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INTRODUCTION 

 

 

Analytics projects often present us with situations in which common sense tells 

us one thing, while the numbers seem to tell us something quite different.  

Such situations are often opportunities to learn something new by taking a 

deeper look at the data. Failure to perform a sufficiently nuanced analysis, 

however, can lead to misunderstandings and decision traps.  

Starting from a generic definition of paradox,we’ll come to talk about Simpson 

Paradox, giving extract of history of paradox in different disciplines to illustrate 

its danger, so that we can present several instances of Simpson’s Paradox in 

business and non-business environments.  

In the last 30 years there has been an exponential increase in the use of 

technology that has paved the way for statistical modeling to be at the front and 

center of decision making not just in business, but everywhere. Statistics is the 

means to interpret data and transform vast amounts of raw data into meaningful 

information. 

As we demonstrate below, statistical tests and analysis can be confounded by a 

simple misunderstanding of the data. Often taught in elementary probability 

classes, Simpson’s Paradox refers to situations in which a trend or relationship 

that is observed within multiple groups reverses when the groups are combined 

However, paradoxes and fallacies lurk behind even elementary statistical 

exercises, with the important implication that exercises in business analytics 

can produce deceptive results if not performed properly. This point can be 

neatly illustrated by pointing to instances of Simpson’s Paradox.  
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Simpson’s Paradox is in a sense an arithmetic trick: weighted averages can lead 

to reversals of meaningful relationships, i.e., a trend or relationship that is 

observed within each of several groups reverses when the groups are combined.  

To show all of this, we’ll see in the first chapter the paradox in general and its 

evolution throughout time, then we denote the paradox in everyday life and see 

a little biography about Simpson and Yule, who studied it first.  

In the second chapter we will see the Simpson Paradox in detail: it will be 

explained with the help of some examples of real life with real data. 

The first example regards  Berkley University, the second one  is about two 

different ways which can be used to treat renal calculi, the third one is about a 

highly surprising observation in a healthcare study and the last one focus on the 

link between price and profits. 

To all of you, a good reading. 
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CHAPTER 1 

 

 

1.1 The “swift-footed” Achilles 

 

It is said that the great swift-footed Achilles, one day decided to challenge  

a tortoise in a speed race. Obviously confident in himself and capable of 

defeating the tortoise since he was twice as fast (we’re saying Achilles is 

exactly twice as fast as the tortoise to simplify the reasoning), he made the 

mistake of giving the tortoise a little advantage. The opponent, with the help of 

Zeno’s sharp thinking, managed to outrun Achilles forever. 

The hero in fact, as soon as he covered the initial distance “d” separating the 

two competitors, saw that the tortoise was a little more far away: while he was 

arriving to the point, she travelled “d/2” more. He kept going and ran that “d/2” 

more, but in the meantime the tortoise was another “d/4” away from him. “Now 

I got her!”, thought  Achilles but, as soon as he covered that distance, the 

tortoise had gained “d/8” more.No matter how Achilles ran to the position of 

the tortoise, he never succeded on reaching her. 

 

 

1.2    Paradox definition 

 

 

A paradox, from greek παρά (against) and δόξα (opinion), is, generically,  
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the description of an event that goes against the common opinion or the daily 

experience, resulting then surprising, astonishing or bizarre. More precisely,  

a paradox is a seemingly absurd or self-contradictory statement that, 

superficially, cannot be true but cannot be false either.  

Further analysis of the statement or proposition may reveal a fallacious axiom 

or some obscure underlying truth.  Not all paradoxes are fundamentally 

incongruous, as some may only appear so.  

Many famous problems of this kind exist. 

A paradox can show up in many different disciplines, mainly logic: the most 

famous one is probably the liar’s paradox:  “This sentence is a lie”. 

If the sentence is true, then it is a lie, as it says. But if it is a lie, how can it be 

true? A lie cannot also be the truth. So the sentence being true makes it a lie. 

Usually disciplines such as logic, philosophy and economics, the paradox is 

seen as a synonym of antinomy: a genuine logical contradiction. Moreover, 

the paradox is usually caused by the wrong variable being taken into 

consideration: an important example is the missing dollar paradox: 

“Three guests decide to stay the night at a lodge whose rate they are initially 

told is $30 per night.  However, after the guests have each paid $10 and gone to 

their room, the proprietor discovers that the correct rate should actually be $25. 

As a result, he gives the bellboy the $5 that was overpaid, together with 

instructions to return it to the guests.  

Upon consideration of the fact that $5 will be problematic to split three ways, 

the bellboy decides to pocket $2 and return $1 each, or a total of $ 3, to the 

guests.  

Upon doing so, the guests have now each paid a total of $ 9 for the room, for a 

total of $ 27, and the bellboy has retained $ 2.  

So, 27 + 2 = 29, where has the remaining $1 from the initial $ 30 paid by the 
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guests gone?!” 

As we can see, the paradox is created by an error which force the mind of the 

reader to focus on the $ 27 spent by the guest, adding them to the $ 2 in the 

bellboy pocket. 

The relevant numbers to consider are however the total amount spent and where 

it has gone, which are fully accounted for:  

the guests have each paid $ 9 for a total of $ 27. Of this, $ 25 has gone to the 

cost of the room, and $ 2 has been pocketed by the bellboy. 

 Of all things, it is accountancy that supplies a concise answer:  

"You must not add debits to credits." 

 Money flowing out is a debit, money flowing in is a credit, and they always 

balance over a transaction. 

In mathematics though, it is different.  

The paradox can be defined as 

 “an apparently unacceptable conclusion derived by apparently acceptable 

reasoning from apparently acceptable premises.” (Mark Sainsbury) 

 

 

1.3    Paradox in everyday life 

 

Many are the paradoxes we can observe in the daily life.  

For example, one of the “hottest” topics is the problem of global warming. 

According to the accepted climatological patterns the Arctic warming, along 

with the problem of ice melting, is causing the cooling of Europe.  

So the global rising in temperatures is causing local decrease in temperatures. 

This phenomenon is known as the Arctic paradox. 
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Many other paradoxes are lying behind plots of famous movies like, for 

example, “Terminator”:  

A cyborg is sent in the past to kill Sarah Connor, in order to prevent her from 

giving birth to John Connor. As a consequence, a man is also sent in the past, to 

stop the droid. Unbelievably, the man sleeps with Sarah, becoming the father of 

the baby he’s been sent to protect. So, through a series of consequences, a time 

travel sets off the event which was meant to be prevented. 

This paradox is called causal loop. 

 

 

1.4     Paradox in history 

 

Zeno of Elea, Greek philosopher (5th century AC), used the paradox as a tool to 

prove, “logically speaking”, Parmenides’ ideas (his mentor), even if those ideas 

were contrary to conventional wisdom and experience. If Parmenides wanted to 

prove that “being” was unique and immutable, Zeno built logical games to even 

deny movement. 

In one of his paradoxes, he said that to cross the entire length of a stadium, we 

firstly have to walk a half of it, before that a quarter of it, even before that 1/8 

of it, and so on. Zeno represented a distance as an infinite sum of fractions, or 

rather as the numerical series created by the powers of 1/2:  

1/2 + 1/4 + 1/8 + … + (1/2)^n = 1/2 ∑ (1/2)^n. 

Zeno’s paradox went on saying that it was impossible to walk in a finite time an 

infinite quantity of parts of space: there will always be some part ahead of you. 

Verbally, the reasoning sounds acceptable but, keeping in mind the limit of the 

function and the formula that we use to calculate the sum of the geometric 

series,  the series describing the infinite spaces travelled in space has for sum:  
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1/2 * 1/(1-1/2) = 1.       The paradox is finally solved.  

Logically speaking we can in fact agree that the distance is finite, so it is viable 

in a finite time, even if it can be represented as the sum of infinite terms. 

As well as this paradox, also Achilles’ paradox and the arrow paradox speculate 

on the infinite divisibility of the space. 

 

 

 1.5    Statistical paradox 

 

In the statistical field, one of the most interesting phenomena that can happen is 

called the Simpson paradox. 

Let’s look at an example of it: on a certain disease, Hospital X has 55% of 

solved cases, while Hospital Y has 60% of solved cases. Focusing only on those 

data, which we can see represented in Table 1.1, it seems logical to prefer 

Hospital Y. 

 

 

Table 1.1 Total cases Solved cases Solved cases % 

Hospital x 200 110 55% 

Hospital y 200 120 60% 

 

 

Searching deeper in the hospitals data though, we find out that in Hospital X 

90% of the cases are severe, of which 50% are solved, while the other 10% of 

the minor cases are solved with an accuracy of 100%. 
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In Hospital Y, 60% of the cases are severe, of which 40% are solved, the other 

40% of minor cases are solved with an accuracy of 90%. We can see those data 

in Table 1.2. 

 

 

Table 1.2 Casi gravi Casi lievi 

 Casi  Casi risolti Casi  Casi risolti 

Hospital x 180 (90%) 90 (50%) 20 (10%) 20 (100%) 

Hospital y 120 (60%) 48 (40%) 80 (40%) 72 (90%) 

 

 

Considering this more in-depth research, it seems better to prefer Hospital X, 

since it actually solves more cases than Y (50% against 40% of the sever cases, 

100% against 90% in minor cases). 

Basically, the interpretation of data is distorted by previously unconsidered 

parameters. 

This kind of paradox is called Simpson paradox, or Yule-Simpson paradox, 

from the names of the researchers that helped discovering and studying it. 

 

 

1.6    Edward Hugh Simpson’s biography 

 

Edward Hugh Simpson CB (born 10 December 1922) is a retired British civil 

servant and former statistician best known for describing Simpson's paradox 

along with Udny Yule. 

Edward Simpson was introduced to the thinking of mathematical statistics as a 

cryptanalyst at Bletchley Park (1942–45). He wrote the paper The 
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Interpretation of Interaction in Contingency Tables while a postgraduate 

student at the University of Cambridge in 1946 with Maurice Bartlett as his 

tutor; and published it in the Journal of the Royal Statistical Society in 1951 at 

Bartlett's request because Bartlett wanted to refer to it. 

The paradox is used in mathematical statistics teaching to illustrate the care 

statisticians need to take when interpreting data. It figured in a 2009 episode of 

the US television crime-solving series Numb3rs. 

Simpson entered the civil service administrative class in the UK Ministry of 

Education in 1947 and subsequently worked also in the Treasury, the 

Commonwealth Education Liaison Unit, as Private Secretary to Lord Hailsham 

as Lord President of the Council and Lord Privy Seal, and in the Civil Service 

Department. 

He was a Commonwealth Fund (Harkness) Fellow in the USA (1956–57). At 

one point a useful observation of his on the aggregate behaviour of teachers' 

pay was labelled "Simpson's Drift". He retired from the Department of 

Education and Science as a Deputy Secretary and Companion of the Order of 

the Bath in 1982 and now lives in Oxfordshire. 

In 2017, Simpson contributed two chapters on the cryptanalytic process 

Banburismus, developed by Alan Turing at Bletchley Park during World  

War II. 

 

 

 

 

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjk1rPd2oPgAhWCr6QKHdjQDUIQFjAAegQICBAB&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEdward_H._Simpson&usg=AOvVaw0vGZwrHzOZ24ZCrrDnHjNe
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwjk1rPd2oPgAhWCr6QKHdjQDUIQFjAAegQICBAB&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEdward_H._Simpson&usg=AOvVaw0vGZwrHzOZ24ZCrrDnHjNe
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1.7   George Udny Yule 

 

Frank Yates culminated his 1952 obituary of Yule by saying:  

“To summarize we may, I think, justly conclude that though Yule did not fully 

develop any completely new branches of statistical theory, he took the first 

steps in many directions which were later to prove fruitful lines for further 

progress… He can indeed rightly be considered as one of the pioneers of 

modern statistics”. 

 Yule made important contributions to the theory and practice of correlation, 

regression, and association, as well as to time series analysis. He pioneered the 

use of preferential attachment stochastic processes to explain the origin of 

power law distribution. The Yule distribution, a discrete power law, is named 

after him.  

Although Yule taught at Cambridge for twenty years, he had little impact on the 

development of statistics there. M. S. Bartlett recalled him as a "mentor" but his 

famous association with Maurice Kendall, who revised the Introduction to the 

Theory of Statistics, only came about after Kendall had graduated.  

 

 

 

 

 

https://en.wikipedia.org/wiki/Frank_Yates
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Preferential_attachment
https://en.wikipedia.org/wiki/Yule_distribution
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/M._S._Bartlett
https://en.wikipedia.org/wiki/Maurice_Kendall
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CHAPTER 2 

 

 

2.1 The Simpson paradox 

 

Simpson’s Paradox was first introduced by Yule (1903) as “the fallacies that 

may be caused by the mixing of distinct records’’. Simpson (1951), without 

citing Yule, discussed the interpretation of interaction in contingency tables. In 

one of his examples, Simpson (1951) observed that “there is a positive 

association between treatment and survival both among males and among 

females; but if we combine the tables we again find that there is no association 

between treatment and survival in the combined population’’. Blyth (1972) 

provided an excellent mathematical description of this:  

For events A, B, and C (and the complements BC and CC) it is possible to have 

P(A|B) < P(A|BC) 

and simultaneously to have  

P(A|BC) ≥ P(A|BCC) and P(A|BCC) ≥ P(A|BCCC). 

Blyth called this “Simpson’s Paradox’’ (rather than “Yule’s Paradox’’), and the 

name has stuck.  

We’ll deepen the theory presented with some real life and exhausting examples 

later. 

 

Moore, McCabe, and Craig (2012) defined Simpson’s Paradox as follows:  
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“An association or comparison that holds for all of several groups can reverse 

direction when the data are combined to form a single group. This reversal is 

called Simpson’s paradox’’.  

Unfortunately, this  definition does not fully explain the paradox. On the other 

hand, the mathematical description by Blyth (1972) is almost impossible to 

understand for students of introductory statistics courses and for non-

statisticians. Thus, explaining Simpson’s Paradox in an introductory statistics 

class is particularly challenging. More unfortunately, as Lesser (2002) pointed 

out, “some well-known introductory textbooks […] do not mention Simpson’s 

Paradox at all, some discuss it in a section marked ‘optional’ [...]’’ 

Strictly speaking, the Simpson’s one is not actually a paradox, but a 

counterintuitive feature of aggregated data, which may arise when (causal) 

inferences are drawn across different explanatory levels: from populations 

to subgroups, or subgroups to individuals, or from cross-sectional data to 

intra-individual changes over time (cf. Kievit et al., 2011).  

Understanding when the Simpson paradox comes into play is not easy unless all 

the data can be checked accurately. To facilitate this process, several graphical 

applications exists in order to recognize it. 

We can find one at www.math.usu.edu/~schneit/CTIS/SP/ 

 

 

2.2   Paradox illustration 

 

To give an example of the work done by the said applications, we’ll see a case 

regarding flights from 2 companies, AA and AW. 

Firstly, we consider the two companies and the total number of flights delayed 

http://www.math.usu.edu/~schneit/CTIS/SP/
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in a year. (Data reported in table 2.1) 

 

 

Table 2.1 flights Flights delayed Flights delayed % 

Alaskan Airlines 792 74 9.3% 

America West 6.066 532 8.8% 

 

 

Looking at those data, it seems obvious to prefer AW, since its delayed flights 

are only 8.8%, against the 9.3% of AA. 

To deepen the study of this case, we focus on the departure city of the plane, 

gathering some more data that makes the situation change again, as we can see 

from Table 2.2. 

 

Table 2.2 Los Angeles 

 

Phoenix 

 Flights  Flights 

deleyed 

Flights  Flights 

deleyed 

Alaskan 

Airlines 

559 (70,6)  62 (11,1%) 233(29,4%) 12 (5,2%) 

America  

West 

811(13,4%) 117 (14,4%) 5.255 (86,6%) 415 (7,9%) 

 

 

As we can see, adding more data made our choice different: it is in fact more 

convenient to book an Alaskan Airlines (AA) flight, since the flights delayed 

are fewer both from Los Angeles (11.1% against 14.4% of AW) and from 
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Phoenix (5.2% against 7.9% of AW). 

The same data are used in the graph of the graphical app that analyzes all the 

variables and helps highlighting the paradox. 

The First line of the table shows a count of Alaskan Airlines (AA) flights (792), 

a count of America West (AW) flights (6066), the number of each of these that 

was delayed (74 for AA And 532 for AW) and finally the percentage delayed 

for each airline. From this row, we see that Alaskan Airlines Had a greater 

percentage of delayed flights than did America West Airlines (9.3% versus 

8.8%). 
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Image 1:  
example of the work done by the graphical app that  

analyzes all the variables and helps in highlighting the paradox. 

 

 In the second and third rows of the table, the data for each airline has been 

divided into subgroups based on the place of origin of the flight (e.g. 559 of the 

792 AA flights originated in Los Angeles and 233 originated in Phoenix). For 

these subgroups, we see that a greater percentage of the AW flights originating 

in Los Angeles were delayed (14.4% versus 11.1 % for AA) and a greater 

percentage of The AW flights originating in Phoenix were delayed (7.9% 

versus 5.2% for AA). 



 18 

Whereas AA had a greater number of delayed flights when the data were 

combined, the relationship is reversed when we divide the data into subgroups 

based on the lurking variable ‘Place of origin’. Why does this occur? 

For each of the comparison groups (AA and AW) the plot shows the 

percentage of delayed flights as a function of the percentage of flights 

originating from Phoenix.  

Colored dots on the lines indicate the actual percentages of flights that 

originated in Phoenix for each of the comparison groups. We see that 87% of 

AW flights originated in Phoenix whereas only 29% of AA flights began there. 

Since Phoenix flights were less likely to be delayed than Los Angeles flights 

(5.2% versus 11.1% for AA and 7.9% versus 14.4% for AW) and the vast 

majority of AW flights began there, AW’s overall percentage of delayed flights 

is lower than that of AA for which most of the flights originated in LosAngeles. 

The sliders (on Image 1) allow the user to adjust the percentage of flights 

originating in Phoenix for each of the two airlines and to see how this affects 

the observed relationships. As a slider is adjusted, a circle on the corresponding 

line (circle color the same as slider dot color) moves. Dashed lines from the 

circles to the axes highlight the relationship between the variable values. 

As the percentage of flights originating in Phoenix is changed, the data in the 

table is updated to reflect this. The ‘combined’ counts for each category are 

fixed as are the percentages of delayed flights for each airline from each 

origination point. When the Simpson’s Paradox is observed, i.e. the airline with 

the greater percentage delayed for the ‘combined’ data is different from the 

airline with the greater percentage delayed for each of the origination points, 

the percentages in the table are highlighted in red, otherwise they are green. 

Obviously, the two methods, the table and the graph, have the same outcome. 
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2.3   A discriminating university? 

 

One of the canonical examples of it concerns possible gender bias in admissions 

into Berkeley graduate school (Bickel et al., 1975; see also Waldmann and 

Hagmayer, 1995).  

In 1973 in fact, Berkeley graduate school was one of the first universities to be 

reported for gender discrimination. 

For the fall semester there were approximately 12.763 applications (8.442 

males and 4321 females). 

The results, represented on table 2.3, shows that males that applicated to the 

university had more opportunities than females of being accepted. 

 

 

Table 2.3 

 

applications accepted % accepted 

Males 

 

8.442 3.738 44,28% 

Females 

 

4.321 1.494 34,57% 

 

 

The university, in order to make clear that there was no discrimination, decided 

to release more data, regarding the 6 most important majors offered. 

(represented in Table 2.4) 
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Table 2.4  male female 

Faculty Applications % Admitted Applications % Admitted 

A 

 

825 62 %  108 82 % 

B 

 

560 63 % 25 68 % 

C 

 

325 37 % 593 34 % 

D 

 

417 33 % 375 35 % 

E 

 

191 28 % 393 24 % 

F 

 

272 6 % 341 7 % 

 

 

As shown in Table 2.4, no faculty was actually discriminating in any way, on 

the contrary, in almost all majors the proportion of females admitted is greater 

than that of males. 

This seems paradoxical: globally, there appears to be bias toward males, but 

when individual graduate schools are taken into account, there seems to be bias  

toward females. This conflicts with our implicit causal interpretation of the 

aggregate data, which is that the proportions of the aggregate data (44,28% 

males and 34,57% females) are informative about the relative likelihoods of 

male or female applicants being admitted if they were to apply to a Berkeley 

graduate school. In this example, SP arises because of different proportions of 

males and females attempt to enter schools that differ in their thresholds for 

accepting students. 
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This example is actually very easy to explain: we will in fact use a model to 

simplify the problem.  

Given that there are only two majors to choose between (A and B) in the 

university X, let’s suppose that 400 males and 200 females applicate for course 

A. The commission has to create an admission test which do not favors nor 

males nor females. Only a half of the applications can be accepted, and to 

simplify even more our problem, we’ll say that half of the males and half of the 

females are selected. At faculty B, with 150 males and 450 females enrolled, 

due to more places available, 80% of the applications will be accepted. 

Like we did before, for simplicity we’ll say 80% of males and 80% of females 

are selected. 

 

Table 2.5 

 

Faculty A Faculty B 

 

 

applications admitted applications admitted 

Males 

 

400 200 200 160 

Females 

 

200 100 400 320 

Total 

 

600 300 600 480 

 

Although we know there has been no bias, from the data collected in Table 2.5 

it seems that university X privileges females because, having the same number 

of applications (600 males and 600 females) only 360 males were selected 

against 420 females!  
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The solution lies in the fact that more boys applicated to major A, which 

accepted less people, while more girls applicated to major B, which granted 

more chairs. 

 
 
 

2.4 Comparison of treatment of renal calculi by open 

surgery, percutaneous nephrolithotomy 

 
 

This study was designed to compare different methods of treating renal calculi 

in order to establish which was the most cost effective and successful. Of 700 

patients with renal calculi, 350 underwent open surgery, 350 percutaneous 

nephrolithotomy. 

Data collected (represented in Table 2.6) seems to suggest the Percutaneous 

nephrolithotomy as the most effective. 

 
 

Table 2.6 

 

Total cases success success% 

Underwent open 

surgery 

350 273 78% 

Percutaneous 

nephrolithotomy 

350 289 83% 

 

 

We can deepen the study dividing total cases in 2 groups (represented on 

Table 2.7): the former focusing on renal calculi which are greater than 2cm 

in diameter, the latter for smaller stones. 

Doing so we can see that the most effective is actually the open surgery 

both with stones greater than 2cm (73% of solved cases against 69%) and 

with smaller stones (93% of solved case against 87%) 
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Table 2.7 Stones greater than 2cm Smaller stones 

 Casi  Casi risolti Casi  Casi risolti 

Underwent open 

surgery 

263 (75%) 192 (73%) 87 (25%) 81 (93%) 

Percutaneous 

nephrolithotomy 

80 (23%) 55 (69%) 270 (77%) 234 (87%) 

 

 

 
2.5 Deaths of smokers and non-smokers 

 
The data are taken from a 1996 follow-up study from Appleton, French, 

and Vanderpump on the effects of smoking. The follow-up catalogued 

women from the original study, categorizing based on the age groups in the 

original study, as well as whether the women were smokers or not. The 

study measured the deaths of smokers and non-smokers during the 20-

year period. 

The overall counts of the study are as follows (table 2.8 or in the graph) 

 
Table 2.8 

 

died survived Mortality rate% 

Smoker 

 

139 443 582      (23,9%) 

No-smoker 

 

230 502 732      (31,4%) 
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This analysis suggests that non-smokers actually have higher mortality 

rates than smokers, certainly a surprising result and contrary to current 

medical teachings, and maybe a potential boon to the tobacco industry. But 

the numbers tell a much different story when mortality is examined by age 

group: 
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Now, we see that smokers have higher mortality rates for virtually every 

age group. What is going on here? This is a classic example of the Simpson’s 

Paradox phenomenon; it shows that a trend present within multiple 

groups can reverse when the groups are combined. The phenomenon is 

well known to statisticians, but counter-intuitive to many analysts. To 

paraphrase Nassim Taleb, not only are people regularly “fooled by 

randomness”; they are also fooled by lurking multivariate relationships.  

Simpson’s Paradox requires several things to occur. First, the variable 

being reviewed is influenced by a “lurking” variable. In our example, age is 

the lurking variable, with the population grouped into a discrete number of 

subcategories. Second, the subgroups have differing sizes. If both of these 

conditions are met, they conspire to obscure the salient relationships in the 

data due to the relative weighting attached to each subgroup. 
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The age distributions are substantially different for smokers and non-

smokers. In particular, the non-smoking population is older on average. 

Twenty seven percent of non-smokers are in the two oldest groups, 

compared to approximately eight percent for smokers. Combined mortality 

rates are near 100% for both groups, but the greater proportion of older 

non-smokers pushes up the average for that group. Viewing the data by age 

leads to a more plausible theory – one that comports with long standing 

medical teaching: that long-term smoking shortened lifespans, thereby 

affecting the age distributions in the study’s population. 

 
 

2.6 Did price optimization increase or decrease 
profits? 

 

The final case study comes from a price optimization program implemented at a 

major manufacturer of cosmetic products. The manufacturer had three different 

store brands, which in this example will be called A, B, and C. Although the 

product offering was similar across all stores, each store brand had a different 

consumer base and prices were optimized independently for each brand.  

The objective of computing optimal prices was twofold: to improve profit 

margins for the business without negatively impacting aggregate profit, i.e., the 

three store brands together; and for each store brand separately. 

After the optimization models were developed and implemented, the manager 

assisted the manufacturer in a series of live controlled experiments to quantify 

the potential benefit coming from optimized prices and assessed whether the 

financial objectives were being met. In order to analyze the results, profit 
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margins were compared before the test (control period) and during the test 

period - a straightforward method to quantify benefit. It was found, however, 

that the average margin for the whole business before the test was 7.7% and 

during the test was 7.4%, implying that the program was unsuccessful in 

improving margin. Aside from any measure of statistical significance, the 

absolute improvement did not justify the costs to make the program changes. Is 

this enough to say that the optimization program was a failure? 

On the surface, the answer would seem to be “yes”: optimization apparently led 

to the unsatisfactory result of reduced margins. Nevertheless, when results were 

broken down by store brand, the story changed; and indeed, the program 

showed significant profit margin increases across all three brands. 

 
Table 2.9 

 

Control period Test period Change 

Brand A 

 

10 12 20% 

Brand B 

 

5 6 20% 

Brand C 

 

4 5 25% 

 

How could it be that all three brands showed margin improvement and yet the 

total average margin had deteriorated? 

In fact, both answers are correct. Profit margins improved in each brand and yet 

the weighted average of the margins dropped in total. The answer is hidden in 

Simpson’s Paradox and its arithmetic illusion in which clear patterns are 

obscured when the mix of the groups being weighted averaged changes over 

time. Responsible for the strange and apparently contradictory results is the fact 
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that the mix of store brands changed pre- and post-test. During the test period, 

the manufacturer underwent a major change in its branding strategy and had 

shifted the mix of store brands significantly. 

 
Table 

2.10 

Control period Test period 

Store 

brand 

Number 

of stores 

Mix of 

brands 

Margin Number 

of stores 

Mix of 

brands 

Margin 

Brand A 

 

400 57% 10% 200 29% 12% 

Brand B 

 

200 29% 5% 300 43% 6% 

Brand C 

 

100 14% 4% 200 29% 5% 

Overall 700  7.7% 700  7.4% 

 

 

As can be seen from the table above, although the total number of stores 

remained constant, the concentration of store brands B and C increased. 

Moreover, store brands B and C have lower margins than store brand A. The 

store mix shift to lower-margin brands created a Simpson’s Paradox effect. It is 

important to point out that the optimization program was successful and did 

increase margins and dollars for the manufacturer. The percentage margin 

reduction for the whole business resulted not from problems with the price 

optimization strategy, but from the manufacturer’s store brand strategy. Had the 

optimization results not been thoroughly understood and analyzed with an 

awareness of Simpson’s Paradox, one could have easily come to the wrong 

business conclusion. 
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Findings 

 

 
We have seen that Simpson Paradox might occur frequently, and that people 

are often poor at recognizing it. When Simpson Paradox goes unnoticed, 

incorrect inferences may be drawn and, as a result, decisions about 

resource allocations (including time and money) may be misguided. 

Interpretations may be wrong not only in degree but also in kind, 

suggesting benefits where there may be adverse consequences  

(Can smoking actually be good for your health?).  

Fortunately, the data and computational power continue to grow 

exponentially, analysts have gained unprecedented power to build and 

promulgate data-driven decision models, shifting business practice away 

from traditional decision making practices rooted in industry knowledge 

and intuition. However to paraphrase Voltaire (or Uncle Ben from 

Spiderman), with great power comes great responsibility. It is obvious that 

poorly or naively performed statistical analyses can yield incomplete or 

ambiguous answers, but now we know that phenomena such as Simpson’s 

Paradox can downright mislead and motivate misguided decisions. This 

should be borne in mind in situations where sophisticated analytical 

workbenches are adopted by users who do not possess commensurate 

statistical understanding. 
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