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Montecarlo and Value at Risk: empirical evidence from the Italian Stock market

by Martina AQUILA

This thesis describes Montecarlo simulation together with random number genera-
tion techniques, with a focus on their principal application to market risk manage-
ment: Value at Risk (VaR).

After three chapters devoted to description and efficiency considerations on ran-
dom number generation, VaR computations are explained in steps.

Chapter five presents the empirical results of this work.
VaR was computed for the Italian and US stock markets according to the three

most widely used VaR approaches (Variance-Covariance, Historical, and Montecarlo
simulations). It is found that Montecarlo outperforms the other two methods in both
markets concerning the test statistics proposed.

Finally, the accuracy of Montecarlo estimates on the Italian stock market was
evaluated with respect to distributional assumptions.

Among Normal, Log-Normal and Geometric Brownian motion the latter outper-
forms the other two.
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Introduction

Montecarlo methods are a widely used set of tools whose principal aim is to find a
solution to problems that are by nature so complex that a solution may be difficult or
impossible to be found with traditional analytical techniques. By applying a Monte-
carlo method, an approximation of the solution is determined by the recurrence to
random number generation. The quality and reliance of the approximation usually
depend on the number of simulated paths generated.

Montecarlo techniques are generic tools that are useful for the evaluation of very
different problems. The birth of Montecarlo methods, for instance, is usually associ-
ated with the first development of the atomic bomb and, consequently, in the field of
physical applications. Nowadays, Montecarlo simulations are applied to many dif-
ferent disciplines, and, among these, finance and risk management play a significant
role.

In the field of risk management, Montecarlo techniques are mainly applied to the
estimation of a very relevant market risk measure: Value at Risk (VaR). The concept
of VaR is central in risk management both from the perspective of financial firms,
which use this quantity for capital allocation and risk control purposes and from a
regulatory perspective. The Basel accords (1996) in fact, show a clear preference for
the estimation of capital requirements for market risk using the VaR measure. As
shown in the following chapters, VaR can be computed according to many different
approaches. Among these, the most used ones are the Variance-Covariance, Histori-
cal, and Montecarlo simulations. Those approaches come necessarily with strengths
and weaknesses that will be underlined and commented. Nevertheless, an impor-
tant objective of this work is to draw some conclusions in terms of the superiority of
one of the methods compared to the others. It is important to keep in mind that it
is not possible to define one method as superior compared to the others concerning
all dimensions considered. The choice, in fact, usually depends on many variables
(such as the characteristics and size of the portfolio, the firm’s risk profile, the time
horizon). In abstract terms, banks are set free to choose the model that best suits
specific objectives.

When Montecarlo simulation is to be applied, a good random number generator
must be available. If this is not the case, the VaR estimate that results is necessarily
biased. This is the reason why the first three chapters of this work are devoted
to the description of Montecarlo techniques with a clear focus on random number
generation. Those descriptions are necessary if we are interested in the quality of
VaR estimates. Subsequently, the concept of VaR and the three approaches to its
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computation are introduced in Chapter 4. Together with general considerations, a
practical implementation for the computation of VaR is given.

Finally, Chapter 5 analyzes the performance of the three VaR approaches over
multiple dimensions. The idea is to look empirically at the performance of the mod-
els so to make some conclusions. The major takeaway of the analysis is that the
increased complexity of the Montecarlo method comes with improvements in terms
of performance. This conclusion should be taken consciously since it is necessarily
influenced by the study performed. For this reason, the limitations of this study are
clearly set out.
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Chapter 1

Introduction to Montecarlo
simulation

Montecarlo methods are a comprehensive class of stochastic simulation techniques
that employ the generation of random numbers in order to estimate deterministic
quantities. Montecarlo methods are widely used in many different fields of studies.
The common feature is that the problem to which Montecarlo simulation seeks to
find a solution is the expected value of a random variable. Realizations of those ran-
dom variables are generated by a stochastic process that Montecarlo simulates. In
this way, the expected value of the random variable is computed by the sample gen-
erated through the Montecarlo technique. This non-rigorous and straightforward
description of a trivial Montecarlo algorithm highlights the major weakness of this
well-known technique. It has to be clear already from the first page that Montecarlo
techniques do not provide an exact solution to any problem; they provide a reli-
able approximation if some conditions are met. However, the solution is always an
approximation of the actual expected value. It follows, then, that Montecarlo tech-
niques should be used when, given the complexity of the problem, it is not possible
to define the exact solution in closed form. The reliability of the approximation, of
course, depends on the number of trials that are performed. This treat is typical and
common to all numerical techniques, to which Montecarlo belongs. In the follow-
ing chapters, a more formal definition will be given, and various methods to reduce
estimation biases will be discussed.

1.1 Origins

In literature, it is not always recalled that Montecarlo methods are extremely an-
cient, in the fact that the first technique belonging to this family was proposed in
1733 by George-Louis Leclerc Compte de Buffon (1707-1788). Buffon, a naturalist,
mathematician, and cosmologist, wanted to estimate the value of π through an ex-
periment. The experiment he designed has the characteristics of what we call now a
Montecarlo simulation. This famous experiment is called “Buffon’s needle” and it is
based on the idea that it is possible to estimate the value of π by flipping a needle on



4 Chapter 1. Introduction to Montecarlo simulation

a surface characterized by the presence of parallel and equidistant lines. By repeat-
ing this flipping, it is possible to observe how many times the needle crosses a line
empirically. We turn now to the formalization of this problem in order to explain
why it is considered the father of Montecarlo techniques 1. Define a needle with
length L and a flat surface characterized by a bundle of parallel and equidistant lines.
The distance between each couple of lines is defined d. We assume, by construction,
that d ≥ L. The random variable at the heart of the experiment is Xn= number of
successes in n trials, i.e., the number of times the needle touches or crosses a line in
n flips. Imagine the needle crosses a line. Then it is possible to draw another line
that passes through the center of the needle and parallel to the lines on the surface.
We define D as the distance of this parallel line to the nearest line on the surface and
θ the acute angle the needle generates with the bundle of lines. Then D ∈ [0, d/2]
and θ ∈ [0, π/2]. The needle will cross or touch the line only if D ≤ L

2 sin θ . Now
we are ready to define the probability of success in a trial, i.e., the probability of

the needle crossing or touching a line: P(success) =
∫ π

2
0

L
2 sin θdθ
L
2

π
2

= 2L
πd . By estimat-

ing, trough the experiment, the probability of success, it is straightforward to solve
for π: π = 2L

dP(success) . The result is then an empirical estimation of π. At that time
this was a great success since it was not conceivable to estimate π trough a random
experiment. When Buffon formalized this experiment, its execution was, of course,
physical. Today it is possible to simulate it by the use of computers. Specifically, by
choosing some parameters, it is possible to ask the program to simulate some vari-
ables. Then the result will be an empirical estimation of π. First, we set, without
loss of generality but with significant savings in terms of computations, d = 2 and
L = 1. The number of trials is set n = 20000. Then the program will generate the
two random variables D and θ, respecting the intervals defined above. A success is
recorded any time D ≤ L

2 sin θ . The empirical estimation of π is then simply given by
π = 2L

dP = 1
P = 1

successes
n

= n
successes . The code employed is the following:

LISTING 1.1: Buffon needle experiment

1

%% Buffon needle experiment: estimation of pi
3

%% simulation
5 % set d=2 and L=1

clc
7 clear all

9 n=20000;
D=rand(1,n);% vector of n pseudorandom %numbers in the range [0,1)

11 theta=rand(1,n)*pi/2;% vector of n pseudorandom

1 Shonkwiler R. and Mendivil F. 2009. Explorations in Monte Carlo Methods (1st ed.). Springer
Publishing Company, Incorporated.
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numbers in the range [0,pi/2)
13 succ=D<=sin(theta )/2; % vector of 0 if false and 1 if true

sum(succ) %show the number of hits
15 pi_hat=n/sum(succ) %our estimated value of pi!

If we run several times this code, we get many different estimated values for π. Each
of those numbers is close to the true 3.14159265. . . . Consequently, for every repeti-
tion of the simulation, we can determine the “goodness” of the estimation. However,
this is not generally the case since in simulation contexts the variable to be estimated
is not known in advance. That is, π = 3.14159265. . . is unknown. In a typical setup,
then, it would be useful to visualize all the results obtained in different simulations,
in order to understand where the “true” value of the estimated quantity (π) stands.
The basic assumption is, of course, that we run the simulation exercise several times.
Once we obtained the k estimated values, it is possible to histogram the results in
order to get a visual representation. A histogram is a handy tool in the fact that it
helps to understand the (estimated) shape of the distribution of results.
Hystogram. A histogram is a graphical representation of a distribution of quanti-
tative data. Consider a statistical distribution with values X = (x1, x2, . . . , xk−1, xk).
The interval in which the variable takes values is then [x1, xk]. Assume that the num-
ber of times the variable assumes each value xi is known as ni, where ∑n

i=1 ni = N,
the size of the sample. Then, what is typically available is a chart in the form:

TABLE 1.1: Distribution of absolute frequencies

value number of occurrencies
x1 n1
x2 n2
... ...
xk nk

This is known as the absolute frequency of the variable X. The relative frequency, fi,
is fi =

ni
N . It is possible to divide the interval of existence of X in sub-intervals in the

form [v0, v1), [v1, v2), . . . , [vk−1, vk). The number and length of the intervals is a choice
of the agent, and it is usually tricky. It is convenient to set the intervals such that
they have the same length. For what concerns the number, a good balance should
be found since if intervals are too many the quality and readability of the graph
may be altered. If, on the other hand, they are too few, it may be difficult to draw
considerations, since the length of each interval would be wide. Once the classes
(intervals) have been defined, it is necessary to define the density of the frequency
for each class, that is di =

ni
vi+1−vi

. At, the end what we need to draw a histogram is
the content of Table 1.2.
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TABLE 1.2: Density

class absolute frequency density
[v0, v1) n1

n1
v1−v0

[v1, v2) n2
n2

v2−v1

... ... ...
[vk−1, vk) nk

nk
vk−vk−1

We are ready to draw the histogram of the distribution that is a graph made of adja-
cent rectangles. Each rectangle represents a class: its height is given by the density,
the base is given by the width of the class and the area is the frequency.

Recall that the goal of the experiment is to estimate π. In order to run this ex-
periment, it is necessary to implement the Montecarlo algorithm in Code 1.1. This
Montecarlo algorithm is itself an experiment since it simulates randomly D and θ.
Every time we run the Montecarlo simulation, we refer to it by trial. In order to
understand if the estimated value of π is reliable it is necessary to run a second ex-
periment, i.e., run the Montecarlo simulation m times, that is performing m trials,
where m is sufficiently large. In this way, it will be possible to look at the distri-
bution of the estimated values and verify how close they are to π = 3.14159265. . . .
Then, we have to set the number of repetitions of the original experiment, n, and the
number of times we want to repeat the experiment itself, m. Once m estimations for
π have been obtained, the results are presented in a histogram, in order to get an
idea on the distribution of π. The MATLAB code employed to get these results is the
following.

LISTING 1.2: Histogram of Buffon needle experiment

2 %% Buffon needle experiment: estimation of pi

4 %% histogramming results

6 n=100;
m=2000;

8 for i=1:m
D=rand(1,n)

10 theta=pi/2* rand(1,n)
succ=D<=sin(theta )/2

12 pi_hat(i)=n/sum(succ) %vector of estimated values of pi
end
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14 %descriptive analysis of results
hist(pi_hat) %histogram of distribution

16 mean_pi_hat=n/sum(pi_hat) %sample mean
dev=(pi_hat -mean_pi_hat ).*( pi_hat -mean_pi_hat) %squared deviations
from the mean

18 var_pi_hat=sum(dev)/(n-1) %sample variance
sdev_pi_hat=sqrt(var_pi_hat) %sample standard deviation

FIGURE 1.1: Histogram of results for estimation of π

In Figure 1.1, the histogram obtained by running code 1.2 is presented. This his-
togram, as described above, is an important indicator of the statistic reliability of the
estimation of π. As outlined in the figure, this form of distribution presents the very
typical bell of a Normal distribution, and we see that the distribution is concentrated
around the true value π = 3.14159265....

1.2 History

As described in the previous paragraph, Montecarlo methods appeared for the first
time already in the XVIII century, thanks to Buffon’s contribution. However, the
method employed for the estimation of π, while representing a Montecarlo ap-
proach, was extremely different from what today we call Montecarlo techniques.
The reason is that at the heart of Montecarlo methods is the increased computation
ability of modern calculators. It is not by chance that the first modern Montecarlo
algorithm was implemented only when the first calculator was available, as will be
clear in the following lines.

As said, the first embryonal form a Montecarlo technique was developed in 1777
by Buffon. After that, we need to wait for one century and a half before seeing the



8 Chapter 1. Introduction to Montecarlo simulation

implementation of a new, but related, algorithm belonging to the Montecarlo fam-
ily. At the beginning of 1900, an English chemist, statistician and mathematician,
William Sealy Gosset (1876-1937) found a way to estimate the distribution of the cor-
relation coefficient and of the t-statistic. This technique was based on the simulation
of random numbers and, thus, it is today numbered among the Montecarlo algo-
rithms. Gosset used the penname of A. Student and he is the father of the Student-t
distribution. A few years later, probably inspired by this work, a group of scientist
will change the pace of development of statistical and simulation techniques for-
ever, giving life to what today we call the Montecarlo method. While a statistician,
Gosset, gave the first modern implementation of this method, we will have to wait
several years before seeing Montecarlo techniques coming back to the field of statis-
tical analysis. For half a century, all developments in this direction have focused on
physical (and nuclear) applications. In any case, it is essential to underline that early
developments of the Montecarlo Simulation, in the XVIII and XIX centuries, were
significantly different from what we call today a Montecarlo technique. Not only cal-
culators were not available, but, most importantly, the approach was substantially
different. While today the essence of a Montecarlo technique is finding a solution to
a deterministic model, by finding its probabilistic counterpart and solving it using
simulations, first implementations focused only on deterministic problems.

The research program that led to the implementation of Montecarlo took place
during the Second World War in Los Alamos, New Mexico, USA. Before that, in 1930,
Enrico Fermi’s (1901-1954) research in the field of controlled fission presented many
common points with future developments of the Manhattan project. The United
States’ Government created a secret project, called Manhattan, intending to develop
the technology required for the construction of the atomic bomb. The Head of the
Manhattan project was Robert Oppenheimer (1904-1967), a well-known American
physician. In 1943, Oppenheimer recruited Nicholas Constantine Metropolis (1915-
1999), a young physician. He will be one of the leading personalities in the devel-
opment of the Montecarlo method. In 1943, there was an urge by the Government,
addressing the Manhattan project, to arrive at the development of the first atomic
bomb. In this context, the possibility to generate random trajectories was thought to
be very important to be able to estimate ex-ante the point in which a bomb would
collapse, once thrown from an airplane. At the time, it was indeed a very ambi-
tious goal since calculators were not yet available. At the first point, only traditional
digital computation could be employed. This implied that hand calculators were
manually used by technicians and, consequently, the power of simulations was sig-
nificantly limited. It was for that reason that, in parallel to the programs aimed at
creating the first atomic bomb, efforts in the direction of atomized calculators were
made. Coding and programming were about to appear for the first time, chang-
ing the lives of humans forever. After the war, in 1948, it was clear that, in order
to be able to implement a random number generator, it was first necessary to de-
velop a digital computer, in the modern sense of the word. Metropolis took the
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head of a team which created the MANIAC, Mathematical Analyzer, Numerical In-
tegrator, and Computer. At that point, the team was ready to develop Montecarlo
techniques, thanks to this new computing power. Two new important names appear
in this context. The first one is Stanislaw Ulam (1909-1984), a Polish mathematician
very active in the research that led to the construction of the first atomic bomb. The
second one, John von Neumann (1903-1957), a Hungarian mathematician, physi-
cist and computer scientist, gave essential contributions in many different fields of
sciences. From mathematics to probability, from topology to economics, from quan-
tum physics to game theory, from computer science to dynamics. Both the scientists,
indeed, were part of the Manhattan project since its beginnings and took leading po-
sitions in the development of the atomic bomb. Following the issues left open by the
development of the atomic bomb, these two personalities, together with Metropolis,
had the intuition that, especially in physics, where a problem has a solution which
is too difficult to find analytically, it may be possible to find it via simulation. This
was a big novelty and a great achievement for almost every natural science. In 1949
Metropolis and Ulam published the paper that described for the first time Monte-
carlo methods. It is usually said that Metropolis chose the name as a reference to the
city of Montecarlo, home of a great Casino, and, consequently a clear reference to
the concept of randomness, the heart of the Montecarlo method. However, there is
no agreement in this respect. According to another version, for example, the name
comes from the fact that Ulam’s uncle used to ask money to his family to go to bet at
Montecarlo’s Casino. It is important to note that in the Monte Carlo Method (1949),
the technique was only applied to physics, and it was not even considered a statisti-
cal technique. It was only in 1953 when Metropolis and other academics published
an article, Equations of State Calculations by Fast Computing Machines, that the pro-
cess of simulating random numbers was formally and extensively described. This
paper is considered the first rigorous description of Montecarlo techniques, and it
still has a great value for modern statisticians. In 1958, W.F. Bauer published a pa-
per in which he recognizes that, while Montecarlo techniques had an old and long
history, it was only with the article by Metropolis and Ulam (1949) that the method
was formalized. Bauer underlines the fact that Montecarlo methods require high
frequency, automatized computers, able to generate large random samples. He even
provides the information that, in 1958, a computer was able to generate 200 random
numbers in one second2. From that date, there have been several developments in
the field of statistical simulation, in general, and Montecarlo algorithms, in partic-
ular. Most of those developments were in the field of natural sciences, especially
physics. However, by the end of the last century, the first academic papers related to
the application of Montecarlo techniques to Economics were published. Following
the continuous evolution and development of modern calculators and programs,
Montecarlo techniques are constantly improved.

2Bauer, W. (1958). The Monte Carlo Method. Journal of the Society for Industrial and Applied
Mathematics, 6(4), 438-451.
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1.3 Applications

As described above, Montecarlo simulation’s first application was in physical prob-
lems. Today, even if physics remains one of the most critical areas of application of
Montecarlo methods, several other disciplines use Montecarlo tools for the solution
of many different problems. The principal reason is that Montecarlo techniques are
beneficial whenever a problem has no clear analytical solution. In all these cases, it
should be possible to find an approximation of the solution by recurring to the simu-
lation of random numbers. Of course, as will be specified in the following chapters,
it is not necessarily that easy, in the fact that several conditions should be met in or-
der to be able to apply the Montecarlo method and, most importantly, the reliability
of the estimated solution should always be tested. In any case, Montecarlo tech-
niques offer a convenient way to solve the problems mentioned above and, thus, are
employed by many different disciplines. From physics to psychology, from biology
to economics, from thermo-dynamics to medicine. In general, Montecarlo methods
are highly appreciated by natural scientists. In this paragraph, the main applications
of Montecarlo techniques will be presented, following the work of Metropolis and
Ulam(1949) and Bauer(1958).

One of the first applications of the method is to combinatorial analysis, a com-
mon interest for both mathematics and applied sciences. The need to use a tech-
nique such as Montecarlo comes from the interconnections between mathematics
and probability theory. In any combinatorial problem, it is necessary to know the
probability of an event and, in some cases, it may not be handy to estimate it. Mon-
tecarlo methods provide a solution to those kinds of problems because they allow
the scholar to perform a simulation of the event several times and to estimate the
probability of the event as the ratio between the number of successes and the num-
ber of trials, not differently from what we did in Section 1.1 with the Buffon’s needle
experiment. Of course, the result will not be the true exact probability, but, as the
number of trials increases, it is possible to prove (mainly based on the Law of Large
Numbers) that Montecarlo simulations provide a good approximation.

Another possible application is connected to the quantification of the volume of
a high dimensional region. This problem is of great interest for all natural sciences. If
we are looking for the volume of a region defined over n dimensions, where n is suf-
ficiently large, say n > 5, it may not be handy to evaluate multiple integrals. In order
to solve the problem, we may apply a Montecarlo method based on the selection of
random points and the analysis of the position of those random points. Specifically,
the number of points that falls within the relevant region should be counted. Again,
the estimation of the volume that follows should converge in probability to the ac-
tual volume.

A further area of interest is connected to cosmic rays and matrixial algebra. In
some problems related to this topic, particles full of energy tend to create cascade
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events until the point in which available energy falls below a certain threshold. Sci-
entists are interested in the outcome of this process, called Markoff Chain, which is
especially difficult to model analytically. A solution can be found only using matrix-
ial algebra, but the order of matrices is usually huge. It is then possible and useful
to apply a Montecarlo method, based on random experiments that describe possible
future evolutions of the system.

Another well-known application of Montecarlo methods focuses again on par-
ticle physics and it is at the heart of Metropolis and Ulam’s paper (1949). Many
physical problems start from the assumption that there is a surface in which parti-
cles are able to reproduce. Such a problem can be represented in a simple way by
the equation du(x,y,z)

dt = a(x, y, z)δu + b(x, y, z)u(x, y, z). Analytical solutions to this
equation are especially difficult to find. For this reason, Metropolis and Ulam pro-
posed a Montecarlo approach. This method is based on the simulation of random
behaviors for all those variables that are considered independent by the scholar. All
other variables are determined based on the random behavior of the independent
variables, according to a pre-specified equation. Consequently, the method is sim-
ply based on the iteration for n times of the same procedure. First, for all stochastic
variables, a random path is generated. Second, for all deterministic variables, the
value is computed according to the equation, where the inputs are the outputs of the
simulation in the previous phase. In this way, it is not necessary to evaluate the be-
havior of the system analytically, but it is only necessary to make statistical inference
on the random values that were generated.

It is evident from the above description that one of the most important strengths
of Montecarlo methods is that it allows evaluating integrals that are difficult or im-
possible to be dealt with analytically. Then, it is worth spending some time on the
application of the method for the computation of integrals. Suppose you want to
evaluate the definite integral

∫ b
a f (x)dx. It is well known that the graphical repre-

sentation of this problem is the area under the curve of f (x) on the interval [a, b], we
call this area C. Define the line y = M s.t M > f (x) ∀x ∈ (a, b). The area of the
rectangle with basis (a, b) and height M is nothing but M(b− a). Then, it is evident
from Figure 1.2 that C < M(b − a). In general, if f (x) is not especially complex,
it should be possible to compute this integral analytically, in order to get the exact
result. However, it may not be possible to find a solution in closed form to the in-
tegral of f (x). In all these cases, numerical techniques in general, and Montecarlo
techniques in particular can provide useful tools in order to find an approximation
of the relevant integral. In this instance, Montecarlo techniques are based on the
random selection of points in the rectangle of area M(b− a). If, for every trial, the
point lies inside the region C, a success is recorded. Then, we formally define the
random variable of successes, S = 1 if s ∈ C, S = 0 otherwise. The random variable
in which we are interested in is the ratio of the number of successes to the number
of trials, N : S

N . The expected value of this random variable, E( S
N ) = C

M(b−a) . If
we perform N trials, the expected value of S is E(S) = NC

M(b−a) and the variance is
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σ2 = NC
M(b−a) (1−

C
M(b−a) ). Then, for the variable of interest S

N , the standard deviation
is only σ′ = σ√

N
. This variable is extremely important for general considerations

on Montecarlo methods. It is possible to see from the standard deviation, in fact,
that the accuracy of estimation increases with the number of trials. It is important

FIGURE 1.2: Graphical representation of an integral

to note that, when we are dealing with one-dimensional integrals, Montecarlo tech-
niques will hardly be needed. At the same time, they are essential for the solution
of multi-dimensional integrals. Even if we are dealing with high-dimensional inte-
grals, however, the idea of the algorithm remains that explained in the above lines.
The theoretical finding at the heart of the application of this method is the mean-
value theorem. Suppose, for simplicity but without loss of generality, to have a
two-dimensional integral in the form

∫
ω f (x, y)dxdy. This integral is nothing but the

surface of the function f (x, y) lying in the area ω. We call this area A(ω). Monte-
carlo algorithm described in the following code performs what has been described
in words in the above lines. Namely, it defines the rectangular area R and draws
random points in R. Then, the ratio of success to trials is computed. Based on this
ratio, an approximation of the integral is returned.

LISTING 1.3: Monte Carlo double

1 % Source: Stochastic Simulation and Applications in Finance
%with MATLAB Programs

3 %By Huu Tue Huynh , Van Son Lai , Issouf Soumare
function result = MonteCarlo_double(f, g, x0 , x1, y0, y1 , n)

5 %
% Monte Carlo integration of f over a domain g>=0, embedded
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7 % in a rectangle [x0 ,x1]x[y0,y1]. n^2 is the number of
% random points.

9

% Draw n^2 random points in the rectangle
11 x = x0 + (x1 - x0)*rand(n,1);

y = y0 + (y1 - y0)*rand(n,1);
13 % Compute sum of f values inside the integration domain

f_mean = 0;
15 num_inside = 0; % number of x,y points inside domain (g>=0)

for i = 1: length(x)
17 for j = 1: length(y)

if g(x(i), y(j)) >= 0
19 num_inside = num_inside + 1;

f_mean = f_mean + f(x(i), y(j));
21 end

end
23 end

f_mean = f_mean/num_inside;
25 area = num_inside /(n^2)*( x1 - x0)*(y1 - y0);

result = area*f_mean;
27 end

1.4 The need for simulation techniques

As pointed out in the previous paragraph, scholars in almost every discipline have
always been challenged to find solutions to problems that are especially difficult to
solve analytically. Consider a real-world phenomenon; it may be the relationship be-
tween interest rates and unemployment or the one among atomic particles. We call
this phenomena system of interest. A scholar aims to understand how this system
works in reality. Since the endogenous forces able to modify and alterate the state of
the system may be many, it is necessary to represent the system via a model, which
is a (mathematical) simplified and stylized representation of reality. Of course, once
a model is available, the most crucial goal is to solve it. A deterministic model is
a model in which no form of randomness is involved. This implies that, given the
initial point or initial exogenous variables, the output of the system will always be
the same. When it is possible to find the solution of a deterministic system, there is
no need to refer to probability theory and stochastic calculus. When the solution of a
deterministic system is found we are in the best possible scenario, since we are sure
that the equilibrium condition will last as long as the exogenous variables remain
unchanged. Unfortunately, two situations may materialize. First, it may not be pos-
sible to find a deterministic model that genuinely describes the system of interest.
Second, even if a deterministic model was defined, it may not be possible to find its
solution. In both cases, an efficient solution can be the definition of a probabilistic
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(or stochastic) model that corresponds to the same system of interest. A probabilis-
tic model is a model in which randomness plays a role and, thus, the relationship
between the variables of interest cannot be expressed exactly. Once the probabilistic
model has been defined, it should usually be possible to combine Probability Theory
with mathematical tools in order to find the solution.

However, in many fields of studies, there are problems for which it is not pos-
sible to find a solution analytically. In all these cases, stochastic simulation can be
used as a tool to deeply understand the behavior of the real world system. In general
terms, given a stochastic differential equation, it should always be possible to solve
it with deterministic techniques, as long as the dimension of the state space is suffi-
ciently small. When this is the case, it is convenient to use deterministic techniques
rather than numerical methods since the result that will be obtained is expected to
be more precise. However, when the dimension of the state space increases, the
complexity of the problem follows and numerical techniques may be the only way
to find at least an approximation of the solution. Following the integral example in
the previous section, consider an integrable function f over the domain [0, 1]d. We
want to find a solution to the integral I =

∫
[0,1]d f (x1, . . . , xd)dx1, . . . , dxd. A typical

deterministic method for multi-variate integrals is the Quadrature method. If this
technique works, it should be considered as an optimal alternative since it allows
finding a precise solution. However, this method is sensitive to the smoothness of
the function f . For this reason, it may be necessary to apply a numerical technique
based on simulation. As specified above, in order to apply a simulation method,
it is necessary to transform a deterministic model in the probabilistic correspondent
representation. In this case I = E( f (U1, . . . , Ud))., where Ui are i.i.d uniform random
variables in the interval [0, 1]. By the Strong Law of Large Numbers, it follows that
it is possible to approximate I by 1

N ∑N
i=1 f (Ul

1,. . . ,Ul
d)

. This result represents the founda-
tion of every Montecarlo technique, given that we are approximating a deterministic
quantity by averages of random values. Of course, the “goodness” of the accuracy
increases with N, which represents the number of trials.
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Chapter 2

Generation of uniform random
numbers

In order to be able to perform every kind of Montecarlo simulation, it is necessary
to be able to generate random numbers. When we generate random numbers, we
are basically performing a simulation exercise and, usually, we impose that the gen-
erated random numbers obey to a pre-specified statistical distribution. Montecarlo
simulations are usually associated with every kind of technique that uses the gen-
eration of random numbers in order to find the solution to a deterministic problem.
This is the reason why a considerable part of this dissertation is devoted to ran-
dom number generators. In the end, Montecarlo simulations or methods can easily
be described as methods aimed at the identification of the solution of a deterministic
problem, based on simulations, i.e., on the generation of several random trajectories.

Almost all random number generation functions that are pre-built in modern
software give as a result a stream of numbers distributed according to the Uniform
Distribution in the interval (0, 1). It is important to stress that a uniform random
number generator should be able to produce random numbers distributed according
to a Uniform distribution in (0, 1), that is, excluding both 0 and 1. A random variable
distributed according to the uniform distribution is characterized by a probability
distribution as p(x) = 1 if 0 < x < 1 and p(x) = 0 otherwise. Since the Uniform is
the most basic statistical distribution available and since all other random number
generators start from the algorithm employed for the Uniform, it makes sense to
start our description by uniform random number generators.

In abstract terms, a uniform random number generator is an algorithm able to
produce a series of i.i.d Uniform random variables in the interval (0, 1), u1, u2, . . . ∼
U(0, 1). A sequence (un)n≥1 of (0, 1)valued real numbers is a sequence of random
numbers if there exists a probability space (Ω,F , P), a sequence Un, n ≥ 1 of i.i.d.
uniform random variables and ω ∈ Ω such that un = Un(ω)∀n ≥ 1. In words, a
process (or sequence of numbers) is said to be random if the conditional probability
of the next event, given the previous history, is equal to the unconditional probability
1. Additionally, a random number generator should be able to generate a sequence

1Gentle, J.E. 2004. Random Number Generation and Monte Carlo Methods. Springer.
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u1, ..., un of random variables that are not only uniformly distributed in the interval
(0, 1), but also all mutually independent 2.

This definition already points out one of the principal problems that come with
simulations: the problem of quasi-randomness. Computers are, in fact, not able to
generate i.i.d. sequences of truly random variables, whatever the distribution. For
this reason, scholars and practitioners usually employ simulation techniques any-
way, well aware of this limitation, and then, once a sequence of random variables
has been generated, perform some statistical tests in order to verify the goodness of
fit of the generated distribution. If the results of the test can be considered satisfy-
ing, then the sequence can be used for the analysis. The problem stands from the fact
that computer software generates random numbers starting from some determinis-
tic algorithm. If the algorithm is deterministic, then it is not possible to consider the
generated sequence as truly random, but only quasi-random. In the end, what is
used in simulation exercises is a sequence of i.i.d. (pseudo)random variables whose
properties are indistinguishable from those of a true i.i.d. sequence of random vari-
ables. As a consequence, all modern algorithms provide as a result an i.i.d. sequence
of (pseudo)random numbers.

As stated above, the default option is the generation of random numbers from a
uniform distribution. In programs such as MATLAB those algorithms run in back-
ground. This implies that if the user wants to generate a sequence of i.i.d. Uniform
random variables, he or she does not need to understand how these (pseudo)random
numbers are generated, since it suffices to run the command rand(n). However, it
is very instructive to understand how these algorithms work because, in this way,
it is possible to explain where the problem of quasi-randomness comes from and,
consequently, the limitations of the simulation approach. For this reason, we now
introduce the main algorithms employed by calculators in order to generate random
numbers. Most of those algorithms are based on modular arithmetic.

2.1 Common considerations

Generators of uniform random variables simulate realizations of a uniformly dis-
tributed random variable in the interval (0, 1). We focus on the generation of uni-
formly distributed random numbers for two reasons. First, if we can generate uni-
formly distributed random numbers, it is possible to apply transformation meth-
ods, so to obtain random numbers from other distributions. Second, it is useful to
start from the Uniform distribution due to its simplicity, avoiding analytical com-
plications of the other distributions, which may harm deep understanding. Every
generic uniform random number generator is an algorithm able to produce a stream
U1, ..., Un of uniformly distributed random variables in the interval (0, 1), all mutu-
ally independent. Independence is a relevant argument and it is closely linked to

2Glasserman, Paul & Heidelberger, Philip & Shahabuddin, Perwez. (2000). Efficient Monte Carlo
Methods for Value-at-Risk. Master. Risk. 2.
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the concept of predictability. If all pairs in the sequence U1, ..., Un are independent
this implies that it should not be possible to predict any Ut by simply using all past
information, i.e. U1, ..., Ut−1. This implies that the algorithm 3 can generate a stream
of unpredictable numbers4.

2.1.1 Generic recursive generators

Most of the generators that are usually employed are based on multiple recursion.
Multiple recursion implies that previous numbers are determinants of the following
one, but in a fashion that appears to be random. A generic recursive generator is in
the form:

xt = f (xt−1, ..., xt−k) (2.1)

f is the generation law. It may be an elementary function, as in the case of lin-
ear generators, or a more complex one, as in the case of mixed generators. k is the
order of the generator and denotes how far we go in the past before generating the
current number. In order to implement such a generator, it is necessary to set the
initial value, x0, which is called seed. The choice of the seed is crucial in the fact that
it has a significant impact on the period of the sequence. By period we mean the
length of the sequence of different numbers. At some point, in fact, the generated
numbers will start repeating exactly in the same sequence. Of course, it is conve-
nient to choose the parameters so that the generator has the longest possible period.
If we take the same law or function f , the same order k and the same seed x0, then
the sequence generated by the software will always be the same. We are employing
a deterministic algorithm. Recursive generators usually give as output a sequence
of pseudo-random integers, which are then scaled in order to get a sequence of uni-
formly distributed pseudo-random numbers in the interval (0, 1). The set of integers
generated is denoted by I.

2.1.2 Modular arithmetics

Since all recursive generators are based on modular arithmetics, it is convenient to
introduce it briefly. Given a variable x and a modulus m, we call modulo of x with
modulus m, xmodulo(m), the remainder of x when divided by m. The modulus m
must be strictly positive. For example, set x = 4 and m = 2, then 4modulo(2) = 0. If
x = 5 and m = 2, then 5modulo(2) = 1. Given two real numbers a, b ∈ R, they are
said to be congruent modulo(m) if their difference is an integer divisible by m: a ≡
bmodulo(m). This congruence relation is symmetric (a ≡ bmodulo(m) implies b ≡
amodulo(m)), reflexive (a ≡ amodulo(m) ∀a) and transitive (a ≡ bmodulo(m) and
b ≡ cmodulo(m) implies a ≡ cmodulo(m)) 5. Modular arithmetics is a very useful

3Gentle, J.E. 2004. Random Number Generation and Monte Carlo Methods. Springer.
4Glasserman, Paul & Heidelberger, Philip & Shahabuddin, Perwez. (2000). Efficient Monte Carlo

Methods for Value-at-Risk. Master. Risk. 2.
5Gentle, J.E. 2004. Random Number Generation and Monte Carlo Methods. Springer.
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tool also when it comes to random variables. Let U(0, 1) be a uniformly distributed
random variable in the interval (0, 1). Define the random variable X as X = (aU +

b)modulo(1), where b ∈ R and a is an integer 6= 0, then X ∼ U(0, 1).

2.2 Linear congruential generators

2.2.1 Definition

The Linear congruential generator (LCG) is a widely used algorithm for the gener-
ation of random numbers. It was first proposed by Lehmer in 1951 and it is based
on modular arithmetic. This generator is usually not the best solution to be em-
ployed, but it is on the basis of other, more complex and efficient, generators. The
implementation of this algorithm is fairly simple since it is based on a basic linear
function. Define xt ∈ [0, . . . , m− 1] as

xt = (axt−1 + b)modulo(m), t = 1, 2, . . . . (2.2)

At any point in time, then, the value depends solely on the period immediately
before. As said before, the modulus m must be a real strictly positive integer, while
a, the coefficient or multiplier, and b, the increment, are integers < m. In order to
implement this function on software it is enough to write a simple loop, choosing
a, b, m and the seed, i.e., the initial state x0, which must be positive and lower than
m. The relation in 2.2 is called congruence relation and will always generate non-
negative numbers, integers and lower than m. If the goal is to generate random
numbers in the interval (0, 1), then it is enough to apply the transformation ut =
xt
m , ∀t. The result will be a stream of pseudo-random numbers ui ∈ [0, (m−1)

m ], ∀i. If we
set b = 0, then we usually call the algorithm Multiplicative congruential generator.
It is in the form:

xt = (axt−1)modulo(m), t = 1, 2, . . . . (2.3)

Each sequence of random numbers generated according to 2.2 can contain at
most m different values. According to this statement, it is easily concluded that the
greater m is chosen, the best the random sequence should be. However, it is not pos-
sible to draw this straightforward conclusion since, as m increases, the costs (in time
and required computing power) increase too. In addition, the interaction among the
parameters a, b, m plays a crucial role in the determination of the efficiency of the
generator. For these reasons, it is necessary to investigate the properties of linear
congruential generators and optimal parameter choices.

2.2.2 Properties and parameter choice

Depending on the parameter choice, i.e., x0, a, b, m, at some point the sequence of
numbers will necessarily repeat. Specifically, once a number in the sequence repeats
all the sequence will repeat itself in the same form. This is, of course, a source of
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concern and it is useful to introduce a first consideration when it comes to the choice
of parameters in linear congruential generators: period length. Given any random
number generator, the maximum period is the maximum length of a sequence with
non-repeating numbers. Of course, the goal is to obtain a generator with the longest
period length. The maximum period of a generator critically depends on the choice
of the modulus m since the maximum period of a linear congruential generator is
m− 1 (in this case we say that the generator has full period or full-cycle 6). Unfor-
tunately, the solution is not as simple as intuition may suggest, i.e., choosing a very
large modulus m, since the interaction with the other parameters x0, a, b should be
taken into account too. Let m be set, then it is possible to investigate for which val-
ues of x0, a, b the maximum period is reached. The following theorem establishes an
important result for LCGs 7.

A linear congruential generator in the form 2.2 has full period m− 1, if b is rel-
atively prime to m (i.e. their only common divisor is one), a = 1modulo(p) if p is a
prime factor of m, and a = 1modulo(4) if 4 is a factor of m.

A first consequence of this theorem is that if m is a power of 2, as it usually is
in modern computers, it is sufficient to use a b which is odd and a = 1modulo(4).
In the case of a multiplicative congruential generator (b = 0), with m prime, full
period m − 1 is reached if am−1 − 1 is a multiple of m and aj − 1 is not a multiple
of m ∀j ∈ [1, ..., m − 2]. Given the simplicity of the conditions connected to the
multiplicative case, MCGs are more common than LCGs.

While period length is undoubtedly a big concern when choosing a generator,
there are still several other considerations 8. First, since in Montecarlo simulations
several generations of random numbers are required, the generator must be fast
enough. Second, the generator must be able to produce a sequence of numbers that
are at least close to a uniform distribution. It is challenging to evaluate an algo-
rithm in this respect. In the sense that it is not possible to define whether the gener-
ated sequence will be close to the uniform distribution simply based on the wording
of the algorithm. For this reason, practitioners usually employ goodness-of-fit and
independence tests on the generated random numbers 9. Finally, portability is a
very relevant consideration. Scholars and practitioners tend to use different soft-
ware packages when running their work. Nevertheless, the same generator (given
the same seed) must produce the same stream of random numbers, whatever the
software used.

Following these considerations, many couples of multipliers and moduli were
proposed in literature. No one is superior to the other with respect to all properties
and, thus, the choice should depend on the specific simulation to be performed. The

6Glasserman, Paul & Heidelberger, Philip & Shahabuddin, Perwez. (2000). Efficient Monte Carlo
Methods for Value-at-Risk. Master. Risk. 2.

7Glasserman, Paul & Heidelberger, Philip & Shahabuddin, Perwez. (2000). Efficient Monte Carlo
Methods for Value-at-Risk. Master. Risk. 2.

8Glasserman, Paul & Heidelberger, Philip & Shahabuddin, Perwez. (2000). Efficient Monte Carlo
Methods for Value-at-Risk. Master. Risk. 2.

9Those tests are described at the end of this chapter.
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following table 10 summarises the most employed generators. They are all multi-
plicative since b is usually set to be 0.

TABLE 2.1: Multiplicative congruential generators

m a Author(s)

231 − 1 16807 Lewis et al. (1979)
231 − 1 39373 L’Ecuyer (1988)
231 − 1 742938285 Fishman and Moore (1986)
231 − 1 950706376 Fishman and Moore (1986)
231 − 1 1226874159 Fishman and Moore (1986)
231 − 1 630360016 Payne, Rabung and Bogyo (1969)

2147483399 40692 L’Ecuyer (1988)
2147483563 40014 L’Ecuyer (1988)

It is not by chance that the modulus for most of these generators is 231− 1. Com-
puters today, in fact, usually have word length of 32 bits and thus the maximum
number that can be defined is exactly 231 − 1.

2.2.3 MATLAB implementation

Implementing a LCG on Matlab is fairly simple since it is only necessary to set up a
single loop. However, it is important to note that most packages, including Matlab,
usually come with pre-built functions able to generate random numbers distributed
according to the Uniform. In Matlab such a command is rand(n). In the following
explanation we will keep for simplicity m small in order of magnitude. However,
consideration related to full-cycle are still valid, as explained in section 2.2.2.

Let’s set m = 32, a = 5, b = 3, x0 = 11, the code that generates random numbers
is the following:

LISTING 2.1: LCG

1

%% LCG
3

clc
5 clear all

n=100
7 m=32;

a=5;
9 b=3;

10Glasserman, Paul & Heidelberger, Philip & Shahabuddin, Perwez. (2000). Efficient Monte Carlo
Methods for Value-at-Risk. Master. Risk. 2.
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11 x_t =11* ones(n);

13 for i=2:n
x_t(i)=mod(a*x_t(i-1)+b,m)

15 end

17 x_t=x_t(:,1)

By running this code we always obtain the same stream of numbers 26,5,28,15,14,9,16,
19,2,13,4,23,22,17,24,27,10,21,12,31,30,25,0,3,18,29,20,7,6,1,8,11. This is indeed a very
efficient choice because a full cycle of modulus m is reached. This means that, given
a, b, m, x0, the algorithm is able to generate m = 32 different values. As stated above,
it is not easy to find a combination of parameters that is able to generate a full cycle.
For example, if we set a = 6, b = 11, m = 32, x0 = 10, according to the following
code, the sequence generated is 10,7,21,9,1,17 and then the stream is repeated. This
implies that a full cycle has not been reached.

LISTING 2.2: LCG non full

2 %% LCG non full

4 clc
clear all

6

n=100
8 m=32;

a=6;
10 b=11;

12 x_t =10* ones(n);

14 for i=2:n
x_t(i)=mod(a*x_t(i-1)+b,m)

16 end

18 x_t=x_t(:,1)

Another famous choice is due to Lewis, Goodman and Miller (1969), a = 75, b =

0, m = 231 − 1 = 21474836474.

LISTING 2.3: LCG LGM

2 %% LCG LGM

4 clc
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clear all
6

n=100
8 m=21474836474;

a=7^5;
10 b=0;

12 x_t=ones(n);

14 for i=2:n
x_t(i)=mod(a*x_t(i-1),m)

16 end
x_t=x_t(:,1)

As specified in 2.2.2. the pseudo-random numbers that are generated by those
algorithms are all non-negative integers. If the aim is to obtain random numbers
drawn from the uniform distribution then it is enough to apply the transformation
ut =

xt
m , ∀t. The result will be a stream of pseudo-random numbers ui ∈ [0, (m−1)

m ].
In the example of the full cycle LCG it is only necessary to add a line, so to apply

this transformation. It is also possible to histogram the results so to have a first flavor
of the closeness of the generated distribution to the Uniform. Note that since m = 32
is small, even if the generator has full cycle, the stream will not be sufficiently close
to a uniform distribution. This because, as specified above, as m increases (ceteris
paribus) the goodness of the generator increases too.

FIGURE 2.1: LCG uniform histogram

LISTING 2.4: LCG with histogram

2 %% LCG

4 clc
clear all

6 n=100
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m=32;
8 a=5;

b=3;
10

x_t =11* ones(n);
12

for i=2:n
14 x_t(i)=mod(a*x_t(i-1)+b,m)

end
16

x_t=x_t(:,1)
18

u_t=x_t/m
20

hist(u_t)

Indeed, it is also possible to apply this algorithm to directly generate uniformly
distributed random numbers, with no need to apply the above-mentioned transfor-
mation, with ut ∈ (0, 1)∀t. However, this usually not considered the most efficient
way of generating random numbers:

ut = (aut−1)modulo(1), t = 1, 2, . . . . (2.4)

LISTING 2.5: LCG uniform

1

%% LCG Uniform
3

clc
5 clear all

n=100
7 m=1;

a=7;
9

u_t =0.2* ones(n);
11

for i=2:n
13 u_t(i)=mod(a*u_t(i-1),m)

end
15

u_t=u_t(:,1)
17

hist(u_t)

Indeed, this is immediately evident if we look at the histogram of the generated
distribution. It appears to be far from a uniform when n = 100. As usual, those
inconsistencies decrease as we increase the number of trials n.
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FIGURE 2.2: Direct generation of a uniform distribution n=100

2.2.4 Add with carry and Multiply with Carry

In 1991, Marsaglia and Zeman proposed an innovative kind of linear congruential
generator, called add-with-carry. This generator is in the form:

xt = (xt−s + xt−r + bt)modulo(m) (2.5)

b1 = 0, bt+1 = 0 if xt−s + xt−r + bt < m, bt+1 = 0 otherwise. This generator turns out
to be very efficient since, for some choices of the parameters, it can reach the period
of 1043. The multiply with carry is a simplification of this generator and it is in the
form:

xt = (axt−1 + bt)modulo(m). (2.6)

where bt is such that bt = b(axt−k + bt−1/m)c for some t ≥ k.

2.3 Multiple recursive generators

Linear congruential generators are widely used because they employ a simple linear
function and a modular reduction. However, as specified at the beginning of this
chapter, the function f can well be any function. One natural evolution of LCGs
comes then from the intuition of combining several linear functions with modulo
reduction. Generators in this form are usually called Multiple recursive generators
(MRG). The idea is that at each point in time the random value depends not only on
the value in the last period, but on the last t− k periods. MRGs are usually identified
with their order, k. A generic MRG is in the form:

xt = (a1xt−1 + a2xt−2 + · · ·+ akxt−k)modulo(m), t = k, k + 1, . . . (2.7)

In this case we are then missing the increment b and the multipliers are ai, i =

1, . . . , k with ai ∈ [0, . . . , m− 1]. Following the definition of this generator, the seed
is not a scalar but a vector of dimension k, where k, the order, is a choice of the user.
A simple multiple recursive generator can be implemented with codes like the one
below.
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LISTING 2.6: MCG

2 %% MCG

4 clc
clear all

6

m=32;
8 a_1 =5;

a_2 =6;
10

x_t =11* ones(m);
12

for i=3:m
14 x_t(i)=mod(a_1*x_t(i-1)+ a_2*x_t(i-2),m)

end
16 %uniformly distributed random numbers

u_t=x_t/m

Note that these generators are not so common in our days, because, compared to the
other available algorithms, they tend to be quite slow. In order to get a fast generator,
it is in fact necessary to set most of the multipliers ai = 0, 1,−1. Efficiency consider-
ations led many scholars to analyze for which values of multipliers and modulo the
maximum period is reached. Several and all valid are the proposals. One very fa-
mous example was provided by L’Ecuyer, Blouin and Couture (1993). They propose
a MRG k = 5 with a1 = 107374182, a2, a3, a4 = 0 and a5 = 104480. The modulo is
the typical 231− 1. This generator has been proven to perform well. However, LCGs
are still preferred in most simulation exercises. Another well-known choice was pro-
posed by Deng and Ling in 2000. They employ a flexible generator in which a1 = 1,
ak 6= 0, 1 and a2,...,k−1 = 0. One final consideration is that, as in the case of LCG,
MRG algorithms generate non-negative integers. If instead, we are interested in the
generation of random numbers from a uniform distribution, it is sufficient to apply
the following transformation, ut = xt

m , ∀t. Analogously, the code is easily modified
accordingly.

2.4 Matrix congruential generators

Linear and multiple recursive generators are indeed feasible if the aim is to generate
more than a sequence of random numbers in parallel. It is possible in fact to repre-
sent those generators in a matricial form. Given a modulus m and an invertible kxk
matrix A, a MRG can be written in the form:

xt = (Axt−1 + b)modulo(m), t = 1, 2, . . . (2.8)
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b and xt−1 are kx1 vectors, all elements of those vectors are ∈ [1, m− 1]. However,
as in the case of LCGs, b is often chosen to be the zero vector. The output of this
algorithm is xt, which is a kx1 vector ∈ [1, m− 1]. Again, it is possible to generate
random numbers uniformly distributed in the interval (0, 1). In order to obtain an
efficient matrcial generator, it is critical the choice of the matrix A. The maximum
possible period is mk − 1. In general terms, A is often chosen to be a sparse matrix,
with many elements equal to 0, 1,−1. A famous example was given by Deng and
Ling (2000) that proposed a generator with b = 0 and A defined as

a1 −1 0 . . . 0
0 a2 −1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . −1
−1 0 0 . . . ak


As linear congruential generators can be modified in multiple recursive generators
in order to introduce dependence on multiple periods, so it is possible in case of
matrix congruential generators:

xt = (A1xt−1 + · · ·+ Ajxt−j)modulo(m), t = 1, 2, . . . (2.9)

LISTING 2.7: MCG Matrix

2 %% MCG matrix

4 clc
clear all

6

m=32;
8 A=[7,-1,0,0

0,9,-1,0
10 0,0,4,-1

-1,0,0,6];
12 det(A) % check that A is invertible

14 x_t =11* ones(m);

16 for i=2:m
x_t(i)=mod(x_t(i-1),m)

18 end
%uniformly distributed random numbers

20 u_t=x_t/m
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2.5 Inversive congruential generators

Inversive congruential generators were proposed for the first time by Echenauer and
Lehn in 1986 and are generally considered a complex family of generators since they
employ non-linear functions. Consequently, given their computational complexity,
they are not widely used. Inversive generators make use of the multiplicative in-
verse function x−. The multiplicative inverse function of x modulo m is defined as
1 ≡ x−xmodulo(m). This function is defined only for all non zero x relatively prime
to m. The inversive congruential generator is then defined as:

xt = (ax−t−1 + b)modulo(m1), t = 1, 2, ... (2.10)

where xt ∈ [0, m− 1].

2.6 Mixed generators

As outlined above, literature has proposed many different random number gener-
ators. Each of them comes with strengths and weaknesses. For this reason, a huge
body of research focuses on the implementation of combined generators able to over-
come the remaining open issues. The basic framework is that same categories of
generators are run in parallel and then combined to produce only one vector of uni-
form random numbers. This innovative technique allows to maximize the length of
the cycle of generators and, in general, to improve their efficiency. This result, of
course, comes with an increased level of complexity.

In general, mixed generators are considered superior both to LCGs and to MRGs.
They are in fact usually associated with longer periods. However, long periods are
not necessarily an advantage, since excessive length may harm computability. Con-
sequently, it is not possible to define whether to prefer a very long or very short
period length. If this is the case, then it is necessary to base the selection of the
best random number generator on different considerations. For example, Greenberg
(1962) underlines the importance of the concept of serial correlation when choosing
among different generators. The basic result is that, since serial correlation of gener-
ated numbers depends on the parameters, it makes sense to choose the parameters
so to minimize serial first-order autocorrelation. The (first-order) autocorrelation
coefficient, ρ, can be expressed as:

ρ =
1
a
− 6b

am
(1− c

m
) + K.

The main finding of Greenberg’s work is that very small and large values of a are to
be avoided and, specifically, a good choice of a is close to

√
m since this reduces ρ,

irrespective of b.
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2.6.1 Wichmann Hill generator

One of the first examples of mixed generators was proposed in 1982 by Wichman
and Hill. This generator uses three LCGs and then combines them to generate a
single stream of random numbers. The three LCGs are defined as follows:

xt = a1xt−1modulo(m1),

yt = a2yt−1modulo(m2),

zt = a3zt−1modulo(m3).

(2.11)

Where a1 = 171, a2 = 172, a3 = 170 and m1 = 30269, m2 = 30307, m3 = 30323. Once
this triplet has been generated, it is transformed in only one sequence of uniformly
distributed in the interval (0, 1) random numbers by applying the following LCG:

Ut =
xt

m1
+

yt

m2
+

zt

m3
modulo(1). (2.12)

In order to implement this kind of generator, the following code can be run:

LISTING 2.8: W-H

1

%% WH
3

clc
5 clear all

7 m_1 =30269;
a_1 =171;

9 m_2 =30307;
a_2 =172;

11 m_3 =30323;
a_3 =170;

13

x_t =11* ones (100);
15 y_t =11* ones (100);

z_t =11* ones (100);
17

19

for i=2: m_1
21 x_t(i)=mod(a_1*x_t(i-1),m_1)

end
23

for i=2: m_2
25 y_t(i)=mod(a_2*y_t(i-1),m_2)

end
27

for i=2: m_3



2.6. Mixed generators 29

29 z_t(i)=mod(a_3*z_t(i-1),m_3)
end

31

u_t=mod(x_t./m_1+y_t./m_2+z_t./m_3 ,1)

The Wichman Hill algorithm is able to achieve a very large period (1032), and thus,
thanks also to its computational simplicity, it is today widely employed in simula-
tion exercises.

2.6.2 L’Ecuyer mixed generator

In 1988 L’Ecuyer proposed a new mixed generator, derived from the combination of
three linear congruential generators:

xt = 40014xt−1modulo(2147483563),

yt = 40692yt−1modulo(2147483399),

zt = (xt − yt)modulo(2147483563).

(2.13)

The stream of uniformly distributed random variables is then obtained by:

ut = 4.656613zt10−10 (2.14)

2.6.3 Other mixed generators

It is also possible to combine MRGs. One example is the generator called MRG32k3a,
proposed by L’Ecuyer. This generator combines two MRGs of order 3. The MRGs
are in the form:

xt = (a2xt−2 − a3xt−3)modulo(m1),

yt = (b2yt−2 − b3yt−3)modulo(m2)
(2.15)

Where a2 = 1403580, a3 = 810728, b2 = 527612, b3 = 1370589 and m1 = 232 −
209, m2 = 232 − 22853. Then, the two generators are combined via:

ut =


xt−yt+m1

m1+1 i f xt ≤ yt

xt−yt
m1+1 i f xt > yt

(2.16)

This generator is thought to be highly efficient in the fact that the period is close to
3x1057. The following code11 implements this algorithm.

LISTING 2.9: MRG32k3a

2 %MRG32k3a.m
m1=2^32 -209; m2 =2^32 -22853;

4 ax2p =1403580; ax3n =810728;

11Kroese, D.P., Taimre, T., & Botev, Z.I. (2011). Handbook of Monte Carlo Methods.
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ay1p =527612; ay3n =1370589;
6

x=[12345 12345 12345]; % Initial x at -1, -2, -3
8 y=[12345 12345 12345]; % Initial y at -1, -2, -3

10 n=100; % Compute the sequence for N steps
u=zeros(1,n);

12 for t=1:n
x_t=mod(ax2p*x(2)-ax3n*x(3),m1);

14 y_t=mod(ay1p*y(1)-ay3n*y(3),m2);
if x_t <= y_t

16 u(t)=(x_t - y_t + m1)/(m1+1);
else

18 u(t)=(x_t - y_t)/(m1+1);
end

20 x(2:3)=x(1:2); x(1)= x_t; y(2:3)=y(1:2); y(1)= y_t;
end

An alternative is the combination of generators of different type. This is done for ex-
ample by Marsaglia, that proposed KISS99 12 (Keep It Simple and Stupid) generator.
KISS generator combines two multiply-with-carry with a congruential generator:

LISTING 2.10: KISS99

1

% KISS99
3 %Source: Handbook of the Montecarlo method , 2011

% Seeds: Correct variable types crucial
5

A=uint32 (12345); B=uint32 (65435); Y=12345; Z=uint32 (34221);
7 n=100; % Compute the sequence for N steps

u=zeros(1,n);
9 for t=1:n

% Two Multiply with Carry Generators
11 A=36969* bitand(A,uint32 (65535))+ bitshift(A, -16);

B=18000* bitand(B,uint32 (65535))+ bitshift(B, -16);
13 % MWC: Low and High 16 bits are A and B

X=bitshift(A,16)+B;
15 % CONG: Linear Congruential Generator

y = mod (69069*y+1234567 ,4294967296);
17 % SHR3: 3-Shift Register Generator

z=bitxor(z,bitshift(z ,17));
19 z=bitxor(z,bitshift(z, -13));

z=bitxor(z,bitshift(z,5));
21 % Combine them to form the KISS99 generator

KISS=mod(double(bitxor(x,uint32(y)))+ double(z) ,4294967296);
23 u(t)=KISS /4294967296; % u[0,1] output

12Kroese, D.P., Taimre, T., & Botev, Z.I. (2011). Handbook of Monte Carlo Methods.
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end

2.7 Statistical tests

When a random number generator is implemented, the main objective is to produce
an output whose distribution is at least close to the one needed. In this chapter, as
outlined at the beginning, we focused on the most basic distribution available, the
Uniform. Even if there are many considerations when we choose among different
generators (portability, period length, theoretical foundation), the first and most im-
portant constraint is the capability of the generator to produce a distribution that
is very close to the desired one. For this reason, in conclusion of this chapter, it is
necessary to describe various kinds of statistical tests that are usually performed in
order to assess the quality of random number generators. The introduction of this
topic in the context of uniform random number generators is not by chance. In-
deed, since every random number generator starts from the Uniform, the quality
ultimately depends on the closeness of the output stream to a uniform distribution.

The huge body of literature concerned in random numbers generation describes
and proposes various kind of tests. In general terms, two different categories of
tests are available. First, it is possible to analyse the qualities of a random number
generators starting directly from the algorithm, with no need to run the simulation.
However, those kind of tests are time consuming and outdated. Consequently, the
focus is on the other category. The second kind of tests proposed by literature con-
cerns the output. The idea behind those test is relatively simple: given the random
output produced by the generator, it is only necessary to evaluate if this output is
close enough to a genuine Uniform distribution. This can be easily done via many
different statistical tests. If those tests are performed many times, then it is possible
to have a precise idea regarding the quality of the generator. The statistical instru-
ments employed, then, are not ad-hoc constructed for simulation exercises, but they
are indeed the typical tools used whenever it is necessary to assess the shape of a
distribution.

As specified in Chapter 1, a first way to evaluate an output stream is to plot in
a histogram the distribution and compare it to the desired one. This technique is of
course non-rigorous nor precise, but it is an optimal starting point since it gives a
very communicative visual idea of the quality of the generator. If, for example, the
histogram results to be very distant from the uniform distribution, the agent should
conclude that such a generator is not the best choice. Of course, the reverse is not
necessarily true. If, for example, the generated histogram is very close to the uniform
distribution, it is anyway necessary to perform some tests in order to be able to draw
that same conclusion in a more scientific and precise way.

A second non rigorous but yet effective way to look at the distribution of gener-
ated data is to focus on sample moments. If we expect the generated sample to be
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distributed close enough to a uniform U(0, 1) then we expect the sample mean µ to
be close to 0.5 and the sample variance σ̂2 to be close to 1

12 = 0.0833. In order to test
if this is the case it is enough to run a t-test for the mean or an F-test for the variance.

Stressing the fact that the main objective of a solid (uniform) random number
generator is to produce a stream of random numbers whose distribution is indis-
tinguishable from a uniform U(0, 1), the available statistical tests to be performed
belong to two main families:

• Static tests: those focus on the generated outcome as a whole, thus not con-
sidering the order of generation;

• Dynamic tests: those focus on the generated outcome as a sequence. Conse-
quently, the order of generation plays a significant role.

2.7.1 Static tests

Static tests generally concern the shape of the distribution.
All statistical tests presented in this section are goodness of fit tests. Goodness

of fit tests assess whether an empirical distribution fits the expected theoretical dis-
tribution. In this specific case, goodness of fit tests verify whether the generated
distribution resembles the Uniform U(0, 1). In all the following tests, then, the null
hypothesis, H0 will then be that the random numbers generated by the algorithm
are uniformly distributed in (0, 1), i.e.,

H0 : X ∼ U(0, 1).

The alternative hypothesis, Ha or H1, encompasses all different occurrences, this
means that the alternative hypothesis is that the random sequence has not the dis-
tribution mentioned above:

Ha : else.

Rejecting the null hypothesis is not the desired outcome since it would imply
that the generated distribution is not close to the Uniform. In this context the aim is
not to find enough evidence to reject H0.

While all those tests will then have same hypotheses, tests statistics and proce-
dures will of course differ. In general, all tests should allow the agent to draw the
same conclusion, but they are characterized by different degrees of accuracy.

All tests can also be performed only on fractions of the distribution, in order to
eventually verify whether there are areas of the generated distribution in which the
fit is closer.

Chi-Squared Goodness of fit tests Those tests are by far the most used good-
ness of fit tests. A Chi-Squared goodness of fit test is a non-parametric test whose
aim is to determine whether the theoretical distribution (in this case, the Uniform
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U(0, 1)) fits the empirical one. From a technical point of view, the interval of def-
inition of the variable is divided in sub-intervals. In the case of uniform U(0, 1)
intervals can be defined as (0, 0.01) [0.01, 0.02), [0.02, 0.03),...,[0.99, 1). Note that the
choice of the number of intervals, k, is up to the agent. For each interval Ii, the num-
ber of points drawn from the empirical distribution that belongs to that interval, xi,
is computed. At the heart of the test lies then the comparison between the empirical
counts, xi, and the count of expected point in the theoretical distribution, ei. In in-
formal terms, if the empirical counts are sufficiently close to the expected ones, then
there is not enough evidence to reject the null hypothesis H0. For this test, the test
statistic is in the form:

χ2
c =

k

∑
i=1

(xi − ei)
2

ei
.

Under the null hypothesis, H0, the distribution of this test statistic is χ2 with k − 1
degrees of freedom. Looking at the definition of the test statistic, it is evident that,
the lower its value, the smaller the distance between empirical and expected values,
the lower the likelihood that the empirical distribution is significantly different from
the theoretical one. In formal terms, in order to perform the test, it is necessary to
compute the p-value, that is the probability that a χ2 with k− 1 degrees of freedom
has values ≤ than the observed statistic. Then the conclusion is drawn with the
standard tools of hypothesis testing, i.e., the p-value is compared to the probability
of type I error, α. If p-value < α, then H0 is rejected.

Kolmogorov-Smirnov Tests The Kolmogorov-Smirnov test is another widely
used technique to assess the shape of a distribution. It is again a non-parametric
test used to compare one-dimensional probability distributions. In this case, the
comparison is not between counts but directly between the cumulative distribution
functions. On the one hand, there is the empirical cumulative distribution function
Un(x). On the other, the cumulative distribution function of the uniform theoretical
distribution U(x). The test is based on the analysis of the difference between these
two distributions: KSn = sup |(Un(x) − U(x)|. This metric is called Kolmogorov
distance. sup is the supremum of the distances. Once the test statistic has been
computed, it can be compared to the relevant critical value in order to reject or not
the null hypothesis. Tables with critical values are available for most distributions.

It is also possible to perform other goodness-of-fit tests using the difference |(Un(x)−
U(x)|. For example, the Cramer-von Mises statistic can be used:

W2 =
∫ ∞

−∞
(Un(x)−U(x))2dU(x).

Another possibility is to use the Anderson-Darling statistics:

A2 =
∫ ∞

−∞

(Un(x)−U(x))2

U(x)(1−U(x))
dU(x).
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The Anderson-Darling test is often employed in the analysis of random number
generators.

2.7.2 Dynamic tests

Dynamic tests investigate correlation patterns in the generated data.

Run tests Run tests are non-parametric tests generally employed to assess the
degree of autocorrelation in a sequence of numbers. In order to state that the gen-
erated sequence is random, we expect a low or absent autocorrelation (that is, cor-
relation with lagged values). They are considered as the most precise form of tests
for randomness. The test statistic can be defined in different ways. First, given the
sequence of generated data, a run is defined as a sequence of a symbol + or −. Tests
statistic cane both be defined based on the number or length of runs.

Test for autocorrelations Another way to look at the structure of the generated
sample is to consider autocorrelations. Autocorrelations can be defined for different
values of the lag k, but it is beneficial if ∀k those autocorrelations are close to 0.
This would, in fact, imply that there is not a clear dependence over time in the data
generated. For a generic lag k, the autocorrelation is computed as:

rk =
∑n

i=1(ui − 0.5)(ui−k − 0.5)
∑n

i=1(ui − 0.5)2 (2.17)
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Chapter 3

Generation of random numbers
from other distributions

This chapter introduces how random numbers drawn from a non-uniform distribu-
tion can be generated. The starting point for every implementation is always the
set-up of a uniform random number generator algorithm. The reason lies in the fact
that every random number generator employs at least one uniform-generator, that is
modified and combined in order to produce random numbers obeying to the desired
distribution. Even more importantly, once transformations have been applied, the
quality of the generator still critically depends on the quality of the uniform gener-
ator. In formal terms, in order to generate realizations of a generic random variable
X distributed according to a generic probability distribution, it is necessary first to
generate uniformly distributed random numbers in (0, 1). Second, it is necessary to
transform these numbers via the function g, i.e. generate X = g(u1, ..., uk). Where g
is a function from (0, 1)k to Rd. This chapter should be then interpreted as a natural
follow-up of the previous one. This chapter is fundamentally divided into two sec-
tions: in the first one, "exact" and "universal" methods are described. Those methods
are "universal" because they can be used for the generation of (almost) every dis-
tribution if the specific requirements are met. They also are "exact" because once
applied, the sample generated has exactly the desired distribution1. The second
part describes specific (and more efficient) methods for the generation of random
variables drawn from the most used distributions. If exact transformations are too
complex to be implemented, then approximation methods are used. Among these,
the most famous one is Markov Chain Montecarlo (MCMC).

3.1 Exact methods

3.1.1 Inverse-transform method

Consider a generic random variable X with cumulative distribution function, CDF,
F(x) defined as :

F(x) = P(X ≤ x)

1Of course assuming that the uniform generator is exact.
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where P is the probability operator. By definition, the CDF is non-decreasing and
right-continuous. Following the fact that F is non-decreasing, it is possible to define
the inverse function F−1 as:

F−1(y) = in f {x : F(x) ≥ y}, 0 ≤ y ≥ 1. (3.1)

If X is a discrete random variable with continuous CDF F, it can be shown that the
random variable

U = F(x).

For a formal proof refer to Appendix A.1. Then, only via the definition of the cumu-
lative distribution function, a relationship between uniform random variables and
continuous random variables has been defined. Specifically, given a continuous ran-
dom variable X, it is related to a uniform random variable U(0, 1) via the following:

X = F−1(U) (3.2)

This relationship is usually referred to as the Inverse continuous distribution func-
tion technique. Then, it follows immediately that in order to generate a stream of
random variates distributed as X, it is only necessary to follow two steps. First,
a stream of uniformly distributed random numbers U(0, 1) is generated, then the
transformation is applied: X = F−1(U). The result is a stream of numbers with
the required distribution X. This method is generic since it can be applied to any
distribution; the requirement is only to know the CDF F and to be able to compute
the inverse F−1. This method has received great attention in literature since it is of
easy comprehension and implementation. However, it is not always the best choice.
There are cases, for example, in which the inverse CDF is very complex (or even im-
possible) to evaluate. In these cases, it may be better to apply other methods (such
as those described in the following pages) or even to stick to the inverse transformed
method by solving the equation:

F(x)− u = 0.

In order to practically understand how the method works for continuous ran-
dom variables, consider a random variable whose probability distribution function
is defined as follows:

f (x) =

2xi f x ∈ [0, 1]

0otherwise
(3.3)

The cumulative distribution function is just F(x) =
∫ x

0 2zdz = x2, ∀x ∈ [0, 1]. Apply-
ing the transformation, the inverse cumulative distribution function is just:

F−1(u) =
√

u, ∀u ∈ [0, 1]. (3.4)
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In order to generate a stream of random variables distributed according to X, it is
necessary to generate a stream of uniform random variates U(0, 1) and then apply
the transformation in 3.4. This procedure is implemented in the code below:

LISTING 3.1: Inverse transform-Continuous variable

%% Inverse transform -Continuous variable
2

clc
4 clear all

6 n=1000; %set number of repetitions

8 U=rand(n,1);%generate uniform

10 X=sqrt(U);%generate desired random variable

12 %plot histogram of generated distribution
hist(U)

14 hist(X)

The inverse transform method has just been defined for continuous random vari-
ables. Only in this case, in fact, it is possible to mathematically (via analytic or algo-
rithms) compute the inverse of the cumulative distribution function. There are in-
deed many distributions for which the method is in principle non-applicable, since
it is impossible to define the inverse of F in closed form, i.e. it is impossible to solve
w.r.t. x

F(x) =
∫ x

−∞
f (z)dz = u (3.5)

However, it is also possible to define an analogous method applicable to discrete
random variables. Define a discrete random variable X that takes values x1 < x2 <

x3 < ... with probabilities p1, p2, p3, ... respectively. The points x1, x2, x3, ... are usu-
ally referred to as mass points. Note that by definition ∑i pi = 1. The (discrete)
distribution function is defined as :

P(x) = ∑
xi≤x

pi (3.6)

The first step of the implementation of the method is just the generation of a stream
of uniformly distributed random numbers, as in the continuous case. Then, in the
second step, the algorithm should search for the smallest number k s.t. P(xk) ≥ u.
Then the output is X = xk.

A well known discrete distribution is the Bernulli. Given the parameter p ∈
(0, 1), the distribution function is given by:

p(x) = px(1− p)1−x, x = 0, 1.
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The generation of a stream of random numbers distributed according to Bernoulli,
is simply generated by the code below:

LISTING 3.2: Inverse transform-Bernoulli

%% Inverse transform method Bernulli
2

clc
4 clear all

6 p=0.2%choose value for the parameter
n=1000%set number of repetitions

8

u=rand(n,1);%generate uniform
10

%set up loop for generation of Bernoulli
12

for i=1:n
14 if u(i)<p

u(i)=0
16 else u(i)=1

end
18 end

In order to draw some efficiency conclusions consider another example. Define a
discrete random variable X characterized by the following probability function:

TABLE 3.1: Distribution of r.v. X

xi pi
1 0.1
2 0.2
3 0.3
4 0.4

We can run two different codes in order to generate random numbers according
to this distribution. The first example is the following:

LISTING 3.3: Inverse transform-Discrete 1

%% Inverse transform - Discrete 1
2

clc
4 clear all

6 n=1000 %set number of repetitions
p=[0.1 ,0.2 ,0.3 ,0.4] %vector of probabilities

8
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x=zeros(n,1) %preallocate the space
10

for i=1:n
12 x(i)=min(find(rand <cumsum(p)))

end

This code simply transforms in programming language the definition of the method
that was just given. In fact, in the loop, Matlab looks for the smallest number k s.t.
P(xk) ≥ u. The generation of uniform random numbers is included directly inside
the loop. This code is able to generate a correct result, but there is a faster alternative:

LISTING 3.4: Inverse transform-Discrete 2

1 %% Inverse transform - Discrete 2

3 clc
clear all

5

n=1000 %set number of repetitions
7 p=[0.1 ,0.2 ,0.3 ,0.4] %vector of probabilities

9 [dummy ,x]= histc(rand(1,n),[0,cumsum(p)])

3.1.2 Alias method

The Alias method was proposed by Walker in 1977 and it is an alternative to the
Inverse-transform method applicable only to discrete distributions. It is usually
more efficient than the Inverse-transform, since it avoids the second part of the al-
gorithm (search), that is usually highly time consuming. This method is based on
Walker’s finding that every discrete distribution characterized by m mass points can
be described as a weighted average of m (discrete) distributions, each one with only
two mass points. Define a random variable X with m mass points x1, x2, ..., xm and
associated probabilities p1, p2, . . . , pm; pi > 0 ∀i and ∑i pi = 1. Now we distinguish
two cases. First, if p1 = p2 = ... = pm then clearly the random variable X can be
described as a weighted average of m 2-point random variables with weights equal
to pi ∀i. If instead probabilities are not equal, i.e. ∃pi 6= pj for some i 6= j, then
∃i, j s.t. pi < 1

n and pj ≥ 1
n . At the end we construct m intervals i = 1, 2, ..., m

with a two point distribution and mass points i and ai (alias values). The respective
probabilities of the mass points are qi (cut-off values) and 1− qi.

The Alias method is divided into two parts. The first one is the set-up and it
is usually the most complex one. In this phase, the goal is to implement Walker’s
procedure, the one just described above. Let X be a discrete random variable with
mass points x1, x2, ..., xm and associated probabilities p1, p2, ..., pm. Define qi = mpi

with i = 1, 2, ..., m. Then define the existence spaces A = {i : qi < 1} and B = {i :
qi ≥ 1}. Then we have to select some k, j s.t. k ∈ A and j ∈ B and impose ak = j and
qj = qj − (1− qk). Now two alternatives are possible:
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• if qj < 1 then j is removed from B and added to A. i is then removed from A.

• otherwise, j is kept in B.

Once the method has been set up, it is possible to proceed with the generation of
random numbers. First, as usual, it is necessary to generate uniformly distributed
numbers in the interval U(0, 1). Then we define I = dmUe. Then we generate
another uniform random variable V(0, 1), if v ≤ qi, we set X = I, if not X = ai. The
following code clarifies the procedure:

LISTING 3.5: Alias method

1 %% Alias method (adapted from Dirp K. Kroese)

3 clc
clear all

5

p=rand (1 ,200);
7 p=p/sum(p);

n=size(p,2); %sample size
9 a=1:n;

q=zeros(1,n);%initialyze the space
11 q=n*p;

B=find(q >=1);
13 A=find(q<1);

while (~ isempty(A) && ~isempty(B))
15 i = B(1);

j = A(1);
17 a(i) = j;

q(j) = q(j) -(1- q(i));
19 if (q(j) < 1)

A = setdiff(A,j);
21 B = union(B,j);

end
23 B = setdiff(B,i);

end
25 pp = q/n

for i = 1:n
27 ind = find(a == i);

pp(i) = pp(i) + sum((1 - q(ind )))/n;
29 end

max(abs(pp - p))
31 N = 10^6; % generate sample of size N

X = zeros(1,N);
33 for i = 1:N

K = ceil(rand*n);
35 if (rand > q(K));

X(i) = a(K);
37 else
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X(i) = K;
39 end

end

3.1.3 Acceptance-rejection method

We now turn to one of the most widely used methods in the generation of random
numbers. Acceptance-rejection is again a general method, in the sense that it can
be applied to almost every distribution, both in the continuous and in the discrete
case. Indeed, this is one of the few methods that can also be applied to multivariate
distributions 2. The idea behind this method is to use a "proposal" random variable
Y in order to generate a random sample drawn from X. The condition is that X and
Y should have sufficiently close distribution functions.

Assume we want to generate a random sample drawn from the distribution X,
characterized by density function fx. In order to do this choose a random variable Y
with density function gy in a way such that, ∀x, we have that cgy(x) ≥ fx(x), where
c ≥ 1 is a constant. If we can find such a random variable Y, then we call its density
function gy majorizing density and the term cgy majorizing function. In order to
implement the method, first realizations of the random variable Y are generated
(according to gy), then a stream of uniformly distributed random numbers in (0, 1) is
generated. This stream will serve as a benchmark. Finally, the acceptance-rejection
is performed. Specifically, if, at each realization, ui ≤ fx(yi)

cgy(yi)
, then the value yi is

taken as element of the random vector for X (acceptance). If not, then that value
is disregarded (rejection), and the process continues with the analysis of the value
yi+1. The algorithm must be performed until the moment in which the full sample n
is generated. It can be proved that the generated sample is distributed with density
function fx. Proof is provided in Appendix A.2. The Acceptance-rejection method
can thus be defined as an indirect method since it generates a random variable via
the generation of another one.

While this method is fairly simple to understand and implement, efficiency con-
siderations are necessary. Assume from now on that the generation of the proposal
random variable Y is not subject to efficiency considerations, i.e., the most efficient
generation algorithm is available. We will thus focus on the "core" acceptance-
rejection technique. The efficiency measure of the method is given by the probability
that an acceptance will occur. The reason is simple; the higher this probability, the
higher the number of acceptances over a sample n. This implies that the algorithm
will come to an end faster. The probability of acceptance is given by:

P(U ≤ fx(Y)
cgy(Y)

) =
∫

gy(y)
∫ 1

0
I
u≤ fx(y)

c fy(y)
dudy =

∫ fx(y)
c

dy =
1
c

(3.7)

2Even if the efficiency of the generator decreases significantly as the number of dimensions in-
creases.
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The obtained probability of acceptance has a geometric distribution with param-
eter 1

c . Consequently, in expectation, the number of trials necessary in order to gen-
erate a full sample is equal to the scalar c.

Of course, another element that may hamper the efficiency of this method is the
choice of the proposal random variable Y. In general, the closest the distribution
of Y to X, the faster the algorithm will be. However, since the selection of the best
distribution of Y may be time-consuming, this variable is usually chosen to be very
simple. Common choices are, in fact, uniform or exponential.

In order to explain how this method works, we consider a simple example in
which the goal is to generate random numbers drawn from a positive normal dis-
tribution. It will be shown via a MATLAB implementation that this method is ex-
tremely efficient. The distribution function of a positive Normal is in the form:

f (x) =

√
2
π

e−x2/2, x ≥ 0 (3.8)

First step is to choose an appropriate proposal distribution. We select the Expo-
nential with parameter 1, whose distribution function is in the form e−x2

. We set

c =
√

2e
π , the efficiency measure is then (

√
2e
π )−1 =

√
π
2e . The code below imple-

ments this technique.

LISTING 3.6: Acceptance-Rejection Positive Normal Distribution

%% Acceptance -Rejection Positive Normal Distribution
2 clc

clear all
4

n=100 %set number of repetitions
6 y=zeros(n,1) %preallocate the space

x=exprnd(1,n,1) % generate proposal
8 u=rand(n,1)% generate uniform

10 %implement AR

12 for i=1:n
if u(i)<=sqrt (2/pi)*exp(-x(i)^2/2)/ sqrt (2* exp (1)/pi)

14 y(i)=x(i)
else y(i)=NaN

16 end
end

18

%% Efficiency
20

eff=sqrt(pi/2*exp (1))

If the distribution from which we want to draw random data is complex, it is still
possible to employ a modified version of this method in order to gain in efficiency
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terms, by making the algorithm faster. The modification is usually called squeeze.
When we "squeeze" we arbitrarily define two (not only one) new density functions.
First, the usual majorizing density, g. Second, a very simple function, s, s.t.:

s(x) ≤ f (x) ≤ cg(x), ∀x.

When a squeeze is implemented we usually do not check if ui ≤ fx(yi)
cgy(yi)

, but instead

if ui ≤ s(yi)
cgy(yi)

. This process is usually much faster.

3.1.4 Ratio of Uniforms method

The ratio of uniforms is another (yet efficient) method proposed for the first time by
Kinderman and Monahan in 1977. It is applicable both to discrete and continuous
distributions. This method is based on the comparison of two variables, and the
advantage is that it is not necessary to know the distribution of the two variables
when considered separately.

Let U and V be two random variables. Define a new random variable as their
ratio Y = V/U. Now assume that the multivariate distribution (U, V) is uniformly
distributed over the bi-dimensional region:

C = {(u, v), s.t.u ∈ [0,
√

h
v
u
]} (3.9)

If h is a non-negative integrable function over the same set, then the density of the
ratio Y = V/U is proportional to h. Proof of this result is provided in Appendix A.3.

Then, in order to implement the method, we simply need to generate two i.i.d.
random variables U and V, uniformly in (0, 1). Then the first values have to be
set as u1 = bu and v1 = c + (d− c)v. Define the random variable to generate, X, as
X = V/U. The last step involves an acceptance-rejection introduction: if u2

1 ≤ h(x1),
then x is taken as realization, else the process continues with the next value.

It is also possible to define this method for discrete random variables. This was
proposed for the first time by Stadlober(1990). In analogy with the continuous case,
the first step is to generate two i.i.d. uniform random variables in (0, 1), U and
V. Then, x is this time defined as x = ba + s(2v − 1)/uc and y = u2. Then the
acceptance-rejection is implemented: if y1 ≤ p(x1) then x is taken as realization, else
the process continues with the next value.

3.2 Specific distributions

This section applies the methods described in the previous one to the generation
of random variables from the most frequently used distributions, both in the con-
tinuous and discrete case. For each distribution, some examples of algorithms and
Matlab implementation are given.
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3.2.1 Bernoulli Distribution

A Bernoulli distribution is a discrete distribution that describes the outcome of events
that can result either in a failure (0) or success (1).

The probability distribution function of a Bernoulli random variable is in the
form:

f (x; p) = px(1− p)1−x (3.10)

p is the characteristic parameter of a Bernoulli and it is called probability of success,
p ∈ [0, 1]. The most used method for the generation of Bernoulli random variables
is the inverse transform. After the generation of a uniform random variable in (0, 1),
U ∼ U(0, 1), for each realization of U the value ui is compared to the parameter p; if
ui ≤ p a success is awarded, i.e. xi = 1, otherwise a xi = 0 is recorded. An example
of the implementation in Matlab is given in the code below.

LISTING 3.7: Bernoulli

1 %% Bernulli
clc

3 clear all

5 n=100;
p=0.25;

7 u=rand(n,1);
x=zeros(n,1);

9

for i=1:n
11 if u(i)<=p

x(i)=1
13 else x(i)=0

end
15 end

17 bar(x)

3.2.2 Binomial Distribution

A Binomial is another discrete distribution. It describes the number of successes in a
sequence of n Bernoulli random variables. A Binomial is in fact defined as the sum
of n independent Bernoulli. The probability distribution function of a Binomial is in
the form:

f (x; p, n) =
(

n
x

)
px(1− p)n−x (3.11)

where p is the probability of success in one trial and n is the number of trials, p ∈
[0, 1], n is a positive integer and x = 0, 1, 2, ..., n. The generation of Binomial random
variables is straightforward if one refers to the fact that a Binomial random variable
can be described as the sum of n Bernoulli. It is then only necessary to generate n
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i.i.d. Bernoulli random variables, X1, ..., Xn ∼ Ber(p), and then take their sum Bin =

∑n
i=1 Xi. Such an algorithm (which is indeed equivalent to an inverse transform

technique) is easy to implement and understand but it is likely to be poor in terms of
efficiency. The reason is that, as n grows, the time required by the algorithm to run
increases too. If n is big it is then possible to apply a geometric method, described in
the following algorithm:

LISTING 3.8: Binomial geometric

1 %Binomial geometric (Adapted from D.P. Kroese)
n = 100; p = 0.1; mu = n*p; N = 10^5;

3 x = zeros(1,N); c = log(1-p);
for i=1:N

5 s = ceil(log(rand)/c);
xi = 0;

7 while s < n + 1
xi = xi+ 1;

9 s = s + ceil(log(rand)/c);
end

11 x(i)= xi;
end

13

xx = [floor(mu - 4*sqrt(mu )):1: ceil(mu + 4*sqrt(mu))];
15 count = hist(x,xx);

ex = binopdf(xx ,n,p)*N;
17 hold on

plot(xx,count ,’or’)
19 plot(xx,ex,’.b’)

hold off

It is also possible to generate a Binomial distribution trough a Normal, obtaining
a reliable approximation. The reason is that a Binomial distribution with param-
eters n, p can be approximated by a Normal distribution with mean np − 0.5 and
variance np(1− p) if n is large enough. This powerful result comes from the cen-
tral limit theorem. If n is large, it is then possible to approximate the Binomial
r.v. by using a Normal. It will then be necessary to generate a r.v. distributed
as a standard normal, Z ∼ N(0, 1) and then approximate the Binomial as Bin =

max{0, bnp + 0.5 + Z
√

np(1− p)c}. This algorithm is implemented in the code be-
low:

LISTING 3.9: Binomial via Normal

1 %% Binomial via Normal
clc

3 clear all

5 n=100;
p=0.1;

7 y=randn(1,n)’;
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x=zeros(1,n)’;
9

for i=1:n
11 x(i)=max(0,floor(n*p+0.5+y(i)*sqrt(n*p*(1-p))))

end

This method is incredibly fast but it is approximate. For this reason, if the nature of
the analysis implies the need for the use of exact techniques, two recursive genera-
tors are proposed.

LISTING 3.10: Binomial Recursive 1

%% recursive binomial generator 1 (Adapted from D.P. Kroese)
2 function x=binomialrnd(n,p)

% recursive binomial generator
4 if n<=10

x=sum(rand(1,n)<p);
6 else

k=ceil(n*p);Y=nbinrnd(k,p);% generate NegBin(k,p)
8 T=k+Y;

if T<=n
10 x=k+binomialrnd(n-T,p);

else
12 x=k-binomialrnd(T-n,p);

end
14 end

LISTING 3.11: Binomial Recursive 2

%% recursive binomial generator 2 (Adapted from D.P. Kroese)
2 function x=binomrnd_beta(n,p)

4 if n<=10
x=sum(rand(1,n)<p);

6 else
k=ceil(n*p);Uk=betarnd(k,n+1-k);% generate beta r.v.

8 if Uk<p
x=k+binomrnd_beta(n-k,(p-Uk)/(1-Uk));

10 else
x=k-binomrnd_beta(k-1,(Uk -p)/Uk);

12 end
end

3.2.3 Geometric Distribution

The Geometric is a discrete distribution that describes the number of trials that cor-
responds to the first success in a sequence of ∞ Bernoulli random variables. The
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probability distribution function of a Geometric random variable is in the form:

f (x; p) = p(1− p)x−1 (3.12)

where p is the probability of success of the Bernoulli and x = 1, 2, 3, ...,+∞. The
generation of Geometric random variables is based on a theoretic consideration re-
lated to the link between Geometric and Exponential random variables. Define an
Exponential random variable Y with parameter λ = −ln(1− p). In this case the ceil
of this exponential is distributed as a Geometric random variable with parameter p,
dYe ∼ Geom(p). Then, in order to generate a Geometric, Geom(p), it is only neces-
sary to generate an Exponential with parameter λ = −ln(1− p) and then apply the
ceil function.

LISTING 3.12: Geometric via Exponential

%% Geometric 1
2 clc

clear all
4

n=100;
6 p=0.2;

y=exprand(-ln(1-p),1,n)’;
8 x=zeros(1,n)’;

10 for i=1:n
x(i)=ceil(y(i))

12 end

Alternatively, it is also possible to generate a Geometric starting from a random Uni-
form. In this case, once U ∼ U(0, 1) has been generated, it is only necessary to apply
the transformation Geom = dln( U

1−p )e:

LISTING 3.13: Geometric via Uniform

1 %% Geometric 2
clc

3 clear all
n=100;

5 p=0.2;
u=rand(1,n)’;

7 x=zeros(1,n)’;
for i=1:n

9 x(i)=ceil(ln(u(i)/ln(1-p))
end
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3.2.4 Hypergeometric Distribution

The Hypergeometric is a discrete distribution and its probability distribution func-
tion is in the form:

f (x; n, r, N) =
(r

x)(
N−r
n−x)

(N
n )

(3.13)

where N, n, r are positive integers, n ≤ N, r ≤ N and x ∈ [max{0, r+n−N}, min{n, r}].
This distribution can be described as follows. Consider a bowl with N stones in it. r
stones are red. Take n stones from the N in the bowl randomly without replacement.
The number of red stones that are drawn from the bowl in the n trials has an Hyper-
geometric distribution with parameters n, N, r. It follows that, in order to generate
Hypergeometric random variables, it is only necessary to simulate the n trials with-
out replacement and define the random variable X as the number of red stones that
are taken.

LISTING 3.14: Hypergeometric

1 %% Hypergeometric (Adapted from D.P. Kroese)
N = 100; %total number of stones

3 n = 20; % take n stones
r = 30; % number of red stones

5 w = zeros(1,N);
w(1:r) = 1;

7 K = 10^5;
x = zeros(1,K);

9 for i=1:K
[s,ix] = sort(rand(1,N));

11 x(i) = sum(w(ix(1:n)));
end

13

xx = [0:n];
15 count = hist(x,xx);

ex = hygepdf(xx ,N,r,n)*K;
17 clf

hold on
19 plot(xx,count ,’.r’)

plot(xx,ex,’ob’)
21 hold off

3.2.5 Negative Binomial Distribution

The Negative Binomial is a discrete distribution with probability distribution func-
tion:

f (x; p, r) =
Γ(r + x)
Γ(r)x!

pr(1− p)x (3.14)

where r ≥ 0, p ∈ [0, 1], Γ is the complete Gamma function and x = 0, 1, 2, .... If r is an
integer (we then write n = r) the distribution is called Pascal and has a probability
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distribution function in the form:

f (x; p, n) =
(

n + x− 1
n− 1

)
pn(1− p)x (3.15)

If we interpret p as the probability of success of a Bernoulli, then this random vari-
able can be seen as representing the number of trials that are necessary before achiev-
ing r successes. In order to generate random variables distributed according to the
negative binomial (or Pascal), one has to note that the negative binomial can be rep-
resented as the sum of r (or n) geometric random variables with parameter p. This
consideration leads to the following algorithm (which may be used only when r is
not significantly large):

LISTING 3.15: Negative Binomial

1 %% Negative Binomial

3 clc
clear all

5 n=10;
r=10;

7 p=0.2;
u=rand(1,n);

9 y=zeros(1,n);
c=ln(1-p);

11

for i=1:n
13 y(i)= floor(ln(u(i)/c)

end
15

x=cumsum(y)

3.2.6 Poisson Distribution

The Poisson is a discrete distribution characterized by the following probability dis-
tribution function:

f (x; λ) =
λx

x!
e−λ (3.16)

where λ > 0 is the parameter of the Poisson (rate parameter) and x = 0, 1, 2, ....
This random variable is used to describe the distribution of arrival times. In order
to generate a Poisson random variable it is common to rely on the generation of
Gamma and Binomial random variables, as in the code below:

LISTING 3.16: Poisson

%% Poisson
2 clc

clear all
4
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n=100;
6 l=0.2;

m=floor (7/8*l);
8 y=gamrnd(m,1,1,n)’;

z=zeros(1,n)’;
10 x=zeros(1,n)’;

12 for i=1:n
if y(i)<=l

14 z(i)= poissrnd(l-y(i))
x(i)=m+z(i)

16 else x(i)= binornd(m-1,l/y(i))
end

18 end

3.2.7 Beta Distribution

The Beta is a continuous distribution with probability distribution function:

f (x; α, β) =
xα−1(1− x)β−1

B(α, β)
(3.17)

where α, β > 0 are the shape parameters and B(α, β) is the complete beta function.
The Beta distribution is one of those examples for which the generation technique to
use critically depends on the shape parameters. Depending on their value, in fact,
the algorithms range from very simple to extremely complex.

The simplest case is when α or β are equal to 1. In these two cases, in fact, it is
only necessary to apply the inverse method. The first step is common: generate a
stream of uniformly distributed random numbers in (0, 1), then if α 6= 1 and β = 1
the transformation to be applied is Beta = U

1
α . Conversely, if α = 1 and β 6= 1,

the transformation is in the form Beta = U
1
β . The codes below exemplify what just

described:

LISTING 3.17: Beta(a,1)

%% Beta (alpha ,1)
2 clc

clear all
4

n=100;
6 a=0.8;

8 u=rand(1,n)’;
x=zeros(1,n)’;

10 for i=1:n
x(i)=u(i)^(1/a)

12 end
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LISTING 3.18: Beta(1,b)

1 %% Beta (1,beta)
clc

3 clear all

5 n=100;
b=0.8;

7

u=rand(1,n)’;
9 x=zeros(1,n)’;

for i=1:n
11 x(i)=1-u(i)^(1/b)

end

If both α and β are equal to 0.5 the distribution is called Arcsine and again a sim-
ple inverse method is applied. This time in the second step we have that Beta =

cos2(πU
2 ):

LISTING 3.19: Beta(0.5,0.5)

1 %% Beta (0.5 ,0.5)
clc

3 clear all

5 n=100;

7 u=rand(1,n)’;
x=zeros(1,n)’;

9

for i=1:n
11 x(i)=cos(pi*u(i)/2)^2

end

In the case in which the two parameters are equal and both greater than 0.5 we can
choose between a polar method (that evaluates a cosine function) and a rejection
method. The second one may be preferred in the case in which the evaluation of the
trigonometric function is slow:

LISTING 3.20: Beta(a,a) 1

%% Beta (alpha ,alpha) 1
2 clc

clear all
4

n=100;
6 a=0.7;

8 u_1=rand(1,n)’;
u_2=rand(1,n)’;

10 x=zeros(1,n)’;



52 Chapter 3. Generation of random numbers from other distributions

12 for i=1:n
x(i)=0.5*(1+ sqrt(1-u_1(i)^(2/(2*a -1)))* cos(2*pi*u_2(i)))

14 end

LISTING 3.21: Beta(a,a) 2

1 %% Beta (alpha ,alpha) 2
clc

3 clear all

5 n=100;
a=0.7;

7

u=rand(1,n)’;
9 v=rand(1,n)’*2-1;

x=zeros(1,n)’;
11

s=u.^2+v.^2
13

for i=1:n
15 if s(i)>1

x(i)=NaN
17 else x(i)=0.5+u(i)*v(i)/s(i)*sqrt(1-s(i)^(2/(2*a-1)))

end
19 end

Finally, if the parameters are unequal and lower than 1, Johnk’s algorithm (1964) can
be applied. It is an acceptance-rejection:

LISTING 3.22: Beta Johnk algorithm

%% Beta Johnk algorithm
2 clc

clear all
4

n=100;
6 a=0.8;

b=0.6;
8

u_1=rand(1,n)’;
10 u_2=rand(1,n)’;

v_1=ones(1,n)’;
12 v_2=ones(1,n)’;

14 for i=1:n
v_1(i)=u_1(i)^(1/a)

16 end
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18 for i=1:n
v_2(i)=u_2(i)^(1/b)

20 end

22 w=v_1+v_2
x=zeros(1,n)’;

24

for i=1:n
26 if w(i)>1

x(i)=NaN
28 else

x(i)=v_1(i)/w(i)
30 end

end

3.2.8 Cauchy Distribution

The Cauchy is a continuous distribution with pdf in the form:

f (x; µ, σ) =
1

πσ(1 + ( x−µ
σ )2)

. (3.18)

When σ = 1 and µ = 0 we call the distribution Standard Cauchy. The easiest way
to generate the Standard Cauchy is trough the Inverse Transform method. After
having generated a stream of uniformly distributed numbers in (0, 1) we apply the
transformation C = tan(πU) as exemplified in the following code:

LISTING 3.23: Cauchy(0,1)

%% Cauchy (0,1)
2 clc

clear all
4

n=100;
6 m=0;

s=1;
8

u=rand(1,n);
10 c=zeros(1,n);

for i=1:n
12 c(i)=tan(pi*u(i))

end

However, the most employed techniques use ratio of random variables to generate
the Cauchy. Both Ratio of Uniforms and Normals are available and yield efficient
results:

LISTING 3.24: Cauchy(0,1) Ratio of Uniforms
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1 %% Cauchy (0,1) Ratio of Uniform
clc

3 clear all

5 n=100;
u=rand(1,n)’;

7 v=rand(1,n)’;
v=v -0.5;

9 x=zeros(1,n)’;

11 for i=1:n
if u(i)^2+v(i)^2 <=1

13 x(i)=v(i)/u(i)
else x(i)=NaN

15 end
end

LISTING 3.25: Cauchy(0,1) Ratio of Normals

1 %% Cauchy (0,1) Ratio of Normal
clc

3 clear all

5 n=100;
y=rand(1,n)’;

7 v=rand(1,n)’;
x=zeros(1,n)’;

9

for i=1:n
11 x(i)=y(i)/v(i)

end

3.2.9 Exponential Distribution

The Exponential is a continuous distribution with pdf:

f (x; λ) = λe−λx (3.19)

where λ > 0 is called rate parameter. The exponential is usually considered a spe-
cific case of the Gamma distribution where α = 1 and β = 1

λ . This distribution is at
the heart of many finance applications because it is a well known example of memo-
ryless distribution. Moreover, it is usually considered as the continuous counterpart
of the geometric distribution3. Exponential random numbers are usually generated
trough the Inverse Transform method by applying the transformation E = −ln(U)

λ ,
as in the code below:

3Kroese, D.P., Taimre, T., & Botev, Z.I. (2011). Handbook of Monte Carlo Methods.
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LISTING 3.26: Exponential

%% Exponential
2

clc
4 clear all

6 l=1.2;
n=100;

8 u=rand(1,n)’;
x=zeros(1,n)’;

10

for i=1:n
12 x(i)=-log(u(i))/l

end

3.2.10 Fisher-Snedecor Distribution

The Fisher-Snedecor is a continuous distribution with probability distribution func-
tion in the form:

f (x; m, n) =
Γ(m+n

2 )(m
n )

m/2x(m−2)/2

Γ(m
2 )Γ(

n
2 )[1 +

m
n x](m+n)/2

(3.20)

where x ≥ 0, m, n > 0 and integers. m, n are the degrees of freedom. This distri-
bution is also known as F and it is frequently used in variance hypothesis testing.
A random sequence of numbers distributed according to the F is usually generated
trough the ratio of Chi-square distributions. In fact, given two Chi-Square random
variables X ∼ χ2

m and Y ∼ χ2
n we have the following result:

X/m
Y/n

∼ F(m, n).

Then, in order to generate a F it is only necessary to generate two streams of Chi-
square distributed random numbers and then apply the transformation F = X/m

Y/n .
This procedure is implemented in the code below:

LISTING 3.27: F 1

1 %% F 1
clc

3 clear all

5 m=5;
n=6;

7 k=100;
x=chi2rnd (m,k,1);

9 y=chi2rnd (n,k,1);
z=zeros(1,k);

11
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for i=1:k
13 z(i)=(x(i)/m)/(y(i)/n)

end

This technique is not used frequently since it tends to be quite slow. An alternative
is based on the generation of a stream of numbers distributed according to the Beta
distribution and is presented below:

LISTING 3.28: F 2

%% F 2
2 clc

clear all
4

m=5;
6 n=6;

k=100;
8

b=betarnd (m/2,n/2,k,1)’;
10 x=zeros(1,k)’;

12 for i=1:k
x(i)=(b(i)*n)/(m*(1-b(i)))

14 end

3.2.11 Frechet Distribution

The Frechet (also known as type II extreme value) is a continuous distribution with
probability density function in the form:

f (x; α) = αx−α−1e−x−α
(3.21)

where x > 0 and α > 0. α is called shape parameter. This distribution is used
frequently when the maximum of i.i.d. random variables is considered. The genera-
tion of random numbers distributed according to the Frechet is based on the Inverse
Transform method. The transformation to be applied is the following:

F = (−lnU)−
1
α

LISTING 3.29: Frechet

%% Frechet(alpha ,0,1)
2 clc

clear all
4

n=100;
6 a=3;
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8 u=rand(1,n)’;
x=zeros(1,n)’;

10

for i=1:n
12 x(i)=(-log(u(i)))^( -1/a)

end

3.2.12 Gamma Distribution

The Gamma is a continuous distribution with probability distribution function:

f (x; α, β) =
βαxα−1a−βx

Γ(α)
(3.22)

where x ≥ 0, α, β > 0, Γ is the Gamma function. α is called shape parameter and
β is called scale parameter. The Exponential distribution is nothing but a special
case of the Gamma with α = 1 and β = 1

λ . Another relevant case is when α = n
2

and β = 1
2 . This distribution is then called χ2 (Chi-square) and n is known as the

number of degrees of freedom. An important implication is that Gamma generation
techniques are in principle directly applicable to the generation of Chi-square dis-
tributions. Another important instance is when n is a positive integer. In this case,
the distribution is usually called Erlang. One of the most used techniques for the
generation of Gamma variables was proposed by Best and is feasible if α < 1:

LISTING 3.30: Gamma Best

%% Gamma best
2 % adapted from D.P. Kroese

N = 10^5; alpha = 0.3;
4 d= 0.07 + 0.75* sqrt(1-alpha); b = 1 + exp(-d)*alpha/d;

x = zeros(N,1);
6 for i = 1:N

cont = true;
8 while cont

U1 = rand;
10 U2 = rand;

V = b*U1;
12 if V <= 1

X = d*V^(1/ alpha );
14 if U2 <= (2-X)/(2+X)

cont = false; break;
16 else

if U2 <= exp(-X)
18 cont = false; break;

end
20 end

else
22 X = -log(d*(b-V)/alpha);
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y = X/d;
24 if U2*(alpha + y*(1-alpha )) < 1

cont= false; break;
26 else

if U2 <= y^( alpha - 1)
28 cont= false;break;

end
30 end

end
32 end

x(i) = X;
34 end

36 clf
hold on

38 x = sort(x);
ecdf(x); % empirical cdf

40 y = gamcdf(x,alpha); % cdf of gamma distribution
plot(x,y,’r’)

42 hold off

In the case in which α > 1, Cheng and Fest (1979) proposed an highly efficient
algorithm based on the ratio of uniform method:

LISTING 3.31: Gamma Cheng Feast

%% Gamma Cheng Feast algorithm
2 clc

clear all
4

a=1.2;
6 n=100;

u_1=rand(1,n)’;
8 u_2=rand(1,n)’;

10 for i=1:n
v(i)=((a-(6*a)^( -1))* u_1(i))/((a-1)* u_2(i))

12 end

14 x=ones(1,n)’;

16 for i=1:n
if 2*(u_2(i) -1)/(a-1)+v(i)+1/v(i)<=2

18 x(i)=(a-1)*v(i)
if 2*log(u_2(i))/(a-1)-log(v(i))+v(i)<=1

20 x(i)=(a-1)*v(i)
else x(i)=NaN

22 end
end
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24 end

If the aim is to generate a Chi-square random variable with one degree of freedom,
it is only necessary to note that it can be viewed as the square of a standard normal:

LISTING 3.32: Gamma Chi-Square

%% Gamma (1/2 ,1/2) (chi -square)
2

clc
4 clear all

6 n=100;
z=randn(1,n)’;

8 x=zeros(1,n)’;

10 for i=1:n
x(i)=z(i)^2

12 end

3.2.13 Gumbel Distribution

The Gumbel (also known as type I extreme value) is a continuous distribution with
probability distribution function in the form:

f (x) = e−x−e−x
(3.23)

with x ∈ R. The generation of Gumbel random variables is based on the Inverse-
Transform method. Given a stream of uniformly distributed random numbers in
(0, 1), the tranformation to be applied is G = −ln(−lnU):

LISTING 3.33: Gumbel

%% Gumbel
2

clc
4 clear all

6 n=100;
u=rand(1,n)’;

8 x=zeros(1,n)’;

10 for i=1:n
x(i)=-log(-log(u(i)))

12 end
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3.2.14 Laplace Distribution

The Laplace or double exponential is a continuous distribution with probability dis-
tribution function:

f (x; λ) =
1
2

e−λ|x| (3.24)

where x ∈ R and λ > 0. This distribution is widely used in Montecarlo techniques
applied to finance since it has fatter tails that the Normal. Due to its popularity, a
large body of research was devoted to random generation techniques connected to
this distribution. Many different algorithms are thus available. One first example
is based on the generation of a Beronulli random variable (B ∼ Ber(0.5)) and an
Exponential (Y ∼ Exp(1)). The Laplace is then generated as X = (2B− 1)Y:

LISTING 3.34: Laplace 1

%% Laplace 1
2

clc
4 clear all

6 n=100;
y=exprnd(1,1,n)’;

8 x=zeros(1,n)’;

10 p=0.5;
u=rand(1,n)’;

12 b=zeros(1,n)’;

14 for i=1:n
if u(i)<=p

16 b(i)=1
else b(i)=0

18 end
end

20 for i=1:n
x(i)=(2*b(i)-1)*y(i)

22 end

Alternatively, it is also possible to implement a simpler algorithm based on the Uni-
form. After having generated a stream of uniformly distributed random numbers in
(−0.5, 0.5), the transformation X = sgn(U)ln(1− 2|U|) is applied:

LISTING 3.35: Laplace 2

%% Laplace 2
2

clc
4 clear all

6 n=100;



3.2. Specific distributions 61

u=rand(1,n)’-0.5;
8 x=zeros(1,n)’;

10 for i=1:n
x(i)=sign(u(i))* log(1-2*abs(u(i)))

12 end

In order to describe the next possible algorithm, we have to note that, given two
independent Exponential random variables with parameter 1, W ∼ Exp(1) and V ∼
Exp(1), V −W ∼ Laplace(0, 1), then:

LISTING 3.36: Laplace 3

%% Laplace 3
2

clc
4 clear all

6 n=100;
v=exprnd(1,1,n)’;

8 w=exprnd(1,1,n)’;
x=zeros(1,n)’;

10

for i=1:n
12 x(i)=v(i)-w(i)

end

Finally, using again two different random variables, if E ∼ Exp(1) and Y ∼ N(0, 1),
then Laplace = Y

√
2E:

LISTING 3.37: Laplace 4

%% Laplace 4
2

clc
4 clear all

6 n=100;
e=exprnd(1,1,n)’;

8 y=rand(1,n)’;
x=zeros(1,n)’;

10

for i=1:n
12 x(i)=y(i)*sqrt (2*e(i))

end
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3.2.15 Logistic Distribution

The Logistic is a continuous distribution with probability distribution function:

f (x; ) =
e−x

(1 + e−x)2 (3.25)

with x ∈ R. The most used generator for the Logistic is an example of Inverse-
Transform and it applies the transformation L = ln( U

1−U ):

LISTING 3.38: Logistic

%% Logistic
2

clc
4 clear all

6 n=100;
u=rand(1,n)’;

8 x=zeros(1,n)’;

10 for i=1:n
x(i)=log(u(i)/(1-u(i)))

12 end

3.2.16 Log-Normal Distribution

The Log-Normal distribution is a continuous distribution with probability distribu-
tion function defined as:

f (x; µ, σ) =
1

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 (3.26)

where x > 0, σ > 0 and µ ∈ R. µ is called location parameter and σ is called scale
parameter. A very important property of this distribution is its relationship with the
Normal. If X ∼ LogN(µ, σ2), then lnX ∼ N(µ, σ2). The most used algorithm for the
generation of Log-normally distributed random numbers applies this property and
thus if we generate Y ∼ N(µ, σ2) then we just need to apply X = eY:

LISTING 3.39: Log-Normal

%% Log -Normal
2

clc
4 clear all

6 n=100;
m=0;

8 s2=1;
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10 y=randn(1,n)’;
x=zeros(1,n)’;

12

for i=1:n
14 x(i)=exp(y(i))

end

3.2.17 Normal Distribution

The Normal (or Gaussian) distribution is a continuous distribution with pdf:

f (x; µ, σ2) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )2

(3.27)

The Standard Normal is characterized by µ = 0 and σ = 1 and it is widely used in
many applications due to its simplicity. If Z ∼ N(0, 1), then X = σZ + µ. For this
reason, algorithms are usually developed for the Standard Normal. The Standard
Normal has pdf in the form:

f (x) =
1

σ
√

2π
e−

x2
2 (3.28)

Several algorithms are available for the generation of normally distributed random
numbers due to the centrality of this distribution in statistical applications. One
of the first examples uses the Box-Muller method to which a trigonometric trans-
formation is applied. After the generation of two streams of i.i.d. uniformly dis-
tributed random numbers, U1, U2 ∼ U(0, 1), the transformations to be applied are
X1 =

√
−2log(U1)cos(2πU2) and X2 =

√
−2log(U1)sin(2πU2). X1 and X2 are then

i.i.d. Standard Normal. An example of implementation of this algorithm is given in
the code below.

LISTING 3.40: Normal Box-Muller

%% Normal Box -Muller
2

clc
4 clear all

6 n=100;
u_1=rand(1,n)’;

8 u_2=rand(1,n)’;
x_1=zeros(1,n)’;

10 x_2=zeros(1,n)’;

12 for i=1:n
x_1(i)=sqrt(-2*log(u_1(i)))* cos (2*pi*u_2(i))

14 x_2(i)=sqrt(-2*log(u_1(i)))* sin (2*pi*u_2(i))
end
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16 plot(x_1)

This algorithm may not be optimal since the evaluation of trigonometric func-
tions and square roots tend to increase computing times significantly. For this rea-
son, a valid alternative is the rejection method described in the code below:

LISTING 3.41: Normal Rejection Polar method

%% Normal Rejection Polar method
2

clc
4 clear all

6 n=100;
v_1=rand(1,n) ’*2+1;

8 v_2=rand(1,n) ’*2+1;
r=v_1 .^2+ v_2 .^2;

10 x_1=zeros(1,n)’;
x_2=zeros(1,n)’;

12

for i=1:n
14 if r(i)>=1

x_1(i)=NaN
16 x_2(i)=NaN

else
18 x_1(i)=v_1(i)*sqrt(-2*log(r(i)^2)/r(i)^2)

x_2(i)=v_2(i)*sqrt(-2*log(r(i)^2)/r(i)^2)
20 end

end

3.2.18 Pareto Distribution

The Pareto (or Lomax) distribution is a continuous distribution with pdf:

f (x; α, λ) = αλ(1 + λx)−(α+1) (3.29)

where x, α, λ > 0. α is called shape parameter, λ is called scale parameter.
Pareto generators are mostly based on the inverse transform method. Without

loss of generality, we consider the case λ = 1 4. In this case, if we have U ∼ U(0, 1),
then we need to apply the transformation X = U−(1/α) − 1:

LISTING 3.42: Pareto 1

1 %% Pareto 1

3 clc
clear all

4The Pareto is a scale family of distributions.
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5

n=100;
7 a=2;

9 u=rand(1,n)’;
x=zeros(1,n)’;

11

for i=1:n
13 x(i)=u(i)^( -1/a)-1

end

Another algorithm starts from the generation of deviates form an Exponential with
parameter 1, if Y ∼ Exp(1), then X = eY/α − 1:

LISTING 3.43: Pareto 2

%% Pareto 2
2

clc
4 clear all

6 n=100;
a=2;

8 y=exprnd(1,1,n)’;
x=zeros(1,n)’;

10

for i=1:n
12 x(i)=exp(y(i)/a)- 1

end

3.2.19 Student-t Distribution

The Student-t (or t) is a continuous distribution with pdf:

f (x; ν) =
Γ( ν+1

2 )√
νπΓ(ν/2)

(1 +
x2

ν
)−(ν+1)/2 (3.30)

where x ∈ R and ν > 0. ν is called number of degrees of freedom5. The Student-t
has some important relationships with other random variables.

First, given a Standard Normal Z, Z ∼ N(0, 1) and a Chi-square with ν degrees
of freedom Y, Y ∼ χ2

ν ≡ Gamma(ν/2, 0.5), if these two random variables are inde-
pendent, then we have that :

X =
Z√
Y/ν

∼ tν.

Based on this important relationship, it is possible to generate a Student-t via a Stan-
dard Normal and a Chi-square:

5Note that this number is not necessarily an integer.
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LISTING 3.44: Student-t via Chi Square and Standard Normal

1 %% Student -t Chi -square -NormaleSt

3 clc
clear all

5

n=100;
7 v=5;

9 z=randn(1,n)’;
y=gamrnd(v/2,0.5,1,n)’;

11 x=zeros(1,n)’;

13 for i=1:n
x(i)=z(i)/sqrt(y(i)/v)

15 end

Another important property is that, if X ∼ t2α then the random variable B has a Beta
distribution where,

B =
1
2
(1 +

X√
2α + X2

) ∼ Beta(α, α).

Then, once a random stream of numbers distributed as B = Beta(ν/2, ν/2) is avail-
able, it is only necessary to apply X =

√
ν B−0.5√

B(1−B)
:

LISTING 3.45: Student-t via Beta

1 %% Student -t Beta

3 clc
clear all

5

n=100;
7 v=5;

9 y=betarnd(v/2,v/2,1,n)’;
x=zeros(1,n)’;

11

for i=1:n
13 x(i)= sqrt(v)*(y(i) -0.5)/( sqrt(y(i)*(1-y(i))))

end

Another possibility is to apply a ratio of uniform method (proposed by Kinderman
and Monahan in 1980):

LISTING 3.46: Student-t Ratio of Uniform

%% Student -t Ratio of uniform
2

clc
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4 clear all
n=100;

6 v=5;

8 z=rand(1,n)’;
u=rand(1,n)’*2* sqrt(v)+sqrt(v);

10 x=zeros(1,n)’;
w=z.^(1/v);

12

for i=1:n
14 if w(i)^2+u(i)^2/v<=1

x(i)=u(i)/w(i)
16 else x(i)=NaN

end
18 end

Finally, three alternatives of the polar method are also available:

LISTING 3.47: Student-t Polar 1

1 %% Student -t Polar 1

3 clc
clear all

5

n=100;
7 w=5;

u=rand(1,n)’;
9 v=rand(1,n)’;

11 t=u.*2*pi;
r=sqrt(w*(v.^( -2/w) -1));

13 x=r.*cos(t);
y=r.*sin(t);

LISTING 3.48: Student-t Polar 2

%% Student -t Polar 2
2

clc
4 clear all

6 n=100;
q=5;

8 x=zeros(1,n)’;
u=rand(1,n) ’*2+1;

10 v=rand(1,n) ’*2+1;
w=u.^2+v.^2;

12

for i=1:n
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14 if w(i)>1
x(i)=NaN

16 else x(i)=sgn(u(i))* sqrt((u(i)^2/w(i))*q*(w(i)^( -2/q)-1))
end

18 end

This last method was proposed by Bailey (1994):

LISTING 3.49: Student-t Polar Bailey

1 %% Student -t Rejection Polar method

3 clc
clear all

5

n=100;
7 ni=4;

v_1=rand(1,n) ’*2+1;
9 v_2=rand(1,n) ’*2+1;

r=v_1 .^2+ v_2 .^2;
11 x=zeros(1,n)’;

13 for i=1:n
if r>=1

15 x(i)=NaN
else x(i)=v_1(i)*sqrt((ni*(r(i)^(-8/ni)-1)/r(i)))

17 end
end

3.2.20 Uniform Distribution

The Uniform is a continuous distribution with pdf:

f (x; a, b) =
1

b− a
(3.31)

where x ∈ [a, b]. The generation of Uniform random deviates in (a, b) follows from
the generation of uniformly distributed random numbers in (0, 1). For those tech-
niques please refer to 2. If U ∼ U(0, 1) in order to generate X ∼ U(a, b) it is only
necessary to apply the transformation X = a + (b− a)U, as in the code below:

LISTING 3.50: Uniform(a,b)

%% Uniform(a,b)
2

clc
4 clear all

6 n=100;
a=2;
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8 b=3;
u=rand(1,n)’;

10 x=zeros(1,n)’;

12 for i=1:n
x(i)=a+(b-a)*u(i)

14 end

3.2.21 Wald Distribution

The Wald (or Inverse Gaussian distribution) is a continuous distribution with prob-
ability distribution function in the form:

f (x; µ, λ) =

√
λ

2πx3 e
− λ(x−µ)2

2xµ2 (3.32)

where x, µ, λ > 0. µ is called location parameter and λ is called scale parameter. A
widely used algorithm for the generation of Wald random numbers is the following:

LISTING 3.51: Wald

%% Inverse Gaussian MSGH method
2

clc
4 clear all

6 m=4;
l=2;

8 n=100;
z=rand(1,n)’;

10 y=z.^2;
x_1=m+(m^2*y)/(2*l)-m/(2*l)*sqrt (4*m*l*y+m^2*y.^2);

12 u=rand(1,n)’;
x=zeros(1,n)’;

14

for i=1:n
16 if u(i)<=m/(m+x_1(i))

x(i)=x_1(i)
18 else x(i)=m^2/( x_1(i))

end
20 end

3.2.22 Weibull Distribution

The Weibull is a continuous distribution with probability distribution function in the
form:

f (x; α, λ) = αλ(λx)α−1e−λxα
(3.33)
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where x ≥ 0, α, λ > 0. α is called shape parameter and λ is called scale parameter.
The easiest way to generate a Weibull distribution is by the inverse method,

where, once U ∼ U(0, 1) is available, the transformation X = (−ln(U))
1
α is per-

formed.

LISTING 3.52: Weibull

%% Weibull
2

clc
4 clear all

6 n=100;
a=1.2;

8 b=1;
u=rand(1,n)’;

10 x=zeros(1,n)’;

12 for i=1:n
x(i)=(-log(u(i)))^(1/a)

14 end

A special case of the Weibull is when α = 2 and λ = 1
σ
√

2
. In this case the

distribution is called Rayleigh and a useful generation algorithm is based again on
the inverse method where X = σ

√
−log(U)

LISTING 3.53: Rayleigh

%% Rayleigh Inverse CDF
2

clc
4 clear all

6 n=100;
b=1;

8 a=2;
s=sqrt (2/b);

10 u=rand(1,n)’;
r=zeros(1,n)’;

12

for i=1:n
14 r(i)=s*sqrt(-log(u(i)))

end
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Chapter 4

Value at Risk

After having described Montecarlo techniques, we turn now to their most important
application to risk management: Value at Risk (VaR). VaR is an extensively used
risk measure that has recently received significant regulatory attention. While it is
primarily defined with respect to market risk, it should be noted that it can also be
applied to other categories of risk (i.e., credit risk). In this chapter, the concept of VaR
and its applications to risk management will be introduced. This implies a focus on
the necessary inputs and computational methods. The object of the analysis will
be the three most common approaches to VaR computation: Variance-Covariance,
Historical and Montecarlo simulations.

4.1 Market risk measurement

Financial and non-financial firms deal every day with multiple categories of risk1. In
general terms, risk can be defined as the uncertainty connected to the future outcome
of an investment. For financial firms, one of the main sources of risk that naturally
arises from their activities is market risk. Market risk is formally defined by the Basel
Committee for Banking Supervision (Minimum capital requirements for market risk,
January 2019) as the risk of losses arising from movements in market prices. This risk
then includes default risk (specifically, counterparty risk), interest rate risk, credit
spread risk, equity risk, foreign exchange risk (FX) and commodity risk. Movements
and co-movements in those market factors can significantly erode the value of a
portfolio of financial assets. The banking and trading book share this category of
risk.

After the global financial crisis, market risk started receiving growing attention
both by regulators and by internal risk managers inside financial firms. The reason is
that growing financial markets, complexity of new instruments, integration of global
markets and technological improvements have contributed to increase the sources
and complexity of market risk dramatically.

1Those categories of risk are usually described as credit risk (the risk to be unable to collect a credit
due to the inability to repay of the counterparty), operational risk (risk of loss resulting from inade-
quate or failed internal processes, people and systems or from external events) and liquidity risk (the
risk that a company or bank may be unable to meet short term financial demands).
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In this context, the need for proper measurement of market risk is critical for
many reasons. First, it is internally necessary, especially in big institutions, to be
able to communicate quickly and effectively the magnitude of risk the firm is facing
both in the short and long run. In this respect, simple and understandable mea-
sures of risk are needed in order to be able to inform management. An appropriate
risk measure is also needed to set desired limits to a bank’s risk exposure. Without
a quantitative measure, it is, in fact, not possible to define the risk appetite of the
firm. Finally, sticking to the firm perspective, risk measures associated to return and
performance figures are necessary in order to evaluate how the firm is acting and,
consequently, for resource allocation purposes. Risk measures are indeed also neces-
sary for regulators and supervisors. Those figures need in fact to be communicated
to competent supervisors so that they have a clear picture related to both micro and
macro stability.

For all these reasons, literature has extensively focused on measures that are able
to capture the degree of exposure to market risk of a firm or a portfolio. The most ba-
sic class of market risk measures are nominal measures. This class of indicators is ex-
tremely simple and it is not based on any computation (ex. 100 mil. EUR exposure to
GBP or 200 mil. EUR exposure to LIBOR). In all these cases, risk is defined in face (or
nominal) amounts. Those rudimental measures of risk are, unfortunately, optimal
only if the bank’s activity on financial markets is limited. If this is the case, in fact,
the ease of computation should be privileged compared to the information produced
by the measure. In all other cases, notional values are always not enough to build a
sound market risk management strategy. What risk managers need in their day-to-
day activity, in fact, is a risk measure that is informative in terms of potential losses,
because the amount of the exposure is not informative if it is not coupled with a loss
(or variability) figure. Moreover, notional amounts are defined only with respect to
one exposure and thus are difficult to compare across asset classes. Comparisons
and aggregations are indeed crucial in the activities performed by risk managers.
For all these reasons, different metrics for market risk should be introduced.

Tons of market risk measures are available if one wants to assess the uncertainty
connected to market movements. A first example is volatility. Volatility estimates
the tendency of a random variable to change over time. It is usually estimated based
on historical time series. If coupled with returns, volatilities give an essential idea
about the performance of an investment. A related but in fact distinct class of mea-
sures is sensitivity. Sensitivity estimates the tendency of an instrument to move to-
gether with some market factor (interest rates, exchange rates, stock market indexes,
commodity prices). Those measures are at the heart of portfolio construction. In the
contest of market risk measures, it is necessary to introduce the concept of value at
risk.

Traditional market risk measures have the drawback that they define risk in rel-
ative terms, thus accounting both for upside and downside potential. However, risk
managers (and most of all investors) tend to care only about the downside potential
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of risk. An unexpectedly high return, in fact, is for sure not a problem. Moreover,
traditional risk measures are usually expressed in percentage terms. This implies
that it is not possible to quantify in absolute values how much the portfolio may
lose. Value at risk tries to solve those issues by providing risk managers and in-
vestors with an absolute amount that may be expected to be lost over a specified
time period. We will then proceed with a formal characterization of value at risk.

4.2 Value at Risk

As stated above, Value at Risk is a widely used market risk measure. This measure
is relevant because it summarizes in a single absolute number the total risk of a
portfolio. VaR can be defined as the absolute maximum loss in value of an asset
or portfolio of (financial) assets over a defined horizon with a specified probability
(confidence level). Putting it differently, VaR gives information about how much
a portfolio is expected to lose in absolute terms with a given probability and over
a time horizon, assuming that the composition of the portfolio remains unchanged
over that horizon. For example, if we know that, over a one-day holding period and
at 99 % confidence level, the VaR of a portfolio or financial instrument is 50 mil. EUR,
it means that there is 1% probability that the value of the asset or portfolio will drop
by more than 50 mil. EUR over a day. In general terms, given a confidence level 1− α

and a holding period t, the VaR is the value of loss that we expect to be exceeded with
probability α during the period t. The confidence level 1− α is usually thought as
denoting “normal” market conditions, while α represents unexpected (thus unlikely)
market movements. VaR is then a measure that summarizes the absolute maximum
amount of loss for a portfolio in normal market conditions. In more precise statistical
terms, VaR represents a quantile of the distribution of profits and losses (P&L) of the
portfolio.

VaR is a crucial measure in the assessment of the institution’s exposure to market
risk. On the one hand, institutions themselves use this measure in order to evaluate
their risk profile. This implies that VaR can be used both ex-ante and ex-post. Insti-
tutions tend in fact to set limit values to VaR so to be able to manage their desired
exposure to adverse market movements. Ex post, VaR is a widely used measure for
portfolio evaluation. On the other hand, regulators and supervisors have historically
heavily relied on value at risk. The Basel Committee for Banking Supervision (1996),
for example, imposes that capital requirements for market risk are estimated using
Value at risk models. In this cornerstone, banks are set free to choose which model
to use in the estimation of VaR. It is then clear that banks and financial institutions
have a clear incentive in developing accurate models for the estimation of value at
risk in order to avoid underestimations or overestimations of capital requirements.

VaR has just been defined as the absolute maximum loss in value of an asset or
portfolio of assets over a defined horizon with a specified probability. The primary
input that is needed is then the estimated distribution of profits and losses (P&L)
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over the holding period. This enables us to estimate the absolute maximum loss.
The result will be an amount denominated in the relevant currency. Even if this
amount represents a loss, it is usually denoted in absolute terms, and thus a negative
VaR implies that, even in an adverse scenario, a gain is expected. What is usually
available to risk managers is the value of the portfolio of assets, P, over the relevant
period [t, T]. In order to obtain the P&L input, one has to apply P&Lt,T = PT − Pt.
Once the distribution of this variable is known, it is possible to implement the model
and come up with an estimation of VaR.

It is indeed also possible to evaluate VaR is relative terms. This is especially
convenient when it is necessary to draw comparisons among portfolios of different
sizes. In this case, the input quantity is not the P&L distribution anymore, but the
holding period log return. Given the holding period [t, T] and the value of the port-
folio P, the holding period log return is defined as rt,T = ln( PT

Pt
). In this case, if 1-day

VaR at 5% confidence level is 2 %, it implies that with 99% probability the portfolio
will have a return higher than −2% over a 1-day horizon.

4.2.1 VaR components

The definition of VaR has already underlined its most important components. Those
elements can also be seen as the necessary inputs for the computation of VaR.

The first element is the confidence level α. α represents the probability level start-
ing from which we may observe losses that are higher than what predicted by the
VaR. It is common in practice to set α ∈ [1%, 5%]. However, there is no optimal value
and the choice critically depends on the characteristics of the portfolio and institu-
tion. The choice of the confidence level has serious consequences if VaR is used for
the evaluation of capital requirements. Capital requirements, in fact, have to reflect
the degree of risk that the institution is undertaking. In this respect, the confidence
level should reflect the degree of risk aversion of the institution. Consequently, as
the level of risk aversion of the institution increases, α should decrease, reflecting the
fact that the amount of capital needed to cover potential losses increases. If the aim
is to compare VaRs of different institutions or portfolios, the choice of α is then not
critical, but it has to be recalled that, in order to be able to compare VaR figures, they
should be obtained for the same confidence level. This conclusion stems from the
fact that VaR naturally increases as α decreases. It is, in fact, intuitive that losses that
may occur with a probability of 1% are higher than the ones that may occur with
probability 5%. Even if usually α ∈ [1%, 5%], there are some circumstances in which
different values may be used. Specifically, high values such as 10% or 15% may be
used to set VaR limits. Conversely, extremely low values (0.01%) may be used for
economic capital allocation purposes.

The second critical element is the holding period t. This component is critical
because, once the holding period is set, we are assuming that the portfolio will re-
main unchanged for the whole length of t. This explains why the typical holding
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period is set to be 1-day. If it is longer, in fact, the assumption may be violated, espe-
cially for assets that are traded frequently. In abstract terms, the holding period may
be chosen to be of every length. However, common choices are 1-day, 10-days, 1-
month, 1-year. It is possible to define a relationship among VaR measures computed
for different holding periods. Define VaR1 as the VaR computed for a 1-day hold-
ing period. If we want to compute VaR with holding period t then we have to apply
VaRt = VaR1

√
t. Note that this relation is only approximate. One of the most impor-

tant considerations when choosing the holding period is liquidity. We have stated
that a good holding period choice is 1-day since it is reasonable to assume that a
portfolio will remain unchanged in its composition over 1-day. However, when a
short holding period is used, we are assuming that markets are so liquid that posi-
tions can be closed out without incurring in significant losses. This assumption may
not always be reasonable and thus it is convenient to compare VaRs with short hold-
ing periods to VaRs calculated with longer holding periods (such as one month). In
general, it is appropriate to use long holding periods (1-month to 1-year) if the VaR
exercise aims to plan capital allocation or if the portfolio contains illiquid assets.

The last element is probably the most discussed one. When computing VaR, it
is necessary to specify the distribution of P&L (or in the same way of log returns).
Only in this way it is possible to determine the maximum potential loss. Recall in
fact that VaR is nothing but a quantile of the distribution of profits and losses (or
returns) of the portfolio. To state in more rigorous terms, given the time horizon
t, the confidence level α and the distribution of P&L, VaR is that number such that
the probability of incurring in higher losses is equal to α or, conversely, that number
such that the probability of incurring in lower losses is equal to 1− α:

P(P&Lt ≤ VaR) = 1− α.

Different models and different banks use different assumptions for the distribution
of P&L underlying every VaR model. These different choices will be extensively
described in this chapter and in 5.

4.2.2 Common steps: risk mapping

Methodologies for the computation of value at risk can broadly be divided into two
categories. The first one comprises local valuation (or parametric) methods. These
models evaluate the portfolio at date 0 and use derivatives in order to evaluate fu-
ture movements. The primary example is the delta-normal method in which normal
distribution assumed. The second category are full valuation methods. Those meth-
ods evaluate the portfolio in different future scenarios and they are mainly simula-
tive models2. The two main examples of this category are historical simulation and

2Suhobokov, Alexander. (2007). Application of Monte Carlo simulation methods in Risk Manage-
ment. Journal of Business Economics and Management. 8. 165-168.



76 Chapter 4. Value at Risk

the Monte Carlo method. These three models will be separately described in the
following pages. Now we will focus on some similarities.

Even if models for the computation of VaR are different in many respects, they
share a common set-up and infrastructure. It is usually thought, in fact, that in order
to evaluate VaR, a three-step approach should be followed. The first necessary step
is the evaluation of portfolio value at time 0. There are no significant differences
among the three techniques in this respect. The second step is the critical one. In this
phase, the future distribution of portfolio P&L (or returns) should be estimated over
the holding period. Here differences among the models arise because each model
makes different assumptions about the relevant random variable. Finally, once the
(estimated) distribution is available, it is only necessary to select the right percentile.
This gives the estimated value for VaR. Even in this final step, there is no relevant
difference among the methods.

It is clear that the second step is especially critical, because wrong assumptions
about future portfolio value may lead to a biased estimation of VaR. This is espe-
cially dangerous when VaR is used for capital allocation purposes. Irrespective of
the assets that compose the portfolio, risk managers should balance the need for
simple and understandable techniques with the need for a realistic representation
of reality carefully. Even if the future is unknown, it is possible to leverage on some
well-known facts about asset values and returns. First, even if normality assumption
for asset returns is appealing for computational reasons, asset returns do not tend to
display this behavior. Instead, returns distributions are characterized by fatter tails
than predicted by the Normal distribution (Leptokurtotic distribution). In addition,
when compared to the Normal distribution, returns tend to be negatively skewed.
Finally, even if in most models it is assumed that volatilities and correlations are sta-
ble over time, they likely change. For example, the pattern of correlations seems to
change during crisis periods significantly. Model developers should keep all these
observations in mind when deciding the main assumptions for the definition of fu-
ture portfolio value evolution.

In order to be able to define the assumption on the distribution of portfolio P&L
(or returns) it is necessary to understand which the drivers of the value of the port-
folio are. This activity is complicated but crucial because only if the definition of the
drivers is granular, the estimated values are reliable. The selection of all the market
factors that are able to influence the value of the portfolio and of the mathematical
relationship that defines how this happens is referred to as risk mapping. Conse-
quently, whatever the model to compute VaR is, a first necessary preparatory step is
the identification of simple market factors that influence the value of the portfolio.
Without this preliminary step, the computation of VaR is impossible due to compu-
tational burdens. Risk mapping usually applies a top-down approach. This implies
that, given the overall complex portfolio, it should be divided into several simpler
instruments, whose relation with primary market factors is clear and (hopefully)
simple in mathematical terms. This step is indeed extremely complicated because
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financial instruments as swaps, options, loans and exotics are influenced by an in-
credibly high number of market factors that are difficult to account for (for example
because the payoff is non-linear). The process of risk mapping is especially impor-
tant in parametric models. In these models, in fact, it is necessary to express in closed
form the dependence of the portfolio on the primary market factors. In simulative
models (Montecarlo and historical simulation), the portfolio is revaluated in every
simulated scenario and thus a comprehensive value for the portfolio is immediately
obtained. Nevertheless, the process of risk mapping is anyway necessary in order
to make the correct assumptions about the distribution to choose (in the Montecarlo
case) and about the formula to use in order to evaluate the portfolio at each scenario
(in both cases).

We will consider an example in order to explain what risk mapping actually is
and how it works in practical terms. This example will be used throughout this
chapter. The instrument object of analysis is a forward contract. It will shortly be
clear that this instrument can easily be seen as a portfolio. Assume a US-based bank
entered into an exchange rate forward contract (from now on we will call this in-
strument FX). On the delivery date, the American bank will deliver 6 mil. USD and
will receive 10 mil. GBP. We will assume that today’s date is the 15th of January and
that the contract has delivery date 15th of April. Accepting the 360 convention (i.e.
12 months with 30 days), the remaining time to delivery is 90 days, T = 90 days
= 90

360 = 0.25 year. Our goal is to define the current value of this contract. To do
so, it is necessary to define it as the sum of some simpler components, that are all
the factors that are able to influence the FX. Start by analyzing the cash flows con-
nected to this contract. The owner will receive 10 mil. GBP and pay 6 mil. USD on
the delivery date. Then the present value (mark-to-market) of the contract is simply
PV(10mil.)GBP− PV(6mil.)USD. Remember that the value of the investment shall
be assessed with respect to the US investor, and thus the currency should be USD.
Then, we can conclude that in order to compute this mark-to-market value, we need
three figures: the exchange rate and the two discount rates (one per currency). The
first one (exchange rate) is the spot exchange rate quoted as USD vs. GBP. In order
to compute today’s mark-to-market value, we need the current spot exchange rate,
S. This is needed in order to convert the amount received in GBP in USD. In order to
discount future cash flows, we also need interest rates. The two applicable interest
rates are the US one and the UK one. The best choice would be three-months interest
rates, rUSA and rUK. We have concluded the risk mapping exercise because we have
decomposed a complex contract (the forward) in two basic instruments that are di-
rectly and clearly influenced by observable market factors. The first instrument is a
bond with face value of 10 mil. GBP, the second one is a short position on a bond
with face value 6 mil. USD, both with maturity three months. The value at time 0
(today) of the contract is then:

S
10GBP

(1 + rUK)0.25 −
6USD

(1 + rUSA)0.25 .
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FIGURE 4.1: Normal Distribution of P&L

In order to compute this quantity it is only necessary to observe the current value of
the three market factors S, rUSA, rUK.

If the market factors able to influence the value of the portfolio have been iden-
tified, then it is necessary to make assumptions about their future behaviour, so to
be able to assess the value of the portfolio in the future. As stated above, parametric
and simulative models significantly differ in the way of making these assumptions.
Differently, the risk mapping phase is common to the three approaches.

4.2.3 A simple example

Before the explanation of the various techniques for the computation of value at risk
and in order to understand what the concept of value at risk actually means, we will
introduce a merely explicative example.

Assume that the distribution of portfolio P&L over the holding period of 15 days
is known. This is of course an unrealistic assumption if the risk mapping exercise
has not yet been performed. Assume further that the distribution is as represented
in Figure 4.1.

We have defined the value at risk as the absolute maximum loss in value of an
asset or portfolio of assets over a certain horizon with a specified probability. If, for
example, we set α = 0.05 this means that we are interested in the maximum loss that
will be incurred with 95% probability, i.e., there is a 5% chance, on average, that the
incurred loss will be higher than what predicted by the value at risk. In our case,
VaR is simply equal to the value of this (Normal) distribution that corresponds to
the 95% percentile. It is easily found via Matlab using the code VaR=prctile(x,0.95),
where x is the vector that represents the P&L.
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4.3 Parametric approach

The parametric approach is broadly considered the most simple model for the com-
putation of value at risk. The most important assumption of this model is that it is
not necessary to re-evaluate the portfolio in the future because its variance3 is suf-
ficient for the computation of value at risk. As noted in the previous paragraph,
portfolios held (for trading) by financial institutions can be incredibly complex. For
the application of this method, this would imply a heavy computational burden.
For this reason, a portfolio is usually decomposed in the sum of simple instruments
or market factors (risk mapping). Those basic instruments will become the basis
for the computation of portfolio variance (which depends on the composition of the
portfolio and on variances and covariances of the instruments). We will use the
variance-covariance method as an example of a parametric approach.

The variance-covariance method is based on some critical assumptions. Those
assumptions are incredibly restrictive and they can be viewed as the reason for the
limited use of this model. First, the variance-covariance method assumes that the
joint distribution of the market factors that influence the portfolio is Normal. The
reason is mainly to simplify computations. However, this assumption does not seem
to be always appropriate. In the case of stock prices, for example, it is well known
that their distribution has fatter tails than predicted by the Normal. The second
assumption is that all market factors have zero autocorrelation, meaning that the
past does not influence current values. Finally, it is assumed that correlations among
market factors are constant. This assumption is especially relevant since it is well
known that the pattern of variances changes significantly during periods of market
turmoil (such as a crisis). Since this method is not able to account for these changes,
it may lead to a significant underestimation of VaR (and thus of the level of risk in
general).

4.3.1 Computation

The computation of value at risk according to the variance-covariance approach can
be divided into some steps. Those steps are always the same, irrespective of the
complexity of the portfolio to be considered. Of course, as the complexity of the
portfolio increases, the procedure will be more elaborate and time-consuming.

Step 1. As expected, the first step is always risk mapping. This means that, given
a portfolio or financial instrument, it should be decomposed in simpler components
that are directly influenced by market factors. It is important to know that, especially
for this method, risk mapping should be performed even if the instrument to be eval-
uated is already simple. For example, consider a 3 years coupon bond with annual
coupons. It may well be considered as a simple and standard instrument. However,
risk mapping can be performed even in this case, by representing the coupon bond
as the sum of three zero-coupon bonds. The first ZCB has maturity one year and

3Of course, covariances are taken into account too, as will be shown in the following pages.
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face value equal to the first coupon, the second ZCB has two years maturity and face
value equal to the second coupon, the third ZCB has three years maturity and face
value equal to the sum of the third coupon and the face value of the original three
years coupon bond. Once this exercise is done, it is easy to see that this coupon bond
is not only influenced by the yields of similar coupon bonds, but also by the yields
of the three ZCBs. Of course, risk mapping involves not only the identification of
the factors that are able to influence the portfolio, but also the definition of the for-
mula that links those values to the portfolio. In the case of the coupon bond (C) and
calling a ZCB with maturity i ZCBi, this is simply C = ZCB1 + ZCB2 + ZCB3.

Step 2. Once the market factors are available, it is necessary to make some as-
sumptions about their distribution. In the delta-normal method (which is one of the
most widely used) the assumption is that the distribution of the market factors over
the relevant horizon is Normal. If we define m(t, t + ∆) to be the distribution of the
market factor over the horizon ∆ then we are assuming that m(t, t + ∆) ∼ N(µ, σ2).
If we accept the assumption that every market factor has a Normal distribution4

then in this step the only goal is to estimate the parameters of the distribution for
each market factor. In the case of normality, the parameters to be estimated are only
two, namely the mean µ and the standard deviation σ. Recall that, given a Normal
distribution m(t, t + ∆) ∼ N(µ, σ2), the mean is defined as

µ = E(r(t, t + ∆))

and the standard deviation as

σ =
√

Var(r(t, t + ∆)).

If the risk factors are more then one, then it is also necessary to estimate their cor-
relation. Given two market factors m1(t, t + ∆) ∼ N(µ1, σ2

1 ) and m2(t, t + ∆) ∼
N(µ2, σ2

2 ), the correlation coefficient between these two variables, ρm1,m2 is defined
as:

ρm1,m2 =
Cov(m1, m2)

σm1 σm2

.

In practice, those parameters are estimated based on historical values of the market
factors. While it may be acceptable to use history to estimate standard deviations,
this may not be reasonable for means and correlations. History may not repeat and,
especially during crisis periods, the VaR estimation based on wrong parameters may
not be reliable anymore.

Step 3. At the end of Step 2, all information related to individual market factors
is known. The next step is to aggregate the information so to know the parame-
ters of the portfolio or instrument. Those parameters will be the necessary input
for the computation of VaR. In order to be able to compute portfolio mean and

4It has already been established that this assumption may not be reasonable in many stances.
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variance, normality assumption is crucial. It is well known that the sum of nor-
mally distributed random variables is again a Normal random variable. Assume
that the relevant portfolio can be described as the algebraic sum of n market factors,
m1, ..., mn. Assume further that all those market factors are normally distributed:
mi(t, t + ∆) ∼ N(µi, σ2

i ), ∀i. The weights (in absolute or relative terms) of each mar-
ket factor i are defined as wi. Then, the distribution of the portfolio’s P&L (or returns)
is Normal with mean

µP =
n

∑
i=1

µi

and standard deviation:

σP =

√√√√ n

∑
i=1

n

∑
j=1

wiwjσiσjρmi ,mj .

At the end of this step, we are thus able to determine µP and σP.
Step 4. Finally, we are in the position to compute the value at risk figure for

the instrument or portfolio. Given the time horizon ∆, the mean of the portfolio,
µP, the standard deviation of the portfolio, σP, and the confidence level, α, the VaR
according to the parametric approach is given by:

VaR(t, t + ∆) = −(µP + z1−ασP) (4.1)

where z1−α is the 1− α% percentile of the Standard Normal distribution5.
One necessary consequence of this set-up is that we have critically assumed that

the portfolio can be described as the algebraic sum of some basic market instru-
ments. Only in this way, in fact, it is possible to conclude that the distribution of
portfolio P&L (or returns) is Normal. An important implication of this is that it is
not possible to directly apply this method to portfolios that have non-linear relations
with the relevant market factors. In the case of options, for example, some modifica-
tions will be needed.

4.3.2 Example

The computation of VaR trough the delta normal approach will be made clear via an
example introduced early in this chapter.

Consider the forward contract defined in 4.2.2. Recall that, on the delivery date,
the American bank will deliver 6 mil. USD and will receive 10 mil. GBP. The ma-
turity of this contract is T = 90 days. It has been shown that the value of this in-
strument is influenced by three figures: the current spot exchange rate USD vs. GBP,
S, and the two three-months interest rates (one per currency), rUSA and rUK. This
contract can thus be seen as the sum of a long position in a three-months GBP de-
nominated zero-coupon bond with face value 10 mil. GBP and a short position in a

5Note that this formula can easily be adapted to the portfolio distribution that is chosen.
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three-months USD denominated zero-coupon bond with face value 6 mil. USD. The
value at time 0 (today) of the contract is then:

S
10GBP

(1 + rUK)0.25 −
6USD

(1 + rUSA)0.25 (4.2)

A good starting point is the computation of the current value of the portfolio. In
order to calculate it, we need to observe, on the markets, the values for S, rUSA and
rUK. S is the exchange rate denominated EUR vs GBP, assume it is equal to S0 = 1.29.
rUSA is the rate on US three-month T-Bill, assume rUSA = 2.3%. Finally, rUK is the
rate on the three-month English government bonds, assume rUK = 0.9%6. Now we
have all the necessary inputs to compute the current value of the portfolio according
to the formula

PV(P) = S0
10GBP

(1 + rUK)0.25 −
6USD

(1 + rUSA)0.25 = 6.91mil.USD.

Now that the current value of the portfolio is known, it is necessary to assume
that all the market factors, S, rUSA and rUK, are normally distributed. Once we make
this assumption, it is necessary to estimate the parameters µ and σ for each of them.
As mentioned early, we base this estimation on historical time series.

For the exchange rate USD vs GBP source of data is Banca d’Italia database, the
window of estimation is 15/02/2010 to 15/02/2019 and the frequency of data is
monthly. The estimated parameters are µS = 1.49 and σS = 13.34%. Figure 4.2 gives
an overview of the evolution of this market factor.

The histogram in Figure 4.3 depicts the distribution of the exchange rate. The
distribution is far from Normal in the fact that it displays fatter left tails and it is not
centered around the mean. This lack of fitting between data and assumptions may
have severe consequences on the reliability of VaR estimation.

The second market factor is the USD T-bill rate. For this dataset, the source is Ya-
hoo finance. Frequency of data is monthly and the estimation period is 15/02/2010
to 15/02/2019. The estimated parameters are µUSA = 0.042% and σUSA = 0.19%.
This rather low mean comes from the fact that at the beginning of the dataset yields
on T-bills were extremely low, while, in more recent times, we have seen the inver-
sion of the yield curve (i.e. yields on government bonds with longer maturities are
lower than government bond rates with shorter maturities). This inversion is a con-
cern when modelling since it is uncertain whether this situation will persist or if the
curve will become again normal. Figure 4.4 describes the evolution of US 3-month
T-Bill rates. The histogram in Figure 4.5 underlines that the distribution is clearly
not close to the Normal, being it concentrated at extremely low values. This pattern
depends, as explained above, from the data period.

The third and last market factor is the UK three-month T-bill rate. For this
dataset, the source is Bank of England database. Frequency of data is monthly and

6All interest rates are annualized.
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FIGURE 4.2: Evolution of USD vs. GBP exchange rate 2010-2019

FIGURE 4.3: Distribution of USD vs. GBP exchange rate 2010-2019
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FIGURE 4.4: Evolution of USD T-bills 2010-2019

FIGURE 4.5: Distribution of USD T-bill rates 2010-2019
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FIGURE 4.6: Evolution of UK T-bills 2010-2019

the estimation period is 15/02/2010 to 15/02/2019. The estimated parameters are
µUK = 1.27% and σUK = 0.62%. Figure 4.6 describes the historical evolution of UK
3-months T-bills. The histogram in Figure 4.7 depicts a distribution which is closer
to the Normal with respect to the other two but still with fatter tails and less bell-
shaped.

The next step is to assume that all these three market factors are normally dis-
tributed, S ∼ N(µS, σ2

S), rUSA ∼ N(µUSA, σ2
USA), rUK ∼ N(µUK, σ2

UK), even if we
have already underlined that this distribution is not fitted with historical data.

Since we have assumed that this portfolio can be represented as the sum of a
long and a short position and thus that the relationship with the market factors is
linear, we can conclude that the pay-off of this portfolio has a Normal distribution
with mean µp and standard deviation σp.

In order to come up with an estimation of the portfolio standard deviation, we
need to estimate the correlation coefficients among the three variables. Those corre-
lations result to be: ρS,USA = −0.71, ρS,UK = 0.62, ρUK,USA = −0.32.

Applying the formula described in Step 3 above, we conclude that this portfolio
is normally distributed as P ∼ N(21.4%, 17.13%2).

Now, we have all the ingredients for the computation of VaR according to the
following formula:
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FIGURE 4.7: Distribution of UK T-bill rates 2010-2019

VaR(1−month) = −(µp + z1−ασP).

Where µp = 21.4%, σp = 17.13% and z1−α = 1.65. If we choose α = 5%, the esti-
mated VaR is then USD 0.07 mil.. This is the maximum loss expected to be incurred
in 95% of cases.

The code below describes all computations that were performed:

LISTING 4.1: Parametric VaR for Portfolio

%% VaR Forward Var/Cov
2

%initial values
4

r_usa_0 =0.023
6 r_uk_0 =0.009

S_0 =1.29
8 Q_us=6

Q_uk =10
10 T=0.25 %maturity

P_0=S_0*(Q_uk )/(1+ r_uk_0 )^T-Q_us /(1+ r_usa_0 )^T
12

t1=datetime (2010 ,1 ,15)
14 t = t1 + calmonths (1:108) %generate dates for plot
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16 %% Exchange rate analysis

18 S=GBPUSDmontly (3: end)
m_S=mean(S)

20 s_S=std(S)

22 plot(t,S)
hist(S)

24

26 %% US t-bills

28 r_usa=USDBillsmonthly (3:end )*0.01

30 m_usa=mean(r_usa)
s_usa=std(r_usa )*12^( -1/2)

32 plot(t,r_usa)
hist(r_usa)

34

%% GBP Bills
36

r_uk=Ukbillsmonthly (3: end )*0.01
38

m_uk=mean(r_uk)
40 s_uk=std(r_uk)

plot(t,r_uk)
42 hist(r_uk)

%% Portfolio
44

covS_uk=corrcoef(S,r_uk)
46 corS_uk=covS_uk (1,2)

covS_us=corrcoef(S,r_usa)
48 corS_usa=covS_us (1,2)

covus_uk=corrcoef(r_usa ,r_uk)
50 coruk_usa=covus_uk (1,2)

52 m_port=Q_us*m_usa+Q_uk*m_uk*m_S
s_port=sqrt(Q_us ^2* s_usa ^2+ Q_uk ^2* s_uk ^2+ s_S ^2+2* Q_us*Q_uk

54 *coruk_usa*s_usa*s_uk +2* Q_us*corS_usa*s_usa*s_S+2* corS_uk*Q_uk*s_uk*s_S)

56 %alpha =5%

58 VaR=m_port -1.65* s_port %compute portfolio VaR
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4.3.3 Advantages and disadvantages

From the above description, it is evident that one of the main advantages of the
parametric approach is its simplicity. The delta normal method is, in fact, fast and
straightforward to compute because it requires only the estimation of means, stan-
dard deviations and correlations. If for example, those parameters are immediately
available in trusted datasets, it is not even necessary to estimate them.

Not only this measure is easy to compute, but also to explain. It may thus be
a right candidate for senior management reporting. However, from its simplicity,
some major weaknesses arise.

First, the delta normal approach critically depends on the normality assumption
for all market factors and consequently, for the portfolio. As already pointed out,
this assumption may not be reasonable in many cases. This is a significant weakness
of the model because unjustified normality assumption may lead to an underesti-
mation of VaR. This comes from the fact that empirical distributions of returns tend
to have more outliers than predicted by the Normal. More complex distributions
may be more fitted to data, but the use of these distributions increases the complex-
ity of computations and thus the main advantage of this method. In order to assess
whether this procedure is appropriate statistical tests for normality are advisable.

Another issue is connected to standard deviations. As described above, standard
deviations of market factors are usually estimated based on historical time series. As
every estimation based on historical data, standard deviations come with associated
standard errors. If those errors are significant, it may not be possible to use them
for the calibration of VaR. Moreover, estimation techniques assign the same weight
to every observation while, in some cases, it may be desirable to overweight recent
times. A connected issue comes from the fact that this model does not allow for
time-varying standard deviations.

4.4 Historical simulation approach

The Historical simulation approach is another well-known technique for the compu-
tation of VaR. It is referred to as a non-parametric technique since, in the application
of this model, no assumption regarding the shape or parameters of the market fac-
tors (and consequently of the portfolio) is made. The core idea is that history will
exactly repeat itself and thus, past distribution of market factors are the best approx-
imation for the future. Banks tend to do extensive use of this approach due to its
simplicity. Since normality is not assumed, one positive aspect of this method is that
it is able to account for fat tails and kurtosis, differently from the variance-covariance
approach.

When the historical simulation method is applied, time series of the market fac-
tors are combined to produce the distribution of portfolio P&L. Portfolio distribu-
tion at each date is, in fact, computed based on historical changes in the market
factors. In more specific terms, percentage changes (over the relevant horizon) of
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market factors are computed based on historical data. Once these changes are avail-
able, they are applied to the current value of the portfolio so to be able to reprice it. If
we observe market factor values for n + 1 days, then n percentage changes are avail-
able. The current value of the portfolio is then multiplied by those n percentages to
estimate the distribution of future portfolio P&L. n different values will characterize
this distribution, and VaR is then simply computed as the value that corresponds to
the 1− α percentile.

An implication of this set up is that it will be necessary to estimate the parame-
ters and correlations of the various distributions since those are already embedded in
the repricing of the portfolio. Another necessary consequence is that this method can
also be applied to instruments whose pay-off is nonlinear with respect to risk param-
eters. The following section describes how historical simulation works in practical
terms.

4.4.1 Computation

The computation of value at risk according to the historical simulation approach can
be divided into some steps. Those steps are always the same, irrespective of the
complexity of the portfolio to be considered. Of course, as the complexity of the
portfolio increases, the procedure will be more elaborate and time-consuming.

Step 1. The first step is, again, risk mapping. The portfolio should be deeply ana-
lyzed so to understand which market factors drive its value and which standardized
positions can fully describe its behavior. Then, the estimation window should be de-
cided. If the aim is to compute VaR over a one-day horizon, it will be necessary to
use daily data. Conversely, if VaR is computed over a one-month holding period,
data must be monthly and so on. Once the holding period has been set, then it is
necessary to choose the length of the time series to use in the estimation. This choice
is especially relevant. The further you go in the past, in fact, the more observations
you gather. However, market conditions may well be changed. Consequently, a
right balance between the number of data points and the representativeness of the
sample should be found.

Step 2. Once this choice has been made, historical time series for the market
factors should be obtained. Assume that, in Step 1, it was decided to collect data
points for n + 1 periods. If those data are available, then the following step is to
compute changes in the market factor from one observation to the other. Depending
on the chosen holding period, those changes may be daily, monthly and so on. If,
for the market factor i, the available historical time series is defined as:

Mi = {mi,1, mi,2, ..., mi,n+1}. (4.3)

Then percentage changes, ri,j should be computed as ri,j =
mi,j+1

mi,j
− 1 with j =

1, 2, ..., n. This procedure gives, as a result, the percentage changes of each market



90 Chapter 4. Value at Risk

factor over the estimation period. As the holding period increases, we may expect
those percentages to increase.

Step 3. This step is the heart of the historical simulation approach. The goal of
this step is the production of the future distribution of portfolio P&L. In order to
achieve this goal, it is necessary to use the output of the previous step. Given the
n percentage changes of the k market factors, ri,j, those will be combined with the
actual (date 0) observable values. This means that the value of the market factors
will be a result of their historical evolution but not equal to them. In practical terms,
for each market factor i, the first percentage change, ri,1, is multiplied by the current
value of the factor, mi,0, to obtain the first data point, mi,1:

mi,1 = mi,0(1 + ri,1) (4.4)

Once this number is available, following values are simply computed by multiplying
the factor with the historical percentage change, i.e.:

mi,j = mi,j−1(1 + ri,j) (4.5)

Once the historical based evolution of the market factors has been computed for
the n data points, it is only necessary to combine them to discover the distribution
of portfolio value. This is based on the relationship that has been identified in the
risk mapping phase. The result of this procedure is that portfolio distribution has
not actual historical values, but a re-evaluation of them based on the current status.
Finally, if P = {p1, p2, ..., pn} is the distribution of portfolio value, it is necessary to
compute the P&L distribution. It is simply done by subtracting to the i-th value of
the distribution today’s actual value:

P&Li = pi − p0.

Step 4. The most important outcome of Step 3 is the series of portfolio profits
and losses for the n observation periods. In Step 4 it is only necessary to order them
in ascending order.

Step 5. Finally, as the ordered P&L distribution is available, the value that corre-
sponds to the 1− α percentile must be selected. This number is, in fact, the estimated
value at risk7.

4.4.2 Example

The computation of VaR trough the historical simulation approach will be made
clear via the same example used for the delta normal approach.

7Note that interpolation may be necessary
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Consider the forward contract defined in 4.2.2. Recall that on the delivery date,
the American bank will deliver 6 mil. USD and will receive 10 mil. GBP. The ma-
turity of this contract is T = 90 days. It has been shown that the value of this in-
strument is influenced by three figures: the current spot exchange rate USD vs. GBP,
S, and the two three-months interest rates (one per currency), iUSA and iUK. This
contract can thus be seen as the sum of a long position in a three-months GBP de-
nominated zero-coupon bond with face value 10 mil. GBP and a short position in a
three-months USD denominated zero-coupon bond with face value 6 mil. USD. The
value at time 0 (today) of the contract is then:

S
10GBP

(1 + iUK)0.25 −
6USD

(1 + iUSA)0.25 .

A good starting point is the computation of the current value of the portfolio. In
order to calculate it, we need to observe, on the markets, the values for S, iUSA and
iUK. S is the exchange rate denominated EUR vs GBP, assume it is equal to S0 = 1.29.
iUSA is the rate on US three-month T-Bill, assume iUSA = 2.3%. Finally, iUK is the rate
on the three-month English government bonds, assume iUK = 0.9%8. Now we have
all the necessary inputs to compute the current value of the portfolio according to
the formula

PV(P) = S0
10GBP

(1 + iUK)0.25 −
6USD

(1 + iUSA)0.25 = 6.91mil.USD

Set α = 0.05, the confidence level. Now it is necessary to decide the estimation
period, i.e., the number of observations we need in order to estimate future portfolio
distributions. First, VaR will be computed with a one-month horizon. Consequently,
historical observations need to be monthly. Assume that we need n = 100 observa-
tions in order to be confident about the future behavior of the portfolio. Since obser-
vations are collected on a monthly basis, the dataset will run from October 2010 to
February 2019. Now we can turn to the analysis of the three market factors.

Data for the exchange rate USD vs GBP are monthly, from October 2010 to Febru-
ary 2019. Source is Banca d’Italia database. Once the dataset is available, S =

{s1, s2, ..., s101}, we need to compute percentage daily changes of the exchange rate:
rS,i =

si+1
si
− 1, ∀i. The result of this computation will be n = 100 monthly percentage

changes in the exchange rate. Now it is necessary to apply those percentages to the
current value of the market factor (and, in loop, to all preceding values) so to obtain
the simulated evolution of the exchange rate: Ss,i = Ss,i−1(1 + rS,i). The graph in
Figure 4.8 depicts the comparison between historical and simulated exchange rates.
As expected, the trend is the same, but actual values differ. This comes from the fact
that historical simulation applies historical percentage changes to actual values.

The second risk factor is the yield on 3-month US T-bills. Data for US T-bills
are monthly, from October 2010 to February 2019. Source is the Federal Reserve

8All interest rates are annualized.
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FIGURE 4.8: Historical and simulated USD vs. GBP exchange rate

FIGURE 4.9: Historical and simulated USD T-bill rates

database. Once the dataset is available, iUSA = {iUSA,1, iUSA,2, ..., iUSA,101} we need
to compute percentage daily changes of the yield: rUSA,i =

iUSA,i+1
iUSA,i

− 1, ∀i. The result
of this computation will be n = 100 monthly percentage changes in the US 3-month
T-bill rates. Now it is necessary to apply those percentages to the current value of
the market factor (and, in loop, to all preceding values) so to obtain the simulated
evolution of the rate: iUSAs,i = iUSAs,i−1(1 + rUSA,i). Figure 4.9 depicts the compar-
ison between historical and simulated T-bill rates. The trend is still the same, but
the simulated path seems to be much more pronounced than the historical one. This
comes from the fact that US rates, in the period considered, had experienced sig-
nificant growth in percentage terms. If the starting value to which those rates are
computed is high, then the positive trend is exacerbated.

The final risk factor is the yield on the 3-month UK T-bill. Data for UK T-bills are
monthly, from October 2010 to February 2019. Source is Bank of England. Define the
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FIGURE 4.10: Historical and simulated UK T-bill rates

historical evolution of yields over the relevant period as

iUK = {iUK,1, iUK,2, ..., iUK,101}.

Next step is to compute percentage daily changes: rUK,i =
iUK,i+1

iUK,i
− 1, ∀i. The result

of this computation will be n = 100 monthly percentage changes in the UK 3-month
T-bill rates. Now, it is necessary to apply those percentages to the current value of
the market factor (and, in loop, to all preceding values) so to obtain the simulated
evolution: iUKs,i = iUKs,i−1(1 + rUK,i).

The comparison between historical and simulated T-bill rates is described in Fig-
ure 4.10. As in the exchange rate case, the trend of the two distributions is very close,
but with different absolute values (the simulated ones being lower).

Now that the evolution of the simulated market factors has been computed, the
last step is to re-evaluate the portfolio, based on those factors. For each scenario i
the simulated value of the portfolio will be computed as:

Pi = Ss,i
10GBP

(1 + iUKs,i)0.25 −
6USD

(1 + rUSAs,i)0.25 .

Based on this formula, the estimated distribution of the value of the portfolio is
described in Figure 4.11.

Finally, it is possible to compute portfolio profits and losses as P&Li = Pi − P0.
The distribution of P&L is depicted in the histogram in Figure 4.12. Compared to
the Normal, it has fatter left tails and non-zero kurtosis. Moreover, the right tail is
longer than in the Normal case.

When this distribution is ordered from the highest gain to the greatest loss, the
VaR is simply computed as the value correspondent to the 95-th observation. The
estimation is then VaR = 0.61 mil. USD. This figure is much higher than predicted
by the variance-covariance method. This not a surprise. If Normality is assumed in
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FIGURE 4.11: Simulated evolution of the portfolio

FIGURE 4.12: Simulated distribution of P&L
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the presence of fatter tails and outliers, in fact, the result is an underestimation of
Value at Risk.

The code below describes all computations that were performed:

LISTING 4.2: Historical simulation VaR for Portfolio

1 %% VaR Historical simulation

3 n=100 %target number of data points
a=0.05 %confidence level

5 i_usa_0 =0.023 %initial value
i_uk_0 =0.009 %initial value

7 S_0 =1.29 %initial value
Q_us=6

9 Q_uk =10
T=0.25 %maturity

11 P_0=S_0*(Q_uk )/(1+ i_uk_0 )^T-Q_us /(1+ i_usa_0 )^T %initial value portfolio

13 t1=datetime (2010 ,10 ,15)
t = t1 + calmonths (1:100) %generate dates for plotting purposes

15

%% Exchange rate USD vs GBP
17

S=GBPUSDmontly (10: end)’ %estimation dataset
19 r_S=zeros(1,n)’ % initialization percentage changes

21 %generate percentage changes

23 for i=1:n
r_S(i)=S(i+1)/S(i)-1

25 end

27 S_1=S_0 *(1+ r_S (1)) %first simulated value
S_s=ones(1,n)’*S_1 %preallocate space

29

%generate simulated values
31

for i=2:n
33 S_s(i)= S_s(i -1)*(1+ r_S(i))

end
35

%plot simulated vs historical values
37

hist(S_s)
39 figure;

plot( S(2:end), "r");
41 hold on;

plot(S_s , "g");
43 hold off;
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45 %% US t-bills

47 i_usa=USDBillsmonthly (10: end )*0.01 %estimation dataset

49 r_usa=zeros(1,n)’ % initialization percentage changes

51 %generate percentage changes

53 for i=1:n
r_usa(i)= i_usa(i+1)/ i_usa(i)-1

55 end

57 i_usa_1=i_usa_0 *(1+ r_usa (1)) %first simulated value
i_usa_s=ones(1,n)’*i_usa_1

59

%generate simulated values
61

for i=2:n
63 i_usa_s(i)= i_usa_s(i -1)*(1+ r_usa(i))

end
65

%plot simulated vs historical values
67

figure;
69 plot( i_usa (2:end), "r");

hold on;
71 plot(i_usa_s , "g");

hold off;
73

hist(i_usa_s)
75

%% GBP Bills
77

i_uk=Ukbillsmonthly (10: end )*0.01 %estimation dataset
79

r_uk=zeros(1,n)’ %initialization percentage changes
81

%generate percentage changes
83

for i=1:n
85 r_uk(i)=i_uk(i+1)/ i_uk(i)-1

end
87

i_uk_1=i_uk_0 *(1+ r_uk (1)) %first simulated value
89 i_uk_s=ones(1,n)’*i_uk_1

91 %generate simulated values
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93 for i=2:n
i_uk_s(i)= i_uk_s(i -1)*(1+ r_uk(i))

95 end

97 %plot simulated vs historical values

99 figure;
plot( i_uk (2:end), "r");

101 hold on;
plot(i_uk_s , "g");

103 hold off;
hist(i_uk_s)

105

%% Porfolio
107

P_0=(Q_uk )/(1+ i_uk_0 )^T-Q_us /(1+ i_usa_0 )^T*S_0
109

P=ones(1,n)’*P_0
111

%compute portfolio simulated values
113

for i=2:n
115 P(i)=( Q_uk )/(1+ i_uk_s(i))^T-Q_us /(1+ i_usa_s(i))^T*S_s(i)

end
117

plot(P)
119 Pl=zeros(1,n)

121 $compute profits and losses

123 for i=2:n
Pl(i)=P(i)-P(i-1)

125 end
Pl_ord=sort(Pl)%sort observations

127 hist(Pl_ord)

129 %VaR computation
VaR= Pl_ord (5)

4.4.3 Advantages and disadvantages

Historical simulation is by far the most straightforward approach in terms of under-
standing. In fact, its computation requires the distribution of P&L. A visual rep-
resentation of this distribution makes it extremely easy to explain and interpret the
concept of VaR. This is the main reason why banks (and especially small banks) tend
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to prefer this approach. However, historical simulation comes with both advantages
and disadvantages.

One evident pro is that historical simulations do not require any assumption
regarding the distribution and parameters of market factors. This tends to have a
positive impact on VaR estimates since, in this way, it is possible to account for non-
normality (fat tails, kurtosis). This is unfortunately not possible in the parametric
approach, and thus, especially for some asset classes, this method should be pre-
ferred.

A connected drawback is that the distribution of market factors depends solely
on historical patterns. This implies the assumption that history is a reliable source
of information for the future. If future market factors deviate from their history, the
historical VaR gives unreliable estimates which may be misleading. In order to avoid
this critical occurrence, it is necessary to look at volatilities. When the historical pe-
riod is chosen, "calm" scenarios with exceptionally low volatility (in relative terms)
should be avoided, in order to account for eventual market crashes. A connected
issue is that, when the historical time series for the market factor is selected, each
data point in that sequence has the same weight in the determination of the future
distribution. If the analyst has some views about the future and if there are reasons
to assume that the recent past would play a prominent role in the determination of
future prices, then this should be taken into account in the calibration of the model.

Another limitation comes from data availability. Historical simulation can be
implemented only if a long history of time series for market factors is available. For
assets that are not frequently traded (or newly introduced assets), it is not possi-
ble to apply this model and thus the choice is between parametric and Montecarlo
methods.

Finally, historical simulation is usually thought to be computationally efficient,
but as the number of risk factors increases, it becomes extremely costly to re-evaluate
the portfolio at each scenario. In those cases, a delta normal approach may be well
fitted.

4.5 Montecarlo simulation approach

Montecarlo simulation is by far the most sophisticated approach to the computation
of Value at Risk. When applying a Montecarlo technique, a numerical approach is
implemented in order to produce future random paths for the market factors. This
method is non-parametric because it is, in principle, history-free. Future evolutions
of the market factors are generated via a pseudo-random number generator. Once
the random paths have been generated, the portfolio is re-evaluated accordingly and
the VaR is simply computed based on the simulated distribution of P&L. In this re-
spect, the Montecarlo approach is very close to the historical simulation. It is then
critical, in implementing this technique, to choose the correct probability distribu-
tion that best describes the potential future evolution of market factors. The most
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important consequence is that, since this distribution needs not to be Normal, it is
possible to account for fat tails and kurtosis. However, in practical terms, history
still plays a role. Practitioners, in fact, usually look at the distributions of past re-
turns in order to decide which pseudo-random generator to use. This means that
they try to match the simulated path with the historical one. Nevertheless, it is pos-
sible to incorporate views about the future evolution of market factors. This is the
main advantage of the Montecarlo technique with respect to both the delta normal
approach and the historical simulation. Historical and Montecarlo simulations are
indeed very similar in terms of steps to be performed for their implementation. The
main critical difference stems in the generation of the future distribution of market
factors. In the historical simulation approach, the n possible future scenarios for the
market factors are generated based on the percentage changes of the market factors
in a given historical period. This implies that the distribution of the market factors
is not the historical one, but it is determined by past evolution. In the Montecarlo
method, instead, paths are generated randomly and set to obey to a specific distri-
bution. This distribution may well be totally different from the historical one. Once
the path of market factors has been determined, then historical and Montecarlo sim-
ulations have no differences in terms of implementation. Even if the Montecarlo
technique tends to be superior in terms of performance compared to the other two,
it is also computationally expensive. In order to get reliable estimations, in fact, the
number of estimations performed should be quite high (order of thousands or hun-
dreds of thousands). However, while the reliability of the estimation is increased,
computation time and costs increase too.

4.5.1 Computation

As mentioned, Montecarlo approach to Value at Risk is computationally burden-
some. The most costly step is the generation of pseudo-random paths for the market
factors, but the most critical and conceptually complicated part is the choice of the
distribution from which to generate pseudo-random paths for the market factors. If
the choice is not able to correctly match the future evolution, then VaR estimates are
unreliable.

The procedure for the computation of VaR according to Montecarlo simulations
can again be divided into steps. Those steps will resemble the ones just described
for the historical simulation approach. As already mentioned, critical differences lie
in Step 3, where the generation of the distribution of market factors is performed.

Step 1. As usual, the first step is risk mapping. Given the portfolio for which
VaR has to be determined, it should be decomposed in long and short positions on
standardized market instruments. Those instruments need to be simple and directly
influenced by observable market factors. This step is indeed quite technical. It is
in fact not sufficient to determine in abstract terms which market factors influence
the relevant portfolio. It is necessary to specify a linear or non-linear equation that
maps the portfolio in the relevant standardized positions. This equation will, in
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fact, be the starting point for the re-evaluation of the portfolio based on the random
paths generated for the market factors in Step 4. Consider, for example, the forward
contract described throughout the chapter. This contract is influenced by the US
and UK money market and by the exchange rate. However, it is not sufficient to
conclude this. It is necessary to specify the equation that directly links the value of
the forward contract to the value of US and UK interest rates and the exchange rate
USD vs GBP. Only when such an equation has been determined in closed form, the
risk mapping exercise can be considered as concluded. An essential aspect of the
Montecarlo method, that clearly distinguishes it from the delta normal approach is
that it is suitable also for instruments whose pay-off is a non-linear function of the
market factors (for example options). If this is the case, of course, computations will
become much more complicated.

Step 2. This step is especially critical. Once the market factors have been iden-
tified, it is necessary to choose their distribution. This choice is difficult because it
involves expert judgment regarding future behavior of markets. Moreover, a flaw
in this process has serious consequences, since it invalidates VaR estimates. In prac-
tical terms, what analysts usually do is looking at historical distributions of market
factors over different horizons. Based on historical behavior but also on their views
about future evolutions, the distributions and parameters of market factors are de-
termined. Parameters are usually selected based on historical time series, but they
can also be modified reflecting views about the future. The clear advantage of this
set-up is that distributions need not to be Normal, nor they must reflect historical
paths. Analysts can freely choose the distribution they think is best fitted to the de-
scription of the future evolution of market factors. This is an improvement both of
the delta normal approach and of the historical simulation. On the one hand, in fact,
market factors are not forced to behave as a Normal distribution. It has already been
pointed out that distributions of asset returns in real markets are far from Normal.
They tend to be characterized by masses on the tails, that imply a higher concentra-
tion of extreme values (both positive and negative) compared to what predicted by
the Normal, and by higher peaks. Distributions with those patterns are common in
asset returns and are called leptokurtotic. For those distributions, Normal approxi-
mation is not appropriate and thus we should be able to produce more reliable esti-
mations of VaR if we include this information in the distribution choice. This is not
possible in the delta normal approach. On the other hand, there is no guarantee that
history will repeat itself. If for example, we choose as estimation window a highly
volatile or too "quiet" period, we may seriously invalidate the VaR estimate, by over
or underestimation. Historical simulation is totally reliant on market past data and
it is not possible to incorporate analysts’ views on the simulated distribution of mar-
ket factors. It is also true that even Montecarlo simulation relies to some extent on
historical data. Time series of market factors are in fact used to understand their
behavior and eventually estimate the parameters of the distributions. However, it
is possible to deviate from historical paths (something that is instead not possible in
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the case of the historical simulation) and include judgemental views on the future,
both in terms of distributions and of parameters. This is considered one of the most
important advantages of the Montecarlo method. In Figure 4.13, for example, the
distribution of historical US 3-month T-bill rates is plotted against the Normal pdf.
From the graph, it is evident that the Normal is not the best choice.

FIGURE 4.13: USD 3-Month T-bill rates and Normal distribution

As in the variance-covariance approach, but differently from the historical simu-
lation, in this step, it is also necessary to choose the degree of correlations between
the market factors. In the other two methods, correlations are historical. In the
delta normal approach, in fact, correlations are specified in the computation of port-
folio variance and are based purely on historical values. In the historical simula-
tion approach, instead, correlations are not made explicit but are embedded in the
generated paths for market factors and reflect past time series. In the Montecarlo
approach, it is, of course, useful to look at historical correlations, but after that, cor-
relations can be set as desired. This is another crucial advantage if we consider the
fact that correlations tend to be time-varying, especially in periods of market tur-
moil. This implies that historical figures may not be a good estimation for future
values. The Montecarlo set-up overrides this problem.

The outcome of this step will thus be the definition of the distribution of the
various market factors M1, M2, ..., Mk and their respective parameters: Mi ∼ Xi(·),
∀i.

Step 3. This step lies out the differences between the Montecarlo and Historical
simulation approaches. In this phase, in fact, pseudo-random paths for the mar-
ket factors are generated, based on the distribution that was chosen in the previous
step. Then, for each market factor, Mi, n hypothetical values are generated. The dis-
tribution of these values (including the parameters) obeys to the one that has been
chosen. In general, the number of runs of the simulation, n, should be large enough,
say n = 10000 or n = 100000. However, as n increases, computational costs in-
crease dramatically too. The outcome is then a pseudo-random path in the form:
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Mi,s = {mi,s,1, mi,s,2, ..., mi,s,n}, ∀i. The main difference with respect to historical sim-
ulation is that values of the market factors are here determined directly. This means
that, as long as the target distribution has been chosen, values for the market fac-
tors are immediately generated. These values represent possible future evolutions
of the market factors. In the historical simulation, instead, the generation is indirect.
Historical values of market factors are in fact used to compute historical percentage
changes, and then those changes are applied to the current status to come up with
possible future evolutions of the market factors.

From the point in which the path of market factors has been generated, there is
no difference anymore between Historical and Montecarlo simulation.

After having generated the pseudo-random values for market factors, those have
to be combined according to the equation specified in Step 1, so to be able to com-
pute simulated portfolio values in the n scenarios. The outcome is then the same of
historical simulation, but of course, the two distributions will be different, being the
underlying assumptions different.

Recall that VaR is computed starting from the P&L distribution, not from port-
folio values. Given the distribution of possible evolutions of portfolio values, P =

{p1, p2, ..., pn}, computed based on the evolution of market factors, the P&L distri-
bution is simply given as the difference of these values from today’s actual value of
the portfolio: P&Li = pi − p0, ∀i.

Step 4. The most important outcome of Step 3 is the series of portfolio profits
and losses for the n observation periods. In Step 4 it is only necessary to order them
in ascending order.

Step 5. Finally, as the ordered P&L distribution is available, it is only necessary
to select the value that corresponds to the 1− α percentile. This number is, in fact,
the estimated value at risk9.

A distinctive feature Montecarlo methods for VaR are based on the generation
of random paths for market factors. This implies that every time the simulation is
run, the estimate of VaR will be different because the pseudo-random values of the
market factors will necessarily be different.

This does not happen in the variance-covariance approach nor in the historical
simulation because in those models, here is no source of randomness.

Following this distinctive feature of Montecarlo techniques, it is possible to run
the simulation several times, say k times. The outcome will be k different estimates of
VaR. In order to improve VaR estimation, it is advisable to run the simulation several
times and then take their average value. This value is, in general, more reliable than
the one obtained by running only once the simulation.

In addition, since we have obtained k estimations of VaR, those can be consid-
ered as forming a vector. This vector has its variance and the standard error of the
estimation can significantly be reduced by increasing the number of runs k.

9Note that interpolation may be necessary
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4.5.2 Example

We focus again on the forward example made throughout the chapter. Now some
steps will be followed so to explain the implementation of Montecarlo VaR.

Consider the forward contract defined in 4.2.2. As said, this contract involves
the delivery by the American bank of 6 mil. USD and an incoming cash-flow 10
mil. GBP. Both cash-flows will occur in T = 90 days, the maturity of the contract. It
has been shown that three figures influence the value of this instrument: the current
spot exchange rate USD vs. GBP, S, and the two three-months interest rates (one per
currency), iUSA and iUK. This contract can thus be seen as the sum of a long position
in a three-months GBP denominated zero-coupon bond with face value 10 mil. GBP
and a short position in a three-months USD denominated zero-coupon bond with
face value 6 mil. USD. The value at time 0 (today) of the contract is then:

S
10GBP

(1 + iUK)0.25 −
6USD

(1 + iUSA)0.25 .

Again, we will start by computing the current value of the portfolio. In order to
calculate it, we need to observe, on the markets, the values for S, iUSA and iUK. S is
the exchange rate denominated EUR vs GB,P assume it is equal to S0 = 1.29. rUSA

is the rate on US three-month T-Bill, assume rUSA = 2.3%. Finally, rUK is the rate on
the three-month English government bonds, assume rUK = 0.9%10.

Now we have all the necessary inputs to compute the current value of the port-
folio according to the formula

PV(P) = S0
10GBP

(1 + iUK)0.25 −
6USD

(1 + iUSA)0.25 = 6.91mil.USD

Set α = 0.05, the confidence level, while the holding period assumption for VaR
computation will be 1-month. For what concerns simulation runs, we set n = 1000,
meaning that for each market factor n = 1000 different evolution scenarios will be
generated. Now that assumptions have been made, we can start the Montecarlo
procedure.

We will start from the most complex part: the choice of the probability distri-
bution for the risk parameters. Recall that in our case, the market factors are only
three, but in general, for complex portfolios, this exercise should be replicated for
every parameter able to influence the portfolio.

The first risk factor is the exchange rate USD vs. GBP. First, a good idea is to look
at the historical evolution of this factor. A graphical depiction of this distribution is
provided in Figure 4.14. Assume that, based on expert judgment, the distribution
of this market factor will be close to the historical one, but with reduced mass on
extreme high values, say from 1.38 on. Based on this view, we need to find the best
distribution which can describe this random variable. When making this choice, it is

10All interest rates are annualized.
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FIGURE 4.14: USD-GBP histogram

important to keep in mind that it will not be possible to find a statistical distribution
that perfectly mimics the behavior of this factor. What is needed is the best possible
approximation. In order to make this choice, the following statistical distributions
were analyzed:

• Beta;

• Birnbaum-Saunders;

• Burr Type II;

• Exponential;

• Extreme value;

• Gamma;

• Generalized extreme value;

• Generalized Pareto;

• Inverse Gaussian;

• Logistic;

• Log-logistic;

• Log-normal;

• Nakagami;

• Negative Binomial;

• Normal;

• Poisson;
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• Rayleigh;

• Rician;

• t location-scale;

• Weibull.

Keeping in mind the view that has been formulated about the future (i.e., less
mass on extreme high values) the easiest and fastest way to understand which dis-
tribution better approximates the historical series of exchange rates is to compare
the histogram of this time series with the pdf of all those distributions. Data for the
USD/GBP exchange rate are from Banca d’Italia data stream. They are monthly and
run from January 2003 to June 2019. Some distributions were immediately excluded
due to total lack of fit with the historical distribution or because they require some
assumptions on the data that were not respected (Beta, Burr Type II, Exponential,
Generalized Pareto, Inverse Gaussian, Loglogistic, Lognormal, Nakagami, Negative
binomial, Poisson, Rayleigh, Rician and t-location scale).

First, we will consider the fit of the Normal. Figure 4.15 plots the histogram of
the historical distribution of this exchange rate and the pdf of a Normal. As can be
seen, the Normal does not appear to be the best choice for at least two reasons. First,
it fails to account for the high peak concentrated around the value of 1.3. Second, in
the period considered low values of the rate (1.15-1.22) were not observed, while this
distribution has significant mass allocated to these values. The conclusion is that we
should continue looking for a distribution with a better fit.

FIGURE 4.15: USD vs. GBP exchange rate and Normal distribution

Another option is the Birnbaum-Saunders distribution. Again, as shown in fig-
ure 4.16, this distribution fails to account for the high peak concentrated around the
value of 1.3. This distribution is thus not well suited to the data and views. The fit
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FIGURE 4.16: USD vs. GBP exchange rate and Birnbaum-Saunders
distribution

of USD-GBP exchange rate with the Extreme value distribution is depicted in Figure
4.17. Clearly this distribution is not a good choice. First, in aggregate terms, values
of the exchange rate in the range [1, 1.2] receive significant mass. Second, even this
distribution fails to capture the high peak around the value 1.3.

FIGURE 4.17: USD vs. GBP exchange rate and Extreme value distri-
bution

The Gamma distribution (Figure 4.18) is another example in which the peak is
not captured.

The fit of the empirical distribution with the Weibull is described in Figure 4.19.
Even the Weibull fails to capture the high peak and assigns too much mass to low
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FIGURE 4.18: USD vs. GBP exchange rate and Gamma distribution

values. Finally, in Figures 4.20 and 4.21. The Logistic and the Generalized Extreme

FIGURE 4.19: USD vs. GBP exchange rate and Weibull distribution

Value are described. Both can be considered acceptable because they take into ac-
count the high peak and are in line with the analyst’s expectation of low mass con-
centrated around 1.4. We will use the Logistic11.

The second risk factor is the yield on 3-month US T-bills. Data for US T-bills are
monthly, from January 2003 to June 2019. Source is Federal Reserve database.

We will apply the same approach used for the the exchange rate. In order to as-
sess which distribution better approximates the historical behavior of the T-bills, we

11Note that the use of the Generalized Extreme Value produces comparable results.



108 Chapter 4. Value at Risk

FIGURE 4.20: USD vs. GBP exchange rate and Logistic distribution

FIGURE 4.21: USD vs. GBP exchange rate and Generalized Extreme
Value distribution
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will compare the histogram with the pdf. Some distributions were immediately ex-
cluded due to total lack of fit with the historical distribution or because they require
some assumptions on the data that were not respected (Beta, Burr Type II, Extreme
value, Gamma, Generalized extreme value, Generalized Pareto, Inverse Gaussian,
Loglogistic, Lognormal, Nakagami, Negative binomial, Poisson, Rician, t-location
scale and Weibull).

Start again by considering the fit of the Normal. Figure 4.22 plots the histogram
of the historical distribution of the T-bill rate and the pdf of a Normal. The lack
of fit is evident. The major problem is that the Normal does not capture the peak
concentrated around [0 − 1%]. Another, still smaller, peak that is not taken into
account is the one around 2%, which represents the most recent values. Finally the
Normal assumes also negative values up to 2%, which are not very reasonable. We
can then again conclude that the Normal pdf does not describe well the distribution
of T-bills.

FIGURE 4.22: USD T-bill rates and Normal distribution

Another option is the Birnbaum-Saunders distribution (figure 4.23). This distri-
bution has a shape which fits sufficiently well the empirical distribution. What is not
satisfying is the scale. The Birnbaum-Saunders, in fact, reaches values of 10%, which
are unrealistically high for a T-bill rate. Such a distributional assumption would
probably lead to a misspecification of the VaR measure. It should thus be excluded.

The fit of the T-bill rate with the Rayleigh distribution is depicted in figure 4.24.
This is evidently not a right choice. For the inner part of the distribution, in fact, it
assumes larger masses than the empirics. Moreover, as the Normal, it fails to capture
the heavy peak concentrated at the right tail of the empirical distribution.
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FIGURE 4.23: USD T-bill rates and Birnbaum-Saunders distribution

FIGURE 4.24: USD T-bill rates and Rayleigh distribution
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Finally, in Figure 4.25, the fit of the historical data with the Exponential is de-
scribed. This appears to be the most reasonable choice since it is the only distribution
which is able to capture the heavy tail concentrated in low values. This is the best
choice we can make given this set-up. T-bill rates will then be generated according
to the Exponential distribution.

FIGURE 4.25: USD T-bill rates and Exponential distribution

The final risk factor is the yield on the 3-month UK T-bill. Data for UK T-bills are
monthly, from October 2010 to February 2019.

Again, some distributions were immediately excluded due to total lack of fit
with the historical distribution or because they require some assumptions on the
data that were not respected (Beta, Burr Type II, Birnbaum-Saunders, Exponential,
Extreme value, Generalized extreme value, Generalized Pareto, Inverse Gaussian,
Loglogistic, Lognormal, Nakagami, Negative binomial, Poisson, t-location scale and
Weibull).

We will first compare the histogram of this market factor with the Normal (figure
4.26). The fit is not so bad. Among the three market factors, the UK T-Bill rate is
by far the closest to the Normal distribution. There still are some peaks that are
not captured, but the lack of fit is not so severe. Before taking the decision, we
will consider the other remaining cases. Other two options are the Gamma and
the Rayleigh distributions depicted respectively in figure 4.27 and 4.28. Even in
these cases, the fit is not bad. The only major problem is that the fitted Gamma and
Rayleigh reach values of about 3% that are quite high for the UK T-bill and have not
been reached in the dataset. Finally, in Figure 4.29, the fit of the historical data with
the Rician is described. This is the best choice because it roughly captures all the
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FIGURE 4.26: UK T-bill rates and Normal distribution

FIGURE 4.27: UK T-bill rates and Gamma distribution
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FIGURE 4.28: UK T-bill rates and Rayleigh distribution

peaks, but is also reaches a maximum value of 2.5%, which is more reasonable than
3%. Once the distributions for all market factors have been selected, the evolution
of the same must be simulated. In order to generate random numbers drawn from a
specific statistic distribution, the relevant parameters need to be specified. All those
parameters are estimated based on the available historical time series. For the USD
GBP exchange rate, the selected distribution is the Logistic. The two parameters
needed are then the mean and standard deviation, which respectively are µE = 1.30
and σE = 0.24. For the US T-Bills, the selected distribution is the Exponential, whose
only parameter is the mean µUSA = 0.76%. Finally, the selected distribution for the
UK T-Bill is the Rician, whose parameters are s = 0.94% and σUK = 0.51%.

Once the parameters have been estimated, it is only necessary to generate n ran-
dom numbers according to the specified distributions. Random number generation
has extensively been described in 2 and 3.

As already familiar, now that the evolution of the simulated market factors has
been computed, the last step is to re-evaluate the portfolio, based on those factors.
For each simulated scenario i the simulated value of the portfolio will be computed
as:

Pi = Ss,i
10GBP

(1 + iUKs,i)0.25 −
6USD

(1 + rUSAs,i)0.25 .

Based on this formula, the estimated distribution of the value of the portfolio is
described in Figure 4.30.

Finally, it is possible to compute portfolio profits and losses as P&Li = Pi −
P0. When this distribution is ordered from the highest gain to the greater loss, the
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FIGURE 4.29: UK T-bill rates and Rician distribution

FIGURE 4.30: Simulated evolution of the portfolio
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VaR is simply computed as the value correspondent to the 95-th observation. The
estimation is then VaR = 0.53 mil. USD. This figure is much higher than what
predicted by the variance-covariance method but lower than what predicted by the
Historical simulation approach.

The code below describes all computations that were performed:

LISTING 4.3: Montecarlo simulation VaR for Portfolio

1 %% VaR Montecarlo simulation

3 n=1000 %target number of data points
a=0.05 %confidence level

5 USA_0 =0.023 %initial value
UK_0 =0.009 %initial value

7 S_0 =1.29 %initial value
Q_us=6

9 Q_uk =10
T=0.25

11 %initial portfolio value
P_0=S_0*(Q_uk )/(1+ UK_0)^T-Q_us /(1+ USA_0)^T

13

%generate dates for plot
15 t1=datetime (2003 ,1 ,15)

t = t1 + calmonths (1:200)
17

%% Exchange rate USD vs GBP
19

S=USDGBP (170: end)
21 %S_daily=DailyUSDGBP (2:end)

23 %first look at the distribution

25 hist(S,5)

27

%% choose correct distributional assumption
29

histfit(S) %look at the distribution , normal does not fit well
31 histfit(S,7,’beta’)%no , data is in 0,1

histfit(S,7,’burr’)%no
33 histfit(S,7, ’birnbaumsaunders ’)%yes

histfit(S,7,’exponential ’)%no
35 histfit(S,7,’ev’)%not bad

histfit(S,10,’gamma’)%not really
37 histfit(S,7,’gev’)%not really

histfit(S,10,’gp’)%no
39 histfit(S,7,’inversegaussian ’)%not bad

histfit(S,7,’logistic ’)% not so bad



116 Chapter 4. Value at Risk

41 histfit(S,10,’loglogistic ’)%no
histfit(S,10,’lognormal ’)%no

43 histfit(S,10,’nakagami ’)%no
histfit(S,10,’nbin’)%no , must be integer

45 histfit(S,10,’normal ’)
histfit(S,10,’poisson ’)%no

47 histfit(S,10,’rayleigh ’)%no
histfit(S,10,’rician ’)%no

49 histfit(S,10,’tlocationscale ’)%no , normal is better
histfit(S,7,’wbl’)%not bad

51

% chosen distribution: logistic
53 % generation of random paths for the factor

pd_S=fitdist(S,’logistic ’)
55 S_s=random(pd_S ,n,1)

hist(S_s)
57

%% US t-bills
59

US=USD20032019 (130: end )*0.01
61

%choose correct distributional assumption
63

histfit(US)
65 histfit(US ,10,’beta’)%no

histfit(US ,10,’burr’)%no
67 histfit(US ,10, ’birnbaumsaunders ’)%show

histfit(US ,10,’exponential ’)%not bad
69 histfit(US ,10,’ev’)%no

histfit(US ,10,’gamma’)%no
71 histfit(US ,10,’gev’)%no

histfit(US ,10,’gp’)%no
73 histfit(US ,10,’inversegaussian ’)%no

histfit(US ,10,’logistic ’)%no
75 histfit(US ,10,’loglogistic ’)%no

histfit(US ,10,’lognormal ’)%no
77 histfit(US ,10,’nakagami ’)%no

histfit(US ,10,’nbin’)%no
79 histfit(US ,10,’normal ’)%no , show

histfit(US ,10,’poisson ’)%no
81 histfit(US ,10,’rayleigh ’)%no , show

histfit(US ,10,’rician ’)%no
83 histfit(US ,10,’tlocationscale ’)%no

histfit(US ,10,’wbl’)%no
85

% chosen distribution: exponential
87 % generation of random paths for the factor

pd_US=fitdist(US,’exponential ’)
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89 US_s= random(pd_US ,n,1)
hist(US_s)

91

93 %% GBP Bills

95 UK=UK20032019 (120: end )*0.01

97 %choose correct distributional assumption
histfit(UK) %look at the distribution , normal does not fit well

99 histfit(UK ,10,’beta’)%no
histfit(UK ,10,’burr’)%no

101 histfit(UK ,10, ’birnbaumsaunders ’)%no
histfit(UK ,10,’exponential ’)%no

103 histfit(UK ,10,’ev’)%no
histfit(UK ,10,’gamma’)%quite good

105 histfit(UK ,10,’gev’)%no
histfit(UK ,10,’gp’)%no

107 histfit(UK ,10,’inversegaussian ’)%no
histfit(UK ,10,’logistic ’)%no

109 histfit(UK ,10,’loglogistic ’)%no
histfit(UK ,10,’lognormal ’)%no

111 histfit(UK ,10,’nakagami ’)%no
histfit(UK ,10,’nbin’)%no , must be integer

113 histfit(UK ,10,’normal ’)%not so bad , but no
histfit(UK ,10,’poisson ’)%no

115 histfit(UK ,10,’rayleigh ’)% not really
histfit(UK ,10,’rician ’)% not bad

117 histfit(UK ,10,’tlocationscale ’)%no
histfit(UK ,10,’wbl’)%no

119

% chosen distribution: rician
121 % generation of random paths for the factor

pd_UK=fitdist(UK,’rician ’)
123

UK_s= random(pd_UK ,1,n)
125 hist(UK_s)

127

%% Porfolio
129

%initial value
131 P_0=(Q_uk )/(1+ UK_0)^T-Q_us /(1+ USA_0 )^T*S_0

133 P=ones(1,n)’*P_0%preallocate space

135 %compute simulated portfolio value
for i=2:n



118 Chapter 4. Value at Risk

137 P(i)=( Q_uk )/(1+ UK_s(i))^T-Q_us /(1+ US_s(i))^T*S_s(i)
end

139

plot(P)
141 Pl=zeros(1,n)%preallocate space

143 %compute profits and losses
for i=2:n

145 Pl(i)=P(i)-P_0
end

147

%compute VaR
149 Pl_ord=sort(Pl)’

hist(Pl_ord)
151 VaR= Pl_ord (50)

4.5.3 Advantages and disadvantages

Main advantages and disadvantages of Montecarlo techniques for VaR have already
been described in the previous pages and will be summarized here.

The most crucial advantage of Montecarlo VaR compared to both variance-covariance
methods and historical simulation approach is related to distributional assump-
tions. In Montecarlo VaR, in fact, the analyst is free to choose the distribution he
thinks the market factor will have in the future. This is a clear improvement of the
variance-covariance approach since this distribution needs not to be Normal and we
have shown that unjustified normality assumption leads to clear underestimations
of value at risk. This is feature is an advantage also compared to the historical simu-
lation approach. In Montecarlo models, in fact, it is possible to specify a distribution
for market factors that is different from the historical one, if deemed necessary. The
starting point for the evaluation of the distribution usually continues to be historical
data, but the analyst is free to change the value of the parameters or the shape of the
distribution itself. This advantage comes however, with a precise treat. While it is
undoubtedly useful to be able to choose the desired distribution of market factors
and the relative parameters, this may be a dangerous exercise. If, in fact, the choice
does not forecast well the future evolution of market factors, then VaR estimations
are entirely unreliable.

Another important pro is that, with Montecarlo techniques, it is possible to eval-
uate the VaR of complex and non-linear assets, while using the other two techniques,
it is either impossible or too burdensome.

The major disadvantage of this technique is that it is computationally costly. If,
for example, the portfolio is exposed to many risk factors, then it is necessary to
estimate their probability distribution one-by-one and then, for each of them, gen-
erate random paths. This is time-consuming and costly in terms of computational
power. Moreover, if a reliable estimate is wanted, the simulation should be run
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several times, and this again increases computational costs. However, recall that
Montecarlo methods may be the only available option if the portfolio is non-linearly
related to market factors.
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Chapter 5

Empirical performance of VaR
models

The aim of this final chapter is to analyze the comparison among the three main
techniques for the computation of value at risk, in order to understand which one is
best suitable to capture the level of exposure of a portfolio to market risk.

It has to be stressed that no one of these techniques has proven to be superior to
the others. As already mentioned in 4, in fact, those techniques are different at least
with respect to their assumptions, complexity, computations and level of reliance
on historical data. By construction, then, they yield different results, and the choice
usually depends on the inherent characteristics of the portfolio to be evaluated. It is
indeed challenging to set if and how one technique is superior to the others. What is
sure is that there is no way to give a comprehensive answer to this question. That is,
it is not possible to conclude that one method is superior to the others with respect
to all existing portfolios.

In this chapter, the scope of this question is narrowed. The aim is to assess the
performance of the three techniques for the computation of VaR with respect to var-
ious dimensions.

First, an empirical analysis of the Italian stock market is performed. The analysis
is based on the computation of Montecarlo, Variance-Covariance, and Historical VaR
of the FTSE MIB index. This study, not available for the Italian stock market to the
best of the author’s knowledge, is aimed at assessing which method is most suitable
for the characteristics of the Italian stock market.

As a second step, the study is replicated for the SP500 Index to draw comparisons
with a larger and more developed stock market.

Finally, a deep dive on Montecarlo techniques is performed. Considering again
the FTSE MIB, Montecarlo VaR is computed based on different distributional as-
sumptions for the index. This has two main goals. First, establishing which assump-
tion yields the best result (i.e., the closest result to real data). Second, this study is
a mean for establishing how distributional assumptions can have an impact on VaR
estimates.
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5.1 Relevance of the topic and literature review

Financial risk management literature has devoted a significant amount of resources
to the topic of Value at Risk. There are numbers of papers that describe how this
measure works, its shortcomings and its regulatory treatment. Unfortunately, the
procedure is seldom applied to real data, and thus there is no clear evidence on the
preferred technique for the computation of VaR. It is generally thought that being
Montecarlo by far the most sophisticated approach to the computation of VaR, it is
superior to the others. However, it should be clear that complexity is not a guarantee
of superior performance.

Even if literature regarding empirical studies of VaR is relatively scarce compared
to more holistic approaches to the same risk measures, some examples are worth
mentioning.

Lambadiaris et al. (2003) analyze the performance of Montecarlo, Historical and
parametric approaches to VaR applied to two Greek portfolios: one made only of
stocks and the second composed only of bonds. The findings are mixed, but for
the stock portfolio, Montecarlo seems to be superior, for some holding periods and
confidence intervals.

Kuester et al. (2005) apply a similar study to the NASDAQ index. Some innova-
tions (mainly related to time-varying volatility) are introduced.

Bams et al. (2002) introduce a new approach to the classification of VaR tech-
niques. They, in fact, suggest dividing VaR models into sophisticated and non-
sophisticated tail models. Those models are then applied to exchange rates. They
surprisingly find unsophisticated models to be superior.

Hendricks (1996) is a forerunner in empirical applications of VaR. He was, in
fact, one of the first scholars to analyze the performance of various VaR models in
exchange rate portfolios. Results found in this study are mixed and do not lead to
the primacy of any of the methods over the others.

Kanwer et al. (2006) and Kilic (2006) consider the performance of VaR models,
respectively on the Pakistani and Turkish stock exchange.

Engle and Gizychi (1999) replicate a similar study on the Austrian banking mar-
ket, while Bredin and Hyde (2004) considered Irish portfolios.

Asamoah et al. (2016) evaluate the performance of historical and Montecarlo VaR
via backtesting. The finding is a clear out-performance of Montecarlo techniques.

Diamandis et al. (2011) evaluate different VaR models for long and short trading
positions using some test that are also used in this work.

Gaglianone et al. (2011) review many available tests for VaR backtesting, point-
ing out that binary tests sacrifice much information.
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5.2 A comparison of VaR techniques: the Italian Stock mar-
ket

In this section, the first set of empirical studies is performed. The ultimate goal is
to analyze how the three basic approaches to the computation of VaR perform on
a sample of the leading Italian stock market index, the FTSE MIB. Those three ap-
proaches will be compared based on different measures. This task is indeed not triv-
ial because once a VaR forecast measure is available, it is not immediately possible
to test how it will perform in the future. For this reason, what is usually performed
is backtesting, i.e., evaluate how the estimate performs if compared with historical
data. For this reason the sample is divided into two parts: the first one is used as
“historical”, meaning that it will be used to estimate VaR 1. The second component
is used for backtesting, meaning that, based on this time series P&L will be com-
puted and compared with VaR estimates resulting from the application of the three
methodologies. Backtesting is typically performed by banks, and it is an essential
pillar of banking regulation and supervision. It has to be clear that backtesting does
not provide information about the ability of the model to predict future unusual
movements in portfolio value. Anyway, it is a useful tool to evaluate portfolio per-
formance in normal market conditions.

Since the object of the analysis will be data related to the FTSE MIB, it is worth
spending some words about it.

5.2.1 FTSE MIB

FTSE MIB stands for Financial Times Stock Exchange Milano Indice di Borsa. It is
the most relevant index in the Italian stock market and it was introduced on 31 De-
cember 1992 with the name of COMIT. The name FTSE MIB was given for the first
time on 1 June 2009. Together with FTSE Italia Mid Cap and FTSE Italia Small Cap
it forms the FTSE Italia All-Share. This index is composed by the shares of the 40
companies with highest market capitalization traded in the MTA, Mercato Telem-
atico Azionario, and on the MIV, Mercato degli Investment Vehicles. It represents
approximately 80% of the Italian stock market. This is a critical point for this analy-
sis. We can, in fact, conclude that this index represents a fairly good approximation
of the Italian stock market in general. The composition of the index is rebalanced
quarterly. Inclusion decisions are also based on liquidity considerations and on the
industry to which the stock belongs. The aim is in fact to create an index which in-
cludes all major industries in the Italian reality. The weight of each stock in the index
depends on market capitalization (market-cap weighted index), corrected for float.

This index will be used as representative of the Italian stock market throughout
the chapter.

1The concrete use of the historical time series varies from method to method. In the Variance-
Covariance and Montecarlo methods, time series are used to estimate the parameters inputs, while in
the Historical approach, time series are directly used to estimate VaR.
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5.2.2 Data

Daily adjusted closing prices for FTSE MIB are taken from Yahoo Finance. The rele-
vant period is 25 October 2016 to 1 January 20182. In this time frame, the maximum
observable value was 2.3046, the minimum 1.6217. The mean value of the index is
2.0485, with a standard deviation of 17.61%. The median is 2.0961, skewness and
kurtosis are respectively -0.7695 and 2.7771. Negative skewness describes a distri-
bution which is asymmetric from the left. The mode is 1.9247. Non-zero kurtosis
implies fatter tails compared to the Normal case.

Summary statistics are provided in table 5.1.

TABLE 5.1: Summary statistics of the FTSE MIB 25 October 2016-1
January 2018

maximum 2.3046
minimum 1.6217

mean 2.0485
standard deviation 17.61%

skewness -0.7695
kurtosis 2.7771
median 2.0961
mode 1.9247

The plot below (figure 5.1) describes the evolution of the index in the period 25
October 2016-1 January 2018.

FIGURE 5.1: Evolution of FTSE MIB 25 October 2016-1 January 2018

The trend of the graph is clearly positive but also highly volatile. Peaks and falls
are in fact registered often.

2Data are normalized by diving for 1000 every data point
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As already mentioned, the dataset has been divided into two sections. The first
component of the dataset will be used as the basis for the computation of VaR. Specif-
ically, in the Variance-Covariance method, it will be used in order to compute the
parameters of the Normal distribution used to compute the VaR 3. In the Historical
simulation approach, this first section of the dataset will be used to compute daily
changes of the index, which will then be used for the estimation of the P&L distri-
bution. Finally, in the Montecarlo method, this time series is used for the estimation
of the parameters of the distribution that is intended to be representative of future
evolutions of the index. The second portion of the dataset will be used for the as-
sessment of model performance. This means that, with the various statistical tests
that will be performed, the estimated VaR will be compared with actual losses in-
curred by the index in this period. We can then say that this second component of
the dataset is the backtesting dataset. Summary statistics are described in Table 5.2
below for the first portion of the dataset. Those statistics will be needed as inputs in
the following stages of the analysis.

TABLE 5.2: Summary statistics of the FTSE MIB in-sample period

maximum 2.1788
minimum 1.6217

mean 1.9193
standard deviation 14.54%

skewness -0.4534
kurtosis 2.5442
median 1.9364
mode 1.9247

The histogram in Figure 5.2 describes the distribution of the FTSE MIB index in
the first half of the dataset.

5.2.3 Methodology

The main idea behind the methodology of this study is the computation of VaR us-
ing the three different techniques, according to the steps described in 4 and then
the comparison of the results in order to assess which method does the best job in
capturing the risk of the Italian stock market.

For all the methods, α is set to be 5%, and the assumed holding period is one day.
The number of VaR estimates per technique is set to k = 25.

A short overview of the computational technique used for each method is given,
but the heart of this paragraph is the description of the statistics that are used in
order to evaluate the performance of each model.

3 In this section we will not challenge the Normality assumption.
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FIGURE 5.2: Empirical distribution of FTSE MIB

First, as already mentioned, the dataset consists of 299 observations (daily price
data). Of these 299, one is taken as the current value of the index S0 and a total of
25 observations are used as out-of-sample observations (i.e., back-testing purposes).
This means that we are left with 299-1-25=273 observations that represent the histor-
ical time series on which all analysis will be based. As already mentioned, historical
data are differently used by the three methods.

When applying the Variance Covariance approach, we assume that the distri-
bution of the index is Normal. We then are already in the position to expect non-
satisfying results for this technique. Figure 5.2 has shown that the distribution of the
FTSE MIB does not resemble a Normal. As described in 4, VaR is here computed
according to the formula:

VaR(t, t + ∆) = −(µ + z1−ασ) (5.1)

µ and σ are respectively the mean and standard deviation of the historical FTSE MIB
and are computed based on a 25-days horizon with 25-days rolling window.

In the Historical simulation approach, simulated values of the index are com-
puted based on sub-samples of j = 100 observations, with 5-days rolling windows.
As explained in detail in 4, the simulated distributions are generated based on the
application to actual values of the percentage changes of the Index.

Montecarlo simulation deserves some greater attention since assumptions will
be changed compared to 4. In order to generate random paths for the FTSE MIB, in
fact, we will assume that the process that best describes its future evolution is the
Geometric Brownian Motion. Given a sequence of stock prices St with t = 1, 2, ..., T,
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the rate of change of the stock price is defined as follows:

dSt

St
= µSdt + σS

√
dtεt (5.2)

where µS is the mean of the distribution, σS is the standard deviation, dt is the time
interval (in this case one day) and εt ∼ N(0, 1). For each simulation run, we will
generate n = 1000 possible values for the Stock price. The Standard Normal element
introduces the randomness. Once the random trajectories for the FTSE MIB have
been generated, then the procedure overlaps with the one described in 4.

Statistical tests When financial institutions compute value at risk, the aim is to
set aside enough capital to cover unexpected losses. It is fundamental to keep this
in mind when assessing the quality of a VaR technique. A good VaR model is, in
fact, challenging to define. The model doesn’t have to be able to capture the exact
future amount of the loss, what is crucial is that the model does not underestimate
the loss4. Such a situation would mean that the bank has not enough capital to cover
the unexpected loss. Consequently, when VaR models are evaluated, their forecasts
are compared with incurred losses in order to assess whether the application of the
model has led to the estimation of an amount of capital which is adequate.

This procedure is necessarily a backtesting, since it compares VaR forecasts with
past actual losses data. Backtesting is in fact defined as a statistical procedure whose
aim is to determine whether the ex-post observed loss is in line with was predicted
by the model. The optimal situation would be to compare VaR estimates with cer-
tain future losses. This is of course not possible until the moment in which the loss is
eventually incurred. For this reason, Basel accords (1996) have introduced the pro-
cedure of backtesting as an essential pillar of model supervision. Even if backtesting
does not give information about the future ability of the model to forecast losses,
it gives crucial information about the performance of the model when applied to
historical data.

Given the importance of VaR measure when assessing the exposure to market
risk and given the continuously growing number of VaR models, scholars have pro-
posed various statistics that evaluate the quality of a model. Kupiec started this
body of research in 1995.

Most of these statistics are based on the concept of failure rate (also referred to
as hit or violation). Define a variable VaR = {VaR1, VaR2, ..., VaRn}, n = 1, 2, ..., 25
that contains the 25 estimates of VaR resulting from the analysis. Define P&L =

{P&L1, P&L2, ..., P&Ln}, n = 1, 2, ..., 25 as the out-of-sample profits and losses of the
portfolio, i.e. the incurred losses in the backtesting period. A problematic situation
occurs if, on a date, the estimated VaR is not able to cover the incurred loss.This
happens if the absolute value of VaR is lower than the absolute value of the loss, i.e.
if |VaRi| < |P&Li|, for some i ∈ [1, ..., 25]. If this situation occurs, then we say that

4At least from a supervisory perspective
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the model has incurred in a failure. By the definition of confidence level, it is already
known that the expected probability of observing a failure, i.e., |VaRi| < |P&Li|, is α:
P(|VaRi| < |P&Li|) = α. If for all the 25 VaR estimates, we compare them with the
relevant incurred loss, then it is possible to create a vector that counts the number of
failures in the model. This random variable is the most important starting point for
every VaR model evaluation. Define then F(α) as a 1xn vector that assumes value
1 is |VaRi| < |P&Li| (i.e. if a failure occurs) and 0 otherwise. This random variable
can formally be defined as:

F(α) = {I{|VaR| < |P&L|}}T=1,2,...,25

When constructing this sequence, we should expect to find a 1 with probability α

and a 0 with probability 1− α. The failures contained in the vector F(α) are i.i.d.
Bernoulli random variables with parameter 1− α. In the tests that will follow, the
assumption that is to be tested is only this one.

Now the tests that have been performed on the three models will be described.
They are all based on this concept of failure.

Binomial test The Binomial test is the most communicative. In this test, in
fact, we compare the number of failures to the expected number of failures, assum-
ing that failures follow a Binomial distribution. Define x as the number of times in
which |VaRi| < |P&Li|, N as the length of the vectors VaR and P&L (i.e., the number
of times the estimation has been performed) and p as α, where α is the confidence
level used in the estimation of VaR (in our case 5%). Assume that the failures are in-
dependent. Then the vector that contains the failures follows a Binomial distribution
with parameters p and N. Define now the observed failure rate as the ratio between
the observed number of failures and the total number of trials f̂ = x

N . The expected
number of failures under the Binomial distribution is simply Np, and the standard
deviation of the number of failures is

√
Np(1− p). We want then to test the null hy-

pothesis that the expected failure rate is equal to the observed failure rate (or, at the
same way that the total number of observed failures is equal to the expected number
of failures):

H0 : f̂ = p =
x
N

This means that we want to test that the number of failures x follows a Binomial
distribution f (x) = (N

x )px(1− p)N−x. As N increases and under the null hypothesis,
the test statistic

Z =
x− Np√
Np(1− p)

∼ N(0, 1) (5.3)

is distributed as a Standard Normal. Once the desired level of confidence has been
chosen, it is only necessary to compare the observed value of the test statistic with
the critical value of the Standard Normal. If the observed value is lower than the
critical value, then the null hypothesis cannot be rejected and thus the model should
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be considered as well-performing. This test is indeed an elementary test for one-
population mean in which the expected number of failures is Np and Np(1− p) is
their variance.

Even if we will compare the observed value of the test statistic with the relevant
critical value, it is also possible to perform the test using the p-value5. In this case, it
is necessary to introduce the concept of tail probability. The tail probability is defined
as the probability that the standard normal exceeds the value of the observed test
statistic: TP = 1−Ψ(Zobs). Since this test is double-sided, the p-value is then equal
to p − value = 2TP. As usual in hypothesis testing, if p − value > α then there is
not enough evidence to reject the null hypothesis and thus the VaR model should be
considered as acceptable.

Kupiec’s tests Kupiec (1996) proposed two different tests. The first one, the
Proportion of Failures (POF) test, basically gives the same information of the Bino-
mial test, since it evaluates the empirical proportion of failures compared to the ex-
pected one. The null hypothesis is then the same as the Binomial test. This implies
that we are still checking whether the observed number of failures is significantly
distant from the expected one. The test takes the form of a likelihood ratio test (and
not anymore a test for the mean) where the statistic is:

LRPOF = −2log(
(1− p)N−x px

(1− x
N )N−x( x

N )x ) (5.4)

Under H0, it is distributed as a χ2 with one degree of freedom. Again, if the observed
value of the statistic is lower than the critical value, then there is not enough evidence
to reject H0 and thus the model can be considered as well-performing. The Binomial
and POF tests thus carry the same information.

As the Binomial test, Kupiec’s POF test provides information only with respect
to the number of failures. This implies that the moment in which the failure occurs
is not relevant. Since the moment in which the first failures occur is indeed of great
interest, Kupiec also proposed a second test, which provides some additional useful
information. This test is again a likelihood ratio type test and it is usually called
Time until first failure. As the name may suggest, this test evaluates after how many
successes, the first failure occurs. Specifically, the test aims to check whether the
moment in which the first failure occurs is consistent with the VaR confidence level.
The test statistic is this time in the form:

LRTUFF = −2log(
p(1− p)n−1

( 1
n )(1−

1
n )

n−1
) (5.5)

Under H0, this statistic is distributed according to a χ2 with one degree of freedom
and again, if the observed value of the statistic is lower than the critical value, then

5Recall that in statistics the p-value is defined as the probability of observing values that are equal
or more extreme of the one observed in the test statistics, assuming that the null hypothesis is true.
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there is not enough evidence to reject H0 and thus the model can be considered as
well-performing.

Christoffersen’s test The tests above consider the first or the total number of
failures in isolation. However, an essential piece of information is the relative dis-
tance among failures. In particular, the level of clustering of failures may be an
essential piece of information for risk managers. If failures tend to be subsequent to
each other, in fact, this means that the bank may not be able to cover losses for many
consecutive days. This is a significant concern and some test are needed in order to
address it. Christoffersen (1998) was the first to work in this direction by consider-
ing the interaction among failures. His test is, again, a likelihood ratio type test. In
order to define the test statistic, it is necessary to define several variables. n00 is the
number of periods with no failures followed by a period with no failure. n10 is the
number of periods with failures followed by a period with no failure. n01 is the num-
ber of periods with no failures followed by a period with a failure. n11 is the number
of periods with failures followed by a period with a failure. π0 = n01

(n01+n00)
is the

probability of having a failure in t conditioned on the fact that no failure happened
in t− 1. π1 = n11

(n10+n11)
is the probability of having a failure in t conditioned on the

fact that a failure happened in t− 1. Finally, π = n01+n11
(n00+n01+n10+n11)

is the probability
of having a failure in period t. The test statistic is defined as

LRCCI = −2log(
(1− π)n00+n10 πn01+n11

(1− π0)n00 πn01
0 (1− π1)n10 πn11

) (5.6)

and it is distributed as a χ2 with one degree of freedom and again, if the observed
value of the statistic is lower than the critical value then there is not enough evidence
to reject H0 and thus the model can be considered as well performing.

Christoffersen’s test and the POF test can also be combined obtaining the con-
ditional coverage test, LRCC = LRCCI + LRPOF, which is distributed according to
a χ2 with two degrees of freedom. In this kind of test, we combine two relevant
information: the correct number of failures and their relative distribution.

5.2.4 Results

Figures 5.3,5.4 and 5.5 plot the estimated VaR according to the three techniques and
realized losses. As a first observation, we can immediately disregard the Variance
Covariance method since it always underestimates the realized loss and thus it is
completely misleading. For the other two methods, before going in detail with test
results, we can start with a qualitative analysis. First, it can be seen that both meth-
ods display some failures, meaning that in both cases, we have observations that un-
derestimate the realized loss. If we look only at the plots, it seems that Montecarlo
is superior in estimating VaR since the number of failures is lower. For historical
simulation, in fact, underestimation of risk is observed in the middle and at the end
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FIGURE 5.3: VaR estimates from Variance-Covariance method and
realized profits or losses

FIGURE 5.4: VaR estimates from Historical Simulation method and
realized profits or losses

FIGURE 5.5: VaR estimates from Montecarlo Simulation method and
realized profits or losses
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of the dataset. Specifically, the last part of the sample is highly problematic because
it would imply an underestimation that continues for several consecutive days. This
may be a serious source of concern. On the other hand, Montecarlo estimates seem
to be much more volatile and constantly above the actual losses, but in one case.

We have to verify that test results support this observation.

Binomial test The critical value of this test is 1.6449 and the test statistics for
the two techniques are displayed in table 5.3. Historical simulation fails the test,
while Montecarlo passes it. This first result is in line with the observations raced
above and it is indeed not a surprise: the lower the number of failures, the lower the
magnitude of the observed test statistic.

TABLE 5.3: Binomial test statistic values FTSE MIB

Montecarlo Historical
0.2294 8.0296

Kupiec’s tests Observed statistics for these two tests are displayed in table 5.4.
The critical value is 3.8415. Montecarlo performs well in both tests, while historical
simulation passes only the time until first failure test.

TABLE 5.4: Kupiec’s tests statistic values FTSE MIB

Montecarlo Historical
LRPOF 0.0563 27.8029
LRTUFF 0.0027 0.6812

For Kupiec’s POF test, the outcome is not indeed a surprise. This test carries, in
fact, the same information of the Binomial test. Non-coherent results between the
two tests would have been a concern. Kupiec’s second test (Time until first failure)
is a bit more informative. This test is about the moment in which the first failure
happens. The total number of failures is thus not taken into account. Given this
premise, it is possible to infer that both methods pass the test because the first fail-
ure is roughly in the middle of the sample in both cases. Usually, in fact, bad perfor-
mance in this kind of test comes from a failure which happens at the beginning of
the sample.

Christoffersen’s test The critical values for Christoffersen’s and CC are respec-
tively 3.8415 and 5.9915. We can thus conclude that while the Montecarlo method is
successful in both tests, Historical simulation fails.
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TABLE 5.5: Christoffersen’s tests statistic values FTSE MIB

Montecarlo Historical
LRCCI 0.0889 13.6970
LRCC 0.1452 41.4999

In this last set of tests, what matters is not only the absolute number of failures
but also their distribution in the sample. In the case of historical simulation, in fact,
the test is failed since failures tend to be much concentrated at the end of the dataset.

5.2.5 Conclusions

The results of the analysis have clearly pointed out that Montecarlo methods are
superior in capturing the level of exposure to market risk compared to historical
simulation when the Italian stock market index is taken into account. This implies
that in models, reduced complexity comes in every case with a cost. However, it
is essential to point out some significant shortcomings of this study. First, models
have been evaluated from a supervisory perspective. In this analysis, in fact, a good
model is a model which does not lead to underestimation of risk. Supervisors, in
fact, are concerned about banks not being able to cover unexpected losses. This
implies that model accuracy was not a concern in this analysis. It was not evaluated
whether the model is able to predict accurately future losses, but only its ability to
cover the loss. However, from a bank’s perspective, overestimation of risk is another
concern, since, if capital is allocated to cover unexpected losses, then it cannot be
invested in more profitable projects.

Second, the universe of VaR models is now incredibly growing. Future research
should then focus not only on "traditional" models such as those analyzed in this
study but on the recent variations and modifications that have been proposed. Many
models, for example, introduce some technical complications that are indeed able to
improve model performance significantly. One famous example is the introduction
of time-varying volatility both in Variance-Covariance and in Montecarlo models.

Finally, this study is only focused on equities. It would then be of great interest
the analysis of the behavior of debt or derivatives portfolios.

5.3 Replication of the study on S&P500 index

In this section, the analysis performed in 5.2 will be replicated for another index, the
American S&P500. The methodology and statistics to use are thus the same. The aim
is to compare two markets that are different in terms of size in order to spot eventual
discrepancies compared to the results that have been described for the Italian Stock
market.
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5.3.1 S&P500

The S&P500 is well-known market index of the American stock market. This index
has been used as a benchmark in many studies since it represents a proxy for the
largest stock market in the World. It thus deserves some attention. As the FTSE MIB
for the Italian case, the S&P500 is usually considered as a reliable proxy for the state
of the American economy. It was introduced for the first time on 1 January 1957 by
Standard & Poor’s. This index is composed of the 500 largest companies quoted in
the US stock exchanges 6. The weight of each company in the index depends on the
market capitalization. It is thus a cap-weighted index, as the FTSE MIB. Changes
in the composition of the index are exclusive competence of a specific committee.
Inclusion decisions are not only based on market capitalization. As in the FTSE MIB
case, in fact, stocks to be included must be liquid. Moreover, considerations related
to sectorial representation and float are taken into account too. This index will be
used as representative of the American stock market throughout the chapter.

5.3.2 Data

Source of data for the S&P500 is again Yahoo Finance. The data used are daily ad-
justed closing prices. The time interval considered is again 25 October 2016 to 1
January 2018. In this time frame, the maximum observable value was 2.6902, the
minimum 1.8291. The mean value of the index is 2.2711, with a standard deviation
of 2.0658%. The median is 2.2652, skewness and kurtosis are respectively 4.61% and
2.1027. The mode is 2.0667. Summary statistics are provided in table 5.6.

TABLE 5.6: Summary statistics of the S&P 500 25 October 2016-1 Jan-
uary 2018

maximum 2.6902
minimum 1.8291

mean 2.2711
standard deviation 2.0658%

skewness 4.61%
kurtosis 2.1027
median 2.2652
mode 2.0667

The plot in Figure 5.6 describes the evolution of the index in the period 25 Octo-
ber 2016 to 1 January 2018. Again, as in the case of FTSE MIB, the trend is generally
increasing, but much less volatile.

As already done for the FTSE MIB, the dataset is divided in two sections. The first
one is used as a starting point for the application of VaR techniques. Considerations
in 5.2 related to the use of this first dataset in the different techniques are still valid.

6Note the significant size difference with the FTSE MIB which includes 40 stocks.
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FIGURE 5.6: Historical evolution of SP500 whole sample

The second one is used for backtesting purposes. Summary statistics are described
in table 5.7 below for the first portion of the dataset. Those statistics will be needed
as inputs in the following stages of the analysis.

TABLE 5.7: Summary statistics of the S&P 500 in-sample period

maximum 2.1750
minimum 1.8291

mean 2.0367
standard deviation 2.88%

skewness -0.51
kurtosis 2.3516
median 2.0571
mode 2.0667

The histogram in Figure 5.7 describes the distribution of the S&P 500 index in the
first half of the dataset.

5.3.3 Methodology

Reference is made to paragraph 5.2.3 since the methodology applied is perfectly
overlapping.

5.3.4 Results

Figures 5.8,5.9 and 5.10 plot the estimated VaR according to the three techniques
and realized losses. Again, we can immediately disregard the Variance Covariance
method since it always underestimates the realized loss and thus it is completely
misleading. This is already a good symmetry with the Italian case. Applying the
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FIGURE 5.7: Distribution of SP500 in-sample period

same structure used in section 5.2, we can again start from a qualitative analysis.

FIGURE 5.8: VaR estimates from Variance-Covariance method and
realized profits or losses of SP500

First, it can be seen that both methods display some failures, meaning that in both
cases, we have observations that underestimate the realized loss. For Historical sim-
ulation, failures seem to be much concentrated at the end of the sample, while for
Montecarlo, they are dispersed.

By looking only at the graphs, we can safely state that Montecarlo seems to un-
derestimate losses in a lower number of cases. This is again a symmetry with the
Italian stock market. However, compared to the Italian case, the superiority of the
Montecarlo method seems to be much less pronounced since failures are much more
frequent (4 vs 1). On the other hand, for historical simulation, the quality of the
estimation seems to be much deteriorated, with a considerable number of failures.
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FIGURE 5.9: VaR estimates from Historical Simulation method and
realized profits or losses of SP500

FIGURE 5.10: VaR estimates from Montecarlo Simulation method and
realized profits or losses of SP500
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Binomial test The critical value of this test is 1.6449 and the test statistic for
the two techniques is displayed in table 5.8. Surprisingly, both methods fail the
test, meaning that, even if Montecarlo displays less failures, they are still too many
compared to what predicted by a binomial distribution. In both cases, test statistics
are significantly higher compared to the Italian case.

TABLE 5.8: Binomial test statistic values SP500

Montecarlo Historical
2.5236 18.1238

Kupiec’s tests Observed statistics for these two tests are displayed in table 5.9.
The critical value is 3.8415. Both methods fail the two tests. This is indeed not a sur-
prise since Kupiec’s test for the proportion of failure gives the same information of
the Binomial test. For the time until the first failure test, the results are a consequence
of the fact that for both methods, the first failure coincides with the first observation.

TABLE 5.9: Kupiec’s tests statistic values SP500

Montecarlo Historical
LRPOF 4.1367 102.2476
LRTUFF 5.9915 5.9915

Christoffersen’s test The critical values for Christoffersen’s and CC are respec-
tively 3.8415 and 5.9915. Montecarlo passes both tests, while historical simulation
fails both.

TABLE 5.10: Christoffersen’s tests statistic values SP500

Montecarlo Historical
LRCCI 1.2332 9.4462
LRCC 5.3699 113.6939

5.3.5 Conclusions

The results of this additional study on the US stock market are broadly in line with
the ones performed on the Italian stock market. Montecarlo proves again to be the
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most accurate method in the ability not to lead to an underestimation of capital.
Moreover, the Variance-Covariance (under normality assumption) method proves
again to be inadequate.

However, some differences can be spotted. Specifically, even if for the tests pro-
posed in this study the performance of the Montecarlo method is evidently superior
if one looks at the plots, it is evident that historical simulation seems to be much
more accurate in predicting actual losses. This may come from the fact that history
is more informative in the US stock market compared to the Italian case.

Finally, even if the Montecarlo method results again as the best performer, the
over performance is not so pronounced as in the Italian case.

5.4 The impact of distributional assumptions on VaR esti-
mates

In 4 it has been stressed that, when a Montecarlo VaR model is implemented, one of
the most critical choices to be made is the distribution from which random numbers
describing the market factor will be drown. If the assumption does not seem to be
supported by data, in fact, the VaR estimate that results is completely unreliable.

It makes then sense to compare empirically how different distributional assump-
tion can impact VaR estimates.

In this final section, VaR will be computed only applying the Montecarlo method,
but based on three different distributional assumptions: Geometric Brownian mo-
tion, Normal and Log-Normal. The data used will be again from the Italian stock
market index FTSE MIB.

5.4.1 Data

Reference is made to 5.2.2 since the dataset used is perfectly overlapping.

5.4.2 Methodology

The methodology used to compute Montecarlo VaR estimates is the same compared
to 4. The only difference is that here we apply three different distributional assump-
tions: Geometric Brownian Motion, Normal and Log-Normal.

For the Geometric Brownian Motion, the procedure maps the one described in
5.2.3. For the Normal, the parameters to be estimated are the mean and the standard
deviation, which are estimated based on historical data. For the Log-Normal, the
parameters to be estimated are again mean and standard deviation. Finally, the tests
performed on the three estimates are the ones described in Section 5.2.3.
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5.4.3 Results

Figures 5.11, 5.12 and 5.13 plot the VaR distributions compared to actual losses
for the three distributional assumptions (respectively Geometric Brownian Motion,
Normal and Log-Normal). We will again start from a qualitative analysis.

FIGURE 5.11: VaR estimates from Geometric Brownian Motion as-
sumption and realized profits or losses

FIGURE 5.12: VaR estimates from Normal assumption and realized
profits or losses

The Geometric Brownian Motion (GBM) assumption seems to be the best per-
former from a supervisory perspective since underestimations of risk (failures) are
less frequent compared to the other two methods. Normal and Log-Normal assump-
tions, on the other hand, display roughly the same behavior since failures are con-
centrated at the beginning of the distributions. Estimates based on GBM seem to be
much more volatile and disperse. Anyway, failures are only two and the magnitude
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FIGURE 5.13: VaR estimates from Log-Normal assumption and real-
ized profits or losses

of the failures is tiny compared to the other two assumptions. We will now go into
test results.

Binomial test The critical value of this test is 1.6449 and the test statistic for
the three is displayed in the table below. Montecarlo method under the Normal and
Log-Normal assumption fails this test, meaning that the number of failures is signif-
icantly higher than what predicted by the Binomial distribution. Under Geometric
Brownian motion, the test is passed. This is a consequence of the fact that in the
GBM case failures are only two.

TABLE 5.11: Binomial test statistic values: distributional study

GBM Normal Log-Normal
0.6882 6.1942 6.1942

Kupiec’s tests Observed statistics for these two tests are displayed in the table
below (5.12). The critical value is 3.8415. Again, Normal and Log-Normal fail the
two tests, while GBM passes them. This is in line with what observed in the Binomial
test. For the TUFF test, the failure of Normal and Log-Normal is due to the fact that
the first rejection happens immediately.

Christoffersen’s test The critical values for Christoffersen’s and CC are respec-
tively 3.8415 and 5.9915. GBM Montecarlo passes the two tests. The other two tech-
niques fail both tests.
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TABLE 5.12: Kupiec’s tests statistic values: distributional study

GBM Normal Log-Normal
LRPOF 0.4040 18.3322 18.3322
LRTUFF 2.3776 5.9915 5.9915

TABLE 5.13: Christoffersen’s tests statistic values: distributional
study

GBM Normal Log-Normal
LRCCI 0.3639 22.2593 22.2593
LRCC 0.7679 40.5915 40.5915

5.4.4 Conclusions

The results of this study have clearly pointed out that Montecarlo VaR computed ac-
cording to the GBM assumption seems to be superior compared both to the Normal
and to the Log-Normal case. This over-performance is extremely pronounced, but
it is indeed not a surprise. In financial literature, in fact, it is well known that stock
returns hardly display a Normal distribution. A process which is in general con-
sidered to be able to better approximate stock returns is the GBM. If the modeling
of the process is superior, then the VaR estimate that results is consequently more
appropriate.

Another take away of the analysis is that the Log-Normal assumption seems not
to have significant advantages over the Normal. In financial literature, in fact, Log-
Normal assumption is usually preferred to the Normal but, in this case, results are
perfectly overlapping.

5.5 Conclusions

The analyses that have been performed in this final chapter have explained why
it was worth deeply discussing random number generators and the Montecarlo
method. In the cases that have been analyzed, in fact, Montecarlo seems to be the
best performer, i.e., the method that underestimates less frequently the realized loss
and thus capital requirements for market risk.

This result is somehow positive because it implies that the model increased so-
phistication has positive effects on performance. However, some limitations of this
study have already been underlined. First, the analysis was performed considering
only the stock market. Specifically, a cap-weighted stock portfolio (FTSE-MIB and
S&P500 Indexes) was used as test asset. The reason for the use of an index is com-
putational ease since it allows to draw conclusions at portfolio level with no need
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to perform portfolio construction and evaluation. It was critically assumed that the
FTSE MIB represented a good approximation of the Italian stock market (and the
S&P500 of the US one). If we accept this assumption, then results can be generalized
to be applicable to the two stock markets. A first interesting topic to be further in-
vestigated is the consistency of results for different portfolios, for example, debt or
derivatives. In fact, there is no reason to expect those results to be the same.

Another possible evolution of the analysis would work at the model level. As
already pointed out VaR models are continually changing and growing compared
to the three basic versions analyzed in this thesis. It would be highly interesting to
analyze how those results change as models are slightly modified.

Finally, the perspective that has been endorsed here is a "supervisory perspec-
tive", meaning that the sole focus of attention was the underestimation of actual
losses. Of course, other aspects deserve attention, such as the accuracy of the mod-
els, i.e., its ability to closely predict the exact amount of the loss.
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Conclusions

With the last chapter of this work (5), the reader understands why a large body of
this thesis was devoted to a detailed description of Montecarlo implementation. This
approach, in fact, proves to be superior to the other two, at least for what concerns
the studies that have been presented. Limitations of these studies have already been
pointed out, and future research should follow this direction in order to assess if
this result is robust also for other categories of assets, in different markets and un-
der other assumptions (for example by considering accuracy measures rather than
failure rates).

Despite those necessary and severe limitations, the results of the studies that
have been performed are still of some utility. The Montecarlo method proves to be
superior to the other two both in the Italian and in the US stock markets, from a
supervisory perspective. It results, then, that the best performing model is the most
complex one, at least under the point of view that has been considered.

Montecarlo simulation is, in fact, much more time consuming and computation-
ally intensive, but this burden may come with the benefit of fewer underestimations
of capital requirements.

Provided that the Montecarlo method has proven to be superior to the other two
approaches, considerations and examples are made in relation to random number
generation. The generation of random numbers is, in fact, the critical and distinc-
tive feature of Montecarlo methods and it has to be acknowledged that even if the
underlying VaR model is relatively sophisticated and well suited, the VaR estimate
that results may be inaccurate because random number generator that is employed
is of poor quality. Efficiency and period length considerations should be then a basis
for the design of every Montecarlo VaR model.

Finally, the third empirical analysis presented in 5, has shown that distributional
assumptions can have a severe impact on VaR estimates that result from the imple-
mentation of the Montecarlo method. The consequence of this is that a considerable
amount of resources should be invested in the analysis of the suitability of a distribu-
tional assumption for each relevant instrument. Again, mistakes in these assump-
tions may lead the VaR estimates to be unreliable, even if based on good quality
models.
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Appendix A

Proofs

A.1 Proof of 3.1

Let X be a random variable with continuous distribution function F. Define now a
new random variable Y as F(X), i.e. Y = F(X). It follows that:

F(Y ≤ x) = F(F(X) ≤ x) = F(X ≤ F−1(x)) = F−1(F(x)) = x (A.1)

Then the random variable Y must have a uniform distribution in the interval (0, 1),
Y = F(X) ∼ U(0, 1).

A.2 Proof of Acceptance-Rejection method

Define Z as the random variable generated by the implementation of the method.
Note that the proposal random variable Y and the Uniform U are independent,then:

P(Z ≤ z) = P(Y ≥ x|U ≤ f (Y)
cg(Y)

) =

∫ x
−∞

∫ f (t)/cg(t)
0 g(t)dsdt∫ ∞

−∞

∫ f (t)/cg(t)
0 g(t)dsdt

=
∫ x

−∞
f (t)dt. (A.2)

Then the claim follows.

A.3 Proof of Ratio of uniforms relation

Given the two random variables (U, V) and the area of definition c, their joint den-
sity, f (u, v), is defined as f (u, v) = I(u, v)/c. Define two new random variables
X = U and Y = V/U. The joint density of these two new random variables f (x, y)
is simply given by:

f (x, y) = xI(x, y)/c =
x
c

I
[0,
√

h(y)](x) (A.3)

Then it follows that:

f (y) = f (v/u) =
∫ √h(y)

0

x
c

dx =
1
2c

h(y) (A.4)

This quantity is evidently proportional to h.





149

Appendix B

Codes

B.1 Chapter 1

B.1.1 Buffon needle experiment

2 %% Buffon needle experiment: estimation of pi
% Author: Martina Aquila

4 %% simulation
% set d=2 and L=1

6 clc
clear all

8

n=20000;
10 D=rand(1,n);% vector of n pseudorandom numbers in the range [0,1)

theta=rand(1,n)*pi/2;% vector of n pseudorandom numbers in the range [0,pi/2)
12 succ=D<=sin(theta )/2; % vector of 0 if false and 1 if true

sum(succ) %show the number of hits
14 pi_hat=n/sum(succ) %our estimated value of pi!

B.1.2 Histogram of Buffon needle experiment

1 %% histograms
% Author: Martina Aquila

3 n=100;
m=2000;

5 for i=1:m
D=rand(1,n)

7 theta=pi/2* rand(1,n)
succ=D<=sin(theta )/2

9 pi_hat(i)=n/sum(succ) %vector of estimated values of pi
end

11 %descriptive analysis of results
hist(pi_hat) %histogram of distribution

13 mean_pi_hat=n/sum(pi_hat) %sample mean
dev=(pi_hat -mean_pi_hat ).*( pi_hat -mean_pi_hat) %squared deviations from the mean

15 var_pi_hat=sum(dev)/(n-1) %sample variance
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sdev_pi_hat=sqrt(var_pi_hat) %sample standard deviation

B.1.3 Monte Carlo double

% Source: Stochastic Simulation and Applications in Finance with MATLAB Programs
2 By Huu Tue Huynh , Van Son Lai , Issouf Soumare

function result = MonteCarlo_double(f, g, x0 , x1, y0, y1 , n)
4 %

% Monte Carlo integration of f over a domain g>=0, embedded
6 % in a rectangle [x0 ,x1]x[y0,y1]. n^2 is the number of

% random points.
8

% Draw n^2 random points in the rectangle
10 x = x0 + (x1 - x0)*rand(n,1);

y = y0 + (y1 - y0)*rand(n,1);
12 % Compute sum of f values inside the integration domain

f_mean = 0;
14 num_inside = 0; % number of x,y points inside domain (g>=0)

for i = 1: length(x)
16 for j = 1: length(y)

if g(x(i), y(j)) >= 0
18 num_inside = num_inside + 1;

f_mean = f_mean + f(x(i), y(j));
20 end

end
22 end

f_mean = f_mean/num_inside;
24 area = num_inside /(n^2)*( x1 - x0)*(y1 - y0);

result = area*f_mean;
26 end

B.2 Chapter 2

B.2.1 LCG

%% LCG
2 % Author: Martina Aquila

clc
4 clear all

n=100
6 m=32;

a=5;
8 b=3;

10 x_t =11* ones(n);
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12 for i=2:n
x_t(i)=mod(a*x_t(i-1)+b,m)

14 end

16 x_t=x_t(:,1)

18 u_t=x_t/m

20 hist(u_t)

B.2.2 LCG non full

1 %% LCG non full
% Author: Martina Aquila

3 clc
clear all

5

n=100
7 m=32;

a=6;
9 b=11;

11 x_t =10* ones(n);

13 for i=2:n
x_t(i)=mod(a*x_t(i-1)+b,m)

15 end

17 x_t=x_t(:,1)

B.2.3 LCG LGM

1 %% LCG LGM
% Author: Martina Aquila

3 clc
clear all

5

n=100
7 m=2147483647;

a=16807;
9 b=0;

11 x_t=ones(n);

13 for i=2:n
x_t(i)=mod(a*x_t(i-1),m)
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15 end

B.2.4 LCG with histogram

1 %% LCG
% Author: Martina Aquila

3 clc
clear all

5 n=100
m=32;

7 a=5;
b=3;

9

x_t =11* ones(n);
11

for i=2:n
13 x_t(i)=mod(a*x_t(i-1)+b,m)

end
15

x_t=x_t(:,1)
17

u_t=x_t/m
19

hist(u_t)

B.2.5 LCG uniform

%% LCG Uniform
2 % Author: Martina Aquila

clc
4 clear all

n=100
6 m=1;

a=7;
8

u_t =0.2* ones(n);
10

for i=2:n
12 u_t(i)=mod(a*u_t(i-1),m)

end
14

u_t=u_t(:,1)
16

hist(u_t)
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B.2.6 MCG

1 %% MCG
% Author: Martina Aquila

3 clc
clear all

5

m=32;
7 a_1 =5;

a_2=6
9

x_t =11* ones(m);
11

for i=3:m
13 x_t(i)=mod(a_1*x_t(i-1)+ a_2*x_t(i-2),m)

end
15 %uniformly distributed random numbers

u_t=x_t/m

B.2.7 MCG Matrix

%% MCG matrix
2 % Author: Martina Aquila

clc
4 clear all

6 m=32;
A=[0,1,0,0

8 0,0,1,0
0,0,0,1

10 3,4,5,6];
det(A)% check that A is invertible

12

X_t =11* ones(m);
14

for i=2:m
16 X_t(i)=mod(X_t(i-1),m)

end
18 %uniformly distributed random numbers

u_t=x_t/m

B.2.8 W-H

1 %% WH
% Author: Martina Aquila

3 clc
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clear all
5

m_1 =30269;
7 a_1 =171;

m_2 =30307;
9 a_2 =172;

m_3 =30323;
11 a_3 =170;

13 x_t =11* ones(m_1);
y_t =11* ones(m_2);

15 z_t =11* ones(m_3);

17

19 for i=2: m_1
x_t(i)=mod(a_1*x_t(i-1),m_1)

21 end

23 for i=2: m_2
y_t(i)=mod(a_2*y_t(i-1),m_2)

25 end

27 for i=2: m_3
z_t(i)=mod(a_3*z_t(i-1),m_3)

29 end

31 u_t=mod(x_t./m_1+y_t./m_2+z_t./m_3 ,1)

B.2.9 MRG32k3a

%% MRG32k3a.m
2 %Adapted from D.P.Kroese

m1=2^32 -209; m2 =2^32 -22853;
4 ax2p =1403580; ax3n =810728;

ay1p =527612; ay3n =1370589;
6

x=[12345 12345 12345]; % Initial x at -1, -2, -3
8 y=[12345 12345 12345]; % Initial y at -1, -2, -3

10 n=100; % Compute the sequence for N steps
u=zeros(1,n);

12 for t=1:n
x_t=mod(ax2p*x(2)-ax3n*x(3),m1);

14 y_t=mod(ay1p*y(1)-ay3n*y(3),m2);
if x_t <= y_t

16 u(t)=( x_t - y_t + m1)/(m1+1);
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else
18 u(t)=(x_t - y_t)/(m1+1);

end
20 x(2:3)=x(1:2); x(1)= x_t; y(2:3)=y(1:2); y(1)= y_t;

end

B.2.10 KISS99

1 % KISS99
%Adapted from D.P.Kroese

3 % Seeds: Correct variable types crucial

5 A=uint32 (12345); B=uint32 (65435); Y=12345; Z=uint32 (34221);
n=100; % Compute the sequence for N steps

7 u=zeros(1,n);
for t=1:n

9 % Two Multiply with Carry Generators
A=36969* bitand(A,uint32 (65535))+ bitshift(A, -16);

11 B=18000* bitand(B,uint32 (65535))+ bitshift(B, -16);
% MWC: Low and High 16 bits are A and B

13 X=bitshift(A,16)+B;
% CONG: Linear Congruential Generator

15 y = mod (69069*y+1234567 ,4294967296);
% SHR3: 3-Shift Register Generator

17 z=bitxor(z,bitshift(z ,17));
z=bitxor(z,bitshift(z, -13));

19 z=bitxor(z,bitshift(z,5));
% Combine them to form the KISS99 generator

21 KISS=mod(double(bitxor(x,uint32(y)))+ double(z) ,4294967296);
u(t)=KISS /4294967296; % u[0,1] output

23 end

B.3 Chapter 3

B.3.1 Inverse transform-Continuous variable

1 %% Inverse transform -Continuous variable
% Author: Martina Aquila

3 clc
clear all

5

n=1000; %set number of repetitions
7

U=rand(n,1);%generate uniform
9

X=sqrt(U);%generate desired random variable
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11

%plot histogram of generated distribution
13 hist(U)

hist(X)

B.3.2 Inverse transform-Beroulli

%% Inverse transform method Bernulli
2 % Author: Martina Aquila

clc
4 clear all

6 p=0.2%choose value for the parameter
n=100%set number of repetitions

8

u=rand(n,1);%generate uniform
10

%set up loop for generation of Bernulli
12

for i=1:n
14 if u(i)<p

u(i)=0
16 else u(i)=1

end
18 end

B.3.3 Inverse transform-Discrete 1

%% Inverse transform - Discrete 1
2 %Adapted from D.P.Kroese

clc
4 clear all

6 n=1000 %set number of repetitions
p=[0.1 ,0.2 ,0.3 ,0.4] %vector of probabilities

8

x=zeros(n,1) %preallocate the space
10

for i=1:n
12 x(i)=min(find(rand <cumsum(p)))

end

B.3.4 Inverse transform-Discrete 2
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1 %% Inverse transform - Discrete 2
%Adapted from D.P. Kroese

3 clc
clear all

5

n=1000 %set number of repetitions
7 p=[0.1 ,0.2 ,0.3 ,0.4] %vector of probabilities

9 [dummy ,x]= histc(rand(1,n),[0,cumsum(p)])

B.3.5 Alias method

1 %% Alias method A
%Adapted from Dirp K. Kroese

3

clc
5 clear all

7 p=rand (1 ,200);
p=p/sum(p);

9 n=size(p,2); %sample size
a=1:n;

11 q=zeros(1,n);%initialyze the space
q=n*p;

13 B=find(q >=1);
A=find(q<1);

15 while (~ isempty(A) && ~isempty(B))
i = B(1);

17 j = A(1);
a(i) = j;

19 q(j) = q(j) -(1- q(i));
if (q(j) < 1)

21 A = setdiff(A,j);
B = union(B,j);

23 end
B = setdiff(B,i);

25 end
pp = q/n

27 for i = 1:n
ind = find(a == i);

29 pp(i) = pp(i) + sum((1 - q(ind )))/n;
end

31 max(abs(pp - p))
N = 10^6; % generate sample of size N

33 X = zeros(1,N);
for i = 1:N
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35 K = ceil(rand*n);
if (rand > q(K));

37 X(i) = a(K);
else

39 X(i) = K;
end

41 end

B.3.6 Acceptance-Rejection Positive Normal

1 %% Acceptance -Rejection Positive Normal Distribution
% Author: Martina Aquila

3 clc
clear all

5

n=100 %set number of repetitions
7 y=zeros(n,1) %preallocate the space

x=exprnd(1,n,1) % generate proposal
9 u=rand(n,1)% generate uniform

11 %implement AR

13 for i=1:n
if u(i)<=sqrt (2/pi)*exp(-x(i)^2/2)/ sqrt (2* exp (1)/pi)

15 y(i)=x(i)
else y(i)=NaN

17 end
end

19

%% Efficiency
21 eff=sqrt(pi/2*exp (1))

B.3.7 Bernoulli

1 %% Bernulli
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 p=0.25;

u=rand(n,1);
9 x=zeros(n,1);

11 for i=1:n
if u(i)<=p
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13 x(i)=1
else x(i)=0

15 end
end

17

bar(x)

B.3.8 Binomial via Normal

1 %% Binomial via Normal
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 p=0.1;

y=randn(1,n)’;
9 x=zeros(1,n)’;

11 for i=1:n
x(i)=max(0,floor(n*p+0.5+y(i)*sqrt(n*p*(1-p))))

13 end

B.3.9 Binomial Recursive 1

1 %% recursive binomial generator 1
%Adapted from D.P. Kroese

3 function x=binomialrnd(n,p)
% recursive binomial generator

5 if n<=10
x=sum(rand(1,n)<p);

7 else
k=ceil(n*p);Y=nbinrnd(k,p);% generate NegBin(k,p)

9 T=k+Y;
if T<=n

11 x=k+binomialrnd(n-T,p);
else

13 x=k-binomialrnd(T-n,p);
end

15 end

B.3.10 Binomial Recursive 2

1 %% recursive binomial generator 2
%Adapted from D.P. Kroese
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3

function x=binomrnd_beta(n,p)
5

if n<=10
7 x=sum(rand(1,n)<p);

else
9 k=ceil(n*p);Uk=betarnd(k,n+1-k);% generate beta r.v.

if Uk<p
11 x=k+binomrnd_beta(n-k,(p-Uk)/(1-Uk));

else
13 x=k-binomrnd_beta(k-1,(Uk -p)/Uk);

end
15 end

B.3.11 Geometric via Exponential

%% Geometric 1
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
p=0.2;

8 y=exprand(-ln(1-p),1,n)’;
x=zeros(1,n)’

10 ;
for i=1:n

12 x(i)=ceil(y(i))
end

B.3.12 Geometric via Uniform

%% Geometric 2
2 % Author: Martina Aquila

clc
4 clear all

n=100;
6 p=0.2;

u=rand(1,n)’;
8 x=zeros(1,n)’;

for i=1:n
10 x(i)=ceil(ln(u(i)/ln(1-p))

end
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B.3.13 Hypergeometric

1 %% Hypergeometric
%Adapted from D.P. Kroese

3 N = 100; %total number of balls
n = 20; % take n balls

5 r = 30; % number of red balls
w = zeros(1,N);

7 w(1:r) = 1;
K = 10^5;

9 x = zeros(1,K);
for i=1:K

11 [s,ix] = sort(rand(1,N));
x(i) = sum(w(ix(1:n)));

13 end

15 xx = [0:n];
count = hist(x,xx);

17 ex = hygepdf(xx ,N,r,n)*K;
clf

19 hold on
plot(xx,count ,’.r’)

21 plot(xx,ex,’ob’)
hold off

B.3.14 Negative Binomial

1 %% Negative Binomial
% Author: Martina Aquila

3

clc
5 clear all

n=10;
7 r=10;

p=0.2;
9 u=rand(1,n);

y=zeros(1,n);
11 c=ln(1-p);

13 for i=1:n
y(i)= floor(ln(u(i)/c)

15 end

17 x=cumsum(y)

B.3.15 Poisson
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1 %% Poisson
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 l=0.2;

m=floor (7/8*l);
9 y=gamrnd(m,1,1,n)’;

z=zeros(1,n)’;
11 x=zeros(1,n)’;

13 for i=1:n
if y(i)<=l

15 z(i)= poissrnd(l-y(i))
x(i)=m+z(i)

17 else x(i)= binornd(m-1,l/y(i))
end

19 end

B.3.16 Beta(a,1)

1 %% Beta (alpha ,1)
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 a=0.8;

9 u=rand(1,n)’;
x=zeros(1,n)’;

11 for i=1:n
x(i)=u(i)^(1/a)

13 end

B.3.17 Beta(1,b)

1 %% Beta (1,beta)
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 b=0.8;
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9 u=rand(1,n)’;
x=zeros(1,n)’;

11 for i=1:n
x(i)=1-u(i)^(1/b)

13 end

B.3.18 Beta(0.5,0.5)

1 %% Beta (0.5 ,0.5)
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7

u=rand(1,n)’;
9 x=zeros(1,n)’;

11 for i=1:n
x(i)=cos(pi*u(i)/2)^2

13 end

B.3.19 Beta(a,a) 1

%% Beta (alpha ,alpha) 1
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
a=0.7;

8

u_1=rand(1,n)’;
10 u_2=rand(1,n)’;

x=zeros(1,n)’;
12

for i=1:n
14 x(i)=0.5*(1+ sqrt(1-u_1(i)^(2/(2*a -1)))* cos(2*pi*u_2(i)))

end

B.3.20 Beta(a,a) 2

1 %% Beta (alpha ,alpha) 2
% Author: Martina Aquila
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3 clc
clear all

5

n=100;
7 a=0.7;

9 u=rand(1,n)’;
v=rand(1,n)’*2-1;

11 x=zeros(1,n)’;

13 s=u.^2+v.^2

15 for i=1:n
if s(i)>1

17 x(i)=NaN
else x(i)=0.5+u(i)*v(i)/s(i)*sqrt(1-s(i)^(2/(2*a-1)))

19 end
end

B.3.21 Beta Johnk algorithm

1 %% Beta Johnk algorithm
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 a=0.8;

b=0.6;
9

u_1=rand(1,n)’;
11 u_2=rand(1,n)’;

v_1=ones(1,n)’;
13 v_2=ones(1,n)’;

15 for i=1:n
v_1(i)=u_1(i)^(1/a)

17 end

19 for i=1:n
v_2(i)=u_2(i)^(1/b)

21 end

23 w=v_1+v_2
x=zeros(1,n)’;

25

for i=1:n
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27 if w(i)>1
x(i)=NaN

29 else
x(i)=v_1(i)/w(i)

31 end
end

B.3.22 Cauchy(0,1)

1 %% Cauchy (0,1)
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 m=0;

s=1;
9

u=rand(1,n);
11 c=zeros(1,n);

for i=1:n
13 c(i)=tan(pi*u(i))

end

B.3.23 Cauchy(0,1) Ratio of Uniforms

%% Cauchy (0,1) Ratio of Uniform
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
u=rand(1,n)’;

8 v=rand(1,n)’;
v=v -0.5;

10 x=zeros(1,n)’;

12 for i=1:n
if u(i)^2+v(i)^2 <=1

14 x(i)=v(i)/u(i)
else x(i)=NaN

16 end
end
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B.3.24 Cauchy(0,1) Ratio of Normals

1 %% Cauchy (0,1) Ratio of Normal
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 y=rand(1,n)’;

v=rand(1,n)’;
9 x=zeros(1,n)’;

11 for i=1:n
x(i)=y(i)/v(i)

13 end

B.3.25 Exponential

1 %% Exponential
% Author: Martina Aquila

3 clc
clear all

5

l=1.2;
7 n=100;

u=rand(1,n)’;
9 x=zeros(1,n)’;

11 for i=1:n
x(i)=-log(u(i))/l

13 end

B.3.26 F 1

1 %% F 1
% Author: Martina Aquila

3 clc
clear all

5

m=5;
7 n=6;

k=100;
9 x=chi2rnd (m,k,1);

y=chi2rnd (n,k,1);
11 z=zeros(1,k);
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13 for i=1:k
z(i)=(x(i)/m)/(y(i)/n)

15 end

B.3.27 F 2

1 %% F 2
clc

3 clear all

5 m=5;
n=6;

7 k=100;

9 b=betarnd (m/2,n/2,k,1)’;
x=zeros(1,k)’;

11

for i=1:k
13 x(i)=(b(i)*n)/(m*(1-b(i)))

end

B.3.28 Frechet

%% Frechet(alpha ,0,1)
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
a=3;

8

u=rand(1,n)’;
10 x=zeros(1,n)’;

12 for i=1:n
x(i)=(-log(u(i)))^( -1/a)

14 end

B.3.29 Gamma Best

1 %% Gamma best
% adapted from D.P. Kroese

3 N = 10^5; alpha = 0.3;
d= 0.07 + 0.75* sqrt(1-alpha); b = 1 + exp(-d)*alpha/d;

5 x = zeros(N,1);
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for i = 1:N
7 cont = true;

while cont
9 U1 = rand;

U2 = rand;
11 V = b*U1;

if V <= 1
13 X = d*V^(1/ alpha );

if U2 <= (2-X)/(2+X)
15 cont = false; break;

else
17 if U2 <= exp(-X)

cont = false; break;
19 end

end
21 else

X = -log(d*(b-V)/alpha);
23 y = X/d;

if U2*(alpha + y*(1-alpha )) < 1
25 cont= false; break;

else
27 if U2 <= y^( alpha - 1)

cont= false;break;
29 end

end
31 end

end
33 x(i) = X;

end
35

clf
37 hold on

x = sort(x);
39 ecdf(x); % empirical cdf

y = gamcdf(x,alpha ); % cdf of gamma distribution
41 plot(x,y,’r’)

hold off

B.3.30 Gamma Cheng Feast

1 %% Gamma Cheng Feast algorithm
% Author: Martina Aquila

3 clc
clear all

5

a=1.2;
7 n=100;
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u_1=rand(1,n)’;
9 u_2=rand(1,n)’;

11 for i=1:n
v(i)=((a-(6*a)^( -1))* u_1(i))/((a-1)* u_2(i))

13 end

15 x=ones(1,n)’;

17 for i=1:n
if 2*(u_2(i) -1)/(a-1)+v(i)+1/v(i)<=2

19 x(i)=(a-1)*v(i)
if 2*log(u_2(i))/(a-1)-log(v(i))+v(i)<=1

21 x(i)=(a-1)*v(i)
else x(i)=NaN

23 end
end

25 end

B.3.31 Gamma Chi-square

1 %% Gamma (1/2 ,1/2) (chi -square)
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 z=randn(1,n)’;

x=zeros(1,n)’;
9

for i=1:n
11 x(i)=z(i)^2

end

B.3.32 Gumbel

1 %% Gumbel
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 u=rand(1,n)’;

x=zeros(1,n)’;
9

for i=1:n
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11 x(i)=-log(-log(u(i)))
end

B.3.33 Laplace 1

%% Laplace 1
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
y=exprnd(1,1,n)’;

8 x=zeros(1,n)’;

10 p=0.5;
u=rand(1,n)’;

12 b=zeros(1,n)’;

14 for i=1:n
if u(i)<=p

16 b(i)=1
else b(i)=0

18 end
end

20 for i=1:n
x(i)=(2*b(i)-1)*y(i)

22 end

B.3.34 Laplace 2

%% Laplace 2
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
u=rand(1,n)’-0.5;

8 x=zeros(1,n)’;

10 for i=1:n
x(i)=sign(u(i))*log(1-2*abs(u(i)))

12 end

B.3.35 Laplace 3
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%% Laplace 3
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
v=exprnd(1,1,n)’;

8 w=exprnd(1,1,n)’;
x=zeros(1,n)’;

10

for i=1:n
12 x(i)=v(i)-w(i)

end

B.3.36 Laplace 4

1 %% Laplace 4
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 e=exprnd(1,1,n)’;

y=rand(1,n)’;
9 x=zeros(1,n)’;

11 for i=1:n
x(i)=y(i)*sqrt (2*e(i))

13 end

B.3.37 Logistic

1 %% Logistic
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 u=rand(1,n)’;

x=zeros(1,n)’;
9

for i=1:n
11 x(i)=log(u(i)/(1-u(i)))

end
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B.3.38 Log-Normal

%% Log -Normal
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
m=0;

8 s2=1;

10 y=randn(1,n)’;
x=zeros(1,n)’;

12

for i=1:n
14 x(i)=exp(y(i))

end

B.3.39 Normal Box-Muller

1 %% Normal Box -Muller
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 u_1=rand(1,n)’;

u_2=rand(1,n)’;
9 x_1=zeros(1,n)’;

x_2=zeros(1,n)’;
11

for i=1:n
13 x_1(i)=sqrt(-2*log(u_1(i)))* cos (2*pi*u_2(i))

x_2(i)=sqrt(-2*log(u_1(i)))* sin (2*pi*u_2(i))
15 end

plot(x_1)

B.3.40 Normal Rejection Polar method

%% Normal Rejection Polar method
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
v_1=rand(1,n) ’*2+1;
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8 v_2=rand(1,n) ’*2+1;
r=v_1 .^2+ v_2 .^2;

10 x_1=zeros(1,n)’;
x_2=zeros(1,n)’;

12

for i=1:n
14 if r(i)>=1

x_1(i)=NaN
16 x_2(i)=NaN

else
18 x_1(i)=v_1(i)*sqrt(-2*log(r(i)^2)/r(i)^2)

x_2(i)=v_2(i)*sqrt(-2*log(r(i)^2)/r(i)^2)
20 end

end

B.3.41 Pareto 1

1 %% Pareto 1
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 a=2;

9 u=rand(1,n)’;
x=zeros(1,n)’;

11

for i=1:n
13 x(i)=u(i)^( -1/a)-1

end

B.3.42 Pareto 2

%% Pareto 2
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
a=2;

8 y=exprnd(1,1,n)’;
x=zeros(1,n)’;

10

for i=1:n
12 x(i)=exp(y(i)/a)- 1
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end

B.3.43 Student-t via Chi Square and Standard Normal

1 %% Student -t Chi -square -NormaleSt
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 v=5;

9 z=randn(1,n)’;
y=gamrnd(v/2,0.5,1,n)’;

11 x=zeros(1,n)’;

13 for i=1:n
x(i)=z(i)/sqrt(y(i)/v)

15 end

B.3.44 Student-t via Beta

1 %% Student -t Beta
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 v=5;

9 y=betarnd(v/2,v/2,1,n)’;
x=zeros(1,n)’;

11

for i=1:n
13 x(i)= sqrt(v)*(y(i) -0.5)/( sqrt(y(i)*(1-y(i))))

end

B.3.45 Student-t via Ratio of Uniform

%% Student -t Ratio of uniform
2 % Author: Martina Aquila

clc
4 clear all

n=100;
6 v=5;
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8 z=rand(1,n)’;
u=rand(1,n)’*2* sqrt(v)+sqrt(v);

10 x=zeros(1,n)’;
w=z.^(1/v);

12

for i=1:n
14 if w(i)^2+u(i)^2/v<=1

x(i)=u(i)/w(i)
16 else x(i)=NaN

end
18 end

B.3.46 Student-t via Polar 1

1 %% Student -t Polar 1
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 w=5;

u=rand(1,n)’;
9 v=rand(1,n)’;

11 t=u.*2*pi;
r=sqrt(w*(v.^( -2/w) -1));

13 x=r.*cos(t);
y=r.*sin(t);

B.3.47 Student-t via Polar 2

%% Student -t Polar 2
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
q=5;

8 x=zeros(1,n)’;
u=rand(1,n) ’*2+1;

10 v=rand(1,n) ’*2+1;
w=u.^2+v.^2;

12

for i=1:n
14 if w(i)>1
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x(i)=NaN
16 else x(i)=sgn(u(i))* sqrt((u(i)^2/w(i))*q*(w(i)^( -2/q)-1))

end
18 end

B.3.48 Student-t via Polar Bailey

1 %% Student -t Rejection Polar method
% Author: Martina Aquila

3 clc
clear all

5

n=100;
7 ni=4;

v_1=rand(1,n) ’*2+1;
9 v_2=rand(1,n) ’*2+1;

r=v_1 .^2+ v_2 .^2;
11 x=zeros(1,n)’;

13 for i=1:n
if r>=1

15 x(i)=NaN
else x(i)=v_1(i)*sqrt((ni*(r(i)^(-8/ni)-1)/r(i)))

17 end
end

B.3.49 Uniform(a,b)

%% Uniform(a,b)
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
a=2;

8 b=3;
u=rand(1,n)’;

10 x=zeros(1,n)’;

12 for i=1:n
x(i)=a+(b-a)*u(i)

14 end

B.3.50 Wald
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%% Inverse Gaussian MSGH method
2 % Author: Martina Aquila

clc
4 clear all

6 m=4;
l=2;

8 n=100;
z=rand(1,n)’;

10 y=z.^2;
x_1=m+(m^2*y)/(2*l)-m/(2*l)*sqrt (4*m*l*y+m^2*y.^2);

12 u=rand(1,n)’;
x=zeros(1,n)’;

14

for i=1:n
16 if u(i)<=m/(m+x_1(i))

x(i)=x_1(i)
18 else x(i)=m^2/( x_1(i))

end
20 end

B.3.51 Weibull

%% Weibull
2 % Author: Martina Aquila

clc
4 clear all

6 n=100;
a=1.2;

8 b=1;
u=rand(1,n)’;

10 x=zeros(1,n)’;

12 for i=1:n
x(i)=(-log(u(i)))^(1/a)

14 end

B.3.52 Raileigh

%% Rayleigh Inverse CDF
2 % Author: Martina Aquila

clc
4 clear all
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6 n=100;
b=1;

8 a=2;
s=sqrt (2/b);

10 u=rand(1,n)’;
r=zeros(1,n)’;

12

for i=1:n
14 r(i)=s*sqrt(-log(u(i)))

end

B.4 Chapter 4

B.4.1 Parametric VaR for Portfolio

%% VaR Forward Var/Cov
2 % Author: Martina Aquila

r_usa_0 =0.023
4 r_uk_0 =0.009

S_0 =1.29
6 Q_us=6

Q_uk =10
8 T=0.25

P_0=S_0*(Q_uk )/(1+ r_uk_0 )^T-Q_us /(1+ r_usa_0 )^T
10

t1=datetime (2010 ,1 ,15)
12 t = t1 + calmonths (1:108)

%% Exchange rate analysis
14

S=GBPUSDmontly (3:end)
16 m_S=mean(S)

s_S=std(S)
18

plot(t,S)
20 hist(S)

%% US t-bills
22

r_usa=USDBillsmonthly (3:end )*0.01
24

m_usa=mean(r_usa)
26 s_usa=std(r_usa )*12^( -1/2)

plot(t,r_usa)
28 hist(r_usa)

%% GBP Bills
30

r_uk=Ukbillsmonthly (3: end )*0.01
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32

m_uk=mean(r_uk)
34 s_uk=std(r_uk)

plot(t,r_uk)
36 hist(r_uk)

%% Portfolio
38

covS_uk=corrcoef(S,r_uk)
40 corS_uk=covS_uk (1,2)

covS_us=corrcoef(S,r_usa)
42 corS_usa=covS_us (1,2)

covus_uk=corrcoef(r_usa ,r_uk)
44 coruk_usa=covus_uk (1,2)

46 m_port=Q_us*m_usa+Q_uk*m_uk*m_S
s_port=sqrt(Q_us ^2* s_usa ^2+ Q_uk ^2* s_uk ^2+ s_S ^2+2* Q_us*Q_uk*coruk_usa*s_usa*s_uk +2* Q_us*corS_usa*s_usa*s_S+2* corS_uk*Q_uk*s_uk*s_S)

48

%alpha =5%
50

VaR=m_port -1.65* s_port

B.4.2 Historical simulation VaR for Portfolio

%% VaR Historical simulation
2 % Author: Martina Aquila

n=100 %target number of data points
4 a=0.05 %confidence level

i_usa_0 =0.023
6 i_uk_0 =0.009

S_0 =1.29
8 Q_us=6

Q_uk =10
10 T=0.25

P_0=S_0*(Q_uk )/(1+ i_uk_0 )^T-Q_us /(1+ i_usa_0 )^T
12

t1=datetime (2010 ,10 ,15)
14 t = t1 + calmonths (1:100)

16 %% Exchange rate USD vs GBP

18 S=GBPUSDmontly (10: end)’
r_S=zeros(1,n)’ %percentage changes

20

for i=1:n
22 r_S(i)=S(i+1)/S(i)-1

end
24
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S_1=S_0 *(1+ r_S (1))
26 S_s=ones(1,n)’*S_1

28 for i=2:n
S_s(i)= S_s(i -1)*(1+ r_S(i))

30 end

32 hist(S_s)
figure;

34 plot( S(2:end), "r");
hold on;

36 plot(S_s , "g");
hold off;

38

%% US t-bills
40

i_usa=USDBillsmonthly (10: end )*0.01
42

r_usa=zeros(1,n)’ %percentage changes
44

for i=1:n
46 r_usa(i)= i_usa(i+1)/ i_usa(i)-1

end
48

i_usa_1=i_usa_0 *(1+ r_usa (1))
50 i_usa_s=ones(1,n)’*i_usa_1

52 for i=2:n
i_usa_s(i)= i_usa_s(i -1)*(1+ r_usa(i))

54 end

56 figure;
plot( i_usa (2:end), "r");

58 hold on;
plot(i_usa_s , "g");

60 hold off;

62 hist(i_usa_s)

64 %% GBP Bills

66 i_uk=Ukbillsmonthly (10: end )*0.01

68 r_uk=zeros(1,n)’ %percentage changes

70 for i=1:n
r_uk(i)=i_uk(i+1)/ i_uk(i)-1

72 end
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74 i_uk_1=i_uk_0 *(1+ r_uk (1))
i_uk_s=ones(1,n)’*i_uk_1

76

for i=2:n
78 i_uk_s(i)= i_uk_s(i -1)*(1+ r_uk(i))

end
80

figure;
82 plot( i_uk (2:end), "r");

hold on;
84 plot(i_uk_s , "g");

hold off;
86 hist(i_uk_s)

88 %% Porfolio

90 P_0=(Q_uk )/(1+ i_uk_0 )^T-Q_us /(1+ i_usa_0 )^T*S_0

92 P=ones(1,n)’*P_0
for i=2:n

94 P(i)=( Q_uk )/(1+ i_uk_s(i))^T-Q_us /(1+ i_usa_s(i))^T*S_s(i)
end

96 plot(P)
Pl=zeros(1,n)

98

for i=2:n
100 Pl(i)=P(i)-P(i-1)

end
102 Pl_ord=sort(Pl)

hist(Pl_ord)
104 VaR= Pl_ord (5)

B.4.3 Montecarlo simulation VaR for Portfolio

%% VaR Montecarlo simulation
2

n=1000 %target number of data points
4 a=0.05 %confidence level

USA_0 =0.023 %initial value
6 UK_0 =0.009 %initial value

S_0 =1.29 %initial value
8 Q_us=6

Q_uk =10
10 T=0.25

%initial portfolio value
12 P_0=S_0*(Q_uk )/(1+ UK_0)^T-Q_us /(1+ USA_0)^T
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14 %generate dates for plot
t1=datetime (2003 ,1 ,15)

16 t = t1 + calmonths (1:200)

18 %% Exchange rate USD vs GBP

20 S=USDGBP (170: end)
%S_daily=DailyUSDGBP (2:end)

22

%first look at the distribution
24

hist(S,5)
26

28 %% choose correct distributional assumption

30 histfit(S) %look at the distribution , normal does not fit well
histfit(S,7,’beta’)%no , data is in 0,1

32 histfit(S,7,’burr’)%no
histfit(S,7, ’birnbaumsaunders ’)%yes

34 histfit(S,7,’exponential ’)%no
histfit(S,7,’ev’)%not bad

36 histfit(S,10,’gamma’)%not really
histfit(S,7,’gev’)%not really

38 histfit(S,10,’gp’)%no
histfit(S,7,’inversegaussian ’)%not bad

40 histfit(S,7,’logistic ’)% not so bad
histfit(S,10,’loglogistic ’)%no

42 histfit(S,10,’lognormal ’)%no
histfit(S,10,’nakagami ’)%no

44 histfit(S,10,’nbin’)%no , must be integer
histfit(S,10,’normal ’)

46 histfit(S,10,’poisson ’)%no
histfit(S,10,’rayleigh ’)%no

48 histfit(S,10,’rician ’)%no
histfit(S,10,’tlocationscale ’)%no , normal is better

50 histfit(S,7,’wbl’)%not bad

52 % chosen distribution: logistic
% generation of random paths for the factor

54 pd_S=fitdist(S,’logistic ’)
S_s=random(pd_S ,n,1)

56 hist(S_s)

58 %% US t-bills

60 US=USD20032019 (130: end )*0.01
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62 %choose correct distributional assumption

64 histfit(US)
histfit(US ,10,’beta’)%no

66 histfit(US ,10,’burr’)%no
histfit(US ,10, ’birnbaumsaunders ’)%show

68 histfit(US ,10,’exponential ’)%not bad
histfit(US ,10,’ev’)%no

70 histfit(US ,10,’gamma’)%no
histfit(US ,10,’gev’)%no

72 histfit(US ,10,’gp’)%no
histfit(US ,10,’inversegaussian ’)%no

74 histfit(US ,10,’logistic ’)%no
histfit(US ,10,’loglogistic ’)%no

76 histfit(US ,10,’lognormal ’)%no
histfit(US ,10,’nakagami ’)%no

78 histfit(US ,10,’nbin’)%no
histfit(US ,10,’normal ’)%no , show

80 histfit(US ,10,’poisson ’)%no
histfit(US ,10,’rayleigh ’)%no , show

82 histfit(US ,10,’rician ’)%no
histfit(US ,10,’tlocationscale ’)%no

84 histfit(US ,10,’wbl’)%no

86 % chosen distribution: exponential
% generation of random paths for the factor

88 pd_US=fitdist(US,’exponential ’)
US_s= random(pd_US ,n,1)

90 hist(US_s)

92

%% GBP Bills
94

UK=UK20032019 (120: end )*0.01
96

%choose correct distributional assumption
98 histfit(UK) %look at the distribution , normal does not fit well

histfit(UK ,10,’beta’)%no
100 histfit(UK ,10,’burr’)%no

histfit(UK ,10, ’birnbaumsaunders ’)%no
102 histfit(UK ,10,’exponential ’)%no

histfit(UK ,10,’ev’)%no
104 histfit(UK ,10,’gamma’)%quite good

histfit(UK ,10,’gev’)%no
106 histfit(UK ,10,’gp’)%no

histfit(UK ,10,’inversegaussian ’)%no
108 histfit(UK ,10,’logistic ’)%no
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histfit(UK ,10,’loglogistic ’)%no
110 histfit(UK ,10,’lognormal ’)%no

histfit(UK ,10,’nakagami ’)%no
112 histfit(UK ,10,’nbin’)%no , must be integer

histfit(UK ,10,’normal ’)%not so bad , but no
114 histfit(UK ,10,’poisson ’)%no

histfit(UK ,10,’rayleigh ’)% not really
116 histfit(UK ,10,’rician ’)% not bad

histfit(UK ,10,’tlocationscale ’)%no
118 histfit(UK ,10,’wbl’)%no

120 % chosen distribution: rician
% generation of random paths for the factor

122 pd_UK=fitdist(UK,’rician ’)

124 UK_s= random(pd_UK ,1,n)
hist(UK_s)

126

128 %% Porfolio

130 %initial value
P_0=(Q_uk )/(1+ UK_0)^T-Q_us /(1+ USA_0 )^T*S_0

132

P=ones(1,n)’*P_0%preallocate space
134

%compute simulated portfolio value
136 for i=2:n

P(i)=( Q_uk )/(1+ UK_s(i))^T-Q_us /(1+ US_s(i))^T*S_s(i)
138 end

140 plot(P)
Pl=zeros(1,n)%preallocate space

142

%compute profits and losses
144 for i=2:n

Pl(i)=P(i)-P_0
146 end

148 %compute VaR
Pl_ord=sort(Pl)’

150 hist(Pl_ord)
VaR= Pl_ord (50)
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B.5 Chapter 5

B.5.1 FTSE MIB Study

%% VaR FTSE MIB Variance Covariance
2

S=FTSEMIB (2: end)
4 S(242 ,:)=[]

S_0=FTSEMIB (151)
6

8 %% Initialization

10 B=FTSEMIB (152:300)% backtesting dataset
a=0.05

12

14 %% VaR
VaR_1=mean(S(1:25))/250 -1.65* std(S(1:25))* sqrt (1/250)

16 VaR_2=mean(S(2:26))/250 -1.65* std(S(2:26))* sqrt (1/250)
VaR_3=mean(S(3:27))/250 -1.65* std(S(3:27))* sqrt (1/250)

18 VaR_4=mean(S(4:28))/250 -1.65* std(S(4:28))* sqrt (1/250)
VaR_5=mean(S(5:29))/250 -1.65* std(S(5:29))* sqrt (1/250)

20 VaR_6=mean(S(6:30))/250 -1.65* std(S(6:30))* sqrt (1/250)
VaR_7=mean(S(7:31))/250 -1.65* std(S(7:31))* sqrt (1/250)

22 VaR_8=mean(S(8:32))/250 -1.65* std(S(8:32))* sqrt (1/250)
VaR_9=mean(S(9:33))/250 -1.65* std(S(9:33))* sqrt (1/250)

24 VaR_10=mean(S(10:34))/250 -1.65* std(S(10:34))* sqrt (1/250)
VaR_11=mean(S(11:35))/250 -1.65* std(S(11:35))* sqrt (1/250)

26 VaR_12=mean(S(12:36))/250 -1.65* std(S(12:36))* sqrt (1/250)
VaR_13=mean(S(13:37))/250 -1.65* std(S(13:37))* sqrt (1/250)

28 VaR_14=mean(S(14:38))/250 -1.65* std(S(14:38))* sqrt (1/250)
VaR_15=mean(S(15:39))/250 -1.65* std(S(15:39))* sqrt (1/250)

30 VaR_16=mean(S(16:40))/250 -1.65* std(S(16:40))* sqrt (1/250)
VaR_17=mean(S(17:41))/250 -1.65* std(S(17:41))* sqrt (1/250)

32 VaR_18=mean(S(18:42))/250 -1.65* std(S(18:42))* sqrt (1/250)
VaR_19=mean(S(19:43))/250 -1.65* std(S(19:43))* sqrt (1/250)

34 VaR_20=mean(S(20:44))/250 -1.65* std(S(20:44))* sqrt (1/250)
VaR_21=mean(S(21:45))/250 -1.65* std(S(21:45))* sqrt (1/250)

36 VaR_22=mean(S(22:46))/250 -1.65* std(S(22:46))* sqrt (1/250)
VaR_23=mean(S(23:47))/250 -1.65* std(S(23:47))* sqrt (1/250)

38 VaR_24=mean(S(24:48))/250 -1.65* std(S(24:48))* sqrt (1/250)
VaR_25=mean(S(25:49))/250 -1.65* std(S(25:49))* sqrt (1/250)

40

42 Var_sim =[VaR_1 ,VaR_2 ,VaR_3 ,VaR_4 ,VaR_5 ,VaR_6 ,VaR_7 ,VaR_8 ,VaR_9 ,VaR_10 ,VaR_11 ,VaR_12 ,VaR_13 ,VaR_14 ,VaR_15 ,VaR_16 ,VaR_17 ,VaR_18 ,VaR_19 ,VaR_20 ,VaR_21 ,VaR_22 ,VaR_23 ,VaR_24 ,VaR_25]

44
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%% Backtesting
46

PL_B=B(65:89) - S_0
48

50 figure;
plot( Var_sim , "r");

52 hold on;
plot(PL_B , "g");

54 hold off;

56 %% Acceptability
%not acceptable

1 %% VaR FTSE MIB Historical simulation

3

FM=FTSEMIB (2:end)
5 FM(242 ,:)=[]

B=FTSEMIB (65:89)% backtesting dataset
7 S_0=FTSEMIB (151)

9 %% Initialization
%5-day rolling window

11 S_1=FM (1:100)%first dataset
S_2=FM (5:104)%first dataset

13 S_3=FM (10:109)%first dataset
S_4=FM (15:114)%first dataset

15 S_5=FM (20:119)%first dataset
S_6=FM (25:124)%first dataset

17 S_7=FM (30:129)%first dataset
S_8=FM (35:134)%first dataset

19 S_9=FM (40:139)%first dataset
S_10=FM (45:144)%first dataset

21 S_11=FM (50:149)%first dataset
S_12=FM (55:154)%first dataset

23 S_13=FM (60:159)%first dataset
S_14=FM (65:164)%first dataset

25 S_15=FM (70:169)%first dataset
S_16=FM (75:174)%first dataset

27 S_17=FM (80:179)%first dataset
S_18=FM (85:184)%first dataset

29 S_19=FM (90:189)%first dataset
S_20=FM (95:194)%first dataset

31 S_21=FM (100:199)%first dataset
S_22=FM (105:204)%first dataset

33 S_23=FM (110:209)%first dataset
S_24=FM (115:214)%first dataset
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35 S_25=FM (120:219)%first dataset

37

S_0=FTSEMIB (151)
39 n=100%100

k=25%149 %target number of VaR estimations=lenght backtesting dataset
41 a=0.05

43

%% Historical simulation
45

r_S_1=zeros(1,n)’ %percentage changes
47 r_S_2=zeros(1,n)’

r_S_3=zeros(1,n)’
49 r_S_4=zeros(1,n)’

r_S_5=zeros(1,n)’
51 r_S_6=zeros(1,n)’

r_S_7=zeros(1,n)’
53 r_S_8=zeros(1,n)’

r_S_9=zeros(1,n)’
55 r_S_10=zeros(1,n)’

r_S_11=zeros(1,n)’
57 r_S_12=zeros(1,n)’

r_S_13=zeros(1,n)’
59 r_S_14=zeros(1,n)’

r_S_15=zeros(1,n)’
61 r_S_16=zeros(1,n)’

r_S_17=zeros(1,n)’
63 r_S_18=zeros(1,n)’

r_S_19=zeros(1,n)’
65 r_S_20=zeros(1,n)’

r_S_21=zeros(1,n)’
67 r_S_22=zeros(1,n)’

r_S_23=zeros(1,n)’
69 r_S_24=zeros(1,n)’

r_S_25=zeros(1,n)’
71

for i=1:n-1
73 r_S_1(i)=S_1(i+1)/ S_1(i)-1

end
75 for i=1:n-1

r_S_2(i)=S_2(i+1)/ S_2(i)-1
77 end

for i=1:n-1
79 r_S_3(i)=S_3(i+1)/ S_3(i)-1

end
81 for i=1:n-1

r_S_4(i)=S_4(i+1)/ S_4(i)-1
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83 end
for i=1:n-1

85 r_S_5(i)=S_5(i+1)/ S_5(i)-1
end

87 for i=1:n-1
r_S_6(i)=S_6(i+1)/ S_6(i)-1

89 end
for i=1:n-1

91 r_S_7(i)=S_7(i+1)/ S_7(i)-1
end

93 for i=1:n-1
r_S_8(i)=S_8(i+1)/ S_8(i)-1

95 end
for i=1:n-1

97 r_S_9(i)=S_9(i+1)/ S_9(i)-1
end

99 for i=1:n-1
r_S_10(i)=S_10(i+1)/ S_10(i)-1

101 end
for i=1:n-1

103 r_S_11(i)=S_11(i+1)/ S_11(i)-1
end

105 for i=1:n-1
r_S_12(i)=S_12(i+1)/ S_12(i)-1

107 end
for i=1:n-1

109 r_S_13(i)=S_13(i+1)/ S_13(i)-1
end

111 for i=1:n-1
r_S_14(i)=S_14(i+1)/ S_14(i)-1

113 end
for i=1:n-1

115 r_S_15(i)=S_15(i+1)/ S_15(i)-1
end

117 for i=1:n-1
r_S_16(i)=S_16(i+1)/ S_16(i)-1

119 end
for i=1:n-1

121 r_S_17(i)=S_17(i+1)/ S_17(i)-1
end

123 for i=1:n-1
r_S_18(i)=S_18(i+1)/ S_18(i)-1

125 end
for i=1:n-1

127 r_S_19(i)=S_19(i+1)/ S_19(i)-1
end

129 for i=1:n-1
r_S_20(i)=S_20(i+1)/ S_20(i)-1
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131 end
for i=1:n-1

133 r_S_21(i)=S_21(i+1)/ S_21(i)-1
end

135 for i=1:n-1
r_S_22(i)=S_22(i+1)/ S_22(i)-1

137 end
for i=1:n-1

139 r_S_23(i)=S_23(i+1)/ S_23(i)-1
end

141 for i=1:n-1
r_S_24(i)=S_24(i+1)/ S_24(i)-1

143 end
for i=1:n-1

145 r_S_25(i)=S_25(i+1)/ S_25(i)-1
end

147

149 S_s_1=ones(1,n)’*S_1(1)
S_s_2=ones(1,n)’*S_2(1)

151 S_s_3=ones(1,n)’*S_3(1)
S_s_4=ones(1,n)’*S_4(1)

153 S_s_5=ones(1,n)’*S_5(1)
S_s_6=ones(1,n)’*S_6(1)

155 S_s_7=ones(1,n)’*S_7(1)
S_s_8=ones(1,n)’*S_8(1)

157 S_s_9=ones(1,n)’*S_9(1)
S_s_10=ones(1,n)’*S_10 (1)

159 S_s_11=ones(1,n)’*S_11 (1)
S_s_12=ones(1,n)’*S_12 (1)

161 S_s_13=ones(1,n)’*S_13 (1)
S_s_14=ones(1,n)’*S_14 (1)

163 S_s_15=ones(1,n)’*S_15 (1)
S_s_16=ones(1,n)’*S_16 (1)

165 S_s_17=ones(1,n)’*S_17 (1)
S_s_18=ones(1,n)’*S_18 (1)

167 S_s_19=ones(1,n)’*S_19 (1)
S_s_20=ones(1,n)’*S_20 (1)

169 S_s_21=ones(1,n)’*S_21 (1)
S_s_22=ones(1,n)’*S_22 (1)

171 S_s_23=ones(1,n)’*S_23 (1)
S_s_24=ones(1,n)’*S_24 (1)

173 S_s_25=ones(1,n)’*S_25 (1)

175

for i=2:n
177 S_s_1(i)= S_s_1(i -1)*(1+ r_S_1(i))

end
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179

for i=2:n
181 S_s_1(i)= S_s_1(i -1)*(1+ r_S_1(i))

end
183 for i=2:n

S_s_2(i)= S_s_2(i -1)*(1+ r_S_2(i))
185 end

for i=2:n
187 S_s_3(i)= S_s_3(i -1)*(1+ r_S_3(i))

end
189 for i=2:n

S_s_4(i)= S_s_4(i -1)*(1+ r_S_4(i))
191 end

for i=2:n
193 S_s_5(i)= S_s_5(i -1)*(1+ r_S_5(i))

end
195 for i=2:n

S_s_6(i)= S_s_6(i -1)*(1+ r_S_6(i))
197 end

for i=2:n
199 S_s_7(i)= S_s_7(i -1)*(1+ r_S_7(i))

end
201 for i=2:n

S_s_8(i)= S_s_8(i -1)*(1+ r_S_8(i))
203 end

for i=2:n
205 S_s_9(i)= S_s_9(i -1)*(1+ r_S_9(i))

end
207 for i=2:n

S_s_10(i)= S_s_10(i -1)*(1+ r_S_10(i))
209 end

for i=2:n
211 S_s_11(i)= S_s_11(i -1)*(1+ r_S_11(i))

end
213 for i=2:n

S_s_12(i)= S_s_12(i -1)*(1+ r_S_12(i))
215 end

for i=2:n
217 S_s_13(i)= S_s_13(i -1)*(1+ r_S_13(i))

end
219 for i=2:n

S_s_14(i)= S_s_14(i -1)*(1+ r_S_14(i))
221 end

for i=2:n
223 S_s_15(i)= S_s_15(i -1)*(1+ r_S_15(i))

end
225 for i=2:n

S_s_16(i)= S_s_16(i -1)*(1+ r_S_16(i))
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227 end
for i=2:n

229 S_s_17(i)= S_s_17(i -1)*(1+ r_S_17(i))
end

231 for i=2:n
S_s_18(i)= S_s_18(i -1)*(1+ r_S_18(i))

233 end
for i=2:n

235 S_s_19(i)= S_s_19(i -1)*(1+ r_S_19(i))
end

237 for i=2:n
S_s_20(i)= S_s_20(i -1)*(1+ r_S_20(i))

239 end
for i=2:n

241 S_s_21(i)= S_s_21(i -1)*(1+ r_S_21(i))
end

243 for i=2:n
S_s_22(i)= S_s_22(i -1)*(1+ r_S_22(i))

245 end
for i=2:n

247 S_s_23(i)= S_s_23(i -1)*(1+ r_S_23(i))
end

249 for i=2:n
S_s_24(i)= S_s_24(i -1)*(1+ r_S_24(i))

251 end
for i=2:n

253 S_s_25(i)= S_s_25(i -1)*(1+ r_S_25(i))
end

255

Pl_1=sort(S_s_1 -S_0)
257 Pl_2=sort(S_s_2 -S_0)

Pl_3=sort(S_s_3 -S_0)
259 Pl_4=sort(S_s_4 -S_0)

Pl_5=sort(S_s_5 -S_0)
261 Pl_6=sort(S_s_6 -S_0)

Pl_7=sort(S_s_7 -S_0)
263 Pl_8=sort(S_s_8 -S_0)

Pl_9=sort(S_s_9 -S_0)
265 Pl_10=sort(S_s_10 -S_0)

Pl_11=sort(S_s_11 -S_0)
267 Pl_12=sort(S_s_12 -S_0)

Pl_13=sort(S_s_13 -S_0)
269 Pl_14=sort(S_s_14 -S_0)

Pl_15=sort(S_s_15 -S_0)
271 Pl_16=sort(S_s_16 -S_0)

Pl_17=sort(S_s_17 -S_0)
273 Pl_18=sort(S_s_18 -S_0)

Pl_19=sort(S_s_19 -S_0)
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275 Pl_20=sort(S_s_20 -S_0)
Pl_21=sort(S_s_21 -S_0)

277 Pl_22=sort(S_s_22 -S_0)
Pl_23=sort(S_s_23 -S_0)

279 Pl_24=sort(S_s_24 -S_0)
Pl_25=sort(S_s_25 -S_0)

281

283 VaR_1= Pl_1(n*a)
VaR_2= Pl_2(n*a)

285 VaR_3= Pl_3(n*a)
VaR_4= Pl_4(n*a)

287 VaR_5= Pl_5(n*a)
VaR_6= Pl_6(n*a)

289 VaR_7= Pl_7(n*a)
VaR_8= Pl_8(n*a)

291 VaR_9= Pl_9(n*a)
VaR_10= Pl_10(n*a)

293 VaR_11= Pl_11(n*a)
VaR_12= Pl_12(n*a)

295 VaR_13= Pl_13(n*a)
VaR_14= Pl_14(n*a)

297 VaR_15= Pl_15(n*a)
VaR_16= Pl_16(n*a)

299 VaR_17= Pl_17(n*a)
VaR_18= Pl_18(n*a)

301 VaR_19= Pl_19(n*a)
VaR_20= Pl_20(n*a)

303 VaR_21= Pl_21(n*a)
VaR_22= Pl_22(n*a)

305 VaR_23= Pl_23(n*a)
VaR_24= Pl_24(n*a)

307 VaR_25= Pl_25(n*a)

309

Var_sim =[VaR_1 ,VaR_2 ,VaR_3 ,VaR_4 ,VaR_5 ,VaR_6 ,VaR_7 ,VaR_8 ,VaR_9 ,VaR_10 ,VaR_11 ,VaR_12 ,VaR_13 ,VaR_14 ,VaR_15 ,VaR_16 ,VaR_17 ,VaR_18 ,VaR_19 ,VaR_20 ,VaR_21 ,VaR_22 ,VaR_23 ,VaR_24 ,VaR_25]
311

%% Backtesting
313

PL_B=B-S_0
315

figure;
317 plot( Var_sim , "r");

hold on;
319 plot(PL_B , "g");

hold off;
321

%% Quality checks for the model
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323 %compute the difference between VaR estimate and actual losses
error_HS=zeros (1 ,25)

325

for i=1:25
327 error_HS(i)= Var_sim(i)-PL_B(i)

end
329

% number of times VaR fails to cover losses
331 failure_HS=zeros (1 ,25)

for i=1:25
333 if error_HS(i)>0

failure_HS(i)=1
335 end

end
337

x_HS=sum(failure_HS)%9
339 p=0.05 %level of confidence

N=25 %number of estimates
341

%% Binomial test , compare actual and expected number of vailures
343

exp_val_bin=p*N
345 test_bin_HS =(x_HS -N*p)/( sqrt(N*p*(1-p))) % test rejected

crit_val_bin=norminv(1-p)
347 %% Kupiec proportion of failures test

349 LR_pof_HS =-2*log(((1-p)^(N-x_HS)*p^x_HS )/((1 - x_HS/N)^(N-x_HS )*( x_HS/N)^x_HS))
crit=chi2inv ((1-p),1) %test failed

351

%% Kupiec time untill first failure test
353 %number of days before first rejection

k_HS=8
355

LR_TUFF_HS =-2*log((p*(1-p)^(k_HS -1))/((1/ k_HS )*(1 -(1/ k_HS ))^(k_HS -1)))
357 crit_TUFF=chi2inv ((1-p),1)

% test passed
359

%% Christoffersen Interval forecast test
361

n_00_HS =14
363 n_10_HS =1

n_01_HS =2
365 n_11_HS =7

367 p_0_HS=n_01_HS /( n_00_HS+n_01_HS)
p_1_HS=n_11_HS /( n_10_HS+n_11_HS)

369 p_HS=( n_01_HS+n_11_HS )/( n_00_HS+n_01_HS+n_11_HS)
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371 LRCCI_HS =-2*log(((1- p_HS )^( n_00_HS+n_10_HS )*p_HS^( n_01_HS+n_11_HS ))/((1 - p_0_HS )^( n_00_HS )* p_0_HS ^( n_01_HS )*(1- p_1_HS )^( n_10_HS )* p_1_HS ^( n_11_HS )))
%check failed

373 LRCC_HS=LRCCI_HS+LR_pof_HS
crit2=chi2inv ((1-p),2)

375 %check failed

377 %% Mixed Kupiec test , not working

379 days_HS =[8,8,0,0,0,0,0,0,0]

381 sumTB_HS=zeros (1,9)

383 for i=1:9
sumTB_HS=log((p*(1-p)^( days_HS(i) -1))/((1/ days_HS(i))*(1 -1/ days_HS(i))^( days_HS(i)-1)))

385 end

387 LRTBFI_HS =-2*sum(sumTB_HS)
crit_TBFI_HS=chi2inv ((1-p),9)

1 %% Montecarlo VaR FTSE MIB

3 %% Descriptive statistics full sample

5 FM=FTSEMIB (2:end)
FM(242 ,:)=[]

7 %max=max(FM)
%min=min(FM)

9 avg=sum(FM)/300
%std=std(FM)

11 kurt=kurtosis(FM)
skew=skewness(FM)

13 %median=median(FM)
%mode=mode(FM)

15

%% Time series FTSE MIB full sample
17 bdates=busdays(datetime(’24-October -2016’,’Locale ’,’en_US’),’1-January -2018 ’,’daily’)

plot(bdates ,FM)
19 %% Initialization

21 S=FTSEMIB (2:150)% data set for estimation of parameters
B=FTSEMIB (152:300)% backtesting dataset

23 S_0=FTSEMIB (151)
n=1000%100

25 k=25%149 %target number of VaR estimations=lenght backtesting dataset
a=0.05

27

hist(S)
29 %% Parameter estimation
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31 m=mean(S)
s=std(S)

33

%% MC
35 %initialyze space

S_s_1=S(1)* ones(1,n)
37 S_s_2=S(1)* ones(1,n)

S_s_3=S(1)* ones(1,n)
39 S_s_4=S(1)* ones(1,n)

S_s_5=S(1)* ones(1,n)
41 S_s_6=S(1)* ones(1,n)

S_s_7=S(1)* ones(1,n)
43 S_s_8=S(1)* ones(1,n)

S_s_9=S(1)* ones(1,n)
45 S_s_10=S(1)* ones(1,n)

S_s_11=S(1)* ones(1,n)
47 S_s_12=S(1)* ones(1,n)

S_s_13=S(1)* ones(1,n)
49 S_s_14=S(1)* ones(1,n)

S_s_15=S(1)* ones(1,n)
51 S_s_16=S(1)* ones(1,n)

S_s_17=S(1)* ones(1,n)
53 S_s_18=S(1)* ones(1,n)

S_s_19=S(1)* ones(1,n)
55 S_s_20=S(1)* ones(1,n)

S_s_21=S(1)* ones(1,n)
57 S_s_22=S(1)* ones(1,n)

S_s_23=S(1)* ones(1,n)
59 S_s_24=S(1)* ones(1,n)

S_s_25=S(1)* ones(1,n)
61

% generation of simulated path
63 for i=2:n

S_s_1(i)= S_s_1(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
65 end

67 for i=2:n
S_s_2(i)= S_s_2(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)

69 end
for i=2:n

71 S_s_3(i)= S_s_3(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
end

73 for i=2:n
S_s_4(i)= S_s_4(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)

75 end
for i=2:n

77 S_s_5(i)= S_s_5(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
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end
79 for i=2:n

S_s_6(i)= S_s_6(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
81 end

for i=2:n
83 S_s_7(i)= S_s_7(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)

end
85 for i=2:n

S_s_8(i)= S_s_8(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
87 end

for i=2:n
89 S_s_9(i)= S_s_9(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)

end
91 for i=2:n

S_s_10(i)= S_s_10(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
93 end

for i=2:n
95 S_s_11(i)= S_s_11(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
97 for i=2:n

S_s_12(i)= S_s_12(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
99 end

for i=2:n
101 S_s_13(i)= S_s_13(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
103 for i=2:n

S_s_14(i)= S_s_14(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
105 end

for i=2:n
107 S_s_15(i)= S_s_15(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
109 for i=2:n

S_s_16(i)= S_s_16(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
111 end

for i=2:n
113 S_s_17(i)= S_s_17(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
115 for i=2:n

S_s_18(i)= S_s_18(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
117 end

for i=2:n
119 S_s_19(i)= S_s_19(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
121 for i=2:n

S_s_20(i)= S_s_20(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
123 end

for i=2:n
125 S_s_21(i)= S_s_21(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
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end
127 for i=2:n

S_s_22(i)= S_s_22(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
129 end

for i=2:n
131 S_s_23(i)= S_s_23(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
133 for i=2:n

S_s_24(i)= S_s_24(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
135 end

for i=2:n
137 S_s_25(i)= S_s_25(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
139

%% P&L
141 %initialyze space

PL_1=zeros(1,n)
143 PL_2=zeros(1,n)

PL_3=zeros(1,n)
145 PL_4=zeros(1,n)

PL_5=zeros(1,n)
147 PL_6=zeros(1,n)

PL_7=zeros(1,n)
149 PL_8=zeros(1,n)

PL_9=zeros(1,n)
151 PL_10=zeros(1,n)

PL_11=zeros(1,n)
153 PL_12=zeros(1,n)

PL_13=zeros(1,n)
155 PL_14=zeros(1,n)

PL_15=zeros(1,n)
157 PL_16=zeros(1,n)

PL_17=zeros(1,n)
159 PL_18=zeros(1,n)

PL_19=zeros(1,n)
161 PL_20=zeros(1,n)

PL_21=zeros(1,n)
163 PL_22=zeros(1,n)

PL_23=zeros(1,n)
165 PL_24=zeros(1,n)

PL_25=zeros(1,n)
167

for i=1:n
169 PL_1(i)=S_s_1(i)-S_0

end
171 for i=1:n

PL_2(i)=S_s_2(i)-S_0
173 end



198 Appendix B. Codes

for i=1:n
175 PL_3(i)=S_s_3(i)-S_0

end
177 for i=1:n

PL_4(i)=S_s_4(i)-S_0
179 end

for i=1:n
181 PL_5(i)=S_s_5(i)-S_0

end
183 for i=1:n

PL_6(i)=S_s_6(i)-S_0
185 end

for i=1:n
187 PL_7(i)=S_s_7(i)-S_0

end
189 for i=1:n

PL_8(i)=S_s_8(i)-S_0
191 end

for i=1:n
193 PL_9(i)=S_s_9(i)-S_0

end
195 for i=1:n

PL_10(i)= S_s_10(i)-S_0
197 end

for i=1:n
199 PL_11(i)= S_s_11(i)-S_0

end
201 for i=1:n

PL_12(i)= S_s_12(i)-S_0
203 end

for i=1:n
205 PL_13(i)= S_s_13(i)-S_0

end
207 for i=1:n

PL_14(i)= S_s_14(i)-S_0
209 end

for i=1:n
211 PL_15(i)= S_s_15(i)-S_0

end
213 for i=1:n

PL_16(i)= S_s_16(i)-S_0
215 end

for i=1:n
217 PL_17(i)= S_s_17(i)-S_0

end
219 for i=1:n

PL_18(i)= S_s_18(i)-S_0
221 end
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for i=1:n
223 PL_19(i)= S_s_19(i)-S_0

end
225 for i=1:n

PL_20(i)= S_s_20(i)-S_0
227 end

for i=1:n
229 PL_21(i)= S_s_21(i)-S_0

end
231 for i=1:n

PL_22(i)= S_s_22(i)-S_0
233 end

for i=1:n
235 PL_23(i)= S_s_23(i)-S_0

end
237 for i=1:n

PL_24(i)= S_s_24(i)-S_0
239 end

for i=1:n
241 PL_25(i)= S_s_25(i)-S_0

end
243

%% VaR
245

PL_ord_1=sort(PL_1)
247 PL_ord_2=sort(PL_2)

PL_ord_3=sort(PL_3)
249 PL_ord_4=sort(PL_4)

PL_ord_5=sort(PL_5)
251 PL_ord_6=sort(PL_6)

PL_ord_7=sort(PL_7)
253 PL_ord_8=sort(PL_8)

PL_ord_9=sort(PL_9)
255 PL_ord_10=sort(PL_10)

PL_ord_11=sort(PL_11)
257 PL_ord_12=sort(PL_12)

PL_ord_13=sort(PL_13)
259 PL_ord_14=sort(PL_14)

PL_ord_15=sort(PL_15)
261 PL_ord_16=sort(PL_16)

PL_ord_17=sort(PL_17)
263 PL_ord_18=sort(PL_18)

PL_ord_19=sort(PL_19)
265 PL_ord_20=sort(PL_20)

PL_ord_21=sort(PL_21)
267 PL_ord_22=sort(PL_22)

PL_ord_23=sort(PL_23)
269 PL_ord_24=sort(PL_24)
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PL_ord_25=sort(PL_25)
271

273 VaR_1=PL_ord_1(n*a)
VaR_2=PL_ord_2(n*a)

275 VaR_3=PL_ord_3(n*a)
VaR_4=PL_ord_4(n*a)

277 VaR_5=PL_ord_5(n*a)
VaR_6=PL_ord_6(n*a)

279 VaR_7=PL_ord_7(n*a)
VaR_8=PL_ord_8(n*a)

281 VaR_9=PL_ord_9(n*a)
VaR_10=PL_ord_10(n*a)

283 VaR_11=PL_ord_11(n*a)
VaR_12=PL_ord_12(n*a)

285 VaR_13=PL_ord_13(n*a)
VaR_14=PL_ord_14(n*a)

287 VaR_15=PL_ord_15(n*a)
VaR_16=PL_ord_16(n*a)

289 VaR_17=PL_ord_17(n*a)
VaR_18=PL_ord_18(n*a)

291 VaR_19=PL_ord_19(n*a)
VaR_20=PL_ord_20(n*a)

293 VaR_21=PL_ord_21(n*a)
VaR_22=PL_ord_22(n*a)

295 VaR_23=PL_ord_23(n*a)
VaR_24=PL_ord_24(n*a)

297 VaR_25=PL_ord_25(n*a)

299

Var_sim =[VaR_1 ,VaR_2 ,VaR_3 ,VaR_4 ,VaR_5 ,VaR_6 ,VaR_7 ,VaR_8 ,VaR_9 ,VaR_10 ,VaR_11 ,VaR_12 ,VaR_13 ,VaR_14 ,VaR_15 ,VaR_16 ,VaR_17 ,VaR_18 ,VaR_19 ,VaR_20 ,VaR_21 ,VaR_22 ,VaR_23 ,VaR_24 ,VaR_25]
301

%% Backtesting
303

PL_B=B(65:89) - S_0
305

307 figure;
plot( Var_sim , "r");

309 hold on;
plot(PL_B , "g");

311 hold off;

313 %% Quality checks for the model
%compute the difference between VaR estimate and actual losses

315 error_MC=zeros (1,25)

317 for i=1:25
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error_MC(i)= Var_sim(i)-PL_B(i)
319 end

321 % number of times VaR fails to cover losses
failure_MC=zeros (1 ,25)

323 for i=1:25
if error_MC(i)>0

325 failure_MC(i)=1
end

327 end

329 x_MC=sum(failure_MC)
p=0.05 %level of confidence

331 N=25 %number of estimates

333 %% Binomial test , compare actual and expected number of vailures

335 exp_val_bin=p*N
test_bin_MC =(x_MC -N*p)/( sqrt(N*p*(1-p)))

337 crit_val_bin=norminv(1-p) %test passed
%% Kupiec proportion of failures test

339

LR_pof_MC =-2*log(((1-p)^(N-x_MC)*p^x_MC )/((1 - x_MC/N)^(N-x_MC )*( x_MC/N)^x_MC))
341 crit=chi2inv ((1-p),1) %test passed

343 %% Kupiec time untill first failure test
%number of days before first rejection

345 k_MC =19

347 LR_TUFF_MC =-2*log((p*(1-p)^(k_MC -1))/((1/ k_MC )*(1 -(1/ k_MC ))^(k_MC -1)))
crit_TUFF=chi2inv ((1-p),1)

349 % test passed

351 %% Christoffersen Interval forecast test

353 n_00_MC =22
n_10_MC =1

355 n_01_MC =1
n_11_MC =0

357

p_0_MC=n_01_MC /( n_00_MC+n_01_MC)
359 p_1_MC=n_11_MC /( n_10_MC+n_11_MC)

p_MC=( n_01_MC+n_11_MC )/( n_00_MC+n_01_MC+n_11_MC)
361

LRCCI_MC =-2*log(((1- p_MC )^( n_00_MC+n_10_MC )*p_MC^( n_01_MC+n_11_MC ))/((1 - p_0_MC )^( n_00_MC )* p_0_MC ^( n_01_MC )*(1- p_1_MC )^( n_10_MC )* p_1_MC ^( n_11_MC )))
363 %check passed

LRCC_MC=LRCCI_MC+LR_pof_MC
365 crit2=chi2inv ((1-p),2)
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%check passed
367

%% Mixed Kupiec test , not working
369

days_MC =[0,0]
371

sumTB_MC=zeros (1,2)
373

for i=1:2
375 sumTB_MC=log((p*(1-p)^( days_MC(i) -1))/((1/ days_MC(i))*(1 -1/ days_MC(i))^( days_MC(i)-1)))

end
377

LRTBFI_MC =-2*sum(sumTB_MC)
379 crit_TBFI_MC=chi2inv ((1-p),2)

B.5.2 S&P500 Study

%% VaR SP500 Historical Variance Covariance
2

S=SP500 (2: end)
4 S(242 ,:)=[]

S_0=S(151)
6

8 %% Initialization

10 B=SP500 (30:55)% backtesting dataset
a=0.05

12

14 %% VaR
VaR_1=mean(S(1:25))/250 -1.65* std(S(1:25))* sqrt (1/250)

16 VaR_2=mean(S(2:26))/250 -1.65* std(S(2:26))* sqrt (1/250)
VaR_3=mean(S(3:27))/250 -1.65* std(S(3:27))* sqrt (1/250)

18 VaR_4=mean(S(4:28))/250 -1.65* std(S(4:28))* sqrt (1/250)
VaR_5=mean(S(5:29))/250 -1.65* std(S(5:29))* sqrt (1/250)

20 VaR_6=mean(S(6:30))/250 -1.65* std(S(6:30))* sqrt (1/250)
VaR_7=mean(S(7:31))/250 -1.65* std(S(7:31))* sqrt (1/250)

22 VaR_8=mean(S(8:32))/250 -1.65* std(S(8:32))* sqrt (1/250)
VaR_9=mean(S(9:33))/250 -1.65* std(S(9:33))* sqrt (1/250)

24 VaR_10=mean(S(10:34))/250 -1.65* std(S(10:34))* sqrt (1/250)
VaR_11=mean(S(11:35))/250 -1.65* std(S(11:35))* sqrt (1/250)

26 VaR_12=mean(S(12:36))/250 -1.65* std(S(12:36))* sqrt (1/250)
VaR_13=mean(S(13:37))/250 -1.65* std(S(13:37))* sqrt (1/250)

28 VaR_14=mean(S(14:38))/250 -1.65* std(S(14:38))* sqrt (1/250)
VaR_15=mean(S(15:39))/250 -1.65* std(S(15:39))* sqrt (1/250)

30 VaR_16=mean(S(16:40))/250 -1.65* std(S(16:40))* sqrt (1/250)
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VaR_17=mean(S(17:41))/250 -1.65* std(S(17:41))* sqrt (1/250)
32 VaR_18=mean(S(18:42))/250 -1.65* std(S(18:42))* sqrt (1/250)

VaR_19=mean(S(19:43))/250 -1.65* std(S(19:43))* sqrt (1/250)
34 VaR_20=mean(S(20:44))/250 -1.65* std(S(20:44))* sqrt (1/250)

VaR_21=mean(S(21:45))/250 -1.65* std(S(21:45))* sqrt (1/250)
36 VaR_22=mean(S(22:46))/250 -1.65* std(S(22:46))* sqrt (1/250)

VaR_23=mean(S(23:47))/250 -1.65* std(S(23:47))* sqrt (1/250)
38 VaR_24=mean(S(24:48))/250 -1.65* std(S(24:48))* sqrt (1/250)

VaR_25=mean(S(25:49))/250 -1.65* std(S(25:49))* sqrt (1/250)
40

42 Var_sim =[VaR_1 ,VaR_2 ,VaR_3 ,VaR_4 ,VaR_5 ,VaR_6 ,VaR_7 ,VaR_8 ,VaR_9 ,VaR_10 ,VaR_11 ,VaR_12 ,VaR_13 ,VaR_14 ,VaR_15 ,VaR_16 ,VaR_17 ,VaR_18 ,VaR_19 ,VaR_20 ,VaR_21 ,VaR_22 ,VaR_23 ,VaR_24 ,VaR_25]

44 %% Backtesting

46 PL_B=B-S_0

48

figure;
50 plot( Var_sim , "r");

hold on;
52 plot(PL_B , "g");

hold off;
54

%% Acceptability
56 %not acceptable

%% VaR SP500 Historical simulation
2

4 SP=SP500 (2:end)
SP(242 ,:)=[]

6 B=SP500 (30:55)% backtesting dataset
S_0=SP500 (151)

8

%% Initialization
10 %5-day rolling window

S_1=SP (1:100)%first dataset
12 S_2=SP (5:104)%first dataset

S_3=SP (10:109)%first dataset
14 S_4=SP (15:114)%first dataset

S_5=SP (20:119)%first dataset
16 S_6=SP (25:124)%first dataset

S_7=SP (30:129)%first dataset
18 S_8=SP (35:134)%first dataset

S_9=SP (40:139)%first dataset
20 S_10=SP (45:144)%first dataset

S_11=SP (50:149)%first dataset
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22 S_12=SP (55:154)%first dataset
S_13=SP (60:159)%first dataset

24 S_14=SP (65:164)%first dataset
S_15=SP (70:169)%first dataset

26 S_16=SP (75:174)%first dataset
S_17=SP (80:179)%first dataset

28 S_18=SP (85:184)%first dataset
S_19=SP (90:189)%first dataset

30 S_20=SP (95:194)%first dataset
S_21=SP (100:199)%first dataset

32 S_22=SP (105:204)%first dataset
S_23=SP (110:209)%first dataset

34 S_24=SP (115:214)%first dataset
S_25=SP (120:219)%first dataset

36

38 S_0=SP500 (151)
n=100%100

40 k=25%149 %target number of VaR estimations=lenght backtesting dataset
a=0.05

42

44 %% Historical simulation

46 r_S_1=zeros(1,n)’ %percentage changes
r_S_2=zeros(1,n)’

48 r_S_3=zeros(1,n)’
r_S_4=zeros(1,n)’

50 r_S_5=zeros(1,n)’
r_S_6=zeros(1,n)’

52 r_S_7=zeros(1,n)’
r_S_8=zeros(1,n)’

54 r_S_9=zeros(1,n)’
r_S_10=zeros(1,n)’

56 r_S_11=zeros(1,n)’
r_S_12=zeros(1,n)’

58 r_S_13=zeros(1,n)’
r_S_14=zeros(1,n)’

60 r_S_15=zeros(1,n)’
r_S_16=zeros(1,n)’

62 r_S_17=zeros(1,n)’
r_S_18=zeros(1,n)’

64 r_S_19=zeros(1,n)’
r_S_20=zeros(1,n)’

66 r_S_21=zeros(1,n)’
r_S_22=zeros(1,n)’

68 r_S_23=zeros(1,n)’
r_S_24=zeros(1,n)’
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70 r_S_25=zeros(1,n)’

72 for i=1:n-1
r_S_1(i)=S_1(i+1)/ S_1(i)-1

74 end
for i=1:n-1

76 r_S_2(i)=S_2(i+1)/ S_2(i)-1
end

78 for i=1:n-1
r_S_3(i)=S_3(i+1)/ S_3(i)-1

80 end
for i=1:n-1

82 r_S_4(i)=S_4(i+1)/ S_4(i)-1
end

84 for i=1:n-1
r_S_5(i)=S_5(i+1)/ S_5(i)-1

86 end
for i=1:n-1

88 r_S_6(i)=S_6(i+1)/ S_6(i)-1
end

90 for i=1:n-1
r_S_7(i)=S_7(i+1)/ S_7(i)-1

92 end
for i=1:n-1

94 r_S_8(i)=S_8(i+1)/ S_8(i)-1
end

96 for i=1:n-1
r_S_9(i)=S_9(i+1)/ S_9(i)-1

98 end
for i=1:n-1

100 r_S_10(i)=S_10(i+1)/ S_10(i)-1
end

102 for i=1:n-1
r_S_11(i)=S_11(i+1)/ S_11(i)-1

104 end
for i=1:n-1

106 r_S_12(i)=S_12(i+1)/ S_12(i)-1
end

108 for i=1:n-1
r_S_13(i)=S_13(i+1)/ S_13(i)-1

110 end
for i=1:n-1

112 r_S_14(i)=S_14(i+1)/ S_14(i)-1
end

114 for i=1:n-1
r_S_15(i)=S_15(i+1)/ S_15(i)-1

116 end
for i=1:n-1
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118 r_S_16(i)=S_16(i+1)/ S_16(i)-1
end

120 for i=1:n-1
r_S_17(i)=S_17(i+1)/ S_17(i)-1

122 end
for i=1:n-1

124 r_S_18(i)=S_18(i+1)/ S_18(i)-1
end

126 for i=1:n-1
r_S_19(i)=S_19(i+1)/ S_19(i)-1

128 end
for i=1:n-1

130 r_S_20(i)=S_20(i+1)/ S_20(i)-1
end

132 for i=1:n-1
r_S_21(i)=S_21(i+1)/ S_21(i)-1

134 end
for i=1:n-1

136 r_S_22(i)=S_22(i+1)/ S_22(i)-1
end

138 for i=1:n-1
r_S_23(i)=S_23(i+1)/ S_23(i)-1

140 end
for i=1:n-1

142 r_S_24(i)=S_24(i+1)/ S_24(i)-1
end

144 for i=1:n-1
r_S_25(i)=S_25(i+1)/ S_25(i)-1

146 end

148

S_s_1=ones(1,n)’*S_1(1)
150 S_s_2=ones(1,n)’*S_2(1)

S_s_3=ones(1,n)’*S_3(1)
152 S_s_4=ones(1,n)’*S_4(1)

S_s_5=ones(1,n)’*S_5(1)
154 S_s_6=ones(1,n)’*S_6(1)

S_s_7=ones(1,n)’*S_7(1)
156 S_s_8=ones(1,n)’*S_8(1)

S_s_9=ones(1,n)’*S_9(1)
158 S_s_10=ones(1,n)’*S_10 (1)

S_s_11=ones(1,n)’*S_11 (1)
160 S_s_12=ones(1,n)’*S_12 (1)

S_s_13=ones(1,n)’*S_13 (1)
162 S_s_14=ones(1,n)’*S_14 (1)

S_s_15=ones(1,n)’*S_15 (1)
164 S_s_16=ones(1,n)’*S_16 (1)

S_s_17=ones(1,n)’*S_17 (1)
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166 S_s_18=ones(1,n)’*S_18 (1)
S_s_19=ones(1,n)’*S_19 (1)

168 S_s_20=ones(1,n)’*S_20 (1)
S_s_21=ones(1,n)’*S_21 (1)

170 S_s_22=ones(1,n)’*S_22 (1)
S_s_23=ones(1,n)’*S_23 (1)

172 S_s_24=ones(1,n)’*S_24 (1)
S_s_25=ones(1,n)’*S_25 (1)

174

176 for i=2:n
S_s_1(i)= S_s_1(i -1)*(1+ r_S_1(i))

178 end

180 for i=2:n
S_s_1(i)= S_s_1(i -1)*(1+ r_S_1(i))

182 end
for i=2:n

184 S_s_2(i)= S_s_2(i -1)*(1+ r_S_2(i))
end

186 for i=2:n
S_s_3(i)= S_s_3(i -1)*(1+ r_S_3(i))

188 end
for i=2:n

190 S_s_4(i)= S_s_4(i -1)*(1+ r_S_4(i))
end

192 for i=2:n
S_s_5(i)= S_s_5(i -1)*(1+ r_S_5(i))

194 end
for i=2:n

196 S_s_6(i)= S_s_6(i -1)*(1+ r_S_6(i))
end

198 for i=2:n
S_s_7(i)= S_s_7(i -1)*(1+ r_S_7(i))

200 end
for i=2:n

202 S_s_8(i)= S_s_8(i -1)*(1+ r_S_8(i))
end

204 for i=2:n
S_s_9(i)= S_s_9(i -1)*(1+ r_S_9(i))

206 end
for i=2:n

208 S_s_10(i)= S_s_10(i -1)*(1+ r_S_10(i))
end

210 for i=2:n
S_s_11(i)= S_s_11(i -1)*(1+ r_S_11(i))

212 end
for i=2:n
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214 S_s_12(i)= S_s_12(i -1)*(1+ r_S_12(i))
end

216 for i=2:n
S_s_13(i)= S_s_13(i -1)*(1+ r_S_13(i))

218 end
for i=2:n

220 S_s_14(i)= S_s_14(i -1)*(1+ r_S_14(i))
end

222 for i=2:n
S_s_15(i)= S_s_15(i -1)*(1+ r_S_15(i))

224 end
for i=2:n

226 S_s_16(i)= S_s_16(i -1)*(1+ r_S_16(i))
end

228 for i=2:n
S_s_17(i)= S_s_17(i -1)*(1+ r_S_17(i))

230 end
for i=2:n

232 S_s_18(i)= S_s_18(i -1)*(1+ r_S_18(i))
end

234 for i=2:n
S_s_19(i)= S_s_19(i -1)*(1+ r_S_19(i))

236 end
for i=2:n

238 S_s_20(i)= S_s_20(i -1)*(1+ r_S_20(i))
end

240 for i=2:n
S_s_21(i)= S_s_21(i -1)*(1+ r_S_21(i))

242 end
for i=2:n

244 S_s_22(i)= S_s_22(i -1)*(1+ r_S_22(i))
end

246 for i=2:n
S_s_23(i)= S_s_23(i -1)*(1+ r_S_23(i))

248 end
for i=2:n

250 S_s_24(i)= S_s_24(i -1)*(1+ r_S_24(i))
end

252 for i=2:n
S_s_25(i)= S_s_25(i -1)*(1+ r_S_25(i))

254 end

256 Pl_1=sort(S_s_1 -S_0)
Pl_2=sort(S_s_2 -S_0)

258 Pl_3=sort(S_s_3 -S_0)
Pl_4=sort(S_s_4 -S_0)

260 Pl_5=sort(S_s_5 -S_0)
Pl_6=sort(S_s_6 -S_0)
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262 Pl_7=sort(S_s_7 -S_0)
Pl_8=sort(S_s_8 -S_0)

264 Pl_9=sort(S_s_9 -S_0)
Pl_10=sort(S_s_10 -S_0)

266 Pl_11=sort(S_s_11 -S_0)
Pl_12=sort(S_s_12 -S_0)

268 Pl_13=sort(S_s_13 -S_0)
Pl_14=sort(S_s_14 -S_0)

270 Pl_15=sort(S_s_15 -S_0)
Pl_16=sort(S_s_16 -S_0)

272 Pl_17=sort(S_s_17 -S_0)
Pl_18=sort(S_s_18 -S_0)

274 Pl_19=sort(S_s_19 -S_0)
Pl_20=sort(S_s_20 -S_0)

276 Pl_21=sort(S_s_21 -S_0)
Pl_22=sort(S_s_22 -S_0)

278 Pl_23=sort(S_s_23 -S_0)
Pl_24=sort(S_s_24 -S_0)

280 Pl_25=sort(S_s_25 -S_0)

282

VaR_1= Pl_1(n*a)
284 VaR_2= Pl_2(n*a)

VaR_3= Pl_3(n*a)
286 VaR_4= Pl_4(n*a)

VaR_5= Pl_5(n*a)
288 VaR_6= Pl_6(n*a)

VaR_7= Pl_7(n*a)
290 VaR_8= Pl_8(n*a)

VaR_9= Pl_9(n*a)
292 VaR_10= Pl_10(n*a)

VaR_11= Pl_11(n*a)
294 VaR_12= Pl_12(n*a)

VaR_13= Pl_13(n*a)
296 VaR_14= Pl_14(n*a)

VaR_15= Pl_15(n*a)
298 VaR_16= Pl_16(n*a)

VaR_17= Pl_17(n*a)
300 VaR_18= Pl_18(n*a)

VaR_19= Pl_19(n*a)
302 VaR_20= Pl_20(n*a)

VaR_21= Pl_21(n*a)
304 VaR_22= Pl_22(n*a)

VaR_23= Pl_23(n*a)
306 VaR_24= Pl_24(n*a)

VaR_25= Pl_25(n*a)
308
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310 Var_sim =[VaR_1 ,VaR_2 ,VaR_3 ,VaR_4 ,VaR_5 ,VaR_6 ,VaR_7 ,VaR_8 ,VaR_9 ,VaR_10 ,VaR_11 ,VaR_12 ,VaR_13 ,VaR_14 ,VaR_15 ,VaR_16 ,VaR_17 ,VaR_18 ,VaR_19 ,VaR_20 ,VaR_21 ,VaR_22 ,VaR_23 ,VaR_24 ,VaR_25]

312 %% Backtesting

314 PL_B=B-S_0

316 figure;
plot( Var_sim , "r");

318 hold on;
plot(PL_B , "g");

320 hold off;

322 %% Quality checks for the model
%compute the difference between VaR estimate and actual losses

324 error_HS=zeros (1,25)

326 for i=1:25
error_HS(i)= Var_sim(i)-PL_B(i)

328 end

330 % number of times VaR fails to cover losses
failure_HS=zeros (1 ,25)

332 for i=1:25
if error_HS(i)>0

334 failure_HS(i)=1
end

336 end

338 x_HS=sum(failure_HS)%9
p=0.05 %level of confidence

340 N=25 %number of estimates

342 %% Binomial test , compare actual and expected number of vailures

344 exp_val_bin=p*N
test_bin_HS =(x_HS -N*p)/( sqrt(N*p*(1-p))) % test rejected

346 crit_val_bin=norminv(1-p)
%% Kupiec proportion of failures test

348

LR_pof_HS =-2*log(((1-p)^(N-x_HS)*p^x_HS )/((1 - x_HS/N)^(N-x_HS )*( x_HS/N)^x_HS))
350 crit=chi2inv ((1-p),1) %test failed

352 %% Kupiec time untill first failure test
%number of days before first rejection

354 k_HS=0

356 LR_TUFF_HS =-2*log((p*(1-p)^(k_HS -1))/((1/ k_HS )*(1 -(1/ k_HS ))^(k_HS -1)))
crit_TUFF=chi2inv ((1-p),1)
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358 % test passed

360 %% Christoffersen Interval forecast test

362 n_00_HS =3
n_10_HS =1

364 n_01_HS =1
n_11_HS =19

366

p_0_HS=n_01_HS /( n_00_HS+n_01_HS)
368 p_1_HS=n_11_HS /( n_10_HS+n_11_HS)

p_HS=( n_01_HS+n_11_HS )/( n_00_HS+n_01_HS+n_11_HS)
370

LRCCI_HS =-2*log(((1- p_HS )^( n_00_HS+n_10_HS )*p_HS^( n_01_HS+n_11_HS ))/((1 - p_0_HS )^( n_00_HS )* p_0_HS ^( n_01_HS )*(1- p_1_HS )^( n_10_HS )* p_1_HS ^( n_11_HS )))
372 %check failed

LRCC_HS=LRCCI_HS+LR_pof_HS
374 crit2=chi2inv ((1-p),2)

%check failed
376

%% Mixed Kupiec test , not working
378

days_HS =[8,8,0,0,0,0,0,0,0]
380

sumTB_HS=zeros (1,9)
382

for i=1:9
384 sumTB_HS=log((p*(1-p)^( days_HS(i) -1))/((1/ days_HS(i))*(1 -1/ days_HS(i))^( days_HS(i)-1)))

end
386

LRTBFI_HS =-2*sum(sumTB_HS)
388 crit_TBFI_HS=chi2inv ((1-p),9)

1 %% Descriptive statistics full sample

3 SP=SP500 (2:end )/100
SP(242 ,:)=[]

5 %max=max(S)
%min=min(S)

7 %avg=mean(SP)
%std=std(S)

9 %kurt=kurtosis(SP)
%skew=skewness(SP)

11 %median=median(S)
%mode=mode(S)

13

%% Time series FTSE MIB full sample
15 bdates=busdays(datetime(’24-October -2016’,’Locale ’,’en_US’),’1-January -2018 ’,’daily’)

plot(bdates ,SP (205: end))



212 Appendix B. Codes

17 %% Initialization
B=SP500 (30:55)% backtesting dataset

19

S=SP (2:150)% data set for estimation of parameters
21 %B=SP (152:300)% backtesting dataset

S_0=SP(151)
23 n=1000%100

k=25%149 %target number of VaR estimations=lenght backtesting dataset
25 a=0.05

27 hist(SP)
%% Parameter estimation

29

m=mean(S)
31 s=std(S)

33 %% MC
%initialyze space

35 S_s_1=S(1)* ones(1,n)
S_s_2=S(1)* ones(1,n)

37 S_s_3=S(1)* ones(1,n)
S_s_4=S(1)* ones(1,n)

39 S_s_5=S(1)* ones(1,n)
S_s_6=S(1)* ones(1,n)

41 S_s_7=S(1)* ones(1,n)
S_s_8=S(1)* ones(1,n)

43 S_s_9=S(1)* ones(1,n)
S_s_10=S(1)* ones(1,n)

45 S_s_11=S(1)* ones(1,n)
S_s_12=S(1)* ones(1,n)

47 S_s_13=S(1)* ones(1,n)
S_s_14=S(1)* ones(1,n)

49 S_s_15=S(1)* ones(1,n)
S_s_16=S(1)* ones(1,n)

51 S_s_17=S(1)* ones(1,n)
S_s_18=S(1)* ones(1,n)

53 S_s_19=S(1)* ones(1,n)
S_s_20=S(1)* ones(1,n)

55 S_s_21=S(1)* ones(1,n)
S_s_22=S(1)* ones(1,n)

57 S_s_23=S(1)* ones(1,n)
S_s_24=S(1)* ones(1,n)

59 S_s_25=S(1)* ones(1,n)

61 % generation of simulated path
for i=2:n

63 S_s_1(i)= S_s_1(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
end
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65

for i=2:n
67 S_s_2(i)= S_s_2(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)

end
69 for i=2:n

S_s_3(i)= S_s_3(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
71 end

for i=2:n
73 S_s_4(i)= S_s_4(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)

end
75 for i=2:n

S_s_5(i)= S_s_5(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
77 end

for i=2:n
79 S_s_6(i)= S_s_6(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)

end
81 for i=2:n

S_s_7(i)= S_s_7(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
83 end

for i=2:n
85 S_s_8(i)= S_s_8(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)

end
87 for i=2:n

S_s_9(i)= S_s_9(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
89 end

for i=2:n
91 S_s_10(i)= S_s_10(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
93 for i=2:n

S_s_11(i)= S_s_11(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
95 end

for i=2:n
97 S_s_12(i)= S_s_12(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
99 for i=2:n

S_s_13(i)= S_s_13(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
101 end

for i=2:n
103 S_s_14(i)= S_s_14(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
105 for i=2:n

S_s_15(i)= S_s_15(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
107 end

for i=2:n
109 S_s_16(i)= S_s_16(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
111 for i=2:n

S_s_17(i)= S_s_17(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
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113 end
for i=2:n

115 S_s_18(i)= S_s_18(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
end

117 for i=2:n
S_s_19(i)= S_s_19(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

119 end
for i=2:n

121 S_s_20(i)= S_s_20(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
end

123 for i=2:n
S_s_21(i)= S_s_21(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

125 end
for i=2:n

127 S_s_22(i)= S_s_22(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
end

129 for i=2:n
S_s_23(i)= S_s_23(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

131 end
for i=2:n

133 S_s_24(i)= S_s_24(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
end

135 for i=2:n
S_s_25(i)= S_s_25(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

137 end

139 %% P&L
%initialyze space

141 PL_1=zeros(1,n)
PL_2=zeros(1,n)

143 PL_3=zeros(1,n)
PL_4=zeros(1,n)

145 PL_5=zeros(1,n)
PL_6=zeros(1,n)

147 PL_7=zeros(1,n)
PL_8=zeros(1,n)

149 PL_9=zeros(1,n)
PL_10=zeros(1,n)

151 PL_11=zeros(1,n)
PL_12=zeros(1,n)

153 PL_13=zeros(1,n)
PL_14=zeros(1,n)

155 PL_15=zeros(1,n)
PL_16=zeros(1,n)

157 PL_17=zeros(1,n)
PL_18=zeros(1,n)

159 PL_19=zeros(1,n)
PL_20=zeros(1,n)
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161 PL_21=zeros(1,n)
PL_22=zeros(1,n)

163 PL_23=zeros(1,n)
PL_24=zeros(1,n)

165 PL_25=zeros(1,n)

167 for i=1:n
PL_1(i)=S_s_1(i)-S_0

169 end
for i=1:n

171 PL_2(i)=S_s_2(i)-S_0
end

173 for i=1:n
PL_3(i)=S_s_3(i)-S_0

175 end
for i=1:n

177 PL_4(i)=S_s_4(i)-S_0
end

179 for i=1:n
PL_5(i)=S_s_5(i)-S_0

181 end
for i=1:n

183 PL_6(i)=S_s_6(i)-S_0
end

185 for i=1:n
PL_7(i)=S_s_7(i)-S_0

187 end
for i=1:n

189 PL_8(i)=S_s_8(i)-S_0
end

191 for i=1:n
PL_9(i)=S_s_9(i)-S_0

193 end
for i=1:n

195 PL_10(i)= S_s_10(i)-S_0
end

197 for i=1:n
PL_11(i)= S_s_11(i)-S_0

199 end
for i=1:n

201 PL_12(i)= S_s_12(i)-S_0
end

203 for i=1:n
PL_13(i)= S_s_13(i)-S_0

205 end
for i=1:n

207 PL_14(i)= S_s_14(i)-S_0
end
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209 for i=1:n
PL_15(i)= S_s_15(i)-S_0

211 end
for i=1:n

213 PL_16(i)= S_s_16(i)-S_0
end

215 for i=1:n
PL_17(i)= S_s_17(i)-S_0

217 end
for i=1:n

219 PL_18(i)= S_s_18(i)-S_0
end

221 for i=1:n
PL_19(i)= S_s_19(i)-S_0

223 end
for i=1:n

225 PL_20(i)= S_s_20(i)-S_0
end

227 for i=1:n
PL_21(i)= S_s_21(i)-S_0

229 end
for i=1:n

231 PL_22(i)= S_s_22(i)-S_0
end

233 for i=1:n
PL_23(i)= S_s_23(i)-S_0

235 end
for i=1:n

237 PL_24(i)= S_s_24(i)-S_0
end

239 for i=1:n
PL_25(i)= S_s_25(i)-S_0

241 end

243 %% VaR

245 PL_ord_1=sort(PL_1)
PL_ord_2=sort(PL_2)

247 PL_ord_3=sort(PL_3)
PL_ord_4=sort(PL_4)

249 PL_ord_5=sort(PL_5)
PL_ord_6=sort(PL_6)

251 PL_ord_7=sort(PL_7)
PL_ord_8=sort(PL_8)

253 PL_ord_9=sort(PL_9)
PL_ord_10=sort(PL_10)

255 PL_ord_11=sort(PL_11)
PL_ord_12=sort(PL_12)
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257 PL_ord_13=sort(PL_13)
PL_ord_14=sort(PL_14)

259 PL_ord_15=sort(PL_15)
PL_ord_16=sort(PL_16)

261 PL_ord_17=sort(PL_17)
PL_ord_18=sort(PL_18)

263 PL_ord_19=sort(PL_19)
PL_ord_20=sort(PL_20)

265 PL_ord_21=sort(PL_21)
PL_ord_22=sort(PL_22)

267 PL_ord_23=sort(PL_23)
PL_ord_24=sort(PL_24)

269 PL_ord_25=sort(PL_25)

271

VaR_1=PL_ord_1(n*a)
273 VaR_2=PL_ord_2(n*a)

VaR_3=PL_ord_3(n*a)
275 VaR_4=PL_ord_4(n*a)

VaR_5=PL_ord_5(n*a)
277 VaR_6=PL_ord_6(n*a)

VaR_7=PL_ord_7(n*a)
279 VaR_8=PL_ord_8(n*a)

VaR_9=PL_ord_9(n*a)
281 VaR_10=PL_ord_10(n*a)

VaR_11=PL_ord_11(n*a)
283 VaR_12=PL_ord_12(n*a)

VaR_13=PL_ord_13(n*a)
285 VaR_14=PL_ord_14(n*a)

VaR_15=PL_ord_15(n*a)
287 VaR_16=PL_ord_16(n*a)

VaR_17=PL_ord_17(n*a)
289 VaR_18=PL_ord_18(n*a)

VaR_19=PL_ord_19(n*a)
291 VaR_20=PL_ord_20(n*a)

VaR_21=PL_ord_21(n*a)
293 VaR_22=PL_ord_22(n*a)

VaR_23=PL_ord_23(n*a)
295 VaR_24=PL_ord_24(n*a)

VaR_25=PL_ord_25(n*a)
297

299 Var_sim =[VaR_1 ,VaR_2 ,VaR_3 ,VaR_4 ,VaR_5 ,VaR_6 ,VaR_7 ,VaR_8 ,VaR_9 ,VaR_10 ,VaR_11 ,VaR_12 ,VaR_13 ,VaR_14 ,VaR_15 ,VaR_16 ,VaR_17 ,VaR_18 ,VaR_19 ,VaR_20 ,VaR_21 ,VaR_22 ,VaR_23 ,VaR_24 ,VaR_25]

301 %% Backtesting

303 PL_B=B-S_0
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305

figure;
307 plot( Var_sim , "r");

hold on;
309 plot(PL_B , "g");

hold off;
311

%% Quality checks for the model
313 %compute the difference between VaR estimate and actual losses

error_MC=zeros (1,25)
315

for i=1:25
317 error_MC(i)= Var_sim(i)-PL_B(i)

end
319

% number of times VaR fails to cover losses
321 failure_MC=zeros (1 ,25)

for i=1:25
323 if error_MC(i)>0

failure_MC(i)=1
325 end

end
327

x_MC=sum(failure_MC)
329 p=0.05 %level of confidence

N=25 %number of estimates
331

%% Binomial test , compare actual and expected number of vailures
333

exp_val_bin=p*N
335 test_bin_MC =(x_MC -N*p)/( sqrt(N*p*(1-p)))

crit_val_bin=norminv(1-p) %test failed
337 %% Kupiec proportion of failures test

339 LR_pof_MC =-2*log(((1-p)^(N-x_MC)*p^x_MC )/((1 - x_MC/N)^(N-x_MC )*( x_MC/N)^x_MC))
crit=chi2inv ((1-p),1) %test failed

341

%% Kupiec time untill first failure test
343 %number of days before first rejection

k_MC=0
345

LR_TUFF_MC =-2*log((p*(1-p)^(k_MC -1))/((1/ k_MC )*(1 -(1/ k_MC ))^(k_MC -1)))
347 crit_TUFF=chi2inv ((1-p),1)

% test passed
349

%% Christoffersen Interval forecast test
351

n_00_MC =16
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353 n_10_MC =3
n_01_MC =2

355 n_11_MC =3

357 p_0_MC=n_01_MC /( n_00_MC+n_01_MC)
p_1_MC=n_11_MC /( n_10_MC+n_11_MC)

359 p_MC=( n_01_MC+n_11_MC )/( n_00_MC+n_01_MC+n_11_MC)

361 LRCCI_MC =-2*log(((1- p_MC )^( n_00_MC+n_10_MC )*p_MC^( n_01_MC+n_11_MC ))/((1 - p_0_MC )^( n_00_MC )* p_0_MC ^( n_01_MC )*(1- p_1_MC )^( n_10_MC )* p_1_MC ^( n_11_MC )))
%check passed

363 LRCC_MC=LRCCI_MC+LR_pof_MC
crit2=chi2inv ((1-p),2)

365 %check failed

367 %% Mixed Kupiec test , not working

369 days_MC =[0,0]

371 sumTB_MC=zeros (1,2)

373 for i=1:2
sumTB_MC=log((p*(1-p)^( days_MC(i) -1))/((1/ days_MC(i))*(1 -1/ days_MC(i))^( days_MC(i)-1)))

375 end

377 LRTBFI_MC =-2*sum(sumTB_MC)
crit_TBFI_MC=chi2inv ((1-p),2)

B.5.3 Distributional assumption Study

1 %% Montecarlo VaR Normal

3 %% Initialization

5 S=FTSEMIB (2:150)% data set for estimation of parameters
B=FTSEMIB (152:300)% backtesting dataset

7 S_0=FTSEMIB (151)
n=1000%100

9 k=25%149 %target number of VaR estimations=lenght backtesting dataset
a=0.05

11

hist(S)
13 %% Parameter estimation

15 [muhat ,sigmahat] = normfit(S)

17

%% MC
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19 %initialyze space
S_s_1=normrnd(muhat ,sigmahat ,1,n)

21 S_s_2=normrnd(muhat ,sigmahat ,1,n)
S_s_3=normrnd(muhat ,sigmahat ,1,n)

23 S_s_4=normrnd(muhat ,sigmahat ,1,n)
S_s_5=normrnd(muhat ,sigmahat ,1,n)

25 S_s_6=normrnd(muhat ,sigmahat ,1,n)
S_s_7=normrnd(muhat ,sigmahat ,1,n)

27 S_s_8=normrnd(muhat ,sigmahat ,1,n)
S_s_9=normrnd(muhat ,sigmahat ,1,n)

29 S_s_10=normrnd(muhat ,sigmahat ,1,n)
S_s_11=normrnd(muhat ,sigmahat ,1,n)

31 S_s_12=normrnd(muhat ,sigmahat ,1,n)
S_s_13=normrnd(muhat ,sigmahat ,1,n)

33 S_s_14=normrnd(muhat ,sigmahat ,1,n)
S_s_15=normrnd(muhat ,sigmahat ,1,n)

35 S_s_16=normrnd(muhat ,sigmahat ,1,n)
S_s_17=normrnd(muhat ,sigmahat ,1,n)

37 S_s_18=normrnd(muhat ,sigmahat ,1,n)
S_s_19=normrnd(muhat ,sigmahat ,1,n)

39 S_s_20=normrnd(muhat ,sigmahat ,1,n)
S_s_21=normrnd(muhat ,sigmahat ,1,n)

41 S_s_22=normrnd(muhat ,sigmahat ,1,n)
S_s_23=normrnd(muhat ,sigmahat ,1,n)

43 S_s_24=normrnd(muhat ,sigmahat ,1,n)
S_s_25=normrnd(muhat ,sigmahat ,1,n)

45

47

%% P&L
49 %initialyze space

PL_1=S_s_1 -S_0
51 PL_2=S_s_2 -S_0

PL_3=S_s_3 -S_0
53 PL_4=S_s_4 -S_0

PL_5=S_s_5 -S_0
55 PL_6=S_s_6 -S_0

PL_7=S_s_7 -S_0
57 PL_8=S_s_8 -S_0

PL_9=S_s_9 -S_0
59 PL_10=S_s_10 -S_0

PL_11=S_s_11 -S_0
61 PL_12=S_s_12 -S_0

PL_13=S_s_13 -S_0
63 PL_14=S_s_14 -S_0

PL_15=S_s_15 -S_0
65 PL_16=S_s_16 -S_0

PL_17=S_s_17 -S_0
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67 PL_18=S_s_18 -S_0
PL_19=S_s_19 -S_0

69 PL_20=S_s_20 -S_0
PL_21=S_s_21 -S_0

71 PL_22=S_s_22 -S_0
PL_23=S_s_23 -S_0

73 PL_24=S_s_24 -S_0
PL_25=S_s_25 -S_0

75

%% VaR
77

PL_ord_1=sort(PL_1)
79 PL_ord_2=sort(PL_2)

PL_ord_3=sort(PL_3)
81 PL_ord_4=sort(PL_4)

PL_ord_5=sort(PL_5)
83 PL_ord_6=sort(PL_6)

PL_ord_7=sort(PL_7)
85 PL_ord_8=sort(PL_8)

PL_ord_9=sort(PL_9)
87 PL_ord_10=sort(PL_10)

PL_ord_11=sort(PL_11)
89 PL_ord_12=sort(PL_12)

PL_ord_13=sort(PL_13)
91 PL_ord_14=sort(PL_14)

PL_ord_15=sort(PL_15)
93 PL_ord_16=sort(PL_16)

PL_ord_17=sort(PL_17)
95 PL_ord_18=sort(PL_18)

PL_ord_19=sort(PL_19)
97 PL_ord_20=sort(PL_20)

PL_ord_21=sort(PL_21)
99 PL_ord_22=sort(PL_22)

PL_ord_23=sort(PL_23)
101 PL_ord_24=sort(PL_24)

PL_ord_25=sort(PL_25)
103

105 VaR_1=PL_ord_1(n*a)
VaR_2=PL_ord_2(n*a)

107 VaR_3=PL_ord_3(n*a)
VaR_4=PL_ord_4(n*a)

109 VaR_5=PL_ord_5(n*a)
VaR_6=PL_ord_6(n*a)

111 VaR_7=PL_ord_7(n*a)
VaR_8=PL_ord_8(n*a)

113 VaR_9=PL_ord_9(n*a)
VaR_10=PL_ord_10(n*a)
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115 VaR_11=PL_ord_11(n*a)
VaR_12=PL_ord_12(n*a)

117 VaR_13=PL_ord_13(n*a)
VaR_14=PL_ord_14(n*a)

119 VaR_15=PL_ord_15(n*a)
VaR_16=PL_ord_16(n*a)

121 VaR_17=PL_ord_17(n*a)
VaR_18=PL_ord_18(n*a)

123 VaR_19=PL_ord_19(n*a)
VaR_20=PL_ord_20(n*a)

125 VaR_21=PL_ord_21(n*a)
VaR_22=PL_ord_22(n*a)

127 VaR_23=PL_ord_23(n*a)
VaR_24=PL_ord_24(n*a)

129 VaR_25=PL_ord_25(n*a)

131

Var_sim =[VaR_1 ,VaR_2 ,VaR_3 ,VaR_4 ,VaR_5 ,VaR_6 ,VaR_7 ,VaR_8 ,VaR_9 ,VaR_10 ,VaR_11 ,VaR_12 ,VaR_13 ,VaR_14 ,VaR_15 ,VaR_16 ,VaR_17 ,VaR_18 ,VaR_19 ,VaR_20 ,VaR_21 ,VaR_22 ,VaR_23 ,VaR_24 ,VaR_25]
133

%% Backtesting
135

PL_B=B(65:89) - S_0
137

139 figure;
plot( Var_sim , "r");

141 hold on;
plot(PL_B , "g");

143 hold off;

145 %% Quality checks for the model
%compute the difference between VaR estimate and actual losses

147 error_MC=zeros (1,25)

149 for i=1:25
error_MC(i)= Var_sim(i)-PL_B(i)

151 end

153 % number of times VaR fails to cover losses
failure_MC=zeros (1 ,25)

155 for i=1:25
if error_MC(i)>0

157 failure_MC(i)=1
end

159 end

161 x_MC=sum(failure_MC)
p=0.05 %level of confidence
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163 N=25 %number of estimates

165 %% Binomial test , compare actual and expected number of vailures

167 exp_val_bin=p*N
test_bin_MC =(x_MC -N*p)/( sqrt(N*p*(1-p)))

169 crit_val_bin=norminv(1-p) %test passed
%% Kupiec proportion of failures test

171

LR_pof_MC =-2*log(((1-p)^(N-x_MC)*p^x_MC )/((1 - x_MC/N)^(N-x_MC )*( x_MC/N)^x_MC))
173 crit=chi2inv ((1-p),1) %test passed

175 %% Kupiec time untill first failure test
%number of days before first rejection

177 k_MC=1

179 LR_TUFF_MC =-2*log((p*(1-p)^(k_MC -1))/((1/ k_MC )*(1 -(1/ k_MC ))^(k_MC -1)))
crit_TUFF=chi2inv ((1-p),1)

181 % test passed

183 %% Christoffersen Interval forecast test

185 n_00_MC =15
n_10_MC =1

187 n_01_MC =0
n_11_MC =7

189

p_0_MC=n_01_MC /( n_00_MC+n_01_MC)
191 p_1_MC=n_11_MC /( n_10_MC+n_11_MC)

p_MC=( n_01_MC+n_11_MC )/( n_00_MC+n_01_MC+n_11_MC)
193

LRCCI_MC =-2*log(((1- p_MC )^( n_00_MC+n_10_MC )*p_MC^( n_01_MC+n_11_MC ))/((1 - p_0_MC )^( n_00_MC )* p_0_MC ^( n_01_MC )*(1- p_1_MC )^( n_10_MC )* p_1_MC ^( n_11_MC )))
195 %check passed

LRCC_MC=LRCCI_MC+LR_pof_MC
197 crit2=chi2inv ((1-p),2)

%check passed
199

%% Mixed Kupiec test , not working
201

days_MC =[0,0]
203

sumTB_MC=zeros (1,2)
205

for i=1:2
207 sumTB_MC=log((p*(1-p)^( days_MC(i) -1))/((1/ days_MC(i))*(1 -1/ days_MC(i))^( days_MC(i)-1)))

end
209

LRTBFI_MC =-2*sum(sumTB_MC)
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211 crit_TBFI_MC=chi2inv ((1-p),2)

%% Montecarlo VaR Log -Normal
2

%% Initialization
4

S=FTSEMIB (2:150)% data set for estimation of parameters
6 B=FTSEMIB (152:300)% backtesting dataset

S_0=FTSEMIB (151)
8 n=1000%100

k=25%149 %target number of VaR estimations=lenght backtesting dataset
10 a=0.05

12 hist(S)
%% Parameter estimation

14

parmhat = lognfit(S)
16

18 %% MC
%initialyze space

20 S_s_1=lognrnd(parmhat (1), parmhat (2),1,n)
S_s_2=lognrnd(parmhat (1), parmhat (2),1,n)

22 S_s_3=lognrnd(parmhat (1), parmhat (2),1,n)
S_s_4=lognrnd(parmhat (1), parmhat (2),1,n)

24 S_s_5=lognrnd(parmhat (1), parmhat (2),1,n)
S_s_6=lognrnd(parmhat (1), parmhat (2),1,n)

26 S_s_7=lognrnd(parmhat (1), parmhat (2),1,n)
S_s_8=lognrnd(parmhat (1), parmhat (2),1,n)

28 S_s_9=lognrnd(parmhat (1), parmhat (2),1,n)
S_s_10=lognrnd(parmhat (1), parmhat (2),1,n)

30 S_s_11=lognrnd(parmhat (1), parmhat (2),1,n)
S_s_12=lognrnd(parmhat (1), parmhat (2),1,n)

32 S_s_13=lognrnd(parmhat (1), parmhat (2),1,n)
S_s_14=lognrnd(parmhat (1), parmhat (2),1,n)

34 S_s_15=lognrnd(parmhat (1), parmhat (2),1,n)
S_s_16=lognrnd(parmhat (1), parmhat (2),1,n)

36 S_s_17=lognrnd(parmhat (1), parmhat (2),1,n)
S_s_18=lognrnd(parmhat (1), parmhat (2),1,n)

38 S_s_19=lognrnd(parmhat (1), parmhat (2),1,n)
S_s_20=lognrnd(parmhat (1), parmhat (2),1,n)

40 S_s_21=lognrnd(parmhat (1), parmhat (2),1,n)
S_s_22=lognrnd(parmhat (1), parmhat (2),1,n)

42 S_s_23=lognrnd(parmhat (1), parmhat (2),1,n)
S_s_24=lognrnd(parmhat (1), parmhat (2),1,n)

44 S_s_25=lognrnd(parmhat (1), parmhat (2),1,n)

46
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48 %% P&L
%initialyze space

50 PL_1=S_s_1 -S_0
PL_2=S_s_2 -S_0

52 PL_3=S_s_3 -S_0
PL_4=S_s_4 -S_0

54 PL_5=S_s_5 -S_0
PL_6=S_s_6 -S_0

56 PL_7=S_s_7 -S_0
PL_8=S_s_8 -S_0

58 PL_9=S_s_9 -S_0
PL_10=S_s_10 -S_0

60 PL_11=S_s_11 -S_0
PL_12=S_s_12 -S_0

62 PL_13=S_s_13 -S_0
PL_14=S_s_14 -S_0

64 PL_15=S_s_15 -S_0
PL_16=S_s_16 -S_0

66 PL_17=S_s_17 -S_0
PL_18=S_s_18 -S_0

68 PL_19=S_s_19 -S_0
PL_20=S_s_20 -S_0

70 PL_21=S_s_21 -S_0
PL_22=S_s_22 -S_0

72 PL_23=S_s_23 -S_0
PL_24=S_s_24 -S_0

74 PL_25=S_s_25 -S_0

76 %% VaR

78 PL_ord_1=sort(PL_1)
PL_ord_2=sort(PL_2)

80 PL_ord_3=sort(PL_3)
PL_ord_4=sort(PL_4)

82 PL_ord_5=sort(PL_5)
PL_ord_6=sort(PL_6)

84 PL_ord_7=sort(PL_7)
PL_ord_8=sort(PL_8)

86 PL_ord_9=sort(PL_9)
PL_ord_10=sort(PL_10)

88 PL_ord_11=sort(PL_11)
PL_ord_12=sort(PL_12)

90 PL_ord_13=sort(PL_13)
PL_ord_14=sort(PL_14)

92 PL_ord_15=sort(PL_15)
PL_ord_16=sort(PL_16)

94 PL_ord_17=sort(PL_17)
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PL_ord_18=sort(PL_18)
96 PL_ord_19=sort(PL_19)

PL_ord_20=sort(PL_20)
98 PL_ord_21=sort(PL_21)

PL_ord_22=sort(PL_22)
100 PL_ord_23=sort(PL_23)

PL_ord_24=sort(PL_24)
102 PL_ord_25=sort(PL_25)

104

VaR_1=PL_ord_1(n*a)
106 VaR_2=PL_ord_2(n*a)

VaR_3=PL_ord_3(n*a)
108 VaR_4=PL_ord_4(n*a)

VaR_5=PL_ord_5(n*a)
110 VaR_6=PL_ord_6(n*a)

VaR_7=PL_ord_7(n*a)
112 VaR_8=PL_ord_8(n*a)

VaR_9=PL_ord_9(n*a)
114 VaR_10=PL_ord_10(n*a)

VaR_11=PL_ord_11(n*a)
116 VaR_12=PL_ord_12(n*a)

VaR_13=PL_ord_13(n*a)
118 VaR_14=PL_ord_14(n*a)

VaR_15=PL_ord_15(n*a)
120 VaR_16=PL_ord_16(n*a)

VaR_17=PL_ord_17(n*a)
122 VaR_18=PL_ord_18(n*a)

VaR_19=PL_ord_19(n*a)
124 VaR_20=PL_ord_20(n*a)

VaR_21=PL_ord_21(n*a)
126 VaR_22=PL_ord_22(n*a)

VaR_23=PL_ord_23(n*a)
128 VaR_24=PL_ord_24(n*a)

VaR_25=PL_ord_25(n*a)
130

132 Var_sim =[VaR_1 ,VaR_2 ,VaR_3 ,VaR_4 ,VaR_5 ,VaR_6 ,VaR_7 ,VaR_8 ,VaR_9 ,VaR_10 ,VaR_11 ,VaR_12 ,VaR_13 ,VaR_14 ,VaR_15 ,VaR_16 ,VaR_17 ,VaR_18 ,VaR_19 ,VaR_20 ,VaR_21 ,VaR_22 ,VaR_23 ,VaR_24 ,VaR_25]

134 %% Backtesting

136 PL_B=B(65:89) - S_0

138

figure;
140 plot( Var_sim , "r");

hold on;
142 plot(PL_B , "g");
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hold off;
144

%% Quality checks for the model
146 %compute the difference between VaR estimate and actual losses

error_MC=zeros (1 ,25)
148

for i=1:25
150 error_MC(i)= Var_sim(i)-PL_B(i)

end
152

% number of times VaR fails to cover losses
154 failure_MC=zeros (1 ,25)

for i=1:25
156 if error_MC(i)>0

failure_MC(i)=1
158 end

end
160

x_MC=sum(failure_MC)
162 p=0.05 %level of confidence

N=25 %number of estimates
164

%% Binomial test , compare actual and expected number of vailures
166

exp_val_bin=p*N
168 test_bin_MC =(x_MC -N*p)/( sqrt(N*p*(1-p)))

crit_val_bin=norminv(1-p) %test passed
170 %% Kupiec proportion of failures test

172 LR_pof_MC =-2*log(((1-p)^(N-x_MC)*p^x_MC )/((1 - x_MC/N)^(N-x_MC )*( x_MC/N)^x_MC))
crit=chi2inv ((1-p),1) %test passed

174

%% Kupiec time untill first failure test
176 %number of days before first rejection

k_MC=1
178

LR_TUFF_MC =-2*log((p*(1-p)^(k_MC -1))/((1/ k_MC )*(1 -(1/ k_MC ))^(k_MC -1)))
180 crit_TUFF=chi2inv ((1-p),1)

% test passed
182

%% Christoffersen Interval forecast test
184

n_00_MC =15
186 n_10_MC =1

n_01_MC =0
188 n_11_MC =7

190 p_0_MC=n_01_MC /( n_00_MC+n_01_MC)
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p_1_MC=n_11_MC /( n_10_MC+n_11_MC)
192 p_MC=( n_01_MC+n_11_MC )/( n_00_MC+n_01_MC+n_11_MC)

194 LRCCI_MC =-2*log(((1- p_MC )^( n_00_MC+n_10_MC )*p_MC^( n_01_MC+n_11_MC ))/((1 - p_0_MC )^( n_00_MC )* p_0_MC ^( n_01_MC )*(1- p_1_MC )^( n_10_MC )* p_1_MC ^( n_11_MC )))
%check passed

196 LRCC_MC=LRCCI_MC+LR_pof_MC
crit2=chi2inv ((1-p),2)

198 %check passed

200 %% Mixed Kupiec test , not working

202 days_MC =[0,0]

204 sumTB_MC=zeros (1,2)

206 for i=1:2
sumTB_MC=log((p*(1-p)^( days_MC(i) -1))/((1/ days_MC(i))*(1 -1/ days_MC(i))^( days_MC(i)-1)))

208 end

210 LRTBFI_MC =-2*sum(sumTB_MC)
crit_TBFI_MC=chi2inv ((1-p),2)

%% Montecarlo VaR Geometric Brownian motion
2

%% Initialization
4

S=FTSEMIB (2:150)% data set for estimation of parameters
6 B=FTSEMIB (152:300)% backtesting dataset

S_0=FTSEMIB (151)
8 n=1000%100

k=25%149 %target number of VaR estimations=lenght backtesting dataset
10 a=0.05

12 hist(S)
%% Parameter estimation

14

m=mean(S)
16 s=std(S)

18 %% MC
%initialyze space

20 S_s_1=S(1)* ones(1,n)
S_s_2=S(1)* ones(1,n)

22 S_s_3=S(1)* ones(1,n)
S_s_4=S(1)* ones(1,n)

24 S_s_5=S(1)* ones(1,n)
S_s_6=S(1)* ones(1,n)

26 S_s_7=S(1)* ones(1,n)
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S_s_8=S(1)* ones(1,n)
28 S_s_9=S(1)* ones(1,n)

S_s_10=S(1)* ones(1,n)
30 S_s_11=S(1)* ones(1,n)

S_s_12=S(1)* ones(1,n)
32 S_s_13=S(1)* ones(1,n)

S_s_14=S(1)* ones(1,n)
34 S_s_15=S(1)* ones(1,n)

S_s_16=S(1)* ones(1,n)
36 S_s_17=S(1)* ones(1,n)

S_s_18=S(1)* ones(1,n)
38 S_s_19=S(1)* ones(1,n)

S_s_20=S(1)* ones(1,n)
40 S_s_21=S(1)* ones(1,n)

S_s_22=S(1)* ones(1,n)
42 S_s_23=S(1)* ones(1,n)

S_s_24=S(1)* ones(1,n)
44 S_s_25=S(1)* ones(1,n)

46 % generation of simulated path
for i=2:n

48 S_s_1(i)= S_s_1(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
end

50

for i=2:n
52 S_s_2(i)= S_s_2(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)

end
54 for i=2:n

S_s_3(i)= S_s_3(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
56 end

for i=2:n
58 S_s_4(i)= S_s_4(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)

end
60 for i=2:n

S_s_5(i)= S_s_5(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
62 end

for i=2:n
64 S_s_6(i)= S_s_6(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)

end
66 for i=2:n

S_s_7(i)= S_s_7(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
68 end

for i=2:n
70 S_s_8(i)= S_s_8(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)

end
72 for i=2:n

S_s_9(i)= S_s_9(i-1)+( randn (1,1)*s*sqrt (1/250)+m*1/250)
74 end
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for i=2:n
76 S_s_10(i)= S_s_10(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
78 for i=2:n

S_s_11(i)= S_s_11(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
80 end

for i=2:n
82 S_s_12(i)= S_s_12(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
84 for i=2:n

S_s_13(i)= S_s_13(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
86 end

for i=2:n
88 S_s_14(i)= S_s_14(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
90 for i=2:n

S_s_15(i)= S_s_15(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
92 end

for i=2:n
94 S_s_16(i)= S_s_16(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
96 for i=2:n

S_s_17(i)= S_s_17(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
98 end

for i=2:n
100 S_s_18(i)= S_s_18(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
102 for i=2:n

S_s_19(i)= S_s_19(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
104 end

for i=2:n
106 S_s_20(i)= S_s_20(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
108 for i=2:n

S_s_21(i)= S_s_21(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
110 end

for i=2:n
112 S_s_22(i)= S_s_22(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
114 for i=2:n

S_s_23(i)= S_s_23(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
116 end

for i=2:n
118 S_s_24(i)= S_s_24(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)

end
120 for i=2:n

S_s_25(i)= S_s_25(i -1)+( randn (1 ,1)*s*sqrt (1/250)+m*1/250)
122 end
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124 %% P&L
%initialyze space

126 PL_1=zeros(1,n)
PL_2=zeros(1,n)

128 PL_3=zeros(1,n)
PL_4=zeros(1,n)

130 PL_5=zeros(1,n)
PL_6=zeros(1,n)

132 PL_7=zeros(1,n)
PL_8=zeros(1,n)

134 PL_9=zeros(1,n)
PL_10=zeros(1,n)

136 PL_11=zeros(1,n)
PL_12=zeros(1,n)

138 PL_13=zeros(1,n)
PL_14=zeros(1,n)

140 PL_15=zeros(1,n)
PL_16=zeros(1,n)

142 PL_17=zeros(1,n)
PL_18=zeros(1,n)

144 PL_19=zeros(1,n)
PL_20=zeros(1,n)

146 PL_21=zeros(1,n)
PL_22=zeros(1,n)

148 PL_23=zeros(1,n)
PL_24=zeros(1,n)

150 PL_25=zeros(1,n)

152 for i=1:n
PL_1(i)=S_s_1(i)-S_0

154 end
for i=1:n

156 PL_2(i)=S_s_2(i)-S_0
end

158 for i=1:n
PL_3(i)=S_s_3(i)-S_0

160 end
for i=1:n

162 PL_4(i)=S_s_4(i)-S_0
end

164 for i=1:n
PL_5(i)=S_s_5(i)-S_0

166 end
for i=1:n

168 PL_6(i)=S_s_6(i)-S_0
end

170 for i=1:n
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PL_7(i)=S_s_7(i)-S_0
172 end

for i=1:n
174 PL_8(i)=S_s_8(i)-S_0

end
176 for i=1:n

PL_9(i)=S_s_9(i)-S_0
178 end

for i=1:n
180 PL_10(i)= S_s_10(i)-S_0

end
182 for i=1:n

PL_11(i)= S_s_11(i)-S_0
184 end

for i=1:n
186 PL_12(i)= S_s_12(i)-S_0

end
188 for i=1:n

PL_13(i)= S_s_13(i)-S_0
190 end

for i=1:n
192 PL_14(i)= S_s_14(i)-S_0

end
194 for i=1:n

PL_15(i)= S_s_15(i)-S_0
196 end

for i=1:n
198 PL_16(i)= S_s_16(i)-S_0

end
200 for i=1:n

PL_17(i)= S_s_17(i)-S_0
202 end

for i=1:n
204 PL_18(i)= S_s_18(i)-S_0

end
206 for i=1:n

PL_19(i)= S_s_19(i)-S_0
208 end

for i=1:n
210 PL_20(i)= S_s_20(i)-S_0

end
212 for i=1:n

PL_21(i)= S_s_21(i)-S_0
214 end

for i=1:n
216 PL_22(i)= S_s_22(i)-S_0

end
218 for i=1:n
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PL_23(i)= S_s_23(i)-S_0
220 end

for i=1:n
222 PL_24(i)= S_s_24(i)-S_0

end
224 for i=1:n

PL_25(i)= S_s_25(i)-S_0
226 end

228 %% VaR

230 PL_ord_1=sort(PL_1)
PL_ord_2=sort(PL_2)

232 PL_ord_3=sort(PL_3)
PL_ord_4=sort(PL_4)

234 PL_ord_5=sort(PL_5)
PL_ord_6=sort(PL_6)

236 PL_ord_7=sort(PL_7)
PL_ord_8=sort(PL_8)

238 PL_ord_9=sort(PL_9)
PL_ord_10=sort(PL_10)

240 PL_ord_11=sort(PL_11)
PL_ord_12=sort(PL_12)

242 PL_ord_13=sort(PL_13)
PL_ord_14=sort(PL_14)

244 PL_ord_15=sort(PL_15)
PL_ord_16=sort(PL_16)

246 PL_ord_17=sort(PL_17)
PL_ord_18=sort(PL_18)

248 PL_ord_19=sort(PL_19)
PL_ord_20=sort(PL_20)

250 PL_ord_21=sort(PL_21)
PL_ord_22=sort(PL_22)

252 PL_ord_23=sort(PL_23)
PL_ord_24=sort(PL_24)

254 PL_ord_25=sort(PL_25)

256

VaR_1=PL_ord_1(n*a)
258 VaR_2=PL_ord_2(n*a)

VaR_3=PL_ord_3(n*a)
260 VaR_4=PL_ord_4(n*a)

VaR_5=PL_ord_5(n*a)
262 VaR_6=PL_ord_6(n*a)

VaR_7=PL_ord_7(n*a)
264 VaR_8=PL_ord_8(n*a)

VaR_9=PL_ord_9(n*a)
266 VaR_10=PL_ord_10(n*a)
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VaR_11=PL_ord_11(n*a)
268 VaR_12=PL_ord_12(n*a)

VaR_13=PL_ord_13(n*a)
270 VaR_14=PL_ord_14(n*a)

VaR_15=PL_ord_15(n*a)
272 VaR_16=PL_ord_16(n*a)

VaR_17=PL_ord_17(n*a)
274 VaR_18=PL_ord_18(n*a)

VaR_19=PL_ord_19(n*a)
276 VaR_20=PL_ord_20(n*a)

VaR_21=PL_ord_21(n*a)
278 VaR_22=PL_ord_22(n*a)

VaR_23=PL_ord_23(n*a)
280 VaR_24=PL_ord_24(n*a)

VaR_25=PL_ord_25(n*a)
282

284 Var_sim =[VaR_1 ,VaR_2 ,VaR_3 ,VaR_4 ,VaR_5 ,VaR_6 ,VaR_7 ,VaR_8 ,VaR_9 ,VaR_10 ,VaR_11 ,VaR_12 ,VaR_13 ,VaR_14 ,VaR_15 ,VaR_16 ,VaR_17 ,VaR_18 ,VaR_19 ,VaR_20 ,VaR_21 ,VaR_22 ,VaR_23 ,VaR_24 ,VaR_25]

286 %% Backtesting

288 PL_B=B(65:89) - S_0

290

figure;
292 plot( Var_sim , "r");

hold on;
294 plot(PL_B , "g");

hold off;
296

%% Quality checks for the model
298 %compute the difference between VaR estimate and actual losses

error_MC=zeros (1,25)
300

for i=1:25
302 error_MC(i)= Var_sim(i)-PL_B(i)

end
304

% number of times VaR fails to cover losses
306 failure_MC=zeros (1 ,25)

for i=1:25
308 if error_MC(i)>0

failure_MC(i)=1
310 end

end
312

x_MC=sum(failure_MC)
314 p=0.05 %level of confidence
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N=25 %number of estimates
316

%% Binomial test , compare actual and expected number of vailures
318

exp_val_bin=p*N
320 test_bin_MC =(x_MC -N*p)/( sqrt(N*p*(1-p)))

crit_val_bin=norminv(1-p) %test failed
322 %% Kupiec proportion of failures test

324 LR_pof_MC =-2*log(((1-p)^(N-x_MC)*p^x_MC )/((1 - x_MC/N)^(N-x_MC )*( x_MC/N)^x_MC))
crit=chi2inv ((1-p),1) %test failed

326

%% Kupiec time untill first failure test
328 %number of days before first rejection

k_MC=3
330

LR_TUFF_MC =-2*log((p*(1-p)^(k_MC -1))/((1/ k_MC )*(1 -(1/ k_MC ))^(k_MC -1)))
332 crit_TUFF=chi2inv ((1-p),1)

% test passed
334

%% Christoffersen Interval forecast test
336

n_00_MC =21
338 n_10_MC =2

n_01_MC =2
340 n_11_MC =0

342 p_0_MC=n_01_MC /( n_00_MC+n_01_MC)
p_1_MC=n_11_MC /( n_10_MC+n_11_MC)

344 p_MC=( n_01_MC+n_11_MC )/( n_00_MC+n_01_MC+n_11_MC)

346 LRCCI_MC =-2*log(((1- p_MC )^( n_00_MC+n_10_MC )*p_MC^( n_01_MC+n_11_MC ))/((1 - p_0_MC )^( n_00_MC )* p_0_MC ^( n_01_MC )*(1- p_1_MC )^( n_10_MC )* p_1_MC ^( n_11_MC )))
%check passed

348 LRCC_MC=LRCCI_MC+LR_pof_MC
crit2=chi2inv ((1-p),2)

350 %check passed

352 %% Mixed Kupiec test , not working

354 days_MC =[0,0]

356 sumTB_MC=zeros (1,2)

358 for i=1:2
sumTB_MC=log((p*(1-p)^( days_MC(i) -1))/((1/ days_MC(i))*(1 -1/ days_MC(i))^( days_MC(i)-1)))

360 end

362 LRTBFI_MC =-2*sum(sumTB_MC)
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crit_TBFI_MC=chi2inv ((1-p),2)



237

Bibliography

[1] Antonelli, Sabrina & Iovino, Maria. (2003). Optimization of Monte Carlo Pro-
cedures for Value at Risk Estimates. Economic Notes. 31. 59 - 78. 10.1111/1468-
0300.00072.

[2] Asmussen, S., & Glynn, P.W. (2007). Stochastic simulation - algorithms and
analysis. Stochastic modeling and applied probability.

[3] Bansal, A., Kauffman, R. J., Mark, R. M. & Peters, E. (1993). Financial risk and fi-
nancial risk management technology (RMT): Issues and advances.. Information
& Management, 24, 267-281.

[4] Basel Committee on Banking Supervision. (2006). Basel II: International Con-
vergence of Capital Measurement and Capital Standards: A Revised Frame-
work - Comprehensive Version, Bank for International Settlements.

[5] Batten, J.A. and Fetherston, T.A., eds. 2002. Financial risk and financial risk
management. Jai Press, Amsterdam.

[6] Bauer, W. (1958). The Monte Carlo Method. Journal of the Society for Industrial
and Applied Mathematics, 6(4), 438-451.

[7] Beder, Tanya. (1995). VAR: Seductive but dangerous. Financial Analysts Journal
- FINANC ANAL J. 51. 12-24. 10.2469/faj.v51.n5.1932.

[8] Beichl, I. & Sullivan, F. (2000). The Metropolis Algorithm. In Computing in Sci-
ence and Engg. , Vol. 2 (pp. 65–69). IEEE Educational Activities Department.

[9] Bernard, C., Rüschendorf, L. & Vanduffel, S. (2015). Value-at-Risk Bounds
with Variance Constraints. Journal of Risk and Insurance, 84, 923-959. doi:
10.2139/ssrn.2342068

[10] Better, M., Glover, F. W., Kochenberger, G. A. & Wang, H. (2008). Simulation
Optimization: Applications in Risk Management.. International Journal of In-
formation Technology and Decision Making, 7, 571-587.

[11] Beygelzimer, A. & Rish, I. (2003). Approximability of Probability Distributions..
In S. Thrun, L. K. Saul & B. Schölkopf (eds.), NIPS (p./pp. 377-384), : MIT Press.
ISBN: 0-262-20152-6

[12] Binder, K. (1992). The Monte Carlo Method in Condensed Matter Physics.
Berlin: Springer Verlag.



238 BIBLIOGRAPHY

[13] Botev Z. and L’Ecuyer P., “Simulation from the Normal Distribution Truncated
to an Interval in the Tail,” Proceedings of ValueTools 2016.

[14] Briys, E., ed. 1998. Options, futures, and exotic derivatives. Wiley, Chichester.

[15] Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. 2011. Handbook of Markov
Chain Monte Carlo. CRC press.

[16] Brooks, S. (1998). Markov chain Monte Carlo method and its application. Jour-
nal of the Royal Statistical Society: Series D (The Statistician), 47, 69–100. doi:
10.1111/1467-9884.00117

[17] Câmpeanu, C. (1994). Random Numbers.. Sci. Ann. Cuza Univ., 3, 53-64.

[18] Ling Chen, Tze Leung Lai, and Tiong Wee Lim. 2011. Option prices
and pricing theory: combining financial mathematics with statistical
modeling. WIREs Comput. Stat. 3, 6 (November 2011), 566-576. DOI:
https://doi.org/10.1002/wics.186

[19] Chorafas D.N. (2000) Model Risk and the Control of Eigenmodels by the Su-
pervisors. In: New Regulation of the Financial Industry. Palgrave Macmillan,
London

[20] Christoffersen, P. (1998) Evaluating Interval Forecasts. International Economic
Review, 39, 841-862.

[21] Christoffersen, Peter and Pelletier, Denis, Backtesting Value-at-Risk: A
Duration-Based Approach (January 31, 2003).

[22] Conte, T. M. (2005). Insight, not (random) numbers.. ISPASS (p./pp. 101), : IEEE
Computer Society. ISBN: 0-7803-8965-4

[23] Corelli, A., 2016. "Analytical Corporate Finance," Springer Texts in Business and
Economics, Springer, number 978-3-319-39549-4.

[24] Couture R. and L’Ecuyer P., “Linear Recurrences with Carry a Uniform Random
Number Generators”, Proceedings of the 1995 Winter Simulation Conference,
Dec 1995, 263–267.

[25] Crandall, R. E. & Bailey, D. H. (2002). Random Generators and Normal Num-
bers.. Experimental Mathematics, 11, 527-546.

[26] Dash, J. (2012). Stressed Value-at-Risk.. CIFEr (p./pp. 1), : IEEE. ISBN: 978-1-
4673-1802-0

[27] Das, S., ed. 1998. Risk management and financial derivatives. McGraw Hill,
New York, NY.

[28] D’Ecclesia, R. L. (2005). Financial modelling and risk management.. European
Journal of Operational Research, 163, 1-4.



BIBLIOGRAPHY 239

[29] Diggelmann, P. B. (1999). Value at risk. Zürich: Versus. ISBN: 3908143691

[30] Dowd, Kevin. 1998. Beyond value at risk: the new science of risk management.
Chichester: Wiley.

[31] Draghi, M., Giavazzi, F.„ Merton, R. C. (2003). Transparency, risk management
and international financial fragility. London: CEPR. ISBN: 1898128685

[32] Embrechts, P., McNeil, A. & Straumann, D. (2002). Risk management: value at
risk and beyond. In M. Dempster (ed.), . Cambridge University Press.

[33] Fu F., Niederreiter H., Özbudak F., Joint linear complexity of multisequences
consisting of linear recurring sequences. Cryptography and Communications
1(1): 3-29 (2009).

[34] Gaglianone, Wagner & Lima, Luiz & Linton, Oliver & Smith, Daniel. (2008).
Evaluating Value-at-Risk Models via Quantile Regression. Journal of Business
& Economic Statistics. 29. 150-160. 10.2307/25800786.

[35] Geçkinli, N. C. & Apohan, M. A. (2001). Power spectrum tests of random num-
bers.. Signal Processing, 81, 1389-1405.

[36] Gentle, J.E. 2004. Random Number Generation and Monte Carlo Methods.
Springer.

[37] Giot, Pierre & Laurent, Sébastien. (2003). Value-at-Risk for Long and Short Trad-
ing Positions. Journal of Applied Econometrics. 18. 641 - 663. 10.1002/jae.710.

[38] Glasserman, Paul & Heidelberger, Philip & Shahabuddin, Perwez. (2000). Effi-
cient Monte Carlo Methods for Value-at-Risk. Master. Risk. 2.

[39] Glasserman, P. 2004. Monte Carlo methods in financial engineering. Springer,
New York.

[40] Glasserman, P., Heidelberger, P. & Shahabuddin, P. (2000). Value-at-risk with
heavy-tailed risk factors.. CIFEr (p./pp. 58-61), : IEEE. ISBN: 0-7803-6429-5

[41] Göb, R. (2011). Estimating value at risk and conditional value at risk for count
variables.. Quality and Reliability Eng. Int., 27, 659-672.

[42] Goodman, J. & Irwin, J. (2006). Special random numbers: Beyond the illusion of
control. Organizational Behavior and Human Decision Processes, 99, 161–174.
doi: 10.1016/j.obhdp.2005.08.004

[43] Graham, Carl & Talay, Denis. (2013). Stochastic Simulation and Monte Carlo
Methods. Mathematical Foundations of Stochastic Simulation. 10.1007/978-3-
642-39363-1.



240 BIBLIOGRAPHY

[44] Gutmann, P. (1998). Software Generation of Practically Strong Random Num-
bers.. In A. D. Rubin (ed.), USENIX Security Symposium, : USENIX Associa-
tion.

[45] Herwartz, H. & Waichman, I. Comput Stat .2010. 25: 725.
https://doi.org/10.1007/s00180-010-0194-4

[46] Hofmann, M. (2014). Risk disclosure, risk perception and the firm’s market risk.
Unpublished doctoral dissertation , Universität für Wirtschaft und Recht Wies-
baden .

[47] Hong, L. J. & Liu, G. (2011). Monte Carlo estimation of value-at-risk, conditional
value-at-risk and their sensitivities.. In S. Jain, R. R. C. Jr., J. Himmelspach, K. P.
White & M. C. Fu (eds.), Winter Simulation Conference (p./pp. 95-107), : IEEE.
ISBN: 978-1-4577-2107-6

[48] Hong, L. J., Hu, Z. & Liu, G. (2014). Monte Carlo Methods for Value-at-Risk and
Conditional Value-at-Risk: A Review.. ACM Trans. Model. Comput. Simul., 24,
22:1-22:37.

[49] Hong, L. J., Hu, Z. & Zhang, L. (2014). Conditional Value-at-Risk Approxima-
tion to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo.. IN-
FORMS Journal on Computing, 26, 385-400.

[50] Hong, L. J., Hu, Z. & Liu, G. (2014). Monte Carlo Methods for Value-at-Risk and
Conditional Value-at-Risk: A Review.. ACM Trans. Model. Comput. Simul., 24,
22:1-22:37.

[51] Hong, L. J. & Liu, G. (2011). Monte Carlo estimation of value-at-risk, conditional
value-at-risk and their sensitivities.. In S. Jain, R. R. C. Jr., J. Himmelspach, K. P.
White & M. C. Fu (eds.), Winter Simulation Conference (p./pp. 95-107), : IEEE.
ISBN: 978-1-4577-2107-6

[52] Hong L., Hu Z., and Liu G. 2014. Monte Carlo Methods for Value-
at-Risk and Conditional Value-at-Risk: A Review. ACM Trans.
Model. Comput. Simul. 24, 4, Article 22 (November 2014), 37 pages.
DOI=http://dx.doi.org/10.1145/2661631

[53] Horcher, K. A. (2005). Essentials of financial risk management. Hoboken, NJ:
Wiley. ISBN: 0471706167

[54] Hull, J.C. 2006. Options, futures, and other derivatives. Pearson Prentice Hall,
Upper Saddle River, NJ.

[55] Houston, D. X., Mackulak, G. T. & Collofello, J. S. (2001). Stochastic simula-
tion of risk factor potential effects for software development risk management..
Journal of Systems and Software, 59, 247-257.



BIBLIOGRAPHY 241

[56] Jacoboni, C., Lugli, P. (1989). The Monte Carlo Method for Semiconductor De-
vice Simulation. Wien: Springer.

[57] James, F., Hoogland, J. & Kleiss, R. (1996). Multidimensional sampling for
simulation and integration: measures, discrepancies, and quasi-random num-
bers. Computer Physics Communications, 99, 180–220. doi: 10.1016/s0010-
4655(96)00108-7

[58] Jampani R.,Xu F., Wu M., Perez L.,Jermaine C., and Haas P. 2008.
MCDB: a monte carlo approach to managing uncertain data. In Pro-
ceedings of the 2008 ACM SIGMOD international conference on Manage-
ment of data (SIGMOD ’08). ACM, New York, NY, USA, 687-700. DOI:
https://doi.org/10.1145/1376616.1376686

[59] Jin, X. & Zhang, A. X. (2006). Reclaiming Quasi - Monte Carlo Efficiency in
Portfolio Value-at-Risk Simulation Through Fourier Transform.. Management
Science, 52, 925-938.

[60] Jorion, P. (2001) Value at Risk: The New Benchmark for Managing Financial
Risk. 2nd Edition, McGraw-Hill, United States of America

[61] Kashima, H. (2006). Risk-Sensitive Learning via Expected Shortfall Minimiza-
tion.. In J. Ghosh, D. Lambert, D. B. Skillicorn & J. Srivastava (eds.), SDM
(p./pp. 529-533), : SIAM. ISBN: 978-1-61197-276-4

[62] Kilian, L., Manganelli, S. (2003). The central bank as a risk manager. Frankfurt
am Main: European Central Bank.

[63] Kneusel, R. T. (2018). Random Numbers and Computers. Springer. ISBN: 978-
3-319-77696-5

[64] Kou, S., Peng, X. H. & Heyde, C. C. (2013). External Risk Measures and Basel
Accords.. Math. Oper. Res., 38, 393-417.

[65] Kritzer P., Niederreiter H.,Pillichshammer F.,Winterhof A. Uniform Distribu-
tion and Quasi-Monte Carlo Methods - Discrepancy, Integration and Applica-
tions. Radon Series on Computational and Applied Mathematics 15, De Gruyter
2014, ISBN 978-3-11-031793-0.

[66] Kroese D.P. and Rubinstein R.Y. 2012. Monte Carlo methods. WIREs Comput.
Stat. 4, 1 (January 2012), 48-58. DOI: https://doi.org/10.1002/wics.194.

[67] Kroese, D.P., Taimre, T., & Botev, Z.I. (2011). Handbook of Monte Carlo Meth-
ods.

[68] Kupiec, J. (1989). Probabilistic Models of Short and Long Distance Word Depen-
dencies in Running Text.. HLT (1), : ACL. ISBN: 978-1-55860-073-7.



242 BIBLIOGRAPHY

[69] Kupiec, Paul, Techniques for Verifying the Accuracy of Risk Mea-
surement Models. FEDS Paper Number: 95-24. Available at SSRN:
https://ssrn.com/abstract=6697.

[70] Landau D. and Binder K. 2005. A Guide to Monte Carlo Simulations in Statisti-
cal Physics. Cambridge University Press, New York, NY, USA.

[71] Landskroner Y., Ruthenberg D., Zaken D. (1999) Market Risks—the Amend-
ment to the Basel Capital Accord and Internal Model Approach: The Israeli
Case. In: Galai D., Ruthenberg D., Sarnat M., Schreiber B.Z. (eds) Risk Manage-
ment and Regulation in Banking. Springer, Boston, MA.

[72] Lange, T., Lubicz, D. & Weigl, A. (2005). Random Numbers Generation and
Testing.. In H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen & F.
Vercauteren (ed.), Handbook of Elliptic and Hyperelliptic Curve Cryptography
(pp. 715-735) . Chapman and Hall/CRC . ISBN: 978-1-4200-3498-1.

[73] L’Ecuyer P. and Blouin F., “Linear Conguential Generators of Order k > 1”,
Proceedings of the 1988 Winter Simulation Conference, Dec. 1988, 432–439.

[74] L’Ecuyer P., “A Tutorial on Uniform Variate Generation”, 1989 Winter Simula-
tion Conference Proceedings, Dec. 1989, 40–49.

[75] L’Ecuyer P., “Random Numbers for Simulation”, Communications of the ACM,
33 (1990), 85–98.

[76] L’Ecuyer P. and Tezuka S., “Structural Properties for Two Classes of Combined
Generators”, Mathematics of Computation, 57, (1991), 735–746.

[77] L’Ecuyer P., “Testing Random Number Generators”, Proceedings of the 1992
Winter Simulation Conference, dec 1992, 305–313.

[78] L’Ecuyer P., Blouin F., and Couture R., “A Search for Good Multiple Recursive
Generators”, ACM Trans. on Modeling and Computer Simulation, 3, 2 (1993),
87–98.

[79] L’Ecuyer P., Giroux N., and Glynn P., “Stochastic Optimization by Simulation:
Numerical Experiments with the M/M/1 Queue in Steady-State”, Manage-
ment Science, 40, 10 (Oct. 1994), 1245–1261.

[80] L’Ecuyer P., “Efficiency Improvement and Variance Reduction”, Proceedings of
the 1994 Winter Simulation Conference, Dec. 1994, 122–132.

[81] L’Ecuyer P., “Recent Advances in Uniform Random Number Generation”, Pro-
ceedings of the 1994 Winter Simulation Conference, Dec. 1994, 122–132.

[82] L’Ecuyer P., “Uniform Random Number Generation”, Annals of Operations Re-
search, 53 (1994), 77–120.



BIBLIOGRAPHY 243

[83] L’Ecuyer P., “Combined Multiple Recursive Generators”, Operations Research,
44, 5 (1996), 816–822.

[84] L’Ecuyer P., “Random Number Generators”, in Encyclopedia of Operations Re-
search and Management Science, S. I. Gass and C. M. Harris Eds., Kluwer Aca-
demic Publishers, 1996, 571–578.

[85] L’Ecuyer P., “History of Uniform Random Number Generation,” Proceedings
of the 2017 Winter Simulation Conference, invited paper, 2017, 202-230.

[86] L’Ecuyer P., Munger D., Oreshkin B., and Simard R., “Random Numbers for
Parallel Computers: Requirements and Methods,” Mathematics and Comput-
ers in Simulation, 135, (2017), 3-17.

[87] L’Ecuyer P., “Discussion of "Sequential Quasi-Monte-Carlo Sampling" by M.
Gerber and N. Chopin,” Journal of the Royal Statistical Society, Series B, 77,
part 3 (2015), 565–566.

[88] L’Ecuyer P. 1990. Random numbers for simulation. Commun. ACM 33, 10 (Oc-
tober 1990), 85-97. DOI: https://doi.org/10.1145/84537.84555.

[89] Lemieux, Christiane. (2009). Monte Carlo and Quasi-Monte Carlo Sampling.
10.1007/978-0-387-78165-5.

[90] Lin, J., Jia, S. & Deng, J. (2017). Smart risk management with financial big data..
SII (p./pp. 60-65), : IEEE. ISBN: 978-1-5386-2263-6

[91] Linsmeier, T.J. and Pearson, N.D. (2000) Value at Risk. Financial Analysts Jour-
nal, 56, 47-67.

[92] Linsmeier, Thomas J. & Pearson, Neil D., 1996. "Risk measurement: an intro-
duction to value at risk," ACE Reports 14796, University of Illinois at Urbana-
Champaign, Department of Agricultural and Consumer Economics.

[93] Liu, Y. & Ralescu, D. A. (2017). Value-at-risk in uncertain random risk analysis..
Inf. Sci., 391, 1-8.

[94] Liyanage, D. N. S. S., Fernando, G. V. M. P. A., Arachchi, D. D. M. M., Karunathi-
laka, R. D. D. T. & Perera, A. S. (2017). Utilizing Intel Advanced Vector Ex-
tensions for Monte Carlo Simulation based Value at Risk Computation.. In P.
Koumoutsakos, M. Lees, V. V. Krzhizhanovskaya, J. J. Dongarra & P. M. A. Sloot
(eds.), ICCS (p./pp. 626-634), : Elsevier.

[95] Luizi, Paulo & Cruz, Frederico & van de Graaf, Jeroen. (2010). Assessing the
Quality of Pseudo-Random Number Generators. Computational Economics.
36. 57-67. 10.1007/s10614-010-9210-6.

[96] Manganelli, S., Ceci, V.„ Vecchiato, W. (2002). Sensitivity analysis of volatility.
Frankfurt am Main: European Central Bank.



244 BIBLIOGRAPHY

[97] Manganelli, Simone and Engle, Robert F., Value at Risk Models in Finance (Au-
gust 2001). ECB Working Paper No. 75.

[98] Marsaglia, G. Generating Exponential Random Variables. Ann. Math.
Statist. 32 (1961), no. 3, 899–900. doi:10.1214/aoms/1177704984.
https://projecteuclid.org/euclid.aoms/1177704984

[99] Marshall, Christopher and Siegel, Michael, Value-at-Risk: Implementing a Risk
Measurement Standard. 1996. 96-47.

[100] Martino, L. & Elvira, V. (2017). Metropolis Sampling (cite
arxiv:1704.04629Comment: Wiley StatsRef-Statistics Reference Online, 2017)

[101] Metropolis N. & Ulam S. (1949). The Monte-Carlo method. J. Am. Stat. Ass.,
44, 335–341.

[102] Morningstar, C. (2007). The Monte Carlo method in quantum field theory.

[103] Niederreiter H., The independence of two randomness properties of se-
quences over finite fields. J. Complexity 28(2): 154-161 (2012).

[104] Niederreiter H., Probability and computing: randomized algorithms and
probabilistic analysis. Math. Comput. 75(255) (2006).

[105] Niederreiter H., Arne Winterhof, On the Distribution of Some New Explicit
Nonlinear Congruential Pseudorandom Numbers. SETA 2004: 266-274.

[106] Mausser, H. & Rosen, D. (1999). Beyond VaR: parametric and simulation-based
risk management tools.. CIFEr (p./pp. 159-162), : IEEE. ISBN: 0-7803-5663-2

[107] Oppong, Stephen & Asamoah, Dominic & Oppong, Emmanuel. (2016).
VALUE AT RISK: HISTORICAL SIMULATION OR MONTE CARLO SIMU-
LATION.

[108] Oran, E., Oh, C. & Cybyk, B. (1998). DIRECT SIMULATION MONTE CARLO:
Recent Advances and Applications. Annu. Rev. Fluid Mech., 30, 403-441.

[109] Perignon, Christophe and Deng, Zi Yin and Wang, Zhi Jun, Do Banks Over-
state Their Value-at-Risk? (May 29, 2007).

[110] Qian, L. (2007). Simulation Techniques in Financial Risk Management.. Tech-
nometrics, 49, 222.

[111] Robert C.P. and Casella G. 2005. Monte Carlo Statistical Methods (Springer
Texts in Statistics). Springer-Verlag, Berlin, Heidelberg.

[112] Robert C.P. and Casella G. 2009. Introducing Monte Carlo Methods with R
(Use R) (1st ed.). Springer-Verlag, Berlin, Heidelberg.



BIBLIOGRAPHY 245

[113] Roberts, G. O.; Gelman, A.; Gilks, W. R. Weak convergence and
optimal scaling of random walk Metropolis algorithms. Ann. Appl.
Probab. 7 (1997), no. 1, 110–120. doi:10.1214/aoap/1034625254.
https://projecteuclid.org/euclid.aoap/1034625254.

[114] Roccioletti, Simona. (2016). Backtesting Value at Risk and Expected Shortfall.
10.1007/978-3-658-11908-9.

[115] Ross S.M. 2006. Simulation, Fourth Edition. Academic Press, Inc., Orlando, FL,
USA.

[116] Rubinstein R.Y. and Kroese D.P. 2016. Simulation and the Monte Carlo Method
(3rd ed.). Wiley Publishing.

[117] Ruijter M.J.and Oosterlee C.W. 2016. Numerical Fourier method and second-
order Taylor scheme for backward SDEs in finance. Appl. Numer. Math. 103, C
(May 2016), 1-26. DOI: https://doi.org/10.1016/j.apnum.2015.12.003

[118] Schaumburg, J. (2013). Quantile methods for financial risk management. Un-
published doctoral dissertation , HU Berlin .

[119] Schwartz, Robert J.. (ed.) (1993). Advanced strategies in financial risk manage-
ment. New York [u.a.]: New York Inst. of Finance. ISBN: 0130688835

[120] Shonkwiler R. and Mendivil F. 2009. Explorations in Monte Carlo Methods (1st
ed.). Springer Publishing Company, Incorporated.

[121] Skiadopoulos, George & Lambadiaris, Greg & Papadopoulou, Louiza &
Zoulis, Yiannis. (2003). VaR: History or Simulation?. RISK.

[122] Smith, R. T. (1993). Market risk and asset prices. Journal of Economic Dynam-
ics and Control, 17, 555–569.

[123] Stockmal, F. (1964). Calculations with Pseudo-Random Numbers.. J. ACM, 11,
41-52.

[124] Suhobokov, Alexander. (2007). Application of Monte Carlo simulation meth-
ods in Risk Management. Journal of Business Economics and Management. 8.
165-168. 10.1080/16111699.2007.9636165.

[125] Teplytskyi, I. O. & Semerikov, S. O. (2018). Simulation using random numbers..
CoRR, abs/1809.05379.

[126] Tezuka S. and L’Ecuyer P., “Efficient and Portable Combined Tausworthe Ran-
dom Number Generators”, ACM Trans. on Modeling and Computer Simula-
tion, 1, 2 (1991), 99–112

[127] Tezuka, S., Murata, H., Tanaka, S. & Yumae, S. (2005). Monte Carlo grid for
financial risk management.. Future Generation Comp. Syst., 21, 811-821.



246 BIBLIOGRAPHY

[128] Thomopoulos, Nick. (2013). Essentials of Monte Carlo simulation: Statistical
methods for building simulation models. 10.1007/978-1-4614-6022-0.

[129] Ulam, S. (1960). A Collection of Mathematical Problems. New York, NY, USA:
Interscience.

[130] Various authors (2017). Monte Carlo Simulation.. In S. Shekhar, H. Xiong & X.
Zhou (ed.), Encyclopedia of GIS (pp. 1361) . Springer . ISBN: 978-3-319-17885-1.

[131] Various authors(2001). Proceedings of the International Conference "Man-
aging Credit and Market Risk - New Techniques for New Sources of Risk"
(30.2001,2) . In Andrea. Berardi (ed.).

[132] von Neumann, J. (1996). Mathematical Foundations of Quantum Mechanics.
Princeton University Press. ISBN: 0691028931

[133] Warthen, I. & Arvind, K. (2005). Probabilistic simulation analysis of risk po-
tential in cost management programs.. Winter Simulation Conference (p./pp.
48), : IEEE Computer Society. ISBN: 0-7803-9519-0

[134] Wichmann, B. A. & Hill, I. D. (2006). Generating good pseudo-random num-
bers. Computational Statistics & Data Analysis, 51, 1614–1622.

[135] Zhou, P. & Leung, H. K. N. (2012). A Stochastic Simulation Model for Risk
Management Process.. In K. R. P. H. Leung & P. Muenchaisri (eds.), APSEC
(p./pp. 737-742), : IEEE. ISBN: 978-0-7695-4922-4



Montecarlo and Value at Risk: empirical evidence from the
Italian stock market

Martina Aquila

LUISS University — September 30, 2019

The main topic of this thesis is the Montecarlo method. A Montecarlo method is usually referred to as
a technique that involves the generation of random numbers for the determination of the (approximate)
solution of a deterministic problem. Montecarlo methods are then useful tools only in the case in which
the actual solution of the problem is impossible or extremely difficult to find. The application of Monte-
carlo methods was, at a first point, limited to natural sciences such as physics, but now it includes many
different disciplines such as biology, psychology, mathematics, statistics, economics, thermo-dynamics and
medicine.

Montecarlo methods (that date back to the XVIII Century) are based on the generation of random
processes or variables. Even if random number generation functions are today pre-built in most software,
the definition of an efficient random number generator is non-trivial.

Usually, random number generators are defined for uniform random numbers and then some transfor-
mations are applied so to obtain a stream that obeys to the selected distribution.

The most used random number generators are multiple recursive. This implies that previous numbers
are determinant of the next ones, in a fashion that appears to be random. A generic recursive generator is
then in the form:

xt = f(xt−1, . . . , xt−k) (1)

Where f is the generation law. Since f is simply a function that links previous values to the current
one, it is hard to accept the definition of this number generator as random. Every modern random number
generator should, in fact, be called pseudo-random, since the application of a relationship which is entirely
deterministic can never generate a random sequence. The generation law f has been defined in many
different ways (from a simple linear function to a trigonometric one) and it usually includes modulo
reductions.

Once a uniform stream of random number has been generated, X ∼ U(0, 1), it is only necessary to
apply some transformation to the stream X so to obtain pseudo-random numbers that follow the desired
distribution. The most widely used transformation techniques are the inverse-transform, the acceptance-
rejection, the ratio of uniform and the alias method. In 3.2, a list of 22 standard random variables (both
continuous and discrete) is given, together with the most famous generation algorithms and their Matlab
implementation. Efficiency considerations and optimal parameter choices are given too.

The description of random number generation techniques represents the description of a Montecarlo
method.

One of the most central applications of the Montecarlo method to finance (and in particular to risk
management) is related to the computation of Value at Risk (VaR).

Value at risk is an important measure to assess the level of exposure of a portfolio (or asset) to market
risk. Market risk is formally defined by the Basel Committee for Banking supervision (2019) as the risk of
losses that arise from movements in market prices. VaR is an absolute measure of market risk in the fact
that it is represented by an absolute amount and not by a percentage. VaR can be defined as the absolute
maximum loss in value of an asset or portfolio of (financial) assets over a certain horizon (t) and with a
specified probability (α, confidence level). Similarly, VaR gives information about how much a portfolio is
expected to lose in absolute terms with probability α and over the horizon t, assuming that the composition
of the portfolio remains unchanged over that horizon. In order to compute VaR, it is necessary to have the
distribution of P&L of the relevant portfolio. If this is available, in fact, given the confidence level 1−α and
the time horizon t, VaR is simply defined as the number such that the probability of incurring in higher
losses is equal to α, or, similarly, the number such that the probability of incurring in lower losses is 1−α:

P (P&Lt ≤ V aR) = 1− α (2)

1



The differences among VaR approaches lie in the computation of the P&L distribution. Literature is gen-
erally in agreement in enumerating three most common approaches to the computation of VaR: Variance-
Covariance (VC) approach, Historical simulation (HS) andMontecarlo simulation (MC). All three methods
can be extensively modified and improved so that there are indeed many different available models. A
complete list of VaR models can be found at www.GloriaMundi.org.

In the VC approach, it is assumed that all components of the portfolio (we usually call them market
factors) are normally distributed and that the relationship between the value of the portfolio and the
components is linear. Under these two (rather restrictive) assumptions, the distribution of portfolio P&L
is again Normal since the sum of Normal random variables is Normal. According to the VC approach, VaR
is computed as:

V aR = −(µ+ z1−ασ) (3)

Where µ and σ are, respectively, the mean and the standard deviation of the portfolio. They are computed
based on the result that the sum of Normal random variables is again Normal. z1−α is the 1−α% percentile
of the Standard Normal distribution.

In the HS approach, no assumption on the statistical distribution of portfolio components is made.
However, the critical assumption is that the behavior of portfolio components is completely determined
by history. This means in technical terms that, for each market factor, an historical time series is selected
and considered as emblematic for future evolutions. Given this set of historical observations for portfolio
component i, Mi = {mi,1,mi,2, ...,mi,n+1}, the rate of change must be computed as ri,j =

mi,j+1

mi,j
− 1.

Once a vector of rates is available for every component, those rates are applied to current values so to
obtain a simulated historical-based evolution for each market factor. This procedure implies that in the
HS approach, portfolio value is based on historical information but not equal to it. Once simulated paths
for the components are available, it is only necessary to combine them so to obtain simulated portfolio
values. Based on those values, the distribution of P&L is computed. VaR is then found as the 1−α percentile
observation in the ordered P&L distribution.

The MC is similar to HS in terms of steps to be performed but the assumptions are significantly distant.
As in the HS case, possible future values for portfolio components must be generated. In this generation
lie the critical differences between the two methods. In the MC a random number generator is used in
order to produce a stream of values for each market factor. As specified above, when a random number
generator is used, it is necessary to specify to which distribution the generated numbers will belong.
The choice of the statistical distribution for each portfolio component is by far the most complex and
critical step in MC implementation. If the distributional choice is unrealistic, then the generated random
numbers are unreliable as the VaR estimate that results. In practical terms, historical time series of portfolio
components are used as a reference point in order to choose the distribution from which to generate
random numbers. The advantage of the MC over the other two methods is that MC does not require
sticking to historical trends. This means that if the analyst has some beliefs regarding the future evolution
of the distribution of portfolio components, those can be taken into account when the distribution is chosen.
As an example, consider the figure below (Figure 1) in which the historical distribution of T-bill rates
(monthly observations, from October 2010 to February 2019) is plotted against the Normal.

From the figure, it is evident that the Normal seems not to be the best possible approximation of this
distribution, under the assumption that the past distribution is close to the future one. If the agent has
reasons to believe that the distribution will anyway be Normal, then a Normal random number generator
will be used, irrespective of the historical path. If, on the other hand, history is considered a good predictor,
it may be more appropriate to use a distributional assumption such as the exponential, as evident from
the plot in Figure 2. The technique can be refined further by imposing that the generated numbers do not
exceed a specified threshold (such as 3%, which seems already quite high for a short term government
security rate).

Once the distribution has been selected and the relevant parameters have been estimated, then it
is only necessary to generate random numbers according to the specified distribution for each portfolio
component. From this moment on, the steps overlap with the HS case. The components must, in fact, be
combined so to obtain portfolio values and then P&L should be computed. Finally, once P&L have been
ordered, the VaR estimate coincides with the 1− α percentile.

These three techniques are different in terms of assumptions, complexity, computational effort and
methodology. VC is the most simple to compute, but it is also based on the most restrictive assumptions.
HS is probably the easiest one to explain to senior management since it is intuitive. This method is also
appropriate if the behavior of portfolio components is not expected to change significantly in the near
future. However, this technique may not be applied if portfolio components are not frequently traded or
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Figure 1: T-bill rates and Normal distribution

Figure 2: T-bill rates and Exponential distribution
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a market for them does not exist. In this case, in fact, historical time series are not available. MC is the
most sophisticated approach. It is computationally intensive and time-consuming. However, MC is the
best model when the portfolios to be considered are complex or when it is necessary to incorporate in the
analysis views about future evolutions.

It is then evident that the three approaches to VaR computation have both advantages and disadvan-
tages and that none can be ex-ante considered as superior to the others. The last chapter of the thesis (5)
tries to analyze the performance of different VaR models in different markets, in order to assess if, given
some conditions, it is possible to consider one model as better than the others.

The relative performance of each model is analyzed with respect to the Italian and the US stock market.
Specifically, following some analyses performed on various stock exchanges, VaR according to the three
methods will be computed for the main stock market index (FTSE MIB in Italy and S&P500 in the US).
This study aims to assess which model among the three proposed (if any) seems to be the best performer
relatively to a specific stockmarket, assuming that the relevant index is representative of the whole market.
If the best performer is found, then it may be concluded that a specific model better captures the risk profile
of that market. Note that in MC VaR, Geometric Brownian Motion has been assumed as the generating
process.

Daily adjusted closing prices for the two indexes were collected for the period 25 October 2016-1
January 2018. The dataset was then divided into two parts. The first one is used as in-sample, i.e., it is the
basis for the estimations necessary in the application of each method. The second half is the out-of-sample,
i.e., it is used for backtesting. The analysis will be a backtesting analysis, in the sense that the estimated
VaR (VC, HS and MC) will be compared with the observed loss in the out-of-sample period.

Now it is necessary to define what is considered a good outcome of this comparison. Recall that VaR
estimates have a convenient application: they are in fact used to determine a bank’s capital requirements
for market risk. An undesirable situation occurs if the amount of capital proves to be lower than the
realized loss. In this case, in fact, the bank is not able to cover the loss it has incurred. Since capital
requirements are computed based on VaR estimates, we can conclude that a problematic situation occurs
if the estimated VaR is lower than the realized loss in absolute terms, i.e., |V aRi| < |P&Li| for some i. If
this happens, we say that we have incurred in a failure. The concept of failure is the basis for all test that
will be performed in order to assess the quality of a VaR model.

Binomial test The Binomial test is the most communicative. In this test, in fact, we compare the
number of failures to the expected number of failures, assuming that failures follow a Binomial distribution.
Define x as the number of times in which |V aRi| < |P&Li|, N as the length of the vectors VaR and P&L
(i.e., the number of times the estimation has been performed) and p as α, where α is the confidence level
used in the estimation of VaR (in our case 5%). Assume that the failures are independent. Then the
vector that contains the failures follows a Binomial distribution with parameters p and N . Define now
the observed failure rate as the ratio between the observed number of failures and the total number of
trials f̂ = x

N . The expected number of failures under the Binomial distribution is simply Np, and the
standard deviation of the number of failures is

√
Np(1− p). We want then to test the null hypothesis that

the expected failure rate is equal to the observed failure rate (or, at the same way that the total number
of observed failures is equal to the expected number of failures):

H0 : f̂ = p =
x

N

This means that we want to test that the number of failures x follows a Binomial distribution f(x) =(
N
x

)
px(1− p)N−x. As N increases and under the null hypothesis, the test statistic

Z =
x−Np√
Np(1− p)

∼ N(0, 1) (4)

is distributed as a Standard Normal. Once the desired level of confidence has been chosen, it is only
necessary to compare the observed value of the test statistic with the critical value of the Standard Normal.
If the observed value is lower than the critical value, then the null hypothesis cannot be rejected and
thus the model should be considered as well-performing. This test is indeed an elementary test for one-
population mean in which the expected number of failures is Np and Np(1− p) is their variance.
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Kupiec’s tests Kupiec (1996) proposed two different tests. The first one, the Proportion of Failures
(POF) test, basically gives the same information of the Binomial test, since it evaluates the empirical
proportion of failures compared to the expected one. The null hypothesis is then the same as the Binomial
test. This implies that we are still checking whether the observed number of failures is significantly distant
from the expected one. The test takes the form of a likelihood ratio test (and not anymore a test for the
mean) where the statistic is:

LRPOF = −2log( (1− p)N−xpx

(1− x
N )N−x( xN )x

) (5)

Under H0, it is distributed as a χ2 with one degree of freedom. Again, if the observed value of the statistic
is lower than the critical value, then there is not enough evidence to reject H0 and thus the model can be
considered as well-performing. The Binomial and POF tests thus carry the same information.

As the Binomial test, Kupiec’s POF test provides information only with respect to the number of failures.
This implies that the moment in which the failure occurs is not relevant. Since the moment in which the
first failures occur is indeed of great interest, Kupiec also proposed a second test, which provides some
additional useful information. This test is again a likelihood ratio type test and it is usually called Time
until first failure. As the name may suggest, this test evaluates after how many successes, the first failure
occurs. Specifically, the test aims to check whether themoment in which the first failure occurs is consistent
with the VaR confidence level. The test statistic is this time in the form:

LRTUFF = −2log( p(1− p)n−1

( 1n )(1−
1
n )
n−1

) (6)

Under H0, this statistic is distributed according to a χ2 with one degree of freedom and again, if the
observed value of the statistic is lower than the critical value, then there is not enough evidence to reject
H0 and thus the model can be considered as well-performing.

Christoffersen’s test The tests above consider the first or the total number of failures in isolation.
However, an essential piece of information is the relative distance among failures. In particular, the level
of clustering of failures may be an essential piece of information for risk managers. If failures tend to be
subsequent to each other, in fact, this means that the bank may not be able to cover losses for many con-
secutive days. This is a significant concern and some test are needed in order to address it. Christoffersen
(1998) was the first to work in this direction by considering the interaction among failures. His test is,
again, a likelihood ratio type test. In order to define the test statistic, it is necessary to define several
variables. n00 is the number of periods with no failures followed by a period with no failure. n10 is the
number of periods with failures followed by a period with no failure. n01 is the number of periods with
no failures followed by a period with a failure. n11 is the number of periods with failures followed by a
period with a failure. π0 = n01

(n01+n00)
is the probability of having a failure in t conditioned on the fact that

no failure happened in t− 1. π1 = n11

(n10+n11)
is the probability of having a failure in t conditioned on the

fact that a failure happened in t − 1. Finally, π = n01+n11

(n00+n01+n10+n11)
is the probability of having a failure

in period t. The test statistic is defined as

LRCCI = −2log(
(1− π)n00+n10πn01+n11

(1− π0)n00πn01
0 (1− π1)n10πn11

) (7)

and it is distributed as a χ2 with one degree of freedom.
Christoffersen’s test and the POF test can also be combined obtaining the conditional coverage test,

LRCC = LRCCI + LRPOF , which is distributed according to a χ2 with two degrees of freedom. In
this kind of test, we combine two relevant information: the correct number of failures and their relative
distribution.

We now turn to the application of these tests to the three analyses that have been described.
In the following figures, 3,4 and 5, the VaR estimates for the three techniques in the Italian stockmarket

are compared with actual losses. In Table 1, test statistics for the various tests are given, in red tests that
are passed. Starting from a graphical analysis, it is immediate to conclude that MC is superior to the other
two techniques since the observed failure is only one. The VC approach can indeed be disregarded since it
systematically underestimates the loss. In the HS case, failures are concentrated at the end of the dataset.
This may suggest a mistake in the choice of the estimation period. Test results confirm these observations,
since MC passes all tests and proves to be superior to the other two techniques, at least in this application.
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Figure 3: VaR estimates from Variance-Covariance method and realized profits or losses

Figure 4: VaR estimates from Historical Simulation method and realized profits or losses

Figure 5: VaR estimates from Montecarlo Simulation method and realized profits or losses
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Table 1: FTSE MIB test statistics values

Montecarlo Historical
Binomial 0.2294 8.0296
LRPOF 0.0563 27.8029
LRTUFF 0.0027 0.6812
LRCCI 0.0889 13.6970
LRCC 0.1452 41.4999

For the US case, as shown in Figures 6,7 and 8, MC seems to be again the best performer. However,
failures are much more than in the Italian case (4 vs 1). This observation is again confirmed by test results
since MC passes only Christoffersen’s tests (while HS fails all of them). Overall, results are consistent with
the Italian stock market study (over-performance of MC).

Figure 6: VaR estimates from Variance-Covariance method and realized profits or losses of SP500

Table 2: SP500 test statistics values

Montecarlo Historical
Binomial 2.5236 18.1238
LRPOF 4.1367 102.2476
LRTUFF 5.9915 5.9915
LRCCI 1.2332 9.4462
LRCC 5.3699 113.6939

The last analysis that has been performed is the comparison of MC VaR under different distributional
assumptions. The test asset is again the Italian stock market index and the assumptions that are compared
are Normal, Log-Normal and Geometric Brownian motion. The aim of this study is to clarify that different
distributional assumptions can lead to very different VaR estimates and to draw a conclusion regarding the
best distributional assumption in the case of the Italian stock market. Results for the analysis are shown
in Figures 9,10 and 11 and in Table 3 below.

By looking at the figures, we can conclude that the Geometric Brownian motion displays fewer failures
and that Normal and Log-Normal tend to be very close. This observation is confirmed by test results, that
clearly elect the Geometric BrownianMotion as the best distributional assumption in terms of performance.
At the same time, Normal and Log-Normal seem to be exchangeable.
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Figure 7: VaR estimates from Historical Simulation method and realized profits or losses of SP500

Figure 8: VaR estimates from Montecarlo Simulation method and realized profits or losses of SP500

Figure 9: VaR estimates from Geometric Brownian Motion assumption and realized profits or losses
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Figure 10: VaR estimates from Normal assumption and realized profits or losses

Figure 11: VaR estimates from Log-Normal assumption and realized profits or losses
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Table 3: Kupiec’s tests statistic values: distributional study

GBM Normal Log-Normal
Binomial 0.6882 6.1942 6.1942
LRPOF 0.4040 18.3322 18.3322
LRTUFF 2.3776 5.9915 5.9915
LRCCI 0.3639 22.2593 22.2593
LRCC 0.7679 40.5915 40.5915

The analyses that have been performed in the final chapter have explained why it was worth deeply
discussing random number generators and the Montecarlo method. In the cases that have been analyzed,
in fact, Montecarlo seems to be the best performer, i.e., the method that underestimates less frequently
realized losses and thus capital requirements for market risk.

This result is somehow positive because it implies that model increased sophistication has positive
effects on performance. However, some limitations of this study have already been underlined. First,
the analysis was performed considering only the stock market. Specifically, a cap-weighted stock portfolio
(FTSE-MIB and S&P500 Indexes) was used as test asset. The reason for the use of an index is computational
ease since it allows to draw conclusions at portfolio level with no need to perform portfolio construction and
evaluation. It was critically assumed that the FTSE MIB represented a good approximation of the Italian
stock market (and the S&P500 of the US). If we accept this assumption, then results can be generalized to
be applicable to the two stock markets. A first interesting topic to be further investigated is the consistency
of results for different portfolios (for example debt or derivatives).

Another possible evolution of the analysis would work at model level. As already pointed out, VaR
models are continually changing and growing compared to the three basic versions analyzed in this thesis.
It would be highly interesting to analyze how those results change as models are slightly modified.

Finally, the perspective that has been endorsed here is a "supervisory perspective", meaning that the
sole focus of attention was the underestimation of actual losses. Of course, other aspects deserve attention,
such as the accuracy of the models, i.e., its ability to closely predict the exact amount of the loss. Tests for
accuracy may thus be the object of future research.
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