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Introduction 

 

Since ancient times, the decision of how to distribute available wealth among different investment 

opportunities has been an important issue for the humankind. In fact, we can already find examples 

of investment advices in the literature of the first centuries of the first millennium, which suggested 

to invest wealth in different areas of economy, such as land as well as merchandise.  

In recent times, however, the problem of allocating available funds among different assets has become 

relevant not only for individual investors who are willing to guarantee themselves an income for their 

retirement time, but also for institutional investors which want to design portfolios in order to finance 

their long-term stream of spending. Naturally, the way in which decision are taken differs between 

the two of them. In fact, optimal portfolio decisions depend on the available financial assets in the 

investable universe, the risk and return profile, the preferences and circumstances of the investor. 

In financial literature, the pioneers in optimal portfolio choice framework have been Markowitz 

(1952), Merton (1969-1971), Samuelson (1969) and Fama (1970). Their formulations have been 

revolutionary for that time but now well understood. Consequently, nowadays academic research 

focuses on the identification of critical issues in real world portfolio choices and their influence on 

investors. 

This paper has the purpose of testing the applicability on Italian stock market of one of the new 

econometric approaches formulated in literature which uses parametric portfolio weights in order to 

find the optimal ones that maximizes investor’s utility.  

This is a new area of econometrics which detaches from traditional approaches. Instead of basing its 

activity on a two step procedure which first draws inference on parameters or tries to identify the 

return distribution and then solves for the parameters which maximize utility, the econometrician now 

specifies portfolio weights as a function of observable quantities and then solves for the maximum 

level of utility. 

In this stream of literature, I will focus on the parametric model to portfolio choice formulated by 

Brandt, Santa-Clara and Valkanov in 2009. In their approach, the authors model portfolio weights as 

a linear function of three firm characteristics: market capitalization, book-to-market ratio and one-

year lagged return. After this phase, they calculate optimal portfolio weights that maximize investor’s 

utility. 
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Brandt et al.’s approach has four main advantages. First, it avoids the returns’ modelling phase, which 

is central in traditional econometrics, by directly focusing on drawing inference on portfolio weights’ 

parameters. Second, it includes implicitly the connection among returns, covariances, variances and 

firm characteristic. Third, it helps estimation problems like overfitting or imprecise coefficient 

estimates. At last, it allows the econometrician to easily test hypotheses, whether they are joint or 

single. 

This work is articulated as follow. The first chapter gives a brief overview of the portfolio choice 

problem in literature, starting with Markowitz paradigm across econometric approaches, from 

traditional ones to the more recent. This is propaedeutic for a better understanding of the exposition 

of the subsequent research. 

The second chapter focuses on new econometric approaches and particularly on the portfolio choice 

model formulated by Brandt, Santa-Clara and Valkanov in 2009. There, its strengths and weaknesses 

will be highlighted.  

The third and last chapter presents the results of my research. I will expose and comment finding for 

the simple linear policy case and for the model extensions considered. Then, I will also draw the main 

conclusions about the applicability of the model on the Italian stock market.  
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Chapter 1  

Portfolio choice problem in literature  

 

1.1 The theoretical problem: modelling issues 

In financial literature, after the formulations of well-known authors such as Markowitz, Merton and 

Fama that are considered as pillars in the portfolio choice problem framework, econometricians tried 

to incorporate in their models an increasing number of features from real-life cases, combining theory 

and practical evidence. Among them, there is no representation that can be considered superior to the 

other, because each has its own basic assumptions, strengths and weaknesses. However, as every 

portfolio choice problem, they share the same modelling issues. 

The first feature that arises when defining a portfolio policy is the choice of the utility function that 

better represents investor’s preferences. The most commonly used in practice is the family of 

hyperbolic absolute risk aversion (HARA) because its value function is homogeneous in wealth. This 

class includes constant relative risk aversion function (CRRA), logarithmic utility, quadratic utility 

and constant absolute risk aversion (CARA). Although, toward this category of functions are moved 

many critics. Among them, there is the fact that they create an odd connection between risk aversion 

and the elasticity of intertemporal substitution, which are in practice one the reciprocal of the other. 

Another one is the consequentiality created between the time horizon considered for the investment 

opportunity and the asset allocations. Finally, they do not take into account investor’s behaviour 

anomalies. Despite this short explanation, I will go deeply into this topic in the next chapter, when I 

will analyse a portfolio choice problem. 

The second one regards the possibility of inserting intermediate consumption into a portfolio choice 

problem. We know from economic theory that the investor could be willing to choose to consume 

part of his wealth instead of wating for terminal utility. In this way the investor for each period has 

to determine both asset allocation and his optimal level of consumption. This feature can be inserted 

both in discrete time portfolio choice problem and in continuous time constructions.  

Another important element to assess or assume when stating a portfolio choice problem is whether 

the market in which we operate is complete or not. A financial market can be defined as complete 

when “the state variables governing investment opportunities are driven by the same stochastic 
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process that drive asset returns” (Campbell (2002)). In turn, we can distinguish two types of market 

completeness: 

• Statically complete markets 

• Dynamically complete markets. 

Markets are statically complete when there is a number of traded assets at least equal to the number 

of future possible outcomes. On the other side, markets are said to be dynamically complete when 

investors, by trading dynamically available assets, can create a variety of securities that give as payoff 

one unit of consumption in a particular state and zero units in all other ones. 

This classification has an influence on the complexity of the resolution of a portfolio choice problem. 

The definition of the time horizon of the investment opportunities is another important element to 

consider. In practice, the investor has rarely a clear view on which will be the final date of his 

investment opportunity. However, in literature we can distinguish between an infinite and a finite 

horizon which lead to different computational procedures. Differently from what one could expect, 

the infinite case is easier to solve because we only need to find a steady state solution. On the contrary, 

finite-horizon cases can only be solved numerically and involve finding a solution for each time 

period considered. In the limit, a sequence of finite solutions can converge to an infinite one as the 

time horizon increases.  

The last important feature to consider when modelling a portfolio choice problem is the presence of 

frictions on the market and background risk. Frictions are all problematic elements directly connected 

to the risky security. An example are transaction costs. On the contrary, background risk incorporates 

all risks that an investor has to face other than the ones directly connected to the risky security. 

Examples are investment and consumption of housing and entrepreneurial income. 

After this brief overview, I now will analyse more in detail the issues of portfolio choice problem, 

across the most important econometric approaches in existing literature. I will start with Markowitz 

paradigm, which is probably the most famous portfolio choice formulation. 

1.1.1 Markowitz paradigm  

During its lifetime, an investor has often to face a portfolio choice problem. For example, in some 

countries, people have to choose in which pension fund invest their money in order to get a 
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reimbursement when they will retire from work. These resources can be invested in many assets, but 

the main problem is how to allocate them when making the portfolio choice.  

The most famous and commonly used method to assign weights to the assets in a portfolio is the 

mean-variance framework, formulated by Markowitz in 1952. Before going through computation, I 

want to start from a graph that best synthetises this framework. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 summarizes all possible investment combinations when we consider only three assets in 

the investable universe: cash, stocks and bonds. The horizontal axis represents risk assumed by the 

investor, while the vertical axis is the expected return that he receives as a function of the risk taken 

on. When the investor has available only bonds and stocks, he will choose the weights for each asset 

that would minimize his variance. The curved line represents all possible portfolio allocations. Point 

A denotes the minimum variance portfolio. On the other side, the straight line exemplifies all possible 

combinations of assets when we include also the risk-free security in the portfolio. Besides, point B 

represents the extreme case in which the investor employs all its resources in the risk-free asset, like, 

for example, cash. As we continue on the line, the strategy of the investor becomes more and more 

aggressive, because he takes on more risk but he receives a higher compensation. The tangency point 

between the two lines, the straight and the curved one, is the optimal portfolio allocation among the 

three assets considered in the mean-variance framework.  

MEAN-STANDARD DEVIATION DIAGRAM 

Figure 1.1 Source: Campbell J. Y. and L. M. Viceira (2002), “Strategic Asset Allocation” 
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All this explanation can be generalized for including more assets by using matrix notation. 

Consider 𝑅𝑡, a K dimensional vector representing assets returns. It has mean ρ (K×1) and variance Σ 

(K×K). We then construct portfolio return by multiplying returns vector by the weights assigned to 

each of them. In matrix notation:  

𝑤′𝑅𝑡 

Where 𝑤 (K×1) is the vector of portfolio weights. In this case we want to determine optimal portfolio 

weights in order to minimize portfolio variance: 

min
𝑤
𝑤′Σ𝑤 

Under the following conditions: 

𝑤′𝜌 = 𝜇 

𝑤′1𝐾 = 1 

Where 𝜇 is the desired level of returns. We then set the Lagrangian: 

𝑤′Σ𝑤 − 𝜆1(𝜌
′𝑤 − 𝜇) − 𝜆2(1𝐾

′ 𝑤 − 1) 

𝑤′Σ𝑤 − (𝑤′𝐵 − 𝑎′)𝜆 

Where: 

𝐵 = [𝜌, 1𝐾] 

𝑎 = [
𝜇
1
] 

𝜆 = [
𝜆1
𝜆2
] 

The first order conditions are equal to: 

2Σ𝑤 − 𝐵𝜆 = 0𝐾 

(𝑤′𝐵 − 𝑎′)′ = 02 

Then, making computations, optimal portfolio weights are equal to: 

𝑤 = Σ−1𝐵[𝐵′Σ−1𝐵]−1𝑎 



10 
 

= Σ−1[𝜌, 1𝐾] [[
𝜌′

1𝐾
′ ] Σ

−1[𝜌, 1𝐾]]

−1

[
𝜇
1
] 

However, if we consider the simpler case in which 𝐵 = 1𝐾 and 𝑎 = 1, we obtain the following result: 

𝑤 = Σ−11𝐾[1𝐾
′ Σ−11𝐾]

−1 

=
Σ−11𝐾

[1𝐾
′ Σ−11𝐾]

 

During the years, many critics has been moved toward mean-variance paradigm. These can be 

synthetized in three main point. First, Markowitz formulation regards only single-period portfolio 

choice problem. Second, it embodies a utility maximization only for investors whose preferences are 

represented by a quadratic utility function. Consequently, preferences toward higher-order return 

moments are not considered.   

1.1.2 Intertemporal utility maximization in discrete and continuous time 

In the previous paragraph I have illustrated Markowitz paradigm and how it is focused only on a 

single-period portfolio choice problem. Now, I will go through a more generical formulation of a 

portfolio choice problem, which considers a multiperiod time horizon. 

In the dynamic asset allocation framework, we can distinguish between discrete and continuous time. 

I will start with the case of a discrete time formulation. We are in a discrete time setting when the 

investor has a well defined timeline for its investment opportunity: it begins at time zero and ends at 

time T; there are some intermediate dates in which the investor has the possibility to rebalance his 

portfolio. Now, consider an investor who wants to maximise its expected utility over wealth by 

investing in a risk-free asset an in risky assets. The time horizon is 𝑡 + 𝜏. Then, we can state this 

problem as: 

𝑉(𝜏,𝑊𝑡, 𝑧𝑡) = max
{𝑤𝑠}𝑠=𝑡

𝑡+𝜏−1
𝐸𝑡[𝑢(𝑊𝑡+𝜏)] 

under the condition of the budget constraint: 

𝑊𝑠+1 = 𝑊𝑠(𝑤𝑠
′𝑟𝑠+1 + 𝑅𝑠

𝑓
) 

𝑉(𝜏,𝑊𝑡, 𝑧𝑡) is called value function and represents the expectations of the investor at time t (the 

starting point of the investment) regarding the utility that he will get at the end of the time horizon. 

These expectations are influenced by the initial level of wealth 𝑊𝑡, and by 𝑧𝑡 which denotes the 



11 
 

information set available at the time. The value function can be interpreted as an assessment of the 

quality of the investment: if it is high, the opportunity is good; otherwise it is not worth it. 𝑢(𝑊𝑡+𝜏) 

is the general notation used for the utility function. Depending on the function we choose to use, we 

substitute it with the corresponding specific formulation (e.g. CRRA, logarithmic etc.). The budget 

constraint must be positive every period and indicates the amount of accessible resources for each 

period. The time subscript s denotes intermediate dates in which is possible to rebalance the portfolio. 

𝑤𝑠
′ are portfolio weights and 𝑟𝑠+1 and 𝑅𝑠

𝑓
are returns of risky and risk-free assets respectively. 

We can then rewrite the multiperiod portfolio choice problem above as a single-period one: 

𝑉(𝜏,𝑊𝑡, 𝑧𝑡) = max
{𝑤𝑠}𝑠=𝑡

𝑡+𝜏−1
𝐸𝑡[𝑢(𝑊𝑡+𝜏)] 

= max
𝑤𝑡
𝐸𝑡 [ max

{𝑤𝑠}𝑠=𝑡+1
𝑡+𝜏−1

𝐸𝑡+1[𝑢(𝑊𝑡+𝜏)]] 

= max
𝑤𝑠
𝐸𝑡[𝑉(𝜏 − 1,𝑊𝑡(𝑤𝑡

′𝑟𝑡+1 + 𝑅𝑡
𝑓
), 𝑧𝑡+1)] 

Such that: 

𝑉(0,𝑊𝑡+𝜏, 𝑧𝑡+𝜏) = 𝑢(𝑊𝑡+𝜏) 

The function obtained is said Bellman equation and is fundamental for the solution of any dynamic 

portfolio choice problem. The FOCs for its solution are derived from the following expression: 

𝐸𝑡[𝑉2(𝜏 − 1,𝑊𝑡(𝑤𝑡
′𝑟𝑡+1 + 𝑅𝑡

𝑓
)𝑧𝑡+1)𝑟𝑡+1] = 0 

𝑉2 denotes the partial derivative with respect to the second argument of the value function. 

When the FOCs of the multiperiod case are different form the ones of the single period because excess 

returns are not independent from innovations hedging demands arise. This happens because deviating 

from the single-period portfolio choice, the investors tries to hedge against changes in the investment 

opportunities. 

On the other side, we have portfolio choices in continuous time. In this case the investor must take 

investment decisions regarding portfolio choice constantly because portfolio is rebalanced every 

instant.  

The starting point is, as before, the following statement: 
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𝑉(𝜏,𝑊𝑡, 𝑧𝑡) = max
{𝑤𝑠}𝑠=𝑡

𝑡+𝜏−1
𝐸𝑡[𝑢(𝑊𝑡+𝜏)] 

In this case we must assume that risky asset prices 𝑝𝑡 and the vector representing the information set 

𝑧𝑡 evolve together as correlated Itô vector process: 

𝑑𝑝𝑡
𝑝𝑡
− 𝑟𝑑𝑡 = 𝜇𝑝(𝑧𝑡, 𝑡)𝑑𝑡 + 𝐷

𝑝(𝑧𝑡, 𝑡)𝑑𝐵𝑡
𝑝
 

𝑑𝑧𝑡 = 𝜇
𝑧(𝑧𝑡, 𝑡)𝑑𝑡 + 𝐷

𝑧(𝑧𝑡, 𝑡)𝑑𝐵𝑡
𝑧 

𝑟 is instantaneous risk free rate, while 𝜇𝑝 and 𝜇𝑧 denote conditional mean vectors, 𝐵𝑡
𝑝
 and 𝐵𝑡

𝑧 

Brownian motion processes and 𝐷𝑝 and 𝐷𝑧 conditional diffusion matrices. The budget constraint 

takes the form: 

𝑑𝑊𝑡
𝑊𝑡

= (𝑤𝑡
′𝜇𝑡
𝑝 + 𝑟)𝑑𝑡 + 𝑤𝑡

′𝐷𝑡
𝑝𝑑𝐵𝑡

𝑝
 

Consequently, the Bellman equation is equal to:  

0 = max
𝑤𝑡
[𝑉1(∙) +𝑊𝑡(𝑤𝑡

′𝜇𝑡
𝑝 + 𝑟)𝑉2(∙) + 𝜇𝑡

𝑧′𝑉3(∙) +
1

2
𝑊𝑡
2𝑤𝑡

′Σ𝑡
𝑝𝑤𝑡𝑉22(∙) +𝑊𝑡𝑤𝑡

′𝐷𝑡
𝑝𝜌𝑡
′𝐷𝑡
𝑧′𝑉23(∙)

+
1

2
𝑡𝑟[Σ𝑡

𝑧𝑉33(∙)]] 

Where 𝜌𝑡
′  is the correlation matrix of 𝐵𝑡

𝑝
 and 𝐵𝑡

𝑧, and Σ𝑡
𝑝
 and Σ𝑡

𝑧 denote covariance matrices: 

Σ𝑡
𝑝 = 𝐷𝑡

𝑝𝐷𝑡
𝑝′

 

Σ𝑡
𝑧 = 𝐷𝑡

𝑧𝐷𝑡
𝑧′ 

FOCs are derived from the following equation: 

𝜇𝑡
𝑝𝑉2(∙) +𝑊𝑡𝑤𝑡

′Σ𝑡
𝑝𝑉22(∙) + 𝐷𝑡

𝑝𝜌𝑡
′𝐷𝑡
𝑧′𝑉23(∙) = 0 

Optimal portfolio weights are: 

𝑤𝑡
∗ = −

𝑉2(∙)

𝑊𝑡𝑉22(∙)
(Σ𝑡
𝑝)
−1
𝜇𝑡
𝑝 −

𝑉2(∙)

𝑊𝑡𝑉22(∙)

𝑉23(∙)

𝑉2(∙)
(Σ𝑡
𝑝)
−1
𝐷𝑡
𝑝𝜌𝑡
′𝐷𝑡
𝑧′ 
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This solution can be split in two components, myopic demand and hedging demand respectively. The 

first part of the expression is the one that summarizes optimal portfolio weights for a myopic portfolio 

choice. A portfolio choice is said to be myopic when the investment horizon is irrelevant, and the 

investor doesn’t know what will happen in subsequent future periods. On the contrary, the second 

portion is given by the difference between a dynamic problem and a myopic one.  

If we take the limit to zero of the continuous time Bellman equation, we obtain its discrete time 

counterpart. However, the two results do not share the same properties because continuous time 

policies cannot always assure that the wealth is positive. 

I have so far analysed the formalization of a portfolio choice problem in both discrete and continuous 

time cases. Although, there could be some cases in which for the investor is more convenient to invest 

myopically. We can recognize four cases that fall into this category: 

• Single-period horizon 

• Logarithmic utilities  

• Constant investment opportunities  

• Stochastic investment opportunities that cannot be hedged 

The first instance is an obvious one, and it does not require further explanation. 

When an investor has preferences that can be expressed through a logarithmic utility function, the 

utility that he will get from the terminal wealth will be exactly equal to the one derived from the sum 

of the utilities of returns for each period. So, this case can be in this way reconducted to the one of a 

myopic portfolio choice. 

As I said before explaining discrete-time portfolio choice problem, hedging demands arise when the 

investor tries to hedge against changes in investment opportunities. When investment opportunities 

are the same for each time period, the value function does not depend anymore on the changes in 

these opportunities and there are no hedging demands. Consequently, we go back to the case of a 

myopic portfolio choice. In the investable universe there are constant investment opportunities in two 

cases: 

• Assets returns are i.i.d. 

• Conditional moments of returns are stochastic. 
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When we have excess returns that are independent from the innovations the investor cannot use the 

available assets to hedge, so there are no hedging demands and the portfolio choice is again myopic. 

1.2 Traditional econometric approaches 

In portfolio choice framework, econometrics has the role of defining the data generating process. This 

can be done in two ways: using plug-in estimation or through decision theory. In plug-in estimation, 

also called calibration, the econometrician estimates portfolio weights and then he inserts them into 

an analytical solution in the investor’s problem. The purpose is to formulate explanatory statements. 

On the contrary, in decision theory approach, the econometrician tries to identify the return 

distribution in order to find optimal portfolio weights.  

In the next sections, I will examine with more detail both approaches, starting with plug-in estimation. 

1.2.1 Plug-in estimation 

Indeed, in case of plug-in estimation the econometrician indicates parameters for the data generating 

process and then insert them in the investor’s problem. The aim is to find, again, optimal portfolio 

weights.  

As done before, we can make a distinction between an investor which has a short-term horizon and 

another one that looks more forward. To be clearer, I will start with the simpler case of a single-period 

portfolio choice problem, and then extend to the more general case of a multiperiod choice. 

Optimal portfolio weights are a function of risk preferences, of the information set available and of 

the parameters specified and estimated by the econometrician in the data generating process: 

𝑤∗ = 𝑤(𝜙, 𝑧𝑡, 𝜃) 

We need to assume that the estimator 𝜃 is consistent and that its asymptotic distribution is: 

√𝑇(𝜃 − 𝜃)
𝑇→∞
→   𝑁[0, 𝑉𝜃] 

Consequently, the asymptotic distribution of the optimal portfolio weights estimator can be computed 

in the following way using the delta method: 

√𝑇(𝑤̂𝑡
∗ − 𝑤𝑡

∗)
𝑇→∞
→   𝑁[0, 𝑤3(∙)𝑉𝜃𝑤3(∙)

′] 

where 𝑤(∙) maps the evolution of portfolio weights. 
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To get better the sense of the former passages, we use the mean-variance framework as 

exemplification. Considering the excess returns 𝑟𝑡+1 to be i.i.d., the first step involves the estimation 

of the first and second moments: 

𝜇̂ =
1

𝑇
∑𝑟𝑡+1

𝑇

𝑡=1

 

Σ̂ =
1

𝑇 − 𝑁 − 2
∑(𝑟𝑡+1 − 𝜇̂)(𝑟𝑡+1 − 𝜇̂)

′

𝑇

𝑡=1

 

Then we insert these estimates in the numerical solution. Thus, optimal portfolio weights would be 

equal to: 

𝑤̂∗ = (
1

𝛾
) Σ̂−1𝜇̂ 

As we can see the optimal portfolio weights depend much from asymptotic approximations. They 

also inherit estimation errors of parameter estimates. 

This problem becomes more relevant in case of a multiperiod portfolio choice. In fact, when the 

investor has a longer-term investment horizon, the estimation error of the first time period is passed 

from one period to the subsequent ones and it accumulates until the last period considered. 

We can easily see this outcome from the following example. We consider optimal portfolio weights 

as mapped by a set of recursive function, as before dependent from risk preferences, information set, 

parameter estimates and, in this case, also by time: 

𝑤𝑡+𝜏−1
∗ = 𝑤(1, 𝜙, 𝑧𝑡+𝜏−1, 𝜃) 

𝑤𝑡+𝜏−2
∗ = 𝑤(2, 𝜙, 𝑧𝑡+𝜏−2, 𝜃, 𝑤𝑡+𝜏−1

∗ ) 

𝑤𝑡+𝜏−3
∗ = 𝑤(3, 𝜙, 𝑧𝑡+𝜏−3, 𝜃, {𝑤𝑡+𝜏−1

∗ , 𝑤𝑡+𝜏−2
∗ }) 

⋮ 

𝑤𝑡
∗ = 𝑤(𝜏, 𝜙, 𝑧𝑡, 𝜃, {𝑤𝑡+𝜏−1

∗ , … , 𝑤𝑡+1
∗ }) 

Then, asymptotic standard errors of portfolio weight estimates are equal to: 
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∑
𝜕𝑤(𝑡, 𝜙, 𝑧𝑡, 𝜃, {𝑤𝑠

∗}𝑠=𝑡+1
𝑇−1 )

𝜕𝑤𝑠∗

𝑇−1

𝑠=𝑡+1

𝜕𝑤𝑠
∗

𝜕𝜃
 

This expression confirms the fact that, due to the recursive nature of the process, estimation errors 

cumulate through time periods. 

This loss in precision derived form pug-in estimation can be measured by using certainty equivalent 

loss: 

𝐶𝐸 𝑙𝑜𝑠𝑠 = 𝐶𝐸 − 𝐸[𝐶𝐸̂] 

Where 

𝐶𝐸 = 𝑤∗
′
𝜇 −

𝛾

2
𝑤∗

′
Σ𝑤∗ 

𝐶𝐸̂ = 𝑤̂∗
′
𝜇 −

𝛾

2
𝑤̂∗

′
Σ𝑤̂∗ 

So, the loss is given by the difference of certainty equivalent calculated with true portfolio weights 

and with estimated portfolio weights. It is easy to understand that these values strongly depend on 

risk aversion, covariance matrices of estimates and returns. 

During the years financial literature has underlined the fact that the use of asymptotic results in plug-

in estimation cannot lead always to reliable outcomes because samples considered for the estimation 

are finite. Thus, three main solution have been proposed in order to augment plug-in estimates: 

portfolio constraint, factor models and shrinkage estimation. 

The imposition of constraint on portfolio weights improves sample estimates by limiting their range 

of variation and eliminating more extreme ones. There are plenty of constraint that can be set, 

however the most common are limits to short selling activity, maximum positions in securities of a 

determined sector or industry or boundaries in the level of borrowing investable in risky assets. 

The second way of enhancing results of plug-in estimation is through the use of a factor structure for 

the assets covariation. This action has the result of reducing the number of free parameters of the 

matrix. In order to capture all elements of the covariation matrix, a multifactor model is considered: 

𝑟𝑖,𝑡 = 𝛼𝑖,𝑡 + 𝛽𝑖
′𝑓𝑡 + 𝜀𝑖,𝑡 
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𝛽𝑖
′ represents the vector of factor loading, 𝑓𝑡 denotes the generic expression for factor realization and 

𝜀𝑖,𝑡 uncorrelated residuals. 

Consequently, the return covariance matrix is obtained: 

Σ = 𝐵Σ𝑓𝐵
′ + Σ𝜀 

Where 𝐵 is the matrix of stacked factor loadings. 

The main problem is this case is represented by the choice of factors. Financial literature suggests 

three possible solutions to this issue. The first answer is to get them directly from returns by using a 

proper statistical procedure. The other ones suggest making a choice based on an empirical work or 

economic theory. 

The last solution identified in order to reduce the estimation error in plug-in estimation is shrinkage 

estimation. In this case, by using proper estimators, estimates are induced to converge toward a 

common value thus reducing extreme estimation errors. The first estimator identified was the one for 

sample means, however later estimators were calculated also for the sample covariance matrix and 

directly for optimal portfolio weights. The estimator for the sample mean is equal to: 

𝜇𝑠 = 𝛿𝜇0 + (1 − 𝛿)𝜇̅ 

Where 𝛿 must be included between zero and one. The optimal shrinkage factor 𝛿 results from the 

following expression: 

𝛿∗ = 𝑚𝑖𝑛 [1,
(𝑁 − 2) 𝑇⁄

(𝜇̅ − 𝜇0)′Σ−1(𝜇̅ − 𝜇0)
] 

The estimator for the covariance matrix is instead: 

Σ̂𝑠 = 𝛿𝑆̂ + (1 − 𝛿)Σ̂ 

Where 𝑆̂ is the optimal shrinkage target. In this case the optimal shrinkage factor corresponds to: 

𝛿∗ ≃
1

𝑇

𝐴 − 𝐵

𝐶
 

Where: 
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𝐴 =∑∑𝑎𝑠𝑦 𝑣𝑎𝑟[√𝑇𝜎̂𝑖,𝑗]

𝑁

𝑗=1

𝑁

𝑖=1

 

𝐵 =∑∑𝑎𝑠𝑦 𝑐𝑜𝑣[√𝑇𝜎̂𝑖,𝑗, √𝑇𝑠̂𝑖,𝑡]

𝑁

𝑗=1

𝑁

𝑖=1

 

 

𝐶 =∑∑(𝜎̂𝑖,𝑗 − 𝑠̂𝑖,𝑡)

𝑁

𝑗=1

𝑁

𝑖=1

 

Appling shrinkage estimation directly on optimal portfolio weights could be an advantageous solution 

because it is easier to specify particular objectives of the shrinkage procedure. Furthermore, a direct 

link between mean and variance is created. In this case the estimator is: 

𝑥̂𝑠
∗ = 𝛿𝑥0 + (1 − 𝛿)𝑥̂

∗ 

Where 𝑥0 is the shrinkage target. 

1.2.2 Decision theory 

The alternative to plug-in estimation, where the econometrician specifies some parameters that will 

be estimated through the process, is to bypass the step of finding optimal parameters and try to 

determine return distribution by exploiting personal beliefs and data observed. This is what is done 

with decision theory approach.  

In this framework we need to rewrite the investor’s utility maximization problem as: 

max
𝑤𝑡
∫𝑢(𝑤𝑡

′𝑟𝑡+1 + 𝑅
𝑓)𝑝(𝑟𝑡+1|𝑌𝑇)𝑑𝑟𝑡+1 

where 𝑌𝑇 denotes data available to the investor. 𝑝(𝑟𝑡+1|𝑌𝑇) is the return distribution identified by the 

investor. It is subjective because it is determined on the base of his prior beliefs. This is equal to write: 

𝑝(𝑟𝑡+1|𝑌𝑇) = ∫𝑝(𝑟𝑡+1|𝜃)𝑝(𝜃|𝑌𝑇)𝑑𝜃 

However, in order to solve it, we need to know posterior distribution of the parameters as well. They 

are obtained through the Bayes’ theorem: 
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𝑝(𝜃|𝑌𝑇) =
𝑝(𝑌𝑇|𝜃)𝑝0(𝜃)

𝑝(𝑌𝑇)
∝ 𝑝(𝑌𝑇|𝜃)𝑝0(𝜃) 

Thus, the maximization problem can be rewritten as: 

max
𝑤𝑡
∫[∫𝑢(𝑤𝑡

′𝑟𝑡+1 + 𝑅
𝑓)𝑝(𝑟𝑡+1|𝜃)𝑑𝑟𝑡+1] 𝑝(𝜃|𝑌𝑇)𝑑𝜃 

As we can see, just having knowledge of data and prior beliefs of the investor we can find optimal 

portfolio weights based on the determined return distribution. 

The choice of the type of priors ends up being fundamental in the Bayesian approach. In financial 

literature priors can be of two kinds: uninformative and informative. Uninformative priors are the 

ones which incorporate very little information about parameters. On the contrary, informative priors 

include subjective information. Although both of them have their area of application, uninformative 

priors are most widely used in empirical applications because they are more comparable to traditional 

statistical approaches. In fact, the principal problem when using informative priors is to keep 

analytical tractability of posterior distribution. This problem is solved by econometricians using 

conjugate priors, which are helpful for updating posteriors with new information.  

An alternative way of specifying priors is to determine them on the base of theoretical outcomes of 

an economic model. This can be done through the mixed estimation method, which more generally 

allows to combine two sets of data into a single posterior distribution. 

Supposing i.i.d returns and starting beliefs expressed as: 

𝑟𝑡+1~𝑀𝑁𝑉[𝜇, Σ] 

𝑝(𝜇) = 𝑀𝑁𝑉[𝜇̅, Λ] 

Then, the new information set is included generating the following distribution: 

𝑝(𝑣|𝜇) = 𝑀𝑁𝑉[𝑃𝜇, Ω] 

Where 𝑣 are new information, 𝑃 is a matrix which combines returns and Ω denotes error covariance 

matrix. 

The three most common application which include economic view in Bayesian framework are Black-

Litterman model, the return forecasting with belief in no predictability formulated by Kandel, 
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Stambaugh and Connor, and belief in asset pricing model formulated by Pastor. The most famous is 

probably the Black-Litterman model, in which benchmark beliefs are obtained by inferring risk 

premia that would induce an investor to hold assets in proportion of market capitalization in the mean 

variance framework. 

So far, I have tried to explain how parameters uncertainty is tried to be ruled out. However, the same 

path could be followed in order to solve model uncertainty on which portfolio choice model to choose 

in order to get the best result. In this case we would have: 

𝑝(𝑀𝑗|𝑌𝑇) =
𝑝(𝑌𝑇|𝑀𝑗)𝑝(𝑀𝑗)

∑ 𝑝(𝑌𝑇|𝑀𝑗)𝑝(𝑀𝑗)
𝐽
𝑗=1

 

And 

𝑝(𝑌𝑇|𝑀𝑗) = ∫𝑝(𝑌𝑇|𝑀𝑗 , 𝜃𝑗)𝑝(𝜃𝑗|𝑀𝑘)𝑑𝜃𝑗  

This finds its best application when model the uncertainty about the true model is very high. 

1.3 Alternative econometric approach 

As we have seen, traditional econometric approaches generally involve a path composed by two main 

steps. The first one in focused on the estimation of parameters of the data generating process or of 

the return distribution, while the second one is dedicated to the calculation of optimal portfolio 

weights on the base of results derived from the former step. Thus, there is a high dependence of the 

applied model outcome on inference made in the first part of the process. 

The most recent stream of literature proposes new approaches in order to avoid or at least reduce this 

reliance. Inside this flow we can identify two principal groups of methodologies: the ones which uses 

parametric portfolio weights and the others which exploit nonparametric portfolio weights.  

In the following sections I will go into details of each category, presenting to the reader, as examples, 

the principal models formulated by Brandt et al. 

1.3.1 Parametric portfolio weights 

The technique of parametric portfolio weights allows the econometrician to skip the first step of 

traditional approaches by modelling optimal portfolio weights as a function of observable quantities 

(Brandt (2010)) and then solve this function in order to maximize utility. 



21 
 

One of the models that follows this path is the one formulated by Brandt and Santa-Clara in 2006. 

This approach is aimed at a dynamic portfolio selection by extending the asset space through the 

inclusion of mechanically managed portfolios. In this augmented asset space are included two types 

of portfolios: conditional portfolios, which invest a sum proportional to the state variable considered, 

and timing portfolios which invest one period in a risky asst and the other ones in a risk-free security. 

They demonstrate that this is equal to solving a conditional problem with parametrized weights. 

This is just one of the recent econometric approaches which involve parametric portfolio weights. 

Thus, the following chapter of this work will be completely dedicated to one of those, the approach 

formulated by Brandt et al. in 2009. 

1.3.2 Nonparametric portfolio weights 

The stream of nonparametric portfolio weights starts form the fact that when using parametric 

portfolio weights there could be made some mistakes when modelling the weight function.  

Brandt’s nonparametric approach determines optimal portfolio weights as the ones which satisfy 

sample analogues of Euler equation or FOCs, in which the conditional expectations are replaced by 

nonparametric regression. 

Considering a single period portfolio choice, we start from the following Euler equation: 

𝐸𝑡[𝑢
′(𝑤𝑡

′𝑟𝑡+1 + 𝑅𝑡
𝑓
)𝑟𝑡+1] = 0 

Supposing i.i.d. returns and constant weights through different states, and replacing conditional 

expectations, we obtain the following estimator for portfolio weights: 

𝑤̂ = {𝑤:
1

𝑇
∑𝑢′(𝑤𝑡

′𝑟𝑡+1 + 𝑅𝑡
𝑓
)𝑟𝑡+1 = 0

𝑇

𝑡=1

} 

Removing the previous assumptions on weights and returns, the estimator is equal to: 

𝑤̂(𝑧) = {𝑤:
1

𝑇ℎ𝑇
𝐾∑𝜔(

𝑧𝑡 − 𝑧

ℎ𝑇
) 𝑢′(𝑤𝑡

′𝑟𝑡+1 + 𝑅𝑡
𝑓
)𝑟𝑡+1 = 0

𝑇

𝑡=1

} 

As we can see, in this case there is a dependence of the final result on the macroeconomic state 

variable. 𝜔 denotes the kernel function, which weights marginal utility maximizations and ℎ𝑇 is the 

sequence of kernel bandwidths.  
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1.4 Which model is the best one? Empirical considerations 

At the beginning of this chapter I have stated that we cannot identify, from a theoretical point of view, 

a model that is preferable to the others because each of them is based on different assumption and has 

different implications. However, when required to make a choice, we can base on empirical findings 

present in literature. 

Thus, in this last section I move from the theoretical analysis made so far toward more empirical 

considerations, in order to assess strengths and weaknesses of each model. 

Table 1.1 reports the main empirical evidences emerged in literature in recent years, in particular in 

the research carried out by DeMiguel et al. (2009).  

Among all theoretical formulations previously exposed, I will now take into consideration ten asset 

allocation models: an equally weighted portfolio, the classical mean-variance approach formulated 

by Markowitz, Bayesian approaches to estimation error (with the use of diffuse priors, Bayes-Stein 

shrinkage portfolio, and beliefs determined by asset pricing models), moment restrictions (minimum 

variance portfolio, and value weighted portfolio), imposition of constraints on the portfolio policy, 

the combination of portfolio strategies and, in the end, the parametrization of portfolio weights 

formulated by Brandt. However, this last one will be further analysed in the subsequent chapters as 

already anticipated.  

The equally weighted portfolio strategy is the easiest to implement because it assigns the same weight 

to every asset present in the portfolio. However, beyond its apparent simplicity, it is generally the 

best performing in comparison to other optimizing strategies considered by DeMiguel et al. when 

trading on the stock market. Indeed, it has the highest Sharpe ratio, the best CER and the lowest 

turnover. This is mainly a consequence of the fact that it does not rely on estimation of parameters 

such as mean and variance as other alternative strategies. Definitely, the largest errors are usually 

made when estimating the mean. This superiority remains also when both mean and variance are 

unknown.  

As stated before, there are many critical issues linked to the correct application of the mean-variance 

framework formulated by Markowitz. One of those regards the estimation of the mean and variance 

matrices, in which a large estimation error can be made. If no corrections are made in order to deal 

with this estimation error, the portfolio strategy is not able to beat the naïve 1/N. However, when the 

mean needs to be estimated and the variance is known, Markowitz’s strategy is more likely to perform  
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 Asset allocation mod. Advantages Disadvantages 

  

1/N  

It has the lowest turnover.                                                                                          

It is the best performing strategy when 

mean and variance are both unknown.                                                                                                               

It has the best CEQ.                                                      

It beats dynamic strategies.   

C
la

ss
ic

a
l 

a
p

p
ro

a
ch

 

Sample-based mean-

variance (Markowitz)  

If mean is unknown/known and 

variance is known/unknown, it is more 

likely to beat 1/N when the no. of 

periods is high and the no. of assets is 

low.                                                      

Its performance improves if the 

idiosyncratic asset volatility is higher 

than 20%. 

It is no able to outperform the 1/N 

if no corrections are made for 

dealing with the estimation error.  

It has the highest level of turnover.                                   

It requires long estimation 

windows.   

B
a
y
es

ia
n

 a
p

p
ro

a
ch

 t
o
 

es
ti

m
a
ti

o
n

 e
rr

o
r 

Diffuse priors 
It reduces turnover compared to 

Markowitz approach. 

Not effective at dealing with 

estimation error. 

Bayes-Stein shrinkage 

portfolio 

It has a higher Sharpe ratio compared to 

Markowitz model.                                                                                           

It reduces turnover compared to 

Markowitz approach. 

Not effective at dealing with 

estimation error. 

Bayes beliefs determined 

by asset pricing models  

It reduces turnover compared to 

Markowitz approach. 

Not effective at dealing with 

estimation error. 

M
o
m

en
ts

 r
es

tr
ic

ti
o
n

s 

Minimum variance 

portfolio 

It performs better than Markowitz 

approach.               

It has a lower turnover compared to the 

Bayesian approach and Markowitz 

model.        

It exploits info about correlations 

leading to a reduction in extreme 

portfolio weights. 

It doesn’t beat the 1/N strategy.  

It ignores estimates of expected 

returns 

Value weighted portfolio 
It has a null turnover because the 

investor holds the market portfolio.   

  
Portfolio constraints  

No short sale constraint reduces 

turnover consistently. 

They improve performance only 

for small estimation windows. 

  

Combination of portfolio 

strategies 

They are more effective in reducing the 

estimation error.                                                                               

They exploit the correlation structure to 

reduce risk.  

They ignore data on expected 

returns. 

  

Parametric portfolio 

weights (Brandt et al.) 

It reduces statistical estimation problem.                                             

It has a higher performance and a higher 

turnover which grows with the number 

of assets.                                                                   

Using info on stock characteristics 

improves performance.   

EMPIRICAL FINDINGS 

 

Table 1.1 Source: Self-elaboration on De Miguel V., L. Garlappi and R. Uppal (2009) data 



24 
 

better than the 1/N strategy if the number of periods is high and the number of assets is low. This 

happens because the number of parameter estimates grow with the number of assets considered, and 

so does the estimation error; while a wider estimation window reduces it because the econometrician 

has more elements for making computations. Other than the longer estimation period required, 

another weakness of the mean-variance framework is the high level of turnover, which in the presence 

of transaction costs can erode an optimal performance. Furthermore, the presence of an idiosyncratic 

volatility of assets higher than 20% can improve the performance of this strategy. 

The Bayesian approaches have the advantage to lead to a reduction in turnover and in an increase in 

the performance in comparison to the Markowitz approach. However, they are not yet effective in 

dealing with the estimation error.  

Among asset allocation models with moments restrictions, I consider a value weighted portfolio and 

a minimum variance portfolio. The first assigns weights in proportion to market capitalization, while 

the other takes the weights associated with the portfolio which has the lowest variance. The value 

weighted portfolio has the strength of being the one with the lowest turnover, because the investor 

holds the market portfolio, and thus he does not trade at all. On the other side, the minimum variance 

strategy has a higher turnover compared to the value weighted but this is lower than the one of the 

Markowitz approach. It has also a better performance among other strategies, but not enough to 

outperform the naïve one. Although, the minimum variance strategy has also the great advantage of 

leading to a reduction in extreme portfolio weights through the exploitation of information about 

correlations. 

Generally, the imposition of a constraint on a portfolio strategy has the effect of improving the 

performance of the portfolio only if short estimation windows are considered. Otherwise, limitations 

in trading, such as the no short sale constraint, has the only consequence of reducing turnover 

consistently. Although, this could be an advantage in the presence of a high level of transaction costs. 

On the other side, combinations of different asset allocation methods are the most effective in dealing 

with the estimation error even if they generally ignore data on expected returns. Anyway, these 

approaches are able to exploit the correlation structures in order to reduce the overall risk of the 

portfolio. 

Nevertheless, among all approaches considered, the one with parametric portfolio weights formulated 

by Brandt et al. is the only one which can outperform the naïve 1/N strategy. In fact, by using 
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information on stock characteristics, it improves its performance and reduces the estimation error. 

The trade-off is the fact that it leads to an increase in asset turnover.  

These evidences, as the rest of this work, are referred to the stock market, because, as highlighted by 

Ackermann et al. (2017), in the currency markets other portfolio optimization strategies lead to a 

better performance compared to the one of the naïve 1/N strategy. 
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Chapter 2  

Brandt’s model: a parametric approach for portfolio weights estimation 

 

In this chapter I will illustrate in a more detailed way Brandt et al.’s model formulated in 2009, 

beginning from its fundamental through its extensions and highlighting its strengths and weaknesses. 

As we will see, this is a perfect example of an alternative econometric approach based on parametric 

portfolio weights.  

The conclusion drawn so far is that Markowitz’s model leaves an open point. In fact, even if the 

mean-variance approach is considered as traditional and it is the most well-known, it sometimes 

involves computational issues that can hardly be solved by a simple investor; it would rather be 

implemented by a professional. Indeed, it requires the asset manager to model expected returns, 

variances and covariances to be applied. Furthermore, it is focused on a single period horizon where 

the investor cannot do anything but waiting for the investment to end, without having the possibility 

of revising his investment decision at intermediate dates. 

In order to solve these issues Brandt, Santa-Clara and Valkanov have formulated in 2009 an 

alternative parametric approach which involves modelling optimal portfolio weights as a function of 

firm characteristics. These characteristics can be various, such as one-year lagged return, market 

capitalization, book-to-market ratio, asset growth, leverage and so on. The choice of course depends 

mainly on the type of market and the aim of the empirical application. Then, the coefficients are 

estimated by maximizing the utility function of the potential investor. 

At the beginning of their paper, the authors have underlined four main advantages of their alternative 

parametric approach. First, it gives a direct focus on portfolio weights escaping the long and tedious 

step of modelling returns and characteristics, which is central in traditional econometric approaches. 

Second, it encapsulates in an implicit way the connection between returns, characteristics, variances 

and covariances. Third, it avoids the frequent problem in statistical computations of overfitting or not 

precise coefficient estimates, because it requires only the estimation of N weights, where N is the 

number of assets considered in the portfolio every period. Finally, it allows to easily test hypotheses, 

whether they are individual or joint. 

2.1 Methodology: a simple linear policy  

In an investment universe in which there is the possibility to allocate funds in N stocks in each period, 

the investor has to choose weights in order to solve the following problem of utility maximization: 
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max
{𝑤𝑖,𝑡}𝑖=1

𝑁𝑡
𝐸𝑡 [𝑢(𝑟𝑝,𝑡+1)] = 𝐸𝑡 [𝑢 (∑𝑤𝑖,𝑡

𝑁𝑡

𝑖=1

𝑟𝑖,𝑡+1)] 

𝑤𝑖,𝑡 = 𝑓(𝑥𝑖,𝑡; 𝜃) 

𝑤𝑖,𝑡 = 𝑤̅𝑖,𝑡 +
1

𝑁𝑡
𝜃𝑇𝑥̂𝑖,𝑡 

This is the case in which portfolio weights are a linear function of 𝜃 and 𝑥̂𝑖,𝑡, but this application can 

be extended to more general functions. 𝑟𝑝,𝑡+1 represents portfolio returns and 𝑟𝑖,𝑡+1 are stock returns. 

𝑤̅𝑖,𝑡 is the matrix of portfolio weights assumed as a benchmark. Usually it is an equally weighted 

portfolio. 1/Nt is the term that allows for the number of stocks to vary in time. 𝜃 (Ft × 1) is the vector 

of parameter estimates, which is representative of the weight assigned to each firm characteristic 

selected. These 𝜃𝑠 are constant in time because otherwise they would be influenced also by past return 

history and not only by firm-specific characteristics. 𝑥̂𝑖,𝑡 (Nt × Ft) is the matrix of normalized firm 

characteristics. As stated before, these can be various, from book-to-market ratio or market 

capitalization to annual asset growth. Nt represents the number of asset and Ft is the number of 

characteristics chosen. For every period, the following inequality must be valid: Nt > Ft. The 

multiplication of the two matrices, 𝜃𝑇𝑥̂𝑖,𝑡, embodies the deviations from the benchmark of optimal 

portfolio weights. This product can be interpreted also as the adjustment made to the benchmark 

portfolio in order to improve its performance.  

In Brandt et al.’s opinion, the standardization process of the characteristics brings two main 

advantages. First, the cross-sectional average of the deviation from the benchmark portfolio is zero, 

making the sum of optimal weights equal to one. Second, data of characteristics could be non-

stationary, while standardized characteristics are granted to be stationary. 

It is worth noting that with the application of this model the complexity in making computations 

doesn’t grow with the number of stocks included in the optimal portfolio, but with the amount of 

characteristics considered. 

2.2 Objective function  

Brandt et al.’s model can be applied to a wide range of utility functions, even the ones affected by 

investor’s behaviours. The only prerequisite that it is imposed is that the utility function must have a 

unique solution.  
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As we have seen, in financial literature, when modelling a portfolio choice, the assumptions made 

regarding the utility function over wealth are very important. We can choose among three main 

categories of functions, depending on the prerequisites set: 

• Exponential utility family 

• Power utility family  

• Quadratic utility 

The exponential utility function takes the form: 

𝑈(𝑊𝑡+1) = −exp (−𝜃 ∗𝑊𝑡+1) 

where 𝑊𝑡+1 represents wealth and 𝜃 is the coefficient of absolute risk aversion, which embodies the 

absolute monetary amount that an investor is willing to pay in order to avoid taking on risk of a 

gamble of an absolute dimension. In this case the coefficient 𝜃 is a constant and returns are assumed 

to be normally distributed. Relative risk aversion, which is the proportion of wealth that an investor 

is willing to pay in order to avoid a bet of a given size relative to risk, is increasing in wealth. 

Power utility functions take the form: 

𝑈(𝑊𝑡+1) =
𝑊𝑡+1
1−𝛾

− 1

(1 − 𝛾)
 

Where 𝑊𝑡+1 is again wealth and 𝛾 is the constant coefficient of relative risk aversion. Here asset 

returns are assumed to be lognormally distributed and absolute risk aversion is declining in wealth. 

In the limit case of 𝛾 = 1, the power utility function turns into a log utility one. The most commonly 

used power utility function is Constant Relative Risk Aversion (CRRA) function. 

Finally, we have quadratic utility, which is represented by the following expression: 

𝑈(𝑊𝑡+1) = 𝑎 + 𝑏 ∗𝑊𝑡+1 

Both absolute and relative risk aversion grow as wealth goes up. No distributional assumptions are 

made. 

In any case, the curvature of the utility function is an indicator of the level of risk aversion of the 

investor. 

Each of these categories has its advantages and disadvantages. For example, CRRA function has the 

benefit of incorporating preferences toward higher moments of the distribution, without the addition 

of new parameters on preferences, it is optimal under a partial myopic behaviour of the investor and 
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it is twice continuously differentiable, which is a plus in an optimization process. On the other side, 

there are several weaknesses as well. First, some CRRA could not be able to find the global optimum, 

for example when the problem is not well stated. Second, in some cases these functions, especially 

with characteristics-based portfolios (as pointed out by Ammann et al. (2016)), lead the investor to 

take on extreme positive or negative position in portfolio weights. Third, there are cases in which 

expected utility does not take finite values. 

On the other side, quadratic utility functions have the strength of allowing for closed-form solution 

that are able to guarantee the identification of global maxima.  

In my empirical application, I decided to use CRRA utility function, following the path set by Brandt 

et al. in most of their applications. So, standard CRRA utility over wealth through this paper would 

take the form: 

𝑢(𝑟𝑝,𝑡+1) =
(1 + 𝑟𝑝,𝑡+1)

1−𝛾

1 − 𝛾
 

However, this is a discretionary choice. For example, Ammann et al. (2016) in their application of 

the model decide to use a quadratic utility function. 

2.3 Statistical inference 

As already said before, one of the most important advantages of Brandt et al.’s model is the possibility 

to test individual or joint hypotheses on optimal portfolio weights in a simple way. This is due to the 

fact that the optimal thetas estimated can be interpreted as a generalized method of moment estimator. 

In fact, the portfolio policy can be stated also as: 

max
𝜃

1

𝑇
∑𝑢(𝑟𝑝,𝑡+1)

𝑇−1

𝑡=0

=
1

𝑇
∑𝑢(∑(𝑤̅𝑖,𝑡 +

1

𝑁𝑡
𝜃𝑇𝑥̂𝑖,𝑡)

𝑁𝑡

𝑖=1

∗ 𝑟𝑖,𝑡+1)

𝑇−1

𝑡=0

 

which is subject to the first order condition: 

1

𝑇
∑ℎ(𝑟𝑡+1, 𝑥𝑡; 𝜃)

𝑇−1

𝑡=0

≡
1

𝑇
∑𝑢′(𝑟𝑝,𝑡+1) ∗ (

1

𝑁𝑡
∗ 𝑥̂𝑡

𝑇𝑟𝑡+1)

𝑇−1

𝑡=0

= 0 

Consequently, the covariance matrix of optimal estimates can be computed in two ways: 

• As asymptotic covariance matrix 

• With bootstrap technique. 



30 
 

The first method exploits the property of the method of moments estimator: 

Σ𝜃 ≡ 𝐴𝑠𝑦𝑉𝑎𝑟[𝜃] =
1

𝑇
[𝐺𝑇𝑊−1𝐺]−1 

where: 

𝐺 ≡
1

𝑇
∑
𝜕ℎ(𝑟𝑡+1, 𝑥𝑡; 𝜃)

𝜕𝜃

𝑇−1

𝑡=0

= 

=
1

𝑇
∑𝑢′′(𝑟𝑝,𝑡+1) (

1

𝑇
𝑥̂𝑡
𝑇𝑟𝑡+1) (

1

𝑇
𝑥̂𝑡
𝑇𝑟𝑡+1)

𝑇𝑇−1

𝑡=0

 

The consistent estimator of the covariance matrix of ℎ(𝑟, 𝑥; 𝜃), W, can be estimated in two ways. In 

the first case we have: 

𝑊 =
1

𝑇
∑ℎ(𝑟𝑡+1, 𝑥𝑡; 𝜃)

𝑇−1

𝑡=0

ℎ(𝑟𝑡+1, 𝑥𝑡; 𝜃)
𝑇
 

This equation can be used if marginal utilities are uncorrelated by assumptions.  

The alternative method implies using the Newey-West procedure, that produces an estimator which 

is consistent even in the presence of autocorrelation and heteroscedasticity. It involves the selection 

of a lag length in order to identify the number of lagged residuals used to evaluate autocorrelation. 

According to the authors, the procedure is asymptotically equal to the one that is optimal under a 

mean-squared error loss function; however, it could result is size distortions. It can be computed as: 

𝑊̂𝑡
𝑁𝑊(𝜃) = Γ𝑙𝑇(𝜃) +∑(1 −

𝑙

𝐿 + 1
) Γ𝑙𝑇(𝜃) + Γ𝑙𝑇(𝜃)′

𝐿

𝑙=1

 

where: 

Γ𝑙𝑇 =
1

𝑇
∑ℎ(𝑟𝑡, 𝑥𝑡; 𝜃) ℎ(𝑟𝑡+1, 𝑥𝑡; 𝜃)

𝑇−𝑙

𝑖=1

 

On the other side, the bootstrap technique implies the creation of many random samples of returns 

and characteristics from the original sample. After the estimation of optimal thetas, the covariance 

matrix of coefficients must be estimated from any bootstrapped subsample created. This method has 

the advantage to capture features of data that are non-normal, and it does not rely on asymptotic 
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results as the former case. This can be a useful property for example in countries such as emerging 

ones where samples available to make analysis are not very big. 

I have decided to use in my application Newey-West estimator in the asymptotic covariance 

framework, because it seemed to me the most suitable one for the aim of my research. Although, 

Brandt et al. use the bootstrap technique across their paper. 

2.4 Extensions to the simple linear policy 

Until now I have exposed the basic application of the model, the so called simple linear policy, and 

its fundamental assumptions. However, the authors have included in their paper some possible 

extensions, refinements and restriction that can be imposed to the parametric portfolio choice 

framework. Now I will focus on the two that I have implemented in my empirical application. 

However, in order to provide the reader with a better understanding of the model, the last subsection 

is dedicated to the other one included in the original paper which exposes the improvement made to 

remove the assumption of constant coefficient through time.  

2.4.1 Transaction costs 

Transaction costs are all those expenses related to the stock exchange, fees, or more broadly to the 

trading activity. These can be of various entity and are not constant from country to country.  

However, transaction costs can be a relevant part when computing portfolio returns in a determined 

portfolio policy. As such, they are inserted in the theoretical computation in the following way: 

𝑟𝑝,𝑡+1 =∑𝑤𝑖𝑟𝑖,𝑡+1 − 𝑐𝑖,𝑡|𝑤𝑖,𝑡 − 𝑤𝑖,𝑡−1|

𝑁𝑡

𝑖=1

 

and 

𝑇𝑡 =∑|𝑤𝑖,𝑡 − 𝑤𝑖,𝑡−1|

𝑁𝑡

𝑖=1

 

𝑇𝑡 denotes asset turnover. It represents the absolute amount of exchanges made from one time period 

to the other for each asset. This value is multiplied by 𝑐𝑖,𝑡, which is a function that synthetises 

transaction costs. This product is then subtracted for each period from portfolio returns. 

As we can see, asset turnover and transaction costs are strictly connected. In fact, the effect of 

transaction cost on portfolio return can be reduced with a reduction in the level of turnover. This 

consideration is independent on the way in which these costs are modelled. 
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As I said, 𝑐𝑖,𝑡is the generic term that includes transaction costs. Though, they can be modelled in 

different ways. For example, they can be a constant proportion through time, or approximated directly 

from liquidity measures of the market. Another possibility, the one that I decided to implement in my 

empirical application following the authors’ path, is to determine them as a function of asset 

characteristics. I choose to use market capitalization; however, other measures can easily be used. 

Anyway, transaction costs are usually higher for smaller firms and thinner for bigger ones. 

Nevertheless, transaction costs can have a relevant impact on characteristics-base portfolios. In fact, 

in the presence of trading costs the simple linear policy presented above is far from being optimal. 

Furthermore, in the past have other authors like Davis and Norman (1990) have proven that the 

optimal portfolio policy is characterized by a boundary around the target weight for the risky asset 

inside which it is not convenient to trade. 

Taking these considerations into account, Brandt et al. have decided to find their solution in order to 

identify the boundary that makes for the investor convenient whether to trade or not. The starting 

point is the initial portfolio given by the equation of the portfolio policy: 

𝑤𝑖,0 = 𝑤̅𝑖,0 + 𝜃
𝑇𝑥𝑖,0 

After that, they define each period a target portfolio and a hold portfolio: 

𝑤𝑖,𝑡
𝑡 = 𝑤̅𝑖,𝑡 + 𝜃

𝑇𝑥𝑖,𝑡 

𝑤𝑖,𝑡
ℎ = 𝑤𝑖,𝑡−1

1 + 𝑟𝑖,𝑡
1 + 𝑟𝑝,𝑡

 

At this point, they consider two possible outcomes: 

• The hold portfolio is close to the target portfolio 

• The hold portfolio is far from the target one. 

In the first case, for the investor is better not to trade, and the no-trade region, the distance between 

the two portfolios, is defined as: 

𝑤𝑖,𝑡 = 𝑤𝑖,𝑡
ℎ  

if 

1

𝑁𝑡
∑(𝑤𝑖,𝑡

𝑡 − 𝑤𝑖,𝑡
ℎ )

2

𝑁𝑡

𝑖=1

≤ 𝑘2 
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On the other side, the investor should trade on the edge of the no trade region. The optimal portfolio 

in this case turns to: 

𝑤𝑖,𝑡 = 𝛼𝑡𝑤𝑖,𝑡
ℎ + (1 − 𝛼𝑡)𝑤𝑖,𝑡

𝑡  

if 

1

𝑁𝑡
∑(𝑤𝑖,𝑡

𝑡 − 𝑤𝑖,𝑡
ℎ )

2

𝑁𝑡

𝑖=1

> 𝑘2 

where 

𝛼𝑡 =
𝑘√𝑁𝑡

√∑ (𝑤𝑖,𝑡
𝑡 −𝑤𝑖,𝑡

ℎ )
2𝑁𝑡

𝑖=1

 

The authors underline anyway that this is only an approximation to the optimal solution. 

In the following chapter, when I will apply transaction costs to the portfolio strategy, I would just 

limit their use to the demonstration of how their weight is relevant for the final portfolio return. 

Although, transaction costs can, in some cases, even bring some benefits. In fact, recent studies 

conducted by DeMiguel et al. (2019) have shown that they can influence the number of characteristics 

that are jointly significant for an investor’s optimal portfolio. Indeed, they increase this number. This 

finding has two main consequences. First, the joint use of characteristic produces a reduction in asset 

turnover by eliminating superfluous transactions, thus helping in trading diversification. The second, 

deducted directly from the former point, there is an increase in investor’s utility.  

2.4.2 Weight constraints  

In financial literature, as we have seen for the improvement of plug-in estimates, there are many ways 

in which constraint can be imposed to portfolio weights. The most common ones are setting a limit 

in the maximum exposure in a sector, industry or in a single security, a ceiling in the amount of 

borrowings to invest in a risky asset and restrictions on short positions that an investor can take on. 

The reason underlying these limitations can be various, from market imperfections to investor’s 

preference in asset management. For example, Brazil, as other emerging markets, forbids naked short 

selling in order to prevent speculations.  

The restraint imposed most frequently is the no short sale constraint, which limits the amount of short 

positions that an investor can take on by completely cutting negative weights. In practice this 
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restriction is an extreme condition that can be applied for example when there is a high risk of 

speculation. This is the case when the regulator wants to protect the market.  

In Brandt et al.’s paper, the no short sale constraint is imposed in order to try to find a solution for 

the elevated level of negative weights and, consequently, leverage that the model induces the investor 

to take on. However, this is of course not the optimal solution because it is the extreme case in which 

borrowings are completely cancelled out. Indeed, investors generally are most likely to take on 

intermediate levels of leverage.  

Furthermore, the imposition of this restriction requires a renormalization of portfolio weights, 

because without taking any action and with the cancellation of negative positions, optimal portfolio 

weights would sum more than one. This can be done in the following way: 

𝑤𝑖,𝑡
+ =

𝑚𝑎𝑥[0, 𝑤𝑖,𝑡]

∑ 𝑚𝑎𝑥[0, 𝑤𝑗,𝑡]
𝑁𝑡
𝑗=1

 

A problem arises when imposing this constraint. In fact, the renormalization makes the function of 

the optimal portfolio policy not differentiable in 𝑤𝑖,𝑡 = 0. As a consequence, we can’t use the 

asymptotic estimator derived form the method of moments. However, this challenge can be easily 

overcome by using the bootstrap technique. 

2.4.3 Coefficient variation through time 

As already stated, in the simple linear policy case, the optimal coefficient estimates are supposed to 

be time invariant. This assumption is essential in order to guarantee that optimal portfolio weights are 

not affected by the history of past returns.  

Although, this hypothesis can be easily surmounted with the introduction of a vector of predictor that 

models the factors which optimal coefficient are supposed to vary with in the linear portfolio policy 

equation: 

𝑤𝑖,𝑡 = 𝑤̅𝑖,𝑡 +
1

𝑁𝑡
𝜃𝑇(𝑧𝑡⊗𝑥𝑖,𝑡) 

where 𝑧𝑡 denotes the vector of predictor and ⊗ the Kronecker product. 

2.5 Other alternative econometric approaches 

Brandt et al.’s portfolio model is just one of the possible developments of the recent econometric 

approaches formulated in order to find a solution to the portfolio problem. In this paragraph I will 
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give the reader a brief overview over two alternative approaches formulated in recent years, other 

than the ones already exposed in the previous chapter. 

The first one is a simulation approach framed by Brandt, Goyal, Santa Clara and Stroud. This model 

aims at solving a discrete-time portfolio choice problem and applies when there is a broad number of 

assets with arbitrary return distribution and a wide number of state variables with non-stationary 

dynamics or path dependency. This simulation-based approach is articulated on three main steps. The 

first one involves the simulation of large sample paths of asset returns or state variables (e.g. by using 

posterior beliefs). The second implies finding the optimal portfolio and consumption policies in a 

recursive way using standard dynamic programming. In this part the algorithm proceeds until it 

arrives at zero. In the third and last stage, portfolio weights that maximise investor’s utility are 

obtained.  

The principal scope of this model is to find a solution to limitations emerged from other models of 

the contemporaneous literature. In fact, the other approaches have in common simplistic assumptions 

on portfolio return distribution (e.g. Epstein-Zin and CRRA utility functions) and the incapacity of 

handling practical issues like the management of a large amount of state variables. 

 The second econometric approach embodies a completely new area of research that exploits machine 

learning techniques in order to solve portfolio selection problems. In fact, when making a regression, 

in the absence of linear functions, the artificial intelligence technique of artificial neural networks can 

be used because it is considered a good statistical representation of non-linear functions. For example, 

feed-forward and recurrent neural networks can be trained using market and macroeconomic data 

with the purpose of predicting returns of some asset, and then the results can be applied in a portfolio 

strategy involving the same assets. This is for sure a revolutionary approach that will be widely used 

in future years.  

  



36 
 

Chapter 3  

An Empirical Application: the Italian stock market 

 

In chapter one and two, I have presented the main streams of literature on portfolio choice problem, 

giving a wide space to the solution proposed by Brandt et al. Then, in this chapter I will describe the 

empirical application I choose in order to verify the effectiveness of Brandt’s model also on the Italian 

market for the time period between 2000 and 2019. First, the reader will be provided with details 

about data used, preliminary computation undertaken on raw data and performance indicators used 

to draw conclusions on the model outcomes. Next, I will analyse results for each case considered.  

For every output presented, the investor could only invest in stocks and he was assumed to have 

preferences described by a CRRA utility function. 

3.1 Data  

For the empirical application I decided to use Italian data. I considered firm-level monthly returns of 

Italian companies listed on Milan Stock Exchange for the period between January 2000 and 

December 2019. All data were taken from Eikon Thompson Datastream. For each period and firm 

considered, I constructed three main characteristics: market capitalization (Mkt cap), book to market 

ratio (BtM) and momentum (MoM). The first is defined as the log of price per share multiplied by 

the number of shares outstanding; the second is defined as the log of one plus book equity divided by 

market equity; the third was calculated each month as the compounded return between prior months 

t-12 and t-2. These three characteristics were chosen because, considering that are the most widely 

used in financial literature, I wanted to verify their relevance also on Italian market. For every 

computation, I took into account the standard timing convention for which we leave a six months lag 

after the end of a fiscal year to be sure that financial information would have been publicly available 

and so there is no insider trading activity. 

Each characteristic has been standardized in order to have mean zero and standard deviation equal to 

one as in Brandt et al. (2009). 

I started with an initial sample of 216 companies. From this I eliminated the ones with too many 

missing values and the 30% with the lower market capitalization. By doing so, I ended up with a 

sample of 69 listed firms. 
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The following figures (from 3.1 to 3.6) show the evolution in time of the mean and standard deviation 

of the non-standardized characteristics. These could be useful to go backward from a specific 

assessment of a standardized characteristic to the corresponding original value. 

 

 

 

 

 

 

 

AVERAGE MARKET CAPITALIZATION 

Figure 3.1 Source: self-elaboration of Eikon Thompson Datastream data 

MARKET CAPITALIZATION STANDARD DEVIATION 

Figure 3.2 Source: self-elaboration of Eikon Thompson Datastream data 
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AVERAGE BOOK-TO-MARKET RATIO 

Figure 3.3 Source: self-elaboration of Eikon Thompson Datastream data 

BOOK-TO-MARKET RATIO STANDARD DEVIATION 

Figure 3.4 Source: self-elaboration of Eikon Thompson Datastream data 
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AVERAGE MOMENTUM 

Figure 3.5 Source: self-elaboration of Eikon Thompson Datastream data 

MOMENTUM STANDARD DEVIATION 

Figure 3.6 Source: self-elaboration of Eikon Thompson Datastream data 
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3.2 Performance indicators 

In order to have a better understanding of the outcomes of the empirical application and for easiness 

of comparison I decided to use the following performance indicators. 

• Sharpe ratio (SR) 

• Certainty Equivalent Return (CER) 

• Asset Turnover (T) 

• Herfindal Hirschman Index (HHI) 

• Proportion of Negative Weight (PNW) 

• Mean and Standard Deviation of portfolio return 

• Maximum and minimum weight. 

The Sharpe Ratio is a risk-adjusted method to evaluate the performance of an investment. It is given 

by the ratio between the expected return of the investment and its standard deviation: 

𝑆𝑅 =
𝐸[𝑅]

√𝑉𝑎𝑟(𝑅)
 

It provides us with a measure of the excess return per unit of deviation in a certain investment 

opportunity. For a better interpretation, it should be used in comparison with other values for other 

investments. The higher it is, the better. 

The Certainty Equivalent Return is calculated as: 

𝐶𝐸𝑅 = 𝑟𝑝 − (
𝛾

2
) ∗ 𝜎𝑝

2 

where 𝑟𝑝 represents the average portfolio return and 𝜎𝑝
2 optimal portfolio variance. It measures the 

impact of the entire distribution of returns according to risk preferences of the investor. 

The Asset Turnover is computed as: 

𝑇𝑡 =∑|𝑤𝑖,𝑡 − 𝑤𝑖,𝑡−1|

𝑁𝑡

𝑖=1

 

It is given for each period by the sum of all absolute changes in weights that occur from one period 

to the subsequent, net of the ones that occur in a mechanical way. It shows the entity of the variation 

of the composition of the portfolio from time to time. 

The Herfindal Hirschman Index is determined in the following way: 
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𝐻𝐻𝐼 =
1

𝑇
∑𝑤𝑡

′𝑤𝑡

𝑇

𝑡=1

 

where 𝑤𝑡 are again portfolio weights. It is used in order to evaluate the level of diversification of a 

portfolio. 

The Proportion of Negative Weights is given by: 

𝑃𝑁𝑊 =
1

𝑇
∑∑

1{𝑤𝑖,𝑡<0}

𝑁𝑡

𝑁𝑡

𝑖=1

𝑇

𝑡=1

 

It measures the percentage amount of short position that are taken in a portfolio. It assesses the 

quantity of leverage of the portfolio. 

The mean portfolio return is the average value of the portfolio returns, while the standard deviation 

of portfolio returns is given by the square root of the average square deviation of each data point from 

its mean value. It gives us an idea of the volatility of the portfolio. 

Computing the maximum and minimum weight let us know the range of variation of weights. This 

information, used jointly with the other ones, would illustrate the entity of long and short positions 

that the model leads to take on.  

3.3 Results 

In the following paragraphs I will describe the results for the simple linear policy case and for the 

two extensions considered: the presence of transaction costs and the restriction of the no short sale 

constraint. Then, for the first two cases, I further extended them making the risk aversion coefficient 

vary and reducing the number of assets included in the portfolio.  

The benchmark portfolio is assumed to be equally weighted. 

3.3.1 Simple linear policy: the base case   

In the following table (Table 3.1) are represented the results for the base case of the model, computed 

for a coefficient of risk aversion equal to five. 
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 γ = 5 

ΘMkt cap 0.4268 

Std. err.  0.0064 

ΘBtM -4.2743 

Std. err.  0.0035 

ΘMoM  0.7112 

Std. err.  0.0035 

Max w 0.1963 

Min w -0.3793 

No. of negative weights 5657 

PNW 0.343 

T 1.5768 

CER -0.0269 

Mean portf. Return -0.0098 

Std. portf. Return 0.0828 

SR -0.1184 

HHI 0.3035 

Mean Mkt cap 13.4237 

Mean BtM 0.6883 

Mean MoM 1.0512 

 

 

The table, as the other ones included in this work, is articulated in four main sections. The first one 

describes the estimates obtained for the parameter and their standard errors. The second reports the 

descriptive statistics relative to the distribution of portfolio weights. The third part displays the 

performance indicators used to assess the portfolio. At last, they are exhibited values of average 

characteristics before the standardization process. 

All data are not expressed in percentage and they are calculated on a monthly basis. 

After the characteristics have been standardized, we can make in an easier way a comparison among 

them. 

From the table we can see that the estimates are positive for market capitalization and momentum, 

while is negative for the book-to market capitalization. This means that the deviation of the optimal 

weights from the benchmark portfolio considered are growing with market capitalization and 

momentum, and they are slowing down with book to market ratio. This evidence is not consistent 

with literature. In fact, usually investors underweight companies that have a low book-to market ratio, 

Table 3.1 Source: Self-elaboration on Eikon Thompson Datastream data 

SIMPLE LINEAR PORTFOLIO POLICY WITH GAMMA EQUAL TO FIVE 
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the so-called growth firms, bad past returns and large firms (the ones with negative alphas). At the 

same time, stockholders overweight value firms (the ones with a high book-to-market ratio), past 

winners and the ones with a low market capitalization. These theoretical statements cannot be verified 

here. The deviation from the benchmark portfolio is positive for market capitalization, and so for big 

firms, and negative when considering book-to-market ratio. On the other side, the evidence found in 

literature on the lagged one-year return is confirmed. 

The weights of the optimal portfolio fluctuate within a range with a maximum of 0.1963 and a 

minimum of -0.3793. The total amount of negative position is 5 657 out of 16 491, with a proportion 

of negative weight equal to 34.3% of the total.  

The mean return of the portfolio is negative and equal to -0.98% on a monthly basis, while the 

standard deviation is equal to 0.0828. The turnover is 1.5768 and it is relatively high. With a negative 

Sharpe ratio and a negative Certainty Equivalent Return, -0.1184 and -0.0269 respectively, this 

portfolio has not one of the best performances, even if the lost is not so high. The Herfindal Hirschman 

Index is close to 0.3035. This bad performance may be due to lack of significance of the 

characteristics and the period selected. If fact, the performance of the model is closely related with 

how explanatory are certain variables for a specific market. Perhaps Italy would require other 

characteristics. 

  

Figure 3.7 exhibits portfolio monthly gross returns across time. As can be easily seen, almost half of 

the optimal portfolio returns are above one. 

 

 

 

GROSS PORTFOLIO RETURNS 

 

Figure 3.7 Source: self-elaboration of Eikon Thompson Datastream data 
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The average value of the three characteristics considered are 13.4237 for market capitalization, 

0.6883 for book-to-market ratio and 1.0512 for momentum. 

 

3.3.1.1 A comparison with other portfolio strategies  

In the following table (Table 3.2) I will make a comparison with two alternative portfolio strategies 

in order to better understand the former results. I have considered an equally weighted portfolio and 

a value weighted portfolio. For the first one I have assigned an equal weight (0.0145) to each firm 

considered. In the second one the weights are assigned in proportion to market capitalization. 

The coefficient of risk aversion, represented by the gamma in the CRRA utility function, is set as in 

the former case equal to 5. 

 

 Brandt et al. EW VW 

Max w 0.1963 0.0145 0.0227 

Min w -0.3793 0.0145 0.0065 

No. of negative weights 5657 0 0 

PNW 0.343 0 0 

T 1.5768 0 0.018 

CER -0.0269 -0.0062 -0.0066 

Mean portf. Return -0.0098 0.003 0.0027 

Std. portf. Return 0.0828 0.0608 0.0611 

SR -0.1184 0.0493 0.0442 

HHI 0.3035 0.0144 0.0148 

 

 

The boundary of variation of weights distribution for the value weighted portfolio is from a lower 

bound of 0.0065 and a higher one of 0.0227. The equally weighted portfolio has no change as all 

weights are set to 0.0145. The portfolio strategy implemented by Brandt et al.’s model has a much 

wider range. Also the amount of short positions assumed is higher, while it set to zero for other 

strategies. This high level of negative position has been already underlined by Ammann et al. (2016), 

who have considered the fact that portfolios based on characteristics, in their optimal solution are 

very leveraged and many stocks should be shorted. However, this case is not always tolerable by an 

investor. The elevated level of the turnover compared to the value weighted strategy, equal to 0.018, 

shows a large trading activity for the optimal portfolio policy. The optimal portfolio is implementable 

anyway, although it is more likely to be affected by transaction costs. The low turnover of the other 

SIMPLE LINEAR PORTFOLIO POLICY COMPARED TO EW AND VW PORTFOLIOS 

Table 3.2 Self-elaboration on Eikon Thompson Datastream data 
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strategies can be due to variables that are stable in time. Though, the optimal portfolio does not push 

the investor to take too extreme bets.  

The mean portfolio return is higher in both value and equally weighted strategies when compared to 

the optimal portfolio policy. We have a 0.3% portfolio return and a 0.27% respectively. So, it is 

convenient for the investor to invest in these alternative strategies. These values translate into a 

negative SR for the optimal portfolio policy and positive ones for the VW case (0.0442) and the EW 

(0.0493), which has the best performance. As expected, the optimal portfolio policy has a standard 

deviation that is considerably larger than the value weighted and equally weighted portfolios, which 

have a volatility almost equal. The CER is one of the best statistics to summarise performance 

because, as said before, it has the ability to catch the impact of the distribution of returns as a function 

of the risk preference of the investor. In this case the negative values obtained are highly influence 

by the relatively high level of volatility, the negative performance of the first portfolio, for which it 

is consistently lower, and by the chosen value for the coefficient of risk aversion. 

However, consistently with other findings, the optimal portfolio is more diversified (the HHI is equal 

to 30.35%) in comparison with the other strategies (HHI of the EW is 1.44% and the VW is 1.48%). 

As expected, the EW portfolio has the worst level of diversification. 

3.3.1.2 Gamma variation 

Table 3.3 and table 3.4 display results for the base case and the two alternative strategies, value 

weighted and equally weighted, when we make the risk aversion coefficient vary inside the CRRA 

utility function. The values of gamma considered are 2, 5, 20 and 90. 90 is close to the extreme case 

of γ =100, for which the investor is highly sensible to risk; however, this level is not tolerable in 

practice. 

By doing so, I want to highlight how influent are investors’ preferences in the estimation of the 

parameters for the optimal portfolio policy. 

Data are always expressed on a monthly basis and not in percentage terms. 

 

 

 

 

 



46 
 

 

 γ = 2 γ = 5 γ = 20 γ = 90 

ΘMkt cap 1.7709 0.4268 -0.5146 -0.5829 

Std. err.  0.0147 0.0064 3.19E-04 2.91E-12 

ΘBtM -9.2297 -4.2743 -1.3858 -0.7727 

Std. err.  0.007 0.0035 2.05E-04 1.54E-12 

ΘMoM  0.2204 0.7112 1.0181 1.1691 

Std. err.  0.008 0.0035 1.73E-04 1.45E-12 

Max w 0.3198 0.1963 0.1447 0.1523 

Min w -0.8364 -0.3793 -0.145 -0.1053 

No. of negative weights 6432 5657 4030 3634 

PNW 0.39 0.343 0.2444 0.2204 

T 2.8541 1.5768 1.2115 1.3093 

CER -0.0501 -0.0269 -0.0351 -0.1536 

Mean portf. return -0.0283 -0.0098 0.0013 0.0036 

Std. portf. return 0.1475 0.0828 0.0603 0.0591 

SR -0.1919 -0.1184 0.0216 0.0609 

HHI 1.3349 0.3035 0.0632 0.0486 

 

 

 

 

 EW VW 

 γ = 2 γ = 5 γ = 20 γ = 90 γ = 2 γ = 5 γ = 20 γ = 90 

Max w 0.0145 0.0145 0.0145 0.0145 0.0227 0.0227 0.0227 0.0227 

Min w 0.0145 0.0145 0.0145 0.0145 0.0065 0.0065 0.0065 0.0065 

No. of negative 

weights 0 0 0 0 0 0 0 0 

PNW 0 0 0 0 0 0 0 0 

T 0 0 0 0 0.018 0.018 0.018 0.018 

CER -0.0007 -0.0062 -0.0340 -0.1726 -0.0010 -0.0066 -0.0346 -0.1746 

Mean portf. 

Return 0.003 0.003 0.003 0.003 0.0027 0.0027 0.0027 0.0027 

Std. portf. return 0.0608 0.0608 0.0608 0.0608 0.0611 0.0611 0.0611 0.0611 

SR 0.0493 0.0493 0.0493 0.0493 0.0442 0.0442 0.0442 0.0442 

HHI 0.0144 0.0144 0.0144 0.0144 0.0148 0.0148 0.0148 0.0148 

 

 

DIFFERENT VALUES FOR RISK AVERSION COEFFICIENT IN BASE CASE 

Table 3.3 Source: self-elaboration on Eikon Thompson Datastream data 

DIFFERENT VALUES FOR RISK AVERSION IN EW AND VW STRATEGIES 

Table 3.4 Source: self-elaboration on Eikon Thompson Datastream data 
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As the value of gamma decreases, the parameter estimate for market capitalization characteristic 

increases. On the contrary, as the risk aversion of the investor increases, both estimates for book-to-

market and momentum increase. While this variation is of relevant entity for book-to-market 

characteristic, it becomes less prominent for market capitalization and one-year lagged return. This 

means that book-to-market characteristic is much more sensible to variation in risk aversion and 

expected returns. Market capitalization and momentum are instead related mainly with expected 

returns. 

Even the distribution of weights is significantly affected by the variation of gamma. For lower levels 

of gamma, the investor takes on a rising number of short positions, making more extreme bets. In 

fact, the minimum weight of the optimal portfolio goes from -0.1053 for γ = 90, to -0.8364 for γ = 2. 

This consequently makes the level of leverage grow. Also the maximum weight taken is higher for 

lower values of risk aversion (0.3198 for γ = 2 and 0.1523 for γ = 90). The variability of weights is 

much higher for less risk-averse investor. For gamma equal to 2 the turnover is high. This would 

make transaction costs relevant in proportion. As risk aversion increases, turnover reduces until the 

value of 1.2115 for γ = 20. It partially grows again for γ = 90. The level of leverage taken by the 

investor is considerably reduced for higher levels of gamma. 

Consequently, this evidence affects the distribution of portfolio returns. The mean portfolio return 

has it minimum, -2.83%, for γ = 2 and its maximum value, 0.36%, for γ = 90. It turns positive when 

gamma is equal to 20. As expected from previous results, portfolio volatility is lower for higher values 

of risk aversion. Positive returns have an impact for the computation of the Sharpe ratio, which 

becomes increasingly positive for γ = 20 and γ = 90. The impact of return distribution according to 

risk preferences of the investor is of course higher for higher values of gamma; however, they cannot 

be compared with each other being computed for different values of gamma. Not surprisingly, we 

have a better level of diversification for lower levels of risk aversion. 

3.3.1.3 Variation of number of stocks 

In this paragraph I will analyse the effect of a variation in the number of stocks in the portfolio on 

performance and other statistics. Tables 3.5, 3.6 and 3.7 exhibit the results for a selected random 

subset of 35 assets from the original portfolio.  
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 69 firms 35 firms 

 γ = 2 γ = 5 γ = 20 γ = 90 γ = 2 γ = 5 γ = 20 γ = 90 

ΘMkt cap 1.7709 0.4268 -0.5146 -0.5829 3.4008 1.1642 -0.2678 -1.1951 

Std. err. 0.0147 0.0064 3.19E-04 2.91E-12 0.0432 0.0429 0.0014 5.71E-13 

ΘBtM -9.2297 -4.2743 -1.3858 -0.7727 -11.9304 -5.2935 -1.965 -1.403 

Std. err. 0.007 0.0035 2.05E-04 1.54E-12 0.0246 0.0255 0.0008 3.25E-13 

ΘMoM 0.2204 0.7112 1.0181 1.1691 -0.5853 0.2879 0.7957 1.0288 

Std. err. 0.008 0.0035 1.73E-04 1.45E-12 0.0335 0.0148 0.0003 2.17E-13 

Max w 0.3198 0.1963 0.1447 0.1523 0.7649 0.3502 0.2164 0.258 

Min w -0.8364 -0.3793 -0.145 -0.1053 -1.5373 -0.6814 -0.2597 -0.2266 

No. of negative 

weights 6432 5657 4030 3634 3695 3337 2311 2358 

PNW 0.39 0.343 0.2444 0.2204 0.4417 0.3989 0.2763 0.2819 

T 2.8541 1.5768 1.2115 1.3093 8.4746 3.6985 2.2289 2.4308 

CER -0.0501 -0.0269 -0.0351 -0.1536 -0.0812 -0.0381 -0.0404 -0.1944 

Mean portf. 

return -0.0283 -0.0098 0.0013 0.0036 -0.0386 -0.0137 -0.0007 0.0026 

Std. portf. 

return 0.1475 0.0828 0.0603 0.0591 0.2064 0.0987 0.063 0.0644 

SR -0.1919 -0.1184 0.0216 0.0609 -0.1870 -0.1388 -0.0111 0.0404 

HHI 1.3349 0.3035 0.0632 0.0486 4.5448 0.9121 0.1663 0.1477 

Mean Mkt cap 13.4237 13.4237 13.4237 13.4237 13.4479 13.4479 13.4479 13.4479 

Mean BtM 0.6883 0.6883 0.6883 0.6883 0.6807 0.6807 0.6807 0.6807 

Mean MoM 1.0512 1.0512 1.0512 1.0512 1.059 1.059 1.059 1.059 

 

 

 

 

 

 

VARIATION OF NUMBER OF ASSET IN THE OPTIMAL PORTFOLIO 

Table 3.5 Source: self-elaboration on Eikon Thompson Datastream data 
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 69 firms 35 firms 

 γ = 2 γ = 5 γ = 20 γ = 90 γ = 2 γ = 5 γ = 20 γ = 90 

Max w 0.0145 0.0145 0.0145 0.0145 0.0286 0.0286 0.0286 0.0286 

Min w 0.0145 0.0145 0.0145 0.0145 0.0286 0.0286 0.0286 0.0286 

No. of 

negative 

weights 0 0 0 0 0 0 0 0 

PNW 0 0 0 0 0 0 0 0 

T 0 0 0 0 0 0 0 0 

CER -0.0007 -0.0062 -0.0340 -0.1726 -0.0001 -0.0059 -0.0349 -0.1703 

Mean portf. 

return 0.003 0.003 0.003 0.003 0.0038 0.0038 0.0038 0.0038 

Std. portf. 

return 0.0608 0.0608 0.0608 0.0608 0.0622 0.0622 0.0622 0.0622 

SR 0.0493 0.0493 0.0493 0.0493 0.0611 0.0611 0.0611 0.0611 

HHI 0.0144 0.0144 0.0144 0.0144 0.0285 0.0285 0.0285 0.0285 

 

 

 

 69 firms 35 firms 

 γ = 2 γ = 5 γ = 20 γ = 90 γ = 2 γ = 5 γ = 20 γ = 90 

Max w 0.0227 0.0227 0.0227 0.0227 0.0398 0.0398 0.0398 0.0398 

Min w 0.0065 0.0065 0.0065 0.0065 0.0156 0.0156 0.0156 0.0156 

No. of 

negative 

weights 0 0 0 0 0 0 0 0 

PNW 0 0 0 0 0 0 0 0 

T 0.018 0.018 0.018 0.018 0.032 0.032 0.032 0.032 

CER -0.0010 -0.0066 -0.0346 -0.1746 -0.0002 -0.0060 -0.0347 -0.1784 

Mean portf. 

return 0.0027 0.0027 0.0027 0.0027 0.0036 0.0036 0.0036 0.0036 

Std. portf. 

return 0.0611 0.0611 0.0611 0.0611 0.0619 0.0619 0.0619 0.0619 

SR 0.0442 0.0442 0.0442 0.0442 0.0582 0.0582 0.0582 0.0582 

HHI 0.0148 0.0148 0.0148 0.0148 0.029 0.029 0.029 0.029 

 

 

VARIATION OF NUMBER OF ASSET IN EW STRATEGY 

Table 3.6 Self-elaboration on Eikon Thompson Datastream data 

VARIATION OF NUMBER OF ASSET IN VW STRATEGY 

Table 3.7 Source: self-elaboration on Eikon Thompson Datastream data 
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When observing parameter estimates for the reduced sample, we can note that they follow the same 

path as the full sample: the estimates for market capitalization characteristic increase when risk 

aversion diminish, while both book-to-market and momentum estimates increase for higher values of 

gamma. However, although the absolute values of parameter evaluations grow in the case of the 

reduced sample for market capitalization and book-to-market ratio, for momentum estimate this 

absolute value decreases. 

The reduction in the number of assets causes an increase in the variability of weights distribution. In 

fact, the boundaries created by maximum and minimum weights widen for every gamma considered. 

Also the proportion of negative weights rises consistently. This means that investors are push toward 

more extreme bets, taking on a higher level of leverage. Even the turnover is more than doubled in 

the reduced case, enhancing the entity of transaction costs. 

When 35 firms are considered, there is a significant reduction in mean portfolio return and, as a 

consequence, in Sharpe ratio. At the same time, there is an upturn in portfolio volatility. This evidence 

confirms what already found by Fletcher (2017). In fact, according to his findings, there is a “positive 

relation between the number of securities in the optimal portfolios and the performance when using 

randomly selected subset of the investment universe”. Not surprisingly, with less assets the optimal 

portfolio is less diversified. Even certainty equivalent return is higher in reduced-sample case. 

Average values of characteristics rise with the reduction of asset considered. 

3.3.2 Transaction costs 

In this section I will analyse the influence of transaction costs on the model’s estimates. We know 

that transaction costs can change much from stock to stock and they consistently reduced over time, 

although they remain still higher for smaller firms. Taking into account these considerations, I have 

decided to model transaction costs as in Brandt et al. (2009): 

𝑧𝑖,𝑇 = 𝐴𝑇(0.006 − 0.0025 ∗ 𝑀𝑘𝑡 𝑐𝑎𝑝𝑖,𝑇) 

where 𝐴𝑇 is a factor used to model the linear decrease of transaction costs in time. The Market 

capitalization term in this case has been computed as the market capitalization at time T divided by 

the maximum value of it across all assets. 

This function has been multiplied by turnover and then subtracted from portfolio return. 

Figure 3.7 shows the evolution downwards of transaction costs in time. Maximum, minimum, median 

and average values are represented. 
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In table 3.8 are represented fluctuations of results. All computations are made for a coefficient of risk 

aversion equal to five. For easiness of comparison, in the table there have been inserted also data 

referring to the base case and the alternative strategies previously considered. 

Data are expressed, as always, not in percentage terms and on a monthly basis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Source: self-elaboration of Eikon Thompson Datastream data 

TRANSACTION COSTS VARIATION THROUGH TIME 
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 BC TC EW VW 

ΘMkt cap 0.4268 0.0823 0 0 

Std. err.  0.0064 0.0073 0 0 

ΘBtM -4.2743 -3.7938 0 0 

Std. err.  0.0035 0.0038 0 0 

ΘMoM  0.7112 0.2232 0 0 

Std. err.  0.0035 0.0038 0 0 

Max w 0.1963 0.1391 0.0145 0.0227 

Min w -0.3793 -0.3331 0.0145 0.0065 

No. of negative weights 5657 5353 0 0 

PNW 0.343 0.3246 0 0 

T 1.5768 1.1532 0 0.018 

CER -0.0269 -0.0213 -0.0062 -0.0066 

Mean portf. return -0.0098 -0.0126 0.003 0.0027 

Std. portf. return 0.0828 0.0762 0.0608 0.0611 

SR -0.1184 -0.1654 0.0493 0.0442 

HHI 0.3035 0.2246 0.0144 0.0148 

 

 

For the simple linear policy, the inclusion of transaction costs brings a reduction in absolute values 

of parameter estimates. This is a direct consequence of the cost of trading. The optimal theta for 

market capitalization approaches to zero. 

The distribution of weights becomes less broad, considering the fact that the maximum value goes 

from 0.1963 to 0.1391 in presence of transaction costs and the minimum from -0.3793 to -0.3331. 

Reflecting the fact that trading is much more expensive, turnover decreases as well as short position 

taken. 

The already negative mean portfolio return drops, even if volatility declines. As shown by the Sharpe 

ratio, performance worsen with the burden of transaction costs. There is a lower level of portfolio 

diversification. However, certainty equivalent return reduces: the impact on return distribution of risk 

preference of the investor becomes less relevant. 

3.4.2.1 Gamma variation 

Table 3.9 exhibits what happens when I make gamma change. As in the instance of the simple linear 

policy, I want to analyse how relevant risk aversion is when estimating optimal thetas, even in the 

presence of transaction costs. As before, gamma is set equal to 2, 5, 20 and 90. 

TRANSACTION COSTS IN THE SIMPLE LINEAR POLICY 

Table 3.8 Source: Self-elaboration on Eikon Thompson Datastream data 
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All data are on a monthly basis and not in percentage terms. 

 

 

 BC TC 

 γ = 2 γ = 5 γ = 20 γ = 90 γ = 2 γ = 5 γ = 20 γ = 90 

ΘMkt cap 1.7709 0.4268 -0.5146 -0.5829 1.2464 0.0823 -0.6725 -0.6586 

Std. err.  0.0147 0.0064 

3.19E-

04 2.91E-12 0.017 0.0073 2.81E-04 3.12E-13 

ΘBtM -9.2297 -4.2743 -1.3858 -0.7727 -7.9305 -3.7938 -1.4919 -0.7863 

Std. err.  0.007 0.0035 

2.05E-

04 1.54E-12 0.0085 0.0038 1.54E-04 1.61E-13 

ΘMoM  0.2204 0.7112 1.0181 1.1691 0.1607 0.2232 0.6448 1.1119 

Std. err.  0.008 0.0035 

1.73E-

04 1.45E-12 0.0098 0.0038 9.85E-05 8.12E-14 

Max w 0.3198 0.1963 0.1447 0.1523 0.2725 0.1391 0.1103 0.1477 

Min w -0.8364 -0.3793 -0.145 -0.1053 -0.7136 -0.3331 -0.133 -0.1031 

No. of 

negative 

weights 6432 5657 4030 3634 6276 5353 3687 3613 

PNW 0.39 0.343 0.2444 0.2204 0.3806 0.3246 0.2236 0.2191 

T 2.8541 1.5768 1.2115 1.3093 2.4234 1.1532 0.8499 1.2482 

CER -0.0501 -0.0269 -0.0351 -0.1536 -0.0490 -0.0213 -0.0385 -0.1675 

Mean portf. 

return -0.0283 -0.0098 0.0013 0.0036 -0.0324 -0.0126 -0.0023 -0.001 

Std. portf. 

return 0.1475 0.0828 0.0603 0.0591 0.1289 0.0762 0.0602 0.0592 

SR -0.1919 -0.1184 0.0216 0.0609 -0.2514 -0.1654 -0.0382 -0.0169 

HHI 1.3349 0.3035 0.0632 0.0486 0.97 0.2246 0.0586 0.048 

 

 

Giving a close look at the result, I can confirm findings for the simple linear policy case. Both the 

optimal thetas for book-to-market and momentum characteristics go up with as I take higher values 

of gamma. Estimate for market capitalization characteristic goes down as gamma increases. As before 

this change is stronger for the theta estimated for book-to-market characteristic, reflecting the fact 

that it is influenced by expected returns and risk aversion. 

Table 3.9 Source: Self-elaboration on Eikon Thompson Datastream data 

TRANSACTION COSTS WITH GAMMA VARIATION  
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The introduction of transaction costs and the change in risk aversion parameter lead again to a 

reduction in turnover and in the number of negative and extreme positions taken. This makes the 

position more sustainable for the investor. 

Mean portfolio returns are negative for every risk aversion value considered. As already stated, 

transaction costs worsen the situation for the investor. Again, portfolio volatility goes down with the 

two variations made, but not in a significant way. The optimal portfolio is better diversified in the 

absence of transaction costs; however, the difference becomes negligible for γ = 90. 

3.4.2.2 Variation of number of stocks 

In this section, I want to test once more whether the evidence found by Fletcher (2017) is true even 

in the presence of transaction costs. I newly select a random subsample of 35 firms. Table 3.10 

presents the results. 

All data are on a monthly basis and not in percentage. 

 

 69 firms 35 firms 

 γ = 2 γ = 5 γ = 20 γ = 90 γ = 2 γ = 5 γ = 20 γ = 90 

ΘMkt cap 1.2464 0.0823 -0.6725 -0.6586 2.5792 0.8708 -0.3464 -1.3434 

Std. err.  0.017 0.0073 2.81E-04 3.12E-13 0.0922 0.0523 0.0013 5.08E-13 

ΘBtM -7.9305 -3.7938 -1.4919 -0.7863 -9.4562 -4.3971 -1.8127 -1.3265 

Std. err.  0.0085 0.0038 1.54E-04 1.61E-13 0.0592 0.0325 0.0009 3.14E-13 

ΘMoM  0.1607 0.2232 0.6448 1.1119 0.0835 0.1949 0.6048 1.0263 

Std. err.  0.0098 0.0038 9.85E-05 8.12E-14 0.0523 0.0165 0.0002 2.07E-13 

Max w 0.2725 0.1391 0.1103 0.1477 0.6135 0.2891 0.1871 0.2592 

Min w -0.7136 -0.3331 -0.133 -0.1031 -1.2266 -0.5606 -0.2307 -0.2198 

No. of 

negative 

weights 6276 5353 3687 3613 3640 3208 2135 2440 

PNW 0.3806 0.3246 0.2236 0.2191 0.4351 0.3835 0.2552 0.2917 

T 2.4234 1.1532 0.8499 1.2482 6.5651 3.032 1.816 2.402 

CER -0.0490 -0.0213 -0.0385 -0.1675 -0.0011 -0.0348 -0.0423 -0.1920 

Mean portf. 

return -0.0324 -0.0126 -0.0023 -0.001 -0.0407 -0.0162 -0.0037 -0.0013 

Std. portf. 

return 0.1289 0.0762 0.0602 0.0592 0.1665 0.0862 0.0621 0.0651 

SR -0.2514 -0.1654 -0.0382 -0.0169 -0.2444 -0.1879 -0.0596 -0.0200 

HHI 0.97 0.2246 0.0586 0.048 2.8967 0.6268 0.1384 0.1498 

 

TRANSACTION COSTS WITH ASSET VARIATION  

Table 3.10 Source: Self-elaboration on Eikon Thompson Datastream 

data 
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Even in the presence of the burden of transaction costs, we can see the positive relation between the 

number of securities included in the optimal portfolio and its performance. The optimal portfolio is 

much more volatile in the reduced portfolio case, but better diversified. 

Analysing the distribution of portfolio weights, we can see that once more maximum and minimum 

position take are higher in absolute value. This fact has been already underlined in the simple linear 

policy case. The investor makes more extreme bets. 

Optimal thetas increase in absolute value, exception made for parameter estimate of momentum 

characteristic. 

3.4.3 No short sale constraint 

In this section I will discuss results referring to the imposition of the no short sales constraint. As 

exposed before, the imposition of that limitation implies setting negative positions equal to zero. 

Although this operation would make the sum of weights higher than one, so I had renormalized them.  

As stated before, already Ammann et al. (2016) had highlighted the fact that characteristics-based 

portfolios push investors toward high level of leverage, letting them short a higher amount of stocks. 

However, for investors who are really risk averse this level of leverage is barely tolerable. This can 

be translated in an elevated turnover and, consequently, in increased transaction costs. 

The imposition of the no short sale constraint is the solution proposed by Brandt et al. (2009) in their 

paper for the high level of leverage. Although, this limit would only completely eliminate leveraged 

positions which would be an acceptable solution only for extremely risk adverse investor. Indeed, the 

average investor would be more likely to take a position with a medium-small level of leverage.  

There are anyway some cases in which this constraint is reasonable, for example when there is a 

country with incomplete market, as in Brazil, or when there is a temporary restriction imposed by the 

regulator for special situations. The principal aim is trying to avoid speculations. 

Table 3.11 exhibits results obtained for the simple linear policy case and for the presence of no short 

selling constraint when gamma is equal to five. 
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 No short sale BC 

ΘMkt cap 0.4263 0.4268 

Std. err.  0.0064 0.0064 

ΘBtM -4.2740 -4.2743 

Std. err.  0.0035 0.0035 

ΘMoM  0.7117 0.7112 

Std. err.  0.0035 0.0035 

Max w 0.0806 0.1963 

Min w 0 -0.3793 

No. of negative weights 0 5657 

PNW 0 0.343 

T 0.4023 1.5768 

CER -0.0269 -0.0269 

Mean portf. return -0.0098 -0.0098 

Std. portf. return 0.0828 0.0828 

SR -0.1184 -0.1184 

HHI 0.0305 0.3035 

 

 

There is a very small difference when comparing the optimal thetas for the two cases. Estimates for 

market capitalization and book-to-market ratio go down, while, on the contrary, the one for 

momentum grows.  

Not surprisingly, there are no negative positions and turnover is consistently reduced.  

There are no relevant variations for mean portfolio return, standard deviation and certainty equivalent 

return. Usually the average portfolio return of a portfolio with the no short sale constraint has a lower 

return for two main reasons. First, short positions can be used to increase the exposure in long 

positions by taking more leverage. Second, the investor with this limitation cannot take advantage of 

both positive and negative forecasts. The level of diversification is consistently reduced when the 

constraint is imposed. 

3.4 Analysis of results: hypotheses testing 

So far, I have assumed that the bad performance of the model derives primarily from the choice of 

firm characteristics. In fact, market capitalization, book-to-market ratio and momentum might not be 

explanatory variables for Italian stock market.  

Table 3.11 Source: Self-elaboration on Eikon Thompson Datastream data 

NO SHORT SALE CONSTRAINT  



57 
 

In order to assess the robustness of this assumption, I have decided to use the approach formulated 

by Fama and MacBeth (1973). Through this test I want to evaluate whether these characteristics are 

able to explain the cross-section of returns of stocks for the time period selected.  

We know that in Arbitrage Pricing Theory (APT) and more generally in multifactor models, the 

expected return of a marketable security can be written as the sum of each factor multiplied by the 

sensitivity of the security to that particular factor (factor beta). A factor is an element which 

synthetizes a different component of the overall systematic risk which affects the asset. On the other 

side, a factor beta embodies the percentage variation in the expected return of the selected security 

for 1% change in the excess return of the factor portfolio. Anything could be a factor, from accounting 

measures to macroeconomic variables, thus we have to carefully select them in order to have an 

accurate estimate and not end up with irrelevant regressors.  

Therefore, in my case firm characteristics are the factors which are supposed to explain the exposure 

of estimated expected returns to that particular factor.  

The Fama-MacBeth methodology consists in two different steps. The first one involves running a 

classical times series regression aimed at identifying beta coefficients for the explanatory variables 

considered. The second requires running a cross-sectional regression of stock returns against the betas 

estimated in the previous step in order to find the risk premia λ. If my hypothesis is correct, the 

resulting risk premia should not be statistically significant. 

Table 3.12 exhibits the results deriving from the execution of this procedure. 

 

 

 Mean Variance t-stat 

λ Mkt cap -0.0284 0.5633 -0.5850 

λ BtM 0.0255 0.1714 0.9522 

λ MoM 0.0798 0.5745 1.6276 

 

 

As we can see from the table above, risk premia are indeed not statistically significant, because we 

cannot reject the null hypothesis of λ equal to zero at a 5% confidence level. Though, the risk premium 

relative to the one-year lagged return is close to the critical value, meaning that it is only weakly 

significant. 

Table 3.12 Source: Self-elaboration on Eikon Thompson Datastream data 

ESTIMATED RISK PREMIA  
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Thus, I can definitely affirm that the suboptimal performance of the model for the time period 

considered is mainly due to the fact that the characteristics chosen are not able to explain the cross-

section of stocks returns on Italian stock market. 

Although, this is just one of the possible determinants of the suboptimal performance of the model. 

In fact, as highlighted by De Miguel et al. (2009), alternative portfolio strategies are more likely to 

beat the performance of an equally weighted portfolio if the estimation period considered is very large 

(at least 6 000 months are required for a portfolio of 50 assets), and the number of assets considered 

is small. This is a direct consequence of the fact that for longer periods  we have more data available 

for computations and if there are less assets there is consequently a smaller number of parameters to 

estimate, thus reducing the possibility of making an error in the process. Even if I considered only 69 

assets, the estimation window might not be enough broad.   

Other evidences found in my work can find a confirmation in literature exposed at the end of chapter 

one. For example, when I impose the no short sale constraint on a broad time period there is a 

consistent reduction in turnover, while the performance does not improve. 
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Conclusion 

 

Across this paper I have analysed portfolio choice problem from different points of view. 

In the first chapter we have seen as Markowitz’s mean-variance paradigm has been the most widely 

used since its formulation in 1952. Although, I have also underlined the fact that the mean-variance 

framework leaves two open points. The first is that it requires complex and tedious calculations 

regarding the step of modelling expected returns, variances and covariances. The second issue is that 

the paradigm refers only to a single period investment, so the investor cannot change its investment 

decision at intermediates dates. 

Subsequently, I have focused the attention on more general dynamic approaches to the portfolio 

choice problem, first considering discrete time formulation and later the one in continuous time.  

Then, I have exposed two streams of literature regarding the econometric methodologies for solving 

the portfolio choice problem: traditional econometric approaches and recent econometric approaches. 

Regarding the first category, I have stressed the attention on pug-in estimation and decision theory. 

The first involves the initial step of drawing inference on parameters of the data generating process 

and then substituting the values found in the analytical expression of the investor’s problem, while 

the second implicates the preliminary step of modelling return distribution and then tries to find 

optimal portfolio weights. As emerged, traditional approaches have the relevant disadvantages of 

transmitting estimation errors made in the first phase to the second one. On the other side, new 

approaches start from this evidence and try, through the use of parametric or nonparametric weights, 

to avoid the first step and directly estimate optimal portfolio weights. 

In the second chapter I have presented the recent econometric approach formulated by Brandt, Santa-

Clara and Valkanov in 2009. This model parametrises portfolio weights by expressing them as a 

function of firm characteristics. It shows to have many practical advantages and exhibits good results 

for the application made by the authors on the US stock market. 

However, I cannot affirm the same thing when considering the Italian stock market. In the third 

chapter I have presented results of my empirical application which focuses on a subset of 69 Italian 

firms listed on Milan stock exchange for the period between 2000 and 2019. The model produces 

negative average portfolio returns in the simple linear policy case as well as when portfolio constraints 

such as no short sale constraint or transaction costs are included. The only exception is represented 

by the instance in which we consider in the base case a coefficient of relative risk aversion higher 
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than 20. Thus, this portfolio policy is beaten even by much simpler policies such as an equally 

weighted portfolio and a value weighted portfolio.  

This bad performance could be due to a wrong choice of firm characteristics. In fact, the results for 

the optimal parameters estimated do not confirm evidence found in literature about the characteristics 

chosen: market capitalization, book-to-market ratio and momentum. Consequently, these 

characteristics appear to be not optimal for the application of Brandt et al.’s model on Italian stock 

market. To test this hypothesis, I have performed a two-stage regression following Fama-MacBeth 

methodology, which has confirmed the assumption made. 

For future applications I advise to use firm characteristics that represent better the Italian stock 

market. Another way for improvement in performance is the extension of the estimation window 

considered. This recommendation is influenced by a study conducted by DeMiguel et al., which has 

shown that alternative optimizing portfolio strategies require to consider data of very large time 

period for a small number of assets in order to perform better than an equally weighted portfolio. 
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Summary 

 

This paper has the purpose of testing the successful applicability on Italian stock market of one of the 

new econometric approaches formulated in literature in recent years. This methodology exploits 

parametric portfolio weights in order to find the ones which maximizes the investor’s expected utility. 

Thus, by avoiding the preliminary step of estimating return distribution or drawing inference on 

parameters, the econometrician reduces the estimation error usually made and which can influence 

portfolio performance.   

Before going deeply into the exposition of this approach, I will start analysing the theoretical 

framework which has led to its construction.  

According to financial literature, every portfolio choice problem shares five main modelling issues: 

the choice of the utility function, the possibility of inserting intermediate consumption, the assessment 

of whether the market in which we operate is complete or not, the time horizon of the investor and 

the presence of frictions or background risk on the market.  

The utility function is the function specifying investor’s preferences. Among these, the class most 

widely used is the one of the hyperbolic absolute risk aversion (HARA).  

If the econometrician decides to insert intermediate consumption, the investor will have to choose 

each period how much wealth to invest and the quantity to use for consumption.  

In literature, financial markets are said to be completed when “the state variables governing 

investment opportunities are driven by the same stochastic process that drives asset returns” 

(Campbell (2002)). Moreover, complete markets can be further labelled as statically complete and 

dynamically complete. This classification has an influence on the complexity of the resolution of a 

portfolio choice problem. 

The definition of the time horizon is another important element to consider. In fact, in literature we 

can distinguish among finite and infinite horizons. However, in practice, the investor has rarely a 

clear view on which will be the final date of his investment opportunity. 

Market frictions are all elements strictly connected to the risky security, which can create an issue. 

An example are transaction costs. On the contrary, background risk incorporates all risks not directly 

linked to the security that an investor has to face.  
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Since its formulation in 1952, the most widely used methodology used for solving the portfolio choice 

problem has been Markowitz’s mean-variance framework. However, it is not so easy to implement 

because it requires the preliminary step of modelling returns, variances and covariances. Thus, for 

this reason, during the years many critics have been moved toward its use. Among them, for example, 

there is the fact that it refers only to a single period investment, so that the investor cannot change his 

investment decision at intermediates dates. 

If we move to a more generical formulation of the portfolio choice problem, we can consider 

multiperiod time horizons. This is the case of the dynamic asset allocation framework. In this context, 

we can make an ulterior distinction between discrete time and continuous time. We are in a discrete 

time setting when the investor has a well-defined timeline for its investment opportunity and at some 

intermediate dates there is the possibility to rebalance his portfolio. On the other side, we have 

portfolio choices in continuous time. In this case the investor must take investment decisions 

regarding portfolio choices constantly because portfolio is rebalanced every instant. 

However, there are some cases in which for the investor it is more convenient to invest myopically. 

This happens mainly in four circumstances: the investor has a single-period horizon, investor’s 

preferences are represented by logarithmic utilities, there are constant investment opportunities and 

when there are stochastic investment opportunities that cannot be hedged. 

In financial literature we can distinguish between two streams of economic approaches: the traditional 

and the alternative ones. In traditional econometric approaches the econometrician has the purpose 

of defining the data generating process. This can be done in two different ways: with plug-in 

estimation and through decision theory. In plug-in estimation, also called calibration, the 

econometrician estimates portfolio weights and then he inserts them into an analytical solution in the 

investor’s problem. On the contrary, in decision theory approach, the econometrician tries to identify 

the return distribution in order to find optimal portfolio weights. 

The main weakness of the plug-in estimation methodology is the fact that the outcomes depend 

mainly from asymptotic results and the estimation error made, especially when we have multiperiod 

portfolio choices, because the error committed in one time period cumulates through time.  

In order to solve this issue, three main solution have been proposed during the years: portfolio 

constraint, factor models and shrinkage estimation. The imposition of a constraint on portfolio 

weights improves sample estimates by limiting their range of variation and eliminating more extreme 

ones. On the contrary, the use of a factor structure for the assets covariation result in a reduction in 
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the number of free parameters of the matrix. With shrinkage estimation, through the use of a proper 

estimator, estimates are induced to converge toward a common value in order to reduce extreme 

estimation errors. 

As anticipated before, decision theory approach tries to determine the return distribution by exploiting 

personal beliefs and data observed. In financial literature these prior beliefs are divided in two 

categories: informative and uninformative priors. Uninformative priors are the ones which 

incorporate very little information about parameters. On the contrary, informative priors include 

subjective information. Priors can be also specified on the base of theoretical outcomes of an 

economic model, through the mixed estimation method. This allows more generally to combine two 

sets of data into a single posterior distribution. 

The most recent stream of literature proposes new approaches in order to avoid or at least reduce the 

estimation error generated by traditional ones. Inside this flow we can identify two principal groups 

of methodologies: the ones which uses parametric portfolio weights and the others which exploit 

nonparametric portfolio weights.  

The technique of parametric portfolio weights models optimal portfolio weights as a function of 

observable quantities (Brandt (2010)) and then solves this function in order to maximize utility. 

On the other side, the stream of nonparametric portfolio weights starts form the fact that when using 

parametric portfolio weights there could be made some mistakes when modelling the weight function.  

In practice, however, the best performing model on the stock market proves to be the naïve equally 

weighted portfolio strategy, especially when considering an elevated number of assets and short 

estimation window. 

Among the recent econometric approaches which uses parametric portfolio weights, I will now 

discuss the one formulated by Brandt, Santa-Clara and Valkanov in 2009. This formulation involves 

modelling optimal portfolio weights as a function of firm characteristics. These characteristics can be 

various, such as one-year lagged return, market capitalization, book-to-market ratio, asset growth, 

leverage and so on. The choice of course depends mainly on the type of market and the aim of the 

empirical application. Then, the coefficients are estimated by maximizing the utility function of the 

potential investor. 

Brandt et al., at the beginning of their work, outline the main advantages of their model. First, it gives 

a direct focus on portfolio weights escaping the long and tedious step of modelling returns and 
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characteristics. Second, it encapsulates in an implicit way the connection between returns, 

characteristics, variances and covariances. Third, it avoids the frequent problem in statistical 

computations of overfitting or not precise coefficient estimates. Finally, it allows to easily test 

hypotheses, whether they are individual or joint. 

In an investment universe in which there is the possibility to invest in N stocks in each period, the 

investor has to choose weights in order to solve the following problem of utility maximization: 

max
{𝑤𝑖,𝑡}𝑖=1

𝑁𝑡
𝐸𝑡 [𝑢(𝑟𝑝,𝑡+1)] = 𝐸𝑡 [𝑢 (∑𝑤𝑖,𝑡

𝑁𝑡

𝑖=1

𝑟𝑖,𝑡+1)] 

𝑤𝑖,𝑡 = 𝑓(𝑥𝑖,𝑡; 𝜃) 

𝑤𝑖,𝑡 = 𝑤̅𝑖,𝑡 +
1

𝑁𝑡
𝜃𝑇𝑥̂𝑖,𝑡 

Where the utility function is a CRRA utility function which takes the form: 

𝑢(𝑟𝑝,𝑡+1) =
(1 + 𝑟𝑝,𝑡+1)

1−𝛾

1 − 𝛾
 

However, other utility functions can be used.  

This is the case in which portfolio weights are a linear function of 𝜃 and 𝑥̂𝑖,𝑡. 𝑟𝑝,𝑡+1represents portfolio 

returns and 𝑟𝑖,𝑡+1 are stock returns. 𝑤̅𝑖,𝑡 is the matrix of portfolio weights assumed as a benchmark. 𝜃 

is the vector of constant parameter estimates, which is representative of the weight assigned to each 

firm characteristic selected. 𝑥̂𝑖,𝑡 is the matrix of normalized firm characteristics. This standardization 

brings with two advantages: it makes the sum of optimal weights equal to one and it grants that 

characteristics considered are stationary. 𝜃𝑇𝑥̂𝑖,𝑡, embodies the deviations from the benchmark of 

optimal portfolio weights. 

The computational complexity grows with the number of firm characteristics considered.  

As, stated before, Brandt et al.’s model allows to easily test individual and joint hypotheses. This is 

because optimal thetas estimated can be interpreted as a generalized method of moment estimator. 

Thus, by exploiting this property, the covariance matrix of optimal estimates can be computed as 

asymptotic covariance matrix or alternatively with the bootstrap technique. In my empirical 

application I decide to use the first technique, although the authors use the second one across their 

paper.  
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So far, I have exposed the basic application of the model, the so called simple linear policy, and its 

fundamental assumptions. However, the authors have included in their paper some possible 

extensions, refinements and restriction that can be imposed to the parametric portfolio choice 

framework. Thus, I will now focus on their analysis. 

The first model extension is the inclusion of transaction costs. Transaction costs are all those expenses 

related to the stock exchange, fees, or more broadly to the trading activity which can vary consistently 

from country to country. From a practical point of view, they are calculated as the total asset turnover 

from one period to the subsequent one multiplied by the function which synthetises costs. Asset 

turnover is a measure of the absolute amount of exchanges made from one time period to the other 

for each asset. This amount is then subtracted from portfolio return. The cost function can be anyway 

modelled in different ways. 

Transaction costs can have a relevant impact on characteristics-base portfolios. In fact, in the presence 

of trading costs the simple linear policy presented above is far from being optimal. 

Although, transaction costs can, in some cases, even bring some benefits. In fact, recent studies 

conducted by DeMiguel et al. (2019) have shown that they can influence the number of characteristics 

that are jointly significant for an investor’s optimal portfolio. 

Another model extension is the introduction of a portfolio constraint. In financial literature there are 

many ways in which these restrictions can be imposed to portfolio weights. However, the one imposed 

most frequently is the no short sale constraint, which limits the amount of short positions that an 

investor can take on by completely cutting negative weights. In practice, this limitation is imposed 

for example when the regulator wants to protect the market from speculations.  

Nevertheless, in Brandt et al.’s paper, the no short sale constraint is aimed at trying to find a solution 

for the elevated level of negative weights and, consequently, leverage that the model induces the 

investor to take on. However, this is a drastic solution because leverage is completely cancelled out. 

The last model extension considered is about time-varying coefficients. In the simple linear policy 

case, the optimal coefficient estimates are supposed to be time invariant. This assumption is essential 

in order to guarantee that optimal portfolio weights are not affected by the history of past returns. 

Although, this hypothesis can be easily surmounted with the introduction of a vector of predictor that 

models the factors which optimal coefficient are supposed to vary with in the linear portfolio policy 

equation. 
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Brandt et al.’s portfolio model is just one of the possible developments of the recent econometric 

approaches formulated in order to find a solution to the portfolio problem. I will now report two other 

examples which fall into this category. 

The first one is a simulation approach framed by Brandt, Goyal, Santa Clara and Stroud. This model 

aims at solving a discrete-time portfolio choice problem and applies when there is a broad number of 

assets with arbitrary return distribution and a wide number of state variables with non-stationary 

dynamics or path dependency. 

The second econometric approach embodies a completely new area of research that exploits machine 

learning techniques in order to solve portfolio selection problems. 

Hitherto, I have presented the main streams of literature on portfolio choice problem, giving a wide 

space to the solution proposed by Brandt et al. Then, I will now describe the empirical application I 

choose in order to verify the effectiveness of Brandt’s model also on the Italian stock market for the 

time period between 2000 and 2019. 

As experimental application I decided to use Italian data. I considered firm-level monthly returns of 

Italian companies listed on Milan Stock Exchange for the period between January 2000 and 

December 2019. All data were taken from Eikon Thompson Datastream. For each period and firm 

considered, I constructed three main characteristics: market capitalization (Mkt cap), book to market 

ratio (BtM) and momentum (MoM). 

For every computation I considered the standard timing convention for which we leave a six months 

lag after the end of a fiscal year to be sure that financial information would have been publicly 

available. Each characteristic has been standardized as in Brandt et al. (2009). 

I started with an initial sample of 216 companies. From this I eliminated the ones with too many 

missing values and the 30% with the lower market capitalization. By doing so, I ended up with a 

sample of 69 listed firms. 

In order to better analyse the performance of the model, I have chosen nine performance metrics: 

Sharpe ratio (SR), Certainty equivalent return (CER), Asset turnover (T), Herfindal Hirschman Index 

(HHI), Proportion of negative weights (PNW), mean and standard deviation of portfolio return and 

maximum and minimum weights. The Sharpe ratio provides us with a measure of the excess return 

per unit of deviation in a certain investment opportunity. The CER measures the impact of the entire 

distribution of returns according to risk preferences of the investor. On the contrary, the asset turnover 
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shows the entity of the variation of the composition of the portfolio from time to time. Then, HHI is 

used in order to evaluate the level of diversification of a portfolio. Finally, the proportion of negative 

weights assesses the quantity of leverage in the portfolio. 

Next, I will go through the outcomes of this application. I will start with the results for the simple 

linear policy case and for the two extensions considered: the presence of transaction costs and the 

restriction of the no short sale constraint. Then, for the first two cases, I further extended them making 

the risk aversion coefficient vary and reducing the number of assets included in the portfolio.  

The benchmark portfolio is assumed to be equally weighted and the investor is supposed to have 

preferences represented by a CRRA utility function. 

In the simple linear policy case, with risk aversion equal to five, the deviation of the optimal weights 

from the benchmark portfolio considered are growing with market capitalization and momentum, and 

they are slowing down with book to market ratio. However, this evidence is not consistent with 

literature, because usually investors underweight companies that have a low book-to market ratio bad 

past returns and large firms, and they overweight value firms, past winners and the ones with a low 

market capitalization. On the other side, the evidence found in literature on the lagged one-year return 

is confirmed.  

The performance of the portfolio is negative and the turnover is high. This bad performance may be 

due to lack of significance of the characteristics and the period selected. If fact, the performance of 

the model is closely related with how explanatory are the chosen variables for a specific market.  

When comparing the performance of Brandt et al.’s model with the one of an equally weighted and a 

value weighted portfolio, we can see that they perform much better even if they have a lower level of 

diversification and are easier to implement.  

Then, I make the value of the coefficient of risk aversion vary, starting from the initial value of five, 

and then considering also the figures of two, twenty and ninety. By doing so I want to highlight how 

influent are investors’ preferences in the estimation of the parameters for the optimal portfolio policy. 

From this analysis emerges that book-to-market characteristic is much more sensible to variation in 

risk aversion and expected returns, while market capitalization and momentum are related mainly 

with expected returns.  

The distribution of weights is significantly affected by the variation of gamma: for lower levels of 

gamma, the investor takes on a rising number of short positions, making more extreme bets. 
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On the other side, the mean portfolio return turns positive when gamma is equal to 20. 

Afterwards, I analyse the effect of a variation in the number of stocks in the portfolio on performance 

and other statistics. 

When observing parameter estimates for the reduced sample, we can note that they follow the same 

path as the full sample. However, although the absolute values of parameter evaluations grow in the 

case of the reduced sample for market capitalization and book-to-market ratio, for momentum 

estimate this absolute value decreases. 

The reduction in the number of assets causes an increase in the variability of weights distribution and 

in the proportion of negative weights. 

Furthermore, there is a significant drop in mean portfolio return, which is accompanied by an upturn 

in portfolio volatility. This evidence confirms what already found by Fletcher (2017) about the 

positive relation between portfolio performance and number of assets included in it. 

After varying the number of assets included in the portfolio, I have decided to also include transaction 

costs to the original simple linear policy. These have been expressed as a function of market 

capitalization and they have been modelled to also comprise their linear decrease in time. The 

outcome is that with the insertion of transaction costs, there is a reduction in absolute values of 

parameter estimates and the already negative mean portfolio return drops. 

Even in the presence of transaction costs, if I make gamma and the number of stocks vary, the 

outcomes are the same as for the simple linear policy case. 

Now, I will discuss results referring to the imposition of the no short sales constraint. As exposed 

before, the imposition of the no short sale constraint is the solution proposed by Brandt et al. (2009) 

in their paper for the high level of leverage that results with the application of their model. 

Although, this limit would only completely eliminate leveraged positions which would be an 

acceptable solution only for extremely risk adverse investor.  

There is a very small difference when comparing the optimal thetas for the simple linear policy case 

and the one with the imposition of the no short selling constraint. Not surprisingly, there are no 

negative positions and turnover is consistently reduced.  

Furthermore, there are no relevant variations for mean portfolio return, standard deviation and 

certainty equivalent return, even if usually the average portfolio return of a portfolio with the no short 

sale constraint has a lower return. 
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So far, I have assumed that the bad performance of the model derives primarily from the choice of 

firm characteristics, which might not be explanatory for the Italian stock market. 

With the purpose of evaluating whether these characteristics are able to explain the cross-section of 

returns of stocks for the time period selected, I have decided to apply the approach formulated by 

Fama and MacBeth (1973). If my hypothesis is correct, the resulting risk premia should not be 

statistically significant. 

Observing the t-statistics, I can definitely affirm that the suboptimal performance of the model for the 

time period considered is mainly due to the fact that the characteristics chosen are not explanatory 

for stock returns on Italian market. In fact, only the one-year lagged return is weakly significant. 

Although, this is just one of the possible determinants of the suboptimal performance of the model. 

In fact, as highlighted by De Miguel et al. (2009), the estimation window considered, and the number 

of assets included in the portfolio can have an influence on the possibility for alternative optimizing 

models to outperform an equally weighted portfolio.  

 

 




