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Introduction 

This thesis analyses the different approaches used to describe the term structure and yield curve 

dynamics, taking into consideration their advantages and disadvantages. The interest in this kind of 

models is somehow changeable, as it increases during crisis and decreases during prosperous times, 

with few exceptions. The starting point of the discipline find its foundations in the model proposed by 

Vasicek in 1977, which looks at the similarity and the differences between the yields’ and the stocks’ 

movements. The fundamental intuition on the model’s dynamics led to a vast number of articles and 

models, using different points of view to solve the difficult forecast of the yields.  

Unfortunately, multiple issues arise, as the governments set the interest rates following different 

purposes. As a rule, Central Banks (CBs) generally tend to maintain price stability as their main goal, 

but they also tend to adjust it in favour of more specific issues or targets they want to reach. 

Employment is, for example, one of the main macroeconomic indicators that a CB wants to keep 

steady. Moreover, during a crisis the CB would follow a strategy in order to bring back the economy 

to their previous status, as the leading indicators tend to become unpredictable. A good example to 

start with is the inflation that occurred in the United States between 1970s and the first years of 1980, 

subdued by the Federal Reserve approach. Setting higher yields helped to restore the situation in few 

years, averting the risk of an excessive inflation, thus confirming their usefulness. Nonetheless, 

investors do not know the CBs intentions and usually tends to guess, basing their intuitions on different 

factors. This is an issue for those who are interested, for example, in building a portfolio that includes 

bonds of different maturities to hedge the risk.  

At this point, term structure models become useful, as they use observable inputs in order to find 

plausible results for the expected yields. The models presented in this thesis help both investors and 

Central Banks to provide good forecasts using different methodologies and presenting both advantages 

and disadvantages, 

The core of this work uses a specific model in order to provide a more in-depth analysis, the Ang 

and Piazzesi (2003). Their approach is different from previous works on the topic, incorporating 

observables macroeconomic extracted factors in combination with latent ones. Nonetheless the 

approach needs a two-step estimation which requires multiple constrictions. One way to avoid this 

issue is to use a similar two-step procedure as the one proposed by Mönch (2005) and use a modified 

version of the FAVAR approach defined by Bernanke et al. (2005). The thesis provides an analysis on 

the advantages of the model and the forecasts for the 6, 12 and 36 months implied by the model.  
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Chapter 1 – Bonds: Components and Models 

1.1 Bonds definition and Bond Yield Curve 

Bonds are amongst the most valuable instruments used by public and private institutions to obtain 

liquidity from third party investors. By buying a bond, the holder agrees to lend a pre-determined 

amount of money to the issuer in exchange of interests that can be paid at multiple dates until maturity, 

or in a single solution together with the lent capital. As this thesis will move forward into an affine 

term structure model with macroeconomic variables, it is adequate to start from the basics, briefly 

defining first what a bond is, what is the yield curve and how these can relate to the thesis’ purposes. 

A first distinction must be made, since the bonds hereby analysed are only US discount bonds and are 

assumed to be default-free. Zero-coupon bonds are extremely useful in this context and for such reason 

in future paragraphs the latter will be simply referred to as bonds unless it is explicitly said otherwise. 

The reason for their use comes from their straightforwardness as they can be treated in a more 

mathematically convenient way than coupon bonds. In a more simplistic way, a zero-coupon bond 

returns a notional made up by the price of the bond and its interests at maturity.  To be more thorough 

and see this from a more formal point of view, a zero-coupon bond is a financial security instrument 

sold at a discount that pays a unit of cash at a predefined maturity – using a variable identified as T - 

without paying any interests during its life. By looking at it in this way, there is a single coupon paid 

at maturity which is a fixed amount equal to the notional 1 minus the price 𝑃𝑡
𝑇. From this, by defining 

𝑦𝑡
𝑇as the yield requested for a zero-coupon bond to pay its unit price, the following formula is obtained: 

𝑃𝑡
𝑇 = 𝑒−𝑦𝑡

𝑇(𝑇−𝑡) (1) 

Which can also be written as: 

𝑦𝑡
𝑇 = −

1

𝑇 − 𝑡
log(𝑃𝑡

𝑇) (2) 

These formulas are usually not priced in real-world conditions, but in a constructed environment 

defined as risk-neutral world. In this space, it is possible to assert that the price of a security today is 

equal to its expected future price discounted at the risk-free rate. The risk-neutral world is usually 

defined with the letter ℚ, while real-world conditions with ℙ1. Considering a stochastic process r, the 

 
1 To go from Real world to neutral risk it is usually used the Radon-Nikodym derivative. It is widely used in Affine Term 

structure models, for example in Ang and Piazzesi (2003). 
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price of a discount bond of maturity T is equal to its conditionally expected payoff discounted for the 

interest rates between t and T. So, the formula to express the price in continuous time is the following: 

𝑃𝑡
𝑇 = 𝐸𝑡 [𝑒

−∫ 𝑟𝑠𝑑𝑠
𝑇

𝑡 ] (3) 

All the calculations that follow will be then based on neutral world measures. When this is true, the 

prices that derive are arbitrage-free2.  

Duration is the last measure introduced in this paragraph. It is a measure of the sensitivity of the 

price of a given in bond in relation to a change in the interest rate. It can be defined as the derivative 

of the price respect to the yield, divided by minus the price. So that: 

𝐷𝑢𝑟𝑡
𝑇 = −

1

𝑃𝑡
𝑇

𝑑𝑃𝑡
𝑇

𝑑𝑦𝑡
𝑇

(4) 

Calculating it would give out a formula for the duration equal to 𝑇 − 𝑡. This result comes in handy 

for the definition of convexity in paragraph (1.2.3). 

From a macroeconomic point of view, yields are extremely important. Central Banks (CB) usually 

have at disposal different ways in order to follow their objectives, from reserves’ requirements amounts 

to the quantity of circulating money. Usually they find their main role in fulfilling price stability and 

the control of the yields proved to be the most valuable tool they can use. Setting them usually follows 

the gathering of a massive amount of macroeconomic data in order to present clear analysis and model 

them in order to forecast the impact of a yields’ change in the real economy. As keeping prices’ level 

stable is not an easy task, usually CBs – like the FED – tends to adjust yields constantly. For example, 

in the United States, the Federal Reserve Board’s Open Market Committee takes these decisions in 

order to meet the FED’s targets, which can be not limited to inflation alone3. In fact, when signs of a 

possible slowdown start to appear, the FED could decide to lower the yield to incentivize borrowing 

and lending in the market. The work of CBs is then to stimulate the economy, keeping the price level 

growing slowly and smoothly at the same time. 

Having models that predict how interest rates should be set according to macroeconomic inputs 

appears to be fundamental then.  

 
2 A good definition comes also from Duffie (2001) who states that: “Working in ℚ is equivalent to markets being complete”. 
3 Piazzesi (2001) analyses the change in the yields following the BOMC. 



3 
 

1.1.2 Forward Rates 

The concept of forward rate comes from the spot rate defined in equation (1). In continuous time, it 

is the instantaneous rate that is applicable by entering in a financial contract - going long or short - 

with a transaction that takes place in the future. Equation (5) provides the forward rate 𝑓𝑡
𝑇for a maturity 

T such that: 

𝐹𝑡
𝑇+𝜏 =

1

𝜏
(
𝑃𝑡
𝑇

𝑃𝑡
𝑇+𝜏 − 1) (5) 

With 𝜏 = (𝑇 − 𝑡) 

It is worth to notice that the equation does not present any expectations and as the maturity T 

approaches t, the forward rate approaches the spot rate (6). 

𝑟𝑡 = lim
𝑇→𝑡

𝑓𝑡
𝑇  (6) 

1.1.3 The Yield Curve 

Having briefly defined bonds’ prices and forward rates, it is possible to start with a more complete 

framework for the following analysis. To begin with, it is important to also delineate what a term 

structure is made of.  Namely, it represents the relationship that links the different interest rates for the 

same instrument – with the same credit quality - at different maturities. The graphic representation of 

the term structure is defined as “yield curve” and it is quite useful as it comes to provide an 

understanding of the bonds’ market behaviour. Hereby is reported an example of a curve with 

maturities between one and fifteen years. 
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The yield curve provides a snapshot at a certain time t of how the rates behave considering different 

maturities. It can take different shapes, but the most common is the one presented above, with the 

curve upward sliding. Having it in this way it is considered to be the normal scenario, in which 

investors get higher compensations for longer maturities. Usually, before a recession, it has been 

noticed that the longer yields become closer to the shorter ones, resulting in a flattening of the curve, 

defined precisely as a flat curve. During a recession or when one is approaching, the longer yields tend 

to get lower than the shorter ones, resulting in an inverted curve.  

The question regarding why the term structure is so important appears to be crucial at this point. 

Mainly, it is extremely useful to those concerned with investment decisions and in the assessment of 

the policy adopted by the Central Bank.  

Banks and other financial institutions are primarily influenced by it as the treasury rates are a perfect 

benchmark on which it is possible to set up lending and saving rates. This is also linked to interest-

rate-contingent claims, as it plays a crucial role in the determination of prices for multiple financial 

securities, like caps, floors, swaptions and others.  As in the following pages, this work will be based 

on a joint macroeconomic and term structure model, it is clear that this is even more significant.  

1.2 The drivers of the Yield Curve 

Mainly there are three forces that move the yield curve: expectations, risk premia and convexity. The 

three influence the curve with different intensities: expectations drive it in the short term, risk premia 

in the medium and convexity in the long end.  

1.2.1 Expectations 

Starting from the beginning, it is better to introduce what the expectation hypothesis (EH) states. At 

the same time, it is worthy to introduce one of the most important variants for the purposes of this 

thesis, the local expectations hypothesis or LEH4. To quickly define it, the expectations hypothesis 

states that a long-term bond’s yield with a maturity T equals the one of a series of shorter period bonds 

such that the last short bond ends in T. In the formula, it is equivalent to state that: 

 

𝑦𝑡
𝑇 = (1 + 𝑦𝑡

(1))(1 + 𝑦𝑡+1
(1))… (1 + 𝑦𝑇

(1)) (7) 

 

Another way to put it is to consider the value of a yield 𝑌𝑡
𝑇  as the expectation in time t of average 

future yields.  

 
4 Cox, Ingersoll, Jr., and Ross (1981) consider the application of both hypothesis in their paper. 
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𝐸𝐻: 𝑦𝑡
𝑇 = 

𝐸𝑡[𝑆]

𝑇 − 𝑡
 (8) 

Where S =[∫ 𝑟𝑠𝑑𝑠
𝑇

𝑡
]. 

If the expectations hypothesis is correct, it is then possible to use the slope of the term structure to 

forecast the future path of the interest rate. While the EH states that the interest rate at a time t is equal 

to the expected values of future short rates, the LEH focuses on stating the same for a short-term 

horizon.  The expectation hypothesis is often used, but empirical shreds of evidence provide little 

support on its behalf and in some works the LEH is considered to be more useful. 

𝐿𝐸𝐻:  𝑦𝑡
𝑇 = − 𝑙𝑜𝑔

𝐸𝑡[𝑒
−𝑆]

(𝑇 − 𝑡)
 (9) 

 

which becomes: 

𝑦𝑡
𝑇 =  

𝐸𝑡[𝑆]

(𝑇 − 𝑡)
−
1

2
𝑣𝑎𝑟𝑡 (

[𝑆]

(𝑇 − 𝑡)
) (10) 

due to Jensen inequality and thus an added variance term.  

 

1.2.2 Risk Premia 

Risk Premia are the second driver of the yield curve. A risk premium is a form of compensation to 

investors that bear uncertainty by investing in financial security for a pre-determined period of time 

(T-t). There are different risks linked to possessing a bond. The first risk comes from inflation changes. 

An intuitive example of inflation risk involves a bond emitted by a country A that pays a fixed amount 

of money in nominal terms. Between the time from its emission and maturity, assume there is a sudden 

increase in the inflation of that country which is not accounted in the payoff guaranteed by the bond. 

This would simply result in a loss of purchase power for the acquirer. The difference between the 

nominal rate and the inflation rate is usually defined as real risk-free rate and Fisher equation describes 

it in terms of expected inflation and nominal rate such that: 

1 + 𝑖 = (1 + 𝑟)(1 + 𝜋𝑒) 

Risk premia cannot be set by Central Banks or other financial institutions, but are indeed influenced 

by the communications, the intentions and above-all their credibility regarding price control. 

From Piazzesi and Cochrane (2008), there are different ways to formally define risk premium and 
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these definitions can be interlaced to the expectation hypothesis. The two linked to the previously seen 

equations states that5: 

• The long-term yield can be considered as the average of all the expected future short 

term rates, as seen in equation (7), but with an added term: the risk premium.  

• Starting from equation (5), a forward rate can also be seen as the conditional expected 

value of the future short rate with – again – an added risk premium. 

1.2.3 Convexity 

Convexity is the last driver of the curve and dominates the long end of the yield curve. It is considered 

as a measure of the curvature, interlacing bonds’ duration and rate: as duration increases with yields, 

it is said that the convexity is negative. From a mathematical point of view, it is the second derivative 

of the price respect to the yield such that: 

𝐶𝑜𝑛𝑣𝑡
𝑇 = −

1

𝑃𝑡
𝑇

𝜕2 𝑃𝑡
𝑇

𝜕𝑦𝑡
𝑇2

 

Its effect on the curve is more difficult to observe compared to the other two drivers, as its influence 

emerges only in the last part of the curve, for bonds with long term maturities. This is caused by the 

greater effects that expectations and risk premia have on the curve. However, this measure still has 

relevance for modelling, especially for zero-coupon bonds.   

1.3 The no-arbitrage condition 

The no-arbitrage condition is usually specified in some of the presented models, like Vasicek, 

through theoretical foundation and appears in numerous others. The assumption is important, as having 

a no-arbitrage condition suggests that the stochastic process above-mentioned is strictly positive. It is 

worth to mention though, that some academics have raised some concerns about the no arbitrage 

condition. Empirical evidences have led to infer that imposing a no-arbitrage condition could not really 

be that significant since in real-world condition an arbitrage rarely occurs6 and imposing it could not 

really improve the model and it affects its outputs little. Nonetheless, multiple empirical studies have 

concluded that it improves the forecast and the explanatory of the model and thus giving a good reason 

to keep imposing it.  

 
5 The two statements can be considered as equivalent. 
6 Usually it is possible to observe only pseudo arbitrage strategies, as there are risky arbitrage and not riskless as the 

definition for pure arbitrage requires. 
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1.4 Modeling the yield curve 

The problem that arises from having a snapshot of the yield curve is that it is not a scalar value but 

instead a vector quantity. In other words, it is not limited to a single instant in time7, but it varies for 

each t, adding the time dimensionality factor to the problem. After the quick introduction to bond 

pricing, it is now worth to add some notions about other conditions needed for a model to work. 

There are different ways to model the term structure. Each of them is designed to observe the problem 

of the term structure from a different point of view, resulting in multiple advantages and disadvantages. 

A good classification has been made by Rebonato8, who differentiates the models considering their 

structure and follows. 

• Statistical models, like the one that will be proposed in the next chapter, rely on their 

strength in the so-called Vector Auto-Regressive or VAR models, which are extensively used 

to forecast yield and risk premium estimates. This model has a great predictive power in 

contrast to the other models here mentioned, but bases the whole analysis to time series data, 

bringing large error in the forecast, especially for longer maturities. Its flexibility still makes it 

a good choice to model term structure, in addition to the possibility of easily using the implied 

impulse response functions and variance decompositions to get an additional understanding of 

macroeconomic and yields interactions9. From a mathematical point of view, they are basically 

Vector Auto-Regressive models that have their foundations in the AR (1) process, an 

autoregressive model of order 110:   

𝑥𝑡+1 =  µ + 𝑥𝑡𝜑 +  𝜈𝜂𝑡+1 (11) 

In this context, µ represents the intercept for the regression and the 𝜑 its slope11.  

• Structural no-arbitrage models. These include the no-arbitrage conditions from their 

assumptions and explains the three components of the yield curve: expectations, risk premia, 

and convexity. The most known models from this group are Vasicek and Cox-Ingersoll-Ross. 

Both use a single factor model to estimate the curve yield, but the last incorporates a square 

root factor in order to avoid negative interest rates, as pre-crisis academics were not interested 

in considering the case. 

 
7 Like in Graph (1), which considers a snapshot of the yield curve at a given moment. 
8 Bond price and yield curve modelling, Rebonato 
9 Cochrane and Piazzesi (2008), Diebold and Rudebusch (2013).  
10 with 𝜂𝑡+1~𝑁(0,1). 

11 If the 𝜑 > 1 the model AR (1) could not be used. In the case of 𝜑 = 0 it would be a random walk.    



8 
 

• Snapshot model: such as the well-known Nelson-Siegel. They, as the name suggests, 

are cross-sectional models that give a glimpse of how the curve behaves in order to interpolate 

the yields that are unobservable using observable data. It is also worth to notice that this kind 

of model gives as outputs the discount bonds or – to say it in another way - the inputs for the 

other model types here described. 

The following paragraphs present some of the most renown models of yield curve estimation, 

providing examples for the above-mentioned categories12. 

1.4.1 Affine Term Structure Models (ATSMs) 

The most appreciated approach to the yield curve issue considers using an affine term structure 

model, which works by linking the term structure of interest rates with a time-invariant linear function 

made up by a set of variables, which can be latent or observable. This distinction is important, as from 

the 90s the augmentation with latent variables has brought some advantages to the model. Indeed, even 

if they cannot be compared to the other variables, they own an intrinsic explanatory capacity. This has 

led the research to include different numbers of latent variables in affine term structure models, but 

defining these factors with different names, such as real inflation (Dewachter, Lyrio and Maes, 2005) 

or real short rate (Pearson and Sun, 1994), even if their data did not include those data.  

Another issue is related to the number of variables that should be included, but empirical studies 

(Knez, 1994) have noted that three latent are enough to explain much of the changes. Their labels 

change between different studies and paper, but recently they were linked to their effect on the curve 

instead of arbitrary names, specifically: level, slope, and curvature.   

Going back to the foundations, the starting point for an affine model is the stochastic process that 

drives the dynamics of the variables involved13. This kind of process can vary, but a single factor 

generic geometric Brownian motion can give an idea of how it works. The one presented in equation 

(12) is made up of two terms - the drift and the diffusion – and is commonly used in asset pricing in 

combination with a Monte Carlo simulation. Considering only the first part of the equation, the 

dynamic process results in a constant growing yield as it is non-random (we say defined as yields, but 

usually in such a context an underlying asset price is used). In order to add randomness, the second 

term is needed, as it contains a Weiner Process for the term 𝑧𝑡 over an interval dt and the resulting 

 
12 Rebonato also introduces a last class of models, defined as derivatives models. Basically, they are no-arbitrage models 

that try to fit the term structure of interest rates by adopting IRS models or similar, like the Hull and White model (1990). 
13 Mathematically speaking, affine means linear plus a constant More formally, a function like F : Rn → R is called affine 

if there exist a ∈ R and b ∈ Rn such that 𝐹(𝑥) = 𝑎 + 𝑏 T x for all x ∈ Rn. (Piazzesi, 2010). 
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graph would now appear as an erratic path. This is exactly how a share price, for example, moves in a 

time-varying graph.  

𝑑𝑟𝑡 = 𝑟𝑡𝑑𝑡 + 𝜎𝑟𝑑𝑧𝑡 (12) 

The next few paragraphs introduce four well-known models that use different approaches to solve 

the term structure estimations’ issues. Starting from the founding Vasicek model, the focus then moves 

onto more complex models that consider advanced dynamics and combination of data in order to better 

forecast the yield curve and define what drives it.  

1.4.2 Vasicek Model 

The idea of using this type of dynamics in a term structure was firstly introduced by Vasicek in 1977 

with a single factor model, in order to describe the movements of interest rates through time. The 

differential equation (13) figures an Ornstein–Uhlenbeck process with a drift. In this case, a constant 

long-term mean-reversion level theta, to be achieved through time and a speed reversion k.  The idea 

of an interest rate mean reversion was correct, as empirical data proved right differentiating interest 

yields from other financial securities. This is due to the fact that interest yield cannot exceed certain 

values and this model was able to display negative yields, an eventuality considered as a disadvantage 

before the 2008 crisis and fixed with the so-called extended Vasicek models14. For the normal Vasicek 

model the equation follows: 

𝑑𝑟𝑡 = 𝑘𝑡(𝜃𝑡 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑟𝑑𝑧𝑡 (13) 

Its discrete-time version is15: 

𝑥𝑡+1 = 𝑘𝜃 + 𝑥𝑡(1 −  𝑘𝛥𝑡) +  𝜎√𝛥𝑡𝜀𝑡 (14) 

Considering the above process, it is then possible to link it with the AR (1) introduced before. Indeed, 

using the same equation (14) it is possible to drive parallelism since the discretized version of 

the Ornstein-Uhlenbeck process is just a special AR (1) with:  

µ = 𝑘𝜃𝛥𝑡 

𝜑 = (1 − 𝑘𝛥𝑡) 

𝜈2 = 𝜎2𝛥𝑡 

By knowing this it is then possible to assert that the model is solvable through a simple regression. 

Thus, the coefficients – the values needed – can be estimated.   

 
14 Exponential Vasicek and Cox Ingersoll Ross. 
15 With 𝜀𝑡~𝑁(0,1). 
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Following Piazzesi16, affine models can be then considered as a class of term structure models. If 

this is true, the expression for a bond price 𝑃𝑡
𝑇  in Vasicek is then:  

𝑃𝑡
𝑇 = 𝑒(𝐴𝑡

𝑇+𝐵𝑡
𝑇𝑟𝑡) (15) 

𝐴𝑡
𝑇 and 𝐵𝑡

𝑇 are coefficients that depend on T. Their values can be found through: 

𝐵𝑡
𝑇 = 

1 − 𝑒−𝑘(𝑇−𝑡)

𝑘
 (16) 

𝐴𝑡
𝑇 = −(𝜃′ −

𝜎𝑟
2

2𝑘2
) [𝐵𝑡

𝑇 + (𝑇 − 𝑡)] −
𝜎𝑟
2

4𝑘
(𝐵𝑡

𝑇)2 (17) 

This approach is considered a breakthrough in term structure modeling, as its mean reversion 

properties differentiated bonds’ pricing different from other financial securities. Moreover, its 

simplicity and the fact that it can be analytically solved made it the preferred approach to the subject. 

This can be found out by knowing that the dynamics for the short rate are the one expressed in 

equation (14) and assuming or knowing the value of a starting rate namely 𝑟0. It is then possible to 

derive the value of the short rate at time t 𝑟𝑡, resulting in: 

𝑟𝑡 = (𝑒−𝑘(𝑡−𝑡0))𝑟0 + (1 − 𝑒
−𝑘(𝑡−𝑡0)) 𝜃 + 𝜎𝑟∫ 𝑒−𝑘(𝑡−𝑠)𝑑𝑧𝑠  

𝑡

𝑡0

(18) 

The solution states that the short rate distribution at any time in t will be normal and stationary 

distributed. Considering other quirks of the model, the duration of a bond in Vasicek presents some 

particularities. Starting from equation (4), duration becomes: 

𝐷𝑢𝑟𝑡
𝑇 = −

1

𝑃𝑡
𝑇

1

𝛽
𝑡
𝑇

𝑑𝑃𝑡
𝑇

𝑑𝑦𝑡
𝑇 = −

1

𝑃𝑡
𝑇

𝑘(𝑇 − 𝑡)

1 − 𝑒−𝑘(𝑇−𝑡)
𝑑𝑃𝑡

𝑇

𝑑𝑦𝑡
𝑇  (19) 

1.4.3 Vasicek model’s improvements 

Even if the homonym model proposed by Vasicek had some limitations, such as a fixed reversion 

level, other studies made it possible to modify it in different ways. This specific issue was quickly 

solved with the Doubly Mean Reverting Vasicek or DMRV, which provides a second equation to add 

dynamics for 𝜃.   

{

     𝑑𝑟𝑡 = 𝑘𝑟(𝜃𝑡 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑟𝑑𝑧𝑡
  𝑑𝜃𝑡 = 𝑘𝜃(𝑟∞ − 𝜃𝑡) + 𝜎𝜃𝑑𝑧𝜃

𝐸[𝑑𝑧𝑡𝑑𝑧𝜃] =  𝜌𝑑𝑡

 (20) 

 
16 Affine Term Structure Models, Piazzesi (2012). 
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Adding another equation to the model improves it and - in order to further enhance it - it is possible 

to add another one to describe the movement of the Beta, thus making a Trebly Mean Reverting 

Vasicek Model. This approach could surely improve the basic Vasicek but leads to an impasse, as 

providing more and more dynamic processes expand the calculations without really giving an edge to 

the model.  

Since Vasicek and its derivation were only the primitive versions of this type of model, in the 

following years different approaches appeared on the scene to explain the term structure of interest 

rates. The first thing to be modified starting from a Vasicek model is the number of variables to be 

included. Vasicek uses only a single factor and adding another one requires only a few improvements.  

Adding multiple factors can indeed improve the model, but again it can lead to an impasse as before. 

From empirical data, the total number of variables should not exceed six. Models that encompass more 

get perfect fit of the data, but their forecast is poor, especially for medium and long-term yields. 

According to this, as it is difficult to explain the yields only by using observable data, latent come to 

help. Choose which real-world data to use is troublesome though and numerous solutions were found. 

A good guide, made up by Dai and Singleton, helps discerning among them, providing a further 

taxonomy other than the one presented before. 

1.5 Common techniques 

1.5.1 Principal Components Analysis (PCA) 

Before moving to the next models, some valuable techniques must be defined. Principal Component 

Analysis is a common technique that eases the dimensionality issue, employing an eigenvalue 

decomposition starting from a covariance matrix of the data17. Indeed, some calculations using all the 

data can lead to an immense hurdle due to the high dimensionality of the data and the techniques reduce 

the number of factors adopted. In other terms, given a series of yields, its PCs are defined as: 

𝑥𝑡 = 𝑉𝑇𝑦𝑡  (21) 

Each component describes a certain degree of the variance: depending on the data matrix, the number 

of factors needed to explain can vary. In some models, like the Ang and Piazzesi (2004), only the first 

principal component is used, which accounts for a good 50-70% of the variance explained. This is a 

good starting point though and can be used to define the observable variable as to it is enough to 

understand how the entire curve moves. Adding the second PC would bring new data and give the 

 
17 Litterman and Scheinkman conducted a study on US treasuries PCA decomposition (1997). 
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chance to observe risk premia18, but still would miss some effects on the curve. The discipline tends 

to use three, as it can describe a good percentage of the variance and avoiding the most dimensionality 

issues. The specific number of factors is therefore determined by the authors and on their purposes, as 

nothing forbids to use a desired number of factors to describe market yields. Usually, after five 

components it is useless adding others, as it would only create more dimensionality problems without 

adding anything to the explanatory power.19  

It is important to notice that this technique works best when there is a signal to noise ratio is high. In 

fact, Shelns in its paper of 2009 states that:  

“Measurement noise in any dataset must be low or else, no matter the analysis technique, no 

information about signal can be extracted”. 

Another requirement to correctly use this technique is a high correlation among data, which is true 

for yields. In their paper, Gurkaynak, Sack and Wright (2000), assume that in real-world conditions 

the form of the reversion speed is a diagonal matrix such that: 

[

𝑑𝑥1
𝑑𝑥2
𝑑𝑥3

] =  [

𝑘11 0 0
0 𝑘22 0
0 0 𝑘33

] ([
𝜃1
𝜃2
𝜃3

] − [

𝑥1
𝑥2
𝑥3
]) 𝑑𝑡 + [

𝑠11 0 0
0 𝑠22 0
0 0 𝑠33

] [

𝑑𝑧1
𝑑𝑧2
𝑑𝑧3

] (22) 

1.5.2 Filtering techniques  

Modeling the term structure of interest rates brings some issues regarding the data themselves. 

Considering a dataset used for this approach, it is common that these contain some sort of inaccuracies 

and relevant statistical noise. In order to solve the issue, some common techniques have been 

developed, leading to their massive application in the field. This approach is generally called filtration. 

In term of affine term structure modelling, thanks to the studies of Duan and Simonato (1995), Lund 

(1997), Geyer and Pichler (1998), de Jong (1998), and Babbs and Nowman (1999), the most common 

approach is the Kalman Filtering, also known as Linear Quadratic Estimator (LQE).  

The reasons for its extensive use can be found within the possibility to use it in linear systems – which 

is our case – and both in discrete and continuous time with few modifications. The approach is most 

valuable when the time series used to perform calculations contain a lot of noise – as in this case 20 – 

and for yield curve applications, when the underlying state variables are unobservable.  

In fact, Kalman Filtering produces an estimate of unknown variables starting from the time series 

data considering a joint probability distribution for each timeframe. Specifically, it is a recursive 

 
18 Piazzesi and Cochrane (2005). 
19 Gurkaynak, Sack and Wright (2000) have done an extensive research on this method. 
20 It is not uncommon that financial data have high correlation.  



13 
 

algorithm that works by doing a two-step filtering. In the first step it assumes certain starting values 

for the state variables, which can be their mean and variance for example (Bolder, 2001). By using 

these values, it moves on by guessing the value of the measurement equation through the so-called 

prediction step. Obtaining these permits to go to the next step, which is the observation of the effective 

values and to update the previously found values, eliminating part of the initial error. Recursively, the 

filter moves on the next timestep repeating the process and ending up with a more precise output for 

the estimation. A downside of the Kalman Filtering is that the errors are not assumed to be Normally 

distributed.  

 

The Hodrick-Prescott is another type of filter widely used in economics research, especially in 

macroeconomic researches which concerns business cycles.  

min
{𝑔𝑡}𝑡=−1

𝑇
{∑(𝑦𝑡 − 𝑔𝑡)

2 + 𝜆∑[(𝑔𝑡 − 𝑔𝑡−1) − (𝑔𝑡−1 − 𝑔𝑡−2)
2]

𝑇

𝑡=1

𝑇

𝑡=1

} (23) 

 

Compared to the Kalman Filter, which recursively weakens the statistical noise, the HP filter works 

by removing the cyclical components from the data. This is mainly intended for the studies in 

macroeconomics that intend to decompose time series, but it presents multiple disadvantages and 

issues. The main disadvantages can be found in the work of Hodrick and Prescott itself, as they state 

multiple conditions for the filter to work properly. A proper condition is that the filter needs historical 

data to work and cannot be used in a dynamic context of forecast. Moreover, the filter does not discern 

certain events from others: for example, a single shock – big enough – could lead the filter to generate 

a non-existent trend in the dataset. Some of these issues were underlined by Hamilton (2017), who 

affirm that the HP filter needs multiple adjustments in order to provide de-cycled data. For Hamilton, 

the use of this filter leads to spurious regressions and thus to misleading interpretations.  

This is firstly noticed by Harvey and Jaeger (1993) and later by Cogley and Nason (1995). Thus, for 

a process such that: 𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡, where 𝜀𝑡 is white noise and (1 − 𝐿)𝑦𝑡 = 𝜀𝑡, the function that 

drives a cyclical component for the series would result in: 

𝑐𝑡 = 
𝜆(1 − 𝐿)3 

𝐹(𝐿)
𝜀𝑡+2 (24) 

Usually, depending on the period of the data and on the interests of the researchers, this value lambda 

should be adequately modified. As Hamilton states, different researches have linked the lambda to a 
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value of 160021, which is an empirically determined and adjusted value, not a theoretically justified 

one.  

Other studies, like the one of Ravn and Uhlig (2002), produced different values considering other 

time frequencies, but assuming the value given by Hodrick and Prescott as correct. 

Definitively, using it – or other values – would only create cycles or trends that are entirely created by 

the filter itself rather than already being present in the data. This is even worse in a dataset that 

encompasses a random walk. In the same paper though, Hamilton provides a solution. Considering an 

eventual process, his HP enhancements are based on possible different cases, for example, that the 

growth rate is nonstationary and the change in the growth rate is stationary. To solve all these cases, 

he proposes a filter based on regression, considering that the typical economic time series is best 

approximated by a random walk. The regression can be executed using an OLS of the observed non-

stationary time series on a four period plus a constant.  

𝑦𝑡+ℎ = 𝛽0 + 𝛽1𝑦𝑡 + 𝛽2𝑦𝑡−1 + 𝛽3𝑦𝑡−2 + 𝛽4𝑦𝑡−3 + 𝜈𝑡+ℎ  (25) 

The cyclical component is instead given by the error term. Its decomposition is:  

𝜈𝑡+ℎ = 𝑦𝑡+ℎ − �̂�0 − �̂�1𝑦𝑡 − �̂�2𝑦𝑡−1 − �̂�3𝑦𝑡−2 − �̂�4𝑦𝑡−3 (26) 

Like Hodrick and Prescott, Hamilton too suggests different values in relation to the analysis’ 

purposes: h = 8 in case of quarterly data concerned with business cycles analysis and h = 20 for 

financial cycles.  

Even if it should improve the HP filter, a recent study made by Schüler (2018) proves that some of 

the disadvantages could still raise some concerns, such as its tendency in creating spurious regressions, 

emphasizing cycles that endure more than expected. At the same time, this issue almost erases short 

term variations. 

“However, when applied to a random walk, Hamilton’s (2017) regression filter reduces to a 

difference filter. In the case of difference filters, we know that certain cycle frequencies 

are canceled, and others emphasized”.  

Nonetheless, Schüler eventually considers the Hamilton filter as a better instrument compared to the 

HP.  

 
21 Hodrick and Prescott motivated their choice of λ = 1600 assuming a change of 5% in the cyclical component, having 

quarterly data. This is justified by saying that a change trend component would be around (
1

8
%), Giving out a λ =

σ2𝑐

σ2𝑣
=

 (
5
1

8

)

2

= 1600.   
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1.6 Ang and Piazzesi Model (2003) 

The Ang and Piazzesi model combine the techniques seen in the first paragraphs in order to forecast 

bond yields, describing joint dynamics for macroeconomic variables and bond yields in a VAR. The 

model is Gaussian and consists of five variables organized in the observable and unobservable 

categories. The two observables are built upon macroeconomic data opportunely reorganized, while 

the three orthogonal latent ones encompass the yield curve’s movement that cannot be forecasted by 

observable data alone. The model uses the no-arbitrage rule in order to set restrictions. Including 

macroeconomic variables is useful to understand how yields move: from the data used in the paper, 

they explain up to 85% of yields’ movement at short and medium maturities. The VAR approach is 

also useful for the reasons seen at the beginning of paragraph (1.4) as it is possible to compute IRs and 

Variance decomposition easily in order to clearly see how the macro shocks impact the term structure. 

Latent variables impact can be seen in the same way and then compared to macro variables.    

The model is set up starting from the observable variables. They are defined as Inflation and Real 

activity and both encompass different useful indexes. Inflation is made up by Consumer Price Index 

(CPI), Purchase Price Index (PPI) and Spot Market Commodity Prices (PCOM), while Real activity 

by HELP (Help Wanted Advertising in Newspapers), Unemployment (UE), growth rate of 

Employment (EMPLOY) and Industrial Production (IP). At this point there is a problem of 

dimensionality and PCA can help to solve it out. In this case, just the first components can be used to 

perform the analysis, as they explain enough variability for the model’s purposes. The next step is 

normalizing these PCAs and stacking them into two separate vectors of dimension 3X1 and 4X1 named 

𝑍𝑡
1 and 𝑍𝑡

2, represented with 𝑍𝑡
𝑖 = 𝐶𝑓𝑡

0,𝑖 + 𝜀𝑡′
𝑖    

Usually, other models, such as the Duffie and Kan (1996), follow a Taylor rule to specify the short 

rate such that the movements in t in the short rate are linked to macroeconomic variables movements 

at the same time. In a variant of this, a forward-looking version of the same Taylor rule, Clarida (2000) 

states that the Central Bank reacts both to the expected inflation and output gap22, including forecast 

errors in the shock 𝑣𝑡. Ang and Piazzesi present two variations of their idea: a VAR model which 

encompasses macro factors plus three latent yields to forecast the model implied yields. The dynamics 

process follows a VAR (12) for the macro derived variables, while the unobservable ones an AR (1). 

The process estimation is performed in a double step: first they find the short rate and the VAR 

parameters through the use of an OLS, while the rest are derived using a MLE. This type of process 

allows to define all the factors needed for the yields’ forecasts but is quite demanding in term of 

 
22 Output gap is the gap between the theorical output an economy can reach and the output that currently has. In some 

model it is used to name latent. 



16 
 

calculations. But their idea has led to different models that uses macroeconomic inputs to improve 

term structure models. 

1.7 Dewachter, Lyrio and Maes  

Another interesting model has been proposed by Dewachter, Lyrio and Maes in 2006. It can be 

considered as an evolution of the Ang and Piazzesi Model, as it is based too on macroeconomic and 

latent variables, but it works in continuous time, thus making it a continuous-time vector error 

correlation model (VECM). Again, there are two observable and three latent variables: the first is 

defined as output gap and inflation, while the others are considered to be the real interest rate and the 

central tendencies of inflation and the real interest rate.  

From their results, it appears that the observable variables they used to forecast the yields do not 

explain the long end of the term structure. This is not a surprise, as other models had the same issues 

for long term forecast, but this model presents an improvement. Dewachter, Lyrio and Maes observed 

that central tendencies of the macroeconomic variables offered better performance, but also confirmed 

that the latent factors have an important role in the formulation of the interest rate policy rule. 

Moreover, as already confirmed in Ang and Piazzesi, they help to describe better the yield curve over 

time.  

The equations that define the dynamics of the model follows: 

{
 
 

 
 
𝑑𝑦𝑡 = [𝑘𝑦𝑦𝑦𝑡 + 𝑘𝑦𝑦(𝜋𝑡 − 𝜋𝑡

∗) + 𝑘𝑦𝜌(𝜌𝑡 − 𝜌𝑡
∗)]𝑑𝑡 + 𝜎𝑦𝑑𝑊𝑦,𝑡

𝑑𝜋𝑡 = [𝑘𝜋𝑦𝑦𝑡 + 𝑘𝜋𝜋(𝜋𝑡 − 𝜋𝑡
∗) + 𝑘𝜋𝜌(𝜌𝑡 − 𝜌𝑡

∗)]𝑑𝑡 + 𝜎𝜋𝑑𝑊𝜋,𝑡

𝑑𝜌𝑡 = [𝑘𝜌𝑦𝑦𝑡 + 𝑘𝜌𝜌(𝜋𝑡 − 𝜋𝑡
∗) + 𝑘𝜌𝜌(𝜌𝑡 − 𝜌𝑡

∗)]𝑑𝑡 + 𝜎𝑦𝑑𝑊𝑦,𝑡

𝑑𝜋𝑡
∗ = 𝜎𝜋𝑑𝑊𝜌,𝑡

𝜌𝑡
∗ = 𝛾0 + 𝛾𝜋∗𝜋𝑡

∗

 (27) 

 

The model, apart from including the above-mentioned variables, includes a filtering method in order 

to recover the time series of the factors from the data. The idea of filtering is not new in the panorama 

of ATSM, as since the 90s others – such as Chen and Scott (1993) and Pearson and Sun (1994) – have 

done studies regarding the different methods and their issues. One of the most feared is to obtain 

erroneous filtered data that include distortions created by the filter. In order to avoid it, the authors use 

a Kalman filter, previously explained in detail in paragraph (1.4.6) and it is usually very efficient in a 

model where all the factors are assumed to be latent23. The model avoids a couple of problems that 

Ang and Piazzesi solve differently, starting with the incorporation of the macroeconomic factors inside 

the model. As the unobservable variables – real output gap and real inflation – need to be analyzed, 

 
23 De Jong (1991, 2003) analyse the use of a diffuse Kalman filter with MLE and how to smooth its output. 
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the state vector of the model needs to be updated in order to consider them as non-latent. To estimate 

these parameters, a one-step-ahead prediction is used to fit the output gap and inflation with the 

measurement equation (26). This is not a real issue in Ang and Piazzesi, as they did not use any filtering 

technique, but instead a double-step regression. The second one regards the restrictions of the 

dynamics: Dewachter, Lyrio and Maes opt not to make any restrictions24, contrary to Ang and Piazzesi. 

[
 
 
 
 𝑦1𝑡

𝜏1

…

̂

𝑦𝑚𝑡
𝜏�̂�

𝑦𝑡
𝜋𝑡 ]

 
 
 
 

= [
𝑎
0
0
] + [

𝐵
𝑒′2
𝑒′3

] [

𝑦𝑡
𝜋𝑡
𝑥3
�̈�𝑡

] + 𝜀𝑡   (28) 

  

With 𝑎 = ((
𝑎𝜏1

𝜏1
) ,… , (

𝑎𝜏𝑚

𝜏𝑚
)) ′ and 𝐵 = (

(
𝑏𝜏1
′

𝜏1
)

…

(
𝑏𝜏𝑚
′

𝜏𝑚
)

) 

 

1.8 Nelson Siegel Model 

The Nelson Siegel model is here reported as an example of snapshot models. This model is a perfect 

candidate, since it is as simple as the Vasicek model described before and can be quite adaptable to 

the different shape of the yield curve. In the years of its formulation, there was a debate regarding the 

use of polynomial or exponential splines to estimate the present value function, as both presented 

different advantages and disadvantages. In brief, polynomial functions were already used in the 70s, 

but they presented some issues, such as a bad fitting considering the whole curve, creating artifices. 

Moreover, there is a propensity in creating, as Chambers (1984) states: “explosive tendencies…toward 

the end of the fitted maturity range”. 

Nonetheless, the use of exponential spline – also recommended by Vasicek and Fong (1982) – would 

present similar concerns.  

The model presents the same no-arbitrage25 results of Ang Piazzesi (2004) and is based on a 

transformation of the non-linear estimation issue into a linear one. In order to solve the model, the 

common approach is minimizing the sum of squared errors (SSE). This can be done by using an OLS, 

specifically a series of OLS in order to estimate model’s conditionals to maximize the R2. This 

procedure is defined by other authors (Annaert, Claes, De Ceuster and Zhang) as a “grid search”. 

 
24 “In other words, one should not prevent the possibility of imaginary eigenvalues with respect to the spectral 

decomposition of the matrix K”, Dewachter, Lyrio and Maes. 
25 Coroneo, Nyholm and Vidava‐Koleva (2008) find that the parameters of the Nelson-Siegel are “not statistically different 

from those obtained from the ‘pure’ no‐arbitrage affine‐term structure models”. 
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Otherwise, it is always possible to use an OLS already having a grid of pre-specified values26 or even 

assigning a fixed shape parameter27.  

The model, though, has some disadvantages: being nonlinear, its results depend mostly on the 

technical capacity of the researcher’s using it, on the initial values chosen for the optimization process28 

and on the shape parameter29. Other issues comprehend large estimated errors and the chance to obtain 

negative long-term interests.  

Formulating it in matrix form, the spot rate curve can be shown as: 

𝑟𝑡
𝑇  =  [

𝛽0
𝛽1
𝛽2

]

′

[
 
 
 
 
 
 

1

𝜆 (𝑒−
𝑇
𝜆)

𝑇

𝜆 (𝑒−
𝑇
𝜆)

𝑇
− 𝑒−

𝑇
𝜆
]
 
 
 
 
 
 

=  [

𝛽0
𝛽1
𝛽2

] [

𝑟0
𝑟1
𝑟2
] (29) 

Or alternatively: 

𝑦𝑡
𝑇 = 𝛽0 + 𝛽1

[1 − 𝑒
(−
𝑇
𝜆
)
]

𝑇
𝜆

+ 𝛽2(
[1 − 𝑒

(−
𝑇
𝜆
)
]

𝑇
𝜆

− 𝑒(−
𝑇
𝜆
)) (30) 

The term  𝑟0, 𝑟1 and 𝑟2 represent respectively the level, the slope and the curvature of the model. The 

level is clearly assumed to be constant in order to consider a given value for the short rate and it is 

usually referred to as the long-run yield level. The slope respectively follows the form of an 

exponential decay function. 𝛽1 is then a function of time to maturity with a weight λ and thus it 

exponentially decays to zero as the maturity grows, resulting in a bigger impact on the curve in the 

medium term. Lastly, the curvature is a Laguerre function30. It is again a weighted function, but its 

shape presents results in a curve starting from zero when maturity is zero, rising and then decreasing 

as maturity increases. 𝛽2 is usually defined as the hump term. 

However, even if it has been used for numerous studies, the model presents some insurmountable 

obstacles. A way to address them is a modification proposed by Svennson in 1994. Calibration remains 

 
26 This is the approach that Nelson and Siegel followed in their 1987 first version of the model. 
27 Diebold and Li (2006). 
28 Cairns and Pritchard (2001). 
29 In their paper Diebold and Li (2006) empirically derived an annualized fixed parameter equal to 1.37. 
30 Mathematically speaking, Laguerre polynomials are the solution of a second-order linear differential equation properly 

named Laguerre’s equation.  
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difficult, like in the original Nelson Siegel model, but adding another hump term in equation (30) helps 

to improve the curve fit. Then equation (30) becomes: 

𝑦𝑡
𝑇 = 𝛽0 + 𝛽1

[1 − 𝑒(−
𝑇
𝜆
)]

𝑇
𝜆

+ 𝛽2(
[1 − 𝑒(−

𝑇
𝜆
)]

𝑇
𝜆

− 𝑒(−
𝑇
𝜆
)) + 𝛽3(

[1 − 𝑒(−
𝑇
𝜆
)]

𝑇
𝜆

− 𝑒(−
𝑇
𝜆
)) (31) 
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Chapter 2: A Joint Macroeconomic and Term Structure VAR 

2.1 A short introduction on Macro models 

In the first chapter different models were presented in order to give a glimpse of the term structure 

modelling literature. The models were just briefly introduced, presenting their perks, their advantages 

and disadvantages compared to others, but it appears that the problem of modelling the term structure 

of interest rates and presenting valid forecasting is not easy to solve. It is worthy to say though, that 

recently the literature has progressed very quickly thanks to the improvements in calculation power 

and estimation techniques. Moreover, the financial crisis occurred in 2008 has led to a change of 

direction for some studies31. The importance of this discipline has also seen a renowned interest from 

policymaker and funds, as different authors started considering using as inputs macroeconomic 

variables when not the role of the monetary policy currently ensued by Central Bank. Different 

approaches are adopted to determine correctly a possible value for the future interest rate. The most 

commonly used models, with the notable exception of the CIR due to its limits, are reported in chapter 

one or at least named. The reason why a Central Bank and researchers want to use more models is due 

to their intrinsic structure and their different approaches to the problem, for example using cross-

section or time-series data instead of panel. All the different results can then help to define new policies 

in case of CBs studies or investment opportunities in case of investment or pension funds. In the last 

two decades, the literature has acknowledged that the use of good data could not be enough to explain 

the whole variations of the yield curve. As can be seen in chapter one, this problem has been partially 

solved by adopting latent or unobservable variables derived from – for example – the yields themselves 

in order to improve the explicatory power of the model. This approach is now widely used, and the 

literature is abundant of examples. The one that is analysed in this chapter follows the “tradition” now 

well-established of adopting three latent variables in order to explain some otherwise inexplicable 

movements in the yield curve. This approach is the Ang and Piazzesi Model (2003) and constitutes the 

basic for the analysis conducted in this and in the next chapter. It is then used as a base for further 

enhancements that follow in the same chapter. To be more thorough, this first part looks at the model 

from a theoretical and estimation perspective, looking at the ideas that lead its creation and finding the 

needed parameters to obtain the results. This will follow much of the original paper, but in a more 

detailed way to arrive to the estimation process with a proven ground of mathematical results. 

 
31 As specified before, numerous models were considered faulty or not well specified if they allowed for negative interest 

rates before the crisis. 
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Moreover, it also serves as a stage from which the modification starts, introducing another model that 

comes in handy for what regards the use of the macroeconomic data.  

2.2 The Ang and Piazzesi Model: a complete derivation 

2.2.1 Data setup 

The concept at the base of the Ang and Piazzesi model comes from the intuition that using 

macroeconomic variables, namely a set of data series, can improve the forecasting performance. In 

their paper, the variance decomposition show that these factors can explain up to 85% of variation in 

bond yields, especially in the short term. The restrictions are derived from the no-arbitrage condition 

and seems to improve the forecast performance. The model, as stated before, uses a VAR structure 

with a combination of observable macro factors and latent variables as inputs in order to explain the 

movements of the yield curve. This is done through a double step estimation, using first an OLS 

method and at last an MLE approach. Each step involves the estimate of four distinct variables: the 

first step looks for the values for the macro factors and two coefficients of the short rate equation, 

while the second look into the parameters for the market price of risk and the remaining coefficients 

for the short rate. From a theoretical point of view, it combines the original Taylor’s Rule and a 

modified version of the same with the short rate equation for affine models, which in this case 

incorporates both types of factors. The paper makes also a distinction between two models analysed: 

one with a policy rule that contains only contemporaneous factors and one that also contains lags. The 

yields used are five and specifically the 1, 3, 6, 12 and 60 months from the CRSP Fama-Bliss dataset. 

Starting from the Macro Factors, seven series are used to define two different factors, namely Inflation 

and Real Activity: three series are used to determine inflation and four for the real activity. In order to 

obtain these two factors, the data are normalized, and an eigenvalue decomposition is performed in 

order to extract the first principal component from the series and form the factors. The general formula 

is: 

𝑍𝑡
𝑖 = 𝐶𝑓𝑡

0,𝑖 + 𝜀𝑡
𝑖 (32) 

In this equation, Z represents the vector (3 X 1) or (4 X 1) – depending on the factor – at time t, C is 

the vector of the factor loading vector with the same dimensions of Z, with i being equal to Inflation 

or Real Activity. The error term ε and the factor f have: 𝐸[𝑓t
0,i] = 0, 𝑐𝑜𝑣[𝑓t

0,i] = 𝐼 ,  E[𝜀𝑡
𝑖] = 0 and 

cov[εt
i] = 𝛤, with Γ diagonal.  
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2.2.2 The dynamics of the model  

By knowing the two macro factors and organizing them into a vector ft
0 = (ft

0,1 ft
0,2). In this way it 

is possible to consider a bivariate VAR (12) process in the form32: 

𝑓𝑡
0 =  𝜌1𝑓𝑡−1

0 +  𝜌2𝑓𝑡−2
0 +⋯+ 𝜌12𝑓𝑡−12

0 +  Ω𝑢𝑡
0  (33) 

in the general form, the VAR(p) is: 

𝑓𝑡
0 =∑𝛷𝑘

𝑝

𝑘=1

 𝑓𝑡−𝑘
0 + Ω 𝑢𝑡

0 (34) 

Considering the VAR (12) used in the model, the literature and the authors themselves consider that 

using too much data could lead to overfitting, as by doing a regression on the lags for the 

Macroeconomic data it is clear that only a few lags are significant. In this case though, it is possible to 

pick different lags in order to avoid missing some eventually useful data, as Ang and Piazzesi decided 

to do. 

Following equation (33) it is then possible to stack all the observable variables ft
0 into a vector 

Xt
0 such that:  

𝑋𝑡
0 = [

𝑋𝑡
0

𝑋𝑡−1
0

. . .
𝑋𝑡−𝑝−1
0

] (35) 

Knowing that 𝑋𝑡
0 has dimension (np x 1), the process follows equation (36). In order to bring more 

clarity, it is useful to write in companion form. 

𝑋𝑡
0 = Φ0𝑋𝑡−1

0 + 𝛴0εt
0 (36) 

Using this form can help avoiding some calculations’ issues, as the matrix of Φ of dimension (np x 

np), now contains the coefficients needed along the first row, such that:  

Φ =  

[
 
 
 
 
Φ1 Φ2 ⋯ Φ(p−1) Φ𝑝
𝐼 0 … 0 0
0 𝐼 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 𝐼 0 ]

 
 
 
 

 

 
32 With each coefficient ρ of dimension (2x2).   
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The matrix for 𝛴 has the same dimension, but only its first element is a non-zero value. Specifically, 

the Ω, which is a lower triangular matrix. The error term has a similar structure, with a single non-zero 

value ut
0 as the first element and the rest composed by zeros. This is a first setup concerning the 

observable macro factors.  

Moving to the latent factors, the idea of using three unobservable variables is quite common in the 

literature and allow to explain much of the variations of the yields. As they are assumed to be 

unconditionally orthogonal to the macro factors, it is possible to follow a normalization of these factors 

as the observable variables. Following Ang and Piazzesi33: 

“The idea of these normalization in a VAR setting is that affine transformations and rotations of 

the unobservable factors lead to observationally equivalent yields” 

These independence assumption between the observable and unobservable factors has some 

theoretical contradictions. Following it, there should not be any link between them, which means that 

the monetary policy has no influence on the future macroeconomic state. This goes against the 

numerous empirical evidences and the fact that CBs operate in a context where changing the policy 

would not have any impact on the data it is observing to define the policy. 

In order to find the latent factors, the setting follows, again, a common approach. It is defined as an 

AR (1) process, such that: 

𝑓𝑡
𝑢 = ρ𝑓𝑡−1

𝑢 + 𝑢t
i (37) 

The coefficient ρ has dimension (3 x 3) and is lower triangular. This form permits to estimate the 

unobservable factors that have to be included in the system, stacking them into a single factor as 𝐹𝑡 =

(𝑓𝑡
𝑜′𝑓𝑡

𝑢′).  In this way, the state dynamics resemble the previous equations, starting with a Gaussian 

AR(p): 

Ft
0 =  Φ1𝐹t−1

0 +  Φ2𝐹t−2
0 +⋯+Φ12Ft−12

0 +  θu𝑡 

Again, in companion form, the equation that comprises both observable and unobservable variable 

is given by:  

𝑋𝑡 = 𝜇 +Φ𝑋𝑡−1 + Σεt (38) 

 
33 For a more complete discussion Dai and Singleton (2000) conduct an analysis on normalizations in affine term structure 

models. 
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With:  

Φ =  [
Φ𝑜 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 … Φ𝑢

] 

While 𝛴 follows a similar structure and the same dimensions, with 𝛴0as the first element of the 

matrix and a (3 x 3) matrix of I in the bottom right corner, the error term εt  =  (u𝑡
𝑜′ , 0, … ,0, u𝑡

𝑢′)
′
 

The non-observable or latent ones need to be derived considering a policy rule, like the one proposed 

by Taylor (1993). In this situation, the movements in the short rate 𝑟𝑡 can be found in the factors 

derived before ft
0 in addition to a non-observable component, assumed to be an orthogonal shock 𝑣𝑡 

34. As Ang and Piazzesi state, this policy is handy since the macro factors proposed in the original 

Taylor Rule were two, simplifying the process and avoiding the need to adapt it to the model.  

𝑟𝑡 = 𝑎0 + 𝑎1
′ 𝑓𝑡

𝑜 + 𝑣𝑡 (39) 

In the same paper, the authors set up the model considering a second version of this rule proposed 

by Clarida (2000), in which the Taylor Rule is said to be forward-looking. In this context, the CB does 

not respond to the actual macroeconomic factors, but to their expected values. This is also referred to 

as lagged Taylor Rule and it is used to arrange a second version of the model. 

𝑟𝑡 = 𝑏0 + 𝑏1
′𝑋𝑡

0 + 𝑣𝑡 

Following the literature, ATSM follows a close equation to the one provided in (39) but using the 

latent factors 𝑋𝑡
𝑢. So, it becomes: 

𝑟𝑡 = 𝑐0 + 𝑐1
′𝑋𝑡

𝑢 

Imposing orthogonality for the latent factors respects to the macro factors and adding those, the final 

equation for the short rate is: 

𝑟𝑡 = 𝛿0 + 𝛿11
′ 𝑋𝑡

𝑜 + 𝛿12
′ 𝑋𝑡

𝑢 (40) 

2.2.3 Pricing Kernel 

The pricing kernel of the model constitutes the heart of the model and implies a no-arbitrage 

condition necessary to set up the bond prices in their affine form. This assumption is very popular in 

the literature and is interpreted in different ways35, but it generally improves the quality of the results. 

 
34 This shock can be interpreted in different ways. Christiano, Eichenbaum and Evans (1996) suggest that it could be 

interpreted as a monetary policy shock and this assumption is considered valid in this thesis and in Ang and Piazzesi.  
35 Duffee (2002), Dai and Singleton (2002) for example. 
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The starting point in the Ang and Piazzesi model is the notion that under risk-neutral expectations, the 

price of an asset 𝑉𝑡 is given by: 

𝑉𝑡 = 𝔼𝑡
𝑄[𝑒−𝑟𝑡(𝑉𝑡+1)] (41) 

In order to convert the risk-neutral into the real-world measure, a solid method concerns the use of 

the Radon-Nikodym derivative. The model then, considering that 𝐸𝑡
𝑄  [𝑍𝑡+1] =

𝐸𝑡[ξ𝑡+1𝑍𝑡+1]

ξ𝑡
, uses it in 

order to include the no-arbitrage condition by linking it to the condition of existence of the term ξ𝑡+1. 

Hypothesizing that this term follows a log-normal dynamic, it becomes: 

ξ𝑡+1  =  ξ𝑡𝑒
(−
1
2
λ𝑡
′λ𝑡 − λ𝑡

′εt+1) (42) 

With εt+1 ∼ N(0, I). The λ𝑡 represents the market price of the risk at time t and is time varying. It 

can be modelled into an affine model by using the same one-factor model seen before. To be more 

thorough, the process uses a common approach in ATSMs as one of the most renown paper of Dai and 

Singleton (2002) suggests using it due to the advantage of having a simple form to model the shocks 

for the factors36. This is commonly referred to as essentially affine form and accounts for only 

contemporaneous movements for the market price of risk. 

λ𝑡 = λ0 + λ1𝑋𝑡 (43) 

As a classic one-factor model, the constant follows the usual form of a vector of dimension (K x 1), 

while the coefficient of the 𝑋𝑡, λ1, has a matrix of dimension (K x K). This is useful in order to put 

eventual restrictions for the macro or macro-lag models’ coefficients. It is also important to notice that 

the source of randomness for equation (42), as it follows the same as the Radon-Nikodym derivative, 

as εt+1, so it is shared by both equations. Going back to the structure of the price of the risk, Ang and 

Piazzesi describe the number of free parameters in both the vector and the matrix. In the first, it is 

possible to find a number equal to 𝐾1+𝐾2 such that there is an upper (𝐾1 x 1) row and a lower (𝐾2 x 

1) row. The matrix presents a (𝐾1+𝐾2)
2 number of free parameters, sharing a similar structure to the 

vector λ0, presenting corners of different shapes based on the dimension of 𝐾1 𝑎𝑛𝑑 𝐾2. This leads to 

the concept of linking the market price only to the variables included in the model, namely the 

macroeconomic and the latent factors. Following the construction, only five elements are non-zero 

values for the vector λ0 and thirteen for the matrix λ1, simplifying again the task of estimation. 

 
36 Duffee (2002) too suggests using this form. 
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It is also interesting to notice that this equation is used in different models in order to easily set time-

varying risk premia through the use of a non-zero λ1 matrix’ coefficients37. Otherwise, to simplify the 

estimation process, it is possible to derive only the constant risk premia, assuming that the matrix λ1 

contains only zeros.  

Going back to equation (42), the authors assume a pricing kernel form for: 

𝑀𝑡+1 = 𝑒−𝑟𝑡 (
ξ𝑡+1
ξ𝑡
) (44) 

Having all these equations it is possible to combine them in order to setup both the final version of 

the pricing kernel adopted by Ang and Piazzesi and the specification for the discount bond price 

starting from the canonical exponential function together with the Radon-Nikodym derivative. Thus, 

the final equation that defines the pricing kernel can be found including the equation for the short rate 

inside the assumption on the kernel, such that: 

𝑚(𝑡+1) = 𝑒(−
1
2
λ𝑡
′λ𝑡−𝛿0−𝛿1𝑋𝑡 + λ𝑡

′εt+1) (45) 

 The starting point of this derivation is then: 

𝑃𝑡
n  =  𝑒(�̅�𝑛+�̅�n

′𝑋𝑡) (46) 

As Ang and Piazzesi state:  

“The dynamics of the short rate, in combination with the Radon-Nikodym derivative form a 

discrete Gaussian K-factor model with 𝐾1 ∗ 𝑝 observable factors and 𝐾2 unobservable factors”. 

The Gaussian form, as said before, is also granted by the normalization of the factors previously 

done. This same form can be used in combination with equation (45) and applying the no-arbitrage 

condition seen before, considering true the expression: 

𝐸𝑡(𝑚(𝑡+1)𝑝(𝑡+1)
𝑛 )  =  1 

This is then set by: 

𝑝𝑡
(𝑛+1) = 𝐸𝑡(𝑚(𝑡+1)𝑝(𝑡+1)

𝑛 ) (47) 

 
37 As it is in Vasicek (1977). 
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The whole derivation for the solution of equation (46) can be determined by substituting for A and 

B the values obtain through the policy rate and the market price of the risk. It can be then found 

recursively from equations (45) and (47).  

𝐴̅𝑛+1 =  𝐴̅𝑛 + �̅�𝑛
′ (𝜇  −  Σ𝜆0) +  

1

2
�̅�𝑛
′ΣΣ'

�̅�𝑛 − 𝛿0 (48) 

�̅�𝑛+1
′ = �̅�𝑛

′ (Φ − Σ𝜆1) − 𝛿1
′ (49) 

Reworking equation (46) the price of a bond is then: 

𝑝𝑡
(𝑛+1) = 𝑒(�̅�𝑛+�̅�𝑛

′ (𝜇 − Σ𝜆0)+ 
1
2
�̅�𝑛
′ΣΣ'

�̅�𝑛−𝛿0+(�̅�𝑛
′ (Φ−Σ𝜆1)−𝛿1)𝑋𝑡) (50) 

Rewriting this equation in term of 𝐴1 and 𝐵1, we have  𝐴1 = −𝛿0 and 𝐵1 = −𝛿1. 

2.2.4 Estimation Process 

At this point, it is useful to recap all the procedures to obtain the desired values and to finally move 

on to its possible modifications. Not considering the data used, as their choice constitutes a paragraph 

in Chapter 3, the model collects a system of yields and macroeconomic variables. The last ones are 

transformed with PCA, using a single principal component for each macro factors, reducing the 

dimensionality in order to simplify the system and normalized. The next step requires the use of a 

VAR (p) on the macro factors, later reduced into a VAR (1) for the previous results. The yields are 

transformed to define a group of latent or unobservable factors using a VAR (1) structure assuming 

certain yields to be known without error and inferring on them. These two groups are then inserted 

into a system in order to start the estimation process. Having defined all the components needed, it is 

then possible to define the six parameters vector θ, which is then divided into two four parameters 

vector 𝜃1 and 𝜃2 to procedurally follow the estimation process. The first step of the estimation involves 

the use of Ordinary Least Squares, as above mentioned, which permits to obtain the coefficients needed 

to perform the second step, the Maximum Likelihood estimation. The idea of using a two-step is not 

new in the literature and in this case the OLS approach is useful, as it permits to avoid “Explosive yield 

dynamics” that could occur by doing a single step estimation using ML as Ang and Piazzesi state38. 

The model can be estimated at this point: the first step involves the short rate equation seen before 

(40), which contains Taylor’s rule plus a term that contains the unobservable variables. The coefficient 

𝛿0 and  𝛿11 can be estimated using an OLS and kept fixed to start the second estimation step. The 

 
38 Other examples of this procedure can be found in models that uses a similar approach, such as the 

ACM. 
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parameters to be found are then:  Σ, 𝛿0,  𝛿11, Φ
𝑜 , 𝜆0, 𝜆1, 𝛿12 and  Φ𝑢. This vector θ can be seen as split 

into a vector 𝜃1  =  Σ, 𝛿0,  𝛿11, Φ
𝑜 and a vector 𝜃2 = 𝜆0, 𝜆1, 𝛿12,  Φ𝑢. 

Before that, a little step back is needed. In the preceding paragraph states that the objective of this 

model is to transform a system of yield and macroeconomic factors into a system of a known and 

unknown one. This can be useful for the last estimation step. The approach used to perform is then 

defined through the Maximum Likelihood function, derived starting from the reformulation of the 

model. Considering that the goal of the model is the forecast of zero-coupon yields, what can be found 

on the right side of the equation is a constant A, the term for the macroeconomic factors and the term 

for the unobservable. 

𝑌𝑡 = 𝐴 + 𝐵
𝑜𝑋𝑡

𝑜 + 𝐵𝑢𝑋𝑡
𝑢 (51) 

Or, in matrix notation: 

[
 
 
 
 
𝑦𝑛1
𝑡

𝑦𝑛2
𝑡

⋮
𝑦𝑛1
𝑡 ]
 
 
 
 

  =  

[
 
 
 
𝐴𝑛1
𝐴𝑛2
⋮
𝐴𝑛1]

 
 
 

  + [[

𝐵𝑛1
′ (1) ⋯ 𝐵𝑛1

′ (𝑁 − 𝐾2)

⋮ ⋱ ⋮
𝐵𝑛𝑁
′ (1) ⋯ 𝐵𝑛𝑁

′ (𝑁 − 𝐾2)
] [

𝐵𝑛1
′ (𝑁 − 𝐾2 + 1) ⋯ 𝐵𝑛1

′ (𝐾)

⋮ ⋱ ⋮
𝐵𝑛𝑁
′ (𝑁 − 𝐾2 + 1) ⋯ 𝐵𝑛𝑁

′ (𝐾)
]] [

𝑋𝑡
𝑜

𝑋𝑡
𝑢] 

Also, inverting equation (51) for the estimated X of unobservable values �̂�𝑡
𝑢 is then equal to: 

�̂�𝑡
𝑢 = (𝐵𝑢)−1  (𝑌𝑡 −  𝐴 − 𝐵

𝑜𝑋𝑡
𝑜) 

At this point, a measurement matrix of dimension (N x (N - 𝐾2)should be added. This is needed in 

order to write the Maximum Likelihood function as it needs to be constructed in terms of both 

observable and unobservable variables. 

𝑌𝑡 = 𝐴 + 𝐵𝑜𝑋𝑡
𝑜 + 𝐵𝑢𝑋𝑡

𝑢 + 𝐵𝑚𝑢𝑡
𝑚 (52) 

The general idea to derive the ML then comes from the intuition that it should first define the joint 

conditional density of the entire system, comprising the yields, the macro factors and the observation 

errors. So, it should be first acknowledged that equation (53) represents the starting point in the 

derivation of the needed ML function: 

𝐿(𝜃) =∏𝑓(

𝑇

𝑡=2

𝑌𝑡  𝑋𝑡
𝑜|𝑌𝑡−1 𝑋𝑡−1

𝑜 ) (53) 
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Which can be then as the log-likelihood function of the previous equation, such that: 

𝑙𝑜𝑔(𝐿(𝜃)) = −(𝑇 − 1)𝑙𝑜𝑔|𝑑𝑒𝑡(𝐽)| − (𝑇 − 1)
1

2
𝑙𝑜𝑔(𝑑𝑒𝑡(𝛴𝛴′)) −

1

2
∑ (𝑋𝑡  −  𝜇 −
𝑇
𝑡=2 Φ𝑋𝑡−1 )  −

(𝑇−1)

2
𝑙𝑜𝑔 ∑ 𝜎𝑖

2  − 
1

2
∑ ∑

(𝑢𝑡,𝑖
𝑚)

2

𝜎𝑖
2

𝑁−𝐾2
𝑖=1

𝑇
𝑡=2

𝑁−𝐾2
𝑖=1    

In which the Jacobian Matrix J can be found as39: 

𝐽 =  

[
 
 
 
 
𝑑𝑋𝑡

𝑜

𝑑𝑋𝑡
𝑜

𝑑𝑋𝑡
𝑜

𝑑𝑋𝑡
𝑢

𝑑𝑋𝑡
𝑜

𝑑𝑢𝑡
𝑚

𝑑𝑌𝑡
𝑑𝑋𝑡

𝑜

𝑑𝑌𝑡
𝑑𝑋𝑡

𝑜

𝑑𝑌𝑡
𝑑𝑋𝑡

𝑜 ]
 
 
 
 

 =  [
𝐼 0 0
𝐵𝑜 𝐵𝑢 𝐵𝑚

] 

2.2.5 Conclusions: advantages, disadvantages and possible improvements  

The idea of using the Ang and Piazzesi approach as a base to analyse the term structure is not new: 

different authors have already provided modifications to this model. One of the most notable works is 

also briefly explained in the first chapter and is the continuous-time version provided by Dewachter, 

Lyrio and Maes (2005), which largely diverts from the original model’s specifications and estimation. 

At the same time, it is interesting to observe a possible change of inputs, keeping still the number of 

factors, but increasing their data series. Even with a different approach, Mönch (2005) partially follows 

the idea of using a VAR as Ang and Piazzesi do but using an “augmented” model, including more 

macroeconomic factors and eliminating latent variables. This kind of model has been introduced in 

2005 by the work of Bernanke, Boivin and Eliasz, which has its foundations fundamentally three 

concepts: the elimination of latent variables, the use of a large macroeconomic dataset and the 

introduction of the short rate in the dynamic of the model. In order to maintain a parsimonious model, 

the number of macro factors should be limited, following the idea of extracting useful components that 

other authors ensure by adopting principal components analysis or other similar techniques. In its work 

Mönch (2005) states that different topics developed from the original Ang and Piazzesi work can be 

exploited, in particular, the idea of using PCA on macroeconomic variables to explain the yield curve 

and reduce the dimensionality of the problem. Also, the use of the first principal component as done 

by Ang and Piazzesi is not efficient in terms of explicatory power, even if it allows to avoid eventually 

dimensionality issues. The use of only two variables to define the whole macroeconomic state is 

though scarce, as using only inflation and real activity data (or the more generally used output gap) 

does not capture a whole economy state. In other words, using so few data could cause the loss of 

 
39 For simplicity it is reported in this matrix notation, as Ang and Piazzesi do, but the matrix for I has dimension (𝑁 − 𝐾2) 
x (𝑁 − 𝐾2), while the two zeros have dimension of (𝑁 − 𝐾2)𝑥𝐾2 and (𝑁 − 𝐾2) 𝑥 𝑚. J is also a square matrix. 
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useful information to add to the model in order to present a more correct forecast. The main reason to 

prefer such an approach can be found in the behavior of CBs, as they prefer to set their interest rates’ 

goals respect to the whole economy or, as Mönch suggests, in a “data-rich environment”. The model 

also uses a similar approach to the AP, but changes some of its fundamental becoming a so-called 

Factor Augmented Vector Auto Regression, or simply FAVAR. This can be a good starting point in 

order to enhance Ang and Piazzesi, increasing the macroeconomic explanatory power while 

maintaining the latent variables. The idea is then the same used in the FAVAR by Bernanke, Boivin 

and Eliasz (2005), observing that using data such as the inflation could not realistically be perfectly 

observable, and they can generally be noisy. Other studies, conducted in the same years in which Ang 

and Piazzesi were developing their model, present similarities40, using dynamic factor models which 

exploits the use of large macro information dataset. This approach is then useful to separate the 

commonly used cross-sectional data into what they call “common components”, which incorporates 

the most useful information regarding the macro factors and allowing a better separation among them 

and the noise. 

2.3 Implementing a FAVAR version of the Ang and Piazzesi Model 

2.3.1 Setup data and policy rule 

Starting from these observations, it is worthy to develop a similar context in which the Ang and 

Piazzesi (AP) can be improved using some concepts used for other methods and changing the nature 

of latent variables. Doing this means changing the original model into a version that incorporates 

different factors. The Mönch model, for example, used a complex dataset to which extract different 

PCs, noticing that until the 10th there is a variance explanatory power equal to 70% of the data. Due to 

dimensionality issues, again it is worthy to use fewer and the author decided to adopt four. This is 

difficult to implement in the Ang and Piazzesi model for its numerous restrictions, but it is a starting 

point. Also, depending on the data chosen, which are then well defined in the next chapter, the 

eigenvalue decomposition appears to be more useful compared to the original model’s specifications. 

Considering the AP, it is though possible to change the equation that drives the short rate, specifically 

using the same lagged Taylor rule to define the dynamic of the short rate. This was already specified 

in the AP paper and it proved to be more effective for short term forecasts. The modification is then 

focused on considering the same “large dataset of macro variables” theorized by other authors, such 

as Bernanke and Boivin (2003), linking the movements of the whole economy to the short rate. This 

improvement would though give some issues regarding the structure of the model: having already 

 
40 Like the paper of Stock and Watson, (2002) 
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specified two different factors, latent and non-latent, adding another one increases the estimation 

process. Introducing a similar policy, for example, would mean changing the assumption of 

orthogonality put in place in the AP model to link macro variables to latent term structure factors. A 

macro lagged version of the Taylor rule version can be equally used. In the FAVAR specification, this 

equation contains an orthogonal shocks error term and with the short rate. It should be possible to 

substitute this error term with the latest one, but it would, again, increase the complexity of the model, 

increasing the terms to be estimated. 

In order to simplify the whole process, it is possible to follow the FAVAR approach, introducing the 

modified policy rule for which the policy reaction function specification in AP can be modified to: 

𝑟𝑡 = δ0 + δ11
′ 𝑋𝑡−1

𝑜 + δ12
′ 𝑟𝑡−1 (54) 

This goes to modify the dynamic equation, as it must contain the short rate term, so that: 

𝑋𝑡 = 𝜇 +Φ𝑋𝑡−1 + Σεt (55) 

With: Xt = (𝑋𝑡
𝑜′ , 𝑟𝑡, … 𝑋𝑡−𝑝+1

𝑜′ , 𝑟𝑡−𝑝+1). The companion form of the matrix follows the same identical 

structure to the one in AP. Knowing equation (55) it is also possible to reduce the short rate expression 

in term of 𝑋𝑡, so it is only dependent on a matrix δ′ of (k x kp) such that: 

𝑟𝑡 = δ′𝑋𝑡 (56) 

The approach followed here is then a mix of the FAVAR approach used by Mönch and the original 

Ang and Piazzesi described above. The decision of abandoning the use of latent comes from an already 

abundant macro parameter and the specification given by FAVAR, to which the use of latent variables 

can only increase complexity with few benefits.  

2.3.2 Modified Pricing Kernel 

Doing this also ensures that some equations are kept the same as they were in the AP model. Namely, 

the pricing Kernel is still the one suggested by Duffee (2002). Also, knowing this, the market price of 

risk is kept the same. It should be noticed that this could also be lagged, but since the term 𝑋𝑡 already 

has some contemporaneous and lagged term inside, it is not a big loss not including it. Nonetheless, 

some adjustments must be done in terms of equations and matrix. First, the pricing kernel now does 

not need the term 𝛿0, as it stood for the first of the short rate in AP, now substituted by the term δ′ plus 

the 𝑋𝑡
𝑜. In this way, the pricing kernel becomes: 

𝑚(𝑡+1) = 𝑒
(−
1
2
λ𝑡
′λ𝑡−δ

′𝑋𝑡 + λ𝑡
′εt+1) (57) 



32 
 

In order to find the prices of the bond, it can be followed the same exact process used for the AP, 

recursively finding the bond price starting from the canonical assumption that yields are affine in the 

state variables, allowing the bond to be exponential linear functions of the state vector. This classical 

definition represents equation (46). Using the same approach, the prices for the bonds are: 

𝐴̅𝑛+1 =  𝐴̅𝑛 + �̅�𝑛
′ (𝜇  −  Σ𝜆0) +  

1

2
�̅�𝑛
′ΣΣ'�̅�𝑛 (58) 

�̅�𝑛+1
′ = �̅�𝑛

′ (Φ − Σλ1) − δ
′ (59) 

The new values are equal to 0 for 𝐴1  and δ′ for 𝐵1. 

2.3.3 Estimation Process: multiple approaches 

At last, it comes to the estimation process. Compared to the AP model seen above, it is simplified 

thanks to the absence of latent factors. The estimation can then be performed in the same two steps, 

with few modifications or using a single-step Bayesian likelihood approach, like Bernanke et al. (2005) 

suggest. This last provides better results but as it must be conducted jointly for every parameter, which 

leads to some issues regarding the restrictions needed. The first step is conducted using a VAR(p) to 

obtain the first step coefficients, exactly as AP, but the determination of 𝜆0 and 𝜆1 is not performed 

through a GMM given the use of a VAR (p). The reason is quite straightforward, as having to determine 

each moment for each lag can create confusion and thus increases the number of parameters in the 

estimation. The procedure follows partially what AP does, looking for the values that minimize the 

residual squares of errors between the estimated yields and model implied observed ones. This 

minimization can be done in different ways, but the one that follows uses a simple approach in order 

to keep the estimation process quick. It starts by setting first the risk premia constant and estimating 

the yields, using these results as a starting point for a second estimation. Looking for the value that 

minimize the error considering fixed risk premia, it is possible to get a second estimate for the yields 

in case of time-varying risk premia. Lastly, it is possible to use the values founded for the vector 𝜆0  

and the matrix 𝜆1 to perform a last regression, that sets to zero all the parameters that are non-

significative. Now comes the differences that make this approach the most feasible for this kind of 

large dataset: as Sims (1980) reports, using a single step estimation in identifying some necessary 

restrictions gives an advantage in terms of the estimation itself, but the drawbacks are then defined by 

the correct use of these restrictions. In case they are wrong, the model is then badly specified and 

looking up for the mistake is generally extremely time costly. Imposing a simple normalization as done 

in the AP on the model leads to the use of the two-step estimation procedure, which is then dominated 

by the use of the OLS and the MLE, given that the dimensionality of the model are restricted, as in 

this case and opposed to the original FAVAR specification. 
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Chapter 3: Estimation Results 

3.1 Setting and Data 

Following the previous chapter, this section provides a modification in the Ang and Piazzesi model 

through the use of the FAVAR approach. Instead of using a large dataset, the approach here considered 

is parsimonious, using few data in order to provide a good forecast without the incumbrance of a large 

dataset and a quick double step estimation process. The first step is performed through the use of a 

simple OLS estimation, while the second can be done using a recursive minimization algorithm, such 

as a Kalman filter. 

The data used for the estimation follow the Ang and Piazzesi approach, defining a set of variables 

divided into two groups: the first represents Inflation, while the second Real Activity. These groups 

are respectively formed from a combination of Purchase Parity Index, Consumer Parity Index, 

Commodities Average Price, Employment, Unemployment, Average Wage and Industrial Production. 

This follows the common approach in term structure analysis of considering a limited range of 

macroeconomic information grouped into two measures. Opting for this approach permits using a 

limited amount of inputs, contrary to Bernanke et al. (2004) and Mönch (2006), which use a massive 

information matrix in order to extrapolate eventually useful factors through principal component 

analysis. This thesis follows then the same set of inputs variable of Ang and Piazzesi grouped in a 

single matrix, assuming that the time series contained can be explained by a set of common factors 

plus the monetary policy instrument and an idiosyncratic noise. The span of observation included goes 

from January 1962 to December 2018, for a 864 observations vector for each variable and comes from 

the Federal Reserve database. This choice was made in order to include every meaningful 

macroeconomic event. The macro data are calculated considering the log return on each observation 

compared to the same of the previous year. 

The procedure starts by extracting the principal components from the data matrix, following the 

procedure outlined by Mönch (2006). In this context, a normal PCA is not possible, as the inputs matrix 

is dependent not only by the unobservable factors but also by the policy rate, such that: 

𝐷𝑡 = 𝛬𝑓𝐹𝑡 + 𝛬𝑟𝑟𝑡 + 𝑒𝑡  

Where 𝐷𝑡 is the initial data matrix, 𝛬 are matrices of factor loadings, 𝑟𝑡 is the short-term rate and 𝐹𝑡 

the vector of observations on the common factors. Using this assumption, prior to extract the common 

factors, it is mandatory to assess the effect of the short rate on the matrix 𝐷𝑡. This can be easily done 

by regressing all the variables in the matrix into 𝑟 and performing a PCA on the unified residuals’ 
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matrix. There are other solutions41 other than the one used to derive this thesis’s model but require 

more work and the benefits are not that much. 

 

 

From the table here above it appears that much of the variance is explained by the first and the second 

component, which can be used to develop the same one factor model described in Ang and Piazzesi42. 

This can help the estimation procedure that will be conducted in the next step, keeping the model 

parsimonious and thus avoiding the dimensionality issues in the calculations that can occur with more 

factors.The extracted two factors can be then used to derive the components used to define the first 

two variables to be used in the model. Using the one factor model 𝑍𝑡
𝑖 = 𝐶𝑓𝑡

0,𝑖 + 𝜀𝑡
𝑖 as in equation (32), 

two vector of dimension (k x 1) can be defined to be as factors for Inflation and Real Activity. The 

correlation between the input data and the macro factors obtained is high among them, with an average 

correlation of 0.9. The plot for the two Macro Factors resembles the one provided by Ang and Piazzesi 

and is reported below.  

 
41 Bernanke et al. (2006) 
42 Equation (32) 

Figure 2. The plot represents a visual presentation of the dynamics of the macro factors. The biggest movements appear to be during 
crisis, as expected.   
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Nonetheless, principal components factors are here improperly defined as Real activity and Inflation, 

but this distinction is maintained for more clarity in the references. The reason for this is due to the 

rotation indeterminacy issues that occur in PCA and makes almost impossible to trace them to the 

original inputs. However, some information can be deducted by analyzing the correlation between the 

data and the factors and by running multiple regressions to determine the 𝑅2 for each regression.  The 

tables below report both the correlation and the regressions’ results for the factors. 

 CPI PPI PCOM EM UNEM IP WAGE 

Inflation 0.0682 0.204 0.273 0.931 -0.873 0.894 0.962 

Real Activity -0.911 -0.946 -0.924 -0.00415 -0.331 0.173 -0.331 

 

 

 CPI PPI PCOM EM UNEM IP WAGE 

Inflation 0.83076 0.89511 0.85316 0.00002 0.10953 0.02991 0.04922 

Real Activity 0.00465 0.04147 0.07464 0.86727 0.76197 0.79923 0.92571 

 

 

For what concerns the yields, the 1-month, 6-month, 1 year and 3 year are taken into consideration 

for the estimation process and for the results. The yields appear to be very correlated among them, 

with the highest level between the 6-month and 1 year. They become handy in the next parameter 

estimation in order to minimize the market price of risk’s factors. 

The last parameter needed to start the estimation is the short rate. Following the literature, it is 

possible to infer that the lagged short rate can be important to improve the estimation. Following 

equation (60), it is possible to assume that each of the macroeconomic data series can be driven not 

only by the Macro Factors extracted, but also by the monetary policy instrument r43. Incorporating the 

short rate, which can be proxied using a short maturity yield44, the matrix of the state variables 𝑋𝑡 is 

then equal to (3 x n).  

 
43 There is also an idiosyncratic noise that drives the data, as there can be some unobservable phenomena. It is reported in 

equation (60). 
44 In this thesis it is proxied by using the 1-month yield. 

Figure 3. A table representing the correlation among the different inputs and the two macro factors.   

Figure 4. A table representing the regressions on the two factors for each variable. They provide a good point of view in 

understanding what moves each yield. The distinction in Inflation and Real Activity for Factor 1 and Factor 2 follow Figure 3 and 4. 
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Having defined the state variables, the next step is defining a dynamic for the whole system, which 

follows equation (55) for its companion form. Instead of using 12 lags, as Ang and Piazzesi do in their 

model, it is better to use only 4 lags for this variation: including more does not bring any significative 

improvement and only enlarge the estimation matrix. Obviously, the most significant variable appears 

to be the short rate, but the significance first two lags of inflation and real activity seem to be equally 

high, but it steadily decreases until the fourth lag. The VAR (4) is then the preferred approach to define 

the dynamics and follows equation.  

𝑋𝑡 = μ + Φ𝑋𝑡−1  + ⋯+  Φ4𝑋𝑡−4 + εt 

The table reports all the coefficient obtained through the VAR (4), which are used to perform a first 

estimates for the bond prices needed for the next steps. Notice that these are the top left values of a 

bigger matrix which account also for more lags whose elements are set to zero. The matrix Σ represents 

the variance covariance matrix of the VAR and is a triangular top left matrix. 

 

 

 

 

 

Figure 5. A table representing all the values found for the first three parameters needed for the estimation. Notice the shape of the Σ. 

Notice that all the matrices hereby are partially reported, as their dimension is (kp x kp), with all the other values set to 0, except for 

the φ matrix, which contains also a diagonal of 1 elements. 



37 
 

3.2 VAR Analysis 

3.2.1 Impulse Response 

An impulse response analysis can help describing the reaction of the variables that constitutes the 

model to exogenous impulses, commonly defined as shocks. These shocks can derive from a multitude 

of effects, such as a change in the government that creates a different spending policy and tax rates or 

a shock in productivity determined by unforeseeable events or, at least, not considered in the model. 

Impulse response considers the reaction of the model’s inputs after a shock, looking for their behavior 

through time and the persistence of the same shock. Below are reported the results from the impulse 

response of the VAR. Considering F_RA as the factor for the Real Activity and F_I as the factor for 

inflation and V1 for the short rate. Time is represented on axis x in month, stopping at 50. The plots 

that follow report the impulse responses derived from a Cholesky one standard deviation innovation 

to each variable. They are then grouped in order to be easily understood by the reader. The humped 

shape that both Inflation and real Activity have in relation to each other is expected, as they are macro 

variables with a certain degree of correlation among them, especially since the factor derives from a 

single matrix of multiple data series.   

   The response from the short rate respect to inflation seems to be the most interesting relation among 

the ones observed. It seems that the inputs contained in it can explain it better than the other PC factor, 

Real Activity. Also, even if slightly visible the Inflation shows a change within the period interested 

by the model, while the Real Activity seems to be completely flat in the impulse response respect to 

the short rate.  
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3.2.2 Variance Decomposition 

The table here presents the analysis on a i-step ahead variance decomposition for the model’s implied 

yields following the VAR (4) used for the dynamics. It appears that the lagged short rate explains much 

of the variations for the short period, with the Inflation factors rapidly increasing as the i-step 

approaches infinite. The factor Real Activity, which encompasses much of the “real” macroeconomic 

data, such as Industrial Production and Wages, does not provide any real explanation of the yields’ 

variance. The results are calculated after the estimation of all the needed parameters but is reported 

before in order to present a clear view on the VAR elements. 

 

 

6-Months Yield    

i-step Real Activity Inflation Short Rate 

6 0.02 0.09 0.89 

12 0.03 0.13 0.84 

36 0.06 0.34 0.57 

∞ 0.03 0.3 0.57 

Figure 6. The plots for the Impulse responses of the VAR (4) respect to each variable. The decomposition follows the so-called 

Orthogonal Impulse Response, which use a Cholesky decomposition. All the calculations have been made using the R package VARS. 



39 
 

12-Months Yield 

i-step Real Activity Inflation Short Rate 

6 0.01 0.07 0.92 

12 0.02 0.11 0.87 

36 0.05 0.23 0.72 

∞ 0.05 0.22 0.73 

 

 

36-Months Yield    

i-step Real Activity Inflation Short Rate 

6 0.0 0.06 0.94 

12 0.03 0.1 0.87 

36 0.04 0.12 0.84 

∞ 0.03 0.11 0.86 

 

The Variance decomposition of the VAR respect to the implied yields present some similarities to 

the ones presented by Ang and Piazzesi (2003). In this case, the Short Rate assumes a bigger role, 

explaining much of the variance for the longer-term yields, while for the short-term Inflation seems to 

have an impact on the 6-months yield’s variations. Real Activity is somehow poor in explaining the 

variance of the yields, with a significance close to zero when it comes to forecast the 36-months yield. 

3.3 The short rate  

A first way to observe the explanatory power of the macro economic factors can be a regression on 

the short rate considering a primitive matrix without the lagged short rate. The 𝑅2 is 0.31, which means 

that using only the factors returns some hints on the yields’ behavior. Adding lags lead to an even 

better 𝑅2 of 0.48. Using the matrix 𝑋𝑡 in the short rate regression provides a 𝑅2 equal to 0.98. All these 

results are similar to the ones provided by both Ang and Piazzesi, with little variations. In order to 

properly set the short rate, it is useful to adopt a reduced form. Specifically, this estimation follows the 

short rate equation from Mönch, where there are no constant and the matrix δ′ present a series of zero 

and one in order to make it depend only on one lag of the short rate. This is due the massive significance 
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given by the lagged short rate compared to the Macro factors and also to ease the estimation, setting 

numerous constraints. Thus, the short rate assumes the form of equation (56), which is: 

𝑟𝑡 = δ′𝑋𝑡 

3.4 Market Price of Risk  

Having determined the first three parameters (𝜇,Φ,Σ) needed to compute the bonds’ prices and thus 

the yields accordingly to equation (58) and equation (59), it is possible to obtain a first estimate. Not 

knowing the market price of risk, which follows equation (43), the only way to determine it is to start 

by determining the yield setting both the elements in vector λ0 and in the matrix λ1 equal to zero. By 

doing this it is possible to get a first estimate for the yield. Knowing it, it is then possible to obtain a 

first value for the vector  λ0 by looking for the values that can minimize the sum of residual squares 

obtained by the estimated yield minus the model implied one. The formula is then: 

𝑆 =  ∑∑(�̂�𝑡
𝑛  − 𝑦𝑡

𝑛)2
𝑁

𝑛=1

𝑇

𝑡=1

 

Assuming values equal to zero for the matrix λ1 is equal to assume that the risk premia are constant 

throughout the time series and this first approximation gives the starting values for λ0 that can be used 

for the second step. In this second estimation, both the vector and the matrix are estimated letting all 

the parameters freely, in order to obtain more fitting values. Lastly, as a common practice in the 

literature, the insignificant elements of the matrix are set to zero and a last estimation is conducted to 

enhance the values. 

This approach is conducted using recursive minimization algorithm and does not involve the GMM 

used in other models45. This is the last step in order to find a good fitting for the estimated yield in 

comparison to the one used for the regression.  

The different yield found can be computed recursively using equation (60), which encompasses the 

two previous equations in order to set the classic exponential affine form. Following this form, this 

thesis analyses only a few: the 6 months, 1-year and 3-year yields in order to present the result of this 

model compared to the observed yield.  

 
45 Specifically, Ang and Piazzesi use it in order to improve in sample fit. Nonetheless, since the FAVAR approach also 

considers lags of order higher than one, using the GMM would only lead to computation issues due to the massive amounts 

of variables.  
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The market price of risk estimates found are reported in the table below. 

λ̃0 �̃�1 

23.672 1.532 -0.931 -2.904 

10.041 -2.047 0.342 -0.425 

-41.163 - - 0.003 

 

Deriving them allows to calculate risk premia for the macro factors used in the model and the excess 

returns for the yields used in the model. From the data, it seems that the inflation risk premia have the 

highest correlation with the yields, in particular with 6-months yield.  

 

  

There is a relationship between the excess returns of the yields and the term premia of the macro 

factors. Usually, when it comes to simple one factor models with constant risk premia and volatility, 

the expected excess returns for the yield is given by a simple linear relation between the volatility, the 

risk premia and the maturity of the bond. In this case, it is more difficult to acknowledge the exact 

relationship, as there are more factors and the risk premia are time varying. 

Figure 7. The table presents the estimates for the market price of risk. The non-significant values are set to zero.  

Figure 8. The plot reports the scaled risk premia for the first macro factor and the excess returns for the 6 months yield. there seems to 

be a high correlation between the risk premia found and the excess returns of the yields 
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3.5 Yields Estimates 

The graphs that appear below present the results from an in-sample forecast along all the data period. 

The 6 months yield presents a good forecast of the yield’s behaviour, with few spikes during financial 

crisis and a good fit overall. Especially during the post-Volcker inflation, the interest rates are well 

described by the model, but failing to describe it during the last financial crisis. It is interesting to 

notice that the model exacerbates the extreme movements, such as the one that followed 2008 crisis, 

hypothesizing negative yields. This is an interesting result considering the macro factors inputs used 

and the collapse of the U.S. economy that followed.  

For what concerns the overall precision, it seems that the model allows to find good results until a 

bond maturity equal to 10 years. After that, precision starts declining inevitably. Even if it does not 

seem a big issue, as the model is calibrated to forecast bond yields with a maximum of a three years 

maturity, it could still create some issues for investors interested in better long-term results. The 

simplest way to avoid this is to re-calibrate the model to use more long-term yield to obtain the market 

price of risk values needed. 

 
Figure 9. The plot follows the evolution of the 6-months yield modelled using three inputs variables and their lag compared to the real 

observed yield. The plot is in level and comprises the yield’s evolution from January 1962 to December 2018.   
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Figure 10. The plot follows the evolution of the 12-months yield modelled using three inputs variables and their lag compared to the 

real observed yield. The plot is in level and comprises the yield’s evolution from January 1962 to December 2018.   
 

Figure 11. The plot follows the evolution of the 36-months yield modelled using three inputs variables and their lag compared to the 

real observed yield. The plot is in level and comprises the yield’s evolution from January 1962 to December 2018.   
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Following the plots for the 1 and 3-years yield, the model seems to predict yields’ curve inversions, 

that usually occur during markets’ and economic tensions.  It also appears that normally the model 

quickly recovers from these humps, converging to what is the observed yield in 20 months. This is not 

true for the last crisis, as the plots show that the estimated yields travel almost parallel to the observed 

one for a period longer than 9 years, starting first signs of convergence during 2017 and 2018. 

3.6 Factor Loadings for 𝑏𝑛 

In this section are presented the factor loadings found for the coefficient 𝑏𝑛 for yields with increasing 

maturity. By construction, the two macro factors start at zero, while the short rate at one. The 

coefficients here presented can be also interpreted as the response of the n-month yield to a 

contemporary shock to each factor. As it can be seen, the short rate tends to decrease throughout the 

plot, trending for zero, while the two macro factors move positively after a short decrease.  

 

 

Considering the huge amount of time observations and the scarcity of unused data, performing an 

out of sample forecast does not provide any interesting results. The reasons are mainly linked to the 

fact that the model uses all the data from 1962 to 2018 in order to get a good fit, leaving only one year 

of buffer. Moreover, still trying to perform an OOS forecast does not provide good results due to the 

Figure 12. The plot presents the factor loadings for the term 𝑏𝑛 . Note that by construction the starting point is set to zero for the 

macro factors and to one for the short rate 
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financial crisis, which has created a big discrepancy in the model. Nonetheless, since the modeling 

follows the one determined by Mönch, he strongly proves that avoiding a perfect fit to the data used 

in the modeling helps the out of sample forecasts. 
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Conclusions 

The model hereby described presents a simple modification of the Ang and Piazzesi mode, using a 

close approach to the one adopted by Mönch, but with some data and estimation modifications. The 

data matrix used for the two macro factors only encompasses few data concerning inflation and real 

activity, available on the FED website. The benefits of adopting this approach comes from its 

simplicity in estimation and dynamics compared to others. Looking at those that uses a single step 

estimation procedure, which adopt maximum likelihood in order to jointly obtain all the parameters 

needed for the forecasts, it is quicker and returns good results. That approach still gives better results, 

but needs much more complexity with few benefits, needing a series of multiple restrictions and the 

derivation of the likelihood function.  

Moreover, the adoption of a two-step estimation leads to a wide choice of techniques in order to 

obtain the parameters, spacing from OLS and GMM to more complex approaches. Looking at the 

results, it appears that the estimated yields resemble very well the behavior of the observed one, with 

an 𝑅2 of way above 0.9. The forecasts seem to be very accurate considering the small amount of data 

used to derive them. Even if usually the FAVAR requires a large dataset to work, using less inputs can 

be less time consuming. Moreover, the data used are all public and can be easily accessed by the 

Federal Reserve official site. Using a different approach in order to get the unobservable factors would 

lead to slightly different results, but the approach underlined by both Mönch (2006) and Bernanke et 

al. (2004) seems to be the most reasonable and with the best time-results ratio.   
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Recap 

This thesis analyses the different approaches used to describe the term structure and yield curve 

dynamics, taking into consideration their advantages and disadvantages. The interest in this kind of 

models is somehow changeable, as it increases during crisis and decreases during prosperous times, 

with few exceptions. The starting point of the discipline find its foundations in the model proposed by 

Vasicek in 1977, which looks at the similarity and the differences between the yields’ and the stocks’ 

movements. The fundamental intuition on the model’s dynamics led to a vast number of articles and 

models, using different points of view to solve the difficult forecast of the yields.  

Unfortunately, multiple issues arise, as the governments set the interest rates following different 

purposes. As a rule, Central Banks (CBs) generally tend to maintain price stability as their main goal, 

but they also tend to adjust it in favour of more specific issues or targets they want to reach. 

Employment is, for example, one of the main macroeconomic indicators that a CB wants to keep 

steady. Moreover, during a crisis the CB would follow a strategy in order to bring back the economy 

to their previous status, as the leading indicators tend to become unpredictable. A good example to 

start with is the inflation that occurred in the United States between 1970s and the first years of 1980, 

subdued by the Federal Reserve approach. Setting higher yields helped to restore the situation in few 

years, averting the risk of an excessive inflation, thus confirming their usefulness. Nonetheless, 

investors do not know the CBs intentions and usually tends to guess, basing their intuitions on different 

factors. This is an issue for those who are interested, for example, in building a portfolio that includes 

bonds of different maturities to hedge the risk.  

At this point, term structure models become useful, as they use observable inputs in order to find 

plausible results for the expected yields. The models presented in this thesis help both investors and 

Central Banks to provide good forecasts using different methodologies and presenting both advantages 

and disadvantages, 

The core of this work uses a specific model in order to provide a more in-depth analysis, the Ang 

and Piazzesi (2003). Their approach is different from previous works on the topic, incorporating 

observables macroeconomic extracted factors in combination with latent ones. Nonetheless the 

approach needs a two-step estimation which requires multiple constrictions. One way to avoid this 

issue is to use a similar two-step procedure as the on proposed by Mönch (2005) and use a modified 

version of the FAVAR approach defined by Bernanke et al. (2005). The thesis provides an analysis on 

the advantages of the model and the forecasts for the 6, 12 and 36 months implied by the model. 
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The issues in modelling the yield curve 

Bonds are amongst the most valuable instruments used by public and private institutions to obtain 

liquidity from third party investors. By buying a bond, the holder agrees to lend a pre-determined 

amount of money to the issuer in exchange of interests that can be paid at multiple dates until maturity, 

or in a single solution together with the lent capital. The yields used are only U.S. zero discount bonds, 

because they can be modelled in an easier way compared to the ones that have multiple coupons. The 

yield curve represents the relationship that links the different interest rates for the same instrument – 

with the same credit quality - at different maturities. The graphic representation of the term structure 

is defined as “yield curve” and it is quite useful as it comes to provide a quick understanding of the 

bonds’ market behaviour. The problem that arises from having a snapshot of the yield curve is that 

it is not a scalar value but instead a vector quantity. In other words, it is not limited to a single instant 

in time, but it varies for each t, adding the time dimensionality factor to the problem. After the quick 

introduction to bond pricing, it is now worth to add some notions about other conditions needed for a 

model to work. 

There are different ways to model the term structure. Each of them is designed to observe the problem 

of the term structure from a different point of view, resulting in multiple advantages and disadvantages. 

A good classification has been made by Rebonato46, who differentiates the models considering their 

structure and follows. 

• Statistical models, like the one that will be proposed in the next chapter, rely on their strength 

in the so-called Vector Auto-Regressive or VAR models, which are extensively used to forecast yield 

and risk premium estimates. This model has a great predictive power in contrast to the other models 

here mentioned, but bases the whole analysis to time series data, bringing large error in the forecast, 

especially for longer maturities. Its flexibility still makes it a good choice to model term structure, in 

addition to the possibility of easily using the implied impulse response functions and variance 

decompositions to get an additional understanding of macroeconomic and yields interactions47. From 

a mathematical point of view, they are basically Vector Auto-Regressive models that have their 

foundations in the AR (1) process, an autoregressive model of order 148:   

𝑥𝑡+1 =  µ + 𝑥𝑡𝜑 +  𝜈𝜂𝑡+1 (11) 

In this context, µ represents the intercept for the regression and the 𝜑 its slope.  

 
46 Bond price and yield curve modelling, Rebonato 
47 Cochrane and Piazzesi (2008), Diebold and Rudebusch (2013).  
48 with 𝜂𝑡+1~𝑁(0,1). 



2 
 

• Structural no-arbitrage models. These include the no-arbitrage conditions from their 

assumptions and explains the three components of the yield curve: expectations, risk premia, and 

convexity. The most known models from this group are Vasicek and Cox-Ingersoll-Ross. Both use 

a single factor model to estimate the curve yield, but the last incorporates a square root factor in 

order to avoid negative interest rates, as pre-crisis academics were not interested in considering the 

case. 

• Snapshot model: such as the well-known Nelson-Siegel. They, as the name suggests, are cross-

sectional models that give a glimpse of how the curve behaves in order to interpolate the yields that 

are unobservable using observable data. It is also worth to notice that this kind of model gives as 

outputs the discount bonds or – to say it in another way - the inputs for the other model types here 

described. 

The most appreciated approach to the yield curve issue considers using an affine term structure 

model, which works by linking the term structure of interest rates with a time-invariant linear function 

made up by a set of variables, which can be latent or observable. This distinction is important, as from 

the 90s the augmentation with latent variables has brought some advantages to the model. Indeed, even 

if they cannot be compared to the other variables, they own an intrinsic explanatory capacity. This has 

led the research to include different numbers of latent variables in affine term structure models, but 

defining these factors with different names, such as real inflation (Dewachter, Lyrio and Maes, 2005) 

or real short rate (Pearson and Sun, 1994), even if their data did not include those data. Another issue 

is related to the number of variables that should be included, but empirical studies (Knez, 1994) have 

noted that three latent are enough to explain much of the changes. Their labels change between 

different studies and paper, but recently they were linked to their effect on the curve instead of arbitrary 

names, specifically: level, slope, and curvature.  The starting point for an affine model is the stochastic 

process that drives the dynamics of the variables involved. The two models analysed in the thesis both 

use a VAR process with different lags and are calculated in discrete time. 

The Ang and Piazzesi Model (2003) 

The Ang and Piazzesi model combine the techniques seen in the first paragraphs in order to forecast 

bond yields, describing joint dynamics for macroeconomic variables and bond yields in a VAR. The 

model is Gaussian and consists of five variables organized in the observable and unobservable 

categories. The two observables are built upon macroeconomic data opportunely reorganized, while 

the three orthogonal latent ones encompass the yield curve’s movement that cannot be forecasted by 

observable data alone. The model uses the no-arbitrage rule in order to set restrictions. Including 
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macroeconomic variables is useful to understand how yields move: from the data used in the paper, 

they explain up to 85% of yields’ movement at short and medium maturities. The VAR approach is 

also useful for the reasons seen at the beginning of paragraph (1.4) as it is possible to compute IRs and 

Variance decomposition easily in order to clearly see how the macro shocks impact the term structure. 

Latent variables impact can be seen in the same way and then compared to macro variables. 

Usually, other models, such as the Duffie and Kan (1996), follow a Taylor rule to specify the short 

rate such that the movements in t in the short rate are linked to macroeconomic variables movements 

at the same time. In a variant of this, a forward-looking version of the same Taylor rule, Clarida (2000) 

states that the Central Bank reacts both to the expected inflation and output gap49, including forecast 

errors in the shock 𝑣𝑡. Ang and Piazzesi present two variations of their idea: a VAR model which 

encompasses macro factors plus three latent yields to forecast the model implied yields. The dynamics 

process follows a VAR (12) for the macro derived variables, while the unobservable ones an AR (1). 

The process estimation is performed in a double step: first they find the short rate and the VAR 

parameters through the use of an OLS, while the rest are derived using a MLE. This type of process 

allows to define all the factors needed for the yields’ forecasts but is quite demanding in term of 

calculations. But their idea has led to different models that uses macroeconomic inputs to improve 

term structure models.  

Mönch FAVAR Model 

The Mönch model (2006) developed a similar approach, using a complex dataset from which extract 

different PCs, noticing that until the 10th there is a variance explanatory power equal to 70% of the 

data. Due to dimensionality issues, again it is worthy to use fewer and the author decided to adopt four. 

This is difficult to implement in the Ang and Piazzesi model for its numerous restrictions, but it is a 

starting point. Also, depending on the data chosen the eigenvalue decomposition appears to be more 

useful compared to the original model’s specifications. Considering the AP, it is possible to change 

the equation that drives the short rate, specifically using the same lagged Taylor rule to define the 

dynamic of the short rate. This was already specified in the AP paper and it proved to be more effective 

for short term forecasts. The modification is then focused on considering the same “large dataset of 

macro variables” theorized by other authors, such as Bernanke and Boivin (2003), linking the 

movements of the whole economy to the lagged short rate. Nonetheless, this improvement would give 

some issues regarding the structure of the model: having already specified two different factors, latent 

 
49 Output gap is the gap between the theorical output an economy can reach and the output that currently has. In some 

model it is used to name latent. 
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and non-latent, adding another one increases the estimation process. Introducing a similar policy, for 

example, would mean changing the assumption of orthogonality put in place in the AP model to link 

macro variables to latent term structure factors. Moreover, a macro lagged version of the Taylor rule 

version can be equally used. In the FAVAR specification, this equation contains an orthogonal shocks 

error term and with the short rate. It should be possible to substitute this error term with the latest one, 

but it would, again, increase the complexity of the model, increasing the terms to be estimated. 

In order to simplify the whole process, it is possible to follow the FAVAR approach, introducing the 

modified policy rule for which the policy reaction function specification in AP can be modified to: 

𝑟𝑡 = δ0 + δ11
′ 𝑋𝑡−1

𝑜 + δ12
′ 𝑟𝑡−1 (54) 

This goes to modify the dynamic equation, as it must contain the short rate term, so that: 

𝑋𝑡 = 𝜇 +Φ𝑋𝑡−1 + Σεt (55) 

With: Xt = (𝑋𝑡
𝑜′ , 𝑟𝑡, … 𝑋𝑡−𝑝+1

𝑜′ , 𝑟𝑡−𝑝+1). The companion form of the matrix follows the same identical 

structure to the one in AP. Knowing equation (55) it is also possible to reduce the short rate expression 

in term of 𝑋𝑡, so it is only dependent on a matrix δ′ of (k x kp) such that: 

𝑟𝑡 = δ′𝑋𝑡 (56) 

The pricing kernel follows the same approach used in Ang and Piazzesi (2003), such that: 

𝑚(𝑡+1) = 𝑒
(−
1
2
λ𝑡
′λ𝑡−δ

′𝑋𝑡 + λ𝑡
′εt+1) (57) 

In order to find the prices of the bond, it can be followed the same exact process used for the AP, 

recursively finding the bond price starting from the canonical assumption that yields are affine in the 

state variables, allowing the bond to be exponential linear functions of the state vector. Using the same 

approach, the prices for the bonds are: 

𝐴̅𝑛+1 =  𝐴̅𝑛 + �̅�𝑛
′ (𝜇  −  Σ𝜆0) +  

1

2
�̅�𝑛
′ΣΣ'�̅�𝑛 (58) 

�̅�𝑛+1
′ = �̅�𝑛

′ (Φ − Σλ1) − δ
′ (59) 

The new values are equal to 0 for 𝐴1  and δ′ for 𝐵1. 

The approach followed here is then a mix of the FAVAR approach used by Mönch and the original 

Ang and Piazzesi described above. The decision of abandoning the use of latent comes from an already 

abundant macro parameter and the specification given by FAVAR, to which the use of latent variables 

can only increase complexity with few benefits.   
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Estimation and Results 

The data used for the estimation follow the Ang and Piazzesi approach, defining a set of variables 

divided into two groups: the first represents Inflation, while the second Real Activity. These groups 

are respectively formed from a combination of Purchase Parity Index, Consumer Parity Index, 

Commodities Average Price, Employment, Unemployment, Average Wage and Industrial Production. 

This follows the common approach in term structure analysis of considering a limited range of 

macroeconomic information grouped into two measures. Opting for this approach permits using a 

limited amount of inputs, contrary to Bernanke et al. (2004) and Mönch (2006), which use a massive 

information matrix in order to extrapolate eventually useful factors through principal component 

analysis. This thesis follows then the same set of inputs variable of Ang and Piazzesi grouped in a 

single matrix, assuming that the time series contained can be explained by a set of common factors 

plus the monetary policy instrument and an idiosyncratic noise. The span of observation included goes 

from January 1962 to December 2018, for a 864 observations vector for each variable and comes from 

the Federal Reserve database. This choice was made in order to include every meaningful 

macroeconomic event. The macro data are calculated considering the log return on each observation 

compared to the same of the previous year. 

The procedure starts by extracting the principal components from the data matrix, following the 

procedure outlined by Mönch (2006). In this context, a normal PCA is not possible, as the inputs matrix 

is dependent not only by the unobservable factors but also by the policy rate, such that: 

𝐷𝑡 = 𝛬𝑓𝐹𝑡 + 𝛬𝑟𝑟𝑡 + 𝑒𝑡  

Where 𝐷𝑡 is the initial data matrix, 𝛬 are matrices of factor loadings, 𝑟𝑡 is the short-term rate and 𝐹𝑡 

the vector of observations on the common factors. Using this assumption, prior to extract the common 

factors, it is mandatory to assess the effect of the short rate on the matrix 𝐷𝑡. This can be easily done 

by regressing all the variables in the matrix into 𝑟 and performing a PCA on the unified residuals’ 

matrix. For what concerns the yields, the 1-month, 6-month, 1 year and 3 year are taken into 

consideration for the estimation process and for the results. The yields appear to be very correlated 

among them, with the highest level between the 6-month and 1 year. They become handy in the next 

parameter estimation in order to minimize the market price of risk’s factors. The table below reports 

the result from the PCA 
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The extracted two factors can be then used to derive the components used to define the first two 

variables to be used in the model. Using the one factor model 𝑍𝑡
𝑖 = 𝐶𝑓𝑡

0,𝑖 + 𝜀𝑡
𝑖 as in equation (32), two 

vector of dimension (k x 1) can be defined to be as factors for Inflation and Real Activity. The 

correlation between the input data and the macro factors obtained is high among them, with an average 

correlation of 0.9.  

Having defined the state variables, the next step is defining a dynamic for the whole system. Instead 

of using 12 lags, as Ang and Piazzesi do in their model, it is better to use only 4 lags for this variation: 

including more does not bring any significative improvement and only enlarge the estimation matrix. 

Obviously, the most significant variable appears to be the short rate, but the significance for the first 

two lags of inflation and real activity seem to be equally high, but it steadily decreases until the fourth 

lag. The VAR (4) is then the preferred approach to define the dynamics and follows equation.  

𝑋𝑡 = μ + Φ𝑋𝑡−1  + ⋯+  Φ4𝑋𝑡−4 + εt 

From the VAR it is possible to obtain some useful results to infer the data structure. VAR impulse 

response and variance decomposition can give some glimpse on how much the different components 

influence the estimated yields’ curves. 

Orthogonal Response 

The plots that follow report the impulse responses derived from a Cholesky one standard deviation 

innovation to each variable. They are then grouped in order to be easily understood by the reader. The 

humped shape that both Inflation and real Activity have in relation to each other is expected, as they 

are macro variables with a certain degree of correlation among them, especially since the factor derives 

from a single matrix of multiple data series.   

   The response from the short rate respect to inflation seems to be the most interesting relation among 

the ones observed. It seems that the inputs contained in it can explain it better than the other PC factor, 

Real Activity. Also, even if slightly visible the Inflation shows a change within the period interested 

by the model, while the Real Activity seems to be completely flat in the impulse response respect to 

the short rate.  
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3.2.2 Variance Decomposition 

The variance decomposition presents the analysis on a i-step ahead variance decomposition for the 

model’s implied yields following the VAR (4) used for the dynamics. It appears that the lagged short 

rate explains much of the variations for the short period, with the Inflation factors rapidly increasing 

as the i-step approaches infinite. The factor Real Activity, which encompasses much of the “real” 

macroeconomic data, such as Industrial Production and Wages, does not provide any real explanation 

of the yields’ variance. The results are calculated after the estimation of all the needed parameters but 

is reported before in order to present a clear view on the VAR elements. These results present some 

similarities to the ones presented by Ang and Piazzesi (2003). In this case, the Short Rate assumes a 

bigger role, explaining much of the variance for the longer-term yields, while for the short-term 

Inflation seems to have an impact on the 6-months yield’s variations. Real Activity is somehow poor 

in explaining the variance of the yields, with a significance close to zero when it comes to forecast the 

36-months yield. 

Figure 1. The plots for the Impulse responses of the VAR (4) respect to each variable. The decomposition follows the so-called 

Orthogonal Impulse Response, which use a Cholesky decomposition. All the calculations have been made using the R package VARS. 
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3.4 Market Price of Risk  

Having determined the first three parameters (𝜇,Φ,Σ) needed to compute the bonds’ prices and thus 

the yields, it is possible to obtain a first estimate. Not knowing the market price of risk, the only way 

to determine it is to start by determining the yield setting both the elements in vector λ0 and in the 

matrix λ1 equal to zero. By doing this it is possible to get a first estimate for the yield. Knowing it, it 

is then possible to obtain a first value for the vector  λ0 by looking for the values that can minimize 

the sum of residual squares obtained by the estimated yield minus the model implied one. The formula 

is then: 

𝑆 =  ∑∑(�̂�𝑡
𝑛  − 𝑦𝑡

𝑛)2
𝑁

𝑛=1

𝑇

𝑡=1

 

Assuming values equal to zero for the matrix λ1 is equal to assume that the risk premia are constant 

throughout the time series and this first approximation gives the starting values for λ0 that can be used 

for the second step. In this second estimation, both the vector and the matrix are estimated letting all 

the parameters freely, in order to obtain more fitting values. Lastly, as a common practice in the 

literature, the insignificant elements of the matrix are set to zero and a last estimation is conducted to 

enhance the values. 

This approach is conducted using recursive minimization algorithm and does not involve the GMM 

used in other models50. This is the last step in order to find a good fitting for the estimated yield in 

comparison to the one used for the regression. The different yield found can be then computed 

recursively. Following this form, this thesis analyses only a few: the 6 months, 1-year and 3-year yields 

in order to present the result of this model compared to the observed yields.  

Deriving them allows to calculate risk premia for the macro factors used in the model and the excess 

returns for the yields used in the model. From the data, it seems that the inflation risk premia have the 

highest correlation with the yields, in particular with 6-months yield.  

 
50 Specifically, Ang and Piazzesi use it in order to improve in sample fit. Nonetheless, since the FAVAR approach also 

considers lags of order higher than one, using the GMM would only lead to computation issues due to the massive amounts 

of variables.  
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There is a relationship between the excess returns of the yields and the term premia of the macro 

factors. Usually, when it comes to simple one factor models with constant risk premia and volatility, 

the expected excess returns for the yield is given by a simple linear relation between the volatility, the 

risk premia and the maturity of the bond. In this case, it is more difficult to acknowledge the exact 

relationship, since there are more factors and the risk premia are time varying. 

3.5 Yields Estimates 

The graphs that appear below present the results from an in-sample forecast along all the data period. 

The 6 months yield presents a good forecast of the yield’s behaviour, with few spikes during financial 

crisis and a good fit overall. Especially during the post-Volcker inflation, the interest rates are well 

described by the model, but failing to describe it during the last financial crisis. It is interesting to 

notice that the model exacerbates the extreme movements, such as the one that followed 2008 crisis, 

hypothesizing negative yields. This is an interesting result considering the macro factors inputs used 

and the collapse of the U.S. economy that followed.  

For what concerns the overall precision, it seems that the model allows to find good results until a 

bond maturity equal to 10 years. After that, precision starts declining inevitably. Even if it does not 

seem a big issue, as the model is calibrated to forecast bond yields with a maximum of a three years 

Figure 2. The plot reports the scaled risk premia for the first macro factor and the excess returns for the 6 months yield. there 

seems to be a high correlation between the risk premia found and the excess returns of the yields 
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maturity, it could still create some issues for investors interested in better long-term results. The 

simplest way to avoid this is to re-calibrate the model to use more long-term yield to obtain the market 

price of risk values needed.  

Figure 3. The plot follows the evolution of the 6-months yield modelled using three inputs variables and their lag compared to the real 

observed yield. The plot is in level and comprises the yield’s evolution from January 1962 to December 2018.   

Figure 4. The plot follows the evolution of the 12-months yield modelled using three inputs variables and their lag compared to the 

real observed yield. The plot is in level and comprises the yield’s evolution from January 1962 to December 2018.   
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Following the plots for the 1 and 3-years yield, the model seems to predict yields’ curve inversions, 

that usually occur during markets’ and economic tensions.  It also appears that normally the model 

quickly recovers from these humps, converging to what is the observed yield in 20 months. This is not 

true for the last crisis, as the plots show that the estimated yields travel almost parallel to the observed 

one for a period longer than 9 years, starting first signs of convergence during 2017 and 2018. 

Conclusions 

The model hereby described presents a simple modification of the Ang and Piazzesi mode, using a 

close approach to the one adopted by Mönch, but with some data and estimation modifications. The 

data matrix used for the two macro factors only encompasses few data concerning inflation and real 

activity, available on the FED website. The benefits of adopting this approach comes from its 

simplicity in estimation and dynamics compared to others. Looking at those that uses a single step 

estimation procedure, which adopt maximum likelihood in order to jointly obtain all the parameters 

needed for the forecasts, it is quicker and returns good results. That approach still gives better results, 

but needs much more complexity with few benefits, needing a series of multiple restrictions and the 

derivation of the likelihood function.  

Figure 5. The plot follows the evolution of the 36-months yield modelled using three inputs variables and their lag compared to the 

real observed yield. The plot is in level and comprises the yield’s evolution from January 1962 to December 2018.   
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Moreover, the adoption of a two-step estimation leads to a wide choice of techniques in order to 

obtain the parameters, spacing from OLS and GMM to more complex approaches. Looking at the 

results, it appears that the estimated yields resemble very well the behavior of the observed one, with 

an 𝑅2 of way above 0.9. The forecasts seem to be very accurate considering the small amount of data 

used to derive them. Even if usually the FAVAR requires a large dataset to work, using less inputs can 

be less time consuming. Moreover, the data used are all public and can be easily accessed by the 

Federal Reserve official site. Using a different approach in order to get the unobservable factors would 

lead to slightly different results, but the approach underlined by both Mönch (2006) and Bernanke et 

al. (2004) seems to be the most reasonable and with the best time-results ratio.   
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