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1 Introduction

The investment process has changed dramatically over time, along with the development of
new tools in Finance. We have observed a gradual switch from the so-called naïve investing
to fully automated quantitative strategies. Nowadays, most types of strategies that one can
think of can be coded using computer software and turned to reality. The strategies that
involve investing are many and di�er based on time horizons, risk pro�le of the investor,
market conditions, wealth available.

The starting point of modern portfolio construction is the basic mean-variance framework
(or Markowitz model), dating back to the 1950's. It was a major breakthrough in Finance
and introduced a new way of rethinking investments, but still contained many limitations.
Research was sparked by this innovation and this clever yet rudimental model has been en-
hanced, modi�ed and �ne-tuned. The products of these changes have in turn been subject to
similar transformations, leading to a great multitude of models with di�erent characteristics.

One of such models is called Black-Litterman Model and, when it was developed in the
1990's, constituted another major breakthrough in the �eld. In particular, it solved major
problems of the Markowitz model and it produced a quantitative way for an investor to
express his own personal beliefs over future outcomes. This model came along with the
mathematics and theory backing it up, making, on the one hand, huge progress in the
investment scene but also making, on the other hand, the portfolio construction process
more complex. However, this didn't constitute a major applicability problem, because the
model provides a closed-form solution. This means that it can be applied by anyone, without
necessarily understanding the mathematics or economics behind it.

As every other novelty, the Black-Litterman Model was studied in-depth and modi�ed in
multiple ways to �t the speci�c needs of investors and overcome some limitations. The ways
it has been modi�ed are multiple, but they give up the advantage of having a closed-form
solution. This means that the various steps taken in the actual construction of new models,
often highly demanding in terms of knowledge of maths or coding, have to be made by the
individual investor without the help of some universal formula. For this reason, most of
these new models could never be accessible to some investors.

Among the assumptions overcome by the modi�ed versions of Black-Litterman, there
is normality of returns. A complex model produced by Attilio Meucci overcomes this as-
sumption and some others, but causes non-professional investors to su�er from its extreme
technicality.

Today we propose a model which overcomes the same assumptions in a more heuristic and
accessible way. This model will be constructed step-by-step and compared to a benchmark
in order to measure its performance and discover its strengths and weaknesses.
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2 Background

2.1 Portfolio Construction Process

As a �rst thing, we try to answer the following question: What is an investment? A simplistic
way to de�ne it is a way to move resources across time so that we can have more tomorrow
by giving up something today (or viceversa). The ways in which we can invest are in�nite
and the �rst problem imposed on us is how to allocate our wealth available for investment.
This process is called Asset Allocation and concerns the choice of the asset classes to invest
in. An asset class can be de�ned as a group of securities with a set of characteristics that are
considered to be similar (e.g. all US equities, Hedge Funds, Italian Corporate Bonds). We
notice that in asset allocation we are also deciding where we are investing in a geographical
sense (in Italy, in the US, Russia, and so on...). Moreover, notice that an asset class is broadly
de�ned and it can set its "boundaries" at di�erent levels, leaving room to interpretation. An
investor should make considerations over the outlook of the market and the individual asset
classes before constructing its investment portfolio.

In reality, some strategies don't require any qualitative analysis and can be applied in
"mathematical" way. These strategies usually belong to what is called technical analysis
and select the individual securities, regardless of their asset class, based on some indicator.
Technical analysis is beyond the scope of this discussion but, to mention some common
examples, includes mean-reverting strategies or price momentum.

Another way in which we can allocate wealth is de�ned as sector rotation strategy.
This strategy tries to look at the business cycle and predict its next moves. This allows an
investor to choose a sector whose performance is positively correlated to the particular phase
of the cycle. For example, at a market peak we could invest in IT and industrials whereas
in a market trough we look more at consumer staples.

These dynamic strategies can be considered short term as they change over time to adapt
to market changes. In our discussion though we will focus on more long-term strategies.

For an investor with a long-term horizon, it is the study of the overall market risk-
return framework which leads to a �rst allocation of resources among asset classes, and this
process is called Strategic Asset Allocation (SAA). In this part of the process, portfolio
managers decide the weights assigned to each asset class and then proceed to selecting the
best securities within each one of them (in accordance with the asset class weights). The
SAA is usually reviewed annually but, in normal times, it is not a�ected by recent market
changes and has an horizon of more or less 5 years. Due to its long-term horizon, the
portfolio is usually not adjusted to contemporaneous news and is held until the prede�ned
horizon. Whenever the investor (or management) decides to take short- or medium-term
bets, an alternative solution is given by Tactical Asset Allocation (TAA) in which the
initial investment weights can be changed more frequently to adapt to temporary market
changes. An SAA and TAA can coexist in the following way. The initial strategic allocation
is tilted in favor or against the assets and/or asset classes on which we wish to bet, creating
a tactical bet. This weights are reverted back to the SAA (or to a new TAA) as soon as the
bet is realized. Which of the strategies we use depends on the conditions of the market. In a
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variable market it may be more logical to use a TAA whereas in a trending and predictable
market it can be more e�cient to rely on an SAA. The mix of the two can also be employed
whenver it suits at best the needs of the investor.

A portfolio can also be constructed in a naïve way, that is, just through common sense
diversi�cation and intuition over the future. For instance, an investor can decide a priori

that he wants to be invested in:

� 40% US equity

� 30% Global Bonds

� 30% Real Estate

These numbers are purely discretionary, but this can actually constitute a real-life ex-
ample. We can reach a similar result, with percentages of allocation across asset classes in
more advanced ways. The strategies we will consider involve quantitative optimization.

2.2 Markowitz and the Mean-Variance framework

The models used nowadays are many, but not so long ago, the naïve way was the only
valid solution. It is thanks to the mean-variance optimization process, �rst proposed by
Markowitz (1952), that the world of optimization developed so widely.

As we know, the driver of return is risk. Meaning that there is "no free lunch" and that
we cannot have the former without the latter. This �rst optimization created an unpreceded
mathematical way to deal with the trade-o� between the risk and return by formalizing their
measures for all individual assets:

� Risk is now measured by standard deviation (for asset i, σi)

� Returns are proxied by their expectations (for asset i, µi)

The optimization accounts for the multitude of assets in the market and requires these
two measures for all of them. Moreover, the way in which the assets behave in relation with
one another is measured by their covariance (for assets i and j, σij).

With the use of this information, Markowitz provides the formulas for the expected return
and risk of a portfolio given the vector of weights (wi) invested in each of the n assets at
disposal:

E(Rp) =
n∑
i=1

wi · µi

σ2
p =

n∑
i=1

n∑
j=1

wiwjρijσiσj
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The formula for portfolio variance relies on the statistical knowledge that the covariance
of two assets is the product of their standard deviations times their correlation:

σij = ρijσiσj

In the summation, when i = j, ρij becomes ρii = 1 (an asset has perfect correlation with
itself). Therefore, σii = σ2

i (the covariance of an asset with itself is its variance).
Imagine an investing universe made up of n assets; we wish to assign to each one of

them an expected return and quantify its risk. Moreover, we can estimate the correlation
among the n assets to understand how they perform related to each other. The concept
of diversi�cation in �nance concerns the fact that assets don't covary perfectly and that
there is an optimal way to take advantage of this. Notice from the formula for the variance
of the portfolio that a value of correlation ρij equal to 0 eliminates the whole contribution
of the two assets to the risk of the portfolio. A negative correlation does even more, and
reduces the overall risk of the portfolio. The secret of diversi�cation, as we can see, lies in
the correlation among the assets.

Markowitz provided, for the �rst time, a mathematical way to consider the �ndings above
and produce e�cient portfolios. Before we look at the way it actually works, let us consider
more in-depth the concepts we are dealing with: risk and expected returns.

An expected return is the forecast of the realized return of an asset which we cannot see
today but we will observe tomorrow. We need an a priori measure to quantify the possibility
of the realized return to be di�erent from our expectation. This possibility can be interpreted
as "risk" and many ways to measure it are available. The most simply understood one, and
also widely used, is standard deviation (also known as volatility). Standard deviation, as
we have seen, is represented by σ, and it is the positive square root of the variance of the
returns time series of an asset; it can be easily computed through historical data and it can
proxy the standard deviation of future returns.

Among the issues with this measunre there is the fact that standard deviation is sym-
metric. This means that risk concerns downside events as well as upside events (in practical
words, an asset that performs much better than expected would still be considered risky).

Extending the concept of standard deviation to a multivariate framework, it is convenient
to introduce vector notation. If we are dealing with n assets, the covariance matrix (notation:
Σ) is the matrix in which the diagonal represents the variances of the n assets (σ2

i ), and the
o�-diagonal elements their covariances (σij).

The structure of a covariance matrix Σ is the following:

Σ =


σ2
1 σ21 . . . σn1

σ12 σ2
2 . . .

...
... . . .

. . .
...

σ1n . . . d σ2
n


An alternative way to measure risk that we will use later on in the pages is EWMA.
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EWMA stands for "Exponentially Weighted Moving Average" and is a common and straight-
forward way to measure volatility. The box below provides its description.

EWMA volatility

The main advantage of this method is that it enables us to di�erentiate between recent
market events and events of a very distant past. The formula of this method is the following:

σ2
t = λσ2

t−1 + (1− λ)r2t−1

What the formula tells us is that the variance today (σ2
t ) is a function of yesterday's variance

(σ2
t−1) and yesterday's squared return (r2t−1). If we look at the formula in recursive way, at

any time t, σ2
t incorporates all the squared returns of the series up to that date, excluding

the contemporaneous one. We understand now that the key parameter is the "memory"
coe�cient, λ, which weights the last return versus all the previous ones.
For this reason, we will have a more or less "reactive" volatility based on the weights assigned
to the last squared return (1− λ). Meaning that for λ close to 0 volatility is very responsive
and for λ close to 1 volatility it is more "sticky". For our purposes we will refer to RiskMetrics,
which calibrates λ = 0.94.

Switching to the other main ingredient of Markowitz's model, expected returns, we have
a very basic approach to quantify them, using the average return of the di�erent assets. This
average can serve as proxy for future returns. Of course, there are ways to generate expected
returns with more sophisticated procedures but the arithmetic (or, alternatively, geometric)
mean represents an instantaneous and simple approach.

Note that for both risk and expected returns we are using an historical approach. The
quantities used today stem out of the past observations. The underlying assumption is that
the past is representative of the future. This is not usually a desired result in Finance, and
can bring to misleading decisions. To use a typical �nancial expression, it is like driving a
car just by looking at the rear mirror.

The risk-return trade-o� in creating a portfolio marks the birth of what is called "Mod-
ern Portfolio Theory" or simply MPT. More returns require more risk and, viceversa, if
we don't want to face risk we cannot expect high returns.

Going back to the framework with n assets available, we can invest our budget across
them in many possible ways (assigning all possible weights to all assets). Every portfolio we
can construct is de�ned as achievable. If we plot all the achievable portfolios based on their
risk and return, we obtain a graph similar to the one below. In the graph the blue shaded area
represents all achievable portfolios but only the ones on the so-called "E�cient Frontier" are
e�cient. The envelope that contains all possible portfolios is considered e�cient because
the portfolios in this set are the ones that have, for their levels of risk, the highest expected
return.
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Figure 1: An example of the E�cient Frontier

E�cient, in Markowitz terms, means that there is no portfolio that has higher expected
returns for that level of risk (standard deviation) or, the other way around, there is no
portfolio that achieves the same expected return but faces less risk. As a consequence of
this, all rational investors are going to construct one of the portfolios that lie on the E�cient
Frontier.

Note that this breakthrough concept introduced by Markowitz can �nd applications else-
where. As a matter of fact, later on, we will use the same concept while looking at other
models; that is, the E�cient Frontier will be constructed given new ways to specify risk and
returns, but producing similar results.

Each point on the frontier is a portfolio in which all assets have a weight. For these
portfolios we can compute as before the expected return and variance. Using matrix notation:

µp = α1 · µ1 + · · ·+ αi · µi + · · ·+ αn · µn = α′µ

σ2
p = α′Σα

This notation uses the following elements:

� α is the ordered vector of assets' weights (αi).

� µ is the ordered vector of assets' expected returns (µi).

� Σ is the covariance matrix of the assets (containing σ2
i 's and σij).

The E�cient Frontier is a continuous function in the graph provided, but if we are only
allowed to invest in discrete weights (for example, we can change weights by 1 basis point
each time) it becomes a step function. Later on, we will construct our E�cient Frontiers
using 25 points (25 portfolios).
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2.3 Utility functions

But how do we choose the best point to be at on the frontier? To answer this question
we need some additional information, speci�cally, an utility function. Utility can be seen
as the personal satisfaction of an individual. Because it is not easily quanti�able, utility
functions have an ambitious goal of trying to assign a value to this degree of satisfaction.
What we know is that satisfaction, in this framework, is a fucntion of two inputs, risk and
return. Inevitably, more returns imply more satisfaction but, at the same time, more risk.
Bearing risk, on the other hand, lowers our level of satisfaction, leading us once more to the
risk-return trade-o�. What a utility function does in practice is:

1. Provide for a rule for the trade-o� between risk and return;

2. Take the e�cient frontier portfolios and, through their expected returns and variances,
compute the utility of each of them using such rule;

3. Return the portfolio with the highest utility;

In �nancial litterature there are di�erent utility function families which di�er signi�cantly
in their implications. They are not cited in this paper because we will use, in accordance
with common practice in Finance, an exponential utility function, which is de�ned as
follows:

U(Wt+1) = − exp(−λWt+1)

where Wt+1 is next period's wealth and λ > 0 (di�erent from the λ we have encountered
in EWMA) is the absolute risk aversion coe�cient.

The aim of the optimization is now to maximize a priori the expected utility of tomor-
row's wealth:

E[U(Wt+1]

To do this we must �rst quantify tomorrow's wealth. Wt+1 depends on the outcome of
our investments today. We have, as before n assets to invest in, plus, we introduce now
a risk-free asset. The assumption that there is a risk-free asset means that we can invest
as much as we want (where negative investment is also allowed and means borrowing) and
obtain a return rf which has, by de�nition, zero risk (in the case in which we borrow we
simply return after one period the amount borrowed times 1 + rf ).

Based on how much we allocate across the risk-free and risky assets today we generate a
wealth tomorrow equal to:

Wt+1 = (1 + rf ) + α′(1 + rt+1 − (1 + rf )e)
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We now look for optimal weights assigned to risk-free and all other assets (the vector α).
The maximization problem, subject to α can be written as:

max
α

E[U(Wt+1]

It can be shown that, using exponential utility, the optimal solution to this problem is
equivalent to the optimal solution of the following simpler problem:

max
α

µp −
λ

2
σ2
p

As we know, we can rewrite µp and σ
2
p as:

µp = α′µ

σ2
p = α′Σα

In this way we can express returns and variance as a function of α. The coe�cient λ is,
therefore, the only unknown that prevents us from using �rst order conditions and solving
for α. This parameter λ is strictly speci�c to every di�erent investor and tries to quantify
how much the investor is averse to taking risk. Assigning a value to this coe�cient can
be very hard and is a topic which resides under the scope of behavioral �nance. Let us
say that the value for this coe�cient ranges between 1 and 8 and that, on average, it is
approximately 2.5/3. A higher value of λ implies more risk aversion and, as consequence less
risky portfolios. Lower λ means higher risk tolerance and riskier portfolios.

The solution, α∗,to the problem above is given by the following closed-form solution:

α∗ =
1

λ
Σ−1µ

Substituting for the individual risk aversion coe�cient of an individual provides the
optimal weights for such investor.

Given that the average coe�cient λ in the overall market is approximately 2.5, one can
plug-in λ = 2.5 in order to �nd the weights α which constitute current market capitalization.
This procedure will �nd an application later on in our discussion.

2.4 Criticism of Markowitz and newer �ndings

Although Markowitz remains a milestone in Finance, it has some limitations which have
been studied and, in some cases, surpassed by more modern research.

A major critique of this model is given by Michaud (1989) in which the author claims that
mean-variance optimization is actually an "estimation-error maximizer". Meaning that the
inputs estimated historically through Markowitz generate portfolios which tend to overweight
assets with high estimation error in returns and low estimation error in risk (and viceversa).
Michaud claims that the optimization proposed by Markowitz is really optimal only when
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the true population parameters are know. As we have seen though, in Markowitz, these
inputs are produced using an historical method. The consequences of this can be disastrous
for an investor, as there are high chances that the returns from the market will be at least
less advantageous than the expected ones for the portfolio.

Moreover, especially when short selling is allowed, we face a new problem called "corner
solution". The issue is that, given some inputs for returns and volatility, we may obtain a
set of optimal weights which is very unstable. For unstable we mean that the model heavily
relies on the preciseness of the inputs and, if the latter are slightly changed, great changes
happen to the portfolio composition. This translates into high model risk, on top of "normal"
market risk. Not only we face the risk of market �uctuations when we use our investment
model, we also face the risk that the model itself does not produce results that match our
intents.

Because the main issue is that in Markowitz the inputs are taken as 100% certain there
two possibilities available:

1. Heuristic approach, in which we take not just one set of inputs, rather, we take many
di�ernt inputs and average them out.

2. Bayesian approach, in which we take the inputs as given on one hand and then we
make use of Bayesian statistics to mix them with our own views.

The �rst method is primarily represented by the Resampled FrontierTM proposed by
Michaud in 1998 and takes a bootstrapping approach. Michaud, through his licensed method-
ology, resamples thousands of times the datasets and produces thousands of E�cient Fron-
tiers which are then averaged. This produces a �nal E�cient Frontier which does not present
the problems of mean-variance described above.

The second option, which makes use of Bayesian statistics, is covered by the famous
Black-Litterman (BL) model, developed in 1990. Because we are going to deal with this
latter approach, let us, before we introduce Black-Litterman formally, introduce Bayesian
statistics.

2.5 Bayesian Statistics

Under the mathematical perspective, it is worthwhile brie�y discussing the maths underlying
the construction of the BL model. In the proposed model for portfolio construction we make
use of the theory provided by Bayesian statistics. In general Bayesian probability theory is
based on the principle that observed data should somehow help in estimating probabilities
of future events. Using this approach, we will update the information given to us by markets
with our private information.

From probability theory we know that the joint probability of two events can be decom-
posed as:

p(x, y) = p(y|x)p(x)
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or alternatively:

p(x, y) = p(x|y)p(y)

By equalizing the two expressions above we obtain the most important result in this �eld of
statistics, Bayes's Theorem. The latter is formulated as:

p(x|y) =
p(y|x)p(x)

p(y)
∝ p(y|x)p(x)

The ∝ symbol means "proportional to" and allows us to disregard the denominator of
the expression.
In Bayesian statistics, usually, x is an event and y is some observed data, the probabilities
acquire the following interpretations:

� p(x) is the prior probability of event x.

� p(y|x) is the likelihood function. The probability of the "evidence" y given that x is
true.

� p(x|y) is the posterior probability of x. The new probability we assign to event x
given that we observed y.

The posterior p(x|y), is proportional to the likelihood, p(y|x) times the prior, p(x).
To reconnect with the criticisms of Markowitz, this methodology can be used to mix the

inputs we have with our views to construct more reliable results.
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3 Black-Litterman

The Bayesian approach can be used to incorporate beliefs about many market outcomes into
our estimation. In particular, we place ourselves in the shoes of an asset manager who wants
to base his asset allocation on his beliefs. We could start by using the market portfolio as
a beginning point and then tilting the weights in each asset class according to our views,
overweighting whenever we have positive views and underweighting in the opposite situation.
This approach could in principle be used for investing across all securities, expressing views
on each, but could lead to dimensionality issues whenever we are dealing with many assets.

The Black-Litterman model was developed in 1990 by Fisher Black and Robert Litterman
at Goldman Sachs and it can be easily applied by means of a closed-form solution. The result
of the model, which we will present later on, is a vector of expected returns, produced by
the views expressed.

The reason why the mix between views and sample information will lead to better results
than plain Mean-Variance is related to the concept of shrinkage. We describe this concept
by taking a small step behind and presenting a fundamental fact:

Stein's Paradox (1956)
Consider the estimation of a mean of n multivariate normal random variables Xi ∼ N(µ, 1).
The paradox tells us that:

- If n = 1 and we obtain a mean of X1, the best estimator for µ is µ̂ = X1;

- If n = 2 and we obtain a mean of (X1, X2), the best estimator for µ is µ̂ =

(
X1

X2

)
;

- If n = 3 and we obtain a mean of (X1, X2, X3), the best estimator for µ

IS NOT µ̂ =

 X1

X2

X3

;
Meaning that estimating the expected returns µi separately is not appropriate for n > 2.

A better estimator has instead the following form:

µ̂shrinkagei = δ · µ0 + (1− δ) · µ̂i
The intuition is that simple averages, µi, are ine�cient estimates, therefore, they are

"shrunk" towards a non-sample target values, µ0, which can be determined in di�erent
ways. The paradox also states that any shrinkage target leads to better estimation of means.
Commonly used targets, µ0, are:

� zero

� cross-section mean

� theoretical values

12



The same concept is applied when estimating a covariance matrix. Imagine we wish to
estimate a covariance matrix, we can take these two following paths:

1. Use a single factor model covariance, call it F (the CAPM could be an example of
single-factor model);

2. Use sample covariance matrix, Σ;

The �rst one is a highly structured estimator, which assumes a single factor explains all
there is to know and has no estimation error as long as the model is true, and the second
one has no structure but is subject to a lot of estimation error. A shrinkage estimator tries
to mix the two by taking the structure imposed by the model and combining it with the
sample estimate to reduce its estimation error. The two estimators are combined by means
of a third ingredient, the shrinkage constant, δ. This constant has the purpose of minimizing
the distance between the true covariance matrix and the shrinkage estimator:

Σ̂shrinkage = δF + (1− δ)Σ

Because we cannot observe the true covariance matrix, we cannot compute the distance
between the estimated and the true values. For this reason also the shrinkage constant,
δ, must be estimated. There are many possible ways in which this can happen, in our
framework, δ̂ is computed based on uncertainty of estimates (more uncertainty reduces the
weight assigned to the shrinkage component).

To summarize, for the Black-Litterman model, shrinkage is achieved for both the vector
of returns and the covariance matrix. The interesting thing of the model is the choice of the
shrinkage elements. The shrinkage target is derived from an equilibrium condition (which, we
will see, are market neutral weights) and the shrinkage constant is linked to our con�dence
over the outcomes.

In the attempt to mitigate the estimation error and model risk of the traditional mean-
variance optimization, BL provides a new vector of expected returns which will be a linear
combination of the priors (market information) and the views, with the con�dence in the
latter variables (measured by their standard deviation) as a scaling factor. As we mentioned,
the model leads to a closed-form solution. The latter is:

E[µ|v] = [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1µeq + P ′Ω−1v]

The variables which enter the formula are the following. Some may be familiar already,
other will be discussed soon:

� µ: the �nal expected returns over the available assets;

� v: vector of views over portfolios of assets;

� τ : interpreted as con�dence over the estimated covariance matrix;

� Σ: covariance matrix;
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� P : selection matrix, used to describe our views;

� µeq: market neutral expected returns;

� Ω: con�dence over view;

In practice the model combines the implied expected returns of the market and the
personal views of the investor. We obtain a �nal result which can be used for an e�cient
mean-variance optimization, the same as Markowitz but with di�erent "ingredients".

We will consider the information derived from the market as our prior, we will then
mix with our subjective views to obtain our posterior. In particular, we extract from the
current market capitalization the vector of implied returns (µeq) for a given risk aversion and
considering the historical covariance matrix.

The reason why this model is considered a break-through in Finance is that it combines
a versatile yet rational way to apply what is known as shrinkage. We will now address the
description of the missing elements which we have mentioned above: v, µeq, τ , P and Ω.

3.1 Neutral Expected Returns

Let us start o� from µeq. Black and Litterman don't take as input the vector of average
returns, they take instead the equilibrium vector of expected returns (µeq). They do this to
avoid the noise generated by sample means. Moreover, using a sample mean would favor
past winners over past losers, disregarding that we are interested instead in the future. The
way they obtain a vector, µeq, of equilibrium returns is by reverse optimization. We know
from Markowitz that the equilibrium weights are computed using the formula:

w =
1

λ
Σ−1µ

From the above we reverse engineer the vector of market equilibrium returns:

=⇒ µeq = λmktwmktΣ

Because we observe the weights (market capitalization) we can simply reverse compute
the equilibrium vector of expected returns. The only thing we are missing is the value of
λmkt we need to use.

To calibrate the parameter we can take advantage of some formula manipulation: take
the result we found above for µeq and premultiply by w′mkt. This leads to:

w′mktµeq = λw′mktΣwmkt =⇒ λ =
w′mktµeq

w′mktΣwmkt
=
µmkt
σ2
mkt

Using this trick to calibrate λ, we reach the conclusion that the historical Sharpe ratio
(de�ned as average returns over volatility) of the market can be used as proxy for γ. In
practice, this value is close to the value of 2.5. This value is a proxy of the average risk
aversion in the market.
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As our prior we have that returns are distributed with mean equal to the implied vector
of returns. As variance of the prior we take the scaled covariance matrix of returns. The way
we scale the covariance matrix is based on the con�dence that we have over the accuracy of
market expectations, and this is where τ comes in. Normally, a value given to the scaling
parameter τ , is 1/T , one over the number of observations, and this is going to be also our
approach. Because Black-Litterman also assumes normality of returns, we end up with the
following result for the market prior:

µ ∼ MVN(µeq, τΣ)

To brie�y comment on the above, we use a reverse engineering technique to obtain a prior
input. This prior corresponds to the equilibrium condition extracted from current market
conditions.

3.2 Subjective Views

Once the investor has the market neutral vector of expected returns at disposal, he can
point out some di�erences between what the market believes and what he believes as an
individual. More speci�cally, with n assets at disposal, the investor can express relative or
absolute views over a subset of k 6 n linear combinations of the returns of the assets. His
views are expressed as follows:

v = Pµ

The selection matrix P , is used to choose the assets subject over our views, v de�nes the
view itself and is the di�erence between the prior expected return contained in µ and the
investor's personal view. The way in which the various components interact is best described
through the use of an example.

Example
There are 3 assets each with its own expected return. The investor has an absolute view
on the �rst two which states that the return of the �rst will be 15% and the return of the
second will be 10%. This can be summarized in the following way:

P =

[
1 0 0
0 1 0

]
and v =

[
15%
10%

]
Imagine now that the investor has a relative view that the di�erence in the returns of the
�rst and third asset will be 7%, the information will be summarized as follows:

P =
[
1 0 −1

]
and v =

[
7%
]

Because the views are not precise we also need a precision matrix, Ω, which determines the
level of uncertainty in our views. For example, we provide two examples of such a precision
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matrix, the left one stands for high con�dence in our views and the one the right stands for
lower con�dence:

Ω =

[
(1%)2 0

0 (1%)2

]
and Ω =

[
(10%)2 0

0 (10%)2

]
The diagonal elements tell us, respectively, the uncertainty we have on the views expressed.
The o�-diagonal elements represent the covariance between forecast uncertainty and are
usually set to 0, meaning that a view's certainty is not correlated with another view's. To
set the con�dence of the investor over the view is a hard job and this cannot be achieved in
a fully scienti�cal way, the numbers are usually discretionary.

Now that we have our prior (market neutral condition) and our views de�ned, by use of
Bayesian methods we can mix the two and obtain the closed-form solution shown before. To
summarize, the Black-Litterman (BL) model is constructed as follows:

Figure 2: BL Procedure

From a methodological point of view, BL mitigates some of the problems that come from
the plain mean-variance optimization. As we have seen, the investor uses market equilibrium
weights as a starting point and then applies his views, if any. As a consequence, portfolio
concentration is avoided automatically because we start o� with a prior which is already
diversi�ed. The investor has, on top of this, the opportunity to incorporate his views in the
investment strategy, making the method versatile and practical. Still, it seems like there is
margin for improvement.
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Two of the issues with Black-Litterman that we will discuss in our model are:

1. The assumption of normality of returns which is in con�ict with some basic results in
Finance.

2. The construction of the con�dence matrix Ω which is completely arbitrary and does
not account for interdependence of the con�dence over di�erent views.

There has been a wide research over these two issues and some authors have proposed
complex models overcoming them. To cite the most relevant, see the following approaches:

� Entropy Pooling approach from Meucci (2008)

� COP from Meucci (2006)
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4 An Advanced Application of Black-Litterman

Before we present the new model proposed by this thesis, we brie�y describe the advances
happening regarding Black-Litterman and Bayesian Asset Allocation. One very proli�c
researcher in the �eld is Attilio Meucci, who has produced di�erent types of models incorpo-
rating macro factors, non-normality of the market and entropy pooling (see Meucci (2009),
Meucci (2006),Meucci (2008)). The problem with some of these models is that they are
di�cult to be implemented and used in practice, due to the complexity of the theory and the
computations required for their implementation. Moreover, they cannot be applied directly
because they do not present any closed-form solution.

Some of the things that have been considered by Meucci are the properties of the marginal
distributions of returns (the individual assets) and their dependence structure. In Finance,
it is common knowledge that asset returns have negative skewness and excess kurtosis. This
implies that a time series should be not be assumed to be unconditionally normal, rather,
to have another type of distribution.

Starting from this point we try to formulate a simpler approach to tackle the same issues
as the ones considered by Meucci. In this paper we will assume a distribution of the marginal
which is the Skewed t-Distribution, the reasons for this will be provided. We will model the
individual assets after clearing any form of predictability, by imposing a model for both
mean and volatility. This also allows us to consider the fact that volatility is not constant
in time, rather, as we would intuitively observe empirically, time varying. To model means
and volatilities we will introduce, respectively, ARMA and GARCH dynamics in the return
series.

Because of this previous consideration we will obtain marginal distributions for assets
which are going to be non-normal (Skewed t-Distribution). Moreover, the dependence struc-
ture which links the returns of these assets is not going to be a multivariate normal as
assumed by BL, it will be instead derived from a copula. A copula allows to generate an ad

hoc joint distribution between assets, so to re�ect observed data. We will choose a Student
t copula, which allows for high dependence in the tails and re�ects market behavior. (We
tend to see cocrashes and cobooms in the market).

In the following sections we will proceed by steps, initially we will consider the time series
of the assets independently and then we will consider the dependence structure that links
them. This process, we will show, allows us to infer an empirical correlation matrix which we
will be key in the advanced model we are proposing. We start by imposing an ARMA(1,1)
to the individual time series so to remove any serial correlation. Then, we proceed by
applying a GARCH(1,1) to remove additional dependence in the residuals. The choice of
these processes is in line with common practice in the industry. The residuals obtained at the
end of the process will then be subject of the distribution �tting, in particular the Skewed
t-Distribution.
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We present a compact description of the general model which describes link between
the dynamics involved. In the notation rt is the process for returns (ARMA) and σt is the
process for volatility (GARCH):

rt = µt(θ) + εt

εt = (θ)zt

zt ∼ g(zt|η)

where zt = (rt−µt(θ))/σt(θ) represents the residuals after imposing the mean and volatil-
ity models.

In this framework, θ is a vector containing all the parameters of the mean and variance
processes. Moreover, the innovations have zero mean and unit variance and are distributed
as a conditional distribution g(·) with shape parameters η. As previously mentioned, we
take the mean process to be an ARMA and the variance process to be a GARCH. The
distribution of the innovations will be the Skewed t-Distribution.

To summarize:

� Thanks to the Skewed t-Distribution we eliminate the assumption of normality in the
individual returns series.

� Using a copula produces a dependence structure of a Student t, eliminating the as-
sumption of normal interdependence of the assets.

� The correlation found through the copula will be used to model the interdependence
in the uncertainty over the views (the o�-diagonal elements of Ω).

4.1 ABL

The combination of the elements we have seen above brings us to the creation of a new
model which we call Advanced Black-Litterman approach (ABL). This model tries to solve
the issues of BL and accounts for non-normality of returns by combining the market prior
of BL with a modi�ed version of the views. In particular, we perform the following steps:

1. Model the mean process for the asset data with an ARMA(1,1);

2. Model the volatility process for the asset data with an GARCH(1,1);

3. Fit a Skew-t distribution on the residuals;

4. Create a dependence structure among the assets which has a Student t distribution;

5. Extract a new correlation matrix which enters the original BL framework.

The model hereby proposed has been developed in this thesis for the �rst time and can be
seen as a modi�ed version of BL. It still keeps the advantage of having a closed-form solution
but introduces the non-normal feature of the market and allows for interaction among views
expressed (in terms of their con�dence).
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4.2 ARMA

The ARMA(1,1) is the �rst step into "cleaning" the data. Cleaning refers to the fact that
we wish to arrive to a point in which deviations from expectations are purely random and
unpredictable. An ARMA process allows us to link the expected return of an asset to its value
in the previous observation and to the previous error term. An ARMA is a combination of
two simpler process, namely, an AR and MA. The �rst, an AutoRegressive process, assumes
that returns depend on their past values, up to a certain number of past observations, p. An
AR(p) is expressed as:

rt = φ0 + φ1rt−1 + · · ·+ φprt−p + εt

By contrast, a Moving Average imposes that returns depends on the q previous errors.
An MA(q) is therefore written as:

rt = θ0 + εt + θ1εt−1 + · · ·+ θqεt−q

An ARMA(p,q) combines the two processes, therefore returns depend both from the
previous p returns and the previous q errors terms. In practice though, an ARMA(1,1) is
considered to be enough to model mean returns and has the following shape:

rt = c+ φrt−1 + εt − θεt−1
The purpose of the ARMA is to remove any form of serial correlation in the returns. In

a normal distribution environment, dependence is fully captured by correlation. In a non-
normal framework, on the other hand, this is not enough and one should consider dependence
also in functions of the error terms. It is common practice to consider also correlation in the
square of the residuals. This consideration brings us to the next step.

4.3 GARCH

A GARCH is the commonly used instrument to consider the correlation in squared residuals
we mentioned above. The implication of considering the square function is that it allows to
account for a well-known phenomenon in time series, that is volatility clustering. Volatility
clustering can be explained as the tendency of errors to be similar in magnitude to the
following errors. In other words, big shocks (either negative or positive) are followed by
big shocks and the same for small shocks. This phenomenon is particularly obvious for
�nancial returns as in times of business expansions we observe low volatility and trending
markets, whereas during market crashes we observe very high volatility and big market
�uctuations driven by excitations of traders. The �rst attempt to model this behavior is
the AutoRegressive Conditional Heteroskedasticity process, or ARCH. The model predicts
squared errors by autoregressing over a number of previous squared errors. The main issue
with this process was the number of lags required. For this reason a more e�cient approach
has been introduced, the Generalized ARCH, GARCH in Engle (1982). A GARCH(p,q)
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models variances for assets based on lags of the previous values of variance and of the square
of shocks. The expression for a GARCH(p,q) is:

σ2
t = ω + α1σ

2
t−1 + · · ·+ αpσ

2
t−p + β1ε

2
t−1 + · · ·+ βqε

2
t−q

In practice the common choice is to use a GARCH(1,1) to account for conditional volatil-
ity dynamics. Therefore one lag of the variance and one lagged squared return is included
in the expression. In this speci�c case, the unconditional variance for the GARCH dynamics
is:

σ2 =
ω

1− α− β
Arrived at this point we can construct the standardized innovations which we introduced

in the beginning of this section, namely zt. They will be the input for the estimation of our
distribution.

4.4 Skewed t-Distribution

To take a decision over how to model the individual return time series we need to account
for a few di�erent characteristics of �nancial returns. We know that a return series normally
presents negative skewness and excess kurtosis, leading to extreme events being more frequent
than the normal distribution (due to higher kurtosis) and are more likely to be negative than
positive (due to negative skewness). To provide an example we present a table of descriptive
statistics for a broad equity index, MSCI World, using both daily and monthly returns
available from 1980 until 8th July, 2019.

Mean St.Dev Skewness Kurtosis Min Max
Daily 0.0272 0.0087 -0.5328 14.1028 -10.3633 9.0967

Monthly 0.5704 0.0429 -0.8606 5.3382 -21.1279 10.9473

Table 1: MSCI World Descriptive Statistics

We focus on skewness and kurtosis (excess kurtosis to be precise) and notice that, both
in the case of monthly and daily data frequency, we observe negative skewness and excess
kurtosis. Furthermore, considering minima and maxima con�rms that the worst returns are
greater in absolute value than the best returns. To further con�rm the non-normality of the
time series we perform a standard Jarque-Bera test for normality proving non-normality at
the 1% signi�cance level.

This becomes even more evident if we plot the empirical distribution of returns versus a
normal distribution.
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Figure 3: Empirical distribution, monthly returns

Figure 4: Empirical distribution, daily returns

Now that we have proven that non-normality and in particular, negative skewness and
excess kurtosis, are standard characteristics of �nancial series, we ask ourself the following
question: what distribution is most appropriate? If we are to focus on fat tails, the most
obvious solution is the use of a Student t distribution which, for low degrees of freedom
provides more common extreme events and produces higher kurtosis. The issue with this
distribution is that it is symmetric (has skewness of 0). To solve the issue, the Skewed
t-Distribution has been introduced by Hansen (1994) and is de�ned as:
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g(zt|η) = b
Γ(ν+1

2
)√

π(ν − 2)Γ(ν
2
)

(
1 +

ζ2t
ν − 2

)− ν+1
2

where: ζt =

{
(bzt + a)/(1− λ), if zt ≤ −a/b
(bzt + a)/(1 + λ), if zt > −a/b

a = 4λc
ν − 2

ν − 1
b2 = 1 + 3λ2 − a2 c =

Γ(ν+1
2√

π(ν − 2)Γ(ν
2
)

The mathematical de�nition of the distribution is complicated but the principle behind
it is easy to understand. The distribution treats the upside and downside shocks di�erently
and the shape parameters, λ and ν, regulate by how much. λ is the asymmetry parameter
(−1 6 λ 6 1) and ν represents the degrees of freedom of the distribution (2 6 ν 6 ∞).
The shape parameters of the distribution can be readily estimated by Maximum Likelihood
given the innovations zt we previously found. MLE is performed to all the di�erent assets
and each one will be �tted with the appropriate parameters η. Once the marginals have
been estimated for all assets we proceed to aggregate the individual results and consider how
they cobehave. For this purpose, we introduce a copula.

4.5 Copula

When switching from univariate to multivariate series an important aspect is how the be-
havior of each marginal in�uences and is in�uenced by the others. To account for this,
one needs a structure that considers multiple individual times series simultaneously. As we
know, observations of frequent crashes and booms in the market suggests that assuming a
multivariate normal distribution would be wrong. This assumption would generate too few
extreme events and, as a consequence, the correlation among the so-called tail events (very
high or very low returns) would very low.

To account for this, one could think that a multivariate Student t distribution, which
allows for thick tails, is enough. As a matter of fact, we simulate a bivariate normal se-
ries imposing a �xed correlation and then simulate a bivariate student imposing the same
restriction we obtain very encouraging results.

To illustrate the discussion above, we provide the results of simulation of both the bi-
variate distribution simulated with correlation imposed to 0.5. For the normal, we compute
the overall correlation between the two series and then we compute correlation only in the
lower tail (taken to be the portion under the -2%). We repeat the same experiment for a
bivariate Student t. The output produced is the following:
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Figure 5: Bivariate Normal dependence Figure 6: Bivariate Student t dependence

For the bivariate normal, we see that extreme events for the both variables are extremely
rare and small in magnitude (all events are in the axis range of ±5%). The overall correlation
for the randomly generated bivariate series is 0.5003 but it is 0.1398 in the tails.

For the Student t bivariate series instead we have many more simultaneous extreme
events, and when we compute the correlation in the tails it is 0.4454, much closer to the
imposed correlation of 0.5. The overall correlation in the series was found to be 0.5009.

This feature, showing correlation of cocrashes and cobooms is what we are looking for
and, for this reason we will �nd a way to specify our "view" over the dependence structure
among the assets.

But, the results for the Student t distribution, which are encouraging on one hand, forego
another important aspect. Imposing a multivariate Student t with ν degrees of freedom to
obtain dependence among assets, implies that also the marginals have the same distribu-
tion: Student t with ν degrees of freedom. Therefore, we lose characteristics unique to the
marginals which have looked for so intensively. To overcome this problem a widely used
instrument in �nance are copulas. They allow to impose any dependence structure of some
assets, without imposing any restriction over the marginals.

A bivariate copula is a function which is able to measure how any two given marginals
cobehave. We propose a theorem which guarantees their existence and de�nes them:
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Sklar's Theorem (1959)
Let H be a joint distribution function of X and Y with marginal distributions F and G,
respectively. Then:

- there exists a copula C : [0, 1]× [0, 1]→ [0, 1] such that, for all real numbers (x, y)

H(x, y) = C(F (x), G(y))

furthermore, if F and G are continuous, C is unique.

- conversely, if C is a copula and F and G are univariate distribution functions, then
H(x, y) = C(F (x), G(y)) is a joint distribution function with marginals F and G.

From the above we understand that we could, in principle assign joint probabilities to any
given marginal distributions. As we are dealing with Skewed t-Distribution marginals, we can
impose a dependence structure belonging, for example, to a normal or Student t distribution.
This produces an ad hoc joint distribution, which has all of the desired properties (both at
univariate and at multivariate levels). Copulas can be of di�erent types, namely, empirical,
elliptical or Archimedean. Empirical copulas are, as the name suggests constructed based
on the empirical probabilities. Archimedean copulas are produced by speci�c functions
called copula generators. This family of copulas is very attractive because it can produce
asymmetric dependence structures at the bivariate level, but is not very easily extendable to
multiple series. Because they are the most suited for multivariate analysis, we will focus on
elliptical copulas. The most important elliptical copulas are based on the Gaussian, Student
t, Cauchy and Laplace distributions. We will base our selection of the copula based on a
�ndings above and choose the one that allows better for the cocrash/coboom feature. For
this reason the properties of the Student t copula suit our purposes at best.

To switch back from their mathematical description to their practical use, we focus now
on the concrete purpose of this process. It is possible to �t a Student t copula by playing
with the correlation and degrees of freedom parameters. Once the Student t copula has been
�tted, it provides us with a new correlation matrix. This correlation matrix can then be
used to switch back to a new covariance matrix by mean of the following passage:

Σ = D1/2 ·R ·D1/2

where R is the correlation matrix we obtain and D is a diagonal matrix containing the
variances of the assets.

Once we have obtained this new covariance matrix we can use it in the optimization
process to measure expected dependence across the assets. This dependence is the one we
wish to transfer in the matrix Ω of con�dence over our views.
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4.5.1 ABL vs. BL

To sum up, let us point out some di�erences between the regular model and the advanced
one. ABL distinguishes from BL mainly in two aspects. We express our views just as in BL,
but this time we eliminate the assumption of normality of returns and also specify a view
over the dependence structure across the assets. This view is indirectly incorporated in the
matrix Ω. In BL, such matrix is the "handmade" diagonal matrix of the uncertainty over
the views, purely subjective. In ABL, such matrix, call it ΩABL, is found as follows:

ΩABL = P ·D1/2 ·RCopula ·D1/2 · P ′

Unlike in BL, ΩABL is not a diagonal matrix and it is scaled using the selection matrix,
P.

We argue that using this new measure for con�dence in views will bring more meaning
to the views expressed and at the same time will provide for an easier version of the more
complex models already present (see Meucci (2009), which are harder to replicate. The
formula tells us, and this is a key element of the thesis, that not only con�dence shouldn't
be subjective, but also that the views' uncertainties are related among each other by their
dependence structure (the o�-diagonal elements should be di�erent from 0).

Breaking down the formula we �rst see that the center part:

D1/2 ·Rcopula ·D1/2

is a new covariance matrix found by pre- and post-multiplying the correlation matrix
Rcopula, found through the copula, by D1/2 which is the diagonal matrix containing the
standard deviations of the individual assets.

On top of this, we pre- and post-multiply this new matrix by the selection matrix P, in
order to scale up the matrix based on the views we have imposed and return an adequate
ΩABL.

A simpli�ed example of the di�erence between the two is the following:

ΩBL =

(5%)2 0 0
0 (5%)2 0
0 0 (5%)2

 and ΩABL =

 0.062 −0.001 0.003
−0.001 0.031 −0.023
0.003 −0.023 0.052


This numbers shown here are an example but already highlight the key di�erences. The

con�dence in ΩBL of 5% is an arbitrary number, provided as an example, quantifying our
uncertainty over the views we have expressed.

The matrix Ω in the BL framework answers to the question: "What is, respectively, the
uncertainty over the views we have expressed? And, how does such uncertainty interact
across views?".

In BL, the answer is discretionary. The decision maker "feels" such uncertainty for the
individual views and, usually, does not specify their interaction (o�-diagonal elements equal
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to 0). For ΩABL, the process is mathematical instead of discretionary. Notice how the
o�-diagonal elements of ΩABL are not equal to 0.

The positive aspect is that the introduction of considerations over normality and depen-
dence of con�dence still leaves us with a closed-form formula, ready for use:

E[µ|v] = [(τΣ)−1 + P ′Ω−1ABLP ]−1[(τΣ)−1µeq + P ′Ω−1ABLv]

The above is analogous to normal BL but contains the new matrix ΩABL.
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5 Implementation

In this section we try to focus on how to implement such �ndings in practice. That is, how do
we use this model starting from raw data over some indices of the asset classes? First of all
we need the raw data. Not so long ago, data sources were very scarse and costly, this is not
the case anymore and all types of data are accessible through platforms such as Bloomberg or
Thomson Reuters. In this study data was taken from Datastream by Thomson Reuters. We
choose six di�erent asset classes, to provide a well-diversi�ed SAA in which we include one
alternative asset to take advantage of its potentially high returns and diversi�cation bene�ts.
Once we have raw data we need to manage it and make it suitable for the application of the
model. When we have the data ready to be the input of the model, we apply the models
described above by means of a software. We make use of MATLAB to perform the required
calculations and obtain the portfolio weights as output.

5.1 Data

In this study we start o� with information over prices and market values of a number of six
asset classes, proxied by some indices. They are:

� US Equities. Index: S&P 500 Composite

� EU Equities. Index: MSCI Europe

� Emerging Market Equities. Index: MSCI EM

� US Bonds. Index: BoA Merrill Lynch US Total Bond Return

� EU Bonds. Index: Bloomberg Barclays Euro Aggregate

� Alternatives. Index: HFRI Fund Weighted Composite

S&P 500 is among the main US indices, it contains the 500 top �rms of the country and
therefore it is representative of the major stake of US equity. For Europe and Emerging
Markets, the choice has fallen on two indices provided by Morgan Stanley Capital Inter-
national, one of the most trusted providers of most types of index. As regards debt, we
use US Total Bond index provided by Bank of America Merrill Lynch for the US and the
Bloomberg Barclays Euro Aggregate index for the EU. These indices are provided by trusted
institutions and can be taken as trustworthy for the purpose of our study. The bond indices
are all composed by only investment grade debt securities.

The data for the �rst �ve "traditional" asset classes is easily accessible, for the last one,
the "alternative" asset class, it is more complicated to �nd trustable data for prices and
market value. As we use a hedge fund index for alternatives, the main problem is to assign
a market value to assets which are traded only by sophisticated investors and therefore are
not found on exchanges. For the �rst �ve indices, data is obtained by use of Datastream
through a university license. Datastream is a service by Thomson Reuters which provides
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for the download of all types of data directly in Excel. Regarding our sixth and more
troublesome index, we choose to rely on the data provided by HFR (Hedge Fund Research)
for what regards prices of the HFRI Fund Weighted Composite Index. And we take the
Market Values of the entire Hedge Fund industry from Preqin, another hedge fund data
provider. The prices and market values will match thanks to selection of the HFRI Fund
weighted index which contains all the strategies of the hedge fund world and is therefore
representative of the full hedge fund market performance (hence we can consider the market
value provided by Preqin).

The choice of the indices has been made in such a way that each index would be the
closest available product to proxy the asset class that it matches. The indices chosen are
both large enough to be considered as an asset class and also liquid enough to be considered
investable and reliable.

The frequency of data used is monthly, matching the long-term horizon of the model
(around �ve years). The data starts from July 31st 1998 and ends in June 19th 2019. The
choice of the time window is very important in terms of results obtained. In our case we
have a sample containing more than 20 years of data, enough to allow implementation of the
model and perform additional inference and backtesting.

Looking at the events contained in the data, we must highlight the fact that our data
contains two major �nancial crises. As we know, 2008 has marked one of the most severe
�nancial crises of the last century, and it is a part of our data. At the same time also the
sovereign debt crisis of the 2010's is included. To include a crisis in a dataset is probably a
good thing and a bad thing at the same time. Including a major crisis in the time series is a
way to test the functioning of the model under stress but at the same time could lead us to
decisions which are biased by unique events which, in theory, could never happen again. In
any case, it would be pointless to take a dataset which only contains trends and no market
surprises.
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5.2 Procedure

Starting from the clean data, we start applying the model in the order that we have previously
mentioned. MATLAB supports �nancial toolboxes which allow for easier coding (mainly the
MFE Toolbox provided by Kevin Sheppard). The steps taken, after importing data and
making it possible to work with it, are the following:

1. Fit a model for the mean in the marginal distribution, ARMA(1,1);

2. Fit a model for the volatility of the marginals, GARCH(1,1);

3. Estimate a Skew t distribution for the residuals of the marginals;

4. Implement a Student t copula across the various marginals to �nd a correlation matrix;

5. Proceed with standard methodologies (historical optimization, market priors and BL)
for comparison purposes;

6. Use the new correlation matrix found via copula in the new ABL framework;

In the �rst steps there are a few functions that can be used to simplify the procedure.
In particular the Kevin Sheppard toolbox provides for armax�lter and tarch to easily es-
timate ARMA and GARCH processes, the copula�t function allows to estimate copulas.
The way things are put together is the usual way found in the Black-Litterman framework,
but this time the inputs are found through preliminary steps (there is a dedicated code for
construction of the selection matrix and the expression of views).

To have a form of comparison, we decide to optimize in four di�erent ways and then
analyze the results. Because the optimization produces a set of possible portfolios for many
possible levels of risk, we decide to set 25 di�erent levels of risk, producing 25 possible
allocations for each methodology we use in optimizing. In other words, our E�cient Frontier
is made up of 25 points, from left to right of the x-axis, representing increasingly risky
portfolio compositions.

For the interested reader the step-by-step implementation of the model can be found in
the section dedicated to the code.
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6 Results

In this section we will show how the model described above behaves, in particular we will
analyze its output and its sensitivities to inputs. We are interested in the comparison among
some candidate models and check their performance through backtesting. We will, further
on, present three di�erent scenarios which will give us an understanding of how the model
behaves in di�erent circumstances.

Now that we have discussed the data used in this thesis, the model is implemented through
the code (presented at the end of the writing) and provides us with the optimization outputs.

We decide to optimize in four di�erent ways and then compare the results. The �rst
two methods, "mean-variance" and "market prior", are independent of the views we express.
The third and fourth instead depend on them heavily.

The four optimization methodologies are the following:

1. Standard mean-variance;

2. Market prior with EWMA variance (Black-Litterman with no views and modi�ed co-
variance matrix);

3. Standard BL;

4. Advanced BL;

In the �rst case, we perform a simple mean-variance optimization to have an understand-
ing of the starting point. We optimize using the simple mean of the assets as expected return
and their historical covariance matrix for risk.

The second case is already much more reliable in terms of results. We revert the market
equilibrium to �nd the expected returns and compute volatilities and covariances by EWMA.
EWMA is a step forward we take from the historical covariance and allows us to produce
a much more reliable result, yet not sophisticated enough to introduce views and more
complicated processes.

For the last two methods we need to pay more attention as this is where the purpose of
this paper lies. In the normal BL framework, the element ΩBL is found in a discretionary
way, by simply assigning some degree of con�dence to our views, in the new approach, the
degree of con�dence, ΩABL, is computed using correlation matrix stemming out of the copula
estimation.

As we provide results for 25 di�erent levels of risk propensity, we will not obtain a single
optimal portfolio, rather, a set of portfolios, each optimal for a given level of risk (for each
optimization we produce E�cient Frontiers made up of 25 points each). Sometimes we will
take three levels of risk propensity to proxy the methodology output as a whole.

These three levels are:

� "Minimum Volatility", the portfolio with least risk propensity (Portfolio 1, on the left
side of the x-axis)
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� "Middle Portfolio" (Portfolio 12, on the center of the x-axis)

� "Maximum returns", the portfolio with highest risk propensity (Portfolio 25, on the
right side of the x-axis)

As they are static in the model, we �rst present the results of the �rst two optimizations.
The issues with mean-variance have been previously mentioned, we expect the output to

be underdiversi�ed or possibly present corner solutions.
The graphs which depicts the product of the optimization has Risk Propensity on the

x-axis and weight on the y-axis. Each asset is highlighted in di�erent colors and has a weight
going from 0 to 1. The sum of the weights will obviously add up to the total of 1 (100% of the
investment). We plot the weights for 25 increasing risk levels (increasing risk propensity).
The weights change as we move from left to right to produce increasingly risky portfolios.

The result for mean-variance is the following:

Figure 7: Mean-Variance optimized weights

The picture shows that we are fully invested in only two assets classes: US bonds and
Hedge Funds. The huge weights in the individual assets imply that we are greatly exposed
to shocks to individual assets and that we are not bene�ting from diversi�cation. This is
not e�cient in practical terms for any investor.
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To highlight the disadvantages of mean-variance, let us compare the results found with
the allocation (therefore, the beliefs) of the market. For this reason, we introduce neutral
expected returns and EWMA volatility. We expect a great improvement in the portfolio
diversi�cation and to be invested in more assets at the same time.

Figure 8: Market Prior optimized weights

The above in our model represents the average view over the future based on current
market weights. The portfolio is diversi�ed across the asset classes for most levels of risk
propensity. The transition of the weights across the x-axis is smooth and does not present
any corner solution (always keep in mind that the plot contains 25 points and is therefore
discrete and not continuous). If we analyze the result, we see that we gradually shift from
bonds to equity as we increase the risk of the portfolio. The least risky portfolio is almost
fully invested in US bonds and hedge funds. Even though the latter asset class may sound
risky to most, the fact that the two are almost uncorrelated (historical correlation of 0.2289)
allows to bring down the total expected level of risk.

As expected, whenever we are more incline to risk we must switch to equities. Consis-
tently with this, the portfolio is almost entirely invested across our three equity asset classes,
US, EU and EM.

Some investors could simply stop at this point in their portfolio construction process and
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be happy with the bene�ts of this method but, in the case in which we need to express some
views, we need to switch to the other two optimization methodologies.

The views we impose are arbitrary and can stem out of di�erent considerations. We
de�ne a �rst scenario as follows:

Scenario 1 (Basic)

1. US equity underperforms EU equity by 4% (uncertainty of 5%).

2. US bonds overperforms EU bonds by 2% (uncertainty of 5%).

3. Hedge funds outperform equities by 3% (uncertainty of 5%).

The scenario above, which we will refer to as "basic" is simply an opinion generated
by a hypothetical investor based on his personal views, these numbers could be de�ned as
discretionary views (both the view itself and the con�dence). Later on, we will consider more
scenarios in order to compare the regular BL model with our proposed ABL. It is important
to keep in mind that ABL is not impacted by the con�dence over views, therefore con�dence
will be expressed only to allow the construction of BL allocation.

Introduction of the views should have an impact over the Market Prior allocation in order
to account for the personal views of the investor. We should observe the weights tilted in the
direction of our "bets". The impact of the changes in weights depends on the magnitude of
the view (if it highly divergent from market neutral views) and on the con�dence we express
over the view itself (views for which we are certain cause big changes, views over which we
have no con�dence don't cause any change).

Before analyzing the output, let us remark that the con�dence we express over the views
leads to the following ΩBL matrix:

ΩBL =

5%2 0 0
0 5%2 0
0 0 5%2


We notice a �rst impact of our decisions on the output produced. As a matter of fact, we

must consider that the con�dence imposed over the views has an impact on the output. As
we mentioned, this impact regards the regular Black-Litterman model and not the ABL we
present here. We provide evidence on this alongside with the output produced by the basic
scenario.
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The optimization using BL produces the following results given the market prior and
expressed views:

Figure 9: Black-Litterman optimized weights

The changes in the portfolio construction are visible by naked eye as we are more invested
in hedge funds and US equity and less invested in EU bonds, in accordance with the views
expressed. We provide the tables of the weights to highlight this fact at the end of this
section.

Furthermore, we check the impact of the certainty over the views by reoptimizing using
50% and 1% as a degree of uncertainty for all the views expressed. the results are the
following:
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Figure 10: Uncertainty of 50% Figure 11: Uncertainty of 1%

On the left-hand side, we observe that we tilt back towards the market prior, with asset
weights decreasing closer towards the market neutral values. Even if we express some views,
by the fact that we are highly uncon�dent, the model does not make great changes to the
market prior.

On the right-hand side instead, we revert to a form of output which is close to the mean-
variance issue. This time the message which this picture carries is that being too con�dent
on our views eliminates the mixture of BL and brings us back to a mean-variance scenario
in which we rely completely on our inputs.

We conclude by remarking that the changes generated in the portfolio for the individual
assets, even if apparently small (±5%) in magnitude (especially on the left hand graph) can
be very signi�cant in the overall performance of the portfolio.

Going back to the output produced by BL in the basic scenario, we can also notice that
the "curves" generated by the portfolio weights are very rounded and don't present any form
of spike or corner.

To sum up, the graphs above have shown that expressing views causes a shift from the
prior state. On top of this, the con�dence speci�ed over our views is relevant in determining
the magnitude of these changes.

Before we move to the ABL, let us brie�y recall the di�erences between BL and ABL.
Recall that the ABL model makes use of the correlation matrix found through maximization
of the likelihood of a copula.

Therefore, let us �rst present the new correlation matrix and compare it with the common
historical correlations:
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US Equity EU Equity EM Equity US Bonds EU Bonds Hedge Funds
US Equity 1.00 0.83 0.73 0.20 0.18 0.76
EU Equity 0.83 1.00 0.79 0.23 0.45 0.80
EM Equity 0.73 0.79 1.00 0.20 0.29 0.86
US Bonds 0.20 0.23 0.20 1.00 0.26 0.16
EU Bonds 0.18 0.45 0.29 0.26 1.00 0.26

Hedge Funds 0.76 0.80 0.86 0.16 0.26 1.00

Table 2: Copula Correlation

US Equity EU Equity EM Equity US Bonds EU Bonds Hedge Funds
US Equity 1.00 0.86 0.80 0.26 0.22 0.77
EU Equity 0.86 1.00 0.82 0.35 0.47 0.78
EM Equity 0.80 0.82 1.00 0.29 0.30 0.88
US Bonds 0.26 0.35 0.29 1.00 0.40 0.23
EU Bonds 0.22 0.47 0.30 0.40 1.00 0.22

Hedge Funds 0.77 0.78 0.88 0.23 0.22 1.00

Table 3: Historical Correlation

The correlations among assets are slightly changed, some of them, like the correlation
between US equity and bonds is exactly the same (-0.09), whereas, the correlation between
other assets signi�cantly changes (take the di�erence between the correlations of US equity
with hedge funds, 0.47 versus 0.34).

Concluding with the �nal optimization, the results of the ABL method are the following:
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Figure 12: Advanced Black Litterman optimized weights

This time we observe much larger changes when compared to the market prior. The
shifts of the weights are signi�cant and regard especially EU bonds and US equity, signi�-
cantly decreased in weight. The US bonds weight is largely increased and also EU equity is
apparently more attractive. All the weights "�uctuate" across the x-axis, according to risk
choices, in a smooth and curved manner, also in this case.

Again, for those who wish to see the di�erences in the numbers instead of using plain
sight, we provide the tables for the weight of Portfolio 1, 12 and 15:

Prior BL ABL
US Equity 0.00 0.00 0.00
EU Eq. 0.00 0.00 0.00
EM Eq. 0.00 0.00 0.00
US B. 0.65 0.66 0.61
EU B. 0.00 0.02 0.02

Hedge Funds 0.35 0.32 0.37

Prior BL ABL
0.29 0.41 0.39
0.10 0.03 0.00
0.06 0.05 0.02
0.30 0.41 0.57
0.17 0.04 0.00
0.09 0.07 0.01

Prior BL ABL
0.38 0.70 0.84
0.43 0.12 0.00
0.17 0.18 0.01
0.00 0.00 0.15
0.02 0.00 0.00
0.00 0.00 0.00

Table 4: Comparison BL vs. ABL for di�erent risk propensities
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6.1 ABL vs. BL (continued)

What we focus on now is the di�erences between the regular BL and ABL applications. We
will do this mainly by backtesting over 3 possible scenarios. Backtesting will take place in
the following way. We breakup our data (which goes from 31-07-98 to 28-06-19) into two
parts: in-sample and out-of-sample. We will use the in-sample data to construct our model
and construct a portfolio, then we will evaluate the performance of the portfolio using the
out-of-sample data. We choose to match the usual timing of a strategic asset allocation and
test the model over 5 years (60 observations). This means that our last in-sample observation
is 30-06-14.

The views, within this framework, are expressed on the 30-06-14 as if everything following
such date is unknown. We apply three sets of views which constitute our three scenarios. The
con�dence level has been calibrated at 5% for all scenarios to produce meaningful results.
Similar levels of con�dence (in the range 5 − 25% are acceptable, whereas, more extreme
(lower or higher) levels produce extreme situations.

We recall the �rst scenario and, for the two remaining, we will choose the views in such
a way that allows to evaluate the performance of the models for correct or wrong views a
posteriori.

1. "Basic", the scenario we have already seen above in which the views are express in a
purely discretionary way. Recall that the views in this case are:

(a) US equity overperforms EU equity by 4% (uncertainty of 5%).

(b) US bonds overperforms EU bonds by 2% (uncertainty of 5%).

(c) Hedge funds outperform equities by 3% (uncertainty of 5%).

2. "Advantageous", this second scenario contains the same format of views expressed
above but the over-/under-performance of each view is set by using the real market
outcome. That is, we compute the a posteriori return of the out-of-sample timeseries
and use it as if it was a view. This leads to the following scenario:

(a) US equity overperforms EU equity by 15.41% (uncertainty of 5%).

(b) US bonds overperforms EU bonds by 19.89% (uncertainty of 5%).

(c) Hedge funds overperform equities by 6.97% (uncertainty of 5%).

3. "Disadvantageous", this last scenario has the opposite purpose as the advantageous
one. It takes as view the opposite of the realized returns. The views expressed here
are:

(a) US equity underperforms EU equity by 15.41% (uncertainty of 5%).

(b) US bonds underperforms EU bonds by 19.89% (uncertainty of 5%).

(c) Hedge funds underperform equities by 6.97% (uncertainty of 5%).
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In each of the scenarios described above we take and compare the results of BL and ABL
for the three di�erent levels of risk propensity we speci�ed above (abbreviated to MinVol,
Middle, MaxRet):

1. Minimum Volatility (Portfolio 1);

2. Middle Portfolio (Portfolio 12);

3. Maximum Return (Portfolio 25);

At the end of this process we wish to understand how the two methodologies behave
in di�erent circumstances and for di�erent levels of risk propensity so that an investor can
choose in a rigorous way which one to apply in its portfolio construction process.

Before we proceed with the analysis, we �rst show the a posteriori results of the out-of-
sample data. In this way we can get a �rst understanding of how the market and all the
assets have actually behaved.

We present below a graph and a table of the out-of-sample performance of the individual
asset classes:

Figure 13: Asset Classes Total Returns
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US Equity EU Equity EM Equity US Bonds EU Bonds Hedge Funds
Mean Return 0.0068 -0.0013 0.0001 0.0033 -0.0029 0.0024
Volatility 0.0347 0.0382 0.0454 0.0093 0.0226 0.0128

Total Return 1.4462 0.8853 0.9446 1.2171 0.8277 1.1487

Table 5: Asset Classes out-of-sample statistics

We observe that in the last 5 years, the top performer was US equity followed by US
bonds and Hedge Funds. EU equity and bonds show negative overall performance, the same
holds for EM equity. It is clear from this portrait that the winning bets are the ones on
the US market and the losing bets are on the EU market. Hedge Funds perform discreetly
producing 14% in 5 years.

6.1.1 Basic Scenario

Given the views of the basic scenario we obtain the following allocations for the BL and ABL
methodologies:

Figure 14: BL allocation Figure 15: ABL allocation

We see that the changes from the prior setting re�ects the views incorporated in the
scenario in terms of investment in the asset classes. Furthermore, we see that the ABL port-
folio incorporates the views in a "larger" way, creating larger tilts from the prior allocation
towards our views. This can be seen through the weights assigned to US Equity and EU
Bonds in particular.

To understand the di�erences in the results we provide a table of the weights computed for
the four di�erent methodologies for the minimum variance portfolio, the maximum expected
return portfolio and the middle portfolio.
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MV Prior BL ABL
US Equity 0.00 0.00 0.00 0.00
EU Equity 0.00 0.00 0.00 0.00
EM Equity 0.00 0.00 0.00 0.00
US Bonds 0.73 0.65 0.66 0.66
EU Bonds 0.00 0.00 0.02 0.02

Hedge Funds 0.27 0.35 0.32 0.32

Table 6: Minimum Volatility Portfolio

MV Prior BL ABL
US Equity 0.00 0.29 0.32 0.36
EU Equity 0.00 0.10 0.08 0.05
EM Equity 0.00 0.06 0.07 0.06
US Bonds 0.40 0.30 0.30 0.30
EU Bonds 0.00 0.17 0.14 0.12

Hedge Funds 0.60 0.09 0.10 0.10

Table 7: Middle Portfolio

MV Prior BL ABL
US Equity 0.00 0.38 0.41 0.49
EU Equity 0.00 0.43 0.40 0.33
EM Equity 0.00 0.17 0.17 0.18
US Bonds 0.02 0.00 0.00 0.00
EU Bonds 0.00 0.02 0.01 0.00

Hedge Funds 0.98 0.00 0.00 0.00

Table 8: Maximum Return Portfolio

The tables show that the di�erence between the weights produced for this scenario in-
creases with risk propensity. In particular, if we compare the percentages produced by BL
and ABL for minimum volatility we see no discrepancies at all. For the middle portfolio we
see some discrepancies but of small magnitude and the discrepancies become more evident
in the last table, for the maximum return portfolio. We observe that the magnitude of the
di�erences increases as we move towards riskier portfolios. Notice that the tables show also
the weighting of the MV and Market Prior portfolio in order to have a ready comparison.
For the time being, we focus on BL vs. ABL.
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To understand how the portfolios behave in a real framework we show the results of the
backtesting of the three di�erent risk propensities in the basic scenario:

Figure 16: Comparison BL vs. ABL for di�erent risk propensities

The graphs show the returns of the ABL versus BL portfolios a posteriori. That is, we
invest in the portfolio optimal at the last observation date, 30-06-14 and then compute the
returns for those weights using the out-of-sample returns. The plots show that ABL and BL
perform almost equally for the "minimum volatility" investor (the lines basically overlap),
but ABL outperforms BL for both the middle portfolio and the maximum return portfolio.
The total returns for the portfolios are the following:

Min Vol Middle Port Max Ret
BL 1.1891 1.1831 1.1243
ABL 1.1887 1.2110 1.1716

Table 9: Total Returns Basic Scenario

We note that BL and ABL have the same total return up to two decimal spots for the
Min Vol case. For higher levels of risk propensity, we observe increasing relative performance
of the ABL portfolio with excess return close to 3% for Middle Port and close to 5% for Max
Ret. It would seem as if ABL is better than BL at �rst, but remember that this scenario is
based on mild views which can be considered by some as trivial. Therefore, it is worthwhile
continuing our analysis to observe the behavior of the models under "extreme" scenarios.

6.1.2 Advantageous Scenario

As a second scenario we take the advantageous one. For this scenario we use the return
observed in the �rst year of out-of-sample and use it as view. This inevitably leads to a
perfect situation in which we place a bet and get it correct in an exact way. Notice that
we do not choose the full �ve years a posteriori performance as view, rather, we look just
one year ahead. The reason for this is that we want to limit the scenario to what we can
call a "good start scenario"; we are not interested in a perfect view as distant as 5 years
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ahead, we just want the portfolio to start in the right direction. Allowing for the portfolio
to start well at �rst is analogous to an investor having a con�dent short term view but not as
con�dent on the medium term. Because we always have the option of switching to Tactical
Asset Allocation therefore it would be super�ous to consider such long scenario.

The results of the optimization in Scenario 2 are the following:

Figure 17: BL allocation Figure 18: ABL allocation

What we notice at �rst sight is that for both scenarios the extreme views have reduced
the diversi�cation of the portfolio signi�cantly, leading in the case of BL to an unexpected
corner solution. The reasons behind this can be found in the magnitude of our views. Indeed,
we are fairly con�dent over the (high) returns of some risky asset classes such as equity and
hedge funds. This constitutes in some way a reversion back to the issues caused by Markowitz
optimization. In this sense it is not surprising to observe a MV-like issue in BL. The ABL
avoids the issue of the corner solution as it relies on more modelled inputs but still presents
signi�cant decrease in diversi�cation, in a more exacerbated manner than BL. Here we have
a �rst symptom of the "aggressiveness" of the new approach.

We can con�rm the �ndings above by analyzing the tables below:

MV Prior BL ABL
US Equity 0.00 0.00 0.00 0.00
EU Equity 0.00 0.00 0.00 0.00
EM Equity 0.00 0.00 0.00 0.00
US Bonds 0.73 0.65 0.66 0.61
EU Bonds 0.00 0.00 0.02 0.02

Hedge Funds 0.27 0.35 0.32 0.37

Table 10: Minimum Volatility Portfolio
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MV Prior BL ABL
US Equity 0.00 0.29 0.41 0.39
EU Equity 0.00 0.10 0.03 0.00
EM Equity 0.00 0.06 0.05 0.02
US Bonds 0.40 0.30 0.41 0.57
EU Bonds 0.00 0.17 0.04 0.00

Hedge Funds 0.60 0.09 0.07 0.01

Table 11: Middle Portfolio

MV Prior BL ABL
US Equity 0.00 0.38 0.70 0.84
EU Equity 0.00 0.43 0.12 0.00
EM Equity 0.00 0.17 0.18 0.01
US Bonds 0.02 0.00 0.00 0.15
EU Bonds 0.00 0.02 0.00 0.00

Hedge Funds 0.98 0.00 0.00 0.00

Table 12: Maximum Return Portfolio

The weights are very extreme especially for higher risk propensities (Portfolio 12 and 25)
and it seems as if the "safe" choice of sticking to market prior would lead to a better per-
formance. For comparison, one can check that diversi�cation seems higher in the allocation
of the Market Prior views found in Fig.9 above. Below instead, are the performances of BL
and ABL for the present scenario.

Figure 19: Comparison BL vs. ABL for di�erent risk propensities, perfect view

If we are to compare the performance of the two methods we observe, as in the basic
scenario, that MinVol produces very similar results. For the Middle Port risk level, we observe
a mildly better performance of the Advanced model. As we can see from the total return
table below, it is for the maximum return portfolio that we observe the highest di�erence,
with ABL signi�cantly outperforming BL.
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Min Vol Middle Port Max Ret
BL 1.1874 1.2710 1.2881
ABL 1.1831 1.2975 1.4054

Table 13: Total Returns Advantageous Scenario

As in the basic case, the MinVol stategy produces equal returns for the two strategies
up to two decimal spots. ABL middle portfolio outperforms the BL competitor by slightly
more than 2%. In the maximum return portfolio we observe the new model outperforming
the original by almost 12%. The reasons for this can be found in the aggressiveness of ABL.
It incorporates the views in a more extreme way but is still resilient to the corner solution
issue. On the other hand, a problem with such aggressiveness could be experienced if we
select the wrong views. The next scenario tries to analyze this latter case.

6.1.3 Disadvantageous Scenario

This last scenario represents the opposite case as the one we have just seen. It focuses on the
analysis of a negative scenario in which the views we have expressed turn out to be exactly
the opposite of real-life market developments. Therefore, we reoptimize on the new set of
views and obtain the following results for our allocations:

Figure 20: BL allocation Figure 21: ABL allocation

Considering that the views expressed are quite extreme, the results are encouraging. Both
BL and ABL produced fairly diversi�ed portfolios, but, again we observe that ABL is more
aggressive in incorporating views. We notice a large decrease in US equity and bonds and
a large increase in EU bonds. A posteriori we already know that this will probably lead to
even more negative returns than BL.
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MV Prior BL ABL
US Equity 0.00 0.00 0.00 0.00
EU Equity 0.00 0.00 0.00 0.00
EM Equity 0.00 0.00 0.00 0.00
US Bonds 0.73 0.65 0.66 0.66
EU Bonds 0.00 0.00 0.01 0.01

Hedge Funds 0.27 0.35 0.32 0.33

Table 14: Minimum Volatility Portfolio

MV Prior BL ABL
US Equity 0.00 0.29 0.12 0.06
EU Equity 0.00 0.10 0.15 0.07
EM Equity 0.00 0.06 0.06 0.03
US Bonds 0.40 0.30 0.19 0.06
EU Bonds 0.00 0.17 0.28 0.49

Hedge Funds 0.60 0.09 0.21 0.28

Table 15: Middle Portfolio

MV Prior BL ABL
US Equity 0.00 0.38 0.08 0.00
EU Equity 0.00 0.43 0.59 0.67
EM Equity 0.00 0.17 0.15 0.05
US Bonds 0.02 0.00 0.00 0.00
EU Bonds 0.00 0.02 0.18 0.29

Hedge Funds 0.98 0.00 0.00 0.00

Table 16: Maximum Return Portfolio

Once again, the largest di�erences in the weights found can be seen in the maximum
return portfolio. Also the middle portfolio shows tangible di�ences between the two alloca-
tions, whereas in the minimum volatility portfolio the di�erences are almost inexistent. The
results produced by the portfolios above in terms of performance are shown in the following
graphs.
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Figure 22: Comparison BL vs. ABL for di�erent risk propensities, opposite view

The performance of the MinVol cases is inevitably almost the same as it stems out of
almost identical portfolios. Opposite to the advantageous case, in this scenario it is BL
outperforming ABL. The interesting thing is that the MaxRet ABL performs relatively
better than the MiddlePort when compared to BL. The total return tables below provide
the numbers.

Min Vol Middle Port Max Ret
BL 1.1901 1.0564 0.9295
ABL 1.1909 0.9884 0.8716

Table 17: Total Returns Disadvantageous Scenario

The BL middle portfolio surpasses the ABL middle portfolio by almost 7% whereas the
ABL maximum return portfolio is approximately 5% behind its competitor.

Taking the results of the three scenarios together we can form an opinion on the BL vs.
ABL comparison. First of all, we state that for low risk pro�le investors, which will construct
portfolios closer to the minimum volatility one, it is almost indi�erent to choose ABL over
BL or vice versa as the results produced in the end are very close to identical. For identical
output, we choose the ABL to account for the theoretical results we have mentioned (negative
skewness and excess kurtosis). The investor which places himself in a central position on the
risk propensity axis has a more complicated decision to take. He must weigh the bene�ts of
performing more thanks to ABL in a positive situation against the downturns of being in
a negative setting and holding the ABL portfolio. From what we have seen, ABL produces
better results in the basic scenario, with mild views. Nevertheless, ABL outperforms the
BL portfolio much less in the advantageous case than the underperformance observed in the
disadvantageous scenario (+2% vs. -7%). For this reason, this type of investor will most
likely choose ABL in the a general case, but will revert to a BL optimization if his primary
concern is not losing money. A risk loving investor who wants to construct a risky portfolio
will probably have less undecisiveness. As we have seen ABL outperforms BL by 3% in
the basic case and by 12% in the advantageous case. ABL underperforms BL by 5% in the
disvantageous case. The choice for the risk loving investor will likely be an ABL portfolio.
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Min Vol Middle Port Max Ret
Choice ABL Uncertain ABL

Table 18: Model best choice

The choice of three investors belonging to the three categories of risk propensity can be
summarized as follows:

For two out of three "proxy investors", ABL is better over BL. Only for the middle
investor there is uncertainty over the optimal choice. Therefore, taking the two as models
competing in being used by an investor with views, we can state that ABL is, in many but
not all cases, a better performing optimization tool for an investor. Because of this �nding
above we can now focus on comparing ABL performance with the Prior methodology to
have an in-depth understanding of their di�erences. This is going to be the focus of the next
section and will tell us whether it is better or not to express views at all, on average.
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6.2 Performance

Because of the simplicity and popularity of ETFs, it is very easy to be passively invested
in what can be de�ned to be a market portfolio. For this reason, as we try to understand
the performance of the ABL portfolio, we compare with the market (in this case we do not
use an ETF, instead we use market neutral weights). Obviously, beating the market is a
must whenever we switch from simple replication of an index to an active strategy. As this
model is being proposed for the �rst time, in this discussion we disregard transaction costs.
This is really a big issue in any investment strategy, in our case it can be disregarded as we
are not concerned yet with the actual purchase of securities (subject to transaction costs);
we are interested, instead, in allocating among asset classes. The issue of security selection
and, therefore, transaction costs will enter the discussion only in subsequent phases which
follow. In this section we �rst analyze the performance of the market (taken to be the Prior
allocation with market neutral weights) and then we compare key statistics to understand
the strengths and weaknesses of the ABL strategy.

The last section con�rmed that an investor who wants to express some views is rec-
ommended to use ABL over BL optimization. In this section we try to understand how
expressing views can help our portfolio performance. It is trivial that expressing perfect
views or completely wrong views (Scenarios 2 and 3) will lead, respectively, to a major over-
and underperformance. For this reason what we compare to the market is our "Basic" sce-
nario. As we mentioned, what is de�ned for us as "Market" portfolio, is the market prior
portfolio generated by market neutral weights.

Recall the allocations of the Market Prior and its weights for the three standard risk
propensities in the following graph and table:

Figure 23: Prior allocation

Min Vol Middle Port Max Ret
US Equity 0.00 0.29 0.38
EU Equity 0.00 0.10 0.43
EM Equity 0.00 0.06 0.17
US Bonds 0.65 0.30 0.00
EU Bonds 0.00 0.17 0.02

Hedge Funds 0.35 0.09 0.00

Table 19: Weights Market Prior
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Remark The neutral weights are the ones derived using a risk aversion coe�ent of 2.5.
The risk aversion coe�cient is equivalent in meaning for the risk propensity which we deal
with. The market neutral weights are:

US Equity EU Equity EM Equity US Bonds EU Bonds Hedge Funds
Initial Weights 0.31 0.11 0.07 0.30 0.17 0.04

Table 20: Market Weights

Taking the latter weights as benchmark we plot its performance alongside the performance
of the individual assets over our backtesting window.

Figure 24: Market Return Figure 25: Returns of the individual assets

We provide some statistics for the market assets to understand which asset class per-
formed well in the out-of-sample period.

US Equity EU Equity EM Equity US Bonds EU Bonds Hedge Funds
Mean Return (%) 0.68 -0.13 0.01 0.33 -0.29 0.24

St.Dev 0.16 0.06 0.10 0.05 0.05 0.06
Sharpe Ratio 1.81 -0.84 0.03 2.62 -2.54 1.66

Geometric Mean 1.17 0.87 0.90 1.08 0.83 1.06
Total Return 1.45 0.89 0.94 1.22 0.83 1.15

Table 21: Market Statistics

We now provide the performance of the three standard risk propensities applied to the
ABL:
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Figure 26: ABL for di�erent risk propensities

The performance in terms of total return for the three risk propensities of the ABL
portfolio plus the market neutral portfolio are the following:

Market Min Vol Middle Port Max Ret
Total Return 1.16 1.19 1.18 1.12

Table 22: Total returns ABL

By the graphs and the table above we �nd that the total return generated by ABL beats
the market for lower risk propensities: MinVol and MiddlePort. On the contrary, the MaxRet
ABL portfolio is beaten by the market by 4%.

Considering the intrinsic aggressive nature of the portfolio, it is reassuring that it performs
at best for low levels of risk propensity. But we must also consider other key measures to
understand fully the drivers of performance.

To start, we rely on some key statistics: the mean return, the volatility and the annualized
Sharpe Ratio. Sharpe Ratio is a very popular measure of performance, it measures the
amount of return per unit of risk taken.

Sharpe Ratio =
Average return(µ̄)

Volatility(σ)

Market Min Vol ABL Middle Port ABL Max Ret ABL
Mean Return (%) 0.25 0.29 0.33 0.29

Volatility 0.0195 0.0077 0.0188 0.0346
Sharpe Ratio 0.45 1.31 0.60 0.29

Table 23: Key Statistics

It is interesting to �nd the highest Sharpe Ratio for the MinVol portfolio. Another
striking feature is that the market has the lowest mean return, still, it manages to achieve
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a Sharpe Ratio which is better than MaxRet thanks to its lower volatility. We can look at
higher moments of the return series to understand more of our results.

Market Min Vol ABL Middle Port ABL Max Ret ABL
Min (%) -4.5121 -1.6709 -4.3725 -7.8112
Max (%) 5.0798 2.2680 4.8507 7.3666
Skewness 0.0020 0.0755 -0.1062 -0.2517
Kurtosis 3.1971 3.4864 3.3969 3.2117

Table 24: Advanced Statistics

As regards these additional statistics, we observe that the MinVol portfolio is the one
with the narrowest Min-Max gap, with both values which are quite low. The market and
MiddlePort have similar gaps, with the market one slightly wider. The MaxRet Portfolio
shows a gap going from over -7% to +7%, showing signi�cantly higher volatility. Asymmetry,
measured by skewness, shows that the most attractive portfolios for this characteristic (we
like positive skewness and dislike negative) are the market and MinVol ones. Furthermore,
investors normally prefer thin tails, translated in statistical terms, they like low kurtosis.
The series of returns with the lowest kurtosis is the market portfolio.

We continue with even more measures of performance and risk. This time we focus
on measuring the downside risks of the portfolios. We use for this purpose the downside
volatility and ValueAtRisk (VaR) computed at 95%.

Downside volatility (σ−) takes into account the fact that volatility is a symmetric mea-
sure. For this reason, an increase in volatility can be due to both positive and negative
returns. Downside volatility only focuses on the negative returns when computing volatility
and disregards the "good" volatility (due to positive returns). Value at Risk on the other
hand is a measure of "how badly can things go?". It answers to the question: what is the
return that I will observe in the worst 5% of possible scenarios?". To proxy this quantity
we use the empirical 5% quantile of the distribution. From another perspective, the value
we obtain for this measure tells us that 95% of the times we will perform better than such
returns. A �nal measure we use is Expected Shortfall (ES), a concept which is very close to
VaR. If the VaR tells us what the 5% worst scenario is, ES tells us what is the expected loss
given that we are in the worst 5% of possible outcomes.

Using the downside risk measure we also provide another performance measure, the
Sortino Ratio. The concept is analogous to the Sharpe Ratio but uses downside volatilities
instead of normal standard deviations.

Sortino Ratio =
Average return(µ̄)

Downside Volatility(σ−)

53



Market Min Vol ABL Middle Port ABL Max Ret ABL
Downside Risk 0.0120 0.0044 0.0125 0.0241
VaR (95%) -3.04 -0.89 -3.17 -6.85
ES (95%) -3.79 -1.34 -3.85 -7.36

Sortino Ratio 0.73 2.28 0.90 0.41

Table 25: Additional Measures

We notice from the table above that MinVol ABL, due to its conservative nature has
the lowest measure of downside risk, making it less subject to negative market swings.
The Market and MiddlePort perform similarly and MaxRet has, inevitably, much more
exposure to negative shocks. The same pattern applies to ValueAtRisk, with MinVol showing
a worst 5% outcome of -0.89%, followed by -3.04% for the market portfolio and -3.17% for
MiddlePort. Much higher is the VaR value for MaxRet, equal to -6.85%. We notice that the
order for the ES is the same, with more negative values by construction.

The Sortino Ratio provides a measure of the trade-o� between negative outcomes and
average returns. The �ndings show that MinVol is by far the best performer under this
perspective and that MaxRet is the worst. Once again Market and MiddlePort are in the
middle, with returns not far from one another.

From the discussion above we can summarize some general facts. We noticed that the
performance of the minimum volatility portfolio constructed using ABL has the best perfor-
mance indicators when compared to its competitors. It shows in fact, higher Sharpe Ratio
and Sortino Ratio. It is also very protective, as it shows excellent downside risk measures
and a narrow range of returns. Of course, it is not a valid choice for a less risk averse investor.
When the desire for risk increases, the alternative are the Market and Middle portfolio. They
perform similarly, with the ABL MiddlePort presenting slightly better Sharpe and Sortino
Ratios, but at the same time showing negative skewness, fatter tails and higher VaR and ES.
For this reason, a more simple and adequate investment would be the Market Portfolio. For
the investor in search of more returns, MaxRet ABL provides for consistent positive returns
at the risk of large negative shocks due its higher negative skewness. It also widens the range
of high (but also low) returns showing more extreme minimum and maximum returns. The
excess riskiness of the strategy, in terms of all risk measures (Standard Deviation, Downside
Volatility, VaR and ES) causes the performance ratios to be low. The increase in return
performance is probably not high enough to justify the higher risks taken.
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7 Conclusion

We have seen that this model, although advanced in its implications, manages to incorporate
the views in a new close-form solution. The model requires, as in BL, the construction of
the selection matrix and speci�cation of views. These preliminary passages lead to the
introduction of a new correlation matrix which is likely to be a concept more familiar than
other advanced ones.

The ABL �nds its strength in its ready applicability. Still it manages to meet its pur-
poses: to incorporate non-normality and dependence in con�dence of views. From another
perspective, its strength is also its weakness because sophisticated investors and market
professionals will likely decide to take a further step and choose a more advanced model.

For the average investor, instead, this model can constitute a valid solution. After the
comparison of our Advanced Black-Litterman model with the original BL, we noticed better
performance of the ABL in most cases, with the BL never being undoubtedly better (we
noticed one ex equo result). When compared to BL, the ABL led to enhanced performance
in the case of a low-risk and high-risk investor. An investor placing himself in the middle
between the two, would choose between the two models based on the type of views he
expresses.

As we have seen, the ABL is a more aggressive model and the middle type of investor
would choose to use it only for mild views. For more extreme views over future outcomes,
the investor should rely instead on a BL model, so to limit the double impact of an aggressive
model with aggressive views.

When compared to the market, we have noticed great results for the ABL constructed for
low risk pro�les and good performance for the middle range of risk propensity. This can be
seen through the performance ratios evaluated and other key statistics. ABL for minimum
volatility presents good measures of risk and return and the ABL middle risk results are very
similar to the market. Still in terms of performance ratios and key statistics, it is clear that
ABL is probably not suited for aggressive, highly risk seeking investors.

From this we can draw the conclusion of what it implies to incorporate non-normality
(through negative skewness and excess kurtosis) and dependence across view con�dence in
the portfolio construction process. This model has provided a possible solution, although,
with its applicability and theoretical limits. It is a challenge for future research to �nd a
model which, incorporating the same information with the same simplicity, produces a result
which is more e�cient, compared to normal BL, 100% of the times.
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9 Code

c l o s e a l l
c l e a r
c l c

r i sk_aver s i on =2.5 ;
NumPortf=30; %meaning that opt imiza t i on r e tu rn s t h i s number o f p o r t f o l i o s
% which are then graphed

monthly . p r i c e= x l s r e ad ( ' Data . x lsx ' , 1 ) ;
monthly . cap= x l s r e ad ( ' Data . x lsx ' , 2 ) ;
monthly . r e tu rn s=d i f f ( l og (monthly . p r i c e ) ) ;
backte s t=monthly . r e tu rn s ( end−59:end , : ) ;
monthly . r e tu rn s=monthly . r e tu rn s ( 1 : end−60 , : ) ;
N= s i z e (monthly . returns , 2 ) ;
opt ions = optimset ( ' Display ' , ' o f f ' ) ;

f o r i =1:N

w_init ( i )=monthly . cap ( end , i )/sum(monthly . cap ( end , : ) ) ;

end

tau= inv ( s i z e (monthly . re turns , 1 ) ) ; %con f idence in market p r i o r s

assets_names={'US Equity ' ,
'EU Equity ' ,
'EM Equity ' ,
'US Bonds ' ,
'EU Bonds ' ,
' Hedge Funds ' } ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% marginal d i s t r i b u t i o n + copula
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fo r i =1:N

[ a s s e t ( i ) . arma ,~ , a s s e t ( i ) . r e s i d u a l s ]= . . .
a rmax f i l t e r (monthly . r e tu rn s ( : , i ) , 1 , 1 , 1 , [ ] , [ ] , opt i ons ) ;
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[ a s s e t ( i ) . garch ,~ , a s s e t ( i ) . va r i ance ]= . . . .
tarch ( a s s e t ( i ) . r e s i dua l s , 1 , 0 , 1 , [ ] , [ ] , [ ] , opt ions ) ;

a s s e t ( i ) . uncvar iance= . . .
a s s e t ( i ) . garch (1)/(1− a s s e t ( i ) . garch (2)− a s s e t ( i ) . garch ( 3 ) ) ;

a s s e t ( i ) . s td=sq r t ( a s s e t ( i ) . va r i ance ) ;
a s s e t ( i ) . z=a s s e t ( i ) . r e s i d u a l s . / a s s e t ( i ) . s td ;
a s s e t ( i ) . mle= . . .

mle ( a s s e t ( i ) . z , ' pdf ' ,@( z , a , b )SkTDens ( a s s e t ( i ) . z , a , b ) , ' s t a r t ' , [ − 0 . 1 , 5 ] ) ;
lambda=a s s e t ( i ) . mle (1)+ ze ro s ( s i z e ( a s s e t ( i ) . z , 1 ) , 1 ) ;
eta=a s s e t ( i ) . mle (2)+ ze ro s ( s i z e ( a s s e t ( i ) . z , 1 ) , 1 ) ;
a s s e t ( i ) . u=SkTCDF( a s s e t ( i ) . z , lambda , eta ) ;

end

u=a s s e t ( 1 ) . u ;
f o r z=2: i

u=[u a s s e t ( z ) . u ] ;

end

% [ rhohat ] = c o pu l a f i t ( ' Gaussian ' , u ) ;
[ rhohat , nuhat ] = c o pu l a f i t ( ' t ' , u ) ;

s igma_hist=cov (monthly . r e tu rn s ) ;

% est imate h i s t o r i c a l covar iance us ing EWMA

window= 50 ; % f i r s t e s t imat ion takes 50 obs e rva t i on s
ewma_phi=0.94; %l i k e RiskMetr ics
sigma_ewma= cov (monthly . r e tu rn s ( 1 : 5 0 , : ) ) ;

f o r i =51: s i z e (monthly . re turns , 1 )
sigma_ewma= ewma_phi * sigma_ewma + . . .

(1−ewma_phi )* ( monthly . r e tu rn s ( i , : ) ' * monthly . r e tu rn s ( i , : ) ) ;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% h i s t o r i c a l covar iance and mean re tu rn s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

58



NumShown=NumPortf−5;
CovRets_Hist=sigma_hist ;
ExpValRets_Hist=mean(monthly . r e tu rn s ) ' ;

[E,V, Portfolios_MV]= . . .
E f f i c i e n t F r o n t i e r (NumPortf , CovRets_Hist , ExpValRets_Hist ) ;

f i g u r e ;
area ( Portfolios_MV , ' FaceColor ' , ' f l a t ' )
yl im ( [ 0 1 ] )
xlim ( [ 1 NumShown ] )
y l ab e l ( 'Weights ' )
x l ab e l ( ' Risk Propensity ' )
l egend ( assets_names , ' Location ' , ' northwest ' , ' NumColumns ' , 3 ) ;
% Plo tFront i e r ( P o r t f o l i o s )
t i t l e ( ' H i s t o r i c a l Front ie r ' , ' fontweight ' , ' bold ' )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% market p r i o r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CovRets_Prior=sigma_ewma ;
ExpValRets_Prior=r i sk_aver s i on *CovRets_Prior*w_init ' ;

[E,V, Po r t f o l i o s_Pr i o r ] = . . .
E f f i c i e n t F r o n t i e r (NumPortf , CovRets_Prior , ExpValRets_Prior ) ;

f i g u r e ;
area ( Por t f o l i o s_Pr io r , ' FaceColor ' , ' f l a t ' )
yl im ( [ 0 1 ] )
xlim ( [ 1 NumShown ] )
y l ab e l ( 'Weights ' )
x l ab e l ( ' Risk Propensity ' )
l egend ( assets_names , ' Location ' , ' northwest ' , ' NumColumns ' , 3 ) ;
% Plo tFront i e r ( P o r t f o l i o s )
t i t l e ( ' Pr io r Front ie r ' , ' fontweight ' , ' bold ' )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% views on the market
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Scenar io 1
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n_views= 3 ; % the number o f view the i nv e s t o r has , sum of

P=ze ro s ( n_views ,N) ;
% the order o f the a s s e t s i s :
% 1 . US Equity 2 . EU Equity 3 . Emerging Markets Equity
% 4 . US Bonds 5 . EU Bonds 6 . Hedge Funds

P(1 ,1)=1;% here the s e l e c t i o n matrix has to be cons t ruc ted manually
P(1 ,2)=−1;
P(2 ,4)=1;
P(2 ,5)=−1;
P(3 ,1)=−1/3;
P(3 ,2)=−1/3;
P(3 ,3)=−1/3;
P(3 ,4)=0;
P(3 ,5)=−0;
P(3 ,6)=1;

v=[0.04 0 .02 0 . 0 3 ] ' ;

Omega= ze ro s ( n_views ) ; % unce r ta in ty o f views was measured

Omega(1 ,1)=0.05^2;
Omega(2 ,2)=0.05^2;
Omega(3 ,3)=0.05^2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% % Alt e rna t i v e Scenar io
% n_views= 3 ; % the number o f view the i nv e s t o r has , sum of
%
% P=ze ro s ( n_views ,N) ;
% % the order o f the a s s e t s i s :
% % 1 . US Equity 2 . EU Equity 3 . Emerging Markets Equity
% % 4 . US Bonds 5 . EU Bonds 6 . Hedge Funds
%
% P(1 ,1)=1;% here the s e l e c t i o n matrix has to be cons t ruc ted manually
% P(1 ,2)=−1;
% P(2 ,4)=1;
% P(2 ,5)=−1;
% P(3 ,1)=−1/3;
% P(3 ,2)=−1/3;
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% P(3 ,3)=−1/3;
% P(3 ,6)=1;
%
% v=[0.1541 0 .1989 0 . 0 6 9 7 7 ] ' ; % co r r e c t view over 1 year
% v= −v ; % wrong views
%
% Omega= ze ro s ( n_views ) ; % unce r ta in ty o f views was measured
%
% Omega(1 ,1)=0.05^2 ;
% Omega(2 ,2)=0.05^2 ;
% Omega(3 ,3)=0.05^2 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Black−Litterman
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Mu_BL= inv ( inv ( tau*CovRets_Prior)+P'* inv (Omega)*P)* . . .
( inv ( tau*CovRets_Prior )*ExpValRets_Prior+P'* inv (Omega)*v ) ;

Sigma_BL=inv ( inv ( tau*CovRets_Prior)+P'* inv (Omega)*P) ;

% compute MV e f f i c i e n t f r o n t i e r

[E,V, Portfol ios_BL ]= E f f i c i e n tF r o n t i e r (NumPortf , Sigma_BL , Mu_BL) ;
f i g u r e ;
area ( Portfol ios_BL , ' FaceColor ' , ' f l a t ' )
yl im ( [ 0 1 ] )
xlim ( [ 1 NumShown ] )
y l ab e l ( 'Weights ' )
x l ab e l ( ' Risk Propensity ' )
l egend ( assets_names , ' Location ' , ' northwest ' , ' NumColumns ' , 3 ) ;
% Plo tFront i e r ( P o r t f o l i o s )
t i t l e ( 'BL Front ie r ' , ' fontweight ' , ' bold ' )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Advanced Black−Litterman
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

D = ze ro s (N) ;
f o r i =1:N

D( i , i )= CovRets_Prior ( i , i ) ;
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end

OmegaABL= P *D^(1/2) * rhohat * D^(1/2)* P ' ;

Mu_ABL= inv ( inv ( tau*CovRets_Prior)+P'* inv (OmegaABL)*P ) * . . .
( inv ( tau*CovRets_Prior )*ExpValRets_Prior+P'* inv (OmegaABL)*v ) ;

Sigma_ABL=inv ( inv ( tau*CovRets_Prior)+P'* inv (OmegaABL)*P) ;

% compute MV e f f i c i e n t f r o n t i e r

[E,V, Portfolios_ABL]= E f f i c i e n tF r o n t i e r (NumPortf , Sigma_ABL, Mu_ABL) ;
f i g u r e ;
area ( Portfolios_ABL , ' FaceColor ' , ' f l a t ' )
yl im ( [ 0 1 ] )
xlim ( [ 1 NumShown ] )
y l ab e l ( 'Weights ' )
x l ab e l ( ' Risk Propensity ' )
l egend ( assets_names , ' Location ' , ' northwest ' , ' NumColumns ' , 3 ) ;
t i t l e ( ' Advanced BL Front ie r ' , ' fontweight ' , ' bold ' )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Analys i s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% market performance

returns_avg = mean( backte s t ) ;

returns_market= cumprod(1+backte s t ) ;
returns_geomean=geomean ( returns_market ) ;
to ta l_return= returns_market ( end , : ) ;

vo l a t i l i t y_marke t= std ( returns_market ) ;

f i g u r e ;
p l o t ( returns_market )
y l ab e l ( ' Return ' )
x l ab e l ( 'Time ' )
l egend ( assets_names , ' Location ' , ' northwest ' , ' NumColumns ' , 2 ) ;

neutra l_return= w_init* returns_market ' ;
f i g u r e ;
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p lo t ( neutra l_return )
y l ab e l ( ' Return ' )
x l ab e l ( 'Time ' )
l egend ( ' Neutra l Weights Return ' , ' Location ' , ' northwest ' , ' NumColumns ' , 2 ) ;

% three d i f f e r e n t r i s k p r o p e n s i t i e s ( p o r t f o l i o 1 , 12 and 25)

weights . minvol=[ Portfolios_MV ( 1 , : ) ; Po r t f o l i o s_Pr i o r ( 1 , : ) ; . . .
Portfol ios_BL ( 1 , : ) ; Portfolios_ABL ( 1 , : ) ] ;

we ights . maxret=[ Portfolios_MV ( 2 5 , : ) ; Po r t f o l i o s_Pr i o r ( 2 5 , : ) ; . . .
Portfol ios_BL ( 2 5 , : ) ; Portfolios_ABL ( 2 5 , : ) ] ;

we ights . middleport=[ Portfolios_MV ( 1 2 , : ) ; Po r t f o l i o s_Pr i o r ( 1 2 , : ) ; . . .
Portfol ios_BL ( 1 2 , : ) ; Portfolios_ABL ( 1 2 , : ) ] ;

% compute v o l a t i l i t i e s
f o r i =1:NumPortf

volati l ity_MV ( i ) = Portfolios_MV ( i , : ) * CovRets_Prior*Portfolios_MV ( i , : ) ' ;

end

f o r i =1:NumPortf

v o l a t i l i t y_P r i o r ( i ) = Por t f o l i o s_Pr i o r ( i , : ) * CovRets_Prior . . .
*Por t f o l i o s_Pr i o r ( i , : ) ' ;

end

f o r i =1:NumPortf

vo la t i l i ty_BL ( i ) = Portfol ios_BL ( i , : ) * CovRets_Prior*Portfol ios_BL ( i , : ) ' ;

end

f o r i =1:NumPortf

volat i l i ty_ABL ( i ) = Portfolios_ABL ( i , : ) * CovRets_Prior*Portfolios_ABL ( i , : ) ' ;

end

va r i ance s= [ volati l ity_MV (1) volati l ity_MV (12) volati l ity_MV (2 5 ) ;
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v o l a t i l i t y_P r i o r (1 ) v o l a t i l i t y_P r i o r (12) v o l a t i l i t y_P r i o r ( 2 5 ) ;
vo la t i l i ty_BL (1) vo lat i l i ty_BL (12) vo lat i l i ty_BL ( 2 5 ) ;
volat i l i ty_ABL (1) volat i l i ty_ABL (12) volat i l i ty_ABL ( 2 5 ) ] ;

standard_devs= sq r t ( va r i ance s ) ;

f o r i =1:NumPortf

return_MV( i ) = Portfolios_MV ( i , : ) * returns_avg ' ;

end

f o r i =1:NumPortf

return_Prior ( i ) = Por t f o l i o s_Pr i o r ( i , : ) * returns_avg ' ;

end

f o r i =1:NumPortf

return_BL ( i ) = Portfol ios_BL ( i , : ) * returns_avg ' ;

end

f o r i =1:NumPortf

return_ABL( i ) = Portfolios_ABL ( i , : ) * returns_avg ' ;

end

r e tu rn s= [ return_MV(1) return_MV(12) return_MV (2 5 ) ;
return_Prior (1 ) return_Prior (12) return_Prior ( 2 5 ) ;
return_BL (1) return_BL (12) return_BL ( 2 5 ) ;
return_ABL (1) return_ABL (12) return_ABL ( 2 5 ) ] ;

sharpe=( r e tu rn s *12 ) . / ( standard_devs* s q r t ( 1 2 ) ) ; % annua l i zed

performance . minvol= [ ones ( 4 , 1 ) , weights . minvol * returns_market ' ] ;
performance . middleport= [ ones ( 4 , 1 ) , weights . middleport * returns_market ' ] ;
performance . maxret= [ ones ( 4 , 1 ) , weights . maxret * returns_market ' ] ;
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% Compare ABL to Market

% order i s : 1 . Market 2 . MinVol ABL 3 . MiddlePort ABL 4 . MaxRet ABL

market . s e r i e s=w_init*backtest ' ;
minvolabl . s e r i e s=weights . minvol ( 4 , : ) * backtest ' ;
midd leportab l . s e r i e s=weights . middleport ( 4 , : ) * backtest ' ;
maxretabl . s e r i e s=weights . maxret ( 4 , : ) * backtest ' ;

comparison= [ ( w_init*backtest ' ) ' ( weights . minvol ( 4 , : ) * backtest ' ) ' . . .
( weights . middleport ( 4 , : ) * backtest ' ) ' ( weights . maxret ( 4 , : ) * backtest ' ) ' ]

j =1;
f o r i =1: l ength ( comparison )

i f market . s e r i e s ( i ) <0
negat ive . market ( j )= market . s e r i e s ( i )

j=j +1;

e l s e cont inue
end

end

j =1;
f o r i =1: l ength ( comparison )

i f minvolabl . s e r i e s ( i ) <0
negat ive . minvolabl ( j )= minvolabl . s e r i e s ( i )

j=j +1;

e l s e cont inue
end

end

j =1;
f o r i =1: l ength ( comparison )
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i f midd leportab l . s e r i e s ( i ) <0
negat ive . middleportab l ( j )= middleportab l . s e r i e s ( i )

j=j +1;

e l s e cont inue
end

end

j =1;
f o r i =1: l ength ( comparison )

i f maxretabl . s e r i e s ( i ) <0
negat ive . maxretabl ( j )= maxretabl . s e r i e s ( i )

j=j +1;

e l s e cont inue
end

end

downside_vol = [ std ( negat ive . market ) std ( negat ive . minvolabl ) . . .
s td ( negat ive . middleportab l ) std ( negat ive . maxretabl ) ] ;

var_95= [ quan t i l e (market . s e r i e s , . 0 5 ) quan t i l e ( minvolabl . s e r i e s , . 0 5 ) . . .
quan t i l e ( middleportab l . s e r i e s , . 0 5 ) quan t i l e ( maxretabl . s e r i e s , . 0 5 ) ] ;

s o r t ed . market= so r t (market . s e r i e s ) ;
s o r t ed . minvolabl= so r t ( minvolabl . s e r i e s ) ;
s o r t ed . middleportab l= so r t ( middleportab l . s e r i e s ) ;
s o r t ed . maxretabl= so r t ( maxretabl . s e r i e s ) ;

es_95 = [mean( so r t ed . market ( 1 : 3 ) ) mean( so r t ed . minvolabl ( 1 : 3 ) ) . . .
mean( so r t ed . middleportab l ( 1 : 3 ) ) mean( so r t ed . maxretabl ( 1 : 3 ) ) ] ;

s o r t i n o= (12*mean( comparison ) ) . / ( s q r t (12)* downside_vol ) ;

f i g u r e ;
p l o t ( performance . minvol ' )
y l ab e l ( ' Return ' )
x l ab e l ( 'Time ' )
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l egend ( 'MV' , ' Pr ior ' , 'BL' , 'ABL' , ' Location ' , ' northwest ' , ' NumColumns ' , 2 ) ;

f i g u r e ;
p l o t ( performance . minvol ( 4 , : ) ' )
y l ab e l ( ' Return ' )
x l ab e l ( 'Time ' )
l egend ( ' Prior ' , ' Location ' , ' northwest ' , ' NumColumns ' , 2 ) ;
t i t l e ( 'Minimum Vo l a t i l i t y ABL' , ' fontweight ' , ' bold ' )

f i g u r e ;
p l o t ( performance . middleport ( 4 , : ) ' )
y l ab e l ( ' Return ' )
x l ab e l ( 'Time ' )
l egend ( ' Prior ' , ' Location ' , ' northwest ' , ' NumColumns ' , 2 ) ;
t i t l e ( ' Middle P o r t f o l i o ABL' , ' fontweight ' , ' bold ' )

f i g u r e ;
p l o t ( performance . maxret ( 4 , : ) ' )
y l ab e l ( ' Return ' )
x l ab e l ( 'Time ' )
l egend ( ' Prior ' , ' Location ' , ' northwest ' , ' NumColumns ' , 2 ) ;
t i t l e ( 'Maximum Return ABL' , ' fontweight ' , ' bold ' )

% tab l e s
rows= { 'Mean−Variance ' ; ' Pr ior ' ; ' BL ' ; 'ABL' } ;
c o l s= { 'Min Vol ' , ' Middle Port ' , 'Max Ret ' } ;
input . data= sharpe ;
input . t ab l ePo s i t i o n i n g = 'h ! ' ;
input . tab l eCo lLabe l s = c o l s ;
input . tableRowLabels = rows ;
input . dataFormat = { '%.4 f ' } ;
input . tableColumnAlignment = ' c ' ;
input . tab leCapt ion = ' Sharpe Rat ios Po r t f o l i o s ' ;
input . tab l eLabe l = 'MLE Corre la t i on ' ;
l a t ex1= latexTable ( input ) ;
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