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Introduction

This thesis analyses the different approaches used to describe the term structure and yield curve
dynamics, taking into consideration their advantages and disadvantages. The interest in this kind of
models is somehow changeable, as it increases during crisis and decreases during prosperous times,
with few exceptions. The starting point of the discipline find its foundations in the model proposed by
Vasicek in 1977, which looks at the similarity and the differences between the yields’ and the stocks’
movements. The fundamental intuition on the model’s dynamics led to a vast number of articles and

models, using different points of view to solve the difficult forecast of the yields.

Unfortunately, multiple issues arise, as the governments set the interest rates following different
purposes. As a rule, Central Banks (CBs) generally tend to maintain price stability as their main goal,
but they also tend to adjust it in favour of more specific issues or targets they want to reach.
Employment is, for example, one of the main macroeconomic indicators that a CB wants to keep
steady. Moreover, during a crisis the CB would follow a strategy in order to bring back the economy
to their previous status, as the leading indicators tend to become unpredictable. A good example to
start with is the inflation that occurred in the United States between 1970s and the first years of 1980,
subdued by the Federal Reserve approach. Setting higher yields helped to restore the situation in few
years, averting the risk of an excessive inflation, thus confirming their usefulness. Nonetheless,
investors do not know the CBs intentions and usually tends to guess, basing their intuitions on different
factors. This is an issue for those who are interested, for example, in building a portfolio that includes

bonds of different maturities to hedge the risk.

At this point, term structure models become useful, as they use observable inputs in order to find
plausible results for the expected yields. The models presented in this thesis help both investors and
Central Banks to provide good forecasts using different methodologies and presenting both advantages
and disadvantages,

The core of this work uses a specific model in order to provide a more in-depth analysis, the Ang
and Piazzesi (2003). Their approach is different from previous works on the topic, incorporating
observables macroeconomic extracted factors in combination with latent ones. Nonetheless the
approach needs a two-step estimation which requires multiple constrictions. One way to avoid this
issue is to use a similar two-step procedure as the one proposed by Mdnch (2005) and use a modified
version of the FAVAR approach defined by Bernanke et al. (2005). The thesis provides an analysis on

the advantages of the model and the forecasts for the 6, 12 and 36 months implied by the model.



Chapter 1 — Bonds: Components and Models

1.1 Bonds definition and Bond Yield Curve

Bonds are amongst the most valuable instruments used by public and private institutions to obtain
liquidity from third party investors. By buying a bond, the holder agrees to lend a pre-determined
amount of money to the issuer in exchange of interests that can be paid at multiple dates until maturity,
or in a single solution together with the lent capital. As this thesis will move forward into an affine
term structure model with macroeconomic variables, it is adequate to start from the basics, briefly

defining first what a bond is, what is the yield curve and how these can relate to the thesis’ purposes.

A first distinction must be made, since the bonds hereby analysed are only US discount bonds and are
assumed to be default-free. Zero-coupon bonds are extremely useful in this context and for such reason
in future paragraphs the latter will be simply referred to as bonds unless it is explicitly said otherwise.
The reason for their use comes from their straightforwardness as they can be treated in a more
mathematically convenient way than coupon bonds. In a more simplistic way, a zero-coupon bond
returns a notional made up by the price of the bond and its interests at maturity. To be more thorough
and see this from a more formal point of view, a zero-coupon bond is a financial security instrument
sold at a discount that pays a unit of cash at a predefined maturity — using a variable identified as T -
without paying any interests during its life. By looking at it in this way, there is a single coupon paid
at maturity which is a fixed amount equal to the notional 1 minus the price P7. From this, by defining

yTas the yield requested for a zero-coupon bond to pay its unit price, the following formula is obtained:
Pl = ¢~ T-0) (1)

Which can also be written as:

yi log(P{) (2)

T—t

These formulas are usually not priced in real-world conditions, but in a constructed environment
defined as risk-neutral world. In this space, it is possible to assert that the price of a security today is
equal to its expected future price discounted at the risk-free rate. The risk-neutral world is usually

defined with the letter Q, while real-world conditions with P1. Considering a stochastic process r, the

! To go from Real world to neutral risk it is usually used the Radon-Nikodym derivative. It is widely used in Affine Term
structure models, for example in Ang and Piazzesi (2003).



price of a discount bond of maturity T is equal to its conditionally expected payoff discounted for the

interest rates between t and T. So, the formula to express the price in continuous time is the following:
[ rea
Pl = E, [e_ e s 5] (3)

All the calculations that follow will be then based on neutral world measures. When this is true, the

prices that derive are arbitrage-free?.

Duration is the last measure introduced in this paragraph. It is a measure of the sensitivity of the
price of a given in bond in relation to a change in the interest rate. It can be defined as the derivative
of the price respect to the yield, divided by minus the price. So that:
1 dpf

— 4
Pl dy/ )

Durf = —

Calculating it would give out a formula for the duration equal to T — t. This result comes in handy

for the definition of convexity in paragraph (1.2.3).

From a macroeconomic point of view, yields are extremely important. Central Banks (CB) usually
have at disposal different ways in order to follow their objectives, from reserves’ requirements amounts
to the quantity of circulating money. Usually they find their main role in fulfilling price stability and
the control of the yields proved to be the most valuable tool they can use. Setting them usually follows
the gathering of a massive amount of macroeconomic data in order to present clear analysis and model
them in order to forecast the impact of a yields’ change in the real economy. As keeping prices’ level
stable is not an easy task, usually CBs — like the FED — tends to adjust yields constantly. For example,
in the United States, the Federal Reserve Board’s Open Market Committee takes these decisions in
order to meet the FED’s targets, which can be not limited to inflation alone3. In fact, when signs of a
possible slowdown start to appear, the FED could decide to lower the yield to incentivize borrowing
and lending in the market. The work of CBs is then to stimulate the economy, keeping the price level

growing slowly and smoothly at the same time.

Having models that predict how interest rates should be set according to macroeconomic inputs

appears to be fundamental then.

2 A good definition comes also from Duffie (2001) who states that: “Working in Q is equivalent to markets being complete”.
3 Piazzesi (2001) analyses the change in the yields following the BOMC.
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1.1.2 Forward Rates

The concept of forward rate comes from the spot rate defined in equation (1). In continuous time, it
is the instantaneous rate that is applicable by entering in a financial contract - going long or short -
with a transaction that takes place in the future. Equation (5) provides the forward rate f,” for a maturity
T such that:

1( Pf
T = — <PtT+T — 1) (5)

Witht = (T —t)

It is worth to notice that the equation does not present any expectations and as the maturity T

approaches t, the forward rate approaches the spot rate (6).

e = lim ff (6)

T-t
1.1.3 The Yield Curve

Having briefly defined bonds’ prices and forward rates, it is possible to start with a more complete
framework for the following analysis. To begin with, it is important to also delineate what a term
structure is made of. Namely, it represents the relationship that links the different interest rates for the
same instrument — with the same credit quality - at different maturities. The graphic representation of
the term structure is defined as “yield curve” and it is quite useful as it comes to provide an
understanding of the bonds’ market behaviour. Hereby is reported an example of a curve with

maturities between one and fifteen years.

Yield Curve
6.5

5.5

4.5

Zero-Coupon Rate

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Maturity

Figure 1. A zero-coupon series of rates observed in a single day



The yield curve provides a snapshot at a certain time t of how the rates behave considering different
maturities. It can take different shapes, but the most common is the one presented above, with the
curve upward sliding. Having it in this way it is considered to be the normal scenario, in which
investors get higher compensations for longer maturities. Usually, before a recession, it has been
noticed that the longer yields become closer to the shorter ones, resulting in a flattening of the curve,
defined precisely as a flat curve. During a recession or when one is approaching, the longer yields tend

to get lower than the shorter ones, resulting in an inverted curve.

The question regarding why the term structure is so important appears to be crucial at this point.
Mainly, it is extremely useful to those concerned with investment decisions and in the assessment of

the policy adopted by the Central Bank.

Banks and other financial institutions are primarily influenced by it as the treasury rates are a perfect
benchmark on which it is possible to set up lending and saving rates. This is also linked to interest-
rate-contingent claims, as it plays a crucial role in the determination of prices for multiple financial
securities, like caps, floors, swaptions and others. As in the following pages, this work will be based

on a joint macroeconomic and term structure model, it is clear that this is even more significant.

1.2 The drivers of the Yield Curve

Mainly there are three forces that move the yield curve: expectations, risk premia and convexity. The
three influence the curve with different intensities: expectations drive it in the short term, risk premia
in the medium and convexity in the long end.
1.2.1 Expectations

Starting from the beginning, it is better to introduce what the expectation hypothesis (EH) states. At
the same time, it is worthy to introduce one of the most important variants for the purposes of this
thesis, the local expectations hypothesis or LEH*. To quickly define it, the expectations hypothesis
states that a long-term bond’s yield with a maturity T equals the one of a series of shorter period bonds
such that the last short bond ends in T. In the formula, it is equivalent to state that:

=1+ yP)(1+ yh) - (1+ ¥) 7)

Another way to put it is to consider the value of a yield ¥,” as the expectation in time t of average

future yields.

4 Cox, Ingersoll, Jr., and Ross (1981) consider the application of both hypothesis in their paper.
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E[S]
T—t

Where S :[ftT rsds].

EH:yl =

(8)

If the expectations hypothesis is correct, it is then possible to use the slope of the term structure to
forecast the future path of the interest rate. While the EH states that the interest rate at a time t is equal
to the expected values of future short rates, the LEH focuses on stating the same for a short-term
horizon. The expectation hypothesis is often used, but empirical shreds of evidence provide little
support on its behalf and in some works the LEH is considered to be more useful.

E )
LEH: yI = —log (;1[8_ t)] 9
which becomes:
_ E[S] 1 [S]
Ve = Gop 20 ((T - t)> (10)

due to Jensen inequality and thus an added variance term.

1.2.2 Risk Premia

Risk Premia are the second driver of the yield curve. A risk premium is a form of compensation to
investors that bear uncertainty by investing in financial security for a pre-determined period of time
(T-t). There are different risks linked to possessing a bond. The first risk comes from inflation changes.
An intuitive example of inflation risk involves a bond emitted by a country A that pays a fixed amount
of money in nominal terms. Between the time from its emission and maturity, assume there is a sudden
increase in the inflation of that country which is not accounted in the payoff guaranteed by the bond.
This would simply result in a loss of purchase power for the acquirer. The difference between the
nominal rate and the inflation rate is usually defined as real risk-free rate and Fisher equation describes

it in terms of expected inflation and nominal rate such that:
1+i=0+rA+m,)

Risk premia cannot be set by Central Banks or other financial institutions, but are indeed influenced
by the communications, the intentions and above-all their credibility regarding price control.

From Piazzesi and Cochrane (2008), there are different ways to formally define risk premium and



these definitions can be interlaced to the expectation hypothesis. The two linked to the previously seen

equations states that®:

e  The long-term yield can be considered as the average of all the expected future short
term rates, as seen in equation (7), but with an added term: the risk premium.
e  Starting from equation (5), a forward rate can also be seen as the conditional expected

value of the future short rate with — again — an added risk premium.

1.2.3 Convexity
Convexity is the last driver of the curve and dominates the long end of the yield curve. It is considered
as a measure of the curvature, interlacing bonds’ duration and rate: as duration increases with yields,
it is said that the convexity is negative. From a mathematical point of view, it is the second derivative
of the price respect to the yield such that:
1 02pPF
B’ gyr?

Its effect on the curve is more difficult to observe compared to the other two drivers, as its influence

Conv! = —

emerges only in the last part of the curve, for bonds with long term maturities. This is caused by the
greater effects that expectations and risk premia have on the curve. However, this measure still has
relevance for modelling, especially for zero-coupon bonds.

1.3 The no-arbitrage condition

The no-arbitrage condition is usually specified in some of the presented models, like Vasicek,
through theoretical foundation and appears in numerous others. The assumption is important, as having
a no-arbitrage condition suggests that the stochastic process above-mentioned is strictly positive. It is
worth to mention though, that some academics have raised some concerns about the no arbitrage
condition. Empirical evidences have led to infer that imposing a no-arbitrage condition could not really
be that significant since in real-world condition an arbitrage rarely occurs® and imposing it could not
really improve the model and it affects its outputs little. Nonetheless, multiple empirical studies have
concluded that it improves the forecast and the explanatory of the model and thus giving a good reason

to keep imposing it.

5 The two statements can be considered as equivalent.
6 Usually it is possible to observe only pseudo arbitrage strategies, as there are risky arbitrage and not riskless as the
definition for pure arbitrage requires.



1.4 Modeling the yield curve

The problem that arises from having a snapshot of the yield curve is that it is not a scalar value but
instead a vector quantity. In other words, it is not limited to a single instant in time’, but it varies for
each t, adding the time dimensionality factor to the problem. After the quick introduction to bond

pricing, it is now worth to add some notions about other conditions needed for a model to work.

There are different ways to model the term structure. Each of them is designed to observe the problem
of the term structure from a different point of view, resulting in multiple advantages and disadvantages.
A good classification has been made by Rebonato®, who differentiates the models considering their

structure and follows.

e  Statistical models, like the one that will be proposed in the next chapter, rely on their
strength in the so-called Vector Auto-Regressive or VAR models, which are extensively used
to forecast yield and risk premium estimates. This model has a great predictive power in
contrast to the other models here mentioned, but bases the whole analysis to time series data,
bringing large error in the forecast, especially for longer maturities. Its flexibility still makes it
a good choice to model term structure, in addition to the possibility of easily using the implied
impulse response functions and variance decompositions to get an additional understanding of
macroeconomic and yields interactions®. From a mathematical point of view, they are basically
Vector Auto-Regressive models that have their foundations in the AR (1) process, an
autoregressive model of order 1°:

Xep1 = B+ X+ VNpyq (11)
In this context, p represents the intercept for the regression and the ¢ its slope.

e  Structural no-arbitrage models. These include the no-arbitrage conditions from their
assumptions and explains the three components of the yield curve: expectations, risk premia,
and convexity. The most known models from this group are Vasicek and Cox-Ingersoll-Ross.
Both use a single factor model to estimate the curve yield, but the last incorporates a square
root factor in order to avoid negative interest rates, as pre-crisis academics were not interested

in considering the case.

" Like in Graph (1), which considers a snapshot of the yield curve at a given moment.
8 Bond price and yield curve modelling, Rebonato

9 Cochrane and Piazzesi (2008), Diebold and Rudebusch (2013).

10 with .41 ~N(0,1).

111f the ¢ > 1 the model AR (1) could not be used. In the case of ¢ = 0 it would be a random walk.
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o Snapshot model: such as the well-known Nelson-Siegel. They, as the name suggests,
are cross-sectional models that give a glimpse of how the curve behaves in order to interpolate
the yields that are unobservable using observable data. It is also worth to notice that this kind
of model gives as outputs the discount bonds or — to say it in another way - the inputs for the
other model types here described.

The following paragraphs present some of the most renown models of yield curve estimation,
providing examples for the above-mentioned categoriest?.

1.4.1 Affine Term Structure Models (ATSMs)

The most appreciated approach to the yield curve issue considers using an affine term structure
model, which works by linking the term structure of interest rates with a time-invariant linear function
made up by a set of variables, which can be latent or observable. This distinction is important, as from
the 90s the augmentation with latent variables has brought some advantages to the model. Indeed, even
if they cannot be compared to the other variables, they own an intrinsic explanatory capacity. This has
led the research to include different numbers of latent variables in affine term structure models, but
defining these factors with different names, such as real inflation (Dewachter, Lyrio and Maes, 2005)
or real short rate (Pearson and Sun, 1994), even if their data did not include those data.

Another issue is related to the number of variables that should be included, but empirical studies
(Knez, 1994) have noted that three latent are enough to explain much of the changes. Their labels
change between different studies and paper, but recently they were linked to their effect on the curve
instead of arbitrary names, specifically: level, slope, and curvature.

Going back to the foundations, the starting point for an affine model is the stochastic process that
drives the dynamics of the variables involved®3. This kind of process can vary, but a single factor
generic geometric Brownian motion can give an idea of how it works. The one presented in equation
(12) is made up of two terms - the drift and the diffusion — and is commonly used in asset pricing in
combination with a Monte Carlo simulation. Considering only the first part of the equation, the
dynamic process results in a constant growing yield as it is non-random (we say defined as yields, but
usually in such a context an underlying asset price is used). In order to add randomness, the second

term is needed, as it contains a Weiner Process for the term z, over an interval dt and the resulting

12 Rebonato also introduces a last class of models, defined as derivatives models. Basically, they are no-arbitrage models
that try to fit the term structure of interest rates by adopting IRS models or similar, like the Hull and White model (1990).
13 Mathematically speaking, affine means linear plus a constant More formally, a function like F : Rn — R is called affine

if there exist a € R and b € Rn such that F(x) = a + b T* for all x € Rn. (Piazzesi, 2010).



graph would now appear as an erratic path. This is exactly how a share price, for example, moves in a

time-varying graph.
dry = r,dt + o,dz; (12)

The next few paragraphs introduce four well-known models that use different approaches to solve
the term structure estimations’ issues. Starting from the founding Vasicek model, the focus then moves
onto more complex models that consider advanced dynamics and combination of data in order to better

forecast the yield curve and define what drives it.

1.4.2 Vasicek Model

The idea of using this type of dynamics in a term structure was firstly introduced by Vasicek in 1977
with a single factor model, in order to describe the movements of interest rates through time. The
differential equation (13) figures an Ornstein—Uhlenbeck process with a drift. In this case, a constant
long-term mean-reversion level theta, to be achieved through time and a speed reversion k. The idea
of an interest rate mean reversion was correct, as empirical data proved right differentiating interest
yields from other financial securities. This is due to the fact that interest yield cannot exceed certain
values and this model was able to display negative yields, an eventuality considered as a disadvantage
before the 2008 crisis and fixed with the so-called extended Vasicek models**. For the normal Vasicek

model the equation follows:
dT‘t = kt(gt - T't)dt + o-T'dZt (13)

Its discrete-time version is'®:

Xpp1 = kO + x,(1 — kAt) + oVAte, (14)

Considering the above process, it is then possible to link it with the AR (1) introduced before. Indeed,
using the same equation (14) it is possible to drive parallelism since the discretized version of
the Ornstein-Uhlenbeck process is just a special AR (1) with:

u = k6At
¢ = (1 —kAt)
v2 = g2At

By knowing this it is then possible to assert that the model is solvable through a simple regression.

Thus, the coefficients — the values needed — can be estimated.

14 Exponential Vasicek and Cox Ingersoll Ross.
15 With £,~N(0,1).



Following Piazzesi'®, affine models can be then considered as a class of term structure models. If
this is true, the expression for a bond price P! in Vasicek is then:
Pl = e(AT+B[ 1) (15)
AT and BT are coefficients that depend on T. Their values can be found through:

1-— e—k(T—t)

Bf = % (16)
T ! 0-7? T O-rz T2
Ap = _<9 _Zkz) [B; +(T—t)]—E(Bt) 17)

This approach is considered a breakthrough in term structure modeling, as its mean reversion
properties differentiated bonds’ pricing different from other financial securities. Moreover, its

simplicity and the fact that it can be analytically solved made it the preferred approach to the subject.

This can be found out by knowing that the dynamics for the short rate are the one expressed in
equation (14) and assuming or knowing the value of a starting rate namely r,. It is then possible to

derive the value of the short rate at time t r¢, resulting in:

t
e = (e 7Kty 4 (1 — e K(E-t0) g O'Tj e kt=)qz. (18)

to
The solution states that the short rate distribution at any time in t will be normal and stationary
distributed. Considering other quirks of the model, the duration of a bond in Vasicek presents some

particularities. Starting from equation (4), duration becomes:

. 11dPf 1 k(T-t) dPf (19)
Pl g dy; B 1—e  T0dy]

Dur

1.4.3 Vasicek model’s improvements

Even if the homonym model proposed by Vasicek had some limitations, such as a fixed reversion
level, other studies made it possible to modify it in different ways. This specific issue was quickly
solved with the Doubly Mean Reverting Vasicek or DMRV, which provides a second equation to add

dynamics for 6.

dT‘t = kr(Qt - Tt)dt + O-rdzt
d9t = kg(T'oo - Ht) + O'Qng (20)
Eldz.,dzg] = pdt

16 Affine Term Structure Models, Piazzesi (2012).
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Adding another equation to the model improves it and - in order to further enhance it - it is possible
to add another one to describe the movement of the Beta, thus making a Trebly Mean Reverting
Vasicek Model. This approach could surely improve the basic Vasicek but leads to an impasse, as
providing more and more dynamic processes expand the calculations without really giving an edge to

the model.

Since Vasicek and its derivation were only the primitive versions of this type of model, in the
following years different approaches appeared on the scene to explain the term structure of interest
rates. The first thing to be modified starting from a Vasicek model is the number of variables to be

included. Vasicek uses only a single factor and adding another one requires only a few improvements.

Adding multiple factors can indeed improve the model, but again it can lead to an impasse as before.
From empirical data, the total number of variables should not exceed six. Models that encompass more
get perfect fit of the data, but their forecast is poor, especially for medium and long-term yields.
According to this, as it is difficult to explain the yields only by using observable data, latent come to
help. Choose which real-world data to use is troublesome though and numerous solutions were found.
A good guide, made up by Dai and Singleton, helps discerning among them, providing a further
taxonomy other than the one presented before.

1.5 Common techniques

1.5.1 Principal Components Analysis (PCA)

Before moving to the next models, some valuable techniques must be defined. Principal Component
Analysis is a common technique that eases the dimensionality issue, employing an eigenvalue
decomposition starting from a covariance matrix of the data'’. Indeed, some calculations using all the
data can lead to an immense hurdle due to the high dimensionality of the data and the techniques reduce
the number of factors adopted. In other terms, given a series of yields, its PCs are defined as:

xt = VTyt (21)

Each component describes a certain degree of the variance: depending on the data matrix, the number
of factors needed to explain can vary. In some models, like the Ang and Piazzesi (2004), only the first
principal component is used, which accounts for a good 50-70% of the variance explained. This is a
good starting point though and can be used to define the observable variable as to it is enough to
understand how the entire curve moves. Adding the second PC would bring new data and give the

17" itterman and Scheinkman conducted a study on US treasuries PCA decomposition (1997).
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chance to observe risk premia®, but still would miss some effects on the curve. The discipline tends
to use three, as it can describe a good percentage of the variance and avoiding the most dimensionality
issues. The specific number of factors is therefore determined by the authors and on their purposes, as
nothing forbids to use a desired number of factors to describe market yields. Usually, after five
components it is useless adding others, as it would only create more dimensionality problems without

adding anything to the explanatory power.®

It is important to notice that this technique works best when there is a signal to noise ratio is high. In

fact, Shelns in its paper of 2009 states that:

“Measurement noise in any dataset must be low or else, no matter the analysis technique, no

information about signal can be extracted”.

Another requirement to correctly use this technique is a high correlation among data, which is true
for yields. In their paper, Gurkaynak, Sack and Wright (2000), assume that in real-world conditions

the form of the reversion speed is a diagonal matrix such that:
dxq ki1 O 0 0, X1
d.X3 0 0 k33 93 x3

1.5.2 Filtering techniques
Modeling the term structure of interest rates brings some issues regarding the data themselves.

S11 0 0 dZ1
0 sy OHdZZ] (22)

0 0 S33 ng

Considering a dataset used for this approach, it is common that these contain some sort of inaccuracies
and relevant statistical noise. In order to solve the issue, some common techniques have been
developed, leading to their massive application in the field. This approach is generally called filtration.
In term of affine term structure modelling, thanks to the studies of Duan and Simonato (1995), Lund
(1997), Geyer and Pichler (1998), de Jong (1998), and Babbs and Nowman (1999), the most common
approach is the Kalman Filtering, also known as Linear Quadratic Estimator (LQE).
The reasons for its extensive use can be found within the possibility to use it in linear systems — which
is our case — and both in discrete and continuous time with few modifications. The approach is most
valuable when the time series used to perform calculations contain a lot of noise — as in this case 2° —
and for yield curve applications, when the underlying state variables are unobservable.

In fact, Kalman Filtering produces an estimate of unknown variables starting from the time series

data considering a joint probability distribution for each timeframe. Specifically, it is a recursive

18 piazzesi and Cochrane (2005).
19 Gurkaynak, Sack and Wright (2000) have done an extensive research on this method.
20 It is not uncommon that financial data have high correlation.
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algorithm that works by doing a two-step filtering. In the first step it assumes certain starting values
for the state variables, which can be their mean and variance for example (Bolder, 2001). By using
these values, it moves on by guessing the value of the measurement equation through the so-called
prediction step. Obtaining these permits to go to the next step, which is the observation of the effective
values and to update the previously found values, eliminating part of the initial error. Recursively, the
filter moves on the next timestep repeating the process and ending up with a more precise output for
the estimation. A downside of the Kalman Filtering is that the errors are not assumed to be Normally
distributed.

The Hodrick-Prescott is another type of filter widely used in economics research, especially in

macroeconomic researches which concerns business cycles.

T T
{glt‘f}ltTiil_l {;(}’t — g’ + A;[(gt ~ 9t-1) — (g1 — ge-2)°] (23)
Compared to the Kalman Filter, which recursively weakens the statistical noise, the HP filter works
by removing the cyclical components from the data. This is mainly intended for the studies in
macroeconomics that intend to decompose time series, but it presents multiple disadvantages and
issues. The main disadvantages can be found in the work of Hodrick and Prescott itself, as they state
multiple conditions for the filter to work properly. A proper condition is that the filter needs historical
data to work and cannot be used in a dynamic context of forecast. Moreover, the filter does not discern
certain events from others: for example, a single shock — big enough — could lead the filter to generate
a non-existent trend in the dataset. Some of these issues were underlined by Hamilton (2017), who
affirm that the HP filter needs multiple adjustments in order to provide de-cycled data. For Hamilton,
the use of this filter leads to spurious regressions and thus to misleading interpretations.
This is firstly noticed by Harvey and Jaeger (1993) and later by Cogley and Nason (1995). Thus, for
a process such that: y; = y,_; + &, where &, is white noise and (1 — L)y; = &, the function that
drives a cyclical component for the series would result in:
A -1L)?
“TTFL

Usually, depending on the period of the data and on the interests of the researchers, this value lambda

Et+2 (24)

should be adequately modified. As Hamilton states, different researches have linked the lambda to a
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value of 16002, which is an empirically determined and adjusted value, not a theoretically justified
one.

Other studies, like the one of Ravn and Uhlig (2002), produced different values considering other
time frequencies, butassumingthe value given by Hodrick and Prescott as correct.
Definitively, using it — or other values — would only create cycles or trends that are entirely created by
the filter itself rather than already being present in the data. This is even worse in a dataset that
encompasses a random walk. In the same paper though, Hamilton provides a solution. Considering an
eventual process, his HP enhancements are based on possible different cases, for example, that the
growth rate is nonstationary and the change in the growth rate is stationary. To solve all these cases,
he proposes a filter based on regression, considering that the typical economic time series is best
approximated by a random walk. The regression can be executed using an OLS of the observed non-
stationary time series on a four period plus a constant.

Yern = Bo+ B1Ye + B2Ve-1+ BaVe—2 + BaYe—3 + Veun (25)

The cyclical component is instead given by the error term. Its decomposition is:

Vern = Yern = Bo = Biye — Boyee1 — BaYe—z — BaYe-s (26)

Like Hodrick and Prescott, Hamilton too suggests different values in relation to the analysis’
purposes: h = 8 in case of quarterly data concerned with business cycles analysis and h = 20 for
financial cycles.

Even if it should improve the HP filter, a recent study made by Schler (2018) proves that some of
the disadvantages could still raise some concerns, such as its tendency in creating spurious regressions,
emphasizing cycles that endure more than expected. At the same time, this issue almost erases short
term variations.

“However, when applied to a random walk, Hamilton’s (2017) regression filter reduces to a
difference filter. In the case of difference filters, we know that certain cycle frequencies
are canceled, and others emphasized”.

Nonetheless, Schiller eventually considers the Hamilton filter as a better instrument compared to the
HP.

21 Hodrick and Prescott motivated their choice of A = 1600 assuming a change of 5% in the cyclical component, having

quarterly data. This is justified by saying that a change trend component would be around G %), Givingoutai = o _

o2v
2
(é) = 1600.
8
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1.6 Ang and Piazzesi Model (2003)

The Ang and Piazzesi model combine the techniques seen in the first paragraphs in order to forecast
bond yields, describing joint dynamics for macroeconomic variables and bond yields in a VAR. The
model is Gaussian and consists of five variables organized in the observable and unobservable
categories. The two observables are built upon macroeconomic data opportunely reorganized, while
the three orthogonal latent ones encompass the yield curve’s movement that cannot be forecasted by
observable data alone. The model uses the no-arbitrage rule in order to set restrictions. Including
macroeconomic variables is useful to understand how yields move: from the data used in the paper,
they explain up to 85% of yields’ movement at short and medium maturities. The VAR approach is
also useful for the reasons seen at the beginning of paragraph (1.4) as it is possible to compute IRs and
Variance decomposition easily in order to clearly see how the macro shocks impact the term structure.
Latent variables impact can be seen in the same way and then compared to macro variables.

The model is set up starting from the observable variables. They are defined as Inflation and Real
activity and both encompass different useful indexes. Inflation is made up by Consumer Price Index
(CPI), Purchase Price Index (PPI) and Spot Market Commodity Prices (PCOM), while Real activity
by HELP (Help Wanted Advertising in Newspapers), Unemployment (UE), growth rate of
Employment (EMPLOY) and Industrial Production (IP). At this point there is a problem of
dimensionality and PCA can help to solve it out. In this case, just the first components can be used to
perform the analysis, as they explain enough variability for the model’s purposes. The next step is

normalizing these PCAs and stacking them into two separate vectors of dimension 3X1 and 4X1 named

Z} and Z2, represented with Z{ = C£> + €.,

Usually, other models, such as the Duffie and Kan (1996), follow a Taylor rule to specify the short
rate such that the movements in t in the short rate are linked to macroeconomic variables movements
at the same time. In a variant of this, a forward-looking version of the same Taylor rule, Clarida (2000)
states that the Central Bank reacts both to the expected inflation and output gap??, including forecast
errors in the shock v,. Ang and Piazzesi present two variations of their idea: a VAR model which
encompasses macro factors plus three latent yields to forecast the model implied yields. The dynamics
process follows a VAR (12) for the macro derived variables, while the unobservable ones an AR (1).
The process estimation is performed in a double step: first they find the short rate and the VAR
parameters through the use of an OLS, while the rest are derived using a MLE. This type of process

allows to define all the factors needed for the yields’ forecasts but is quite demanding in term of

22 Qutput gap is the gap between the theorical output an econo