 2.00

SMA125days 0.95 0.97 1.25 1.71 10 0.70

SMA20days 0.95 0.94 1.25 1.62 10 1.30

SMA50days 0.95 0.94 1.25 1.59 10 1.30
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❖ A relatively larger difference between the Observed Severity and Expected Severity, 

meaning that, all else being equal, actual average losses exceeding VaR are greater than the 

predicted ones. 

Of course, these factors cannot be analyzed individually since the rejection / non rejection of the 

models depends on the combination of the three.  

In essence, Expected Shortfall seems to be a more conservative risk measure relative to Value at 

Risk since out of ten approaches that have been accepted by the Conditional Coverage Mixed test, 

six have been rejected by the Acerbi and Szekely test, suggesting that VaR models suffer from risk 

underestimation relative to ES. In other words, this means that all VaR approaches were able to 

correctly predict the actual number of VaR violations, but if we also consider the average 

magnitude of losses through Expected Shortfall calculation, only four out of the ten approaches are 

deemed to be accurate. 
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2.5 Crisis 

2.5.2 Backtesting Value at Risk 

 

Figure 2.7: Crisis VaR backtest results 

Figure 2.7 shows the outputs of the CC mixed test for the different VaR approaches. What is 

interesting to point out is that only four of the ten models are significant – namely the Exponential 

Moving Average Method with lambda equal to 0.94 and 0.97 and the Historical Simulations with 

rolling windows of 125 and 20 days respectively.  

By decomposing CC test statistic in its two components, it seems that most of the non-significant 

approaches were rejected because of failures of the POF test.  

 

Figure 2.8: Likelihood ratios comparison 

As we can see from Figure 2.8, all the non-significant models feature extremely high LR ratios for 

the POF test relative to the LR ratios for the CCI test with the GARCH (1,1) as the worst 

performing one. 

Approach CC test LR ratio CC P value CC POF test LR ratio POF P value POF CCI test LR ratio CCI P value CCI Observations Failures

EWMAlambda094 'accept' 3.31 0.19 'accept' 3.00 0.08 'accept' 0.31 0.58 468 32

EWMAlambda097 'accept' 2.40 0.30 'accept' 1.81 0.18 'accept' 0.60 0.44 468 30

GARCH 'reject' 35.31 0.00 'reject' 33.11 0.00 'accept' 2.20 0.14 468 55

GJR_GARCH 'reject' 28.71 0.00 'reject' 27.73 0.00 'accept' 0.98 0.32 468 52

HistSim125days 'accept' 3.90 0.14 'accept' 3.70 0.05 'accept' 0.21 0.65 468 33

HistSim20days 'accept' 0.22 0.90 'accept' 0.11 0.74 'accept' 0.10 0.75 468 25

HistSim50days 'reject' 7.55 0.02 'reject' 7.13 0.01 'accept' 0.42 0.52 468 37

SMA125days 'reject' 8.89 0.01 'reject' 4.46 0.03 'reject' 4.43 0.04 468 34

SMA20days 'reject' 7.36 0.03 'reject' 5.29 0.02 'accept' 2.07 0.15 468 35

SMA50days 'reject' 6.03 0.05 'reject' 5.29 0.02 'accept' 0.75 0.39 468 35
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In other words, the results suggest that VaR breaches are independent from one another, but on the 

other hand, some of the models were rejected because the actual frequency of the violations are not 

consistent with the confidence level. 

It is also interesting to note that the worst performing approaches belong to the GARCH family, 

with the GJR GARCH model showing a slightly better performance compared to simple GARCH 

model. 

Let’s also take a look at the traffic lights test 

VaR Level=95%,      

Approach Observations Failures TL test Probability 

EWMAlambda094 468 32 'yellow' 96.84% 

EWMAlambda097 468 30 'green' 92.95% 

GARCH 468 55 'red' 100.00% 

GJR_GARCH 468 52 'red' 100.00% 

HistSim125days 468 33 'yellow' 97.97% 

HistSim20days 468 25 'green' 68.11% 

HistSim50days 468 37 'yellow' 99.74% 

SMA125days 468 34 'yellow' 98.73% 

SMA20days 468 35 'yellow' 99.23% 

SMA50days 468 35 'yellow' 99.23% 

Figure 2.9: Crisis Traffic Light backtest results 

The analysis in Figure 2.9 confirms the results of the CC test with the GARCH family models as the 

worst performings ones and the EWMA and historical simulations with rolling windows of 125 and 

20 days as the least inaccurate. 

2.5.2 Backtesting Expected Shortfall 

VaR Level=95%,       

Approach Test Pvalue 
Test 

Statistic 
Critical 
Value 

Observations 

EWMAlambda094 'reject' 0.0166 -0.4690 -0.3496 468 

EWMAlambda097 'reject' 0.0345 -0.3941 -0.3496 468 

GARCH 'reject' 0.0001 -1.6864 -0.3496 468 

GJR_GARCH 'reject' 0.0001 -1.4796 -0.3496 468 

HistSim125days 'reject' 0.0038 -0.6024 -0.3496 468 

HistSim20days 'reject' 0.0108 -0.5026 -0.3496 468 

HistSim50days 'reject' 0.0002 -0.8264 -0.3496 468 

SMA125days 'reject' 0.0004 -0.7583 -0.3496 468 

SMA20days 'reject' 0.0011 -0.6906 -0.3496 468 

SMA50days 'reject' 0.0013 -0.6829 -0.3496 468 

Figure 2.10: Crisis ES backtest results 
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Figure 2.10 shows the result of the Acerbi & Szekely test for expected shortfall backtest during the 

crisis period. It is clear that all the approaches are not significant at a confidence level of 95%, 

pointing out the inability of the models to capture increased risk. Again, the least accurate models 

are GARCH (1,1), GJR GARCH and the most accurate EWMA with lambda equal to 0.97 and 0.94 

respectively. 

Approach 
Confidence  

Level 

Observed 
Confidence  

Level 

Expected  
Severity 

Observed  
Severity 

Expected 
# of 

failures 

# of failures 
to expected 
# of failures 

EWMAlambda094 0.95 0.93 1.25 1.35 23.4 1.37 

EWMAlambda097 0.95 0.94 1.25 1.36 23.4 1.28 

GARCH 0.95 0.88 1.25 1.43 23.4 2.35 

GJR_GARCH 0.95 0.89 1.25 1.40 23.4 2.22 

HS125dd 0.95 0.93 1.32 1.49 23.4 1.41 

HS20dd 0.95 0.95 1.00 1.41 23.4 1.07 

HS50dd 0.95 0.92 1.26 1.43 23.4 1.58 

SMA125dd 0.95 0.93 1.25 1.52 23.4 1.45 

SMA20dd 0.95 0.93 1.25 1.42 23.4 1.50 

SMA50dd 0.95 0.93 1.25 1.41 23.4 1.50 

Figure 2.11: Crisis ES backtest results details 

To understand the reasons underneath the rejections of the models, let’s analyze Figure 2.11. All the 

models are characterized by 

❖ A lower Observed Confidence Level relative to theoretical Confidence Level meaning that 

the actual periods with VaR violations is greater than the predicted ones; 

❖ An Observed Number of Failures to Expected Number of Failures ratio greater than 1 

which implies that the number of actual failures is greater than the predicted one; 

❖ A relatively larger difference between the Observed Severity and Expected Severity, 

meaning that, all else being equal, actual average losses exceeding VaR are greater than the 

predicted ones. 

Again, Expected Shortfall seems to be a more conservative risk measure relative to Value at Risk 

since out of four approaches that have been accepted by the Conditional Coverage mixed test, all 

have been rejected by the Acerbi and Szekely test, suggesting that VaR models suffer from risk 

underestimation relative to ES. In other words, this means that all VaR approaches were able to 

correctly predict the actual number of VaR violations, but if we also consider the average 

magnitude of losses through Expected Shortfall calculation, none of the ten approaches are deemed 

to be accurate. 
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2.6 Analysis 

The findings of the empirical study can be summarized in the following points: 

1. From Figure 2.3 and Figure 2.5, we can see that during the pre – crisis period all the ten 

approaches under the Value at Risk methodology are significant, while only four out of ten 

approaches are significant under Expected Shortfall (namely GARCH (1,1), GJR GARCH, 

Historical Simulation and Simple moving Average with rolling windows of 125 days). This 

means that all VaR approaches were able to correctly predict the actual number of VaR 

violations, but if we also consider the average magnitude of losses through Expected 

Shortfall calculation, only four out of the ten approaches are deemed to be accurate; 

2. From Figure 2.7, we can see that during the crisis period only four out of ten approaches 

under the Value at Risk methodology are significant (namely the Exponential Moving 

Average Method with lambda equal to 0.94 and 0.97 and the Historical Simulations with 

rolling windows of 125 and 20 days respectively). Indeed, by decomposing the CC test 

statistic in its two components, it seems that most of the non-significant approaches were 

rejected because of failures of the POF test. As we can see from Figure 2.8, all the non-

significant models feature extremely high LR ratios for the POF test relative to the LR ratios 

for the CCI test with the GARCH (1,1) as the worst performing one. In other words, the 

results suggest that VaR breaches are independent from one another, but on the other hand, 

some of the models were rejected because the actual frequency of the violations are not 

consistent with the confidence level. Finally, as expected, even though rejected, the GJR 

GARCH model performed slightly better than the standard GARCH (1,1).  

On the other hand, from Figure 2.10, we can see that none of the ten approaches are 

significant under Expected Shortfall. Again, this means that only four of all VaR approaches 

were able to correctly predict the actual number of VaR violations, but if we also consider 

the average magnitude of losses through Expected Shortfall calculation, none of the ten 

approaches are deemed to be accurate.  

The failure of VaR and ES approaches can be ultimately be motivated by two factors: 

1. The performance of parametric approaches depends on the underlying assumptions 

regarding returns distribution which distributions are not a good approximation of financial 

returns behavior; 

2. The performance of non – parametric approaches depends on the length of the window size 

which is the result of a trade – off between accuracy and adaptability of the model. 

However, all the models did not react fast enough to accommodate changes in the market. 
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Hence, as stressed in paragraph 1.5, Value at Risk should not be used to define a financial 

institutions’ capital requirements but as an ordinary risk management tool for benchmarking 

different types of risks, limiting risk exposure and designing risk-adjusted performance metrics. 

The danger of using VaR as a determinant for capital adequacy clearly emerges from the failure of 

hedge fund Long-Term Capital Management (LTCM) in 1998 for which VaR was heavily blamed. 

According to Jorion (2000) the default of the hedge fund relies on a series of incorrect assumptions 

made by the managers.  

First of all, they assumed that the fund’s volatility was constant and not greater than an unleveraged 

investment in the S&P500. Therefore, the resources were allocated so as to maximize expected 

returns subject to the constraint that risk is no greater than that of US equities. This assumption is 

inaccurate since volatility is time – varying and can easily double in periods of turmoil. Secondly, 

the focus on a portfolio’s standard deviation is more appropriate when the distribution of a random 

variable is symmetric which assumption is not accurate for describing the actual behavior of 

financial returns since they exhibit fat tails. 

After reporting significant losses in May and June 1998, LTCM tried to reduce its risk profile. 

However, instead of selling the less liquid positions, they sold the most liquid since they were less 

profitable. If the model was correct, the daily volatility should have decreased from $45 million to 

$35 million, however its actual value was closer to $100 million. According to the author, this was 

due to the fact that the model was biased and that the market was becoming more volatile. 

The case of LTCM proves that the VaR model heavily underestimated risk, leading to an 

inappropriate capital base. 
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Conclusions 

The aim of this research project is to assess the accuracy of Value at Risk and Expected Shortfall 

models in evaluating market risk. More specifically 

• In Chapter 1 we have covered some of the most widely used market risk estimation 

methods, namely 

❖  Value at Risk (VaR) with the following approaches: Simple Moving Average, 

Exponentially Weighted Moving Average, GARCH (1,1), GJR GARCH and 

Historical Simulation; 

❖ Expected Shortfall (ES) under the same approaches; 

❖ Backtesting methodologies to evaluate model accuracy, namely the Conditional 

Coverage mixed test and Traffic Light test for Value at Risk models and the Acerbi 

& Szekely test for Expected Shortfall. 

• In Chapter 2 we have implemented the models described in the previous chapter before and 

after the 1997 – 98 Asian Financial Crisis. The 1 – day VaR and ES estimates were 

computed on an equally weighted portfolio composed by the Hang Seng Index and the 

FTSE Bursa Malaysia KLCI Index and the related backtests were carried out. 

In particular, from the findings of Chapter 2 we have discovered that 

1. During the pre – crisis period all the ten approaches under the Value at Risk methodology 

are significant, while only four out of ten approaches are significant under Expected 

Shortfall (namely GARCH (1,1), GJR GARCH, Historical Simulation and Simple moving 

Average with rolling windows of 125 days). This means that all VaR approaches were able 

to correctly predict the actual number of VaR violations, but if we also consider the average 

magnitude of losses through Expected Shortfall calculation, only four out of the ten 

approaches are deemed to be accurate; 

2. During the crisis period only four out of ten approaches under the Value at Risk 

methodology are significant ( namely the Exponential Moving Average Method with 

lambda equal to 0.94 and 0.97 and the Historical Simulations with rolling windows of 125 

and 20 days respectively) while none of the ten approaches are significant under Expected 

Shortfall. Again, this means that only four of all VaR approaches were able to correctly 

predict the actual number of VaR violations, but if we also consider the average magnitude 

of losses through Expected Shortfall calculation, none of the ten approaches are deemed to 

be accurate. As expected, even though rejected, the GJR GARCH model performed slightly 

better than the standard GARCH (1,1). 
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From these findings we can infer that  

1. Expected Shortfall is a more conservative risk measure than Value at Risk; 

2. Value at Risk approaches were not suitable to forecast losses during the financial crisis 

period after taking into account the average magnitude of losses with Expected Shortfall 

A financial institution would have faced serious problems if it only relied on VaR estimates to 

determine capital requirements since such methodology 

• Depends on the underlying assumptions about returns’ distributions in case of parametric 

approaches18; 

• Depends on the trade – off between accuracy and adaptability when choosing the length 

analysis window in case of non – parametric approaches. However, in many cases the 

models did not react fast enough to new market conditions. 

As a consequence, as Sironi (2008) pointed out, VaR methodology should not be used to define 

capital requirements, but it should be considered as an ordinary risk management tool to determine 

the operational limits of trading desks on a daily basis. 

Further Studies 

The thesis aimed at evaluating the performance of Value at Risk and Expected Shortfall before and 

after the 1997 – 98 Asian Crisis by analyzing a portfolio composed by the Hong Kong and Malaysian 

stock indexes. 

The analysis can be replicated for different periods of financial turmoil and with using different 

approaches. In particular, the analysis of the following topics could be interesting: 

• The application of Machine Learning to market risk estimation and assessment; 

• Implement the GARCH model with Jumps (Sidorov, Revutskiy, Faizliev, Korobov, & Balash, 

2014) for volatility modeling during periods of financial distress and compare it with the 

standard GARCH model. 

 

  

 

18 Which assumptions are not coherent with the actual behavior of financial data. 
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Summary 

3.1 Introduction 

The research project aims at evaluating the two main methodologies for market risk estimation, 

namely Value at Risk (VaR) and Expected Shortall (ES) under some of the most widely used 

approaches (Simple Moving Average, Exponentially Weighted Moving Average, GARCH (1,1), GJR 

GARCH and Historical Simulation). More specifically, we will compute the 1 – day VaR and ES 

estimates at 95% confidence level for an equally weighted portfolio composed by the Hang Seng 

Index and the FTSE Bursa Malaysia KLCI Index under each approach. The analysis will be carried 

out before and after the 1997 – 98 Asian Crisis and, at the end, the performances of each model during 

the two subperiods will be assessed using the Conditional Coverage mixed test (VaR), the Traffic 

Light test (VaR) and the Acerbi & Szekely test (ES). 

For what concerns the structure, the research project is divided in two Chapters. In Chapter 1 we 

have introduced the theoretical framework of Value at Risk and Expected Shortfall under different 

approaches as well as the main backtesting methods. In Chapter 2 we have applied the theory 

illustrated in the first chapter to the empirical study. 

3.2 Chapter 1 

In Chapter 1 we have discussed some of the main methodologies used in Financial Risk 

Management to estimate market risk - Value at Risk and Expected Shortfall. 

As defined by RiskMetricsTM (J.P. Morgan; Reuters, 1996), Value at Risk is defined as: 

(…) a measure of the maximum potential change in value of a portfolio of financial instruments 

with a given probability over a pre-set horizon. 

Oftentimes, in VaR calculation it is assumed that the distribution of a portfolio of securities follows 

a normal distribution. In formulas 

(35) 𝑉𝑎𝑅𝑡+1
1−𝛼 = 𝑧𝛼 ∗ 𝜎 + 𝜇 

Where  

• 𝑧𝛼 is the quantile of the normal distribution at 𝛼 level 

• 𝜎 is the standard deviation of returns 

• 𝜇 is the mean of returns 

Even though VaR is a relatively simple and intuitive risk metric, it has some disadvantages as well 

the most peculiar one being the inability to capture the magnitude of losses. Indeed, the VaR of a 
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portfolio is a risk measure that only tells us the potential losses over a specific period of time given 

a pre-determined confidence level. But what happens if the VaR limit is hit? Are losses equal or 

greater than the limit itself? In other words it does not answer the question if things go bad, how 

bad can they get? Therefore, we have also introduced Expected Shortfall as an alternative risk 

metric. In essence, Expected Shortfall (ES) at α level over a specific period of time is the expected 

portfolio’s loss in the worst α cases. In formulas we have 

(36) 𝐸𝑆1−𝛼 = 𝐸(𝑋|𝑋 > 𝑉𝑎𝑅1−𝛼) 

Where 𝑋 is the portfolio’s loss. 

There exists different approaches to VaR and Expected Shortfall calculation which can be classified 

into two main categories: parametric approaches and non-parametric approaches. 

In the first approach, we assume that stock returns follow a given statistical distribution (e.g. 

Gaussian distribution). The main models belonging to this class that we have discussed are 

• Simple Moving Average method, where volatility at time t is computed as the simple 

standard deviations of stock returns n days ahead; 

• Exponentially Moving Average method, where volatility is the squared root of the 

weighted average of squared returns such that exponentially declining weights are assigned 

to each return going back further in time; 

• Stochastic volatility models with a focus on GARCH (1,1) and GJR GARCH models 

where we use historical data to estimate the parameters of the model and then use them to 

forecast future volatility 

After forecasting volatilities with the approaches described above, we can simply implement eq. 

(35) and (36) for VaR and ES calculation. 

The parametric approach is relatively simple to implement, however it suffers some major 

drawbacks (above all non-normality of returns and fat-tails). 

In the non-parametric approaches we do not make any assumptions on returns distributions because 

we “let the data talk”. The model belonging to this class that have discussed in more details is 

Historical Simulation, where the Value at Risk at a given level of confidence is computed by 

ranking the first n days past returns, sorting them from smallest to largest and then picking up the 

quantile that corresponds to the desired confidence level. Then, for ES calculation we can simply 

take the average of losses exceeding the VaR. 
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The benefits of such approach rely on the fact that historical data are used in order to estimate Value 

at Risk and Expected Shortfall, thus overcoming the issue of distributional assumptions on financial 

data. However, nothing comes to a cost: in choosing the length of the window size, we must 

carefully evaluate the trade – off between accuracy and adaptability of the model. On the other 

hand, historical data are not always suitable to describe asset prices movements, especially in 

periods of crisis. 

In Chapter 1 we have also discussed the potential applications of VaR that we can summarize in the 

following points: 

• Benchmarking different types of risks. VaR provides a common risk evaluation 

framework regardless of the nature of the financial asset we are dealing with. It can be 

considered as a lingua franca between different trading desks taking positions in different 

assets (e.g. bonds, derivatives, stocks etc…). The importance of the VaR is relevant in the 

following example: think about a world where VaR does not exists. Assuming that we have 

taken a position in government bonds and stocks, how can we compare different risk metrics 

such as the duration and the beta of a stock portfolio? Thanks to VaR we are able to 

encompass these obstacles. 

• Limiting risk exposure. VaR can be used to set the operating limits of the trading units 

within a bank. Suppose for example that Bank X has two trading desks: desk 1 (stocks) and 

desk 2 (bonds). The VaR limits for each unit given a confidence level and a trading horizon 

is $200,000 and $100,000 respectively. Since the maximum amount that can be invested in a 

certain position depends on its VaR limit, by changing the latter we can change the capital 

allocation strategy among different business units. 

• Designing risk-adjusted performance (RAP) metrics. Finally, VaR can be used to design 

risk adjusted performance metrics. One of the most commonly used metrics is the RAROC 

(Risk-adjusted Return on Capital). 

• 𝑅𝐴𝑅𝑂𝐶(𝑒𝑥−𝑎𝑛𝑡𝑒) = 𝐸(𝑃)/𝐶𝑎𝑅(𝑒𝑥−𝑎𝑛𝑡𝑒) 

• 𝑅𝐴𝑅𝑂𝐶(𝑒𝑥−𝑝𝑜𝑠𝑡) = 𝑃/𝐶𝑎𝑅(𝑒𝑥−𝑝𝑜𝑠𝑡) 

where  

➢ 𝐸(𝑃) is the expected profit; 

➢ 𝑃 the realized profit;  

➢ 𝐶𝑎𝑅(𝑒𝑥−𝑎𝑛𝑡𝑒) the capital allocated to a single unit; 

➢ 𝐶𝑎𝑅(𝑒𝑥−𝑝𝑜𝑠𝑡) the undertaken risk; 



54 
 

RAP metrics have three main different purposes: 

1. Support traders in making investment decisions by analyzing the ex-ante profitability and 

the risk profile of the alternatives; 

2. Establish an incentive scheme that is not profit-based only: 

3. Compare the ex-post  performance of the different units within a financial institution to 

determine which units are allocationg resources more efficiently and hence deserving more 

capital to invest. 

We have also argued about the weaknesses of VaR. More specifically 

1. Extreme events are not accounted for in VaR models. It is true that extreme events are 

not accounted for in VaR models. However, as mentioned in the chapter, the main purpose 

of VaR models is not to measure the capital adequacy of banks, but to estimate the risk 

exposure and the operational limits of each trading desk on a daily basis. In other words, 

VaR is a ordinary risk management tool. On the other hand, such rare events must be taken 

in account in capital adequacy assessment. 

2. The magnitude of losses is not accounted for. VaR does not take into account the 

magnitude of losses if a violation occurs. To fix this issue alternative risk metrics were 

introduced, such as Expected Shortfall. 

3. VaR models yield divergent outputs. If we change the underlying assumptions of a VaR 

model (e.g. we assume that returns are distributed as a t-student distribution instead of a 

Gaussian distribution and/or we change extend or shorten the sample period etc…) we will 

certainly get different results. However, if, as mentioned before, the aim of the model is to 

evaluate the risk-adjusted performance of the trading units within a bank for capital 

allocation in the units themselves, this issue is not very relevant. In fact, what we need here 

is not an assumptions-independent model but a risk assessment framework that is uniformly 

implemented in all the business units. So even if the model underestimates or overestimates 

the potential losses, there would not be issues at all since the over/under estimation is 

reflected through out all the trading units, not affecting the capital allocation strategy. 

4. VaR models can potentially decrease the stability of financial markets. If everyone in 

the financial sector has adopted VaR as a risk management tool, then this practice can 

potentially amplify the volatility of the market. This is true because every trader would get 

the same result and try to decrease their exposure thus worsening market conditions. 

However, this should not be considered as a direct implication of VaR models rather than as 

a consequence of human nature.  
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5. VaR is not a coherent risk measure, namely the sub-additive property is violated if the 

joint distribution of risk factors is not normally distributed (Artzner, Delbaen, Eber, & 

Heath, 1998). So, in this case the following must be true: 

𝑉𝑎𝑅(𝐴 + 𝐵) > 𝑉𝑎𝑅(𝐴) + 𝑉𝑎𝑅(𝐵) 

Finally, the main backtesting methodologies were introduced: 

❖ For Value at Risk 

• Kupiec’s Proportion of Failure (POF) test which aims at testing whether the number of 

actual VaR violations is consistent with the confidence level; 

• Christoffersen’s Conditional Coverage Indipendence (CCI) test that assesses whether 

VaR breaches are serially independent or not; 

• The Conditional Coverage mixed (CC) test which is a combination of the Kupie’s and 

Christofferesen tests. It aims at evalulationg that VaR models accurately predict the 

actual number of violations and that they are independent from one another. 

The test statistics in all three cases are distributed as chi – squared distributions with one (POF and 

CCI tests) and two degrees of freedom (CC test). As a consequence, the null hypothesis will be 

rejected if the value of the test statistic is higher than the critical value of the corresponding 

confidence level. 

❖ For Expected Shortfall 

• Acerbi & Szekely (2014) test which aims at testing whether the average loss estimated 

by the model is accurate or not. 

Finally, in paragraph 1.9 we briefly discussed the Basel Regulatory Framework and its guidelines 

regarding Value at Risk and capital requirements. In particular, an alternative backtesting method 

for VaR is provided, the Traffic Light test which, analogously with the POF and CCI tests, aims at 

testing if the models can reasonably predict the number of actual violations in relation to the chosen 

confidence level by classifying the approaches in zones according to their ex – post performance. 

Ultimately, in 2013 the Basel Committee stressed the importance of moving from VaR to Expected 

Shortfall because a number of weaknesses have been identified with using VaR for determining 

regulatory capital requirements, including its inability to capture “tail risk” (Basel Committee on 

Banking Supervision, 2013) 

3.3 Chapter 2 

In Chapter 2 we analyzed an equally weighted portfolio made up by two East Asian stock market 

indexes, the Hang Seng Index (HSI) and the FTSE Bursa Malaysia KLCI Index (FBMKLCI) during 

the 1997 – 1998 Asian Financial Crisis. More specifically, the daily Value at Risk and Expected 
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Shortfall has been computed at a confidence level of 95% using the approaches seen Chapter 1 and 

a backtest has been carried out at the end in order to evaluate the performance of the models during 

the pre – crisis and crisis periods. 

More specifically, we started this chapter by briefly outlining the context and the root causes under 

the Asian Crisis which can be summarized in the following points: 

• Capital inflows across the South East Asian countries averaged over 6% of GDP between 

1990 and 1996 which increased the dependence of the economies on such inflows causing 

them to be more vulnerable in case of capital flow reversal; 

• Exchange rates pegged to the US dollar. If, on one hand, exchange risk was absorbed by 

central banks encouraging capital inflows, on the other it became a serious issue when the 

Federal Reserve started to increase interest rates and foreign reserve began to scarce; 

• Financial deregulation which led to loan provisions without sufficient scrutiny and build up 

of foreign debt; 

• Slowing export growth due to the devaluation of the Chinese Yuan and Mexican Peso in 

1994. 

Hence, when a major property developer Somprasong Land failed to meet a foreign debt repayment 

signaling a worsening economy, in the early months of 1997 the Thai baht came under speculative 

attack. Thailand government attempted to defend the peg but without success: on July 2 1997 after 

depleting the Central Bank’s foreign reserves, the currency was left to free – float in the market and 

was drastically devaluated due to capital flight. The devaluation made foreign debt repayment more 

expensive and firms began to default. Soon after the negative sentiment of the market quickly 

turned into panic which spread into other countries.  

The IMF intervened to stabilize the crisis through a program of emergency lendings in combination 

with economic reforms which turned out to be ineffective. It is only when the IMF carried out a 

debt rollover plan at the end of January 1998 that the situation began to normalize. 

We then moved on describing the data used in the thesis which consist of the daily arithmetic 

returns of an equally weighted portfolio made up by two East Asian stock market indexes, the Hang 

Seng Index (HSI) and the  FTSE Bursa Malaysia KLCI Index (FBMKLCI) from January 1st 1996 to 

December 31st 2001. The daily returns have been calculated using the daily closing prices of the 

indexes for the sample period. Such prices have been downloaded from Bloomberg. Since the 

purpose of this dissertation is to evaluate the accuracy of VaR models described in Chapter 1 during 
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the pre-crisis and crisis periods, we analyzed the Hong Kong 3 month Interbank Offered Rate 

(HIBOR) and the Kuala Lumpur 3 month Interbank Offered Rate (KLIBOR) which has given us a 

hint on the start and end of the financial crisis. Hence, in Figure 2.2, we can see that the 3-month 

HIBOR and KLIBOR hiked between May 1997 and April 1999. Consequently, we have divided the 

sample period in two sub-periods: Pre-crisis (1/7/1996-30/04/1997) and Crisis (1/5/1997-

30/4/1999).  

3.3.1 Outputs of the empirical study 

As mentioned earlier, in Chapter 2 we have implemented the models described in the previous 

Chapter 1 before and after the 1997 – 98 Asian Financial Crisis. The 1 – day VaR and ES estimates 

have been computed on an equally weighted portfolio composed by the Hang Seng Index and the 

FTSE Bursa Malaysia KLCI Index and the related backtests were carried out. 

The findings of the empirical study can be summarized in the following points: 

1. From Figure 2.3 and Figure 2.5, we can see that during the pre – crisis period all the ten 

approaches under the Value at Risk methodology are significant, while only four out of ten 

approaches are significant under Expected Shortfall (namely GARCH (1,1), GJR GARCH, 

Historical Simulation and Simple moving Average with rolling windows of 125 days). This 

means that all VaR approaches were able to correctly predict the actual number of VaR 

violations, but if we also consider the average magnitude of losses through Expected 

Shortfall calculation, only four out of the ten approaches are deemed to be accurate; 

2. From Figure 2.7, we can see that during the crisis period only four out of ten approaches 

under the Value at Risk methodology are significant (namely the Exponential Moving 

Average Method with lambda equal to 0.94 and 0.97 and the Historical Simulations with 

rolling windows of 125 and 20 days respectively). Indeed, by decomposing the CC test 

statistic in its two components, it seems that most of the non-significant approaches were 

rejected because of failures of the POF test. As we can see from Figure 2.8, all the non-

significant models feature extremely high LR ratios for the POF test relative to the LR ratios 

for the CCI test with the GARCH (1,1) as the worst performing one. In other words, the 

results suggest that VaR breaches are independent from one another, but on the other hand, 

some of the models were rejected because the actual frequency of the violations are not 

consistent with the confidence level. Finally, as expected, even though rejected, the GJR 

GARCH model performed slightly better than the standard GARCH (1,1).  

On the other hand, from Figure 2.10, we can see that none of the ten approaches are 

significant under Expected Shortfall. Again, this means that only four of all VaR approaches 
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were able to correctly predict the actual number of VaR violations, but if we also consider 

the average magnitude of losses through Expected Shortfall calculation, none of the ten 

approaches are deemed to be accurate.  

From these findings we can infer that  

▪ Expected Shortfall is a more conservative risk measure than Value at Risk; 

▪ Value at Risk approaches were not suitable to forecast losses during the financial crisis 

period after taking into account the average magnitude of losses with Expected Shortfall 

A financial institution would have faced serious problems if it only relied on VaR estimates to 

determine capital requirements since such methodology 

• Depends on the underlying assumptions about returns’ distributions in case of parametric 

approaches19; 

• Depends on the trade – off between accuracy and adaptability when choosing the length 

analysis window in case of non – parametric approaches. However, in many cases the 

models did not react fast enough to new market conditions. 

As a consequence, as Sironi (2008) pointed out, VaR methodology should not be used to define 

capital requirements, but it should be considered as an ordinary risk management tool to determine 

the operational limits of trading desks on a daily basis. Indeed, the risk and dangers of using VaR as 

a determinant for the capital base has been discussed in Jorion’s paper (Jorion, 2000) which was 

mentioned at the end of paragraph 2.5. 

 

 

 

 

 

 

 

 

  

 

19 Which assumptions are not coherent with the actual behavior of financial data. 
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Appendix A – GARCH (1,1) parameters estimates 

 
 

Figure 3.1: Pre – crisis GARCH (1,1) parameters estimates 

 

 

 
 

Figure 3.2: Crisis GARCH (1,1) parameters estimates 

 

 

 

 

 

 

  

Parameter Value Standard Error t-statistic p-value Parameter Value Standard Error t-statistic p-value

Constant 5.30E-06 3.07E-06 1.7285 0.0839 Constant 8.91E-07 1.61E-06 0.5517 0.5812

GARCH{1} 0.9064 0.0284 31.8904 3.62E-223 GARCH{1} 0.9336 0.0113 82.5053 0

ARCH{1} 0.0612 0.0182 3.3735 7.42E-04 ARCH{1} 0.0594 0.0128 4.641 3.47E-06

Pre crisis FBMKLCI GARCH parameters  Pre crisis HSI parameters 

Parameter Value Standard Error t-statistic p-value Parameter Value Standard Error t-statistic p-value

Constant 5.36E-06 4.44E-06 1.2086 0.2268 Constant 3.29E-06 2.07E-06 1.5882 0.1122

GARCH{1} 0.9 0.0404 22.2874 4.90E-110 GARCH{1} 0.8934 0.0303 29.5092 2.19E-191

ARCH{1} 0.05 0.0178 2.8072 0.005 ARCH{1} 0.0683 0.0196 3.4787 5.04E-04

Crisis HSI GARCH parameters Crisis FBMKLCI GARCH parameters 
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Appendix B – GJR GARCH parameters estimates 

 
 

Figure 4.1: Pre – crisis GJR GARCH parameters estimates 

 

 
 

Figure 4.2: Crisis GJR GARCH parameters estimates 

 

 

 

 

 

 

 

 

 

  

Parameter Value Standard Errort-statistic p-value

Constant 7.00E-06 1.26E-06 5.5621 2.67E-08

GARCH{1} 0.9005 0.0283 31.765 1.97E-221

ARCH{1} 0.0107 0.0231 0.4611 0.6447

Leverage{1} 0.0946 0.0327 2.89 0.0039

Parameter Value Standard Errort-statistic p-value

Constant 2.67E-07 1.46E-06 0.1829 0.8549

GARCH{1} 0.9451 0.0102 92.7526 0

ARCH{1} 0.0295 0.01 2.9606 0.0031

Leverage{1} 0.0508 0.0182 2.7991 0.0051

Pre crisis FBMKLCI GARCH parameters  

Pre crisis HSI GARCH parameters

Parameter Value Standard Errort-statistic p-value

Constant 5.33E-06 4.48E-06 1.1896 0.2342

GARCH{1} 0.9 0.0403 22.3113 ########

ARCH{1} 0.05 0.0314 1.5937 0.111

Leverage{1} - - - -

Parameter Value Standard Errort-statistic p-value

Constant 2.65E-06 1.92E-06 1.3817 0.1671

GARCH{1} 0.9035 0.0289 31.2741 ########

ARCH{1} 0.0431 0.0179 2.4131 0.0158

Leverage{1} 0.0513 0.0199 2.58 0.0099

Crisis FBMKLCI GARCH parameters 

Crisis HSI GARCH parameters
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Appendix C – MATLAB scripts 
 

Value at Risk backtest script (using MATLAB’s Risk Management Toolbox™) 

 
vbt=varbacktest(Returns,[EWMAlambda094,EWMAlambda097,GARCH,GJR_GAR

CH,HS125dd,HS20dd,HS50dd,SMA125dd,SMA20dd,SMA50dd],'VaRID',{'EWMAl

ambda094','EWMAlambda097','GARCH','GJR_GARCH','HS125dd','HS20dd','

HS50dd','SMA125dd','SMA20dd','SMA50dd'}) 

 

cc_test_results=cc(vbt) 

 

tl_test_results=tl(vbt) 

 
 

 

Expected Shortfall backtest script (using MATLAB’s Risk Management Toolbox™) 

 
ebt=esbacktest(Returns,[EWMAlambda094,EWMAlambda097,GARCH,GJR_GARC

H,HS125dd,HS20dd,HS50dd,SMA125dd,SMA20dd,SMA50dd],[ES_EWMAlambda09

4,ES_EWMAlambda097,ES_GARCH,ES_GJR_GARCH,ES_HS125dd,ES_HS20dd,ES_H

S50dd,ES_SMA125dd,ES_SMA20dd,ES_SMA50dd],'VaRID',{'EWMAlambda094',

'EWMAlambda097','GARCH','GJR_GARCH','HS125dd','HS20dd','HS50dd','S

MA125dd','SMA20dd','SMA50dd'}) 

 

summary=summary(ebt) 

 

test_results=unconditionalNormal(ebt) 
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