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1 Introduction

We examine the relationship between idiosyncratic volatility and cross-section of returns, aim-
ing to verify if the negative relationship found by Ang et al. (2006)1 is still present in the post-
crisis period (2010-2018). Hence we measure the performance di�erence between a portfolio
made of stocks with highest level of idiosyncratic risk and a portfolio based on stocks with the
lowest level of idiosyncratic risk. A�erwards a trading strategy exploiting the pa�erns we �nd
in the data is tested with several evaluation performance measures. We then analyse if the re-
lationship between idiosyncratic volatility and returns is holding-period dependent, in order to
test if heterogeneity of investors’ investment horizon hypothesis is veri�ed by our �ndings. To
test the hypothesis, we apply the wavelet transform to study the contribution of each frequency
in our data to the Puzzle.
Our novel contribution is to use Ang et al. (2006)’s approach to examine the idiosyncratic
volatility-return relationship in a di�erent sample period2 and to evaluate the performance
of two trading strategies exploiting the Puzzle. In addition, we analyse if the relationship
is holding-period dependent using a strategy with increasing holding periods (1, 3, 6 and 12
months) and to relate the inverted U-shaped relation we observe to the heterogeneity of in-
vestors’ investment horizons hypothesis. Finally, we perform a time-frequency analysis on the
American equity market post-crisis to shed a light on the reasons behind the Puzzle.
In literature, the theme of this thesis is known as ”the Volatility Puzzle”. We focus on the id-
iosyncratic side of the volatility, following other papers’ example from now on we refer to it as
the ”IVOL Puzzle” (Idiosyncratic VOLatility Puzzle). Studying the IVOL Puzzle can be helpful
both from a factor investing point of view (as a trading strategy) and as a stronger theoretical
framework for all the investors which fail to diversify. About the la�er, even if the idiosyncratic
risk can be diversi�ed away, there is evidence that it is still present in investments nowadays
(Evans and Archer (1968); Statman (1987); Campbell et al. (2001)). By theory facing under-
diversi�cation should bring higher returns as a compensation for the higher risk borne (Merton
(1987)).
Is the negative relationship between lagged IVOL and returns still there a�er the crisis? To an-
swer, we �rstly apply the L/M/N trading strategy with se�ing 1/0/1 as in Ang et al. (2006). We
then test the trading strategy for increasing holding periods (1, 3, 6 and 12 months), analysing
if the relationship between IVOL and returns is holding-period dependent. Se�ing 1/0/1 means
we sort stock returns in 5 portfolios based on the level of 1 month (L=1) lagged idiosyncratic
volatilities, we wait 0 month (M=0) and we hold them for 1 month (N=1). �is strategy has
monthly rebalancing period and it’s done over the whole sample-period3, aiming to compare
the returns of portfolio 1 and 5.

1�eir sample period is 1963-2000.
2In the American equity market, as for Ang et al. (2006).
3Our sample period is 2010-2018.
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We use a dataset from Wharton Research Data Service, composed by the daily returns of the
stocks belonging to the same exchanges Ang et al. (2006) used, for the post-crisis period. We
monthly construct the 5 portfolios formed on IVOLs using the trading strategy 1/0/1. We �nd
evidence of a negative relationship between IVOL and returns because the portfolio 1 (formed
on low volatility stocks) outperforms the portfolio 5 (based on high volatility stocks). �e fact
the alphas are substantial (-0.72% relative to CAPM and -0.59% relative from Fama-French three-
factor model) and statistically signi�cant brings additional evidence of the existence of the IVOL
Puzzle a�er the crisis.
Given our �ndings, we compute performance evaluation measures of four well-known strate-
gies based on: Market, Size, Value and Momentum factors. We compare these strategies to the
strategy of going long on low idiosyncratic volatility stocks and short on high idiosyncratic
volatility stocks. We �nd our strategy and the momentum strategy performing well relative
to the market index. A�erwards we quantify the cost for a mean-variance optimizer investor,
with an indexed position, of ignoring low idiosyncratic volatility stocks. By tilting its position
towards the low idiosyncratic volatility stocks it increases substantially its utility function.
�e trading strategy 1/0/3, 1/0/6 and 1/0/12 bring other relevant discoveries. �e trading strat-
egy 1/0/3 shows the same pa�erns of the trading strategy 1/0/1, where portfolio 5 underper-
forms the portfolio 1. �e alphas are relevant and statically signi�cant, meaning that the CAPM
and FF3 models still fail to price the portfolios. �e trading strategy 1/0/6 shows the absence of
a di�erence in performance both in returns and alphas between portfolio 1 and 5. �e trading
strategy 1/0/12 displays again the Puzzle’s existence with the same pa�erns of the strategy 1/0/1
and 1/0/3.
Malagon et al. (2015); Yin et al. (2019) use the Wavelet Multi-Resolution Analysis to separate
investor classes and decompose a time series into di�erent time horizons. In our case instead
of decomposing the time series, playing with the se�ing of the L/M/N strategy we test di�erent
holding periods, separating the investors from active (frequent rebalancing) to more passive
investors (yearly rebalance). Anyway, time scales determine the overall return we capture,
therefore di�erent compensations required by investors with di�erent time horizons a�ects the
compensation of the overall holding periods. �e sum of the compensations required for all the
time scales inside an holding period makes the �nal compensation we observe, hence a change
in compensation for increasing holding periods implies a compensation for bearing idiosyn-
cratic risk that is investment-horizon dependent.
Finally, we test the hetereogeneity of investors’ investment horizons hypothesis. Following
the framework of Malagon et al. (2015) we apply the wavelet multi-resolution analysis, de-
composing our data into 7 di�erent frequencies representing the behaviour of di�erent kind of
investors. �e analysis reports a negative relationship between �rm-speci�c risk and returns
for short term investors (investment horizon from 2 to 32 days), a positive one for medium term
investors (32 to 128 days) and a negative one for longer investment horizons (> 128 days).

�e remainder of the thesis is organized as follows. In Section 2, we examine the past lit-
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erature about the Puzzle. In Section 3, we describe the theoretical background behind risk and
the models used to extract idiosyncratic volatilities. Section 4 illustrates the main features of
time-series volatility and in Section 5 we do the same for its idiosyncratic part. In section 6 we
describe the trading strategy used to address the Puzzle. Section 7 displays the results for each
trading strategy. Section 8 computes several performance evaluation measures on strategies
exploiting our �ndings and the cost of ignoring the Puzzle for a hypothetical investor. Section
9 we describe the theoretical framework behind Fourier and Wavelet methods in Finance. In
Section 10 we apply the wavelet trasform to test the heterogeneity of investors’ investment
horizons hypothesis. Finally, Section 11 concludes.

2 Literature review

2.1 Preamble

By theory, there should be a premium to compensate investors for holding assets that are not
diversi�ed. Diversi�cation smooths out the �rm speci�c risk by holding an enough large num-
ber of assets. �e consequence of diversi�cation is a lower risk faced, hence a be�er return for
unit of risk in our portfolio. �e reason why facing less risk means a be�er mean-variance op-
timization, is that under certain general assumptions the idiosyncratic risk is not priced (com-
pensated) as the systematic risk. If investors were rational individuals, they should not face
idiosyncratic risk and it should not even be priced. Empirically several researches prove that
under-diversi�cation is alive in �nancial markets (Evans and Archer (1968); Statman (1987);
Campbell et al. (2001)).Goetzmann and Kumar (2004) show that, based on a sample of more
than 62,000 household investors in the period of 1991 to 1996, more than 25% of the investor
portfolios contain only one stock, over a half of the investor portfolios contain no more than
three stocks and less than 10% of the investor portfolios contain more than ten stocks” (Fu
(2009)). Goetzmann and Kumar (2004) �nd also a relationship between under-diversi�cation
and over-con�dence preference and trend-following behaviour. Furthermore, a small share of
these investors earn from under-diversi�cation because of superior information
Given the empirical evidence, investors fail to fully diversify their investments, therefore an
investigation on how idiosyncratic risk a�ects portfolio’s performance was needed both for
theoretical and investment purposes. Several papers over the years, investigating how idiosyn-
cratic risk is priced by the market, have found mixed evidence. �e main topic of this thesis
is known as a Puzzle, therefore we start the analysis describing how idiosyncratic volatility
(IVOL) became a Puzzle. We go through the debate about the Puzzle following the time-line of
the publications, in order to show how the literature developed over the theme. In academic
literature the evidence about IVOL Puzzle is mixed: there are researchers that found a signif-
icant positive relationship between idiosyncratic volatility and average returns (as Fu (2009)),
there are others which failed to �nd a signi�cant relationship between these two variables (as
Bali and Cakici (2008)) and �nally there is also evidence of a negative relationship as Ang et al.
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(2006). I’m going to use Ang et al. (2006) as starting point.

2.2 How a topic became a Puzzle

Ang et al. (2006) brought up the debate with their controversial results, which stimulated an
academic dispute in the following years. Sorting monthly stocks into 5 portfolios based on
IVOL levels, they found out that ”stocks with high idiosyncratic volatility relative to the Fama
and French (1993) model have abysmally low average returns” Ang et al. (2006). Applying a
trading strategy which is based on L months of estimation period, M months of waiting period
and N months of holding period (L/M/N), they shed the �rst controversial light over idiosyn-
cratic volatility. �e di�erence in monthly returns between the portfolio 5 (the one with highest
IVOL level) and the portfolio 1 (the one with lowest IVOL level) is statistically signi�cant and
has negative sign (-1.06%). Moreover, the Jensen’s monthly alphas di�erence between port-
folio 5 and 1 computed relative to CAPM and Fama-French three-factor models are strongly
statistically signi�cant and relevant in size (respectively -1.38% and -1.31%). �e characteris-
tics of these alphas show how even controlling for additional source of risks, portfolio 1 and
5 are mispriced by both the models. �ey tested their results controlling for several source of
risks as: size, book-to-market, leverage, liquidity, volume, turnover, bid-ask spread, coskewness
and dispersion in analysts’ forecasts. �ey controlled even for the new factor they studied, the
aggregate volatility, but accounts slightly to the low returns of stocks with high IVOL. �ey
ended the paper stating that this unexplained returns’ dynamic is robust to several exposures
and therefore ”the cross-sectional expected return pa�erns found by sorting on idiosyncratic
volatility present something of a puzzle” (Ang et al. (2006)).
�is result was controversial because, as stated by Malagon et al. (2015), is against the modern
portfolio theory and under-diversi�cation models (Merton (1987)). �e �nding has been con-
sidered provocative as the portfolios with the highest level of IVOL, associated to the lowest
returns, were the ones with the smaller �rms (on average their market capitalization relative
to the total was 1.9%). �e literature reaction to Ang et al. (2006) has been de�ned by Malagon
et al. (2015) as reactionary. Several researches started arguing against those results and the
main critics were about their robustness. Bali and Cakici (2008), pointed out that IVOL Puzzle
was a�ected by the speci�cation of data frequency, the weighting scheme of calculating the
average portfolio return and the breakpoints to sort portfolios’ quintiles. �ey, using the same
trading strategy used by Ang et al. (2006), carried out a huge amount of tests to examine the
cross-sectional relationship between IVOL and returns. �ey stated that using a daily measure
of IVOL (as Ang et al. (2006)) they found a negative relationship IVOL-returns only when the
value-weighted portfolio are constructed using CRSP breakpoints. When the same analysis is
done using NYSE breakpoint, the 20% market-share or any other di�erent weighting scheme
they fail to �nd any signi�cant relationship. �is is an important contribution since some of the
robustness tests they performed, were already used by Ang et al. (2006). �erefore, di�erent re-
sults using the same trading strategy (even if they used 4 years longer sample period) shouldn’t
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be found. We can interpret this saying that if from one hand the trading strategy technique
is conceptually easy, on the other hand small se�ing di�erences can a�ect strongly the results.
Bali and Cakici (2008) tested the results using a monthly IVOL instead of a daily one, they found
no signi�cance with the new measure. Studying the accuracy of both volatility measures, they
stated that the monthly IVOL provides be�er forecast of expected volatility. For all the above
reasons, they ”safely” concluded ”that the negative trade-o� between risk and return does not
exist” (Bali and Cakici (2008)). Fu (2009), criticized Ang et al. (2006)’s results digging into the id-
iosyncratic volatility’s time-varying nature, deepening the point made by Bali and Cakici (2008)
about the ability of lagged IVOL to forecasts expected IVOL. Using the one month lagged IVOL
as a proxy for expected IVOL implies that process followed by volatility is a unit root, which
can be a random walk process with or without dri�:

IVOLt = IVOL(t − 1) + ut (1)

Where ut is IID with zero mean and �xed variance. Fu (2009) computed the average �rst order
autocorrelation (0.33) and used the Dickey-Fuller test to prove the time-varying nature of IVOL.
He concluded that using lagged IVOL as a proxy for expected IVOL is misleading. �erefore,
his approach to the Puzzle was di�erent compared to Ang et al. (2006). Instead of sorting based
on a measurable proxy’s level, he estimated expected idiosyncratic volatility. To capture the
time-varying features of IVOLs, Fu (2009) applied the Exponential Generalized Auto-Regressive
Conditional Heteroskedasticity (EGARCH) on the train data and used out-of-sample data to
estimate the expected volatilities. Simpler model as ARCH and GARCH catch volatility features
as leptokurtosis and volatility clustering. EGARCH model improves the previous models since
is able to capture the leverage e�ect too. �e model EGARCH(p,q) has the following explicit
function form:

Ri,t − rt = αi + βi(RM,t − rt ) + siSMBt + hiHMLt + ϵi,t where ϵi,t ∼ N(0,σ 2
i,t ) (2)

lnσ 2
i,t = αi+

p∑
l=1

bi,l lnσ 2
i,t−l+

q∑
k=1

ci,k

{
θ

(
ϵi,t−k
σi,t−k

)
+ γ

[����ϵi,t−kσi,t−k

���� − (2/π )1/2]} where 1 ≤ p ≤ 3, 1 ≤ q ≤ 3

(3)
Leverage e�ect is referring to the fact volatility rises more following a decrease in price than an
increase in price. Fu (2009) found a positive relationship between estimate IVOLs and returns.
He judged Ang et al. (2006)’s results not reliable as idiosyncratic volatility has been treated
wrongly as a persistent process. Fu (2009) tested this assumption reporting that was not ver-
i�ed, undermining the robustness of their �ndings. To prove the robustness of their results,
Ang et al. (2009) tested them not only for USA data but for all others G7 countries data. �e
paper brought three main contribution to the Puzzle. Firstly, the IVOL Puzzle exists not just
in the American data but is present in all the G7 equity markets (Canada, France, Germany,
Italy, Japan, United States and �e United Kingdom). Increasing the datasets, they veri�ed the
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IVOL Puzzle was not a data snooping e�ect, increasing the chance there is an economical reason
for it. Data snooping refers to the wrong statistical inference which a research can state a�er
looking to the data. To avoid data snooping, application of several tests over the same dataset
and/or the use of di�erent datasets can solve the issue4. Secondly, the di�erence between the
returns of portfolios made by high IVOL stocks with portfolios composed by low IVOL stocks
in international markets strongly comove with the same di�erence in American market. Fi-
nally, Ang et al. (2009) ruled out possible reasons behind the puzzle in the American market
as: market frictions, information dissemination and option pricing. Interesting to read is how
they answered to Fu (2009)’s critique. ”�e idiosyncratic volatility e�ect that we document in
both U.S. and international markets is not necessarily a relation that involves expected volatil-
ity, which is unobservable and must be estimated. In contrast, past idiosyncratic volatility is
an observable easily calculated stock characteristic” (Ang et al. (2009)). If till 2009 literature
was trying to weaken Ang et al. (2006) results, a�er their second publication the Puzzle gained
consensus meaning that a�er that more researchers started to �nd possible explanations for it.
Between them, Brandt et al. (2009) made a di�erence between retail and institutional investors.
�ey found the Puzzle was driven by the preference for high IVOL stocks of the retail investors
which behave as ”noise traders”. �e new point of view, the heterogeneity of investors in the
�nancial markets as a driver for the Puzzle, was further developed by Malagon et al. (2015). �e
heterogeneity of investors’ investment horizon assumption implies that to understand all the
possible relationships behind the formation of a price, we need to decompose it by di�erent
investment time horizons. With this goal in mind, Malagon et al. (2015) were the �rst to use
the Wavelet Multi-Resolution Analysis to shed a light on the Puzzle. �is technique allows to
disentangle the in�uence of several kind of investors (short-term, medium-term and long-term)
to the price formation aiming to test heterogeneity of investors’ investment horizons hypoth-
esis. �is statistical tool, provides a decomposition that instead of decomposing a time series
trend into a seasonal and a cyclic component, the time series is seen as the resulting of a sum of
time scales (our investment horizons) accounting for local changes Malagon et al. (2015). Man-
delbrot (1972) observed the dependence on market returns series are non-stationary and that
to asses �nancial risk more than two moments of the distribution are needed. Fourier analysis
works well when the time series is stationary and doesn’t have sudden changes Malagon et al.
(2015), moreover it loses the time-dependence information. Wavelets are instead localized by
both time and frequency so this transform doesn’t lose time information. Wavelet behave well
with sudden change in signals. To apply the technique, a time series X0 is decomposed into a
blurred approximation Si which represents the long-run horizons. �e short-time horizons are
represented by by the details Di . �e decomposition has the following functional form:

xt = s f ,t + d f ,t (4)

4h�ps://web.ma.utexas.edu/users/mks/statmistakes/datasnooping.html
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where f represent the level of the decomposition so that s f ,t is the level f smooth and d f ,t is
the level f smooth. �e levels behave with the following functional form:

s1,t = s2,t + d2,t (5)

�erefore we can write the original time series, if Multi-Resolution Analysis is conducted to
level J, as:

xt = sj,t +

J∑
i=1

dj,t (6)

Applying the above decomposition Malagon et al. (2015) have found a negative relationship
between IVOL and returns for the short-term investors (which for them is the time scale from 2
to 4 days) while for long-term investors (more than 16 days) the Puzzle disappears. �e results
are robust to di�erent way to compute idiosyncratic risk and to di�erent de�nition of what a
”short-term” investor means.
Herskovic et al. (2016) used the unsupervised learning technique called Principal Component
Analysis to create a proxy for IVOL, they called it CIV (common idiosyncratic volatility) and
used it as a state variable. To inspect the IVOL Puzzle, they regressed returns over CIV and a
proxy for the market variance to see the exposure to idiosyncratic risk for each stock. With the
Ang et al. (2006) trading strategy se�ing 1/0/1, they constructed the portfolios sorting monthly
based on the level of the beta related to CIV. Comparing the returns of portfolio 5 (high beta
CIV) to portfolio 1 (low beta CIV) their results con�rm the Ang et al. (2006, 2009) �ndings. �e
IVOL puzzle hence turned in part into the CIV puzzle.
A recent research from Yin, Shu and Su (2018) used Wavelet Multi-Resolution Analysis and
CIV to examine the Puzzle, discovering that for a short-term investment horizons (less than 4
months) the relationship is negative, then is positive for an intermediate investment horizons
(between 4-16 months) and �nally is negative again for a long-term investment horizons (more
than 16 months).

2.3 Hypotheses

�e literature’s debate over the Idiosyncratic Volatility Puzzle had two main periods. From 2006
till 2009, the main e�ort has been to weaken the robustness of Ang et al. (2006)’s �ndings. Even
if some critiques may have been economically reasonable and empirically proved, see Fu (2009)
about the time-varying volatility’s nature, statistically signi�cant evidence of the Puzzle was
still unexplained. Ang et al. (2009) have brought huge consensus about the robustness of their
results, in fact a�er 2009 more possible explanations to the Puzzle came up. �e most famous
one are: heterogeneity of investors’ investment horizons, lo�ery preference (behavioural ex-
planation), market frictions, average variance beta (Chen and Petkova (2012)) and IVOL as an
information content (Jiang et al. (2009)). Hou and Loh (2016), compares one versus one all the
previous hypotheses to quantify the success of each explanation (but the heterogeneity of in-
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vestors’ investment horizon). �ey �nd that most explanations explain less than 10% of the
Puzzle. Anyway they point, as best explanations, lo�ery preference and market frictions. �e
residual part of the Puzzle not explained by the best candidates chosen by Hou and Loh (2016) is
statistically signi�cant. Between all the hypotheses which have been used as reason behind the
Puzzle, heterogeneity of investors’ investment horizons captures our a�ention because it can
potentially explain both the signi�cant negative relationship between IVOL and returns and
the mixed evidence found in literature. �is hypothesis states that the compensation investors
demand for bearing idiosyncratic risk could be horizon dependent, implying that a di�erent
sign for IVOL-returns relationship could arise applying di�erent framework or di�erent set-
ting inside an equal framework to the Puzzle’s studies. Malagon et al. (2015), applying Wavelet
Multi-Resolution Analysis to disentangle the di�erent time horizons, �nd a negative relation-
ship between IVOL and returns for the short term investors while the relationship gets positive
for long-term investors. Yin et al. (2019) �nd the Puzzle for short-term investors, a positive re-
lationship for middle-term investors and a negative relationship again for long term investors.

Aim of the thesis is to search for evidence about IVOL Puzzle, considering the post-crisis
sample period (2010-2018). Given the evidence found in the literature, applying the same frame-
work of Ang et al. (2006, 2009) we expect to �nd supporting evidence to the Puzzle, since we
fail to notice reasons why the compensation demanded by investors exposed to idiosyncratic
risk should have been changed5.
About the heterogeneity of investors’ investment horizons hypothesis, we are going to test dif-
ferent holding period (di�erent values for N) of the trading strategy L/M/N, to check if there is
a change in the compensation required by investors bearing the idiosycnratic risk for a holding
period of 1,3,6 and 12 months. Given the Malagon et al. (2015); Yin et al. (2019)’s results, we
expect to observe supporting evidence to the heterogeneity of investors’ investment horizons
hypothesis.

3 �e asset pricing framework

Markowitz portfolio theory developed over the years, giving a de�nition for risk which can
be divided into systematic and unsystematic (also known as speci�c or idiosyncratic). One of
the biggest initial improvement in investing has been the consensus that to make a optimum
portfolio you cannot just take investments that are individually good, you have to study the
relationships between them instead. Speaking about risk, before 1952 investors were discussing
about risk but without a clear way to measure it. �e �rst model giving a formula to quantify
risk is due to Markowitz (1952), who derives the formula to obtain the expected return and
especially the expected risk for a given portfolio of assets. He shows how, under a certain set
of assumptions, the standard deviation of the return is a good measure of risk. �e formula to

5Sample period of Ang et al. (2006, 2009) is 1963-2000.
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asses risk is at the same time pointing the crucial role of diversifying to reduce the total risk of
a portfolio and the way to do it. Markowitz (1952) shows that the expected return of a portfolio
is the weighted average of the expected return of each portfolio, where the weights are the
percentage of value (market capitalization) relative to the total portfolio. He also shows that
to compute risk the approach is not the same, that’s why we emphasize the relevance of the
general formula for the standard deviation of a portfolio:

n∑
i=1

w2
i σi

2 +

n∑
i=1

n∑
j=1

wiwjCovij (7)

From this formula can be showed that adding stocks into the portfolio the total standard devi-
ation is reduced because the sum of weighted covariances is decreased by the additional asset.
Next step has been the Capital Market �eory, it extends previous theory by developing a model
to price an aggregation of risky assets. �e main change relative to the Markowitz Portfolio �e-
ory is the introduction of a risk-free asset, which is de�ned as an asset with zero variance. Other
features of it are the zero correlation with the risky assets and the risk-free rate of return it pro-
vides. Sharpe (1964) is generally recognized as the father of this capital asset pricing model and
he received a Nobel for it. Must be said however that Lintner (1965) and Mossin (1966) reached
similar theories autonomously. Computing the expected return and risk of a portfolio given
this new asset, they created the following formula which combines the expected return of the
market, its standard deviation and the risk-free asset to price a group of risky assets:

E(Rport ) = R f + σport

[
E[RM ] − R f

σM

]
(8)

�is is also known as the Capital Market Line. Its interpretation is that investors should just
hold the risk-free asset and the market portfolio M (with weights according to the risk aversion
of the investor) which is a completely diversi�ed portfolio since contains all the risky assets.
�e limitation of this model is that it prices a portfolio which in the end is a combination of
all the assets in the market. �erefore, it’s not able to price individual risky assets because it
can’t explain the role of idiosyncratic risk in asset pricing. �e Capital Asset Pricing Market
theory (CAPM) marks a major step forward allowing to price not just portfolios but even indi-
vidual assets. �e measure of risk moves from total volatility to just the undiversi�able share
of it which is known as systematic risk. �e ”beta” is the coe�cient in charge to quantify the
amount of systematic risk faced by a given security. From equation (8), spli�ing σport into σiσiM
representing the volatility of a given �rm’s returns times the correlation coe�cient between
returns of the �rm and the market portfolio. �e formula became:

E(Ri) = R f + βi[E[RM ] − R f ] where βi =
σiriM
σM

(9)
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Interpretation is that the market risk premium is the same for everyone, what makes securi-
ties’ returns di�erent is their exposure to it which is scaled case by case with the beta. A lot of
critiques have been made about CAPM, some questioning the validity of the assumptions be-
hind the model and others (as Roll (1977)) claiming the CAPM is not testable and �nally others
empirically testing the ability of the model to price security. Ross (1976), with the Arbitrage
Pricing �eory tried to come up with an alternative model to face the mixed evidence regard-
ing the CAPM. If in the previous model the only risk factor priced is the market risk, in APT
we can have multiple risk factors, therefore the �nal return for a given security depends by its
exposure to di�erent source of risks.

E(Ri) = λ0 + λ1bi1 + λ2bi2 + ... + λkbik (10)

Key features of APT are the low number of assumptions required (especially compared to the
previous models) and the unspeci�ed nature of the possible risk factors. �e main di�erence
between CAPM and APT is the multi-factor nature of risk compared to just the market risk
of CAPM. In practice several multifactor models have been applied, the one that will be used
in the thesis is the Fama-French three-factor model which is formed at a microeconomic by
considering the relevant characteristics of a �rm. Fama and French (1993) considered the main
source of risk in the market: the market itself, the Size of the �rm and the Book-to-Market
factor. �e size factor is a portfolio of small capitalization �rms’ return minus a portfolio of
large capitalization �rms’ return. �e Book-to-Market factors instead is the return of a portfolio
containing stocks with high book-to-market ratio minus the return of a portfolio with low book-
to-market ratio stocks. �e former should capture the risk linked to the small �rms, the la�er
should capture the risk of �rms which for several reasons have their assets under-priced by the
market.

In our thesis, we use CAPM and Fama-French three-factor models to test the trading strategy
based on idiosyncratic volatility. Since IVOL is not a factor, instead of applying the framework
used by Fama and French (1993) which sort based on betas we sort based on the 1 and 2 months
lagged idiosyncratic volatility.

4 �e Volatility

Volatility in Finance has been used as a risk measure since Markowitz (1952). Volatility is a
measure of change of a quantity over time, in Finance it quanti�es the tendency of a stock’s re-
turns to go up and down. �e higher the volatility, the riskier the stock. Since volatility measure
upward and downward movements, it opens positive as much negative chances to investors.
From a computational point of view, historical volatility is computed as the square root of vari-
ance of the returns over the horizon considered. �e frequency of returns used when estimating
historical volatility can be: daily, weekly and monthly. Should be mentioned that even high-
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frequency estimations can be done by having a frequency of 1,5 or 10 minutes6. A high volatility
means the data is widely spread around the mean, while a low volatility means the data are clus-
tered around the mean.
Since in Finance we refer to volatility over stocks’ returns, we present some stylized facts about
them. Returns have a distribution that empirically exhibit excess peakedness at the mean and
fat tails compared to a normal distribution, as shown in Figure 17:

Figure 1: Empirical distribution of monthly returns for the S&P 500 vs �eoretical normal dis-
tribution given the parameters

Figure 1 represents the empirical distribution against a normal distribution with parameters
estimated by the data. Monthly returns for the S&P 500 shows a leptokurtosis distribution. Fat
tails are empirical evidence that ”worst case scenarios” are more likely compared to the theo-
retical normal distribution.
Volatility clustering is the tendency of large changes in prices of �nancial assets to cluster to-
gether. Large returns are expected to follows large returns while small returns are expected
to follow small returns8, which cause the tendency for volatility to appear in bunches as in
Figure 29

6h�ps://www.r-bloggers.com/what-is-volatility/
7h�ps://www.evestment.com/resources/investment-statistics-guide/using-statistics-to-understand-return-

characteristics/
8h�ps://www.thoughtco.com/volatility-clustering-in-economics-1147328
9Schwert (2016), available at h�p://schwert.simon.rochester.edu/spvol.pdf.
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Figure 2: Rolling annualized standard deviation of S&P 500 daily returns vs VIX, 1928-2016

Volatility clustering shows how volatility shocks in �nancial markets pre�gure periods with
higher volatility. Because of that, volatility is commonly de�ned a persistent process because
its levels tend to persist day by day till the end of the cycle.
Volatility is cyclical, showing a pa�ern of increasing trend followed by decreasing trend. �e
predictability of its cyclical nature is exploited by trading strategies aiming to predict the trend
reversion.
Volatility is mean-reverting, meaning that in a long enough period it will come back to the mean
value a�er a shock.
Volatility is known to be a long-memory process, which refers to the level of the statistical depen-
dence between two points in time. As we increase the time gap between them, the rate of decay
of their dependence implies if the process has long-memory. To be classi�ed as a long-memory
process the statistical dependence between the two points decay slower than an exponential de-
cay10. Mean reversion and persistency together capture the nature of volatility to keep a certain
level day by day but to reverse to the mean in a long enough time period. �is characteristic
can be easily seen in Figure 2, where volatility can have high values a year but reverse toward
the mean.

We just described some empirical evidence of volatility. We said in the previous section that
volatility started to be widely used as a risk measure in Finance since Markowitz (1952). We also
stated that the main limitation of the Capital Market Line framework is to not be able to price
individual assets, because there was not a way to quantify the individual exposure (β) to the

10h�ps://prateekvjoshi.com/2016/08/27/what-is-long-memory-in-time-series-analysis/
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market risk. CAPM solved the issue, moving the measure of risk from total volatility to just the
undiversi�able share of it which is known as systematic risk. �e CAPM’s framework has given
a way to make a distinction between total and idiosyncratic risk showing the big conceptual
di�erence between them. We de�ned volatility of an asset as the standard deviation of returns
with a given frequency, therefore it can be easily measured. On the other hand idiosyncratic
volatility can only be estimated from the model’s residuals, therefore is model dependent. If
idiosyncratic volatility is model dependent then its accuracy is model dependent too, hence the
be�er the model the be�er the idiosyncratic volatility we estimate.

5 �e Idiosyncratic Volatility

Risk, intended as the standard deviation of returns over time, can be divided into two main
components. When a risk is faced by all the securities in the market (can’t be diversi�ed because
related to macroeconomic factors), is classi�ed as systematic risk. As systematic are considered:
the interest rate risk, the market risk, the purchasing power risk, the exchange rate risk and the
political risk11. On the other hand, the idiosyncratic risk is an industry/�rm/stock speci�c risk
which can be diversi�ed away just increasing the number of stocks inside the portfolio. �e
number required of assets to hold in order to construct a well-diversi�ed portfolio was estimated
as 10 in order to erase 70% of the unsystematic risk Evans and Archer (1968). Later, Statman
(1987) increased this number to 30/40. Eventually Campbell et al. (2001) stated that ”the number
of randomly selected stocks needed to achieve relatively complete portfolio diversi�cation” is
about 50. Figure 3 shows that to hold a fully diversi�ed portfolio it’s su�cient to increase
the number of assets inside the portfolio. �e intuition is that usually assets are not perfectly
correlated, therefore an additional asset will decrease the portfolio’s idiosyncratic risk as shown
in formula (7) from Markowitz (1952).

11h�ps://e�nancemanagement.com/investment-decisions/systematic-risk
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Figure 3: Diversi�cation as function of number of assets

Using the Ang et al. (2006)’s methodology, the IVOL computation derives from the squared
root of the residuals’ variance

√
Var (ϵi,t ) from the Fama-French 3 factors model (OLS multivari-

ate regression):

rit = αi + βi,mktMKTt + βi,SMBSMBt + βi,HMLHMLt + ϵi,t (11)

�erefore, from now on when we talk about IVOL we refer to idiosyncratic volatility relative
to the Fama-French three-factor model.

5.1 Time-varying nature of idiosyncratic volatility

One of the main critiques to Ang et al. (2006) has been made by Fu (2009). He states that if IVOL
risk is priced, then there should be an empirical relation between expected returns and expected
IVOLs. �e usual approach to test this relation is using realized returns as a dependent variable
in cross-sectional regressions while as regressors we have expected IVOL and other control
variables:

Ri,t = αt + β0,tEt−1
[
IVOLi,t

]
+

K∑
k=1

βk,tXk,i,t + ϵi,t where i = 1, 2, ...,Nt ; t = 1, 2, ...,T (12)

On the le�-hand side, we got the realized returns for stock i over time. On the right-hand side,
there is the expectation conditional to the available information at time t − 1 of IVOL, plus the
other control variables of our model. Nt is the total number of stocks available at time t while
T is the total number of periods. If there were no relationship between expected return and
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expected IVOL then β0,t would be equal to zero or not statistically signi�cant. Given the study
over under-diversi�cation of Merton (1987) he �nds β0,t > 0 while given Ang et al. (2006) should
�nd β0,t < 0 . Fu (2009) states ”It is crucial to have a quality estimate ofEt−1[IVOLt ], the expected
idiosyncratic volatility”. His intuition is that IVOLi,t−1 to be a quality proxy of Et−1[IVOLt ],
IVOL must be a highly persistent process as the random walk. Since the idiosyncratic risk
re�ects industry/�rm speci�c information, which are volatile over time, Fu (2009) test if IVOL
is a highly persistent process. He computes some statistics over the IVOLs calculated for each
company. �e time series mean reported is 16.87% and the mean standard deviation is 9.94%. �e
ratio of the standard deviation over the mean, known as mean coe�cient of variation, is 0.55
therefore he suggests the idiosyncratic volatilities vary substantially over time (the standard
deviation covers 55% of the mean). We calculate the same statistics on IVOL computed as the
monthly standard deviations on daily returns for our sample. We �nd a monthly time series
mean of 2.0% while a standard deviation of the monthly idiosyncratic volatility of 2.47%. Our
coe�cient of variation is slightly bigger than one meaning that IVOLs are not clustered close
around the mean in the data and that IVOLs vary a lot over time. We plot the average monthly
IVOLs over time in Figure 4.

Figure 4: Plot over time of the average monthly idiosyncratic volatilities between �rms in our
dataset

From Figure 4 we can spot 4 peaks: one at the end of 2011, one at the start of 2016, one at
the end of 2016 and the last one at the end of the sample period. We can also spot some of the
features we described about time series volatility. Idiosyncratic volatility in Figure 4 is cyclical,
as downward periods follows upward trends. Volatility clustering tendency is present as well the
mean-reverting nature, we cautiously state that even if idiosyncratic volatility is a conceptually
di�erent kind of risk measure, it shares some common features with time series volatility. Fu
(2009) then studies the IVOL autocorrelation function, �nding a mean autocorrelation at �rst
lag of 0.33 that decays slowly. We do the same and �nd out a �rst lag of 0.647 that decays slowly
too. Figure 5 shows the autocorrelation function of average monthly IVOLs.
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Figure 5: autocorrelation function of the average monthly volatilities with 5 lags

�e point Fu (2009) proved, is that idiosyncratic volatility process doesn’t follow a random
walk process therefore the expected IVOL can’t be predicted using the 1 month lagged IVOL.
Even if theoretically Fu (2009) his critique is right, by reading Ang et al. (2006) the feeling is that
they were not trying to state something about the IVOL process or constructing a conditional
asset pricing model. Moreover, one of the best traits about Ang et al. (2006) �ndings is that they
are not built on hard theoretical frameworks, but just on a trading strategy which is conceptually
easy for researchers to replicate. �eir paper is not about forecasting volatility but regards the
fact that sorting stocks based on idiosyncratic risk (that should theoretically not even yield a
compensation), on average the low IVOL stocks outperform the high IVOL stocks.

6 Trading strategy

Following Ang et al. (2006), we de�ne our framework as the trading strategy L/M/N. At a point
in time t we sort the daily stocks returns based on the L-months lagged IVOLs into 5 quan-
tiles, then we wait M-months and eventually we hold these portfolios (the 5 quantiles) for N-
months12. �e IVOLs are constructed monthly over daily returns. We examine if going short
on P5 and long on P1 is pro�table. We analyse the following trading strategy’s se�ings: 2/0/1
with monthly rebalancing, 1/0/1 with monthly rebalancing, 1/0/3 with quarterly rebalancing,
1/0/6 with semesterly rebalancing and 1/0/12 with annual rebalancing.
�e di�erence in an investor who does monthly rebalancing based on a factor (IVOL in our
case) compared to a yearly rebalancing is the di�erent level of activeness used to manage his
portfolio. Investors whom decide to rebalance every year are closer to a passive investing man-
agement while monthly rebalancing investors are more active in their portfolio management.

12�e portfolios returns at the end of the M period are value-weighted

18



6.1 Trading strategy 2/0/1

�e analysis starts over a dataset downloaded from the Kenneth R. French Data Library 13. �e
full time period is from July 1963 to April 2019. About the portfolio’s construction, they are
formed monthly on the variance of the residuals from Fama-French three-factor model. �e
trading strategy used to form the portfolios is 2/0/1 with monthly rebalancing period. �e
stocks are the ones listed from NYSE, AMEX and NASDAQ as for Ang et al. (2006). �e dataset
contains monthly data (divided in quintiles based on IVOLs) about: equally-weighted returns,
value-weighted returns and �rms’ size. Computed some statistics over them, the results (with
sample period 1963-2019) are in Table 1. �e �ndings show the same pa�erns of Ang et al.

Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 0.94 3.67 6980.31 0.15*** 0.13***
[2.87] [2.99]

P2 0.96 4.46 3563.43 0.06 0.01
[1.23] [0.22]

P3 1.09 5.12 1943.01 0.11 0.07
[1.59] [1.10]

P4 1.08 6.07 968.92 0.01 -0.03
[0.08] [-0.46]

P5 0.66 . 7.72 266.70 -0.54*** -0.58***
[-3.42] [-5.49]

P5-P1 -0.28 -0.68*** -0.71***
[-1.19] [-3.37] [-5.15]

Table 1: Dataset comes from Kenneth R. French Library. It contains already constructed monthly
portfolio returns formed based on idiosyncratic volatility levels. P1 (P5) is the portfolio with
the lowest (highest) idiosyncratic volatilities. �e statistics Mean and Std. Dev. are measured
in monthly percentage terms over (not excess) simple returns. Size is the average market capi-
talization of the portfolio. P5-P1 refers to the di�erence in monthly returns between portolio 5
and 1. �e last two columns are the Jensen’s alphas relative to CAPM and Fama-French three-
factor models. Robust Newey and West (1986) t-statistics are reported in the square brackets.
*** means the value is statistically signi�cant at 1% level, ** at 5% level and * at 10% level from
a two-tailed test. Sample period is 1963-2019, trading strategy is 2/0/1

(2006) �ndings. What is di�erent is the magnitude of the spread return between portfolio 5
and 1 which is lower (their was 1.06%) and not statistically signi�cant. Aside that the returns
are decreasing from P1 to P5 and the spread of the alphas between portfolio 5 and 1 is sizeable
and statistically signi�cant. Hence, we �nd evidence of the IVOL Puzzle in this dataset with
2/0/1 trading strategy. What is interesting to see is that going from P1 to P5 the volatility of the
returns increase, while the average size monotonically decreases. Another relevant fact is that
the alphas, which can be interpreted as the ability from the model used to price the portfolio, are
signi�cant just for P1 and P5. It means that just the portfolios made of stocks with the highest

13mba.tuck.dartmouth.edu site
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and the lowest IVOLs are mispriced.
Since the main goal of this thesis is to �nd out if evidence of IVOL Puzzle survived the crisis,
we repeated the same analysis over the same dataset but with a time period that goes from 2010
to 2018. �e results are in Table 2:

Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 1.06 3.28 22566.64 0.14 0.10
[1.55] [1.29]

P2 1.15 3.97 9841.94 0.02 0.02
[0.26] [0.34]

P3 1.15 4.53 5405.86 -0.13 -0.10
[-1.26] [-1.00]

P4 1.05 5.18 2616.87 -0.38** -0.31**
[-2.36] [-2.47]

P5 0.85 5.85 723.14 -0.64** -0.49**
[-2.33] [-2.37]

P5-P1 -0.21 -0.78** -0.60**
[-0.60] [-2.14] [-2.30]

Table 2: Dataset comes from Kenneth R. French Library. It contains already constructed monthly
portfolio returns formed based on idiosyncratic volatility levels. P1 (P5) is the portfolio with
the lowest (highest) idiosyncratic volatilities. �e statistics Mean and Std. Dev. are measured
in monthly percentage terms over (not excess) simple returns. Size is the average market capi-
talization of the portfolio. P5-P1 refers to the di�erence in monthly returns between Portolio 5
and 1. �e last two columns are the Jensen’s alphas relative to CAPM and Fama-French three-
factor models. Robust Newey and West (1986) t-statistics are reported in the square brackets.
*** means the value is statistically signi�cant at 1% level, ** at 5% level and * at 10% level from
a two-tailed test. Sample period is 2010-2018, trading strategy is 2/0/1

Considering just the post-crisis period the pa�erns are the same of Table 1. About the alphas
t-statistics, this time the only 2 portfolios that are signi�cant are portfolio 4 and 5. Hence CAPM
and Fama-French three-factor models misprice just the portfolios with high idiosyncratic risk
levels. To study if there are di�erence in results that are caused by the di�erent trading strategy’s
se�ing used, we run the same analysis in Table 3 for the Ang et al. (2006) sample period14.

141963-2000.
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 1.09 3.80 1908.85 0.15*** 0.09*
[1.55] [1.29]

P2 1.15 3.97 9841.94 0.02 0.02
[0.26] [0.34]

P3 1.15 4.53 5405.86 -0.13 -0.10
[-1.26] [-1.00]

P4 1.05 5.18 2616.87 -0.38** -0.31**
[-2.36] [-2.47]

P5 0.85 5.85 723.14 -0.64** -0.49**
[-2.33] [-2.37]

P5-P1 -0.21 -0.78** -0.60**
[-1.1] [-2.70] [-4.42]

Table 3: Dataset comes from Kenneth R. French Library. It contains already constructed monthly
portfolio returns formed based on idiosyncratic volaility levels. P1 (P5) is the portfolio with the
lowest (highest) idiosyncratic volatilities. �e statistics Mean and Std. Dev. are measured in
monthly percentage terms over (not excess) simple returns. Size is the average market capital-
ization of the portfolio. P5-P1 refers to the di�erence in monthly returns between portolio 5
and 1. �e last two columns are the Jensen’s alphas relative to CAPM and Fama-French three-
factor models. Robust Newey and West (1986) t-statistics are reported in the square brackets.
*** means the value is statistically signi�cant at 1% level, ** at 5% level and * at 10% level from
a two-tailed test. Sample period is 1963-2000, trading strategy is 2/0/1

Compared to Ang et al. (2006) �ndings, the pa�erns are the same but there are in magni-
tude and robustness of some measures. �e P5-P1 return is -0.21% while it should be -1.06%.
Additionally, the CAPM and FF3 alphas are respectively -0.78% and -0.60% while they should
be -1.38% and -1.31%.
Why are there these discrepancies? �e stocks considered should be the same and the sample
period considered is the same. �e only di�erence relies in the trading strategy’s se�ing which
in our case is 2/0/1 compared to Ang et al. (2006) that is 1/0/1, meaning they sort at time t based
on 1 month lagged IVOL while in this dataset stocks are sorted based on 2 month lagged IVOL.
Other possible explanations can be di�erent breaking points used, di�erent ways to compute
the weights to obtain the value-weighted returns or general computational di�erences of this
kind.

6.1.1 Dataset from CRSP

�e analysis now shi�s over a dataset from Wharton Research Data Service15. It contains the
daily returns of stocks on primary listings for NYSE, NYSE MKT (previously known as AMEX),

15h�p://www.crsp.com/products/research-products/crsp-us-stock-databases
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NASDAQ and ARCA exchanges. �e time period considered is the post-crisis one, therefore
2010-2018. Over the dataset will be tested the following trading strategies: 1/0/1, 1/0/3, 1/0/6
and 1/0/12. �e columns/variables it contains are: daily returns, price per share and number
of share outstanding. �e last two variables are needed to compute the value-weighted returns
of each portfolio. Multiplying them, we obtain the market capitalization which will be used to
weight the returns inside the portfolios.

6.2 Trading strategy 1/0/1

On the new dataset, we construct monthly portfolios of stock returns based on �ve levels of
the 1 month lagged IVOLs. �e results are reported in a table which is in the layout similar
to Ang et al. (2006)’s table for comparison purposes. �is means the statistics computed for
the 5 portfolios are: mean, standard deviation, market share (intended as average market cap-
italization of the portfolio over the sum of the 5 portfolios’ market capitalizations) and alphas
from CAPM and Fama-French three-factor models. In order to be as close as possible to the real
application of a trading strategy, to compute the value-weighted returns we used as weights
the market capitalization of the �rst day of the month considered. Results are in Table 4. Our

Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 0.94 2.88 0.21 0.41*** 0.38***
[3.72] [3.70]

P2 0.99 3.66 0.40 0.29*** -0.26***
[2.63] [2.89]

P3 0.99 4.30 0.25 0.18* 0.18*
[1.81] [1.68]

P4 0.81 4.82 0.11 -0.06 -0.01
[-0.40] [-0.06]

P5 0.63 5.66 0.04 -0.31 -0.22
[-1.22] [-1.00]

P5-P1 -0.32 -0.72** -0.59**
[-0.80] [-2.53] [-2.50]

Table 4: Forming value-weighted quintile portfolios every month we sort stocks based on id-
iosyncratic volatility relative to Fama and French (1993). Volatility is computed using daily data
from the previous month. P1 (P5) is the portfolio with the lowest (highest) idiosyncratic volatil-
ities. �e statistics Mean and Std. Dev. are measured in monthly percentage terms over (not
excess) simple returns. MKT Share is the average relative MKT share of the portfolio. P5-P1
refers to the di�erence in monthly returns between portolio 5 and 1. �e last two columns are
the Jensen’s alphas relative to CAPM and Fama-French three-factor models. Robust Newey and
West (1986) t-statistics are reported in the square brackets. *** means the value is statistically
signi�cant at 1% level, ** at 5% level and * at 10% level from a two-tailed test. Sample period is
2010-2018, trading strategy is 1/0/1

�ndings have the same pa�erns of Ang et al. (2006) but are in magnitude closer to the ones
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we have found on the previous dataset (Table 1, Table 2 and Table 3). In Table 4 P5-P1 return
is -0.32% but it’s not statistically signi�cant. �e CAPM and Fama-French three-factor models
alphas are in magnitude smaller than Ang et al. (2006), but are statistically signi�cant. Overall,
we observe additional evidence of the IVOL Puzzle, since CAPM and Fama-French three-factor
model misprice the P5-P1 portfolio’s alphas yielding statistically signi�cant monthly alphas of
-0.72% and -0.59% on the long P5 short P1 strategy. �e alphas that are statistically signi�cant
are from P1 and P2 meaning the two models used fail to price assets with low levels of idiosyn-
cratic risk. �e decreasing pa�ern in market share from P1 to P5 is decreasing starting from
P3 as in Table 1, Table 2 and Table 3. Plo�ing the monthly returns of Portfolio 5 against Port-
folio 1 (Figure 6) we observe a few characteristics which were shown in Table 4 too. Portfolio
5 (blue line) which contains the stocks with greatest exposure to idiosyncratic risk vary much
more than the Portfolio 1 (black line). Deserve a mention also the strong cyclical nature of the
monthly returns for both portfolios.

Figure 6: Plot of the monthly returns for Portfolio 1 (stocks with lowest idiosyncratic volatility
levels) and Portofolio 5 (stocks with highest volatility levels). P1 is the black line, P5 is the blue
line.

Figure 7 shows the monthly returns of the P5-P1 which represents the trading strategy
of going short on the portfolio stocks with low idiosyncratic risk exposure and long on the
portfolio formed by stocks with high idiosyncratic volatility levels. Besides two peaks of large
positive returns (end of 2011 and start of 2016) and the cyclical nature of the monthly returns,
we know by Table 4 that the average monthly performance of P5-P1 has been −0.32%.
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Figure 7: Plot of the monthly returns of trading strategy P5-P1 (long on Portfolio 5 and short
on Portfolio 1).

6.3 Trading strategy 1/0/3

As in the previous strategy, we sort based on 1 month lagged IVOL, although this time we hold
the portfolios for 3 months. �e rebalancing therefore is made quarterly. Results are in Table 5.
�e �ndings have the same pa�erns of the previous strategies. �is time the magnitude of the
values is -1.30% approximately three times bigger than 1/0/1. Hence negative compensation for
holding idiosyncratic risk holds keeping the portfolios for 3 months compared to one. Compared
to Ang et al. (2006), here P5-P1 return is not statistically signi�cant. Alphas relative to CAPM
and Fama-French three-factor models for P5-P1 are -2.67% and -1.95% about three times bigger
than strategy 1/0/1 and are strongly signi�cant. Mean and market share are decreasing going
from P1 to P5 showing the same pa�ern of the previous strategies.
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 2.77 5.18 0.24 1.28*** 1.00**
[2.72] [2.19]

P2 2.89 6.80 0.40 0.90*** 0.66***
[3.17] [2.85]

P3 2.48 7.76 0.23 0.17 0.23
[1.26] [0.88]

P4 1.86 9.23 0.10 -0.84 -0.65
[-1.58] [-1.05]

P5 1.46 10.35 0.04 -1.38* -0.94
[-1.76] [-1.22]

P5-P1 -1.30 -2.67*** -1.95**
[-0.97] [-3.04] [-2.09]

Table 5: Forming value-weighted quintile portfolios every three months we sort stocks based
on idiosyncratic volatility relative to Fama and French (1993). Volatility is computed using daily
data from the previous month. P1 (P5) is the portfolio with the lowest (highest) idiosyncratic
volatilities. �e statistics Mean and Std. Dev. are measured in quarterly percentage terms over
(not excess) simple returns. MKT Share is the average relative MKT share of the portfolio. P5-P1
refers to the di�erence in quarterly returns between portolio 5 and 1. �e last two columns are
the Jensen’s alphas relative to CAPM and Fama-French three-factor models. Robust Newey and
West (1986) t-statistics are reported in the square brackets. *** means the value is statistically
signi�cant at 1% level, ** at 5% level and * at 10% level from a two-tailed test. Sample period is
2010-2018, trading strategy is 1/0/3

6.4 Trading strategy 1/0/6

�is time the holding period of the portfolios sorted based of 1 month lagged IVOL is 6 months.
�e rebalancing is semesterly. Results are in Table 6. Compared to 1/0/3, the gap in return
between P5 and P1 substantially shrinks (-0.21% for 1/0/6 compared to -1.30% for 1/0/3). Since
the holding period is twice the size, assuming the compensation was still negative from month
3 to 6 and given the same pa�ern we found with previous strategies, we were expecting a bigger
gap. About the other statistics, standard deviations are just slightly increasing from P1 to P4 and
decreasing from P4 to P5. �e evidence of small size �rms in P5 compared to the other portfolios
completely disappeared. Furthermore, the alphas shrink too (-0.95% and -0.28%) compared to
1/0/3 strategy and they are not statistically signi�cant.
�e fact IVOL Puzzle vanished with a holding period of 6 months could be caused by several
reasons. We state that testing di�erent holding periods is a way to bring new evidence to the
heterogeneity of investors’ investment horizon hypothesis. Since we are not decomposing how
the di�erent time scales are a�ecting the price, holding a portfolio for a given period means
to quantify the sum of the e�ects each time scale has. We interpret each time scale has the
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 5.63 7.22 0.25 1.83*** 0.68
[4.27] [1.46]

P2 7.10 8.00 0.20 2.89*** 2.74***
[15.57] [4.42]

P3 5.64 8.86 0.18 1.09 0.88
[1.44] [0.86]

P4 5.55 9.39 0.18 0.72 0.13
[0.68] [0.17]

P5 5.42 9.00 0.19 0.88 0.96
[0.90] [0.52]

P5-P1 -0.21 -0.95 0.28
[-0.40] [-1.12] [0.25]

Table 6: Forming value-weighted quintile portfolios every six months we sort stocks based on
idiosyncratic volatility relative to Fama and French (1993). Volatility is computed using daily
data from the previous month. P1 (P5) is the portfolio with the lowest (highest) idiosyncratic
volatilities. �e statistics Mean and Std. Dev. are measured in semesterly percentage terms over
(not excess) simple returns. MKT Share is the average relative MKT share of the portfolio. P5-P1
refers to the di�erence in semesterly returns between Portolio 5 and 1. �e last two columns are
the Jensen’s alphas relative to CAPM and Fama-French three-factor models. Robust Newey and
West (1986) t-statistics are reported in the square brackets. *** means the value is statistically
signi�cant at 1% level, ** at 5% level and * at 10% level from a two-tailed test. Sample period is
2010-2018, trading strategy is 1/0/6

compensation required by the investors operating with a time horizon equal to that time scale.
�erefore, the fact the IVOL Puzzle (a lower compensation for high IVOL stocks compared to
low IVOL stocks) is reduced till to disappeared, can be explained by the presence of a positive
compensation for bearing idiosyncratic risk approximately from the 3rd to the 6th month. We
don’t know if the sign changed exactly at the start of the 4th month, as we don’t know when
and if the positive compensation changes sign again later.

6.5 Trading strategy 1/0/12

Holding period is set to 12 months for portfolios based on 1 month lagged IVOL. Compared
to Ang et al. (2006), that monthly rebalance 1/12 of the allocation to assure an always high
exposure to IVOL, our trading strategy as all the previous one has the rebalancing equal to the
holding period. Results are in Table 7:
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 10.60 9.53 0.34 5.32 5.26**
[0.61] [1.99]

P2 10.19 13.26 0.35 2.75*** 2.01***
[4.40] [6.96]

P3 9.78 15.31 0.20 1.41 1.04
[1.14] [1.14]

P4 6.63 15.91 0.09 -1.99** -2.54***
[-2.29] [-7.24]

P5 6.17 22.57 0.03 -5.34*** -3.75***
[-5.44] [-5.34]

P5-P1 -4.44 -10.66*** -9.00***
[-1.34] [-4.63] [-4.17]

Table 7: Forming value-weighted quintile portfolios every twelve months we sort stocks based
on idiosyncratic volatility relative to Fama and French (1993). Volatility is computed using daily
data from the previous month. P1 (P5) is the portfolio with the lowest (highest) idiosyncratic
volatilities. �e statistics Mean and Std. Dev. are measured in annual percentage terms over
(not excess) simple returns. MKT Share is the average relative MKT share of the portfolio. P5-P1
refers to the di�erence in annual returns between Portolio 5 and 1. �e last two columns are
the Jensen’s alphas relative to CAPM and Fama-French three-factor models. Robust Newey and
West (1986) t-statistics are reported in the square brackets. *** means the value is statistically
signi�cant at 1% level, ** at 5% level and * at 10% level from a two-tailed test. Sample period is
2010-2018, trading strategy is 1/0/12

Increasing additionally the holding period from 6 to 12 months, the IVOL Puzzle appears
again. Standard Deviations increase from P1 to P5 while Market Share decrease from P1 to P5.
�e usual pa�erns from P1 to P5 for each statistics are back. �e alphas’ t-statistics are more
robust than the other strategies. �e 1/0/12 strategy brings again evidence of the IVOL Puzzle.

7 Trading strategy’s results

7.0.1 Idiosyncratic Volatility Puzzle’s post-crisis evidence

Main theme of the thesis is to search for evidence about the IVOL Puzzle in the post-crisis period.
We apply several trading strategies (2/0/1, 1/0/1, 1/0/3, 1/0/6 and 1/0/12) based on IVOL, to see
if the negative relationship between IVOL and returns is still present a�er the crisis. Across
these strategies, even if the spread in returns between P5 and P1 was usually not statistically
signi�cant, we always have found relevant and strongly signi�cant spread alphas between P5
and P1 relative to CAPM and Fama-French 3-factor models (but for trading strategy 1/0/6). What
has been interesting to see is that all the pa�erns which made Ang et al. (2006, 2009)’s results
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provocative are still present in the �nancial markets. We refer to the low performance of high
IVOL stocks (that are usually small size stocks), which made the cross-sectional relationship
between idiosyncratic risk and returns the Puzzle we still face nowadays. We �nd for trading
strategy 1/0/1 an average monthly return from going long on high IVOL stocks and short on
low IVOL stocks of -0.32%, although the value is not statistically signi�cant. However we �nd
always relevant and statically signi�cant alphas (but for trading strategy 1/0/6), meaning the
strategies are able to ”beat the market”. �is expression is used when active managers form
portfolios capable of gaining actual returns that exceed risk-adjusted expected returns. �e total
actual return minus the risk-adjusted expected return equals the ”alpha” gained and it measures
the value the active managers bring into the investment process. We replicate the framework
of Ang et al. (2006) for the post-crisis sample period (2010-2018), therefore we don’t know if
the missing signi�cance for the average P5-P1 strategy return is caused by the di�erent sample
period or by a di�erent approach to the Puzzle in the codes wri�en on R program. Would be
interesting to apply the same analysis to the Ang et al. (2006)’s sample period aiming to capture
their same results. Given the sensitivity of the �ndings to changes in the coding side of the
analysis, especially for the computation of the value-weighted returns, an equivalent result for
the same sample period would con�rm the validity of our model ruling out eventual doubts
about the �ndings. �e missing statistical signi�cance of the P5-P1 average return is the only
di�erence with Ang et al. (2006)’s �ndings. Our outcomes show evidence of the IVOL Puzzle in
the post-crisis period16.

7.0.2 Heterogeneity of investors’ investment horizons hypothesis

Second goal of the thesis is to test the heterogeneity of investors’ investment horizon hypothe-
sis, that started to be developed from Brandt et al. (2009). Key intuition behind is the presence of
several kind of investors, which implies heterogeneity of their needs and consequently of their
investment horizons in �nancial markets. Malagon et al. (2015), is the �rst one to use Wavelet
Multi-Resolution Analysis for IVOL Puzzle in order to properly disentangle the time scale that
compose the �nal price. �ey �nd a negative relation between IVOL and returns for short-term
investors while a positive one for long-term investors. In our study, we play with the holding
period (and the rebalancing frequency) to see how the relation behaves for a holding period
of 1, 3, 6 and 12 months. �is approach is di�erent from the Malagon et al. (2015). For exam-
ple, when we test the relationship for an holding period of one month, the result (that is the
�nal return we �nd for that strategy) should have inside all the smaller investment horizons
e�ects that converge in our framework in a unique number. Malagon et al. (2015) �nd a nega-
tive relation for a time scale from day 2 to day 4, while a positive one for time horizons bigger
than 16 days. �erefore, when we apply strategy 1/0/1, the �nal relationship has inside both
the short/long-term e�ects found by Malagon et al. (2015). Crucial is the se�ing of the Wavelet
Multi-Resolution Analysis, which allows to capture several di�erent time scales. �is technique

162010-2018.

28



divides the process into a ”smooth” and one or more ”detail” e�ects. Malagon et al. (2015) set
Wavelet Multi-Resolution Analysis with one, two and three level. Hence they test respectively
from day 2 to day 4 (D1) and more than 4 days (S1), D1 and from day 4 to day 8 (D2) and more
than 8 days (S1) and D1 and D2 and from day 8 to day 16 (D3) and more than 16 days (S1). Since
the technique is recursive, the detail e�ects will be the same for all the levels. Di�erent is the
se�ing for Yin et al. (2019), discovering that for a short-term investment horizons (less than 4
months) the relationship is negative, then is positive for an intermediate investment horizons
(between 4-16 months) and �nally is negative again for a long-term investment horizons (more
than 16 months). Our analysis is not considering the single time scales e�ects, it evaluates in-
stead the performance of di�erent degrees of activeness in the portfolio management. However,
the two approaches are not completely separated. In fact, if increasing the holding period the
IVOL Puzzle weakens, this could mean that investors with a bigger time scale are demanding a
premium for bearing idiosyncratic risk. What we observe in our results is that there is a neg-
ative premium for holding high IVOL stocks for 1 month and for a 3 months holding period.
With trading strategy 1/0/6, the compensation changes. If we hold the high IVOL stocks for 6
months the IVOL Puzzle disappears, since there is no signi�cance di�erence between P5 and
P1 in returns and in the Jensen’s alphas relative to CAPM and Fama-French 3-factor models. A
possible explanation is that there is an inversion of the relationship’s sign between IVOL and
returns from investors with an investment horizon of 4, 5 and 6 months. Since our results for
trading strategy 1/0/1 and 1/0/3 still show a negative relationship, the change of sign should be
between month 4 and 6. Overall the result on trading strategy 1/0/6 is that there is no signi�cant
relationship between IVOL and returns. Moving to the next strategy’s results, holding the high
IVOL stocks for 12 months the Puzzle shows o� again.
We are going to try to interpret the overall result about the investigation of the relevance of
the heterogeneity of investors’ investment horizon hypothesis, given the studies provided by
Malagon et al. (2015) and Yin et al. (2019). Even if both the studies disentangle the e�ect of dif-
ferent time horizons, they consider di�erent time scales. Malagon et al. (2015) works with days
and their maximum horizon is ”more than 16 days” while Yin et al. (2019) works with months
and their maximum horizon is more than 16 months. We state the performance of trading
strategy 1/0/6 could be explained by a change in sign of the relationship IVOL-returns some-
where between 4th and 6th months. �e following months a�er the 6th cannot be interpreted
easily because we just know the overall relationship IVOL-returns a�er 12 months (which is
negative and signi�cant). �is doesn’t exclude a possible positive relationship IVOL-returns for
investors with an investment horizon lasting slightly more than six months . What we observe
is that on average at the end of the 12th month the relationship is negative again. �is change of
sign somewhere around the middle of the year can �t with results of Malagon et al. (2015) and
Yin et al. (2019). In particular Yin et al. (2019) �nd that before the 4th month the relationship
IVOL-returns is negative which is in line with our results (both 1/0/1 and 1/0/3 have evidence
of IVOL Puzzle). �ey found a positive relationship between 4th and 16th month while we found
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evidence of a possible positive relationship between approximately 4th and 6th/7th month. Even-
tually their sign changes again for investment horizons bigger than 16 months while our results
show a negative relationship at least till 12th month.
Since a given holding period return should be the results of all the investment horizons that
compose the period, the fact we spot a di�erent compensation for a di�erent holding period is
an evidence supporting the heterogeneity of investors’ investment horizon hypothesis. Gen-
erally speaking, our results show that the sign compensation for bearing idiosyncratic risk is
holding-period dependent following an inverted U-shape trend.

8 Practical applications of Idiosyncratic Volatility Puzzle

8.1 Implications for several kind of investors

Aiming to construct some applications from the theoretical e�ect we discover about the Id-
iosyncratic Volatility Puzzle, we now describe how the main investors in the markets could
exploit our �ndings.
Speculators buy a �rm’s stock based on the chance the price will go up or down. �eir rea-
soning is purely based on the amount of price change instead that on the fundamental values
of the �rm. Speculators aim to �nd past trend in prices to earn abnormal pro�ts, they usually
exploit short-term strategies aiming to perform be�er than long-term passive investors. �ere-
fore, monthly rebalancing portfolio 1 (made by low IVOL stocks) and portfolio 5 (made by high
IVOL stocks) they can exploit trading strategy P1-P5 with se�ing 1/0/1 to beat the market be-
cause it’s an alpha generating strategy.
Speculators enjoy volatility because of potential large returns they can extract, hedgers instead
aim to reduce risk toward zero. �e goal is usually accomplished by taking an opposite position
on a derivative having as underlying the security that needs to be hedged. Another way is to
take an opposite position on a security highly correlated with the original security or a same
sign position on a security with negative correlation with the original one. We �nd a correla-
tion of -0.56 between P1-P5 strategy and the market, hence hedgers with a main position on a
market index can bene�t from the Puzzle. Hedging can be referred to source of a risk, meaning
that we want to hedge our portfolio from a particular source of risk. For example, inside a port-
folio made of global equities, an investor should consider the currency risk which is the risk
derived by movement in currency prices. With our study we reveal that idiosyncratic risk is
present and negatively priced by the market (not always as we �nd the relationship is holding
period-dependent). �erefore, it is a source of risk that should be considered by a hedger.
Other players that can exploit the Puzzle are funds. �ey are generally divided into active or
passive funds. An actively managed investment fund has a manager or a management team
which decide how to invest the money 17. �eir aim is to ”beat a speci�c benchmark”, creating

17h�ps://www.thebalance.com/actively-vs-passively-managed-funds-453773
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value by actively investing or disinvesting following their personal strategy. By contrast, pas-
sive funds simply hold a market index. �e idea of holding the market index seems una�ractive
compared to pu�ing a manager skills into practice to create value by actively managing the
funds, since the passive funds can’t yield huge returns unless the market itself has a strong
upward trend. Despite this, there is a strong evidence from literature showing that the average
active manager doesn’t capture alpha net of fees and expenses Jensen (1968). Besides this, there
is a statistically signi�cant evidence showing that a small group of them (called Superior Active
Managers) have persistent skills compared to the Inferior Active Managers as pointed out by
Kosowski et al. (2007).
We �nd above average performance of stocks with the lowest exposure to idiosyncratic risk,
meaning that investors are still not fully exploiting this ”ine�ciency” of the market. �e pres-
ence of informed traders that gathers and process information imply they earn an above aver-
age excess returns otherwise they would have no incentive to re�ect the new information into
prices. �is intuition has been proposed by Grossman and Stiglitz (1980) where they stated that
markets need to be ”mostly but not completely e�cient” otherwise investors would not make
e�orts to check whether the prices are fair or not. �erefore, active managers would exploit the
Puzzle adding to their allocation exposure to the strategy of going long (short) on low (high)
idiosyncratic volatility stocks. Including the P1-P5 strategy in their allocation would increase
the alpha of their portfolio, which is a measure of the value added by the active manager.
�e previous reasoning applies to a mean-variance optimizer investor too. Our �ndings shows
how large and statically signi�cant alphas can be generated with the P1-P5 strategy. �erefore,
assuming that short-selling is not considered by an investor with an indexed position, going
long on low idiosyncratic volatility stocks should increase the reward for unit of risk of the
overall portfolio for a mean-variance optimizer investor.

8.2 Performance evaluation of P1-P5 and P1 strategies

We evaluate the performance of the P1-P5 and P1 strategies to generate risk-adjusted returns
and alphas relative to: holding the market, size, value and momentum strategies. We com-
pute risk-adjusted measures to quantify the reward for di�erent unit of risk instead of just the
holding period return for each strategy. �ese performance evaluation methods using mean-
variance criteria came out simultaneously a�er CAPM has been developed. �e mean of Size
and Value is slightly negative while for market, momentum, P1-P5 and P1 strategies is positive
(respectively 0.73%, 4.1%, 0.32% and 0.94%). Sharpe Ratios, which represent the reward for unit
of total risk, are negative for Size and Value strategy. A negative Sharpe Ratio in this case is
given by the slightly negative average of monthly return for both the strategies, this could rep-
resent negative expectation of returns for both the strategies but usually a negative SR doesn’t
bring any useful information. Pure MKT (market), MOM (momentum), P1-P5 and P1 strategies
report respectively 0.19%, 0.14%, 0.08% and 0.31%.
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Strategy Mean α β SR TM IR σ σe

MKT 0.73 0.00 1 0.19 0.73 0.00 3.81 0.00
Size -0.059 -0.074 0.020 -0.045 -3.00 -0.056 1.33 1.32
Value -0.012 -0.16 0.051 -0.072 -2.4 -0.094 1.70 3.70
MOM 0.41 0.52 -0.15 0.14 -2.7 0.18 2.90 11.20

P1 0.94 0.39 0.71 0.31 1.28 0.35 2.91 1.10
P1-P5 0.32 0.72 -0.56 0.08 -0.56 0.25 3.97 3.36

Table 8: Every performance evaluation measure is in percentage. Every measure is computed
over the whole sample period (2010-2018) from data with monthly frequency. σ and σe rep-
resent respectively the volatility and the volatility of the residuals. Jensen’s alphas and β are
computed relative to CAPM model. SR, TM, and IR stand respectvely for Sharpe Ratio, Treynor
measure and Information ratio.

Treynor measure as the Sharpe Ratio gives the reward for unit of risk, in which the risk is
just the systematic one. Because of the sign of the mean of the monthly returns (for Size and
Value) and of the sign of the correlation with the market (for MOM and P1-P5) the only positive
Treynor measure belongs to the pure MKT and P1 strategies. When the beta β is negative the
Treynor measure has not useful meaning (MOM and P1-P5 strategies).
Information Ratio measure represent the reward for unit of idiosyncratic risk. Size and Value
Information Ratios are negative and don’t bring useful interpretations. For MOM, P1 and P1-P5
strategies it is respectively 0.18%, 0.35% and 0.25%. �e result support the P1-P5 strategy be-
cause it shows that exposure to idiosyncratic risk is rewarded be�er than MOM strategy which
is overall performing well in most of the performance evaluation measures. Looking to the level
of total and idiosyncratic risk for each strategy, we observe that the positive average return for
MOM strategy is mainly because of the large idiosyncratic risk the strategy faces. P1 strategy
outperforms every other strategy in each measures but for alpha α and its exposure to market
risk β = 0.71 which is quite high, additionally it presents the lowest idiosyncratic risk level.

Overall the performance measures show how, besides holding the market, MOM, P1 and
P1-P5 strategies perform be�er than Size and Value. �e relevant and positive average monthly
return, the Jensen’s alpha, the reward for unit of total and idiosyncratic risk point out how
MOM, P1 and P1-P5 are a�ractive and remunerative compared to Size and Value strategies.
Between MOM and P1-P5, MOM displays a mildly higher reward for unit of total risk while
P1-P5 has a moderately higher reward for idiosyncratic risk. Hence the higher average mean
of MOM relative to P1-P5 is because of a large exposure to idiosyncratic risk as can be seen
from the idiosyncratic risk level in Table 8. P1-P5 is a long-short equity approach, given its
negative beta β of -0.56 must be considered for its hedging quality too. P1 strategy instead is
a long strategy as the others, given its large correlation to the market combined with its large
and positive reward-risk ratios can generate sizeable returns and alphas.
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8.2.1 Risk evaluation of P1-P5 and P1 strategies

We compute now two risk measures to capture the tail risks of the P1-P5 and P1 strategies
compared to pure market (MKT), size, value and momentum (MOM) strategies.

Strategy Mean σ σe VaR ES

MKT 0.73 3.81 0 -5.51 -7.10
Size -0.059 1.33 -0.02 -2.24 -2.79
Value -0.012 1.70 3.70 -2.91 -3.61
MOM 0.41 2.90 11.20 -4.36 -5.57

P1 0.94 2.91 1.10 -3.86 -5.07
P1-P5 0.32 3.97 3.36 -6.19 -7.85

Table 9: Tail-risks, values are in percentage

Tail risk must be considered during performance evaluation of a strategy. �e normal dis-
tribution is commonly a�ributed to returns, implying that usually returns are clustered around
the mean drawing the known ”bell shape” along their distribution. �ere is evidence (Figure 1)
that the empirical distribution has fa�er tails compared to the theoretical normal distribution.
�is fact means that ”tail-events” (event at both the tips of the distribution) are more likely
to happen compared to theoretical distribution. Investors must always consider the likely and
magnitude of le�-tail events, because they can easily compromise the whole portfolio perfor-
mance.
Value at Risk (VaR) measures the maximum loss a strategy/portfolio can yield with a certain
level of con�dence and over a given time period. Our measures (both VaR and ES) have 95%
interval of con�dence and are monthly tail-risk measures. Expected Shortfall computes instead
the average loss in the worst 5% of scenarios. Table 9 shows that P1-P5 is the riskiest strategy
compared to the others. Given the ”bad” reward-risk ratios we computed in Table 9 for Size
and Value strategy we compare just MKT, MOM, P1 and P1-P5 strategies. P1-P5 has the highest
monthly VaR and ES, but MKT is really close in both measures. Monthly VaR for P1-P5, P1,
MKT and MOM is respectively -6.19%, -3.86%, -5.51% and -4.36%. �erefore, P1-P5 stands out
as the riskiest but when compared to the other two remunerative strategies (MKT and MOM)
the VaR/ES di�erence is not huge. P1 strategy between all the remunerative strategies (MKT,
MOM and P1-P5) has the lowest Value at Risk and Expected Shortfall.

8.2.2 Cumulative Returns

Plo�ing the cumulative returns of Table 8’s strategies ( Figure 8), we examine how much in-
vesting in each strategy since January 2010 yields for each month over time. We observe that
P1 strategy outperforms every other strategies in terms of mean return, Sharpe Ratio and cu-
mulative return. P5-P1 strategy slightly under-performs the momentum strategy in terms of
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cumulative returns. P5-P1 is a long-short equity strategy, this technique is o�en used by hedge
funds to gain both from the increase and decrease of prices of di�erent securities in the market.
A portfolio with this se�ing protects itself from losses during market downturns, because of this
when the strategy has a close to zero correlation relative to the market it’s called a ”market-
neutral” strategy. �e beta β of this strategy is -0.56 (Table 8) therefore the strategy, besides
performing on average be�er than Size and Value strategies, can be used as a hedging instru-
ment against market risk. Size and Value strategies as expected from Table 8 perform poorly
post-crisis.

Figure 8: Cumulative returns for each strategy: P1(yellow), Market(green), Momentum(purple),
P1-P5(black), Size(blue) and Value(red). Sample period: January 2010-December 2018.

8.3 Cost of ignoring low idiosyncratic volatility stocks

Having a positive alpha is a necessary, but not su�cient condition for a portfolio to outperform
the index (MKT). A portfolio can yield a postive alpha but still not outperform the index be-
cause the standard deviation is high enough to decrease its Sharpe Ratio Bodie et al. (2014). �is
is what happens with P1 and P5 in our study, both yield positive alphas but given the higher
standard deviation of P5 its Sharpe Ratio (0.11%) is smaller than MKT’s one (0.19%). Since P1
Sharpe Ratio is 0.33% and P5 Sharpe Ratio is 0.11%, we consider P1 in the following tests.
We found evidence of Idiosyncratic Volatility Puzzle in Section 9 then we tested the P1-P5 strat-
egy compared to 4 alternative strategies. In the following lines we try to quantify the cost of
not considering the low idiosyncratic volatility stocks (P1).

8.3.1 �eM2 measure

�e M2 measure leads to an easy to interpret risk adjusted di�erential return relative to the
benchmark (MKT strategy in our case). �e intuition behind it is to use a risk-free asset to
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construct a portfolio containing the P1 and the risk-free asset. �e weights are determined in
order to make the overall volatility of this portfolio equal to the MKT’s standard deviation, we
are not considering the covariance since the risk free asset is not correlated with P1. MKT’s
standard deviation is 3.81% while P1’s standard deviation is 2.88. Hence 3.81/2.88 = 1.32 is the
weight of P1 and 1−1.32 = −0.32 is the weight of the risk-free asset. �e average risk-free return
in our data is 0.022 hence the return of our new portfolio is: 1.32 ∗ 0.94 − 0.32 ∗ 0.022 = 1.23.
�e M2 measure given our portfolio 1 and our index MKT is M2 = 1.23 − 0.73 = 0.50. 0.50%
monthly higher reward for the same amount of risk express the good performance of the P1
portfolio compared to the market.

8.3.2 Mixing an indexed allocation with active portfolio P1

For an investor which holds the market index MKT, the optimal risky portfolio is a combination
of the index portfolio MKT and the active portfolio (in our case P1) Bodie et al. (2014). Our goal
is to maximize the overall Sharpe Ratio of the portfolio made by MKT and P1. To �nd the
optimal weights we use:

w∗A =
w0
A

1 + (1 − βA)w0
A

=

αA
σ 2
A

E(RMKT )
σ 2
M

1 + (1 − βA)
αA
σ 2
A

E(RMKT )
σ 2
M

=

0.39
1.21
0.73
14.51

1 + (1 − 0.70)
0.39
1.21
0.73
14.51

= 2.19 (13)

Weight for P1 is 2.19 while for MKT is -1.19. Given these weights the increased overall Sharpe
Ratio is18:

S2
P = S2

M +

[
αA
σ (eA)

]2
= 0.036 + 0.122 = 0.158 (14)

�e squared Sharpe Ratio increases exactly of the amount of the squared Information Ratio.
�e previous formula is useful when an investor wants to add an active portfolio to an indexed
position. �e Information Ratio is a reward to risk ratio in which the reward is the return not
produced by exposure to systematic risk and the risk is the amount of idiosyncratic volatility.
Mixing the indexed position with the active portfolio means to tilt the indexed portfolio toward
risk could have beeen diversi�ed. �e trade-o� between exposure to idiosyncratic risk and the
alpha generated it’s represented by the Information Ratio.
A weight of 2.19 is an extreme position towards the active portfolio P1, to avoid corner solutions,
huge exposure to idiosyncratic risk and to obtain more reasonable results we put the constraint
w∗A ≤ 0.2. �erefore we are going to set it equal to 0.2 which is nevertheless a large tilt from
the initial allocation toward the P1 strategy.

18Bodie et al. (2014)
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8.3.3 Utility cost of not considering low idiosyncratic volatility stocks

Our hypothetical investor holds the index (MKT) without mixing it with the risk-free asset.
Being a mean-variance optimizer, he maximize its utility function:

U0(E(RMKT ),σ
2
MKT ) = E(RMKT ) −

1
2
Aσ 2

MKT (15)

We don’t know itsU0 at t0 since we ignore its risk aversion A. We estimate it knowing that he
maximized:

U(E(Rp),σ
2
p ) = E(Rp) −

1
2
Aσ 2

p = (16)

= r f +w
[
E(RMKT ) − r f

]
−

1
2
Aw2σ 2

MKT (17)

Maximizing (17) the investor �nds the optimal weights between MKT and the risk-free asset.
Since we assumed he just holds the market we know its weights, hence:

max
w
U(E(Rp),σ

2
p ) = max

w

[
r f +w

[
E(RMKT ) − r f

]
−

1
2
Aw2σ 2

MKT

]
(18)

We calculate the First Order Condition (FOC) with respect to w and set it equal to 0:

FOC(w) =
∂U(E(Rp),σ

2
p )

∂w
= E(RMKT ) − r f −Awσ

2
MKT = 0 (19)

From (19) with a few steps we get its optimal weights:

w =
E(RMKT ) − r f

Aσ 2
MKT

(20)

wrf = 1 −w (21)

We set the optimal weights equal to 1 and 0 respectively (w = 1 and wrf = 0), now we can
compute its risk aversion:

A =
E(RMKT ) − r f

wσ 2
MKT

=
0.0073 − 0.00022

1 ∗ 0.03812 = 4.88 (22)

We now can compute the utility of our investor holding the indexed position:

U0(E(RMKT ),σ
2
MKT ) = E(RMKT ) −

1
2
Aσ 2

MKT = 0.0073 −
1
2
∗ 4.88 ∗ 0.03812 = 0.0038 (23)
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�e new utility mixing the indexed position with the active portfolio P1 using the optimal
weights is:

U1(E(RMKT+P1),σ
2
MKT+P1) = E(RMKT+P1) −

1
2
Aσ 2

MKT+P1 (24)

In which the expected return of the new portfolio MKT+P1 is:

E(RMKT+P1) = wP1∗E(RP1) + (1 −wP1∗)E(RMKT ) = 0.2 ∗ 0.94 + 0.8 ∗ 0.73 = 0.77 (25)

while the variance of the new portfolio MKT+A is computed using (7) from Markowitz (1952):

σ 2
MKT+P1 = (w

∗
P1)

2σ 2
P1 + (1 −w

∗
P1)

2σ 2
MKT +

1
2
w∗P1(1 −w

∗
P1)σMKTσP1βP1 = (26)

= 0.22 ∗ 8.30 + 0.82 ∗ 14.51 + 0.2 ∗ 0.8 ∗ 2.88 ∗ 3.81 ∗ 0.70 = 10.85 (27)

�erefore the new utility is:

U1(E(RMKT+P1),σ
2
MKT+P1) = E(RMKT+P1) −

1
2
Aσ 2

MKT+P1 = (28)

= 0.0077 −
1
2
∗ 4.88 ∗ 0.0332 = 0.0050 (29)

�e cost of ignoring low volatility for a mean-variance optimizer investor in the American
�nancial market that has an indexed position (MKT, which represents all CRSP �rms) is rep-
resented by the percentage improvement of its utility function . We �nd the utility function is
31% higher than the initial allocation: (0.0050

0.0038 − 1) ∗ 100 = 31%.

9 Fourier andWavelet methods for time series in Finance

9.1 From time domain to frequency domain

In several �elds, the time domain analysis of a variable can be enhanced by the frequency do-
main analysis. A time domain series is a variable which is function of time, therefore is indexed
in time order and plo�ing the variable we obtain a time amplitude representation. Studying
the frequencies of a process, we can observe characteristics hidden in the frequency domain
representation. �e frequency is measured in Hertz which is de�ned in cycles/second. All the
frequency components of a signal/process/series are called frequency spectrum.
�e mathematical tools used to go from time to frequency domain are generally called trans-
forms and the most popular one is the Fourier transform.
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9.2 Spectral analysis and the Fourier transform

Aim of the spectral analysis is to �nd a new sequenceX (f ), of the process x(t)we are studying,
representing the contribution of each frequency component in the original time series (Masset
(2008)). �e discrete version of the Fourier transform is:

X (f ) =
∞∑

t=−∞

x(t)e−i2π f t (30)

where f represents the frequencies. �anks to the De Moivre’s theorem we can write:

e−i2π f t = cos(2π f t) − isin(2π f t) (31)

which decompose x(t) into a set of sinusoidal functions representing a set of distinct frequen-
cies component. Fourier transform is a reversible transform meaning implying that from the
spectrum of a signal we can obtain the signal itself:

x(t) =
1

2π

∫ π

−π
X (f )e−i2π f td f (32)

One of the limitations of the Fourier transform is that frequency information is not available
in the time-domain and time information is not available in frequency domain. �is limitation
implies we can observe which frequency component exists in the signal but not when in time
the component exists. �e family of series which don’t require both the informations are the
stationary processes, because for them all frequency components exists at all times as stated by
Polikar et al. (1996).

9.3 Wavelet transform

In �nance o�en the data doesn’t satisfy the stationarity feature. We show in section 4 that
volatility exhibit non trivial pa�erns as jumps, clustering and long memory. A recent transform
which doesn’t require this assumption is the wavelet transform. With wavelets we can obtain
a time-frequency representation of our data.

9.3.1 �eoretical background

By wavelet we mean a wave that grows and decays in a limited time frame, di�erent from the
Fourier transform in which the sine and cosine functions have an unlimited time frame. Wavelet
analysis is based on a main function called the mother wavelet denoted by ψ (t) , which must
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satisfy the two following conditions: ∫ ∞

−∞

ψ (t)dt = 0 (33)∫ ∞

−∞

|ψ (t)|2dt = 1 (34)

plus the admissibility condition stating that if the Fourier transform of a function:

Ψ(f ) =

∫ ∞

−∞

ψ (t)e−i2π f tdt (35)

is such that:
CΨ =

∫ ∞

0

|Ψ(f )|2

f
d f (36)

satis�es 0 < CΨ < ∞ then the wavelet functionψ (t) is admissible. Admissibility condition allows
to go from the continuous wavelet transform of a function to the function itself (Percival and
Walden (2000)).

9.4 �e Continuous Wavelet Transform (CWT)

Following Masset (2008), goal of CWT is to quantify the change of a function at a particular fre-
quency and at a particular point in time. To do this, the mother wavelet is scaled and translated:

ψu,s(t) =
1
√
s
ψ

(t − u
s

)
(37)

in which u, s are respectively the location and the scale parameters. Projecting the original
signal x(t) into the mother wavelet ψu,s(t) we obtain the function W (u, s) which represent the
CWT:

W (u, s) =

∫ ∞

−∞

x(t)ψu,s(t)dt (38)

Increasing (decreasing) s we can capture the changes of the functions on a large (small) scale
therefore at a low (high) frequency. As pointed by Gençay et al. (2001) there are some limitations
of the CWT. First, there a computational issue trying to analyze a signal using every wavelet
coe�cients, making this technique more suitable for functions than for �nance time-series.
Second, beingW (u, s) a function of two parameters it has a lot of redundant information.

9.5 �e Discrete Wavelet Transform (DWT)

Contrary to CWT, the Discrete Wavelet Transform has a limited amount of coe�cients because
the mother wavelet is dilated and translet a limited number of times. �is is obtained se�ing:

s = 2−j u = k2−j (39)
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where j,k are the set of discrete translation and dilatation, implying that the wavelet transform
is calculated only at dyadic scales (2j). Another implication is that, being N the observations of
our time series, the largest number of scales is the the integer J:

J = [loд2(N )] = [loд(N )/loд(2)] (40)

this can be an issue because if the time series is not of dyadic length, observations must be
added or removed.
Two discrete wavelet �lter are behind the DWT. One is the mother wavelet, denoted hl =

(ho, ...,hL−1). �e second one is the father wavelet, denoted дl = (д0, ...,дL−1). Properties of
the mother wavelet are:

L−1∑
l=0

hl = 0,
L−1∑
l=0

h2
l = 1,

L−1∑
l=0

hlhl+2n = 0 ∀n ∈ N0 (41)

�anks to the above properties, hl is a di�erence operator, the DWT has the variance of the
original data and a multiresolution analysis can be performed. �e father wavelet is a low pass
�lter and captures the long scales, hence the low frequency, smooth components of the series
computing the ”scaling” coe�cients. �e mother wavelet is an high pass �lter and captures
the short scales, high frequency, details components of the series. �e father wavelet has the
following condition:

L−1∑
l=0

дl = 1 (42)

�e �rst level of decomposition computes the wavelet and the scaling coe�cients of the �rst
scale, respectively w1(t) and v1(t) that are obtained in the following way:

w1(t) =
L−1∑
l=0

hlx(t
′) and v1(t) =

L−1∑
l=0

дlx(t
′) (43)

in which t = 0, 1, ...,T /2 − 1 and t ′ = 2t + 1 − lmodT .
�anks to the pyramid algorithm (procedure in �gure 9 ), we can further decompose the low
frequency scaling coe�cients v1(t) into other to components. �erefore the second level de-
composition has w = [w1,w2,v2] and the J level decomposition has w = [w1, ...,w J ,v J ].
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algorithm.png

Figure 9: Pyramid algorithm doing a N level decomposition from Sundling et al. (2006)

9.6 �e Maximal Overlap Discrete Wavelet Transform (MODWT)

To overcome the limitations we brie�y described of DWT, we can use the MODWT. Contrary
to the DWT, MODWT consider all the possible (integer) translations. Hence for every scale the
wavelet coe�cients, the scaling coe�cients and the original series have the same length. At
the �rst level decomposition with MODWT we have:

w̃1(t) =
L−1∑
l=0

hlx(t
′) and ṽ1(t) =

L−1∑
l=0

дlx(t
′) (44)

in which t = 0, 1, ...,T and t ′ = t − lmodT . Using the pyramid algorithm, we can obtain the
MODWT coe�cients for further level of decomposition.

9.7 Wavelet �lters

Many �lters exists, the choice between them is done on a case by case basis. �e most famous
are Haar, Daubechies and Least-Asymetric �lters. �e properties they can have are: symmetry,
orthogonality, smoothness and the number of vanishing moments.
Symmetric �lters are appealing because they ensure there will be no displacements of the series
in the time domain. One of the few �lters which has this property is the Haar wavelet, symme-
try is not an issue for MODWT because by construction all the coe�cients are aligned.
�e degree of smoothness of the �lter must be related to the degree of smoothness of the func-
tion/series we are studying. �e least the function/series is smooth, the least the �lter must sat-
isfy this property. Haar �lter, being the least smooth, is particularly suitable for jump processes.
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Orthogonality implies that wavelet and scaling coe�cients have di�erent information. Daubechies
and Least-Asymmetric wavelets show this property.
Number of vanishing moments properties means that if the process is a polynomial of order p,
the wavelet transform is able to capture it only if it has p vanishing moments. More vanishing
moments means complex functions can be represented with a sparser set of wavelet coe�cients.
A graphical representation of the main wavelet �lter is in �gure 10.

�lters.png

Figure 10: Most famous wavelet �lters from Masset (2008)

10 Heterogeneity of investors’ investment horizons hypoth-
esis and Wavelet transform

Comparing the compensation required by investors, with di�erent holding period, to bear id-
iosyncratic risk we observe for short holding period (1-3 months) a negative premium, for
medium holding period (3-6 months) a zero premium and for long term holding period (6-12
months) again a negative compensation. Our hypothesis is that this result can be driven by
investors with di�erent investment horizon requiring di�erent compensation for bearing id-
iosyncratic risk. Testing the trading strategy with increasing holding period can show the com-
pensation of all the investors with investment horizon smaller or equal to the holding period
but can’t properly disentangle every required compensation. �erefore the return we observe
at the end of the holding period ofp months, is the aggregation of all the compensation required
by investment horizons smaller or equal to p.
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To study in detail the Idiosyncratic Volatility Puzzle, we use the Wavelet transform to study the
contribution of each frequency (time scale) to the �nal holding period return of portfolio 5 and
1.

10.1 From frequencies to investors

We summarized in Section 9 the theoretical background, the properties and the applications of
the wavelet transform. In �nance, decomposing in frequencies a time series of returns, we look
for an economical interpretation of the frequencies. Considering a short (long) time scale of our
time series, means to capture the high (low) frequency contributions to our series. �erefore in
our case, the high frequencies (short time scale) are the contribution of the short term investors
to the series, while the low frequencies (long time scale) represent the contribution of the long
term investors. �is reasoning is reasonable as the short (long) term investors contribute to
the most (least) frequent movements of the price. Di�erent investors have di�erent trading fre-
quencies (Malagon et al. (2015))
�e de�nition of short/medium/long term investors depends by the frequency of the data on
which we do the wavelet transform. �e technique creates frequency bands separated by mul-
tiples of 2J . �erefore with daily data we can capture the contribution of investors with invest-
ment horizon of 2-4 days, 4-8 days, 8-16 days till the maximum admi�ed level of decomposition.
Performing the wavelet transform, we decompose our time series S0 into an approximation Sj

(long time scale/low frequency) and details Dj (short time scale /high frequency).

10.2 Application to trading strategy 1/0/1

We apply a wavelet transform of level 6 to our framework, decomposing the daily returns and
the daily factors into 6 details and one smooth component (example in �gure 11). We use the la8
�lter and the Maximal Overlap Discrete Wavelet Transform. �e reason behind the MODWT
is that we need to apply the transform to approximately 11.000 �rms. To avoid issues linked
to the required dyadic length of the data by the Discrete Wavelet Transform, we choose the
MODWT. Once the data is decomposed, we test the trading strategy 1/0/1 for each details and
smooth components. Aim of this framework is to capture the compensation required, for bear-
ing idiosyncratic risk, by speci�c investors’ investment horizon identi�ed by each of the details
and smooth components. �e next sections cover just detail 1, 5 and 6 while the others are in
the appendix.
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Figure 11: X is the time series of daily returns of an American �rm in our dataset. Applying
the wavelet transform with level 6, we obtain six details component called W and one smooth
component de�ned V

10.3 D1 component

�e D1 component, since the wavelet transform is done on daily data, represents the investment
horizon from 2 to 4 days. Results are in Table 10.
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 -0.06 0.40 0.23 -0.08*** -0.08***
[-2.79] [-3.06]

P2 -0.10 0.44 0.38 -0.12*** -0.12***
[-4.13] [-3.97]

P3 -0.15 0.51 0.24 -0.16*** -0.16***
[-4.29] [-4.51]

P4 -0.24 0.58 0.12 -0.26*** -0.26***
[-7.45] [-7.30]

P5 -0.42 0.70 0.04 -0.43*** -0.43***
[-9.54] [-9.96]

P5-P1 -0.35*** -0.34*** -0.34***
[-12.4] [-12.54] [-12.67]

Table 10: D1 component, 2-4 days investment horizon. Forming value-weighted quintile port-
folios month we sort stocks based on idiosyncratic volatility relative to Fama and French (1993).
Volatility is computed using daily data from the previous month. P1 (P5) is the portfolio with
the lowest (highest) idiosyncratic volatilities. �e statistics Mean and Std. Dev. are measured in
monthly percentage terms over (not excess) simple returns. MKT Share is the average relative
MKT share of the portfolio. P5-P1 refers to the di�erence in monthly returns between Portolio
5 and 1. �e last two columns are the Jensen’s alphas relative to CAPM and Fama-French three-
factor models. Robust Newey and West (1986) t-statistics are reported in the square brackets.
*** means the value is statistically signi�cant at 1% level, ** at 5% level and * at 10% level from
a two-tailed test. Sample period is 2010-2018, trading strategy is 1/0/1

�e trading strategy P5-P1, which represents the compensation for exposure to idiosyncratic
risk, is negative and statistically signi�cant. �is result is in line with our previous results be-
cause we �nd strategy 1/0/1 (Table 4) having a negative monthly compensation. Alphas relative
to CAPM and Fama-French 3-factor model are negative and statistically signi�cant. We �nd the
same pa�erns for standard deviation market share observed in Table 4.

10.4 D5 component

�e D5 component, represents the investment horizon from 32 to 64 days. Running the analysis
we �nd the results in Table 11.
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 -0.03 1.40 0.19 -0.23*** -0.24***
[-3.02] [-3.03]

P2 -0.01 1.52 0.28 -0.21** -0.23***
[-2.21] [-2.78]

P3 -0.01 1.59 0.26 -0.23*** -0.25***
[-3.00] [-3.34]

P4 -0.07 1.75 0.18 -0.32*** -0.34***
[-3.59] [-4.05]

P5 0.04 2.08 0.08 -0.22** -0.24**
[-2.15] [-2.29]

P5-P1 0.07 0.01 0.01
[1.22] [0.08] [0.04]

Table 11: D5 component, 32-64 days investment horizon. Forming value-weighted quintile port-
folios month we sort stocks based on idiosyncratic volatility relative to Fama and French (1993).
Volatility is computed using daily data from the previous month. P1 (P5) is the portfolio with
the lowest (highest) idiosyncratic volatilities. �e statistics Mean and Std. Dev. are measured in
monthly percentage terms over (not excess) simple returns. MKT Share is the average relative
MKT share of the portfolio. P5-P1 refers to the di�erence in monthly returns between Portolio
5 and 1. �e last two columns are the Jensen’s alphas relative to CAPM and Fama-French three-
factor models. Robust Newey and West (1986) t-statistics are reported in the square brackets.
*** means the value is statistically signi�cant at 1% level, ** at 5% level and * at 10% level from
a two-tailed test. Sample period is 2010-2018, trading strategy is 1/0/1

�e trading strategy P5-P1, which represents the compensation for exposure to idiosyncratic
risk, is positive. Alphas relative to CAPM and Fama-French 3-factor model are positive too.
Table 11 shows investors with time horizon from 32 to 64 days demand a positive compensation
for bearing idiosyncratic risk.

10.5 D6 component

�e D6 component, represents the investment horizon from 64 to 128 days. In Table 12 there
are our �ndings.
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 -0.01 1.18 0.21 -0.15* -0.15*
[-1.75] [-1.80]

P2 -0.02 1.46 0.28 -0.21*** -0.20***
[-2.62] [-2.66]

P3 0.02 1.56 0.26 -0.18** -0.18*
[-1.96] [-1.90]

P4 0.07 1.92 0.18 -0.19* -0.17
[-1.70] [-1.58]

P5 0.09 2.23 0.09 -0.19 -0.17
[-1.53] [-1.34]

P5-P1 0.10 -0.04 -0.02
[1.51] [-0.31] [-0.15]

Table 12: D6 component, 64-128 days investment horizon. Forming value-weighted quintile
portfolios month we sort stocks based on idiosyncratic volatility relative to Fama and French
(1993). Volatility is computed using daily data from the previous month. P1 (P5) is the port-
folio with the lowest (highest) idiosyncratic volatilities. �e statistics Mean and Std. Dev. are
measured in monthly percentage terms over (not excess) simple returns. MKT Share is the av-
erage relative MKT share of the portfolio. P5-P1 refers to the di�erence in monthly returns
between Portolio 5 and 1. �e last two columns are the Jensen’s alphas relative to CAPM and
Fama-French three-factor models. Robust Newey and West (1986) t-statistics are reported in
the square brackets. *** means the value is statistically signi�cant at 1% level, ** at 5% level and
* at 10% level from a two-tailed test. Sample period is 2010-2018, trading strategy is 1/0/1

�e trading strategy P5-P1, which represents the compensation for exposure to idiosyncratic
risk, is positive. Alphas relative to CAPM and Fama-French 3-factor model are positive too.
Table 12 shows investors with time horizon from 64 to 128 days demand a positive compensation
for bearing idiosyncratic risk.

10.6 �e smooth component

�e smooth component, represents the time scales longer than 128 days. Results are in Table 13.
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 1.26 1.70 0.14 1.07*** 1.10***
[4.20] [4.66]

P2 1.11 1.80 0.23 0.92*** 0.96***
[4.00] [4.00]

P3 1.05 1.59 0.27 0.88*** 0.90***
[4.11] [4.29]

P4 1.14 1.76 0.24 0.93*** 0.97***
[3.92] [3.70]

P5 1.19 2.31 0.12 0.94*** 0.99***
[2.75] [3.23]

P5-P1 -0.06 -0.13 -0.11
[-0.47] [-1.01] [-0.85]

Table 13: Smooth component, > 128 days investment horizon. Forming value-weighted quintile
portfolios month we sort stocks based on idiosyncratic volatility relative to Fama and French
(1993). Volatility is computed using daily data from the previous month. P1 (P5) is the port-
folio with the lowest (highest) idiosyncratic volatilities. �e statistics Mean and Std. Dev. are
measured in monthly percentage terms over (not excess) simple returns. MKT Share is the av-
erage relative MKT share of the portfolio. P5-P1 refers to the di�erence in monthly returns
between Portolio 5 and 1. �e last two columns are the Jensen’s alphas relative to CAPM and
Fama-French three-factor models. Robust Newey and West (1986) t-statistics are reported in
the square brackets. *** means the value is statistically signi�cant at 1% level, ** at 5% level and
* at 10% level from a two-tailed test. Sample period is 2010-2018, trading strategy is 1/0/1

�e compensation to bear idiosyncratic risk is negative again. �e inverted U-shape the
compensation draws for increasing time scales further explains our results in Section 7. �e
not constant performance of portfolio with increasing holding and rebalancing period, �nds
justi�cation in the heterogeneity contribution of di�erent frequencies to the series.

10.7 Wavelet transform’s results

In Section 7 we interpret the performance of a trading strategy based on idiosyncratic volatility
with increasing holding period. Referring to the new hypothesis in literature about the Puzzle
being driven by the heterogeneity of investors’ investment horizons hypothesis, we state that
the almost null performance of trading strategy 1/0/6 could be motivated by a positive compen-
sation demanded by investors with investment horizon between the 3rd and 6th month. �is
hypothesis �nds support in section 9 where we apply the wavelet transform to study the dif-
ferent frequencies in our data. We observe a negative compensation for time scales going from
2 to 32 days, while the the investors with time scales from 32 to 128 days require a positive
compensation. �e smooth component, representing the long run gets negative again. Since
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in our data months are approximately 20 days long, we have a positive compensation in time
scales from 1 month and a half to 6 months. �e decomposition we perform brings additional
evidence about the relevance of the heterogeneity of investors’ investment horizons hypothe-
sis. Our se�ing for the wavelet transform follows Malagon et al. (2015), who work with daily
data and performs the Ang et al. (2006) trading strategy. Malagon et al. (2015) �nds a negative
compensation for short term investors and a positive one for the smooth component but fails
to �nd the time scale where the compensation gets negative again. Yin et al. (2019) instead,
working with monthly data and the Common Idiosyncratic Volatility factor (CIV, derived by
principal component analysis), �nds an inverted U-shape in the factor loadings of CIV. Because
we observe an inverted U-shape too for the compensation for bearing idiosyncratic risk, our
�ndings are in line with Yin et al. (2019).

11 Conclusion

Our study use the Ang et al. (2006)’s framework to examine if the Idiosyncratic Volatility Puz-
zle post-crisis (2010-2018) is still present. Additionally, to analyse if the relationship between
idiosyncratic volatility and returns is holding-period dependent we apply the following trad-
ing strategies: 2/0/1, 1/0/1, 1/0/3, 1/0/6 and 1/0/12. �e strategies are constructed applying the
L/M/N framework changing the parameters to test di�erent holding periods. Our study shows
a negative relationship between idiosyncratic volatility and returns for trading strategy 1/0/1.
We compute several performance evaluation measures P1-P5, P1, Market, Size, Value and Mo-
mentum strategies. We �nd P1 (low idiosyncratic volatility stocks) outperforms every other
strategy in reward-risk terms. Moreover P1-P5 strategy can be used for hedging purposes be-
cause of its long-short equity structure and its negative correlation with the market. Moreover,
we discover that the cost of ignoring the low idiosyncratic volatility cost for a mean-variance
optimizer investor, holding an indexed allocation, is a sizeable increase of its utility function.
Second goal of the thesis is to test if the Puzzle is holding-period dependent. Studying the
L/M/N strategy with di�erent N (and di�erent rebalancing periods), we bring some evidence
in line with the heterogeneity of investors’ investment horizons hypothesis. All the strate-
gies but 1/0/6 present a negative compensation for bearing idiosyncratic risk. Trading strategy
1/0/6 shows no presence of IVOL Puzzle, because there is no di�erence in performance between
portfolios made of high IVOL stocks and portfolios made of low IVOL stocks. �e absence of a
compensation for bearing �rm-speci�c risk means that investors with investment horizon from
4 to 6 months (at least) start to require a positive compensation to bear idiosyncratic risk, mak-
ing the �nal compensation required close to zero at the end of 6th month.
Overall the �ndings of this thesis prove the presence of the IVOL Puzzle post-crisis and bring
evidence in line with heterogeneity of investors’ investment horizons hypothesis supported by
Malagon et al. (2015) and Yin et al. (2019).
�anks to the decomposition of our data provided by the wavelet transform, we prove as the
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almost null performance of strategy 1/0/6 is driven by a positive compensation for bearing id-
iosyncratic risk demanded in time scales preceding the 6th month. Moreover this technique
furnishes additional evidence to the importance of the heterogeneity of investors’ investment
horizons hypothesis, increasing the accuracy of the analysis and quality of the model.
�e heterogeneity of investors’ investment horizon hypothesis can be one of the reasons be-
hind the mixed literature. �e several approaches to the topic, the di�erent equity markets
studied and the di�erent time period considered have contributed to make the construction
of a proper consensus over the IVOL Puzzle di�cult. Nevertheless, besides being reasonable
the heterogeneity of investors’ investment horizon hypothesis seems to put together di�erent
results instead of generating additional stances.

12 Limitations and recommendations for future research

�e Idiosyncratic Puzzle has been investigated with several approaches in literature. Interesting
would be to search for evidence supporting our results trying to estimate expected IVOL as Fu
(2009) instead of using the 1 month lagged IVOL as a proxy. Additional evidence in line with
our �nding coming from a di�erent framework would bring robustness to the study.
A limitation regards how to handle properly the delisting �rms over our time series. Some �rms
enter into the dataset a�er 2010 and some disappear before 2018. When a �rm’s time series of
returns stops, that �rm has been delisted. Delisting is usually a bad sign but it’s not always
the case, for example delisting can be a �rm’s choice or due to a merger. �e limitation in our
case is that delisted stocks, especially when we compute trading strategy with holding period
bigger than 1 month, were simply not considered in the next period portfolio creating a loss of
information. A method to handle this could improve the accuracy of the results.
A more general limitation of our study is the lack of robustness check. Ang et al. (2006) checked
their results for size, book-to-market, leverage, liquidity, volume, turnover, bid-ask spread,
coskewness and dispersion of analysts’ forecasts. In addition Ang et al. (2009) tested their results
for: market frictions, information dissemination and option pricing.
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A Trading Strategy 1/0/3

Plo�ing the quarterly returns of Portfolio 5 against Portfolio 1 (Figure 12) we observe a charac-
teristic which were shown in Table 5 too. Portfolio 5 (blue line) which contains the stocks with
greatest exposure to idiosyncratic risk vary much more than the Portfolio 1 (black line).

Figure 12: Plot of the quarterly returns for Portfolio 1 (stocks with lowest idiosyncratic volatility
levels) and Portofolio 5 (stocks with highest volatility levels). P1 is the black line, P5 is the blue
line.

Figure 13 shows the quarterly returns of the P5-P1 which represents the trading strategy
of going short on the portfolio stocks with low idiosyncratic risk exposure and long on the
portfolio formed by stocks with high idiosyncratic volatility levels. Besides two peaks where
the strategy gained positive returns for two quarters consecutively (middle of 2010 and start of
2016) we know by Table 5 that the average quarterly performance of P5-P1 is −1.30%.

Figure 13: Plot of the quarterly returns of trading strategy P5-P1 (long on Portfolio 5 and short
on Portfolio 1).
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B Trading Strategy 1/0/6

Plo�ing the semesterly returns of Portfolio 5 against Portfolio 1 (Figure 14) we observe again
that stocks facing high idiosyncratic risk usually have higher total volatility compared to stocks
with low idiosyncratic volatility levels. Portfolio 5 (blue line) which contains the stocks with
greatest exposure to idiosyncratic risk vary more than the Portfolio 1 (black line).

Figure 14: Plot of the semesterly returns for Portfolio 1 (stocks with lowest idiosyncratic volatil-
ity levels) and Portofolio 5 (stocks with highest volatility levels). P1 is the black line, P5 is the
blue line.

Figure 15 shows the semesterly returns of the P5-P1 which represents the trading strategy
of going short on the portfolio stocks with low idiosyncratic risk exposure and long on the
portfolio formed by stocks with high idiosyncratic volatility levels. Besides one peak where the
strategy gained abysmally negative return (end of 2018) we know by Table 6 that the average
semesterly performance of P5-P1 is −0.21%.
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Figure 15: Plot of the semesterly returns of trading strategy P5-P1 (long on Portfolio 5 and short
on Portfolio 1).

C Trading Strategy 1/0/12

Plo�ing the annual returns of Portfolio 5 against Portfolio 1 (Figure 16) we observe again the
di�erence in volatility between P5 and P1. Portfolio 5 (blue line) which contains the stocks
with greatest exposure to idiosyncratic risk vary much more than the Portfolio 1 (black line).
Figure 17 shows the annual returns of the P5-P1 which represents the trading strategy of going

Figure 16: Plot of the annual returns for Portfolio 1 (stocks with lowest idiosyncratic volatility
levels) and Portofolio 5 (stocks with highest volatility levels). P1 is the black line, P5 is the blue
line.

short on the portfolio stocks with low idiosyncratic risk exposure and long on the portfolio
formed by stocks with high idiosyncratic volatility levels. �ere aren’t abnormal peaks over the
eight years, we notice again a strong cyclicality. From Table 7 average annual performance of
P5-P1 is −4.44%.
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Figure 17: Plot of the annual returns of trading strategy P5-P1 (long on Portfolio 5 and short on
Portfolio 1).

D D2 component

�e D2 component, represents the investment horizon from 4 to 8 days. Running the analysis
we obtain Table 14.
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 -0.01 0.39 0.22 -0.04* -0.05**
[-1.81] [-2.30]

P2 -0.03 0.47 0.37 -0.06** -0.07***
[-2.33] [-2.79]

P3 -0.06 0.53 0.24 -0.10*** -0.10***
[-3.26] [-3.92]

P4 -0.07 0.60 0.13 -0.11*** -0.12***
[-3.15] [-3.95]

P5 -0.15 0.68 0.05 -0.19*** -0.20***
[-7.20] [-6.20]

P5-P1 -0.14*** -0.15*** -0.16***
[-6.62] [-7.80] [-7.50]

Table 14: D2 component, 4 to 8 days investment horizon. Forming value-weighted quintile port-
folios month we sort stocks based on idiosyncratic volatility relative to Fama and French (1993).
Volatility is computed using daily data from the previous month. P1 (P5) is the portfolio with
the lowest (highest) idiosyncratic volatilities. �e statistics Mean and Std. Dev. are measured in
monthly percentage terms over (not excess) simple returns. MKT Share is the average relative
MKT share of the portfolio. P5-P1 refers to the di�erence in monthly returns between Portolio
5 and 1. �e last two columns are the Jensen’s alphas relative to CAPM and Fama-French three-
factor models. Robust Newey and West (1986) t-statistics are reported in the square brackets.
*** means the value is statistically signi�cant at 1% level, ** at 5% level and * at 10% level from
a two-tailed test. Sample period is 2010-2018, trading strategy is 1/0/6

�e trading strategy P5-P1, which represents the compensation for exposure to idiosyncratic
risk, is almost zero. �is result is in line with our results because we �nd strategy 1/0/1 having
a negative monthly compensation. Alphas relative to CAPM and Fama-French 3-factor model
are negative.

E D3 component

�e D3 component, since the wavelet transform is done on daily data, represents the investment
horizon from 8 to 16 days. Results in Table 15.
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 -0.03 0.55 0.21 -0.09*** -0.10***
[-3.20] [-3.75]

P2 -0.01 0.64 0.34 -0.07*** -0.08***
[-2.57] [-2.80]

P3 -0.03 0.77 0.25 -0.11*** -0.12***
[-3.30] [-4.42]

P4 -0.03 0.85 0.14 -0.12*** -0.13***
[-2.73] [-3.18]

P5 -0.05 0.96 0.05 -0.14*** -0.15***
[-2.68] [-3.54]

P5-P1 -0.02 -0.05 -0.06
[-0.86] [-1.43] [-1.40]

Table 15: D3 component, 8-16 days investment horizon. Forming value-weighted quintile port-
folios month we sort stocks based on idiosyncratic volatility relative to Fama and French (1993).
Volatility is computed using daily data from the previous month. P1 (P5) is the portfolio with
the lowest (highest) idiosyncratic volatilities. �e statistics Mean and Std. Dev. are measured in
monthly percentage terms over (not excess) simple returns. MKT Share is the average relative
MKT share of the portfolio. P5-P1 refers to the di�erence in monthly returns between Portolio
5 and 1. �e last two columns are the Jensen’s alphas relative to CAPM and Fama-French three-
factor models. Robust Newey and West (1986) t-statistics are reported in the square brackets.
*** means the value is statistically signi�cant at 1% level, ** at 5% level and * at 10% level from
a two-tailed test. Sample period is 2010-2018, trading strategy is 1/0/1

�e trading strategy P5-P1, which represents the compensation for exposure to idiosyncratic
risk, is almost zero. �is result is in line with our results because we �nd strategy 1/0/1 having
a negative monthly compensation. Alphas relative to CAPM and Fama-French 3-factor model
are negative.

F D4 component

�e D4 component, since the wavelet transform is done on daily data, represents the investment
horizon from 16-32 to 4 days. Results in Table 16.
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 0.96 2.78 0.20 0.46 0.40
[2.84] [3.12]

P2 1.00 3.47 0.37 0.36 0.32
[2.74] [2.80]

P3 0.87 4.37 0.26 0.05 0.05
[0.46] [0.40]

P4 0.77 4.99 0.13 -0.15 -0.11
[-0.94] [-0.73]

P5 0.51 5.64 0.05 -0.48 -0.40
[-2.04] [-1.86]

P5-P1 -0.45 -0.94 -0.80
[-1.05] [-2.86] [-3.05]

Table 16: D4 component, 16-32 days investment horizon. Forming value-weighted quintile port-
folios month we sort stocks based on idiosyncratic volatility relative to Fama and French (1993).
Volatility is computed using daily data from the previous month. P1 (P5) is the portfolio with
the lowest (highest) idiosyncratic volatilities. �e statistics Mean and Std. Dev. are measured in
monthly percentage terms over (not excess) simple returns. MKT Share is the average relative
MKT share of the portfolio. P5-P1 refers to the di�erence in monthly returns between Portolio
5 and 1. �e last two columns are the Jensen’s alphas relative to CAPM and Fama-French three-
factor models. Robust Newey and West (1986) t-statistics are reported in the square brackets.
*** means the value is statistically signi�cant at 1% level, ** at 5% level and * at 10% level from
a two-tailed test. Sample period is 2010-2018, trading strategy is 1/0/1

�e trading strategy P5-P1, which represents the compensation for exposure to idiosyncratic
risk, is negative. �is result is in line with our results because we �nd strategy 1/0/1 having a
negative monthly compensation. Alphas relative to CAPM and Fama-French 3-factor model are
negative.
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ABSTRACT
1 Introduction

We examine the relationship between idiosyncratic volatility and cross-section of returns, aiming to verify
if the negative relationship found by Ang et al. (2006)1 is still present in the post-crisis period (2010-2018).
Hence, for each �rm in the American equity market, we construct from the individual stocks 5 portfolios with
di�erent levels of idiosycnratic risk. �en we measure the performance di�erence between the portfolio
made of stocks with highest level of idiosyncratic risk and the portfolio based on stocks with the lowest
level of idiosyncratic risk. A�erwards a trading strategy exploiting the pa�erns we �nd in the data is tested
with several evaluation performance measures. We then analyse if the relationship between idiosyncratic
volatility and returns is holding-period dependent, in order to test if heterogeneity of investors’ investment
horizon hypothesis is veri�ed by our �ndings. To further test this recent hypothesis in literature, we apply
the wavelet transform to study the contribution of each frequency in our data to the Puzzle.
Our novel contribution is to use Ang et al. (2006)’s approach to examine the idiosyncratic volatility-return
relationship in a di�erent sample period2 and to evaluate the performance of two trading strategies exploiting
the Puzzle. In addition, we analyse if the relationship is holding-period dependent using a strategy with
increasing holding periods (1, 3, 6 and 12 months). To relate the inverted U-shaped relation we observe to
the heterogeneity of investors’ investment horizons hypothesis, we perform a time-frequency analysis with
the wavelet transform on the American equity market post-crisis.
In literature, the theme of this thesis is known as ”the Volatility Puzzle”. We focus on the idiosyncratic side of
the volatility, following other papers’ example from now on we refer to it as the ”IVOL Puzzle” (Idiosyncratic
VOLatility Puzzle). Studying the IVOL Puzzle can be helpful both from a factor investing point of view (as a
trading strategy) and as a stronger theoretical framework for all the investors which fail to diversify.

We use a dataset from Wharton Research Data Service, composed by the daily returns of the stocks be-
longing to the same exchanges Ang et al. (2006) used, for the post-crisis period. We monthly construct the
5 portfolios formed on IVOLs using the trading strategy 1/0/1. We �nd evidence of a negative relationship
between IVOL and returns because the portfolio 1 (formed on low volatility stocks) outperforms the portfolio
5 (based on high volatility stocks). �e fact the alphas are substantial (-0.72% relative to CAPM and -0.59%
relative from Fama-French three-factor model) and statistically signi�cant brings additional evidence of the
existence of the IVOL Puzzle a�er the crisis.
Given our �ndings, we compute performance evaluation measures of four well-known strategies based on:
Market, Size, Value and Momentum factors. We compare these strategies to the strategy of going long on
low idiosyncratic volatility stocks and short on high idiosyncratic volatility stocks. We �nd our strategy and
the momentum strategy performing well relative to the market index. A�erwards we quantify the cost for a
mean-variance optimizer investor, with an indexed position, of ignoring low idiosyncratic volatility stocks.
By tilting its position towards the low idiosyncratic volatility stocks it increases substantially its utility func-
tion.
�e trading strategy 1/0/3, 1/0/6 and 1/0/12 bring other relevant discoveries. �e trading strategy 1/0/3 shows
the same pa�erns of the trading strategy 1/0/1, where portfolio 5 underperforms the portfolio 1. �e alphas

1�eir sample period is 1963-2000.
2In the American equity market, as for Ang et al. (2006).
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are relevant and statically signi�cant, meaning that the CAPM and FF3 models still fail to price the portfo-
lios. �e trading strategy 1/0/6 shows the absence of a di�erence in performance both in returns and alphas
between portfolio 1 and 5. �e trading strategy 1/0/12 displays again the Puzzle’s existence with the same
pa�erns of the strategy 1/0/1 and 1/0/3.
Malagon et al. (2015); Yin et al. (2019) use the Wavelet Multi-Resolution Analysis to separate investor classes
and decompose a time series into di�erent time horizons. In our case instead of decomposing the time series,
playing with the se�ing of the L/M/N strategy we test di�erent holding periods, separating the investors from
active (frequent rebalancing) to more passive investors (yearly rebalance). Anyway, time scales determine
the overall return we capture, therefore di�erent compensations required by investors with di�erent time
horizons a�ects the compensation of the overall holding periods. �e sum of the compensations required
for all the time scales inside an holding period makes the �nal compensation we observe, hence a change
in compensation for increasing holding periods implies a compensation for bearing idiosyncratic risk that is
investment-horizon dependent.
Finally, we test the hetereogeneity of investors’ investment horizons hypothesis. Following the framework
of Malagon et al. (2015) we apply the wavelet multi-resolution analysis, decomposing our data into 7 dif-
ferent frequencies representing the behaviour of di�erent kind of investors. �e analysis reports a negative
relationship between �rm-speci�c risk and returns for short term investors (investment horizon from 2 to
32 days), a positive one for medium term investors (32 to 128 days) and a negative one for longer investment
horizons (> 128 days).

2 Literature on the Idiosyncratic Volatility Puzzle

2.1 Preamble

By theory, there should be a premium to compensate investors for holding assets that are not diversi�ed.
Diversi�cation smooths out the �rm speci�c risk by holding an enough large number of assets. �e con-
sequence of diversi�cation is a lower risk faced, hence a be�er return for unit of risk in our portfolio. �e
reason why facing less risk means a be�er mean-variance optimization, is that under certain general as-
sumptions the idiosyncratic risk is not priced (compensated) as the systematic risk. If investors were rational
individuals, they should not face idiosyncratic risk and it should not even be priced. Given the empirical
evidence, investors fail to fully diversify their investments, therefore an investigation on how idiosyncratic
risk a�ects portfolio’s performance was needed both for theoretical and investment purposes. Several papers
over the years, investigating how idiosyncratic risk is priced by the market, have found mixed evidence. In
academic literature the evidence about Idiosyncratic Volatility Puzzle is mixed: there are researchers that
found a signi�cant positive relationship between idiosyncratic volatility and average returns (as Fu (2009)),
there are others which failed to �nd a signi�cant relationship between these two variables (as Bali and Cakici
(2008)) and �nally there is also evidence of a negative relationship as Ang et al. (2006).

2.2 Hypotheses

�e literature’s debate over the Idiosyncratic Volatility Puzzle had two main periods. From 2006 till 2009, the
main e�ort has been to weaken the robustness of Ang et al. (2006)’s �ndings. Even if some critiques may
have been economically reasonable and empirically proved, see Fu (2009) about the time-varying volatility’s
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nature, statistically signi�cant evidence of the Puzzle was still unexplained. Ang et al. (2009) have brought
huge consensus about the robustness of their results, in fact a�er 2009 more possible explanations to the
Puzzle came up. �emost famous one are: heterogeneity of investors’ investment horizons, lo�ery preference
(behavioural explanation), market frictions, average variance beta (Chen and Petkova (2012)) and IVOL as an
information content (Jiang et al. (2009)). Between all the hypotheses which have been used as reason behind
the Puzzle, heterogeneity of investors’ investment horizons captures our a�ention because it can potentially
explain both the signi�cant negative relationship between IVOL and returns and the mixed evidence found in
literature. �is hypothesis states that the compensation investors demand for bearing idiosyncratic risk could
be horizon dependent. Malagon et al. (2015), applying Wavelet Multi-Resolution Analysis to disentangle the
di�erent time horizons, �nd a negative relationship between IVOL and returns for the short term investors
while the relationship gets positive for long-term investors. Yin et al. (2019) �nd the Puzzle for short-term
investors, a positive relationship for middle-term investors and a negative relationship again for long term
investors.

Aim of the thesis is to search for evidence about IVOL Puzzle, considering the post-crisis sample period
(2010-2018). Given the evidence found in the literature, applying the same framework of Ang et al. (2006,
2009) we expect to �nd supporting evidence to the Puzzle, since we fail to notice reasons why the compen-
sation demanded by investors exposed to idiosyncratic risk should have been changed3.
About the heterogeneity of investors’ investment horizons hypothesis, we are going to test di�erent holding
period (di�erent values for N) of the trading strategy L/M/N, to check if there is a change in the compensation
required by investors bearing the idiosycnratic risk for a holding period of 1,3,6 and 12 months. Given the
Malagon et al. (2015); Yin et al. (2019)’s results, we expect to observe supporting evidence to the heterogeneity
of investors’ investment horizons hypothesis.

2.3 �e Idiosyncratic Volatility

We de�ned volatility of an asset as the standard deviation of returns with a given frequency, therefore it
can be easily measured. On the other hand, idiosyncratic volatility can only be estimated from the model’s
residuals, therefore is model dependent. If idiosyncratic volatility is model dependent then its accuracy is
model dependent too, hence the be�er the model the be�er the idiosyncratic volatility we estimate.

Risk, intended as the standard deviation of returns over time, can be divided into two main components.
When a risk is faced by all the securities in the market (can’t be diversi�ed because related to macroeconomic
factors), is classi�ed as systematic risk. As systematic are considered: the interest rate risk, the market risk,
the purchasing power risk, the exchange rate risk and the political risk4. On the other hand, the idiosyncratic
risk is an industry/�rm/stock speci�c risk which can be diversi�ed away just increasing the number of stocks
inside the portfolio. Campbell et al. (2001) stated that ”the number of randomly selected stocks needed to
achieve relatively complete portfolio diversi�cation” is about 50. �e intuition is that usually assets are
not perfectly correlated, therefore an additional asset will decrease the portfolio’s idiosyncratic risk. Using
the Ang et al. (2006)’s methodology, the IVOL computation derives from the squared root of the residuals’

3Sample period of Ang et al. (2006, 2009) is 1963-2000.
4h�ps://e�nancemanagement.com/investment-decisions/systematic-risk
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variance
√
Var (ϵi,t ) from the Fama-French 3-factors model (OLS multivariate regression):

rit = αi + βi,mktMKTt + βi,SMBSMBt + βi,HMLHMLt + ϵi,t (1)

�erefore, from now on when we talk about IVOL we refer to idiosyncratic volatility relative to the Fama-
French three-factor model.

3 Trading strategy

Following Ang et al. (2006), we de�ne our framework as the trading strategy L/M/N. At a point in time t we
sort the daily stocks returns based on the L-months lagged IVOLs into 5 quantiles, then we wait M-months
and eventually we hold these portfolios (the 5 quantiles) for N-months5. �e IVOLs are constructed monthly
over daily returns. We examine if going short on P5 and long on P1 is pro�table. We analyse the follow-
ing trading strategy’s se�ings: 2/0/1 with monthly rebalancing, 1/0/1 with monthly rebalancing, 1/0/3 with
quarterly rebalancing, 1/0/6 with semesterly rebalancing and 1/0/12 with annual rebalancing.
�e di�erence in an investor who does monthly rebalancing based on a factor (IVOL in our case) compared to
a yearly rebalancing is the di�erent level of activeness used to manage his portfolio. Investors whom decide
to rebalance every year are closer to a passive investing management while monthly rebalancing investors
are more active in their portfolio management.

3.0.1 Dataset from CRSP

�e analysis now shi�s over a dataset from Wharton Research Data Service6. It contains the daily returns
of stocks on primary listings for NYSE, NYSE MKT (previously known as AMEX), NASDAQ and ARCA
exchanges. �e time period considered is the post-crisis one, therefore 2010-2018. Over the dataset will be
tested the following trading strategies: 1/0/1, 1/0/3, 1/0/6 and 1/0/12. �e columns/variables it contains are:
daily returns, price per share and number of share outstanding. �e last two variables are needed to compute
the value-weighted returns of each portfolio. Multiplying them, we obtain the market capitalization which
will be used to weight the returns inside the portfolios.

3.1 Trading strategy 1/0/1

We construct monthly portfolios of stock returns based on �ve levels of the 1month lagged IVOLs. �e results
are reported in a table which is in the layout similar to Ang et al. (2006)’s table for comparison purposes. �is
means the statistics computed for the 5 portfolios are: mean, standard deviation, market share (intended
as average market capitalization of the portfolio over the sum of the 5 portfolios’ market capitalizations)
and alphas from CAPM and Fama-French three-factor models. In order to be as close as possible to the
real application of a trading strategy, to compute the value-weighted returns we used as weights the market
capitalization of the �rst day of the month considered. Results are in Table 1.

5�e portfolios returns at the end of the M period are value-weighted
6h�p://www.crsp.com/products/research-products/crsp-us-stock-databases
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 0.94 2.88 0.21 0.41*** 0.38***
[3.72] [3.70]

P2 0.99 3.66 0.40 0.29*** -0.26***
[2.63] [2.89]

P3 0.99 4.30 0.25 0.18* 0.18*
[1.81] [1.68]

P4 0.81 4.82 0.11 -0.06 -0.01
[-0.40] [-0.06]

P5 0.63 5.66 0.04 -0.31 -0.22
[-1.22] [-1.00]

P5-P1 -0.32 -0.72** -0.59**
[-0.80] [-2.53] [-2.50]

Table 1: Forming value-weighted quintile portfolios every month we sort stocks based on idiosyncratic
volatility relative to Fama and French (1993). Volatility is computed using daily data from the previousmonth.
P1 (P5) is the portfolio with the lowest (highest) idiosyncratic volatilities. �e statistics Mean and Std. Dev.
are measured in monthly percentage terms over (not excess) simple returns. MKT Share is the average rela-
tive MKT share of the portfolio. P5-P1 refers to the di�erence in monthly returns between portolio 5 and 1.
�e last two columns are the Jensen’s alphas relative to CAPM and Fama-French three-factor models. Robust
Newey and West (1986) t-statistics are reported in the square brackets. *** means the value is statistically
signi�cant at 1% level, ** at 5% level and * at 10% level from a two-tailed test. Sample period is 2010-2018,
trading strategy is 1/0/1

Our �ndings have the same pa�erns of Ang et al. (2006). In Table 1 P5-P1 return is -0.32% but it’s not sta-
tistically signi�cant. �e CAPM and Fama-French three-factor models alphas are in magnitude smaller than
Ang et al. (2006), but are statistically signi�cant. Overall, we observe additional evidence of the IVOL Puzzle,
since CAPM and Fama-French three-factor model misprice the P5-P1 portfolio’s alphas yielding statistically
signi�cant monthly alphas of -0.72% and -0.59% on the long P5 short P1 strategy. �e decreasing pa�ern in
market share from P1 to P5 is decreasing starting from P3.

3.2 Trading strategy 1/0/6

�is time the holding period of the portfolios sorted based of 1 month lagged IVOL is 6 months. �e rebal-
ancing is semesterly. Results are in Table 2.
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 5.63 7.22 0.25 1.83*** 0.68
[4.27] [1.46]

P2 7.10 8.00 0.20 2.89*** 2.74***
[15.57] [4.42]

P3 5.64 8.86 0.18 1.09 0.88
[1.44] [0.86]

P4 5.55 9.39 0.18 0.72 0.13
[0.68] [0.17]

P5 5.42 9.00 0.19 0.88 0.96
[0.90] [0.52]

P5-P1 -0.21 -0.95 0.28
[-0.40] [-1.12] [0.25]

Table 2: Forming value-weighted quintile portfolios every six months we sort stocks based on idiosyncratic
volatility relative to Fama and French (1993). Volatility is computed using daily data from the previous
month. P1 (P5) is the portfolio with the lowest (highest) idiosyncratic volatilities. �e statistics Mean and
Std. Dev. are measured in semesterly percentage terms over (not excess) simple returns. MKT Share is the
average relative MKT share of the portfolio. P5-P1 refers to the di�erence in semesterly returns between
Portolio 5 and 1. �e last two columns are the Jensen’s alphas relative to CAPM and Fama-French three-
factor models. Robust Newey and West (1986) t-statistics are reported in the square brackets. *** means the
value is statistically signi�cant at 1% level, ** at 5% level and * at 10% level from a two-tailed test. Sample
period is 2010-2018, trading strategy is 1/0/6

Compared to 1/0/3, the gap in return between P5 and P1 substantially shrinks (-0.21% for 1/0/6 compared
to -1.30% for 1/0/3). Since the holding period is twice the size, assuming the compensation was still negative
from month 3 to 6 and given the same pa�ern we found with previous strategies, we were expecting a bigger
gap.
�e fact IVOL Puzzle vanishedwith a holding period of 6 months could be caused by several reasons. We state
that testing di�erent holding periods is a way to bring new evidence to the heterogeneity of investors’ invest-
ment horizon hypothesis. �e fact the IVOL Puzzle (a lower compensation for high IVOL stocks compared to
low IVOL stocks) is reduced till to disappeared, can be explained by the presence of a positive compensation
for bearing idiosyncratic risk approximately from the 3rd to the 6th month.

3.3 Trading strategy 1/0/12

Holding period is set to 12 months for portfolios based on 1 month lagged IVOL. Results are in Table 3.
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 10.60 9.53 0.34 5.32 5.26**
[0.61] [1.99]

P2 10.19 13.26 0.35 2.75*** 2.01***
[4.40] [6.96]

P3 9.78 15.31 0.20 1.41 1.04
[1.14] [1.14]

P4 6.63 15.91 0.09 -1.99** -2.54***
[-2.29] [-7.24]

P5 6.17 22.57 0.03 -5.34*** -3.75***
[-5.44] [-5.34]

P5-P1 -4.44 -10.66*** -9.00***
[-1.34] [-4.63] [-4.17]

Table 3: Forming value-weighted quintile portfolios every twelve months we sort stocks based on idiosyn-
cratic volatility relative to Fama and French (1993). Volatility is computed using daily data from the previous
month. P1 (P5) is the portfolio with the lowest (highest) idiosyncratic volatilities. �e statistics Mean and Std.
Dev. are measured in annual percentage terms over (not excess) simple returns. MKT Share is the average
relative MKT share of the portfolio. P5-P1 refers to the di�erence in annual returns between Portolio 5 and 1.
�e last two columns are the Jensen’s alphas relative to CAPM and Fama-French three-factor models. Robust
Newey and West (1986) t-statistics are reported in the square brackets. *** means the value is statistically
signi�cant at 1% level, ** at 5% level and * at 10% level from a two-tailed test. Sample period is 2010-2018,
trading strategy is 1/0/12

Increasing additionally the holding period from 6 to 12 months, the IVOL Puzzle appears again. Standard
Deviations increase from P1 to P5 while Market Share decrease from P1 to P5. �e usual pa�erns from P1 to
P5 for each statistics are back. �e alphas’ t-statistics are more robust than the other strategies. �e 1/0/12
strategy brings again evidence of the IVOL Puzzle.

4 Trading strategy’s results

4.0.1 Idiosyncratic Volatility Puzzle’s post-crisis evidence

Main theme of the thesis is to search for evidence about the IVOL Puzzle in the post-crisis period. We
apply several trading strategies (2/0/1, 1/0/1, 1/0/3, 1/0/6 and 1/0/12) based on IVOL, to see if the negative
relationship between IVOL and returns is still present a�er the crisis. Across these strategies, we always have
found relevant and strongly signi�cant spread alphas between P5 and P1 relative to CAPM and Fama-French
3-factor models (but for trading strategy 1/0/6). We �nd relevant and statically signi�cant alphas (but for
trading strategy 1/0/6), meaning the strategies are able to ”beat the market”. �is expression is used when
active managers form portfolios capable of gaining actual returns that exceed risk-adjusted expected returns.
�e total actual return minus the risk-adjusted expected return equals the ”alpha” gained and it measures
the value the active managers bring into the investment process.Our outcomes show evidence of the IVOL
Puzzle in the post-crisis period7.

72010-2018.
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4.0.2 Heterogeneity of investors’ investment horizons hypothesis

Second goal of the thesis is to test the heterogeneity of investors’ investment horizon hypothesis, that started
to be developed from Brandt et al. (2009). Key intuition behind is the presence of several kind of investors,
which implies heterogeneity of their needs and consequently of their investment horizons in �nancial mar-
kets. Our analysis, till now, doesn’t consider the single time scales contribution (as Malagon et al. (2015); Yin
et al. (2019)), it evaluates instead the performance of di�erent degrees of activeness in the portfolio manage-
ment. However, the two approaches are not completely separated. In fact, if increasing the holding period
the IVOL Puzzle weakens, this could mean that investors with a bigger time scale are demanding a premium
for bearing idiosyncratic risk.
Since a given holding period return should be the results of all the investment horizons that compose the
period, the fact we spot a di�erent compensation for a di�erent holding period is an evidence supporting the
heterogeneity of investors’ investment horizon hypothesis. Generally speaking, our results show that the
sign compensation for bearing idiosyncratic risk is holding-period dependent following an inverted U-shape
trend.

4.1 Cumulative Returns

Plo�ing the cumulative returns some famous strategies ( Figure 1), we examine how much investing in each
strategy since January 2010 yields for each month over time. We observe that P1 strategy outperforms every
other strategies in terms of mean return, Sharpe Ratio and cumulative return. P5-P1 strategy slightly under-
performs the momentum strategy in terms of cumulative returns. P5-P1 is a long-short equity strategy, this
technique is o�en used by hedge funds to gain both from the increase and decrease of prices of di�erent
securities in the market. A portfolio with this se�ing protects itself from losses during market downturns,
because of this when the strategy has a close to zero correlation relative to the market it’s called a ”market-
neutral” strategy. �e beta β of this strategy is -0.56 therefore the strategy, besides performing on average
be�er than Size and Value strategies, can be used as a hedging instrument against market risk. Size and Value
strategies as expected from summary statistics we computed, perform poorly post-crisis.
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Figure 1: Cumulative returns for each strategy: P1(yellow), Market(green), Momentum(purple), P1-P5(black),
Size(blue) and Value(red). Sample period: January 2010-December 2018.

5 Fourier and Wavelet methods for time series in Finance

5.1 From time domain to frequency domain

In several �elds, the time domain analysis of a variable can be enhanced by the frequency domain analysis.
A time domain series is a variable which is function of time, therefore is indexed in time order and plot-
ting the variable we obtain a time amplitude representation. Studying the frequencies of a process, we can
observe characteristics hidden in the frequency domain representation. All the frequency components of a
signal/process/series are called frequency spectrum.
�e mathematical tools used to go from time to frequency domain are generally called transforms and the
most popular one is the Fourier transform.

5.2 Wavelet transform

Fourier transform requires the process to be stationary, because it goes from the time-domain to the fre-
quency domain. In �nance o�en the data doesn’t satisfy the stationarity requirement. A recent transform
which overcome this issue is the wavelet transform because with wavelets we can obtain a time-frequency
representation of our data.

5.3 �e Discrete Wavelet Transform (DWT)

Contrary to CWT, the Discrete Wavelet Transform has a limited amount of coe�cients because the mother
wavelet is dilated and translet a limited number of times. �is is obtained se�ing:

s = 2−j u = k2−j (2)
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where j,k are the set of discrete translation and dilatation, implying that the wavelet transform is calculated
only at dyadic scales (2j). Another implication is that, being N the observations of our time series, the largest
number of scales is the the integer J:

J = [loд2(N )] = [loд(N )/loд(2)] (3)

this can be an issue because if the time series is not of dyadic length, observations must be added or removed.
Two discrete wavelet �lter are behind the DWT. One is the mother wavelet, denoted hl = (ho, ...,hL−1). �e
second one is the father wavelet, denoted дl = (д0, ...,дL−1). Properties of the mother wavelet are:

L−1∑
l=0

hl = 0,
L−1∑
l=0

h2l = 1,
L−1∑
l=0

hlhl+2n = 0 ∀n ∈ N0 (4)

�anks to the above properties, hl is a di�erence operator, the DWT has the variance of the original data
and a multiresolution analysis can be performed. �e father wavelet is a low pass �lter and captures the long
scales, hence the low frequency, smooth components of the series computing the ”scaling” coe�cients. �e
mother wavelet is an high pass �lter and captures the short scales, high frequency, details components of the
series. �e father wavelet has the following condition:

L−1∑
l=0

дl = 1 (5)

�e �rst level of decomposition computes the wavelet and the scaling coe�cients of the �rst scale, respec-
tivelyw1(t) and v1(t) that are obtained in the following way:

w1(t) =
L−1∑
l=0

hlx(t
′) and v1(t) =

L−1∑
l=0

дlx(t
′) (6)

in which t = 0, 1, ...,T /2 − 1 and t ′ = 2t + 1 − lmodT .
�anks to the pyramid algorithm (procedure in �gure 2 ), we can further decompose the low frequency scaling
coe�cients v1(t) into other to components. �erefore the second level decomposition has w = [w1,w2,v2]

and the J level decomposition hasw = [w1, ...,w J ,v J ].
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algorithm.png

Figure 2: Pyramid algorithm doing a N level decomposition from Sundling et al. (2006)

5.4 �e Maximal Overlap Discrete Wavelet Transform (MODWT)

To overcome the limitations we brie�y described of DWT, we can use the MODWT. Contrary to the DWT,
MODWT consider all the possible (integer) translations. Hence for every scale the wavelet coe�cients,
the scaling coe�cients and the original series have the same length. At the �rst level decomposition with
MODWT we have:

w̃1(t) =
L−1∑
l=0

hlx(t
′) and ṽ1(t) =

L−1∑
l=0

дlx(t
′) (7)

in which t = 0, 1, ...,T and t ′ = t − lmodT . Using the pyramid algorithm, we can obtain the MODWT
coe�cients for further level of decomposition.

6 Heterogeneity of investors’ investment horizons hypothesis and
Wavelet transform

Comparing the compensation required by investors, with di�erent holding period, to bear idiosyncratic risk
we observe for short holding period (1-3 months) a negative premium, for medium holding period (3-6
months) a zero premium and for long term holding period (6-12 months) again a negative compensation.
Our hypothesis is that this result can be driven by investors with di�erent investment horizon requiring
di�erent compensation for bearing idiosyncratic risk. Testing the trading strategy with increasing holding
period can show the compensation of all the investors with investment horizon smaller or equal to the hold-
ing period but can’t properly disentangle every required compensation. �erefore the return we observe at
the end of the holding period of p months, is the aggregation of all the compensation required by investment
horizons smaller or equal to p.
To study in detail the Idiosyncratic Volatility Puzzle, we use the Wavelet transform to study the contribution
of each frequency (time scale) to the �nal holding period return of portfolio 5 and 1.
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6.1 From frequencies to investors

We summarized in Section 9 the theoretical background, the properties and the applications of the wavelet
transform. In �nance, decomposing in frequencies a time series of returns, we look for an economical in-
terpretation of the frequencies. Considering a short (long) time scale of our time series, means to capture
the high (low) frequency contributions to our series. �erefore in our case, the high frequencies (short time
scale) are the contribution of the short term investors to the series, while the low frequencies (long time scale)
represent the contribution of the long term investors. �is reasoning is reasonable as the short (long) term
investors contribute to the most (least) frequent movements of the price. Di�erent investors have di�erent
trading frequencies (Malagon et al. (2015))
�e de�nition of short/medium/long term investors depends by the frequency of the data on which we do
the wavelet transform. �e technique creates frequency bands separated by multiples of 2J . �erefore with
daily data we can capture the contribution of investors with investment horizon of 2-4 days, 4-8 days, 8-16
days till the maximum admi�ed level of decomposition.
Performing the wavelet transform, we decompose our time series S0 into an approximation Sj (long time
scale/low frequency) and details Dj (short time scale /high frequency).

6.2 Application to trading strategy 1/0/1

We apply a wavelet transform of level 6 to our framework, decomposing the daily returns and the daily
factors into 6 details and one smooth component (example in �gure 3). We use the la8 �lter and the Maximal
Overlap Discrete Wavelet Transform. �e reason behind the MODWT is that we need to apply the transform
to approximately 11.000 �rms. To avoid issues linked to the required dyadic length of the data by the Discrete
Wavelet Transform, we choose the MODWT. Once the data is decomposed, we test the trading strategy 1/0/1
for each details and smooth components. Aim of this framework is to capture the compensation required,
for bearing idiosyncratic risk, by speci�c investors’ investment horizon identi�ed by each of the details and
smooth components. �e next sections cover just detail 1, 5 and 6 while the others are in the appendix.
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Figure 3: X is the time series of daily returns of an American �rm in our dataset. Applying the wavelet
transform with level 6, we obtain six details component called W and one smooth component de�ned V

6.3 D1, D5, D6 and S6 component

�e D1 component, since the wavelet transform is done on daily data, represents the investment horizon
from 2 to 4 days. Results are in Table 4.
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Rank Mean Std. Dev. MKT Share CAPM alpha FF3 alpha

P1 -0.06 0.40 0.23 -0.08*** -0.08***
[-2.79] [-3.06]

P2 -0.10 0.44 0.38 -0.12*** -0.12***
[-4.13] [-3.97]

P3 -0.15 0.51 0.24 -0.16*** -0.16***
[-4.29] [-4.51]

P4 -0.24 0.58 0.12 -0.26*** -0.26***
[-7.45] [-7.30]

P5 -0.42 0.70 0.04 -0.43*** -0.43***
[-9.54] [-9.96]

P5-P1 -0.35*** -0.34*** -0.34***
[-12.4] [-12.54] [-12.67]

Table 4: D1 component, 2-4 days investment horizon. Forming value-weighted quintile portfolios month
we sort stocks based on idiosyncratic volatility relative to Fama and French (1993). Volatility is computed
using daily data from the previous month. P1 (P5) is the portfolio with the lowest (highest) idiosyncratic
volatilities. �e statistics Mean and Std. Dev. are measured in monthly percentage terms over (not excess)
simple returns. MKT Share is the average relative MKT share of the portfolio. P5-P1 refers to the di�erence
in monthly returns between Portolio 5 and 1. �e last two columns are the Jensen’s alphas relative to CAPM
and Fama-French three-factor models. Robust Newey and West (1986) t-statistics are reported in the square
brackets. *** means the value is statistically signi�cant at 1% level, ** at 5% level and * at 10% level from a
two-tailed test. Sample period is 2010-2018, trading strategy is 1/0/1

�e trading strategy P5-P1, which represents the compensation for exposure to idiosyncratic risk, is nega-
tive and statistically signi�cant. �is result is in line with our previous results because we �nd strategy 1/0/1
(Table 1) having a negative monthly compensation. Alphas relative to CAPM and Fama-French 3-factor
model are negative and statistically signi�cant. We �nd the same pa�erns for standard deviation market
share observed in Table 1.
Testing also the other components, we �nd that the compensation draws for increasing time scales an in-
verted U-shape which further explains our results. �e non-constant performance of portfolio with increas-
ing holding and rebalancing period, �nds justi�cation in the heterogeneity contribution of di�erent frequen-
cies to the series.

7 Conclusion

Our study use the Ang et al. (2006)’s framework to examine if the Idiosyncratic Volatility Puzzle post-crisis
(2010-2018) is still present. Additionally, to analyse if the relationship between idiosyncratic volatility and
returns is holding-period dependent we apply the following trading strategies: 2/0/1, 1/0/1, 1/0/3, 1/0/6 and
1/0/12. �e strategies are constructed applying the L/M/N framework changing the parameters to test di�er-
ent holding periods. Our study shows a negative relationship between idiosyncratic volatility and returns for
trading strategy 1/0/1. We compute several performance evaluation measures P1-P5, P1, Market, Size, Value
and Momentum strategies. We �nd P1 (low idiosyncratic volatility stocks) outperforms every other strategy
in reward-risk terms. Moreover P1-P5 strategy can be used for hedging purposes because of its long-short
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equity structure and its negative correlation with the market. Moreover, we discover that the cost of ignoring
the low idiosyncratic volatility cost for a mean-variance optimizer investor, holding an indexed allocation, is
a sizeable increase of its utility function.
Second goal of the thesis is to test if the Puzzle is holding-period dependent. Studying the L/M/N strategy
with di�erent N (and di�erent rebalancing periods), we bring some evidence in line with the heterogeneity
of investors’ investment horizons hypothesis. All the strategies but 1/0/6 present a negative compensation
for bearing idiosyncratic risk. Trading strategy 1/0/6 shows no presence of IVOL Puzzle, because there is no
di�erence in performance between portfolios made of high IVOL stocks and portfolios made of low IVOL
stocks. �e absence of a compensation for bearing �rm-speci�c risk means that investors with investment
horizon from 4 to 6 months (at least) start to require a positive compensation to bear idiosyncratic risk, mak-
ing the �nal compensation required close to zero at the end of 6th month.
Overall the �ndings of this thesis prove the presence of the IVOL Puzzle post-crisis and bring evidence in
line with heterogeneity of investors’ investment horizons hypothesis supported by Malagon et al. (2015) and
Yin et al. (2019).
�anks to the decomposition of our data provided by the wavelet transform, we prove as the almost null
performance of strategy 1/0/6 is driven by a positive compensation for bearing idiosyncratic risk demanded
in time scales preceding the 6th month. Moreover this technique furnishes additional evidence to the im-
portance of the heterogeneity of investors’ investment horizons hypothesis, increasing the accuracy of the
analysis and quality of the model.
�e heterogeneity of investors’ investment horizon hypothesis can be one of the reasons behind the mixed
literature. �e several approaches to the topic, the di�erent equity markets studied and the di�erent time
period considered have contributed to make the construction of a proper consensus over the IVOL Puzzle dif-
�cult. Nevertheless, besides being reasonable the heterogeneity of investors’ investment horizon hypothesis
seems to put together di�erent results instead of generating additional stances.
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