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INTRODUCTION 

 

The Portfolio allocation strategy and construction is perhaps one of the most challenging and 

frequent issues in the asset management industry. Every day, millions of investors around the 

world seek to maximize their investment in order to achieve their most important financial goals: 

investing for retirement, buying a house, paying for college or simply earning returns in excess 

of a particular market benchmark. They try to build up portfolios today that can deliver the 

financial outcomes they need in the future. 

A brilliant 24 years old economist, Harry Markowitz, with the publication of his famous paper 

“Portfolio Selection” in 1952, marked a milestone in the portfolio theory by introducing the 

mean-variance portfolio allocation approach. Regarded the father of Modern Portfolio Theory 

(MPT), Markowitz was the first scholar recognizing that various levels of risks are associated 

with different optimal portfolios depending on the investor’s risk-return preferences. His mean-

variance approach was revolutionary since it provided scholars and asset managers with an 

intuitive quantitative framework to adopt. Before Markowitz work, investment managers usually 

considered the optimal portfolio as the one achieving the highest expected return. Since it is 

enormously difficult to optimally allocate a portfolio with the highest expected return, investors 

should reconsider distributing their resources across alternative investments to build a more 

diversified portfolio. Furthermore, Markowitz argued that investors, when allocating their 

wealth, should be interested in only two distinct yet interrelated elements: the expected return of 

an investment and the risk of the same. According to the mean-variance environment, everyone 

faces a trade-off when constructing his/her optimal portfolio. Indeed, there is a one to one direct 

relationship between the variance and the return of an investment. Risk-averse investors would 

be willing to give up a bit of return in change of safer portfolios, while risk-seeking people want 

to maximize the expected return no matter the variance. Markowitz argued that the only efficient 

portfolios are those that for any given amount of volatility, have the highest possible expected 

return. The set of all these portfolios would build up the so called “efficient frontier” where 

investors construct their investment choices according to their specific risk-return preferences. 

Markowitz, considered the father of quadratic programming, implemented his groundbreaking 

mean-variance approach into an optimization algorithm, the Critical Line Algorithm (CLA). 
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Indeed, the Markowitz efficient frontier solution requires both an equality constraint (that the 

portfolio’s weights sum up to one) and an inequality constraint (a lower and upper bound for the 

weights, which are 0 and 1 respectively), in order to be solved. As there is no analytic solution 

to this problem, the breakthrough of the young American economist was to develop an open-

source algorithm that could solve inequality-constrained portfolio optimization problems and 

compute the optimal set of efficient portfolios lying on the curve. 

Since Markowitz work, asset managers as well as academics around all the world have been 

focusing on carrying out theories and methodologies to construct robust portfolios that could 

minimize the risk while still securing an “alpha”. The financial industry, however, is a very 

volatile one:  a constant critical investigation of the strategies and approaches analyzing the risk-

return relationship is therefore always required. The global financial crisis of 2008 has displayed 

all the limitations and drawbacks of the traditional portfolio allocation methodologies. The 

Markowitz efficient frontier theory has demonstrated to lead to inconsistent outcomes especially 

due to the challenges in estimating the expected returns and the covariances for the different 

asset classes. Furthermore, even the CLA solution somewhat produced unstable results. Indeed, 

small deviations in the forecasted returns lead the algorithm to develop very different portfolios. 

The recent credit financial crisis unveiled even more the portfolio diversification and 

performance weaknesses, raising the need in the asset management industry to build new 

theoretical frameworks with strong empirical results. Among the new portfolio allocation 

approaches, the ones that grasped the most attention from practitioners and researchers are the 

so-called risk-based strategies. Since the expected returns are considered unpredictable, these 

new methodologies try instead to estimate the risk factors and focus mainly on the covariance 

matrix. The new portfolio weights depend only on the specific risk factors affecting each security 

in the portfolio. Some of the most relevant risk- based models include: Equal Risk Contribution 

Portfolio (ERC), Risk Parity Portfolio (RP), Global Minimum Variance (GMV), Maximum 

Diversification Portfolio (MDP), Maximum Sharpe Ratio Portfolio (MSP), Inverse Volatility 

Strategy (IV) and Market-Capitalization-Weighted Portfolio (MCWP). 

However, “dropping the forecasts on returns does not prevent the instability issues. The reason 

is, quadratic programming methods require the inversion of a positive-definite covariance 
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matrix. This inversion is subject to large errors when the covariance matrix has a high condition 

number”1. 

The Hierarchical Risk Parity portfolio allocation approach (HRP) developed and proposed by 

the Spanish economist Marcos Lòpez de Prado in 2016, tries to fill the gap in the literature, not 

only by solving the Markowitz algorithm instability issues but also by producing portfolios that 

could outperform the traditional risk-based allocation strategies. By avoiding the inversion of 

the covariance matrix and identifying a hierarchical structure in the portfolio weights, HRP 

applies graph theory and machine learning techniques to construct a diversified portfolio based 

on the information contained in the covariance matrix. Furthermore, de Prado’s famous article 

“Building Diversified Portfolios that Outperform Out-of-Sample” has proven that adopting the 

HRP algorithm leads to more robust portfolios out-of-sample, characterized by a lower volatility 

compared to other allocation strategies. 

The Markowitz mean-variance approach marks the foundation of every portfolio theory and it is 

widely known in the world of finance. However, it has shown to be subject to many 

inconsistencies and issues which do not allow an optimal allocation of the investor’s resources. 

I was intrigued therefore, by the possibilities of the de Prado’s Hierarchical Risk Parity model 

as it provides an innovative and dynamic portfolio optimization framework which remarkably 

uses a machine learning algorithm, offering a high-level understanding through digital images. I 

also observed the empirical literature on the HRP model is quite scarce, something which may 

prevent other practitioners from further adopting the algorithm. 

Therefore, this thesis will deeply investigate the traditional allocation approaches and theories 

as well as their advantages and main limitations. It will then present the HRP portfolio allocation 

model, making a comparison with the risk-based methodologies. In the end, it will evaluate and 

study two different portfolios: an index-based portfolio built with the 30 securities of the Dow 

Jones Index and all ETFs portfolio, consisting of the 15 most liquid ETFs tracking the major 

index in the US. The main object of the thesis is to analyze which allocation strategy applied on 

the two afore-mentioned portfolios, outperforms both in-sample and out-of-sample in terms of 

 
1 de Prado, M. L. (2016). Building diversified portfolios that outperform out of sample. The Journal of Portfolio 

Management, 42(4), 59-69. 
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weights diversification, risk minimization and performance metrics. Therefore, the main 

research questions of the thesis can be formulated in the following way: 

o How do different portfolio models allocate wealth? 

o How concentrated are the HRP portfolio weights relative to other traditional allocation 

strategies? 

o Does an HRP based portfolio outperform the traditional allocation strategies in and out-of-

sample? 

o Does the HRP algorithm better apply on an index-based portfolio (the Dow Jones Index 

portfolio) compared to an all ETF portfolio? 

It is my desire that this thesis will shed some further light on the Hierarchical Risk Parity 

approach as I believe it presents the reader with a useful tool in the asset allocation process. My 

genuine passion for the financial world, and for the portfolio and risk management studies, 

motivated me to carry out this research in which I am going to assess the approach using a 

computer programming language. All the empirical analysis will indeed be codified and 

implemented on the Anaconda Jupyter notebook of the Python computer language, version 3.7. 

This thesis is organized as follows. In the 1st chapter, a comprehensive study of the Modern 

Portfolio theory and risk-based portfolio strategies is offered. The chapter, starting from 

Markowitz, goes over the main portfolio allocation methodologies, outlining their strengths and 

weaknesses. A practical application on Python comparing two different portfolio strategies is 

provided at the end of the chapter. Chapter 2, instead, goes directly to the crucial topic of the 

thesis: The Hierarchical Risk Parity algorithm. It firstly analyzes the Markowitz Critical Line 

Algorithm and then it points out how and why the HRP model outstands the CLA approach. At 

the end of the chapter is reported an application on Python to better visualize and understand 

how the HRP works. In the end, chapter 3 provides the empirical analysis of the different 

portfolio allocation strategies using the two chosen portfolios and tries to give an answer to the 

research questions of the thesis.  
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1. THE DEVELOPMENT OF MODERN PORTFOLIO THEORY 

 

 

1.1 Markowitz Portfolio Theory 

Portfolio optimization problem is a cornerstone area in finance. One of the fundamental 

assumptions made in finance is that, due to the scarcity of resources, all economic choices face 

some form of trade-off. When coming through an investment decision, the main kind of 

“compromise” a rational investor has to encounter is the choice between how much return he 

would like to earn and the amount of risk he is willing to accept, given that return. Consequently, 

a critical phase of the investment process should concentrate on questioning about how and 

where to allocate your financial resources, rather than merely selecting the securities to own. 

Around the fourth century a certain Rabbi Issac bar came up with an interesting yet 

oversimplified rule for asset allocation: “One should always divide his wealth into three parts: 

a third in land, a third in merchandise and a third ready to hand”2. The American economist 

Harry Markowitz, used Isaac’s rule himself when asked about how he manages his own funds, 

stating that: “My intention was to minimize my future regret. So, I split my contribution fifty-fifty 

between bonds and equities”3. The previous two statements, though presenting a very rough and 

simple scenario, both underline the importance of splitting the wealth across different categories 

of assets. Economists usually quote the Miguel Cervantes Don Quixote phrase “do not put all 

your eggs in the same basket” to explain the diversification concept in finance. Diversification, 

in portfolio management, is regarded as a “free lunch”; indeed it allows investors to increase 

their portfolio expected return while keeping the level of risk unchanged or vice-versa, to 

decrease the portfolio risk without affecting the total expected return. In the 1950s, Markowitz, 

the father of the worldwide accepted Modern Portfolio Theory (MPT), developed a thesis that 

could explain investors rationale when trying to allocate their resources in the most efficient 

way. Although diversification cannot completely cancel portfolio variance out, there is a rule 

according to which the “investor does (or should) diversify his funds among all those securities 

 
2 See Babylonian Talmud: Tractate Baba Mezi’a, folio 42a.  
3 Zweig J. (1998). “Five investing lessons from America’s top pension fund”, Money, 115-118. 
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which give maximum expected return”4. This principle assumes there is a portfolio having both 

maximum expected return and minimum variance. Markowitz theory, today known as the 

Modern Portfolio Theory, represents the foundation and the basis of all Investment Management 

literature and portfolio optimization methods. It managed to formulate the “optimal” approach 

for allocating resources across risky securities in a static world where people are only interested 

in the mean and variance of the portfolio’s return. The MPT provides a formal yet tractable 

procedure to find optimal portfolios which will build the “efficient frontier” defined as the bundle 

of optimal portfolios that show the highest expected return for a given level of risk or the lowest 

risk for a given level of expected return. 

 

1.1.1 The Mean-Variance portfolio model 

In March 1952 Harry Markowitz published the famous paper “Portfolio Selection” in which 

he first presented the theory of a portfolio optimization based on a mean-variance trade-off. 

“The investor does (or should) consider expected return a desirable thing and variance of 

return an undesirable thing”5. According to the American economist, following certain 

assumptions and conditions, investors decision can be reduced only to the expected return and 

the variance of the portfolio. 

Markowitz rejects the hypothesis that the investor maximizes discounted return. Indeed, the 

previous theories did not take into account the benefits of diversification6. The practice of 

merely maximizing discounted expected returns leads to considering two securities with the 

same value as good as any combination of them. In doing so, the investor would be indifferent 

to the portfolio’s weights since any “mix” of different assets would yield the maximum 

expected return. But according to Markowitz, “Diversification is both observed and sensible; 

a rule of behavior which does not imply the superiority of diversification must be rejected 

both as a hypothesis and as a maxim”, therefore investors should diversify their financial 

resources over a variety of securities7. The only efficient portfolios are those that for any 

 
4Harry Markowitz (1952). “Portfolio Selection”, The Journal of Finance, 7(1), 77-91. 
5 Markowitz (1952), op. cit., pp.77-78. 
6 See Williams, J. B. (1938). “The theory of investment value” (No. HG4521 W48). 
7 Markowitz (1952), op. cit., pp.79. 
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defined amount of variance, have the highest possible expected return. The set of all these 

portfolios would construct the so called “efficient frontier” where investors have to build their 

investment choices according to their specific risk-return preferences. The decision of where 

to invest does not depend anymore on the distinct feature of the security. Indeed, each investor 

has to consider how each security co-moves with all the others in the portfolio. The total risk 

of the portfolio will be affected not only by the single assets’ returns variance but also by the 

set of covariances of all the securities. Therefore, it is essential to take into account all the 

possible interactions among the different investments. By doing this, the investor creates a 

portfolio with the same expected return but with a lower risk than a portfolio that does not 

consider these pairwise assets co-movements.  

The mean-variance optimization problem requires looking for the portfolio weights 𝑤i that 

maximize the portfolio expected return 𝔼(R𝑝) given the variance 𝜎2
𝑝 of a portfolio p. 

The expected return of a portfolio is the weighted average (weighted by the probability of the 

outcomes) of A: the total population of returns of each portfolio constituent. 

 

In numerical terms we do have: 

𝔼(R𝑖) = p𝑖1𝑟𝑖1 + 𝑝𝑖2𝑟𝑖2 + ⋯+ 𝑝𝑖𝐴𝑟𝑖𝐴  

Or 

𝔼(Ri) = ∑ 𝑝𝑖𝑘𝑟𝑖𝑘

𝐴

𝑘=1

(1) 

Where pik represents the probability of the event k of the security i’s return and r is the return 

of the individual asset i. In the special case where the probabilities of the events are exactly 

the same the previous formula becomes the simple average of all possible different events. 

𝔼(Ri) = ∑
𝑟𝑖𝑘
𝐴

𝐴

𝑘=1

 (2) 
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The variance 𝜎2
i instead, is the squared deviation of a random variable from its mean value. It 

tells how much the returns of the single assets deviate from the mean portfolio return. 

σi
2 = ∑[𝑝𝑖𝑘(𝑟𝑖𝑘 − 𝔼(Ri)

2]

𝐴

𝑘=1

(3) 

Or in the case of the same probabilities 

σi
2 = ∑

(𝑟𝑖𝑘 − 𝔼(Ri)
2 

𝐴

𝐴

𝑘=1

 (4) 

The variance is the commonly used measure in finance to express risk or volatility. The 

standard deviation is a static measure of the dispersion of the population observations from 

its mean value. It is computed as the square root of the variance. 

𝜎𝑖 = √σi
2 (5) 

All the equations outlined so far are used for a single security in the portfolio, which is the 

starting point for an asset allocation study or portfolio analysis. If an investor wants to allocate 

a portion Xi of his financial resources into different assets constituting a portfolio p, the 

portfolio total expected return in given by (6)8. 

𝔼(Rp) = ∑𝑋𝑖𝔼(R𝑖) (6)

𝑁

𝑖=1

 

Since each investor has to consider the co-movements of each security in the portfolio, the 

total risk cannot be expressed merely by the variance of the portfolio. It depends also on the 

covariance of all the asset returns. The covariance of the returns of two assets l and q, if joint 

outcomes have the same likelihood, is given by 

 
8 Elton, E.J., Gruber, M.J. (2011). “Modern Portfolio Theory and Investment Analysis”, Wiley, 9. 
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𝜎𝑙𝑞 = ∑
(𝑟1𝑘 − 𝔼(R1))(r2k − 𝔼(R2))

𝐴

𝐴

𝑘=1

 

Hence, the variance of the total portfolio 𝜎𝑝
2 can be calculated as 

𝜎𝑝
2 = 𝑋𝑙

2𝜎𝑙
2 + 𝑋𝑞

2𝜎𝑞
2 + 2𝑋𝑙𝑋𝑞𝜎𝑙𝑞 (7) 

From the covariance formula it is possible to obtain the correlation coefficient which measures 

how two securities move in relation to each other. 

𝜌𝑙𝑞 =
𝜎𝑙𝑞

𝜎𝑙𝜎𝑞
 

The coefficient ranges from -1 to +1. A value of +1 means the two securities are perfectly 

correlated, therefore if one exhibits a one period return of 0.8 so does the other. By exchanging 

the covariance term in (7) with the correlation coefficient: 

𝜎𝑝
2 = 𝑋𝑙

2𝜎𝑙
2 + 𝑋𝑞

2𝜎𝑞
2 + 2𝑋𝑙𝑋𝑞𝜎𝑙𝜎𝑞𝜌𝑙𝑞 

The general expression for the portfolio variance in the case of N assets is given by (8)9. 

𝜎𝑝
2 = ∑(𝑋𝑘

2𝜎𝑘
2) + 2 ∑ ∑(𝑋𝑘𝑋𝑗𝜎𝑘𝑗)

𝑁

𝑗>1

𝑁

𝑘=1

𝑁

𝑘=1

(8) 

 

 

By taking the square root of the variance of the portfolio we have the standard deviation of 

the portfolio p, 𝜎𝑝. 

𝜎𝑝 = √𝜎𝑝
2 

In equation (8) the diversification effect is defined by the first term of the left side part, which 

indeed depends only on the individual variances of the securities. The more assets are included 

 
9 Markowitz (1952), op. cit., pp.81. 
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in the portfolio, the more that side of the equation gets closer to 0. Hence, those investors who 

allocate their total wealth into different assets, will see the total variance of the portfolio 

decreasing. However not the whole portfolio volatility can be diversified away. As more assets 

are included in the investments band, the variance is reduced only up to a certain limit. The 

right-side term of the equation (8) indeed, depends only by the covariance of the assets and is 

not affected by the number of securities in the portfolio10. 

 

1.1.2 The efficient frontier 

Markowitz was the first economist that in the 1950s developed a theory providing a 

meticulous mathematical structure for portfolio optimization. The mean (return) – variance 

(volatility) problem can be solved using two-dimensional geometry. The search of the weights 

wk that maximizes the 𝔼 (Rp) given the 𝜎p of the portfolio p, creates the so called “investments 

opportunity set” or the investor’s risk-return area. This bidimensional space is characterized 

by all the possible combinations of expected return 𝔼 (Rk) and variance 𝜎k of the portfolios.  

Since I am going to work with a portfolio composed by many securities, for the sake of 

completeness I am going to re-write the previous formulas using vectors and the matrix form. 

Markowitz considers a universe of N securities and a vector of weights in the portfolio X = 

(X1, …, Xn) which are not random variable but are fixed by the investors11. Two main 

assumptions are made to develop the theoretical framework. The first one states that the 

portfolio is fully invested. Therefore, being Xk a percentage term, all the weights sum up to 

one: 

∑ 𝑋𝑘 = 1𝑇  𝑋 = 1 (9)

𝑁

𝑘=1

 

 

 
10 For a deeper study, see Elton, E. J., & Gruber, M. J. (1997). Modern portfolio theory, 1950 to date. Journal of Banking & 

Finance, 21(11-12), 1743-1759. 
11 Markowitz (1952), op. cit., pp.83 
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Moreover, Markowitz does not consider the case for short-sales, therefore X cannot take 

negative values12. 

∀𝑖𝑋_𝑖 ≥ 0 

The vector of asset returns is R = R (R1, …., Rn) and the return of the portfolio p is the 

weighted sum of the returns of the single securities. 

𝑅𝑝 = ∑ 𝑋𝑘𝑅𝑖 = 𝑋𝑇𝑅 (10)

𝑁

𝑘=1

  

By defining the vector of the expected values of the returns 𝑅 ̅ =  𝔼 (R𝑖) it is possible to 

determine the variance-covariance matrix Ω13. 

Ω = 𝔼[(𝑅 − �̅�)(𝑅 − �̅�)𝑇] (11) 

Therefore, the expected returns and variance of the portfolio are respectively: 

 𝑅 ̅(𝑋) =  𝔼[R(X)] = XT𝑅 ̅ (12) 

𝜎2(𝑋) =  𝔼 [(R(X) − 𝑅 ̅(𝑋))(R(X) − 𝑅 ̅(𝑋))
𝑇
] = 𝑋𝑇ΩX (13) 

The Markowitz mean-variance optimization problem requires either to minimize the total 

portfolio variance subject to a lower limit on the expected return or to maximize the investor 

expected utility that can be fully described by the mean and variance of the portfolio. 

𝑚𝑖𝑛 𝑋𝑇ΩX, 

                                                                                       w.r.t.                         (14) 

XT𝑅 ̅ >  𝔼° 

 
12 A short sale is basically when an investor sells an asset that is not included in his inventory, thus borrowing an asset from 

someone who does (an investment bank) and sells it on the financial marketplace. 
13 A variance-covariance matrix is a square matrix composed by the variances and covariances linked with several 

securities. The diagonal elements of the matrix contain the variances of the variables and the off-diagonal elements contain 

the covariances between all possible pairs of variables. 
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𝔼° is the specific expected return target the investor wishes to achieve given the portfolio 

variance.  

At each time the investor tries to maximize his utility’s preferences function by selecting the 

different weights Xk to be allocated in the N risky assets. 

max𝑋𝑘
𝑇 𝑅 ̅ −

𝛿

2
𝑋𝑘

𝑇  Ω𝑘 𝑋𝑘 (15) 

Where δ is a coefficient representing the investor specific risk aversion. The vector weights 

in the portfolio composed by N risky asset, X = (X1, …, Xn), at time t is: 

𝑋𝑡 =  
Ωt

−1 𝑅 ̅̅ ̅
𝑡

1𝑁 Ωt
−1 𝑅 ̅̅ ̅

𝑡

 (16) 

Where 1N is a N dimensional vector of ones. The problem can be solved with a plug-in 

procedure starting by equation (15) and consequently substituting the respective values of 

mean and covariance matrices14. 

The Markowitz Efficient Frontier curve is characterized by the set of all the optimal portfolios 

in which the trade-off between risk and return is maximized. The portfolio’s investment 

opportunity space can be plotted as a graph with the x-axis showing the standard deviation of 

all different portfolios and the y-axis the expected return. All the portfolios that lay down the 

efficient frontier curve (the investment opportunity area) are sub-optimal since in that case, 

there will always be a better combination of mean and variance. Therefore, the efficient 

frontier curve is just the representation of all the optimal portfolios in the investment universe. 

The portfolio placed on the leftmost point of the curve is the one exhibiting the lowest possible 

variance. 

 

 

 

 
14 DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio 

strategy?. The review of Financial studies, 22(5), 1915-1953. 
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1.2 The Capital Asset Pricing Model (CAPM) 

In 1964, the brilliant economist William Sharpe, published the paper “Capital asset prices: A 

theory of market equilibrium under conditions of risk”, that would have become one of the 

most inspiring financial models for estimating firms cost of capital and evaluating portfolios 

‘performance. The model proposed and developed by Sharpe is widely considered as the one 

marking the birth of asset pricing theory.  

The Capital Asset Pricing theory (CAPM) became another evidence for researchers and 

investors of the interconnections between asset risk and asset return. According to Sharpe: “In 

equilibrium there will be a simple linear relationship between the expected return and 

standard deviation of return for efficient combinations of risky assets”15.  

Starting from Markowitz, Sharpe further develops the mean-variance portfolio theory by 

assuming that a rational investor would allocate his wealth in such a way that his optimal set 

of portfolios would lie anywhere on the security market line (SML). Together with the 

contribution of Lintner and Mossin, he defines the condition of an equilibrium in a market 

characterized by investors having the same risk preferences (all investors are rational, and all 

rational investors are risk-averse) and with the same interest rate for borrowing and lending16. 

The CAPM, unlike the Markowitz approach, introduces the important concept of systematic 

and unsystematic risk. Indeed, Sharpe distinguishes among that part of risk which is correlated 

with the market unexpected events (systematic risk) and that variance of returns which doesn’t 

vary with the market, but rather depends on the company/industry specific characteristics. 

This idiosyncratic or unsystematic risk doesn’t affect the whole market and has an impact at 

the microeconomic level. It can be reduced or even eliminated through the effect of the 

portfolio diversification. On the other hand, the former kind of risk cannot be canceled out in 

portfolio construction and affects all the securities (e.g. a change in the interest rate or 

inflation). Investors of the CAPM world, are rewarded with a higher expected return, only for 

 
15 Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of 

finance, 19(3), 425-442. 
16 Lintner, J. (1965). Security prices, risk, and maximal gains from diversification. The journal of finance, 20(4), 587-615; 

Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica: Journal of the econometric society, 768-783. 
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taking on the systematic risk, represented by Beta (β). This risk distinction represents a clear 

difference with the mean-variance model where all assets take on the same kind of variance. 

Having all homogenous market expectations and with borrowing and lending at a risk-free 

rate, all investors will hold in equilibrium the same risky portfolio. Littner and Sharpe in their 

paper demonstrate that if the condition of market equilibrium is respected, everyone will hold 

the market portfolio17. The relationship between the expected return and the systematic risk 

or Beta is graphically represented by the Security Market Line whose equation (17) defines 

the expected return for all assets and portfolio of assets: 

𝔼(Ri) = 𝑅𝑓 + β𝑖[𝔼(R𝑖) − 𝑅𝑓](17) 

In this equation 𝔼(Ri) is the expected return on asset i while β𝑖 measures the security 

‘sensitivity to the market movements and it is algebraically equal to  

β𝑖 =
cov(R𝑖 , R𝑀)

𝜎2(R𝑀)
 (18) 

Where RM  is the market return. Equation (18) tells us that the market Beta of asset i is equal 

to the covariance between the security’s return and the market one, divided by the variance of 

the market return. 

 A better β𝑖  interpretation is given by the two American researchers Eugene F. Fama and 

Kenneth R. French : “Since the market beta of asset i is also the slope in the regression of its 

return on the market return, a common (and correct) interpretation of beta is that it measures 

the sensitivity of the asset’s return to variation in the market return. But there is another 

interpretation of beta more in line with the spirit of the portfolio model that underlies the 

CAPM. The risk of the market portfolio, as measured by the variance of its return (the 

denominator of 𝛽𝑖), is a weighted average of the covariance risks of the assets in the market 

M (the numerators of 𝛽𝑖 for different assets). Thus, 𝛽𝑖 is the covariance risk of asset i in M 

measured relative to the average covariance risk of assets, which is just the variance of the 

 
17 Elton et. Al. (2011), op cit., pp. 272. 
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market return. In economic terms, 𝛽𝑖is proportional to the risk each dollar invested in asset i 

contributes to the market portfolio”18.  

 

1.2.1 A graphical representation of the CAPM 

As mentioned above, the Security Market Line (SML) is the graphical representation of the 

relationship between Beta and the asset return. As the name suggests, this relationship is a 

linear one whose intercept is the risk-free rate where the investors have 100% of exposure to 

the portfolio and the slope is the Beta coefficient. The graph can be better analyzed through 

the following simple example, considering 5 different stocks19. 

I assume a risk-free rate of 3% and an equity risk premium of 5%. The SML analysis could 

tell us whether the securities in which we want to invest are overvalued or undervalued with 

respect to the market. For the 5 stocks under consideration, we observe the following Beta 

coefficients and required rate of return observed in the market by using the dividend discount 

model (Figure 1): 

 

Stock Beta Observed Required Return 

A 1,1 8% 

B 1,3 12% 

C 1,5 9% 

D 1,9 15% 

E 0,7 7% 

Figure 1, Market Returns & Beta Coefficient. Data Source: Personal elaboration on Excel. 

 

By applying the Capital Asset Pricing Model equation (17) we can extract the required rate of 

return on each stock as we can observe in the last column of Figure 2 reported below. 

 
18 Fama, E. F., & French, K. R. (2004). The capital asset pricing model: Theory and evidence. Journal of economic 

perspectives, 18(3), 25-46. 
19 The data of the example considered are not real market data but they are the result of a personal elaboration on Excel. 
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Stock Beta Observed Required 

Return 

CAPM Return Formula 

(17) 

A 1,1 8% 9,6% =3% + 1,1 x 6% 

B 1,3 12% 10,8% =3% + 1,3 x 6% 

C 1,5 9% 12,0% =3% + 1,5 x 6% 

D 1,9 15% 14,4% =3% + 1,9 x 6% 

E 0,7 7% 7,2% =3% + 0,7 x 6% 

Figure 2, CAPM Returns & Beta Coefficient. Data Source: Personal elaboration on Excel. 

 

If the CAPM rates of return are plotted together with the Beta coefficients we obtain the SML 

(Figure 3) whose intercept is given by the risk-free rate and slope by the different Betas. The 

point on the line having a β of 1 represents the market portfolio which therefore has a one to 

one direct relationship whit movements in the market. 

In the given example the stocks A, B and D are undervalued with respect to the market, 

because for a given amount of risk (β), they yield a higher return. On the other hand, the 

securities C and E are overvalued because for a given amount of risk, they yield a lower return. 
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Figure 3, The Security Market Line (SML). Data Source: A personal elaboration on Excel. 

 

1.2.2 Critiques of the Capital Asset Pricing theory 

Although widely used in the academic financial world due to its simplicity and well-defined 

framework for estimating the cost of capital, the CAPM model presented many drawbacks in 

the empirical applications. Indeed, empirical literature demonstrates that the relationship 

between Beta and the required rate of return in the Sharpe-Littner model is too steep if 

compared to what really happens in the market when tested with real data. As a consequence, 

CAPM estimates of the cost of equity for high beta stocks are too high and estimates for low 

beta stocks are too low20. 

CAPM assumptions are considered too unrealistic and restrictive. Several other asset pricing 

models that take unsystematic risk into account, assume that investors for some exogenous 

reasons hold undiversified portfolios. An instance of the Sharpe theorem evolution is the 

 
20 Friend, I., & Blume, M. (1970). Measurement of portfolio performance under uncertainty. The American economic 

review, 60(4), 561-575. 
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“Expanded CAPM” which includes in the equation two additional risk premiums, for small 

size and one attributable to the specific company or to the industry21. 

One of the main pitfalls of the CAPM equation is that it does not take into account all the 

possible sources of risk when determining the cost of capital. Fama & French three-factors 

method, add an important contribution in the practical analysis, since according to the two 

American economists : “ Two easily measured variables, size and book‐to‐market equity, 

combine to capture the cross‐sectional variation in average stock returns associated with 

market β, size, leverage, book‐to‐market equity, and earnings‐price ratios. Moreover, when 

the tests allow for variation in β that is unrelated to size, the relation between market β and 

average return is flat, even when β is the only explanatory variable”22. 

The Fama-French 3 factors model is empirically driven, nonetheless not theoretically 

supported. One study contrasting the CAPM and FF for the U.S. markets found that whereas 

differences in the CAPM beta explained on average 3% of the cross-sectional differences in 

the stock returns over the following year, the FF betas explained on average 5% of the 

differences23. 

Another important step through the development of the Portfolio optimization theory was 

made by the Black and Litterman model for portfolio allocation. The two financial scholars 

believed that many of the previous mathematical theories and models had not been able to 

achieve the expected empirical results. In order to reduce estimation errors the two economists 

designed a model which, using a Bayesian approach, tries to combine the subjective views of 

an investor regarding the expected returns of one or more assets with the market equilibrium 

vector of expected returns (the prior distribution) to form a new, mixed estimate of expected 

returns. The resulting new vector of returns (the posterior distribution), leads to intuitive 

portfolios with sensible portfolio weights24.   

 
21  For a deeper study see: Merton, R. C. (1980). On estimating the expected return on the market: An exploratory 

investigation (No. w0444). National Bureau of Economic Research; Pratt, S. P., & Grabowski, R. J. (2008). Cost of capital. 

John Wiley & Sons. 
22 Fama, E. F., & French, K. R. (1992). The cross‐section of expected stock returns. the Journal of Finance, 47(2), 427-465. 
23 Bartholdy, J., & Peare, P. (2005). Estimation of expected return: CAPM vs. Fama and French. International Review of 

Financial Analysis, 14(4), 407-427. 
24 Idzorek, T. (2007). A step-by-step guide to the Black-Litterman model: Incorporating user-specified confidence levels. 

In Forecasting expected returns in the financial markets (pp. 17-38). Academic Press. 
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1.3  The Traditional Risk Based Approaches 

The problems of the Markowitz mean-variance methodology, such us estimation errors and 

inconsistency, led to the development of several other attempts by academics to find possible 

portfolio solutions that could result in an optimal asset allocation. The mean variance theory has 

many practical drawbacks due to the difficulties in estimating the expected returns and the 

covariances for the different asset classes. Portfolios diversification and performance problems 

became even more evident during the recent credit financial crisis of 2008 which raised the need 

in the asset management industry, to build new theoretical frameworks with strong empirical 

results. The new models are risk-based ones, meaning that they try to estimate the risk factors 

rather than the expected returns which are considered unpredictable. The new portfolio’s weights 

do not consider expected returns and depend only on the specific risk factors affecting each 

security in the portfolio. 

Despite the common view that diversification failed during the recent credit crisis, Risk Parity 

strategies passed an acid test in 2008 by performing well relative to traditional portfolios25. A 

commonly used practice was to allocate a 60% portion to equities, given their higher returns, 

and a lower one (40%) to bonds following an equity portfolio risk contribution of almost 90% 

due to the much higher volatility exhibited by stocks. However, this strategy resulted in very 

poor performance mainly because of the lack of diversification. Therefore, risk parity portfolios 

tried to fill the gap by investing in different asset classes in order to spread evenly the whole 

market risk to each category. Instances of new asset allocations include bonds, equities, real 

estate, commodities, hedge funds, etc. The rationale behind Risk Parity approaches is to split the 

percentage risk contribution of each asset class. But why should investors be interested into each 

asset class risk contribution? It has been empirically shown that risk contribution is a very 

accurate indicator of loss contribution26. 

Analyzing the typical 60/40 portfolio strategy on a portfolio based on the Russel 1000 and 

Lehman Aggregate Bond Indices, let us better understand the limits of poor diversification which 

leads to a higher total expected loss. 

 
25 Hurst, B., Johnson, B., & Ooi, Y. H. (2010). Understanding risk parity. AQR Capital Management. 
26 Qian, E. E. (2005). On the financial interpretation of risk contribution: Risk budgets do add up. Available at SSRN 

684221. 
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Loss Equity Bonds # of components 

2% 95,6% 4,4% 44 

3% 100,1% -0,1% 25 

4% 101,9% -1,9% 15 

Figure 4, Average loss contribution for the 60/40 portfolio based on the Russell 1000 and Lehman Aggregate Bond Indiced: 

1983-2004. Data Source: A personal elaboration of a PanAgora study & Bloomberg Terminal data. 

 

Figure 4 reported above, shows the risk contribution of equity resulting into different 

approximations of the portfolio expected losses. For losses higher than 4% indeed, stocks have 

more than 100% weight on the overall risk. On the other hand, the diversification power of the 

bond class is almost irrelevant, implying that large losses on the stock market would cause most 

of the portfolio bad performance. The key to Risk Parity is to diversify across asset classes that 

behave differently across economic environments: in general, equities do well in high growth 

and low inflation environments, bonds do well in deflationary or recessionary environments, and 

commodities tend to perform best during inflationary environments27.Therefore, building a 

balanced portfolio could lead to much more robust returns. Risk parity portfolios usually invest 

more in low volatility securities than traditional asset allocation strategies. 

Some of the most relevant risk- based models include: 

 

• Equal Risk Contribution Portfolio (ERC) 

• Risk Parity Portfolio (RP) 

• Global Minimum Variance (GMV) 

• Maximum Diversification Portfolio (MDP) 

• Maximum Sharpe Ratio Portfolio (MSP) 

• Inverse Volatility Strategy (IV) 

• Market-Capitalization-Weighted Portfolio (MCWP) 

 
27 Hurst et. Al., (2010), Op. cit., pp. 2. 
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The interesting paper “Risk Parity, Maximum Diversification and Minimum variance: An 

Analytic Perspective” published in 2013 by the researchers Clarke, De Silva and Thorley, 

conducts an empirical analysis of the most prominent risk-based portfolio allocation methods 

studying their performances and robustness over a sample of 1,000 common stocks in the CSRP 

database at the end of each month from 1968 to 201228. The results are reported in Figure 5 and 

Figure 6. 

 

Performance Indicators MCWP EW RP MD 

 

GMV 

Average Excess Return 5,3% 7,4% 7,4% 5,7% 5,7% 

Standard Deviation 15,5% 17,8% 16,6% 19,1% 12,4% 

Sharpe Ratio 0,34 0,42 0,45 0,30 0,46 

Compound Return 4,2% 5,9% 6,2% 3,9% 5,1% 

Market Beta 1,00 1,09 1,01 0,94 0,51 

Average Positions 1000 1000 1000 81,9 61,8 

Figure 5, Performance of Risk-Based Portfolios from 1968 to 2012. Data source: A personal elaboration from the paper 

"Risk parity, maximum diversification, and minimum variance: An analytic perspective". 

 

 
28 Clarke, R., De Silva, H., & Thorley, S. (2013). Risk parity, maximum diversification, and minimum variance: An analytic 

perspective. The Journal of Portfolio Management, 39(3), 39-53. 
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Figure 6, Risk-Based Portfolio Performance from 1986-2012. Data Source: A personal elaboration from the 

paper "Risk parity, maximum diversification, and minimum variance: An analytic perspective". 

 

1.3.1 Risk based portfolio properties 

An important step for better understanding risk parity portfolios is to define the marginal risk 

parity contribution and how each asset individually contributes to the total portfolio risk. The 

marginal risk contribution is defined as the change in total risk of the portfolio by an 

infinitesimal increase of Xk
29. It determines the effect of a single asset to the entire portfolio 

risk. 

Therefore, the MRC (Marginal Risk Contribution) of a security can be written using the 

formula (19) reported below: 

𝑀𝑅𝐶𝑘 = 𝜕
√𝑋𝑇ΩX

𝜕𝑋𝑘
= 

(ΩX)𝑘

√X𝑇ΩX
 (19) 

 

 
29 Demey, P., Maillard, S., & Roncalli, T. (2010). Risk-based indexation. Available at SSRN 1582998. 
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Where (ΩX)𝑘 represents the kth row of the vector from the product of Ω with X30. The 

individual risk contribution of the security k instead, is calculated as the product of the weight 

in asset k with its marginal risk contribution as shown by formula (20). 

𝑅𝐶𝑘 = 𝑋𝑘

(ΩX)𝑘

√X𝑇ΩX
 (20) 

Since the volatility is a homogenous function of degree 1, it satisfies Euler’s theorem31. 

Therefore, it can be written as the sum of its arguments multiplied by their first partial 

derivatives32. 

The total risk assets contribution of the whole portfolio is: 

𝑇𝑅𝐶 = ∑ 𝑅𝐶𝑘 = X𝑇
ΩX

√X𝑇ΩX
 

𝑁

𝑘=1

= √X𝑇ΩX (21) 

 

1.3.2 The Equally Risk Contribution portfolio strategy (ERC) 

The ERC portfolio allocation strategy is a portfolio where each security contributes exactly 

the same amount to the overall portfolio volatility. The ERC portfolio is derived from the 

simplest techniques of risk budgeting33: If we consider  that risk and correlation can be 

predicted easily but that it is impossible to estimate the expected return, then assigning an 

equal contribution of risk to all of the portfolio elements looks the most reasonable choice. 

Each weight Xk will be then defined according to the single risk contribution of the asset k. If 

all the securities in the portfolio show the same variance, then the portfolio would be 

constructed in the same manner as an equally-weighted one. As we will see, even the 

 
30 Demey et. Al., (2010), Op. cit., pp. 10 
31 The Euler’s theorem is a generalization of Fermat’s little theorem dealing with powers of integers modulo positive 

integers. Let I be a positive integer and let b be an integer that is relatively prime to I. Then, 𝑏∅(𝐼) ≡ (𝑚𝑜𝑑 𝐼), where ∅(𝐼) is 

the Euler’s totient function which counts the number of positive integers ≤ I which are relatively prime to I. For a better 

understanding of the Fermat’s little theorem see: Smyth, C. J. (1986). A coloring proof of a generalization of Fermat's Little 

Theorem. The American Mathematical Monthly, 93(6), 469-471. 
32 Roncalli, T., & Weisang, G. (2016). Risk parity portfolios with risk factors. Quantitative Finance, 16(3), 377-388. 
33 Scherer, B. (2007). Portfolio construction and risk budgeting. Edhec Business School, 5. 
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Minimum Variance (MV) portfolio does equalize risk contributions, but only on a marginal 

basis and the total risk contributions for each asset in the portfolio is far from equal34. 

According to what outlined so far, an ECR portfolio must satisfy the following property (22). 

𝑅𝐶𝑘 = 𝑅𝐶𝑗  (22) 

It is important to stress out the differences between a normal Naïve (equal weight) portfolio 

allocation strategy and the ERC one. Investing evenly among the different assets, therefore 

allocating the same percentage to each security in the portfolio, is far from being equal to let 

each asset equally contributing to the whole risk of the portfolio. The example reported below 

in Figure 7 illustrates the situation of 3 assets, with the first two being perfectly correlated 

and the third uncorrelated with either. The main distinction is that the ERC strategy uses the 

covariance matrix which incorporates information both about the volatility and the correlation 

framework among the securities. Intuitively, investors understand that an equal dollar 

allocation to stocks and bonds does not correspond to an equal risk allocation, since 

historically stock markets have been much more volatile than government bonds35. 

 

 

Figure 7, ERC & Naive Portfolio Allocation and Risk Contribution. Data Source: A personal elaboration on 

excel of J.P.Morgan Asset Management data. 

 
34 Demey et. Al., (2010), Op. cit., pp. 15. 
35 Forseth, E. & Tricker, Ed., (2019). Equal Risk Contribution Portfolios. Graham Capital Management, Research Note. 
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The rationale behind the ERC strategy is to find the optimal allocation, diversifying the risk 

rather than capital across all the securities. 

By imposing as a constraint that weights sum up to one and by prohibiting short-sales, the 

problem for a portfolio characterized by N-assets can be structured as follows: 

𝑋𝐸𝑅𝐶 = {𝑋 ∈ [0,1]𝑁:∑𝑋𝑘 = 1, 𝑅𝐶(𝑋𝑘) = 𝑅𝐶(𝑋𝑖) , ∀𝑘, 𝑖 (23) 

By substituting equation (20) to the above: 

𝑋𝐸𝑅𝐶 = {𝑋 ∈ [0,1]𝑁:∑𝑋𝑘 = 1, 𝑋𝑘(ΩX)𝑘 = 𝑋𝑖(ΩX)𝑖 , ∀𝑘, 𝑖 (24) 

If all the correlation coefficients are equal for each i and k in the portfolio, it is possible to 

obtain a simple analytical solution to the ERC36. 

𝑋𝑘 =
𝜎𝑘

−1

∑ 𝜎𝑖
−1𝑁

𝑖=1

 (25) 

Therefore, the weight of each security i is equal to the ratio of the inverse volatility with the 

average of all the volatilities. As a consequence, an investor building an ERC portfolio would 

allocate less to those assets which are considered riskier than others. Since the effect of the 

correlation coefficients using equation (25) is completely neutralized, this strategy is 

frequently defined as “Naïve Risk Parity” or “Inverse Volatility”. 

By removing the restriction regarding the correlation coefficients, equation (25) can be solved 

using the so called sequential quadratic programming (SQP) algorithm where the system to 

be solved is determined as follows37: 

𝑋𝐸𝑅𝐶 = min
𝑋∈RN

𝑓(𝑋) 

Such that 

 
36 Maillard, S., Roncalli, T. and Teïletche, J. (2010). The Properties of Equally Weighted Risk Contribution Portfolios. The 

Journal of Portfolio Management, vol. 36(4), pp. 60-70. 
37 Maillard et. Al., (2010), Op. cit., pp. 60-70. 
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{ 𝑋𝑇1 = 1
0 ≤ 𝑋 ≤ 1

} (26) 

Where 

𝑓(𝑋) = ∑ ∑(𝑋𝑘(Ω𝑋)𝑘 − 𝑋𝑖(Ω𝑋)𝑖)
2 (27)

𝑁

𝑖=1

𝑁

𝑘=1

 

Equation (27) calculates the square of the difference between all the combination of the assets 

risk contributions. In the case f(X) is equal to 0, the above system has a unique solution which 

solves the ERC portfolio allocation problem: 

𝑋𝑘(ΩX)𝑘 − 𝑋𝑖(ΩX)𝑖 = 0, ∀𝑘, 𝑖 (28) 

The ERC portfolio seems to have a solution which is in between the Naïve (1/N) strategy and 

the Minimum Variance (MV) allocation problem. 

 

1.3.3 The naïve portfolio strategy- Equally Weighted allocation (EW) 

The Equally Weighted Portfolio Strategy is considered one of the easiest ways to create a 

well-balanced and robust portfolio. It indeed requires to evenly invest investor financial 

resources into different assets. It is sometimes regarded as a good benchmarking tool, since 

this strategy does not involve any optimization or estimation technique and completely 

ignores the data38. 

An important analysis about the performance of the Naïve strategy was carried out by the 

academics De Miguel, Garlappi and Uppal in 2009 in their paper “Optimal Versus Naïve 

Diversification: How Inefficient is the 1/N Portfolio Strategy?”. The authors want to 

understand why, despite the development of different portfolio optimization techniques and 

frameworks, most investors still use these simple rules to allocate their financial resources 

across assets39. By comparing 14 other portfolio allocation methods with the 1/N strategy, the 

 
38 DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio 

strategy?. The review of Financial studies, 22(5), 1915-1953. 
39 Indeed, according to different studies Investors allocate their wealth across assets using the naïve 1/N rule. For a further 

explanation see: Benartzi, S., & Thaler, R. H. (2001). Naive diversification strategies in defined contribution saving 
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economists show that “none of them is better than the naïve 1/N benchmark in terms of Sharpe 

Ratio, certainty equivalent return, or turnover….”furthermore, “….the “allocation mistakes” 

caused by using the 1/N weights can turn out to be smaller than the error caused by using the 

weights from an optimizing model with inputs that have been estimated with error”40. 

The attractiveness of the naïve allocation strategy is without any doubts its easy 

implementation relying only on one simple allocation rule (29) : 

𝑋𝑘 =
1

𝑁
 

Where Xk is the weight of a single security k in the portfolio. Therefore, the vector of all the 

portfolio securities weights is: 

𝑋𝐸𝑊 = (
1

𝑁
,… . . ,

1

𝑁
)
𝑇

(29) 

Although sometimes the naïve strategy performs better than the other traditional portfolio 

optimization approaches, it still underperforms the efficient frontier of the Markowitz mean-

variance theory as we can understand by looking at Figure 8 below. 

 

 
plans. American economic review, 91(1), 79-98; Huberman, G., & Jiang, W. (2006). Offering versus choice in 401 (k) 

plans: Equity exposure and number of funds. The Journal of Finance, 61(2), 763-801. 
40 DeMiguel et. Al., (2009), Op.cit., pp. 1920. 
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Figure 8, The EW Portfolio Position on the Efficient Frontier. Data Source: A personal elaboration of 

Bloomberg Data, using Excel41. 

 

From the above graph, the EW portfolio shows an expected return of 3,8% by maintaining a 

risk exposure, represented by the standard deviation, of 2,5%. Nonetheless, with the same 

level of volatility, the Markowitz efficient frontier approach exhibits an expected return of 

7,3%. 

 

1.3.4 The Global Minimum Variance strategy (GMV) 

According to the Markowitz mean-variance portfolio theory, investors when allocating their 

wealth across assets, face an important trade-off between increasing the returns as much as 

possible and lowering the assets returns variance. However, as we have already pointed out, 

it is impossible to have a higher portfolio performance without accepting more risk. 

Nonetheless, this strategy is hardly taken by those people who are considerably risk averse. 

 
41 The data used to construct the graph is gathered from Bloomberg Database. It consists of index prices of 15 European 

Indices divided in Government Bonds, Corporate Bonds and Equities. The data consider a time-period of 5 years (2013-

2018). 
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Indeed, these types of investors would rather invest in a portfolio that exhibits the minimum 

possible variance, at the cost of giving up some return. 

Along the efficient frontier, the Global Minimum Variance Portfolio (GMV) lies on the left-

most point (Figure 9). Its main interpretation is that an investor can’t hold a portfolio of risky 

assets which has a lower volatility than the GMV portfolio. Furthermore, the GMV portfolio 

shows the highest possible expected return for that level of risk. Being a risk-based portfolio 

strategy, the GMV approach avoids the estimation of expected return, and all stock portfolios 

differ only with respect to their risk42. Therefore, the GMV portfolio requires only the 

estimation of the covariance matrix of asset returns43. 

If the short-sales Markowitz restriction is respected and the portfolio’s weights sum up to 1: 

𝑋 = 𝜀[0; 1] 

𝑋𝑇1 = 1 

The GMV quadratic optimization problem can be solved through the following algorithm 

which minimized the standard deviation (30). 

{
𝑋∗ = min 𝑓(𝑋)

𝑓(𝑋) =
1

2
𝑋𝑇Ω𝑋

} (30) 

 

 
42 Kempf, A., & Memmel, C. (2006). Estimating the global minimum variance portfolio. Schmalenbach Business 

Review, 58(4), 332-348. 
43 Chan, L. K., Karceski, J., & Lakonishok, J. (1999). On portfolio optimization: Forecasting covariances and choosing the 

risk model. The review of Financial studies, 12(5), 937-974. 
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Figure 9, The GMV Portfolio on the Efficient Frontier. Data Source: A personal elaboration of Bloomberg 

Data, using Excel44. 

 

1.3.5 The Maximum Diversification portfolio (MDP) 

The main rationale behind the Maximum Diversification Portfolio, as the name suggests, is 

to build a portfolio which incorporates the potential benefits of diversification through the 

maximization of the diversification ratio (DR) (31). 

𝐷𝑅(𝑋) =
𝑋𝑇𝑟

√𝑋𝑇Ω𝑋
 (31) 

Where r is the vector of asset volatilities: 

 
44 The data used to construct the graph is gathered from Bloomberg Database. It consists of index prices of 15 European 

Indices divided in Government Bonds, Corporate Bonds and Equities. The data consider a time-period of 5 years (2013-

2018). 
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𝑟 =

[
 
 
 
 
𝜎𝑘

𝜎𝑖

.

.
𝜎𝑁]

 
 
 
 

 

The diversification ratio can be understood as the weighted average of volatilities divided by 

the whole portfolio volatility which considers the correlation between the different securities. 

The ratio “measures the gains from not having perfectly correlated assets”45. 

The optimization problem for the MDP follows the same techniques used to evaluate the mean 

variance portfolio. In this case, it requires to minimize the denominator of equation (31) which 

indeed has embedded all the correlation coefficients of the underlying assets. Requiring the 

portfolio to invest in those assets that minimize the correlation coefficients is the same as 

maximizing the diversification of the portfolio. 

The algorithm then becomes: 

{

𝑋𝑀𝐷𝑃
∗ = max 𝑓(𝑋)

𝑓(𝑋) = ∑
𝑋𝑘𝜎𝑘

𝜎
=

𝑋𝑇𝜎

√𝑋𝑇Ω𝑋

𝑁

𝑘=1

} (32) 

Given the usual constraints: 

1𝑇 = 1 

0 ≤ 𝑋 ≤ 1 

According to the empirical results, the Maximum Diversification Portfolios: “have higher 

Sharpe ratios than the market cap-weighted indices and have had both lower volatilities and 

higher returns in the long run, which can be interpreted as capturing a bigger part of the risk 

premium”46. 

 

 
45 Choueifaty, Y., & Coignard, Y. (2008). Toward maximum diversification. The Journal of Portfolio Management, 35(1), 

40-51. 
46 Choueifaty et. Al., Op. cit., pp. 51. 
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1.3.6 The Maximum Sharpe Ratio portfolio (MSP) 

The Sharpe ratio is a measure of performance introduced by William Sharpe in 1966. The 

ratio is often adopted by practitioners to evaluate fund and portfolio managers, representing 

the excess return over the risk-free rate per unit of volatility; therefore, it is an important tool 

in asset allocation. 

The Maximum Sharpe Ratio Portfolio (MSR), also known as the tangency portfolio, finds an 

optimal capital allocation in the presence of a riskless asset47. It is a portfolio that lies on the 

efficient frontier where the line that goes from the point (0, risk-free rate) is tangent to the 

efficient frontier. The optimization problem is structured in the same way as the one for the 

MDP. 

The method requires solving the following system of equations (33): 

{

𝑋𝑀𝐷𝑃
∗ = max(𝑓(𝑋)

𝑓(𝑋) =
𝑅 ̅

𝜎
=

𝑋𝑇𝑅 ̅

√𝑋𝑇Ω𝑋

} (33) 

With the constraints 

 

1𝑇 = 1 

0 ≤ 𝑋 ≤ 1 

Where 𝑅 ̅is the vector of expected returns. 

 

1.3.7 The Inverse Volatility portfolio (IV) 

The Inverse Volatility Portfolio (IV), also called Naïve Risk Parity approach, is a portfolio 

allocation strategy which allocates to each component a weight equal to the inverse of their 

volatilities, measured by the standard deviation. This method is a very simple technique since 

it does not require any optimization process, nor solving any quadratic algorithm. The only 

 
47 Khokhlov, V. (2011). An Algorithm for Finding a Portfolio with the Highest Sharpe Ratio. Available at SSRN 1767338. 
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rule behind it is that safer assets (i.e. Government Bonds) will be given a higher weight in the 

portfolio compared with riskier securities (i.e. Equity). Weighting each asset inversely to its 

volatility will not produce very nice weights, therefore it is important to normalize them, 

rescaling all securities to sum up to one. Although this strategy can be erroneously mixed up 

with the risk parity approach, it is indeed quite different. That is because, being the portfolio 

volatility a non-additive measure, each security will present a different weight48. 

A main limitation of the IV portfolio, is that it does not consider the variance-covariance 

matrix, therefore eliminating all the diversification benefits produced by the correlation 

coefficients. Therefore, assets exhibiting a higher standard deviation are penalized no matter 

their pairwise correlations. 

The optimal portfolio weights vector is then computed in the same way as the ERC method 

in the case of homogenous correlations assumption (34). 

𝑋𝐼𝑉
∗ =

𝜎𝑘
−1

∑ 1/𝜎𝑘𝑁
  (34) 

 

1.3.8 Market Capitalization portfolio – Cap-weighted (MCWP) 

A Market Capitalization Portfolio (MCWP), also referred as Cap-weighted, is a portfolio 

which computes the weights as the average of the market capitalizations of the portfolio 

constituents over the sum of the average of the same capitalizations (35)49. 

𝑋𝑀𝐶𝑊𝑃
∗ = (

𝑀1

∑ 𝑀𝑘
𝑁
𝑘=1

, … . . ,
𝑀𝑁

∑ 𝑀𝑘
𝑁
𝑘=1

) (35)  

Where Mk is the market capitalization of the kth security. 

The benefits of allocating a portfolio according to the market-caps of its components are 

multiples. Among all, these kinds of portfolios allot the greatest weights to the largest firms, 

 
48 For a deeper analysis see: https://investresolve.com/blog/portfolio-optimization-simple-optimal-methods/. 
49 Jain, P., & Jain, S. (2019). Can Machine Learning-Based Portfolios Outperform Traditional Risk-Based Portfolios? The 

Need to Account for Covariance Misspecification. Risks, 7(3), 74. 

https://investresolve.com/blog/portfolio-optimization-simple-optimal-methods/
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which are also the most liquid ones, given the high correlation between market capitalization 

and liquidity. 

Nonetheless, the economist Hsu, in his research paper “Cap-Weighted Portfolios Are Sub-

optimal Portfolios” published in 2004, shows that Cap-weighted portfolios are empirically 

sub-optimal because: “If stock prices are inefficient in the sense that they do not fully reflect 

firm fundamentals, then underpriced stocks will have smaller capitalizations than their fair 

equity value and similarly over-priced stocks will have larger capitalizations than their fair 

equity value. A cap-weighted portfolio would on average shift additional weights into the 

over-priced stocks and shift weights away from the underpriced stocks. As long as these 

pricing errors are not persistent, market prices will collapse toward fair value over time and 

a cap-weighted portfolio would tend to experience greater price decline than other non-price-

weighted portfolios due to its heavier exposure to stocks with positive pricing error”50. 

 

 

1.4 Portfolios Performance Evaluation Techniques 

In this section I am going to briefly analyze some of the most used portfolio’s performance 

evaluation tools which are a good indicator of the robustness of the portfolios. These measures 

are divided according to their nature. For what concerns a portfolio’s return the most widely 

accepted techniques are: the Sharpe, Sortino and Treynor ratios. On the other hand, for a deeper 

risk analysis the Maximum Drawdown, Expected Shortfall and Value at Risk are taken under 

consideration. 

 

1.4.1 Sharpe ratio 

The Sharpe ratio or “Reward to Variability ratio” is one of the most known methods for 

evaluating the portfolio performance. It was developed in 1966 by William Sharpe to carry 

 
50 Hsu, J. C. (2004). Cap-weighted portfolios are sub-optimal portfolios. Journal of investment Management, 4(3). 
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out an analysis regarding the performance of mutual fund managers51. This ratio helps 

investors understand how well their investments are compensated for the risk they have taken. 

The excess return is defined as: 

𝑅𝐸𝑅 = 𝑅𝑝 − 𝑟𝑓 (36) 

Where Rp is the return of the portfolio and rf is the risk-free rate. The geometric average is 

instead used when investors re-invest in all periods (37)52. 

𝑅𝐺.𝐸𝑅 = (∏(1 + 𝑅𝐸𝑅,𝑡)
1
𝑇) − 1

𝑇

𝑡=1

 (37) 

By using the measure 𝜎𝑝 defined in section 1.1, the Sharpe Ratio becomes: 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 (𝑆𝑅) =
𝑅𝐺.𝐸𝑅

𝜎𝑝
 (38) 

Therefore, the Reward to Variability Ratio measures the extra return an investor earns per unit 

of increase in volatility. A higher portfolio ratio means a better risk-adjusted performance; 

hence it is a fundamental tool to critically analyze your investment decisions. However, the 

ratio is based on some important assumptions which may limit its reliability as a good risk-

performance indicator. For instance, standard deviation (volatility) is used as a proxy for risk 

even if returns in the financial markets have proven to be skewed away from the average 

because of many sudden and large price moves -either up or down53. 

 

1.4.2 Sortino ratio  

Another good performance metric when investigating the portfolio robustness is the Sortino 

ratio, which was developed by the researchers Sortino and Price in 199454. The indicator, 

 
51 Goetzmann, W., Ingersoll, J., Spiegel, M. I., & Welch, I. (2002). Sharpening sharpe ratios. National bureau of economic 

research. 
52 Sharpe, W. F. (1994). The sharpe ratio. Journal of portfolio management, 21(1), 49-58. 
53 For a deeper analysis see: https://www.investopedia.com/terms/s/sharperatio.asp. 
54 Sortino, F., & Price, L.N. (1994). Performance Measurement in a Downside Risk Framework. Journal of Investing, 3(3), 

50-58. 

https://www.investopedia.com/terms/s/sharperatio.asp
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unlike the Sharpe ratio, considers only the downside deviation from the mean as a measure of 

risk, therefore correcting for the limitations presented by the standard deviation which instead, 

treats in the same way both negative and positive dispersions from the mean.  

Within the computation of the Sortino ratio, the applied volatility expressing the portfolio risk 

in the denominator of the Sharpe ratio, is substituted by the downside deviation ⅅ (39)55. 

ⅅ = √
1

𝑇
∑min(0, 𝑅𝑘,𝑡 −𝑅𝑘,𝑡

̅̅ ̅̅ ̅

𝑇

𝑡=1

) (39) 

Therefore, the Sortino ratio is computed as: 

𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝐺.𝐸𝑅

ⅅ
 (40) 

 

1.4.3 Treynor ratio 

Developed by Jack Treynor in 1973, this ratio makes use of the CAPM theory for the 

estimation of the risk factor. Indeed, the standard deviation of the Sharpe ratio is replaced by 

the Beta coefficient of the Security Market Line (SML), which measures the change in the 

portfolio returns for unexpected market return movements. Although it presents similarities 

with the Sharpe ratio, its accuracy is influenced by the choice of the applicable benchmark to 

measure Beta. Furthermore, being a backward-looking performance measure, it tells you 

nothing about the future investment’s performance56. 

By using the Beta coefficient expressed in formula (18) as an indicator of risk, the Treynor 

Ratio becomes: 

𝑇𝑟𝑒𝑦𝑛𝑜𝑟 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝐺.𝐸𝑅

𝛽
 (41) 

 
55 Füss, R., Kaiser, D. G., & Schindler, F. (2007). Dynamic linkages between hedge funds and traditional financial assets: 

Evidence from emerging markets. 
56 For a deeper analysis see: https://www.investopedia.com/terms/t/treynorratio.asp. 

https://www.investopedia.com/terms/t/treynorratio.asp
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1.4.4 Value at Risk and the expected shortfall 

The Value at Risk (VaR) is a widely used risk measure for losses in a portfolio of assets. It 

answers to the question “How much can I expect to lose tomorrow or over the next time 

period, and with which probability?”. Therefore, Value at Risk is defined as the maximum 

potential loss that a portfolio/position can suffer given a specified time horizon and a specified 

confidence level57. 

There are different methods used to compute this risk measure, which mainly divide into: 

Parametric Approach, Montecarlo Simulation and Historical Simulation. The most common 

approach requires the application of a closed form formula (42) and assumes the distribution 

of risk is a normal one58. 

𝑉𝑎𝑅𝑖 = 𝑀𝑖 ∙ 𝜎𝑖 ∙ √𝑡 ∙ 𝛼 ∙ ∆ (42) 

where: 

▪ Mi : the market value of the position 

▪  (sigma): the annual volatility of the underlying risk factor 

▪  √𝑡: the time horizon expressed in year fraction 

▪  : the value of the normal cumulative function, given a probability level equal to the VaR 

confidence level 

▪   ∆ (delta): the sensitivity of Market Value to changes in value of the underlying risk factor 

The VaR of a portfolio constituted by two securities k and i, VaRP, is instead computed as: 

𝑉𝑎𝑅𝑝 = √𝑉𝑎𝑅𝑖
2 + 𝑉𝑎𝑅𝑘

2 + 2𝜌𝑖,𝑘𝑉𝑎𝑅𝑖𝑉𝑎𝑅𝑘 (43) 

 

 
57 Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of risk, 2, 21-42. 
58 Sironi, A., & Resti, A. (2007). Risk management and shareholders' value in banking: from risk measurement models to 

capital allocation policie. John Wiley & Sons,(417). 
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In matrix terms: 

𝑉𝑎𝑅𝑝 = √ 𝑉 ∗ 𝐶 ∗ 𝑉𝑇   (44) 

Where: 

▪ V: row vector of VaRs of each individual security 

▪ C: correlation matrix 

▪  𝑉𝑇: transpose of matrix V 

The value 100P%VaRp represents the threshold loss value, such that the probability that the 

loss on the portfolio over the given time horizon exceeds this value, is P. 

However, one of the main shortcomings of the Value at Risk formula is that it only gives the 

minimum loss for a given probability, but losses can be much larger than the tail; VaR doesn’t 

tell you how much money to put in the portfolio to offset the loss. The Expected Shortfall 

(ES) or Conditional Value at Risk on the other hand, is a risk measure which explains what 

happens beyond the point of failure. It answers the question: “If things get bad, what is the 

total expected loss?”, therefore explaining what the average loss in the tail below a would be 

given confidence level. 

The Expected Shortfall is defined as the expected value of all losses excess of VaR and it is 

defined according to equation (45)59. 

𝐸𝑆 =  𝔼[−(∆M − 𝔼(∆M)]│(∆M − 𝔼(∆M)) > 𝑉𝑎𝑅 (45) 

Value at Risk (VaR) of a stock portfolio using Python: a practical application. 

In order to provide a deeper analysis about the VaR application, I have conducted a simple 

practical exercise by using the Python programming language60. All the codes can be found 

at the end of the thesis, in the section “Python Code”. 

 
59 Sironi, A., & Resti, A., Op. cit., pp. 268-272. 
60 The whole exercise is conducted using the Anaconda Jupiter Notebook, Python version 3.7. 
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In the following example, I will calculate the Value at Risk of a portfolio composed by the 

two American stocks in the technology industry: Facebook [‘FB’] and Apple [‘AAPL’]61. The 

chosen time horizon goes from the 01/01/2018 until the 31/12/2019. 

The first step for computing the Var of our portfolio is to extract the periodic returns of the 

stocks in the portfolio for the given time horizon and computing the variance-covariance 

matrix (Figure 10 and Figure 11). All the stocks closing prices have been downloaded using 

the Yahoo-Finance data through the following Python function.  

Snippet 1- ‘AAPL & FB’ Stocks portfolio Returns. 

 

Symbols AAPL FB 

Date 
  

2019-12-24 0,000951 -0,005141 

2019-12-26 0,019840 0,013017 

2019-12-27 -0,000379 0,001492 

2019-12-30 0,005935 -0,017732 

2019-12-31 0,007307 0,004109 

      Figure 10, Stocks Periodic Returns tail function, Data Source: Yahoo-Finance on Python. 

 
61 The methodology for the computation of VaR  follows the one reported in this sample exercise: 

https://www.interviewqs.com/blog/value_at_risk. 

#-----------------------------------------------------------------------------------------------------------

---------------------- 

tickers = ['AAPL','FB'] 

start_date='2018-01-01' 

end_date='2019-12-31' 

data = pdr.get_data_yahoo (tickers, start=start_date, end=end_date)['Close'] 

returns = data.pct_change() 

returns.tail() 

 

https://www.interviewqs.com/blog/value_at_risk
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Symbols AAPL FB 

AAPL 0,000301 0,000166 

FB 0,000166 0,000442 

         Figure 11, Variance-Covariance Matrix. Data Source: Yahoo-Finance on Python. 

 

The next step requires the computation of the portfolio mean and standard deviation. I have 

arbitrarily chosen to equally distribute the investment weights (therefore 50% on each stock). 

I have also assumed that the initial investment in the portfolio is 1M USD. Then, we have to 

calculate the inverse of the normal cumulative distribution (represented by the “Inverse” 

function in the Python code), a specified confidence interval, standard deviation and mean. 

The total VaR will be given by subtracting the initial investment from the results obtained 

with the Inverse function (Snippet 2). 

From the below function “var_1d1” we can understand what is the maximum loss that our 

portfolio can bear over a one-day period. If we solve it, we get a VaR of 37300,79 USD which 

means that with 99% confidence our portfolio of 1M USD will not experience losses greater 

than that value a day-time horizon. 
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#-----------------------------------------------------------------------------------------------------------

---------------------- 

# Calculate mean returns for each stock 

avg_rets = returns.mean() 

  

# Calculate mean returns for portfolio overall,  

# using dot product to normalize individual means against investment weights 

port_mean = avg_rets.dot(weights) 

  

# Calculate portfolio standard deviation 

port_stdev = np.sqrt(weights.T.dot(cov_matrix).dot(weights)) 

  

# Calculate mean of investment 

mean_investment = (1+port_mean) * initial_investment 

              

# Calculate standard deviation of investment 

stdev_investment = initial_investment * port_stdev 

#--------------------------------------------------------------------------------------------------------- 

# Select our confidence interval (I'll choose 99% here) 

conf_level1 = 0.01 

#--------------------------------------------------------------------------------------------------------- 

# Using SciPy ppf method to generate values for the inverse cumulative distribution 

function to a normal distribution 
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The last function of the Snippet 2 allows to compute the VaR of the portfolio for the first 15 

days. This can be easily executed by the input “var_array.append(np.round(var_1d1 * 

np.sqrt(x),2))”, which multiplies the 1-day VaR by the square root of the time period. Figure 

13 reported below, plots the maximum portfolio loss which increases with the number of days. 

 

 

 

# Plugging in the mean, standard deviation of our portfolio as calculated above 

from scipy.stats import norm 

Inverse = norm.ppf(conf_level1, mean_investment, stdev_investment) 

#--------------------------------------------------------------------------------------------------------- 

#Finally, we can calculate the VaR at our confidence interval 

var_1d1 = initial_investment - Inverse 

var_1d1 

#--------------------------------------------------------------------------------------------------------- 

# Calculate n Day VaR 

var_array = [] 

num_days = int(15) 

for x in range(1, num_days+1):     

    var_array.append(np.round(var_1d1 * np.sqrt(x),2)) 

    print(str(x) + " day VaR @ 95% confidence: " + str(np.round(var_1d1 * np.sqrt(x),2)) 

Snippet 2, Portfolio Value at Risk (VaR) computation. Data Source: Yahoo-Finance on Python. 
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N Day VaR Results: 

1-day VaR @ 99% confidence: 37300,79 

2-day VaR @ 99% confidence: 52751,28 

3-day VaR @ 99% confidence: 64606,86 

4-day VaR @ 99% confidence: 74601,58 

5-day VaR @ 99% confidence: 83407,1 

6-day VaR @ 99% confidence: 91367,9 

7-day VaR @ 99% confidence: 98688,61 

8-day VaR @ 99% confidence: 105502,57 

9-day VaR @ 99% confidence: 111902,37 

10-day VaR @ 99% confidence: 117955,45 

11-day VaR @ 99% confidence: 123712,72 

12-day VaR @ 99% confidence: 129213,73 

13-day VaR @ 99% confidence: 134489,91 

14-day VaR @ 99% confidence: 139566,78 

15- day VaR @ 99% confidence: 144465,34 

Figure 12, N Day VaR Results. Data Source: Yahoo-Finance on Python. 

 

In order to check whether the VaR is a reliable measure to assess the risk trend of our portfolio, 

a further check requires to verify how well the historical returns of the two stocks in the 

portfolio have been distributed compared with the normal distribution62. From Figure 14 and 

Figure 15, we can state that the returns of our chosen stocks have been normally distributed. 

 
62 One of the main assumptions of the parametical VaR application is that returns in the portfolio are normally distributed. 
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Figure 13, Value at Risk for the first 15 days. Data Source: Yahoo-Finance on Python. 

 

 

Figure 14, Apple Returns vs normal distribution. Data Source: A personal elaboration on Python. 
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Figure 15, Facebook Returns vs normal distribution. Data Source: A personal elaboration on Python. 

 

1.4.5 The Maximum Drawdown 

The Maximum Drawdown (MDD) is a portfolio risk measure that considers the maximum 

negative trend of the stocks returns over a specified period. Indeed, it is the value observed 

from a peak to a trough point in a portfolio graph as shown by Figure 16. The Maximum 

Drawdown tells investors how big the loss in the portfolio is during the worst possible 

scenario63. Nonetheless, this risk measure does not provide any information regarding the 

frequency of the losses and how much time do investors need to recover from them. It only 

takes into account the largest negative value, but what about the smaller but yet considerable 

portfolio’s losses between the peak and trough period? 

𝑀𝐷𝐷𝑡 =
𝑃 − max(𝑃𝑟)0<𝑟<𝑡

max(𝑃𝑟)0<𝑟<𝑡
 (46) 

 

 
63 Magdon-Ismail, M., & Atiya, A. F. (2004). Maximum drawdown. Risk Magazine, 17(10), 99-102. 
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Figure 16, The Maximum Drawdown of a Portfolio. Data Source: A personal elaboration on Python. 

 

 

1.5  Efficient Frontier Optimization in Python: Maximum Sharpe Ratio vs Minimum 

Volatility 

This section of the thesis offers a practical application for the efficient frontier optimization 

problem comparing two different kinds of portfolios in terms of risk and performance: The 

Maximus Sharpe Ratio portfolio (MSP) and the Minimum Variance portfolio (MVP)64. All the 

data is downloaded from the Quandl library of the Python computer programming language65. 

The portfolio is constituted by 4 different stocks I have chosen from the technology sector: Apple 

(‘AAPL’), Amazon (‘AMZN’), Google (‘GOOGL’) and Facebook (‘FB’). The selected time 

horizon for this analysis is purely arbitral and goes from: 01-01-2016 / 31/12/2017. 

Figure 17 and Figure 18 show the trend of the price of each stock during the chosen time period. 

The daily stock returns graph tries to embed the volatility of daily returns. From Figure 18 it 

 
64 The exercise is based on the following practical application: https://towardsdatascience.com/efficient-frontier-portfolio-

optimisation-in-python-e7844051e7f. 
65 The Quandl library is a free financial platform that provides all the updated closing prices for each single stock. 

https://towardsdatascience.com/efficient-frontier-portfolio-optimisation-in-python-e7844051e7f
https://towardsdatascience.com/efficient-frontier-portfolio-optimisation-in-python-e7844051e7f
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looks like Google is the more stable stock, exhibiting a constant trend, while Amazon appears 

the riskiest one due to several positive and negative spikes. 

 

 

Figure 17, Annual Stock Price Trend. Data Source: Quandl on Python. 

 

 

Figure 18, Daily Stock Returns Trend. Data Source: Quandl on Python. 

 

The next important step is to allocate our initial investment over the 4 stocks in our portfolio. If 

we assume our investment is equal to 1M USD, we have to decide how much of that investment 

to allocate to each stock, thus selecting the portfolio’s constituents’ weights. Therefore, I am 

going to define a function that randomly generates the portfolio’s weights.  
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The portfolio_annualized_performance function in the Snippet 3, computes the annualized 

covariance matrix, the returns and standard deviation of our randomly generated portfolios. The 

function random_portfolios instead, creates the number of portfolios we want to create, assigning 

random weights to each security in the portfolio. The analysis is carried out considering 25000 

possible portfolios and a risk-free rate of 1,78%66.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
66 The risk-free rate chosen is the one of 01/01/2018 published in the U.S. Department of The Treasury. 

#----------------------------------------------------------------------------------------------------------

#Defining the returns and standard deviation of our portfolio 

def portfolio_annualised_performance(weights, mean_returns, cov_matrix): 

    returns = np.sum(mean_returns*weights ) *252 

    std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) * np.sqrt(252) 

    return std, returns 

#-----------------------------------------------------------------------------------------------------------

#Randomly generating portfolios that assigns weights to each stock   

Def random_portfolios (num_portfolios, mean_returns, cov_matrix, 

risk_free_rate,var_1d1): 

    results = np.zeros((3,num_portfolios)) 

    weights_record = [] 

    for i in range(num_portfolios): 

        weights = np.random.random(4) 

        weights /= np.sum(weights) 

        weights_record.append(weights) 

        portfolio_std_dev, portfolio_return = portfolio_annualised_performance(weights, 

mean_returns, cov_matrix) 

        results[0,i] = portfolio_std_dev 

        results[1,i] = portfolio_return 

        results[2,i] = (portfolio_return - risk_free_rate) / portfolio_std_dev 

    return results, weights_record 
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For the Value at Risk measure I have used the same function already applied in section 1.4.4 

(Snippet 2). The confidence level is 99% for the calculation of the VaR which assumes returns 

are normally distributed (function: norm.ppf(con_level1, mean_investment1, std_investment). 

The goal of the exercise is then to create a function that randomly generates portfolios and gets 

the outcomes (mean return, volatility, Sharpe Ratio and Value at Risk). The portfolios I am 

interested into are the Global Minimum Variance portfolio (GMV) and the Maximum Sharpe 

Ratio portfolio (MSR). The function display_simulated_ef_with_random(mean_returns, 

cov_matrix, num_portfolios, risk_free_rate,var_1d1) in Snippet 4 compares the GMV and the 

MSR portfolios composed by the 4 selected stocks, in terms of risk and performance metrics as 

well as weight allocation. Moreover, it plots them on the efficient frontier line to investigate the 

differences with the Markowitz mean-variance approach. The GMV portfolio is marked with a 

green star on the efficient frontier, while the MSR portfolio with a purple star (Figure 19). The 

blue colored dots form a shape of an arch line which represents the efficient frontier. Therefore, 

that shape is made of the 25000 randomly generated portfolios, with each dot representing a 

single portfolio. 

  

#-----------------------------------------------------------------------------------------------------------

----------------------#Assigning data for the portfolios 

returns = table.pct_change() 

mean_returns = returns.mean() 

cov_matrix = returns.cov() 

num_portfolios = 25000 

risk_free_rate = 0.0178 

initial_investment = 1000000 

conf_level1 = 0.01 

weights = np.random.random(4) 

std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) * np.sqrt(252) 

#-----------------------------------------------------------------------------------------------------------

----------------------#Defining outputs (Mean-Standard Deviation- Value at Risk) 

mean_investment1=initial_investment*(1+mean_returns) 

std_investment=initial_investment*std 

Inverse = norm.ppf(conf_level1, mean_investment1, std_investment) 

var_1d1=initial_investment - Inverse 

Snippet 3, Functions to generate random portfolios, assign weights and ask for the desired outputs. Data 

Source: A personal elaboration on Python. 
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#----------------------------------------------------------------------------------------------------------- 

#Defining the Maximum Sharpe Ratio Portoflio   

    max_sharpe_idx = np.argmax(results[2]) 

    sdp, rp = results[0,max_sharpe_idx], results[1,max_sharpe_idx] 

    mean_investment=initial_investment*(1+rp) 

    sdp_investment=initial_investment*sdp 

    Inverse_S = norm.ppf(conf_level1, mean_investment, sdp_investment) 

    var_1d1_S = initial_investment - Inverse_S 

    max_sharpe_allocation = 

pd.DataFrame(weights[max_sharpe_idx],index=table.columns,columns=['allocation']) 

    max_sharpe_allocation.allocation = [round(i*100,2)for i in 

max_sharpe_allocation.allocation] 

    max_sharpe_allocation = max_sharpe_allocation.T 

#----------------------------------------------------------------------------------------------------------- 

  #Defining the Minimum Volatility portfolio   

    min_vol_idx = np.argmin(results[0]) 

    sdp_min, rp_min = results[0,min_vol_idx], results[1,min_vol_idx] 

    mean_min_investment=initial_investment*(1+rp_min) 

    sdp_min_investment=initial_investment*sdp_min 

    Inverse_MV = norm.ppf(conf_level1, mean_min_investment, sdp_min_investment) 

    var_1d1_MV = initial_investment - Inverse_MV 

    min_vol_allocation = 

pd.DataFrame(weights[min_vol_idx],index=table.columns,columns=['allocation']) 

    min_vol_allocation.allocation = [round(i*100,2)for i in min_vol_allocation.allocation] 

    min_vol_allocation = min_vol_allocation.T 
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#----------------------------------------------------------------------------------------------------------- 

#Getting the desired outcomes   

    print("-"*80)  

    print("Maximum Sharpe Ratio Portfolio Allocation\n")  

    print("Annualised Return:", round(rp,2))  

    print("Annualised Volatility:", round(sdp,2)) 

    print ("Value at Risk:",round(var_1d1_S,2)) 

    print("\n") 

    print(max_sharpe_allocation)  

    print("-"*80)  

    print("Minimum Volatility Portfolio Allocation\n")  

    print("Annualised Return:", round(rp_min,2))  

    print("Annualised Volatility:", round(sdp_min,2)) 

    print ("Value at Risk:",round(var_1d1_MV,2)) 

    print(min_vol_allocation)  

#----------------------------------------------------------------------------------------------------------- 

#Plotting the results 

    plt.scatter(results[0,:],results[1,:],c=results[2,:],cmap='YlGnBu', marker='o', s=10, 

alpha=0.3) 

    plt.scatter(sdp,rp,marker='*',color='green',s=500, label='Maximum Sharpe ratio') 

    plt.scatter(sdp_min,rp_min,marker='*',color='purple',s=500, label='Minimum 

volatility') 

    plt.title('Simulated Portfolio Optimization based on Efficient Frontier',color='blue') 

    plt.xlabel('annualised volatility') 

    plt.ylabel('annualised returns') 

    plt.legend(labelspacing=0.8)  

Snippet 4, Maximum Sharpe Ratio Portfolio and Minimum Volatility Portfolio on the Efficient frontier. Data 

Source: A personal elaboration on Python. 
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Figure 19, Simulated Portfolio Optimization based on Efficient Frontier. Data Source: A personal elaboration on 

Python. 

 

If we look at the results reported below (Figure 20), we see that more than half (58,52%) of our 

initial investment is allocated to the Google stock for the Minimum Variance Portfolio. This 

makes sense; indeed, Google was the less risky stock among the 4. On the other hand, if we are 

more risk seeking, we would prefer the Maximum Sharpe Ratio portfolio, which allocates most 

of the total investment among the riskier securities and almost 0 (0,01%) to Google. For this 

reason, the latter portfolio exhibits a higher annualized return (0,3) and a higher volatility (0,18). 

Given that the 1-day Value at Risk on a 1M USD investment is higher for the MV portfolio, I 

would rather choose the Maximum Sharpe Ratio portfolio. A more detailed analysis regarding 

the maximum potential loss (VaR) in the portfolio over the first 15 days, is provided in Figures 

21-24. 
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---------------------------------------------------------------

------------ 

Maximum Sharpe Ratio Portfolio Allocation 

 

Annualised Return: 0,3 

Annualised Volatility: 0,18 

1-day Value at Risk: 125013,25 

 

 

AAPL   AMZN   FB     GOOGL 

Allocation:  46,62  27,99  25,38   0,01 

---------------------------------------------------------------

------------ 

Minimum Volatility Portfolio Allocation 

 

Annualised Return: 0,22 

Annualised Volatility: 0,16 

1-day Value at Risk: 157282,7 

 

 

AAPL   AMZN   FB   GOOGL 

Allocation:  33,66  1,23  6,59  58,52 

 

 

Figure 21, Value at Risk for the first 15 days MSR Portfolio. Data Source: A personal elaboration on Python. 

 

Figure 20, MSR Portfolio and GMV Portfolio % outputs. Data Source: A personal elaboration on Python. 
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N Day VaR Results MSR: 

1-day VaR @ 99% confidence: 125898,87 

2-day VaR @ 99% confidence: 178047,89 

3- day VaR @ 99% confidence: 218063,23 

4 -day VaR @ 99% confidence: 251797,73 

5- day VaR @ 99% confidence: 281518,42 

6 -day VaR @ 99% confidence: 308387,98 

7 -day VaR @ 99% confidence: 333097,09 

8 -day VaR @ 99% confidence: 356095,77 

                                          9- day VaR @ 99% confidence: 377696,6 

10 -day VaR @ 99% confidence: 398127,17 

11-day VaR @ 99% confidence: 417559,3 

12- day VaR @ 99% confidence: 436126,47 

13-day VaR @ 99% confidence: 453934,82 

14- day VaR @ 99% confidence: 471070,43 

15- day VaR @ 99% confidence: 487604,22 

 

 

Figure 23, Value at Risk for the first 15 days MV Portfolio. Data Source: A personal elaboration on Python. 

Figure 22, MSR Portfolio N-Day VaR results. Data Source: A personal elaboration on Python. 
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N Day VaR Results GMV: 

1- day VaR @ 99% confidence: 158518,61 

2 -day VaR @ 99% confidence: 224179,17 

3 -day VaR @ 99% confidence: 274562,29 

4 -day VaR @ 99% confidence: 317037,22 

5 -day VaR @ 99% confidence: 354458,39 

6 -day VaR @ 99% confidence: 388289,71 

7 -day VaR @ 99% confidence: 419400,82 

8 -day VaR @ 99% confidence: 448358,33 

9 -day VaR @ 99% confidence: 475555,83 

10 -day VaR @ 99% confidence: 501279,86 

11 -day VaR @ 99% confidence: 525746,75 

12 -day VaR @ 99% confidence: 549124,57 

13 -day VaR @ 99% confidence: 571546,97 

14 -day VaR @ 99% confidence: 593122,33 

15 -day VaR @ 99% confidence: 613939,93 

 

  

Figure 24, GMV Portfolio N-Day VaR results. Data Source: A personal elaboration on Python. 
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In the next analysis, I would like to show where the single four stocks lie on the efficient frontier 

curve. We can then compare their return and volatility with the ones of the Maximum Sharpe 

Ratio and Global Minimum Variance portfolios (Figure 25). In this way, it is possible to observe 

the effect of diversification, and how this leads to more robust portfolios. Snippet 5 provides the 

new Python code. 

 

 

 

 

 

 

 

 

#-----------------------------------------------------------------------------------------------------------

---------------------- 

#Defining the desired function 

def display_ef_with_selected(mean_returns, cov_matrix, risk_free_rate): 

    max_sharpe = max_sharpe_ratio(mean_returns, cov_matrix, risk_free_rate) 

    sdp, rp = portfolio_annualised_performance(max_sharpe['x'], mean_returns, cov_matrix) 

#-----------------------------------------------------------------------------------------------------------

---------------------- 

#Defining the Maximum Sharpe Ratio Portoflio   

    max_sharpe_allocation = 

pd.DataFrame(max_sharpe.x,index=table.columns,columns=['allocation']) 

    max_sharpe_allocation.allocation = [round(i*100,2)for i in max_sharpe_allocation.allocation] 

    max_sharpe_allocation = max_sharpe_allocation.T 

#----------------------------------------------------------------------------------------------------------- 

  #Defining the Minimum Volatility portfolio   

  min_vol = min_variance(mean_returns, cov_matrix) 

    sdp_min, rp_min = portfolio_annualised_performance(min_vol['x'], mean_returns, 

cov_matrix) 

    min_vol_allocation = 

pd.DataFrame(min_vol.x,index=table.columns,columns=['allocation']) 

    min_vol_allocation.allocation = [round(i*100,2)for i in min_vol_allocation.allocation] 

    min_vol_allocation = min_vol_allocation.T 

    an_vol = np.std(returns) * np.sqrt(252) 

    an_rt = mean_returns * 252 
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#-------------------------------------------------------------------------------------------------------------

-------------------- 

#Getting the desired outcomes       

    print("-"*80)  

    print("Maximum Sharpe Ratio Portfolio Allocation\n")  

    print("Annualised Return:", round(rp,2))  

    print("Annualised Volatility:", round(sdp,2) )     

    print("\n")  

    print(max_sharpe_allocation)  

    print("-"*80)  

    print("Minimum Volatility Portfolio Allocation\n")  

    print("Annualised Return:", round(rp_min,2))  

    print("Annualised Volatility:", round(sdp_min,2))  

    print("\n")  

    print(min_vol_allocation) 

    print("-"*80)  

    print("Individual Stock Returns and Volatility\n")  

    for i, txt in enumerate(table.columns): 

        print(txt,":","annuaised return",round(an_rt[i],2),", annualised 

volatility:",round(an_vol[i],2))  

        print("-"*80)  

     

Snippet 5, Portfolio diversification effect. MSR & GMV portfolios on the efficient frontier. Data Source: A 

personal elaboration on Python. 
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Maximum Sharpe Ratio Portfolio Allocation 

 

Annualised Return: 0,3 

Annualised Volatility: 0,18 

 

 

             AAPL   AMZN   FB     GOOGL 

allocation  44,67  29,05  26,28    0,0 

---------------------------------------------------------------------

------ 

Minimum Volatility Portfolio Allocation 

 

Annualised Return: 0,22 

Annualised Volatility: 0,16 

 

 

             AAPL   AMZN   FB   GOOGL 

allocation  34,02  0,73  6,98   58,26 

---------------------------------------------------------------------

----------- 

Individual Stock Returns and Volatility 

 

AAPL : annuaised return 0,28 , annualised volatility: 0,21 

---------------------------------------------------------------------

----------- 

AMZN : annuaised return 0,34 , annualised volatility: 0,25 

---------------------------------------------------------------------

----------- 

FB : annuaised return 0,3 , annualised volatility: 0,23 

---------------------------------------------------------------------

----------- 

GOOGL : annuaised return 0,18 , annualised volatility: 0,18 

---------------------------------------------------------------------

------ 

 

From Figure 25 we observe that the safer stock in terms of volatility is Google, with a value of 

0,18. For the same reason, it also exhibits the lowest return. However, with the Global Minimum 

Variance portfolio we can achieve a lower level of risk (0,16) and a higher annualized return 

(0,22). Furthermore, if we are more risk-seeking the Maximum Sharpe Ratio portfolio gives us 

a much higher annualized return (0,3) with the same annualized volatility of the safer stock 

(0,18). By looking at Figure 26 in the next page, we observe that none of the 100% position in 

Figure 25, MSR Portfolio and GMV Portfolio % outputs-The power of diversification. Data Source: A personal elaboration 

on Python. 



Machine Learning Portfolio Optimization: Hierarchical Risk Parity and Modern Portfolio 

Theory 
 

62 
 

the single stocks is optimal when compared with our optimized portfolios (MSR and GMV). 

Diversification is one of the main reasons behind this important result. Indeed, by spreading our 

initial investment more evenly across the securities we can achieve a lower level of risk and a 

higher return. 

 

 

Figure 26, Portfolio Optimization with Individual Stocks. Data Source: A personal elaboration on Python. 
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2. THE HIERARCHICAL RISK PARITY PORTFOLIO OPTIMIZATION 

 

 

2.1 The Hierarchical Structure  

The hierarchical structure of complex financial systems was first investigated by the Nobel prize 

winner Herbert Simon in 1991. In the famous paper “The Architecture of complexity” the author 

states that “By a complex system I mean one made up of a large number of parts that interact in 

a non-simple way. In such systems the whole is more than the sum of the parts, not in an ultimate, 

metaphysical sense but in the important pragmatic sense that, given the properties of the parts 

and the laws of their interaction, it is not a trivial matter to infer the properties of the whole 

[…]”67. He believes that complex financial systems exhibit a hierarchical organization whereby 

the whole system is decomposed into many different distinct subgroups which can be analyzed 

more easily: “By a hierarchic system, or hierarchy, I mean a system that is composed of 

interrelated subsystems, each of the latter being, in turn, hierarchic in structure until we reach 

some lowest level of elementary subsystem”68. Therefore, a hierarchical structure can help 

solving complex problems breaking them down into smaller and simpler subgroups whose 

solutions are then grouped together afterwards. 

Nonetheless, inferring hierarchical relationships between the securities during the portfolio 

allocation process present many challenges. Indeed, the correlation matrices used to study the 

portfolio robustness, do not show a hierarchical structure. This issue is even more evident in the 

case of large covariance matrices. We have seen in the previous chapter, that, given the difficulty 

in estimating the expected returns, many scholars have developed theories and models which 

required only the estimation of the covariance matrix of asset returns. Among these techniques 

we find the most relevant risk-based portfolio allocation strategies such as: The Minimum 

Variance (MV), The Maximum Diversification (MD), The Maximum Sharpe Ratio (SR) and 

The Equal Risk Contribution (ERC). In order to predict a covariance matrix of size N, at least 

 
67 Simon, H. A. (1991). The architecture of complexity. In Facets of systems science (pp. 457-476). Springer, Boston, MA. 
68 Simon, H. A. (1991). Organizations and markets. Journal of economic perspectives, 5(2), 25-44. 
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𝑁(𝑁+1)

2
  independent and identically distributed (iid) returns observations are needed69. However, 

there is ample demonstration that asset returns exhibit heteroskedasticity with volatility 

clustering and invariant correlation structures over such long periods, resulting into serious 

estimation errors that may cancel out the advantages of portfolio diversification70. 

In order to overcome this problem, Marcos Lopez de Prado was the first researcher proposing a 

hierarchical model for the portfolio construction. The Spanish author uses graph theory and 

machine learning to construct a diversified portfolio with a Hierarchical Risk Parity Approach 

(HRP) which substantially differs from the traditional risk-based portfolio optimization 

models71. The HRP methodology avoids the inversion of the covariance matrix; the relationship 

of the securities in the portfolio is organized as a hierarchy where clusters of similar assets are 

created using the correlation coefficients. Substituting the traditional covariance structure with a 

hierarchical one, allows achieving three main goals: “First, it fully utilizes the information 

contained in the covariance matrix. Second, it recovers the stability of the weights. And third, in 

contrast to most traditional risk-based asset allocation methods, it does not require the inversion 

of the covariance matrix”72. 

 

 

2.2 The Problem of Quadratic Programming: The Critical Line Algorithm (CLA) 

The first chapter of this thesis has already pointed out the importance of Harry Markowitz in the 

development of the portfolio theory and his overall contribution to economics. The mean-

variance portfolio optimization approach is considered as the birth of portfolio allocation in 

finance. In addition to publishing his masterpiece “Portfolio Selection” in 1952, Markowitz, 

while working for the RAND Corporation, developed an algorithm for solving quadratic 

 
69 For instance, if we want to build a covariance matrix of asset returns for a portfolio constituted by 100 assets, we would 

ideally need 5,050 or at least 20 years of daily returns time series. 
70 Bai, Z. D., & Yin, Y. Q. (2008). Limit of the smallest eigenvalue of a large dimensional sample covariance matrix. 

In Advances In Statistics (pp. 108-127); de Prado, M. L. (2016). Building diversified portfolios that outperform out of 

sample. The Journal of Portfolio Management, 42(4), 59-69; Zakamulin, V. (2015). A test of covariance-matrix forecasting 

methods. The Journal of Portfolio Management, 41(3), 97-108. 
71 de Prado (2016), op. cit., pp.59-69. 
72 Burggraf, T., & Vyas, A. (2020). Beyond Risk Parity-A Machine Learning-based Hierarchical Risk Parity Approach on 

Cryptocurrencies. Available at SSRN 3534773. 



Machine Learning Portfolio Optimization: Hierarchical Risk Parity and Modern Portfolio 

Theory 
 

65 
 

problems in 1956. The mean-variance framework tries to find the value of an X that minimizes 

or maximizes a function f. As we have seen, the Markowitz optimization problem can be 

formulated in two different yet equal expressions: (i) Maximize the portfolio expected return for 

a given level of risk or (ii) Minimize the portfolio volatility (standard deviation) conditional to a 

given level of return. The breakthrough of Markowitz was to create an algorithm that could solve 

the optimization problem subject both to an equality constraint (that the weights of the holdings 

sum up to one) and an inequality constraint (a lower and an upper bound for the weights of each 

security in the portfolio). This approach, named the Critical Line Algorithm (CLA), allows to 

find the unique solution X after a known number of iterations as well as to generate the set of 

optimal portfolios that lie on the efficient frontier. For this reason, Harry Markowitz is widely 

accepted as the “father of quadratic programming” (QP)73. CLA was therefore developed by 

Markowitz to solve any quadratic programming problem subject to inequality constraints. 

2.2.1 The framework 

Given an investment universe of N= {1,2, …, n} assets, and a nxn positive covariance matrix 

Ω, we define the following inputs74: 

• w is the (nx1) vector of security weights, which is the output we need to optimize. 

• L is the (nx1) vector of lower bounds, with wi≥ Li, ∀i ∈ N. 

• U is the (nx1) vector of upper bounds, with wi≥ Ui, ∀i ∈ N. 

• A subset F of N = {1,2, …, n}, containing the set of “free assets” whose weights respect the 

boundary Li≤ wi≤ Ui. 

• B ⊂N is a subset of the holding weights that lie on one of the bounds. B ∪ F = N. 

The covariance matrix Ω, the vector of asset returns u and the vector of weights w can be 

therefore rewritten as: 

Ω = [
Ω𝐹 Ω𝐹𝐵

Ω𝐵𝐹 Ω𝐵
] , 𝑢 = [

𝑢𝐹

𝑢𝐵
] , 𝑤 = [

𝑤𝐹

𝑤𝐵
] (47) 

 
73 Cottle, R. W., & Infanger, G. (2010). Harry Markowitz and the Early History of Quadratic Programming. In Handbook of 

Portfolio Construction (pp. 179-211). Springer, Boston, MA. 
74 The paragraph 2.2.1 “The Framework” follows the same procedure adopted in: Bailey, D. H., & López de Prado, M. 

(2013). An open-source implementation of the critical-line algorithm for portfolio optimization. Algorithms, 6(1), 169-196. 
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Where Ω𝐹 is the (kxk) covariance matrix among free assets, Ω𝐵 the (n-k)x(n-k) covariance 

matrix, and a kx(n-k) covariance matrix Ω𝐵𝐹 which is equal to Ω𝐹𝐵
𝑇 . Furthermore, there are 

two k vectors 𝑢𝐹 and 𝑤𝐹 and two (n-k) vectors 𝑢𝐵 and 𝑤𝐵. 

When there is no constraint, the optimization problem can be solved by minimizing the 

Lagrange function75 (48). 

ζ[𝑤, 𝛾, λ] =
1

2
𝑤𝑇  Ω𝑤 − 𝛾(𝑤𝑇1𝑛 − 1) − λ(𝑤𝑇𝑢 − 𝑢𝑝) (48) 

where 𝛾 and λ are the Lagrange multipliers and up is the excess return. The vector 1n instead 

represents the (nx1) vector of ones. The Lagrange function presented above has two distinct 

conditions: first that the portfolio’s weights sum up to one and second that the portfolio 

volatility is minimized at the mean return level up. The solution of the problem leads to a 

linear system of n+2 equations, which finds the optimal variance minimizing portfolio weight 

vector w*76. However, this solution is suboptimal since it does not respect the bounds 

condition and therefore will not meet the constraint: Li≤ wi≤ Ui. For this reason, the 

methodology of Lagrange multipliers is of difficult application, especially if, as Markowitz 

assumes in his famous mean-variance portfolio model, short-selling is not allowed. Indeed, in 

that case, the security weights must be positive. We shall include the necessary condition of 

an upper and lower bound; the optimal solution of the problem will then lie between these 

two bounds: Li≤ wi≤ Ui. In order to solve the problem under the constrained case, we should 

first understand the concept of turning point. “A solution vector w* is a turning point if in its 

vicinity there is another solution vector with different free assets. This is important because 

in those regions of the solution space away from turning points the inequality constraints are 

effectively irrelevant with respect to the free assets. In other words, between any two turning 

points, the constrained solution reduces to solving the following unconstrained problem on 

the free assets” (49)77. 

 
75 In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima 

of a function subject to equality constraints. For a better explanation of the Lagrange multipliers see: 

https://en.wikipedia.org/wiki/Lagrange_multiplier#Interpretation_of_the_Lagrange_multipliers. 
76 Niedermayer, A., & Niedermayer, D. (2010). Applying Markowitz’s critical line algorithm. In Handbook of portfolio 

construction (pp. 383-400). Springer, Boston, MA. 
77 de Prado (2013), op. cit., pp.169-196 

https://en.wikipedia.org/wiki/Lagrange_multiplier#Interpretation_of_the_Lagrange_multipliers


Machine Learning Portfolio Optimization: Hierarchical Risk Parity and Modern Portfolio 

Theory 
 

67 
 

ζ[𝑤, 𝛾, λ] =
1

2
𝑤𝐹

𝑇Ω𝐹𝑤𝐹 +
1

2
𝑤𝐹

𝑇Ω𝐹𝐵𝑤𝐵 +
1

2
𝑤𝐵

𝑇Ω𝐵𝐹𝑤𝐹 +
1

2
𝑤𝐵

𝑇Ω𝐵𝑤𝐵

− 𝛾(𝑤𝐹
𝑇1𝑘 + 𝑤𝐵

𝑇1𝑛−𝑘 − 1) − λ(𝑤𝐹
𝑇𝑢𝐹 + 𝑤𝐵

𝑇𝑢𝐵 − 𝑢𝑝)(49) 

Where the value wB is known and does not vary between turning points and the value wF is 

the object of the minimization problem. Since: “The efficient frontier can be simply derived 

as a convex combination between any two neighbor turning points”, the main challenge of 

the CLA algorithm proposed by Markowitz is to define each turning point and consequently, 

find the optimal portfolio at each turning point78. 

The two subsets F and B do not change between turning points, therefore looking for a solution 

between two turning points will require solving an optimization without constraint upon the 

subset F as in (48). Therefore, “Combining two neighboring turning points with a real weight 

w ∈ [0, 1] always leads to a constrained minimum variance portfolio”79. 

 

2.2.2 A practical application of the Critical Line Algorithm 

In this section I am going to present a practical application of the CLA using the Anaconda 

Jupiter notebook of Python 3.780.  

The main idea of Markowitz algorithm for minimum variance optimization purpose is to first 

find the turning point associated with the highest expected return; after that, computing all the 

other turning points through an iterative process. 

 

 
78 Markowitz, H. (1955). The optimization of a quadratic function subject to linear constraints. RAND CORP, (68). Santa 

Monica (CA). 
79 Niedermayer et. Al. (2010), op.cit., pp. 383-400. 
80 The practical application is based on the same example discussed in section 5 of the paper: Bailey, D. H., & López de 

Prado, M. (2013). An open-source implementation of the critical-line algorithm for portfolio optimization. Algorithms, 6(1), 

169-196. 
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Figure 27, Constrained Minimum Variance Frontier for 10 assets. Data Source: A personal elaboration on 

Excel from: Niedermayer, A., & Niedermayer, D. (2010). Applying Markowitz’s critical line algorithm. 

In Handbook of portfolio construction (pp. 383-400). Springer, Boston, MA. 

 

Figure 27 above presents a constrained minimum variance efficient frontier application using 

10 assets. Each orange dot on the line represents a turning point. λ1is the multiplier of the first 

turning point, the one that is associated with the highest expected return. The Lagrange 

multiplier λ decreases when moving downwards on the efficient frontier, with λT representing 

the lowest multiplier for the last turning point81. 

The goal of the algorithm is to find a solution for the constrained problem. It starts with the 

turning point with the highest mean return value. For this reason, it groups the assets according 

to their expected return, in a decreasing order. At the beginning, all the securities weights are 

fixed to their lower bound (wi=Li), then, the weight of the first asset is increased until the 

upper bound is reached. If wT1 < 1, the second holding weight is increased. This procedure is 

repeated for all the assets under examination until the sum of the weights exceeds one. The 

 
81 𝜆 decreases when moving downwards because λ and wTu are linearly and positively related. 
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last iterated weight is then decreased so that the constraint wT1=1 is respected. “This last 

weight is the first free asset, and the resulting vector of weights the first turning point”82. 

Moving from one turning point to another one, calls for either adding or subtracting a new 

component (asset) to or from the subset of free assets F. This methodology ends when the 

algorithm determines the optimal expected return. All the initialization process is 

implemented into the Python code with the function: def initAlgo(self) in Snippet 6. Since the 

subset F cannot be an empty one, it starts with only one asset, with the option of increasing 

its size by adding other elements. This search of this additional element k is made through the 

function def getB(self, f). k has to be found in the subset B, which is a non-empty subset and 

complement to F. Lambda λ, is computed using the matrices created by the function def 

reduceMatrix(self,matrix,listX,listY). The formula (50) for computing the multiplier is 

expressed through the function def computeLambda (self, covarF_inv, covarFB, meanF, 

wB,i,bi). 

λ =
1

𝐶
[(1 − 1𝑛−𝑘

𝑇 𝑤𝐵 + 1𝑘
𝑇Ω𝐹

−1Ω𝐹𝐵𝑤𝐵)(Ω𝐹
−11𝑘)𝑖

− (1𝑘
𝑇Ω𝐹

−11𝑘)(𝑏𝑖 + (Ω𝐹
−1Ω𝐹𝐵𝑤𝐵)𝑖](50) 

Where 

𝐶 = −(1𝑇Ω𝐹
−11𝑘)(Ω𝐹

−1𝑢𝐹)𝑖 + (1𝑘
𝑇Ω𝐹

−1𝑢𝑘)(Ω𝐹
−11𝑘) 𝑖 

𝑏𝑖 = {
𝑈𝑖   𝑖𝑓 𝐶𝑖 > 0
𝐿𝑖  𝑖𝑓 𝐶𝑖 < 0

 

Furthermore, the function def computeW(self,covarF_inv,covarFB,meanF,wB) computes the 

value of the free weights in the subsequent turning point, wF. In order to accomplish that, we 

have to encode the value of 𝛾, the other multiplier (51). 

𝛾 = − λ
1k

TΩ𝐹
−1𝑢𝐹

1𝑘
𝑇Ω𝐹

−11𝑘

+
1 − 1𝑛−𝑘

𝑇 𝑤𝐵 + 1𝑘
𝑇Ω𝐹

−1Ω𝐹𝐵𝑤𝐵

1𝑘
𝑇Ω𝐹

−11𝑘

 (51) 

Finally, the value of the free weight can be expressed through the formula (52). 

 
82 de Prado (2013), op. cit., pp.169-196. 
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𝑤𝐹 = −Ω𝐹
−1Ω𝐹𝐵𝑤𝐵 + 𝛾Ω𝐹

−11𝑘 + 𝛾Ω𝐹
−1𝑢𝐹 (52) 

 
#------------------------------------------------------------------------------------------------------ 

# Initialize the class   

class CLA:   

    def __init__(self,mean,covar,lB,uB):   

        self.mean=mean   

        self.covar=covar   

        self.lB=lB   

        self.uB=uB   

        self.w=[] # solution   

        self.l=[] # lambdas   

        self.g=[] # gammas   

        self.f=[] # free weights 

# Initialize the algo   

def initAlgo(self):           

        #1) Form structured array   

        a=np.zeros((self.mean.shape[0]),dtype=[('id',int),('mu',float)])   

        b=[self.mean[i][0] for i in range(self.mean.shape[0])] # dump array into list   

        a[:]=list(zip(range(self.mean.shape[0]),b)) # fill structured array   

        

       2) Sort structured array   

        b=np.sort(a,order='mu')   

 

     #3) First free weight   

        i,w=b.shape[0],np.copy(self.lB)   

        while sum(w)<1:   

            i-=1   
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            w[b[i][0]]=self.uB[b[i][0]]   

        w[b[i][0]]+=1-sum(w)   

        return [b[i][0]],w 

#------------------------------------------------------------------------------------------------------ 

#Defining the bounds 

def computeBi(self,c,bi):   

        if c>0:   

            bi=bi[1][0]   

        if c<0:   

            bi=bi[0][0]   

        return bi 

#------------------------------------------------------------------------------------------------------ 

#Defining the free weights 

def computeW(self,covarF_inv,covarFB,meanF,wB):   

        #1) compute gamma   

        onesF=np.ones(meanF.shape)   

        g1=np.dot(np.dot(onesF.T,covarF_inv),meanF)   

        g2=np.dot(np.dot(onesF.T,covarF_inv),onesF)   

        if wB is None:   

            g,w1=float(-self.l[-1]*g1/g2+1/g2),0   

        else:   

            onesB=np.ones(wB.shape)   

            g3=np.dot(onesB.T,wB)   

            g4=np.dot(covarF_inv,covarFB)   

          w1=np.dot(g4,wB)   

          g4=np.dot(onesF.T,w1)   

          g=float(-self.l[-1]*g1/g2+(1-g3+g4)/g2)                 
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  #2) compute weights   

                  w2=np.dot(covarF_inv,onesF)   

                  w3=np.dot(covarF_inv,meanF)   

                 return -w1+g*w2+self.l[-1]*w3,g   

#------------------------------------------------------------------------------------------------------ 

#Computing the Lambda multiplier  

def computeLambda(self,covarF_inv,covarFB,meanF,wB,i,bi):   

        #1) C   

        onesF=np.ones(meanF.shape)   

        c1=np.dot(np.dot(onesF.T,covarF_inv),onesF)   

        c2=np.dot(covarF_inv,meanF)   

        c3=np.dot(np.dot(onesF.T,covarF_inv),meanF)   

        c4=np.dot(covarF_inv,onesF)   

        c=-c1*c2[i]+c3*c4[i]   

        if c==0:return   

        #2) bi   

        if type(bi)==list:bi=self.computeBi(c,bi)   

        #3) Lambda   

        if wB is None:   

            # All free assets   

            return float((c4[i]-c1*bi)/c),bi   

        else:   

            onesB=np.ones(wB.shape)   

            l1=np.dot(onesB.T,wB)   

            l2=np.dot(covarF_inv,covarFB)   

            l3=np.dot(l2,wB)   

            l2=np.dot(onesF.T,l3)   

            return float(((1-l1+l2)*c4[i]-c1*(bi+l3[i]))/c),bi   
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#------------------------------------------------------------------------------------------------------ 

# Slice covarF,covarFB,covarB,meanF,meanB,wF,wB   

getMatrices(self,f): 

        covarF=self.reduceMatrix(self.covar,f,f)   

        meanF=self.reduceMatrix(self.mean,f,[0])   

        b=self.getB(f)   

        covarFB=self.reduceMatrix(self.covar,f,b)   

        wB=self.reduceMatrix(self.w[-1].reshape(-1,1),b,[0])   

        return covarF,covarFB,meanF,wB 

#------------------------------------------------------------------------------------------------------ 

#Computing the subset B 

getB(self,f):   

        return self.diffLists(range(self.mean.shape[0]),f) 

#------------------------------------------------------------------------------------------------------ 

# Reduce a matrix to the provided list of rows and columns   

Def reduceMatrix(self,matrix,listX,listY):  

        if len(listX)==0 or len(listY)==0:return   

        matrix_=matrix[:,listY[0]:listY[0]+1]   

        for i in listY[1:]:   

            a=matrix[:,i:i+1]   

            matrix_=np.append(matrix_,a,1)   

        matrix__=matrix_[listX[0]:listX[0]+1,:]   

        for i in listX[1:]:   

            a=matrix_[i:i+1,:]   

            matrix__=np.append(matrix__,a,0)   

        return matrix__   

Snippet 6, Encoding the Critical Line Algorithm (CLA). Data Source: Bailey, D. H., & López de Prado, M. 

(2013). An open-source implementation of the critical-line algorithm for portfolio 

optimization. Algorithms, 6(1), 169-196. 
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The algorithm computes all the turning points as well as the global minimum variance 

portfolio, which as explained in section 1.3.4, is the left-most point that lies on the efficient 

frontier. The input is encoded through the function def getMinVar(self) in Snippet 7. On the 

other hand, the function def getMaxSR(self), finds the portfolio on the constrained efficient 

frontier exhibiting the highest Sharpe ratio. Lastly, every portion of the efficient frontier can 

be obtained as a convex combination between any two close turning pints. This is performed 

by the function def efFrontier(self,points) which returns the expected returns, standard 

deviations and the security’s weights as outputs. 

#------------------------------------------------------------------------------------------------------ 

 # Get the minimum variance solution   

def getMinVar(self):   

        var=[]   

        for w in self.w:   

            a=np.dot(np.dot(w.T,self.covar),w)[0,0]   

            var.append(a)   

        return min(var)**.5,self.w[var.index(min(var))] 

#------------------------------------------------------------------------------------------------------ 

 # Get the max Sharpe ratio portfolio  

def getMaxSR(self):   

        #1) Compute the local max SR portfolio between any two neighbor turning 

points   

        w_sr,sr=[],[]   

        for i in range(len(self.w)-1):   

            w0=np.copy(self.w[i])   

            w1=np.copy(self.w[i+1])   

            kargs={'minimum':False,'args':(w0,w1)}   

            a,b=self.goldenSection(self.evalSR,0,1,**kargs)   

            w_sr.append(a*w0+(1-a)*w1)   

            sr.append(b)   

        return max(sr),w_sr[sr.index(max(sr))]   
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Having set all the needed inputs to run the algorithm properly, we can now test it, illustrating 

a small numerical example that considers an investment universe of 10 securities. The lower 

bounds are equal to 0 while the upper ones are set equal to 1. The weights of the assets in our 

portfolio must satisfy the following: ∑ 𝑤𝑖 = 110
𝑘=1 . Figure 28 below, shows the values of the 

bounds, mean vector as well as the covariance matrix of the 10 assets.  

The CLA will return a list of 10 turning points (TP) and for each them the corresponding value 

of the mean return, standard deviation, weights and the multipliers λ and 𝛾 are displayed 

(Figure 29). 

 

 

#------------------------------------------------------------------------------------------------------- 

 # Get the efficient frontier   

def efFrontier(self,points):   

        mu,sigma,weights=[],[],[]   

        a=np.linspace(0,1,points/len(self.w))[:-1] # remove the 1, to avoid duplications   

        b=range(len(self.w)-1)   

        for i in b:   

            w0,w1=self.w[i],self.w[i+1]   

            if i==b[-1]:a=np.linspace(0,1,points/len(self.w)) # include the 1 in the last 

iteration   

            for j in a:   

                w=w1*j+(1-j)*w0   

                weights.append(np.copy(w))   

                mu.append(np.dot(w.T,self.mean)[0,0])   

                sigma.append(np.dot(np.dot(w.T,self.covar),w)[0,0]**.5)   

        return mu,sigma,weights   

Snippet 7, Getting Min Var, Max SR and the Efficient Frontier solution. Data Source: Bailey, D. H., & 

López de Prado, M. (2013). An open-source implementation of the critical-line algorithm for portfolio 

optimization. Algorithms, 6(1), 169-196. 
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LB 0 0 0 0 0 0 0 0 0 0 

UB 1 1 1 1 1 1 1 1 1 1 

u 1,175 1,19 0,396 1,12 0,346 0,679 0,089 0,73 0,481 1,08 

Cov 0,4075516          

 0,0317584 0,9063047         

 0,0518392 0,0313639 0,194909        

 0,056639 0,0268726 0,0440849 0,1952847       

 0,0330226 0,0191717 0,0300677 0,0277735 0,3405911      

 0,0082778 0,0093438 0,0132274 0,0052667 0,0077706 0,1598387     

 0,0216594 0,0249504 0,0352597 0,0137751 0,0206784 0,0210558 0,6805671    

 0,0133242 0,0076104 0,00115493 0,0078088 0,0073641 0,0051869 0,0137788 0,9552692   

 0,0343476 0,0287487 0,0427563 0,0291418 0,0254266 0,0172374 0,0462703 0,0106553 0,3168158  

 0,022499 0,0133687 0,020573 0,0164038 0,0128408 0,0072378 0,0192609 0,0076096 0,0185432 0,1107929 

Figure 28, Lower Bounds, Upper Bounds, Means and Covariance. Data Source: A personal elaboration from Bailey, D. H., 

& López de Prado, M. (2013). 

 

NUM Return Risk Lambda X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10) 

1 1,190 0,952 58,303 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

2 1,180 0,546 4,174 0,649 0,351 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

3 1,160 0,417 1,946 0,434 0,231 0,000 0,335 0,000 0,000 0,000 0,000 0,000 0,000 

4 1,111 0,267 0,165 0,127 0,072 0,000 0,281 0,000 0,000 0,000 0,000 0,000 0,520 

5 1,108 0,265 0,147 0,123 0,070 0,000 0,279 0,000 0,000 0,000 0,006 0,000 0,521 

6 1,022 0,230 0,056 0,087 0,050 0,000 0,224 0,000 0,174 0,000 0,030 0,000 0,435 

7 1,015 0,228 0,052 0,085 0,049 0,000 0,220 0,000 0,180 0,000 0,031 0,006 0,429 

8 0,973 0,220 0,037 0,074 0,044 0,000 0,199 0,026 0,198 0,000 0,033 0,028 0.398 

9 0,950 0,216 0,031 0,068 0,041 0,015 0,188 0,034 0,202 0,000 0,034 0,034 0,383 

10 0,803 0,205 0,000 0,037 0,027 0,095 0,126 0,077 0,219 0,030 0,036 0,061 0,292 

Figure 29, Return, Risk, Multipliers and the weights of the 10 TPs. Data source: A personal elaboration from: Bailey, D. 

H., & López de Prado, M. (2013). 
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From the figure above, we can notice that the first solution is found when the second asset of 

the portfolio is set as the free asset, with a weight equal to 100%. Subsequently assets 

1,4,10,8,6,9,5,3 and 7 are added by lowering the value of λ until the minimum variance 

portfolio is reached at turning point 10. 

Figure 30, shows the efficient frontier (the first 100 points). This is performed in Python by 

using the function cla.efFrontier(100). The minimum variance portfolio exhibits a risk of 

0,2052 while the maximum Sharpe ratio portfolio returns a Sharpe ratio of 4,4535 for a risk 

of 0,227483. 

 

                           Figure 30, CLA-constrained Efficient Frontier. Data Source: A personal elaboration on Python. 

 

 

 

 
83 These results are taken from a personal implementation of the exercise using the Snippet’s codes on the Anaconda Jupiter 

Notebook. 
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2.3 The Hierarchical Risk Parity Portfolio  

The CLA algorithm manages to ensure an exact solution is found after a known number   of 

iterations. It is a quadratic programming that allows to build a constrained efficient frontier and 

to look for the optimal portfolio in terms of mean return and variance. Nonetheless, it is subject 

to several drawbacks which make the solutions provided by the algorithm somewhat unstable 

and inaccurate. Indeed, one of the major caveats of CLA is the instability of forecasted returns: 

“Small deviations in the forecasted returns will cause CLA to produce very different 

portfolios”84. For this reason, researchers and economists have tried to develop new models and 

theories that would base their results on the estimation of the covariance matrix rather than the 

returns. This has led to the so called “Risk-based” portfolio optimization problems, which have 

been deeply analyzed in section 1.3. Despite their good performance and their applicability on 

industry-wide portfolio optimization problems, they tend to provide affected results due to their 

great sensitivity to the covariance matrix inversion. All these quadratic programming 

methodologies do require the inversion of a positive-definite covariance matrix, which is: “prone 

to large errors when the covariance matrix is numerically ill-conditioned, i.e. it has a high 

condition number”85. When this number is too high, the covariance-correlation matrix becomes 

too unstable. This issue becomes even larger if we add more correlated (multicollinear-

investments) for diversification. “The more correlated the investments, the greater the need for 

diversification, and yet the more likely we will receive unstable solutions. Therefore, the benefits 

of diversification often are more than offset by estimation errors”86. Bailey and Lòpez de Prado, 

address to this problem the name of “Markowitz’ curse”.  

Furthermore, the traditional risk-based portfolios usually have shown to provide poor results out 

of sample, so much that even the benchmark naïve (equally-weighted) portfolios return better 

risk-performance results than mean-variance and risk-based optimization techniques87. 

Therefore, because of the instability and inaccuracy of the aforementioned portfolio optimization 

 
84 Michaud, R. O., & Michaud, R. (2007). Estimation error and portfolio optimization: a resampling solution. Available at 

SSRN 2658657. 
85 Bailey, D. H., & Lopez de Prado, M. (2012). Balanced baskets: a new approach to trading and hedging risks. Journal of 

Investment Strategies (Risk Journals), 1(4). 

The condition number of a covariance and correlation matrix is defined as the absolute value of the ratio between its 

maximal and minimal eigenvalues. 
86 de Prado (2013), op. cit., pp.59-69. 
87 DeMiguel et. Al. (2009), op. cit., pp. 1915-1953. 
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methodologies, Bailey and Lòpez de Prado came up with a new approach that could address the 

major quadratic programming limitations: the Hierarchical Risk Parity portfolio. First, it fully 

concentrates on the covariance matrix, hence dropping the forecasted returns. The major benefit 

of the Hierarchical Risk Parity approach is that it does not require the inversion of the covariance 

matrix, which is a highly desirable characteristic when the matrix has a high condition number. 

Second, it “proposes a hierarchical implementation of an inverse-variance allocation with 

weights calculated between clusters of correlated asset returns88”. 

The HRP algorithm, performs the optimization process through three distinct phases: 1) Tree 

Clustering, 2) Quasi- diagonalization and 3) Recursive Bisection. 

 

2.3.1 Tree clustering 

The main rationale behind this procedure is straightforward. Imagine you are an investor who 

decides to diversify his financial resources into different asset classes, hence creating a 

portfolio with stocks, bonds, real estate, hedge funds etc. Among the securities he has invested 

in, some are substitutes of one another. Stocks may be divided according to the industry, size, 

liquidity. For instance, when deciding the portfolio’s weight of a stock like Facebook, we 

should consider either decreasing or adding the allocation to another multinational company 

in the social network industry like Twitter rather than a small firm operating locally. 

Therefore, if in your portfolio there are securities which exhibit a greater correlation between 

themselves, you should first diversify the weights among them, and then consider the rest of 

the portfolio. Suppose you decide the weights for Facebook and Twitter in your portfolio are 

respectively 60/40. However, if you consider them as a unique entity for further 

diversification, you may realize that in the whole portfolio Facebook and Twitter represent 

only the 10%, therefore the real weights are 6% to Facebook and 4% to Twitter. 

One of the main problems of the CLA algorithm is that it does not consider the hierarchical 

structure. Indeed: “to a correlation matrix, all investments are potential substitutes to each 

other. In another words, correlation matrices lack the notion of hierarchy. This lack of 

 
88 Pfitzinger, J., & Katzke, N. (2019). A constrained hierarchical risk parity algorithm with cluster-based capital 

allocation (No. 14/2019). 
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hierarchical structure allows weights to vary freely in unintended ways, which is a root cause 

of CLA’s instability”89. 

A typical example of a hierarchical structure is a tree structure. A tree structure is suitable 

when analyzing the portfolio composition. Indeed, it has only N-1 edges to connect N nodes, 

allowing weights to re-adjust among the securities of the same hierarchy. Furthermore, in a 

tree structure, the weights are distributed top-down. Figures 31 and 32 show the passage from 

geometric to hierarchical relationship, through a tree structure. 

 

 

Figure 31, The complete top-graph without the notion of Hierarchy. Data Source: A personal elaboration on 

Python from: Bailey, D. H., & López de Prado, M. (2016). 

 

 
89 De Prado, M. L. (2018). Advances in financial machine learning. John Wiley & Sons. 
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Figure 32, Representation of a tree structure. Data Source: A personal elaboration on Python from: Bailey, D. 

H., & López de Prado, M. (2016). 

 

Let’s consider a TxN matrix of observations X (N assets with returns series over time T). Next 

we can compute the corresponding correlation and covariance matrices. The first goal is to 

“combine these N column-vectors into a hierarchical structure of clusters, so that allocations 

can flow downstream through a tree graph”90. Therefore, we calculate a NxN correlation 

matrix with entries: 

𝜌 = {𝜌𝑖,𝑗𝑖,𝑗=1,…,𝑁
}  where 𝜌𝑖,𝑗 = 𝜌[𝑋𝑖 , 𝑋𝑗] 

Then, the distance matrix D: (𝑋𝑖 , 𝑋𝑗) is defined as91: 

𝐷(𝑋𝑖 , 𝑋𝑗) = √
1
2

(1 − 𝜌𝑖,𝑗)  (53) 

 
90 de Prado, (2018), Op. cit., pp. 224-226. 
91 D is defined in such a way that is a proper metric space. For a detailed proof see: de Prado (2013), op. cit., pp.59-69. 
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The second step of the tree-clustering stage consists in calculating the Euclidean distance 

between any two columns vector of D, which gives us the augmented distance matrix �̅�. 

 �̅�(𝑖, 𝑗) = √∑(𝐷(𝑘, 𝑖) − 𝐷(𝑘, 𝑗))
2
(54)

𝑁

𝑘=1

 

The main difference between equations 53 and 54 is that the first computes the distance 

between any two securities i and j in the portfolio, while the second is the distance of those 

two assets and the remaining part of the portfolio92. �̅�(𝑖, 𝑗) is therefore a function of the whole 

correlation matrix. The next step consists in forming the first cluster (i*, j*). This can be done 

by taking the pair that returns the least distance: 

𝑈[1] = arg min
𝑖,𝑗

�̅�(𝑖, 𝑗) (55) 

Where U is the set of clusters. After that, we need to update the distance matrix �̅�, trough a 

passage known as the “linkage criterion”93. The distance between the first clustered item U[1] 

and any other asset i is therefore computed as follows: 

�̅�(𝑖, 𝑈[1]) = min(�̅�(𝑖, 𝑖∗), �̅�(𝑖, 𝑗∗)) (56) 

This step is repeated for each security in the portfolio; each time a new cluster of assets is 

formed, the algorithm updates the distance matrix, until only one cluster is left94. 

Figure 33 reported below, reports a typical hierarchical portfolio visualization: a dendrogram 

graph. The image shows how the clusters are created for similar investments. For the specific 

case, I have analyzed a portfolio composed by ten securities, namely: [‘AAPL’ (Apple), 

‘AMZN’ (Amazon), ‘AXP’ (American Express), ‘BA’ (Bank of America), ‘CSCO’ (Cisco), 

‘FB’ (Facebook), ‘IBM’ (IBM), ‘JPM’ (JPMorgan Chase)]. The x-axis reports the name of 

the assets in the analyzed portfolio, while the y-axis measures the distance between the two 

merging leaves. The figure shows how clusters are formed at each iteration: for instance, the 

 
92 For a deeper reading on the matter, see: Jaeger, M., Krügel, S., Marinelli, D., Papenbrock, J., & Schwendner, P. (2020). 

Understanding Machine Learning for Diversified Portfolio Construction by Explainable AI. Available at SSRN. 
93 de Prado, (2018), Op. cit., pp. 224-226. 
94 For a deeper analysis of each step, see: de Prado, (2016), Op. cit., pp.59-69. 
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securities Facebook, Google and Microsoft are grouped together representing a cluster; the 

same happens with JPMorgan and American Express, given their similar industry and sector. 

The tree-clustering process is encoded in the Python computer programming language and 

reported in Snippet 895. 

 

 

            Figure 33, Tree Clustering & Dendrogram Graph. Data Source: A personal elaboration on Python. 

 

 
95 The codes are taken from de Prado, (2016), and reported into the Python 3.7 Anaconda Jupyter notebook. 

# correlation matrix 

corr = returns.corr() 

# distance matrix 

d_corr = np.sqrt(0.5*(1-corr)) 

#Tree Clustering 

def tree_clustering(dist_mat, method="single", metric =  'eculidean'): 

    flat_dist_mat = squareform(dist_mat) #distance array 

    res_linkage = linkage(flat_dist_mat, method=method, metric = metric) 

    return res_linkage 

res_linkage = tree_clustering(d_corr) Snippet 8, Encoding Tree Clustering. Data Source: A personal elaboration on Python from: Bailey, D. H., & 

López de Prado, M. (2016). 
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2.3.2 Quasi-diagonalization 

The second part of the HRP algorithm consists in the quasi-diagonalization stage. The 

approach allows a reorganization of the columns and rows of the covariance matrix using the 

information of the formed clusters, so that the largest entries are placed along the diagonal. 

Therefore, high correlations lie adjacently and along the matrix diagonal. The main goal of 

the quasi-diagonalization algorithm is to group similar holdings together while dissimilar ones 

lie around the matrix: “We know that each row of the linkage matrix merges two branches 

into one. We replace clusters in (yN-1,1,yN-1,2) with their constituents recursively until no 

clusters remain. These replacements preserve the order of the clustering. The output is a 

sorted list of original nodes”96(Snippet 9).  

Figures 34 and 35 respectively report the correlation matrix before and after the quasi-

diagonalization algorithm is applied97. As we can notice from Figure 35 the darker-colored 

squares (representing a higher correlation coefficient) are all concentrated around the diagonal 

matrix.  

 

         Figure 34, Original Distance Matrix. Data Source: A personal elaboration on Python. 

 
96 de Prado, (2018), Op. cit., pp. 224-226. 
97 The Figures are the result of an empirical application on Python. The portfolio analyzed is the same as the one reported 

for the Tree-Clustering Dendrogram study in section 2.3.1. 
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 Figure 35, Ordered Distance Matrix following the Quasi-Diagonalization process. Data Source: a personal 

elaboration on Python. 

 

 

 #Returns the order implied by a hierarchical tree (dendrogram). 

def seriation(Z, N, cur_index): 

     

       :param Z: A hierarchical tree (dendrogram). 

       :param N: The number of points given to the clustering process. 

       :param cur_index: The position in the tree for the recursive traversal. 

       :return: The order implied by the hierarchical tree Z. 

    """ 

    if cur_index < N: 

        return [cur_index] 

    else: 

        left = int(Z[cur_index - N, 0]) 

        right = int(Z[cur_index - N, 1]) 

        return (seriation(Z, N, left) + seriation(Z, N, right) 



Machine Learning Portfolio Optimization: Hierarchical Risk Parity and Modern Portfolio 

Theory 
 

86 
 

 

             

2.3.3 Recursive bisection 

The recursive bisection is the last stage of the HRP algorithm and the most important one 

since it defines the optimal allocation by assigning the final weights to the securities in the 

portfolio. Here, the algorithm takes advantage of the portfolio’s feature that: “the inverse-

variance allocation is optimal for a diagonal covariance matrix”98. 

 
98 For a deeper study, see: https://hudsonthames.org/an-introduction-to-the-hierarchical-risk-parity-algorithm/. 

# Returns a sorted distance matrix. 

def compute_serial_matrix(dist_mat, method="single"): 

    N = len(dist_mat) 

    flat_dist_mat = squareform(dist_mat) 

     

    res_linkage = linkage(flat_dist_mat, method=method) 

    res_order = seriation(res_linkage, N, N + N - 2) 

     

    seriated_dist = np.zeros((N, N)) # 

    a,b = np.triu_indices(N, k=1) 

     

    seriated_dist[a,b] = dist_mat[[res_order[i] for i in a], [res_order[j] for j in b]] 

    seriated_dist[b,a] = seriated_dist[a,b]     

    return seriated_dist, res_order, res_linkage     

 

ordered_dist_mat, res_order, res_linkage = compute_serial_matrix(d_corr.values) 

Snippet 9, Encoding the Quasi-Diagonalization Process. Data Source: A personal elaboration on Python 

from: Bailey, D. H., & López de Prado, M. (2016). 

 

https://hudsonthames.org/an-introduction-to-the-hierarchical-risk-parity-algorithm/
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Following the tree-clustering procedure, the algorithm further divides each cluster into two 

other sub-clusters V1 and V2, starting from the final cluster U[N]. Given the portfolio weights 

wi = 1, ∀i = 1, . . , N, the variance of each sub-cluster is computed as follows99: 

𝑉1,2 = 𝑤𝑇𝑉𝑤 (57) 

Where 

𝑤 =
𝑑𝑖𝑎𝑔(𝑉)−1

𝑡𝑟𝑎𝑐𝑒(𝑑𝑖𝑎𝑔(𝑉)−1)
 (58) 

Then, the HRP computes two weighting factors which are calculated respectively: 

𝛼1 = 1 −
𝑉1

𝑉1 + 𝑉2
, 𝛼2 = 1 − 𝛼1 (59) 

Given these two weighting factors, the algorithm runs the updated portfolio weights for each 

sub-cluster. Therefore, only the holdings within each cluster are considered for the final 

portfolio allocation; the weights w1 and w2 for the two sub-clusters are thus: 

𝑤1 = 𝛼1 ∗ 𝑤1,   𝑤2 = 𝛼2 ∗   𝑤2 (60) 

“This top-down assignment of weights is an advantage of HRP over other allocation 

algorithms - only assets within the same group compete for allocation with each other rather 

than competing with all the assets in the portfolio”100. The whole algorithm guarantees that 

0 ≤ 𝑤𝑖 ≤ 1, ∀i = 1, . . , N  𝑎𝑛𝑑 ∑ 𝑤𝑖 = 1𝑁
𝑖=1 . Figures 36 and 37 report the Hierarchical Risk 

Parity portfolio weights after running the recursive bisection stage, while Snippet 10 reports 

its implementation on Python101. 

 

 

 
99 The Recursive Bisection procedure follows the same explanation reported in: Burggraf et. Al., (2020), Op. cit., Available 

at SSRN 3534773. 
100 Burggraf et. Al., (2020), Op. cit., Available at SSRN 3534773. 
101 The Figures are the result of an empirical application on Python. The portfolio analyzed is the same as the one reported 

for the Tree-Clustering Dendrogram study in section 2.3.1. 
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Assets Weights 

AAPL 0,074009 

AMZN 0,049352 

AXP 0,078185 

BA 0,102499 

CSCO 0,126099 

FB 0,075914 

GOOGL 0,078333 

IBM 0,168443 

JPM 0,070235 

MSFT 0,067648 

NKE 0,109283 
Figure 36, HRP portfolio's weights. Data Source: A personal elaboration on Python. 

 

 

            Figure 37, Graphical Representation of the portfolio's weights. Data Source: A personal elaboration on Python. 
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#Encoding the Recursive Bisection Stage 

def compute_HRP_weights(covariances, res_order): 

    weights = pd.Series(1, index=res_order) 

    clustered_lists = [res_order]  

    while len(clustered_lists) > 0: 

         

            clustered_lists = [cluster[start:end] for cluster in clustered_lists 

                                for start, end in ((0, len(cluster) // 2), 

                                                   (len(cluster) // 2, len(cluster))) 

                                if len(cluster) > 1] 

             

            for subcluster in range(0, len(clustered_lists), 2): 

                    left_cluster = clustered_lists[subcluster] # divide into groups every two 

lists; take the left cluster (list) 

                    right_cluster = clustered_lists[subcluster + 1] # take the right cluster 

(list) 

                    left_subcovar = covariances.iloc[left_cluster, left_cluster] # the 

covariance matrix of the indexes in left clusters 

 

                    inv_diag = 1 / np.diag(left_subcovar.values)  

 

                    parity_w = inv_diag * (1 / np.sum(inv_diag))  

                    left_cluster_var = np.dot(parity_w, np.dot(left_subcovar, parity_w))  

 

                    right_subcovar = covariances.iloc[right_cluster, right_cluster] # the 

covariance matrix of the indexes in right clusters 

                    inv_diag = 1 / np.diag(right_subcovar.values) 

                    parity_w = inv_diag * (1 / np.sum(inv_diag)) 
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2.4 The HRP Portfolio Optimization in Python: A practical Application 

The HRP portfolio proposed by de Prado in his famous paper “Building Diversified Portfolios 

that outperform out-of-sample” in 2016, presents outstanding results in terms of robustness. 

Indeed, one of the main discoveries of de Prado, is that the machine learning based portfolio 

provides better risk performance indicators out-of-sample, thus outperforming the traditional 

portfolio allocations methodologies.  

The following empirical application has the objective to replicate de Prado’s findings by building 

on Python, an artificial correlation matrix C with several hierarchical clusters (Snippet 11). After 

that, I sample time series from a normal distribution and implement the Hierarchical Risk Parity 

algorithm explained in the previous section on these time series102. The next analysis requires to 

compare the different portfolio optimization techniques’ in-sample and out-of-sample 

volatilities. I will study the following portfolios respectively: Hierarchical Risk Parity, 1/N 

uniform weighting, Naïve Risk Parity and Minimum Variance. Besides that, following the same 

approach used by de Prado, I carry out an analysis on the out-of-sample Monte Carlo 

 
102 This practical application is based on the codes provided in: http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-

parity-part-1.html. 

Snippet 10, Encoding the Recursive Bisection Process. Data Source: A personal elaboration on Python 

from: Bailey, D. H., & López de Prado, M. (2016). 

 

 

                    right_cluster_var = np.dot(parity_w, np.dot(right_subcovar, parity_w)) 

                    alloc_factor = 1 - left_cluster_var / (left_cluster_var + right_cluster_var) 

 

                    weights[left_cluster] *= alloc_factor  

                    weights[right_cluster] *= 1 - alloc_factor 

    return weights                

compute_HRP_weights(cov, res_order)  

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-1.html
http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-1.html
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Simulations103. This further test is necessary since: “However, the portfolio with minimum 

variance in-sample is not necessarily the one with minimum variance out-of-sample [….] 

instead, in this section we evaluate via Monte Carlo the performance out-of-sample of HRP 

against CLA’s minimum-variance and traditional risk parity’s IVP allocations. This will also 

help us understand what features make a method preferable to the rest, regardless of anecdotal 

counter-examples”104. Figures 38-40 show the different correlation and covariance matrices. 

 
103 Monte Carlo methods, or Monte Carlo experiments, are a large class of mathematical algorithms that are based on repeated 

random sampling o get numerical results. The underlying rationale is to use randomness to solve problems that might 

be deterministic in principle. For a deeper study, see: https://en.wikipedia.org/wiki/Monte_Carlo_method. 
104 de Prado, (2016), Op. cit., pp. 159-169. 

# build a hierarchical block diagonal correlation matrix 

nb_alphas = 250 

nb_observations = int(0.3 * 252) 

quality = 0.6 * np.ones((nb_alphas // 6, nb_alphas // 6)) 

value = 2.4 * np.ones((nb_alphas // 2, nb_alphas // 2)) 

momentum = 2.6 * np.ones((int(nb_alphas * (1 - 1/6 - 1/2) + 1), 

                          int(nb_alphas * (1 - 1/6 - 1/2) + 1))) 

correl_mom_value = -1.2 * np.ones((int(nb_alphas * (1 - 1/6)) + 1, 

                                   int(nb_alphas * (1 - 1/6)) + 1)) 

 

correl = (block_diag(quality, correl_mom_value) + 

          block_diag(quality, momentum, value)) / 3 

np.fill_diagonal(correl, 1) 

mean_returns = np.zeros(nb_alphas) 

volatilities = ([np.sqrt(0.1 / np.sqrt(252))] * (nb_alphas // 3) +  

                [np.sqrt(0.3 / np.sqrt(252))] * (nb_alphas - nb_alphas // 3 - nb_alphas // 6) 

+  

                [np.sqrt(0.5 / np.sqrt(252))] * (nb_alphas // 6)) 

 

https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/Deterministic_system
https://en.wikipedia.org/wiki/Monte_Carlo_method
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Figure 38, Estimated HRP correlation matrix. Data Source: A personal elaboration on Python based on: 

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-1.html. 

 

covar = np.multiply(correl, 

                    np.outer(np.array(volatilities), 

                             np.array(volatilities))) 

covar = pd.DataFrame(covar) 

Snippet 11, Building an artificial correlation matrix C with several hierarchical clusters. Data Source: A 

personal elaboration on Python based on: http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-

part-1.html. 

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-1.html
http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-1.html
http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-1.html
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Figure 39, Estimated HRP covariance matrix. Data Source: A personal elaboration on Python based on: 

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-1.html. 

 

 

Figure 40, Quasi-Diagonalization. Data Source: A personal elaboration on Python based on: 

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-1.html. 

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-1.html
http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-1.html


Machine Learning Portfolio Optimization: Hierarchical Risk Parity and Modern Portfolio 

Theory 
 

94 
 

 

The comparative risk analysis is then reported in Figure 41, which show both the in-sample and 

out-of-sample volatilities for each portfolio optimization model taken into consideration105. 

While the validation in-sample shows that the Minimum Variance portfolio outperforms the 

others in terms of volatility minimization, the validation out-of-sample returns more robust 

results for the HRP portfolio. Indeed, “the Minimum Variance portfolio yields overfitted 

solutions that do not produce out-of-sample performing portfolios”106. However, a deeper Monte 

Carlo simulation study is required; indeed the naïve Risk Parity portfolio still exhibits a lower 

standard deviation than the HRP portfolio. For the Monte Carlo analysis: “synthetic returns are 

drawn from a centered Gaussian parameterized by a random covariance matrix, where the 

variances are sampled from a multimodal distribution and the underlying correlation matrix 

from the uniform distribution over the space of correlation matrices using the onion method”107. 

The simulations allow to better understand whether the different portfolio optimization 

techniques provide stable results in and out-of-sample. Figures 42-44 at the end of the chapter 

show, how the HRP volatilities in and out-of-sample distribution is pretty stable compared with 

the Minimum Variance Portfolio. Although the Risk Parity portfolio seems to provide robust 

results, “it is very likely that the sampled correlation matrices do not verify the stylized facts of 

empirical financial correlations matrices”108. Snippet 12 reported below, reports the Python 

codes used to perform the Monte Carlo simulations. 

 

Portfolio Models In-Sample Out-of-Sample 

HRP 0,41 0,38 

1/N uniform weighting 0,44 0,45 

Naïve Risk Parity 0,32 0,29 

Minimum Variance 0,00 7,71 

                Figure 41, In-sample & out-of-sample volatility analysis. Data Source: A personal elaboration on Python. 

 

 
105 The out-of-sample analysis is based simulating the time series of returns over a two-year horizon. 
106 For a deeper analysis see: http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-1.html. 
107 For a deeper analysis see: https://gmarti.gitlab.io/qfin/2018/10/15/hierarchical-risk-parity-part-2.html. 
108 For a deeper analysis see: https://gmarti.gitlab.io/qfin/2018/10/15/hierarchical-risk-parity-part-3.html. 

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-1.html
https://gmarti.gitlab.io/qfin/2018/10/15/hierarchical-risk-parity-part-2.html
https://gmarti.gitlab.io/qfin/2018/10/15/hierarchical-risk-parity-part-3.html
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#Setting the desired methods 

methods = { 

    'Minimum Variance': compute_MV_weights, 

    'Risk Parity': compute_RP_weights, 

    'Hierarchical Risk Parity': compute_HRP_weights, 

} 

empirical_volatilities = {method: {'in-sample' : [], 'out-sample': []} 

                          for method in methods.keys()} 

#Performing the Monte Carlo experiments 

nb_experiments = 2000 

for experiment in tqdm(range(nb_experiments)): 

    true_covariances = sample_cov_matrix(500) 

    in_sample = generate_returns_sample( 

        true_covariances, horizon=3 * 252) 

    out_sample = generate_returns_sample( 

        true_covariances, horizon=3 * 252) 

     

    for name, method in methods.items(): 

        in_sample_weights = method(in_sample.cov()) 

 

        in_sample_vol = compute_portfolio_volatility( 

            in_sample_weights, in_sample) 

 

        out_sample_vol = compute_portfolio_volatility( 

            in_sample_weights, out_sample) 

 

        empirical_volatilities[name][ 

            'in-sample'].append(in_sample_vol) 

        empirical_volatilities[name][ 

            'out-sample'].append(out_sample_vol) 

Snippet 12, Encoding the Monte Carlo simulations. Data Source: A personal elaboration on Python based 

on: http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-2.html. 

 

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-2.html
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       Figure 42, MV volatilities distribution. Data Source: A personal elaboration on Python based on: 

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-2.html. 

 

 

         Figure 43, RP volatilities distribution. Data Source: A personal elaboration on Python based on:   

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-2.html. 

 

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-2.html
http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-2.html
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 Figure 44, HRP volatilities distribution. Data Source: A personal elaboration on Python based on: 

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-2.html. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://gautier.marti.ai/qfin/2018/10/02/hierarchical-risk-parity-part-2.html
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3. EMPIRICAL HIERARCHICAL RISK PARITY PORTFOLIO ANALYSIS 

 

3.1 Data Description  

For the empirical analysis I have decided to build a market index-based portfolio, the Dow Jones 

Industrial Average Stocks portfolio (DJIA) and another one made of the most liquid ETFs 

tracking the major index in US markets in the last decade. The rationale behind my choice is to 

investigate whether a machine learning portfolio can achieve a better result in terms of risk and 

performance metrics than the traditional portfolio risk models; the DJIA index portfolio can be 

used as a good benchmarking tool for the analysis. 

 

3.1.1 The choice of the index: the Dow Jones Industrial Average 

When the average investor thinks about stock markets indices, the first most prominent names 

that come up to her mind are the biggest U.S. market indices, namely Dow Jones, S&P 500, 

Nasdaq 100 and few others. 

In the analysis, I have decided to look in depth of one of those indices given their overall 

reliability of data, and their impact on the global stock market rather than just the US one. 

The S&P 500 is the broadest measure of the US economy; the index value is calculated by 

weighting each company according to its market capitalization and then a divisor, which is 

set by S&P, is applied to produce the final value. 

The Nasdaq 100 is the youngest of the three abovementioned indices having begun trading in 

1985. It represents the largest non-financial companies listed on the Nasdaq exchange and is 

generally regarded as a technology index due the heavy weighting given to tech-based 

companies. Similarly, to the S&P 500 index, the Nasdaq 100 is based on the market 

capitalization of its components. 

On the other hand, The Dow Jones Industrial Average, often referred in short as the ‘Dow’, is 

the oldest index, dating back to 1896 and is the most globally well known. The Dow represents 

30 large cap stocks as determined by the Wall Street Journal109. Unlike the S&P 500 and the 

 
109 The DJIA covers only companies with a large capitalization and high liquidity. 
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Nasdaq 100, the weighting for each component in the Dow Jones Industrial Average is ranked 

according to the share price, and then a divisor applies to create the final value110. 

Therefore, the choice of the Dow 30 index for the analysis is motivated both because it is 

computed in a different way and also because it presents a diversified composition across 

several sectors which makes it more interesting for creating different scenarios. 

Figure 45-47 report the figures and pie charts that illustrate the different Dow Jones 30 

constituents, their market capitalization as of today, their reference sectors and industries. 

The adjusted close prices, the cumulative returns, the portfolio return distribution, the return 

correlation matrix and the descriptive statistics are reported in Figures 48-52. The time period 

considered, is the one going from 01/01/2012, to 01/01/2019111.  

 

 

Figure 45, Pie Chart Market Cap Analysis. Data Source: A personal elaboration on Python. 

 
110 The value of the index is the sum of the price of one share of stock for each component company divided by a factor 

which changes whenever one of the component stocks has a stock split or a stock dividend, so as to generate a consistent 

value for the index. For a deeper study, see: https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average. 
111 This period covers the US business cycle expansions and contractions as defined by the National Bureau of Economic 

Research. For a deeper study, see: https.://www.nber.org/cycles.html. 

https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average
https://www.nber.org/cycles.html
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Ticker Company Sector Industry 

AAPL  

Apple Consumer Goods Electronic Equipment 

AXP  

American Express Financial Consumer Financial Services 

BA  

Boeing Capital Goods Aerospace & Defense 

CAT  

Caterpillar Capital Goods Construction & Agriculture Machinery 

CSCO  

Cisco Systems Technology Networking & Communication Devices 

CVX  

Chevron Energy Oil & Gas - Integrated 

DIS  

Disney Services Broadcasting 

DOW  

Dow Basic Materials Chemicals 

GS 

Goldman Sachs Financial Investment Brokerage - National 

HD  

Home Depot Services Retail (Home Improvement) 

IBM  

International Business 

Machines 

Technology Computer Hardware 

INTC  

Intel Technology Semiconductors 

JNJ  

Johnson & Johnson Healthcare Major Drugs 

JPM 

JP Morgan Chase Financial Money Center Banks 

KO  

Coca-Cola Consumer/Non-

Cyclical 

Beverages (Non-Alcoholic) 

MCD  

McDonald's Services Restaurants 

MMM 

3M Conglomerates Conglomerates 

MRK  

Merck Healthcare Major Drugs 

MSFT 

Microsoft Technology Software & Programming 

NKE  

Nike Consumer Goods Textile - Apparel Footwear & 

Accessories 

PFE  

Pfizer Health Care Major Drugs 

PG 

Procter & Gamble Consumer/Non-

Cyclical 

Personal & Household Products 

TRV  

The Travelers Companies Financial Property & Casualty Insurance 

UNH  

Unitedhealth Group Healthcare Health Care Plans 

UTX  

United Technologies Conglomerates Conglomerates 

V 

Visa Financial Credit Services 

VZ 

Verizon Services Communications Services 

WBA  

Walgreens Services Pharmaceutical Retailers 

WMT 

Wal-Mart Services Retail (Department & Discount) 

XOM  

ExxonMobil Energy Oil & Gas - Integrated 

Figure 46, Dow Jones Industrial Average Stocks composition. Data Source: A personal elaboration on Excel of yahoo-

Finance data. 

    

 

 

http://www.dogsofthedow.com/research/aapl.htm
http://www.dogsofthedow.com/research/axp.htm
http://www.dogsofthedow.com/research/ba.htm
http://www.dogsofthedow.com/research/cat.htm
http://www.dogsofthedow.com/research/csco.htm
http://www.dogsofthedow.com/research/cvx.htm
http://www.dogsofthedow.com/research/dis.htm
http://www.dogsofthedow.com/research/dow.htm
http://www.dogsofthedow.com/research/gs.htm
http://www.dogsofthedow.com/research/hd.htm
http://www.dogsofthedow.com/research/ibm.htm
http://www.dogsofthedow.com/research/intc.htm
http://www.dogsofthedow.com/research/jnj.htm
http://www.dogsofthedow.com/research/jpm.htm
http://www.dogsofthedow.com/research/ko.htm
http://www.dogsofthedow.com/research/mcd.htm
http://www.dogsofthedow.com/research/mmm.htm
http://www.dogsofthedow.com/research/mrk.htm
http://www.dogsofthedow.com/research/msft.htm
http://www.dogsofthedow.com/research/nke.htm
http://www.dogsofthedow.com/research/pfe.htm
http://www.dogsofthedow.com/research/pg.htm
http://www.dogsofthedow.com/research/trv.htm
http://www.dogsofthedow.com/research/unh.htm
http://www.dogsofthedow.com/research/utx.htm
http://www.dogsofthedow.com/research/v.htm
http://www.dogsofthedow.com/research/vz.htm
http://www.dogsofthedow.com/research/wba.htm
http://www.dogsofthedow.com/research/wmt.htm
http://www.dogsofthedow.com/research/xom.htm
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Figure 47, Dow Jones Industrial Average Sector composition. Data Source: A personal application on Python 

from Bloomberg. 
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Figure 48, Dow Jones Industrial Average Adjusted Close Price. Data Source: A personal elaboration on 

Python from Yahoo-Finance. 

 

 

Figure 49, Dow Jones Industrial Average Cumulative Returns. Data Source: A personal elaboration on 

Python from Yahoo-Finance. 
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Figure 50, Dow Jones Industrial Average Return Distribution. Data Source: A personal elaboration on Python 

from Yahoo-Finance. 

 

 

Figure 51, Dow Jones Industrial Average Correlation Matrix. Data Source: A personal elaboration on Python. 
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Index 

Annualized 

Return (%) 

Annualized 

Volatility (%) 

Sharpe 

Ratio 

V 27,461 21,062 1,304 

UNH 26,315 20,573 1,279 

BA 26,126 22,408 1,166 

MSFT 24,306 23,071 1,054 

HD 23,969 18,407 1,302 

NKE 21,225 23,161 0,916 

JPM 19,802 21,802 0,908 

AAPL 19,171 25,459 0,753 

DIS 18,210 18,626 0,978 

CSCO 17,554 22,422 0,783 

MMM 15,688 16,520 0,950 

WBA 15,602 24,308 0,642 

INTC 15,219 23,646 0,644 

MRK 14,954 18,638 0,802 

PFE 14,794 16,689 0,886 

TRV 13,821 16,089 0,859 

JNJ 13,631 14,746 0,924 

DD 13,601 24,413 0,557 

AXP 13,212 20,251 0,652 

MCD 12,764 15,578 0,819 

GS 12,152 23,353 0,520 

VZ 10,935 16,561 0,660 

CAT 10,532 24,623 0,428 

WMT 10,417 18,129 0,575 

RTX 9,023 17,742 0,509 

PG 8,866 14,722 0,602 

KO 8,584 13,909 0,617 

CVX 5,658 20,330 0,278 

XOM 1,443 17,462 0,083 

IBM -1,933 19,246 -0,100 
Figure 52, Dow Jones Industrial Average Descriptive Statistics. Data Source: A personal elaboration on 

Excel. 

 

3.1.2 The all ETFs portfolio 

The second portfolio I have constructed for the final analysis, consists of the 15 most liquid 

ETFs tracking the major index in the US markets. I have concentrated my attention on an all 

ETFs portfolio due to the great importance these index-based funds cover in the financial 



Machine Learning Portfolio Optimization: Hierarchical Risk Parity and Modern Portfolio 

Theory 
 

105 
 

markets nowadays. Indeed, introduced 39 years ago, ETFS are now one of the fastest-growing 

asset types in the financial markets, reaching the total assets under management to almost 

US$6 trillion by the end of 2019112. Furthermore, these instruments are widely used by 

financial advisors and retail investors to equitize cash, undertake diversified investments and 

implement tactical adjustments to portfolios113. 

As for the previous section, the following figures, report the tickers, asset class and the 

corresponding tracked index for each ETF, as well as the returns analysis and the constituent’s 

descriptive statistics (Figures 53). The daily adjusted close prices are downloaded from the 

Yahoo-Finance database from 01/01/2012 to 01/01/2019. 

 

 

Figure 53, ETFs Ticker list, Asset Class & Tracking Index. Data Source: A personal elaboration on Excel. 

 

 
112 For a deeper study, see: https://amers2.apps.cp.thomsonreuters.com/web/cms/?navid=45050. 

 

Ticker Name Asset Class Index

QQQ Invesco QQQ Trust, Series 1 Equity NASDAQ-100 Index

IWF iShares Russell 1000 Growth ETF Equity Russell 1000 Growth Index

SPY SPDR S&P 500 Equity S&P 500 Index

VTI Vanguard Total Stock Market ETF Equity CRSP US Total Market Index

OEF iShares S&P 100 ETF Equity S&P 100 Index

DIA SPDR Dow Jones Industrial Avera Equity Dow Jones Index

IWO iShares Russell 2000 Growth ETF Equity Russell 2000 Growth Index

IJH iShares Core S&P Mid-Cap ETF Equity S&P MidCap 400 Index

MDY SPDR MidCap Trust Series I Equity S&P MidCap 400 Index

IWM iShares Russell 2000 ETF Equity Russell 2000 Index

IWD iShares Russell 1000 Value ETF Equity Russell 1000 Value Index

IWN iShares Russell 2000 Value ETF Equity Russell 2000 Value Index

FEZ SPDR DJ Euro STOXX 50 Etf Equity EURO STOXX 50 Index

PFF iShares US Preferred Stock ETF Fixed Income CE Exchange-Listed Preferred & Hybrid Securities Index

DBC Invesco DB Commodity Index Trac Commodity DBIQ Optimum Yield Diversified Commodity Index

https://amers2.apps.cp.thomsonreuters.com/web/cms/?navid=45050
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Figure 54, ETFs Adjusted Close Price. Data Source: A personal elaboration on Python from Yahoo-Finance. 

 

 

Figure 55, ETFs Cumulative Returns. Data Source: A personal elaboration on Python from Yahoo-Finance. 
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Figure 56, ETFs Return Distribution. Data Source: A personal elaboration on Python from Yahoo-Finance. 

 

 

Figure 57, ETFs Correlation Matrix. Data Source: A personal elaboration on Python from Yahoo-Finance. 
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Figure 58, ETFs Descriptive Statistics. Data Source: A personal elaboration on Excel. 

 

 

3.2 Methodology 

I set the stable period testing for a period of about 8 years, from 01/01/2012 to 01/01/2019, which 

is the usual time horizon of a business cycle. The main goal of the final analysis is to compare 

the two Hierarchical Risk Parity portfolios (the Dow Jones Index one and the one built with the 

fifteen ETFs), with other three traditional portfolio allocation approaches in terms of 

profitability, diversification and risk minimization. The three strategies used as a good 

benchmarking tool for the final test are respectively: The Minimum Variance portfolio (MV) or 

CLA, the Inverse Variance portfolio (IV) and the Equal Weighted portfolio (EW) 114. I have also 

included a random weighted portfolio (RDM) where the weights are randomly chosen according 

to the total number of simulations, which I set equal to 10000. According to several studies 

indeed, random portfolios have shown to outperform their benchmarks, exhibiting higher returns 

and Sharpe ratios115. 

I will conduct the final test both in-sample and out-of-sample, because I want to investigate 

whether the robustness of the HRP portfolio changes in the two testing periods. This is in line 

with de Prado’s findings, according to which the HRP portfolio usually outperforms the 

 
114 For a deeper understanding of the strategies refer to: Chapter 1 (1.3.3, 1.3.7) and Chapter 2 (2.2). 
115 Burns, P. (2007). Random portfolios for performance measurement. In Optimisation, Econometric and Financial 

Analysis (pp. 227-249). Springer, Berlin, Heidelberg. 

Index Annualised Return (%) Annualised Volatility (%) Sharpe Ratio

Invesco QQQ Trust, Series 1 16,683 15,953 1,046

iShares Russell 1000 Growth ETF 13,832 13,657 1,013

SPDR S&P 500 12,489 12,833 0,973

Vanguard Total Stock Market ETF 12,418 12,973 0,957

iShares S&P 100 ETF 12,243 12,857 0,952

SPDR Dow Jones Industrial Avera 12,190 12,581 0,969

iShares Russell 2000 Growth ETF 12,136 17,437 0,696

iShares Core S&P Mid-Cap ETF 11,473 14,127 0,812

SPDR MidCap Trust Series I 11,287 14,218 0,794

iShares Russell 2000 ETF 11,069 16,071 0,689

iShares Russell 1000 Value ETF 10,879 12,666 0,859

iShares Russell 2000 Value ETF 9,973 15,255 0,654

SPDR DJ Euro STOXX 50 Etf 6,360 19,415 0,328

iShares US Preferred Stock ETF 5,290 5,125 1,032

Invesco DB Commodity Index Trac -8,021 14,453 -0,555
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traditional methodologies out-of-sample116. I set the in-sample period from 01/01/2012 to 

01/01/2016, while the out-of-sample testing period goes from 01/01/2016 to 01/01/2019. In the 

latter period, I adjust the portfolio allocation on the first trading day every month117. 

I have personally encoded all the analysis on the Anaconda Jupyter notebook of Python 

(vv.3.7)118. Snippet 13 reports the codes for initializing the different allocation methods and 

finding their weights. Snippet 14 shows the in-sample and out-of-sample tests. 

 
116 de Prado, (2016), Op. cit., pp.59-69. 
117 The out-of-sample approach follows: 

https://github.com/KennnnyZhou/Hierarchical_Risk_Parity/blob/master/Paper%20for%20803%20Project.pdf. 
118 The codes for the test have been personally modified from: 
https://github.com/KennnnyZhou/Hierarchical_Risk_Parity/blob/master/Paper%20for%20803%20Project.pdf; 

https://github.com/hudson-and-thames/research/blob/master/Chapter16/Chapter16.ipynb, 
https://github.com/robertmartin8/PyPortfolioOpt/blob/master/examples.py. 

#----------------------------------------------------------------------------------------------------------- 

#Initializing the allocation methods and getting the weights 

def get_weight(self, data, model): 

        if model == 'HRP': 

            model_weight = self.get_HRP_weights(data) 

        elif model == 'EW': 

            model_weight = self.get_EW_weights(data) 

        elif model == 'MVP': 

            model_weight = self.get_MVP_weights(data) 

        elif model == 'IVP': 

            model_weight = self.get_IVP_weights(data) 

        elif model == 'RDM': 

            model_weight = self.get_RDM_weights(data) 

     

     return model_weight 

 

https://github.com/KennnnyZhou/Hierarchical_Risk_Parity/blob/master/Paper%20for%20803%20Project.pdf
https://github.com/KennnnyZhou/Hierarchical_Risk_Parity/blob/master/Paper%20for%20803%20Project.pdf
https://github.com/hudson-and-thames/research/blob/master/Chapter16/Chapter16.ipynb
https://github.com/robertmartin8/PyPortfolioOpt/blob/master/examples.py
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#----------------------------------------------------------------------------------------------------------- 

#Calculating the weights for each portfolio method   

   

def get_HRP_weights(self, price_data): 

        HRP_result = get_HRP_result(price_data) 

        return HRP_result[0] 

 

    def get_EW_weights(self, price_data): 

        N = price_data.shape[1] 

        EW_weights = [1 / N] * N 

        return pd.Series(EW_weights) 

 

    def get_IVP_weights(self, price_data): 

        return_data = price_data.pct_change().dropna() 

        cov = return_data.cov().values 

        ivp_weights = 1. / np.diag(cov) 

        ivp_weights /= ivp_weights.sum() 

        return pd.Series(ivp_weights) 

 

    def get_MVP_weights(self, price_data): 

        mvp_weights = MVP(price_data)[0] 

        return mvp_weights 

    

   def generateWgts(num): 

       wgts = np.random.random(num) 

      wgts /= wgts.sum() 

      return wgts 

     

 

Snippet 13, Initializing the portfolio allocation strategies. Data Source: A personal elaboration on Python. 



Machine Learning Portfolio Optimization: Hierarchical Risk Parity and Modern Portfolio 

Theory 
 

111 
 

 #----------------------------------------------------------------------------------------------------------- 

    file = 'ETF_Index.csv' 

    price_data = pd.read_csv(file, index_col=0) 

    price_data.index = pd.to_datetime(price_data.index, format="%Y-%m-%d") 

    models_list = ['IVP', 'HRP', 'EW', 'MVP', 'UMVP', 'RDM'] 

   

  ########### in-sample ############ 

    in_start_date = '2012-01-01' 

    in_end_date = '2016-01-01' 

    in_sample = price_data[(price_data.index >= in_start_date ) & (price_data.index < 

in_end_date)] 

    in_test = in_test(in_sample, models_list) 

    r, vol, weights = in_test.run_test(models_list) 

    in_test.plot_SR() 

    in_test.plot_r_vol() 

    in_test.plot_frontier() 

 

    ########### out-of-sample ############## 

    out_start_date = '2012-01-01' 

    out_end_date = '2019-01-01' 

    out_sample = price_data[(price_data.index >= out_start_date ) & (price_data.index < 

out_end_date)] 

    period = 60 

    out_test = out_test(out_sample, period) 

    out_r, out_weights = out_test.run_test(models_list) 

    out_test.plot_cum_return() 

    out_test.plot_SR() 

    out_test.plot_ann_vol() 

 Snippet 14, In-Sample & Out-of-Sample Tests. Data Source: A personal elaboration on Python. 
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3.3 Empirical Results 

In this section I will present the empirical results and descriptive statistics for all the different 

allocation approaches, using the adjusted close price of both the Dow Jones Industrial Average 

Index and the created all ETFs portfolio. For ease of reading, for the ETFs portfolio I will report 

only the in-sample and out-of-sample tests. 

The Dow Jones Index Portfolio in-sample test results, reported below, show that the Random 

Weighted (RDM) portfolio is the one exhibiting the highest Sharpe ratio and annualized return 

(Figure 59 and Figure 60). The Markowitz Minimum Variance (MVP) portfolio on the other 

hand, is the one having the lowest annualized volatility. The Hierarchical Risk Parity (HRP) 

portfolio notably manages to strengthen its robustness in the out-of-sample test. Not only, in line 

with de Prado’s findings, it achieves the lowest annualized volatility outperforming even the 

CLA solution, but it also achieves a very good Sharpe ratio result (Figure 62 and Figure 63). In 

the out-of-sample test, the MV portfolio seems to be subject to random shocks, and therefore it 

is much more volatile as demonstrated by its cumulative return and annualized volatility’s 

results.  

As we can understand by analyzing the different portfolios weight allocation, the HRP one 

provides a more stable and robust algorithm in optimizing the portfolio construction (Figure 66). 

The CLA portfolio concentrates almost the 75% of the holdings on the top-4 investments and 

assigns a zero weight to most of the assets (19 out of 30) (Figure 71). The main rationale behind 

this result, is that the algorithm has the goal of minimizing the whole portfolio volatility, 

therefore it focuses on those assets exhibiting the lowest risk. The IV portfolio instead, has 

allocated the weights more uniformly across the portfolio, with a greater proportion assigned to 

the first 4-5 securities (Figure 77). The HRP portfolio seems to find a balance between the before 

mentioned portfolios.  Indeed, it focuses its attention more on the top 4-5 assets, assigning the 

greater share to the Johnson & Johnson security. Nonetheless, unlike the MV portfolio, it allots 

its resources more evenly, giving a non-zero weight to all the constituents in the portfolio. 

The HRP portfolio presents a very good Value at Risk (VaR) indicator for a $1M USD 

investment (Figure 68 and Figure 69). The maximum portfolio loss the HRP portfolio can bear 

with 99% level of confidence, over a one-day period is 263961,11 USD, a level below both the 

IV and EW portfolios values. Only the MV one, consistent with its objective, achieves a better 

result, exhibiting a VaR of 249258,76 USD. Furthermore, from Figure 70, we can notice that 
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the HRP portfolio has a very good drawdown measure. Compared to the other allocation 

methods, it recovers more easily from a negative trend of the stocks returns over a specified 

period of time. Since the MV portfolio has concentrated its attention on only a few securities, it 

is subject to much more negative impact by random shocks than HRP (Figure 76). 

The all-ETFs portfolio (3.3.2) provides interesting result as well. For what concerns the weight 

distribution, the results are consistent with the Dow Jones Index portfolio. However, the in-

sample and out-of-sample tests give different outputs. From the in-sample results, we notice that 

the MV portfolio exhibits the highest Sharpe ratio and the lowest annualized volatility (Figure 

89 and Figure 90). Figure 91 reports the in-sample efficient frontier, that shows the HRP 

portfolio is the only one, together with the MV portfolio, to lie on the line. In the out-of-sample 

test, the HRP portfolio does not manage to beat the MV portfolio in terms of risk minimization, 

though it still achieves a very low level of volatility, but this time, it presents the highest level of 

Sharpe ratio compared to the other allocation approaches (Figure 93 and Figure 94). The EW 

and RDM portfolios are the ones exhibiting the worst indicators out of sample. 
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3.3.1 The Dow Jones Index Portfolio Results 

 

In-Sample Test 

 

 

Figure 59, In-Sample Sharpe Ratio. Data Source: A personal elaboration on Python. 

 

 

Figure 60, In-Sample Annualized Return & Volatility. Data Source: A personal elaboration on Python. 
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Out-of-Sample Test 

 

 

Figure 61, Out-of-Sample Cumulative Returns. Data Source: A personal elaboration on Python. 

 

 

Figure 62, Out-of-Sample Sharpe Ratio. Data Source: A personal elaboration on Python. 



Machine Learning Portfolio Optimization: Hierarchical Risk Parity and Modern Portfolio 

Theory 
 

116 
 

 

Figure 63, Out-of-Sample Annualized Volatility. Data Source: A personal elaboration on Python. 

 

The HRP Portfolio 

 

 

Figure 64, HRP Tree Clustering Process. Data Source: A personal elaboration on Python. 
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Figure 65, HRP Ordered Distance Matrix. Data Source: A personal elaboration on Python. 

 

 

Figure 66, HRP Portfolio Weights. Data Source: A personal elaboration on Python. 
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                                                  Skew: -0,3260888447524245 

Kurtosis: 3,922758068181932 

 
Figure 67, HRP Portfolio Returns Distribution. Data Source: A personal elaboration on Python. 

 

N Day VaR Results: 

1-day VaR @ 99% confidence: 263961,11 

2-day VaR @ 99% confidence: 373297,38 

3-day VaR @ 99% confidence: 457194,05 

4-day VaR @ 99% confidence: 527922,22 

5-day VaR @ 99% confidence: 590234,99 

6-day VaR @ 99% confidence: 646570,03 

7-day VaR @ 99% confidence: 698375,45 

8-day VaR @ 99% confidence: 746594,76 

9-day VaR @ 99% confidence: 791883,33 

10-day VaR @ 99% confidence: 834718,32 

11-day VaR @ 99% confidence: 875459,96 

12-day VaR @ 99% confidence: 914388,11 

13-day VaR @ 99% confidence: 951725,32 

14-day VaR @ 99% confidence: 987652,04 

15-day VaR @ 99% confidence: 1022316,98 

 Figure 68, N Day VaR Results. Data Source: A personal elaboration on Python. 
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Figure 69, HRP VaR over 15-days. Data Source: A personal elaboration on Python. 

 

 

Figure 70, HRP Portfolio Drawdown. Data Source: A personal elaboration on Python. 
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 The CLA Portfolio 

 

 

Figure 71, CLA Portfolio weights. Data Source: A personal elaboration on Python. 

 

 

Figure 72, CLA Efficient Frontier. Data Source: A personal elaboration on Python. 
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Skew: -0,2875361042783768 

Kurtosis: 3,4698266816637124 

 
Figure 73, CLA Portfolio Returns Distribution. Data Source: A personal elaboration on Python. 

 

N Day VaR Results: 

1-day VaR @ 99% confidence: 249258,76 

2-day VaR @ 99% confidence: 352505,11 

3-day VaR @ 99% confidence: 431728,83 

4-day VaR @ 99% confidence: 498517,51 

5-day VaR @ 99% confidence: 557359,52 

6-day VaR @ 99% confidence: 610556,77 

7-day VaR @ 99% confidence: 659476,68 

8-day VaR @ 99% confidence: 705010,23 

9-day VaR @ 99% confidence: 747776,27 

10-day VaR @ 99% confidence: 788225,39 

11-day VaR @ 99% confidence: 826697,77 

12-day VaR @ 99% confidence: 863457,66 

13-day VaR @ 99% confidence: 898715,22 

14-day VaR @ 99% confidence: 932640,86 

15-day VaR @ 99% confidence: 965375,01 

Figure 74, N Day VaR Results. Data Source: A personal elaboration on Python. 
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Figure 75, CLA VaR over 15-days. Data Source: A personal elaboration on Python. 

 

 

Figure 76, CLA Portfolio Drawdown. Data Source: A personal elaboration on Python. 
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 The Inverse Variance (IV) Portfolio 

 

 

Figure 77, IV Portfolio weights. Data Source: A personal elaboration on Python. 

 

Skew: -0,14808740533053372 

Kurtosis: 5,257294574696461 

 
Figure 78, IV Portfolio Returns Distribution. Data Source: A personal elaboration on Python. 
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N Day VaR Results: 

1-day VaR @ 99% confidence: 331826,14 

2-day VaR @ 99% confidence: 469273,03 

3-day VaR @ 99% confidence: 574739,74 

4-day VaR @ 99% confidence: 663652,29 

5-day VaR @ 99% confidence: 741985,81 

6-day VaR @ 99% confidence: 812804,73 

7-day VaR @ 99% confidence: 877929,45 

8-day VaR @ 99% confidence: 938546,06 

9-day VaR @ 99% confidence: 995478,43 

10-day VaR @ 99% confidence: 1049326,4 

11-day VaR @ 99% confidence: 1100542,81 

12-day VaR @ 99% confidence: 1149479,48 

13-day VaR @ 99% confidence: 1196416,17 

14-day VaR @ 99% confidence: 1241579,74 

15-day VaR @ 99% confidence: 1285157,12 

Figure 79, N Day VaR Results. Data Source: A personal elaboration on Python. 

 

 

Figure 80, IV VaR over 15-days. Data Source: A personal elaboration on Python. 
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Figure 81, CLA Portfolio Drawdown. Data Source: A personal elaboration on Python. 

 

 The Equal-Weighted (EW) Portfolio 

 

 

Figure 82, EW Portfolio weights. Data Source: A personal elaboration on Python. 
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Skew: -0,07168131420992294 

Kurtosis: 5,906773749543939 

 
Figure 83, EW Portfolio Returns Distribution. Data Source: A personal elaboration on Python 

 

N Day VaR Results: 

1-day VaR @ 99% confidence: 363062,37 

2-day VaR @ 99% confidence: 513447,73 

3-day VaR @ 99% confidence: 628842,48 

4-day VaR @ 99% confidence: 726124,75 

5-day VaR @ 99% confidence: 811832,15 

6-day VaR @ 99% confidence: 889317,56 

7-day VaR @ 99% confidence: 960572,75 

8-day VaR @ 99% confidence: 1026895,46 

9-day VaR @ 99% confidence: 1089187,12 

10-day VaR @ 99% confidence: 1148104,03 

11-day VaR @ 99% confidence: 1204141,67 

12-day VaR @ 99% confidence: 1257684,95 

13-day VaR @ 99% confidence: 1309040,0 

14-day VaR @ 99% confidence: 1358455,01 

15-day VaR @ 99% confidence: 1406134,52, 

Figure 84, N Day VaR Results. Data Source: A personal elaboration on Python. 
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Figure 85, EW VaR over 15-days. Data Source: A personal elaboration on Python. 

 

 

Figure 86, EW Portfolio Drawdown. Data Source: A personal elaboration on Python. 
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The Random-Weighted (RDM) Portfolio 

 

 

Figure 87, EW Portfolio weights. Data Source: A personal elaboration on Python. 

 

 

Figure 88, RDM Portfolio Simulated Efficient Frontier. Data Source: A personal elaboration on Python. 
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3.3.2 The ETF Portfolio Results 

 

In-Sample Test 

 

 

Figure 89, In-Sample Sharpe Ratio. Data Source: A personal elaboration on Python. 

 

 

Figure 90, In-Sample Annualized Return & Volatility. Data Source: A personal elaboration on Python. 
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Figure 91, In-Sample Efficient Frontier. Data Source: A personal elaboration on Python. 

 

Out-of-Sample Test 

 

Figure 92, Out-of-Sample Cumulative Returns. Data Source: A personal elaboration on Python. 
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Figure 93, Out-of-Sample Sharpe Ratio. Data Source: A personal elaboration on Python. 

 

 

Figure 94, Out-of-Sample Annualized Volatility. Data Source: A personal elaboration on Python. 
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CONCLUSIONS 

 

Since an investor doesn’t have the option of not risking, the only option he has is to choose the 

amount and type of risk he wants to be exposed to. In order to do this, it is necessary to manage 

the portfolio risks on a continuous basis. This is the main goal of risk management, which is the 

set of actions aimed at configuring the portfolio to maintain risk exposure within set limits and 

to optimize risks with respect to the conditions imposed. Only after this meticulous and 

comprehensive assessment it is possible to identify the most efficient portfolio that provides the 

best returns for the accepted level of risks. For this reason, I was intrigued by the possibilities of 

the de Prado’s Hierarchical Risk Parity model since it offers an excellent allocation tool for 

minimizing the portfolio overall volatility. 

The main object of this thesis was to deeply investigate and strengthen the understanding of the 

main portfolio allocation strategies and compare their performance and risk metrics with the de 

Prado’s Hierarchical Risk Parity portfolio. It is particularly interesting to analyze whether 

machine learning based portfolios outperform both the Markowitz minimum variance or CLA 

and the traditional risk-based portfolios. This purpose was carried out by examining the 

developments of the main portfolio optimization academic literature along with the recent 

theories and new algorithms used in portfolio construction. 

Although representing an intuitive quantitative framework, the Markowitz mean-variance 

approach is known to deliver unstable and inconsistent solutions. The main root of the problem 

is related to the difficulties in estimating the expected return. For this reason, researchers and 

economists have tried to develop new models and theories that would base their results on the 

estimation of the covariance matrix rather than the returns. This has led to the so called “Risk-

based” portfolio optimization problems, portfolio strategies that mainly focus their attention on 

the risk factors. Despite their good performance and their applicability on industry-wide portfolio 

optimization problems, they tend to provide affected results due to their great sensitivity to the 

covariance matrix inversion. Furthermore, the traditional risk-based portfolios usually have 

shown to provide poor results out-of-sample. Therefore, because of the instability and inaccuracy 

of the afore-mentioned portfolio optimization methodologies, Bailey and Lòpez de Prado came 
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up with the Hierarchical Risk Parity portfolio, an approach that could address the major quadratic 

programming limitations. 

The HRP methodology avoids the condition of the invertibility of the covariance matrix and 

offers an efficient approach that helps constructing more robust portfolios in terms of weights 

diversification, risk minimization and performance metrics. 

In the empirical and final chapter of the thesis I have compared five different portfolio allocation 

approaches for two distinct portfolios: the Dow Jones Industrial Average portfolio and all ETFs 

portfolio. The analysis is carried out over the period that goes from 01/01/2012 to 01/01/2019. I 

apply the optimization models on the performance of the two studied portfolios from 01/01/2012 

to 01/01/2016 for the in-sample test and out-of-sample from the 01/01/2016 to 01/01/2019. The 

main purpose of this empirical research is to investigate whether HRP based portfolios 

outperform the traditional strategies out-of-sample, as noted by de Prado. 

I have constructed and analyzed 4 long-only asset allocation strategies that are used as a good 

benchmarking tool for the HRP approach: The Minimum Variance portfolio (MV) or CLA, the 

Inverse Variance portfolio (IV), the Equal Weighted portfolio (EW) and a Random Weighted 

portfolio (RDM). Subsequently I have applied these strategies on the two constructed portfolios. 

Even if the results are subject to the investment universe (an index-based portfolio and an all 

ETFs portfolio), some interesting conclusion can be pronounced. 

The Dow Jones Index Hierarchical Risk Parity (HRP) portfolio notably manages to strengthen 

its robustness in the out-of-sample test. Not only, in line with de Prado’s findings, it achieves the 

lowest annualized volatility outperforming even the CLA solution, but it also achieves a very 

good Sharpe ratio result. In the out-of-sample test, the MV portfolio seems to be subject to 

random shocks, and therefore it is much more volatile as demonstrated by its cumulative return 

and annualized volatility’s results. For what concerns the all ETFs HRP portfolio, though it does 

not manage to beat the MV portfolio in terms of risk minimization out-of-sample, it still achieves 

a very low level of volatility, and it presents the highest level of Sharpe ratio compared to the 

other allocation approaches. Both the Dow Jones Index and the all ETFs HRP portfolios exhibit 

the lowest level of maximum drawdown, a very low level of Value at Risk (even if higher than 

the one achieved with the minimum variance approach) and a very good return distribution as 

well. Furthermore, the HRP algorithm, allows for a much more uniform weight allocation 
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especially if compared with the portfolios built with the CLA algorithm, which literally 

concentrate 75% of their holdings on the top 4-5 investments. This means the HRP methodology 

allows for a better risk diversification. 

From the empirical results, therefore, it is possible to conclude the HRP strategy seems a good 

approach to obtain well diversified portfolios. In addition to that, it leads to an optimization of 

the risk and performance metrics, especially in the out-of-sample test.  

Nonetheless, there are few features that might be implemented to improve the model presented 

in this thesis I leave as a suggestion for further research. First, the HRP portfolio allocation 

approach allows only for long positions. Therefore, short sales and capital gains taxes can be 

added in the analysis. Secondly, new portfolio allocation strategies can be proposed for 

benchmarking the HRP portfolio. For instance, a Maximum Diversification portfolio (MD) and 

an Equal Risk Contribution portfolio (ERC) can be used as a good comparison tool. Then, the 

HRP method still does not produce fully diversified portfolios, with certain securities exhibiting 

the greatest weight for an extended period of time. Lastly, it would be interesting to evaluate the 

HRP performance out-of-sample via Monte Carlo as done by de Prado in his paper “Building 

Diversified Portfolios that Outperform Out-of-Sample”. Indeed, a Monte Carlo experiment 

might provide even a better result in terms of variance minimization when the model is tested 

out-of-sample. 
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EXECUTIVE SUMMARY 

 

The paper aims at highlighting and analyzing the development of the main portfolio allocation 

approaches. The de Prado discovery of the Hierarchical Risk Parity (HRP) algorithm for 

optimizing a financial portfolio, deeply questions the efficiency of the Markowitz efficient 

frontier theory as well as the traditional portfolio allocation strategies. Adopting a machine 

learning technique in the asset allocation process, allows to develop a more robust portfolio in 

terms of risk minimization and performance metrics. The HRP methodology helps building a 

diversified portfolio based on the information contained in the covariance matrix. In the 

empirical analysis, the HRP portfolio stands out in the out-of-sample test, achieving lower risk 

indicators compared with other traditional portfolio construction models. 

 

One of the most important and difficult challenges in the asset management industry is related 

to the optimal asset allocation choice. Investment portfolio theories govern the way an individual 

investor or firm allocates his/its wealth and assets within an investing portfolio. Investment 

managers try to achieve the highest return adjusted for risk by analyzing the way the risk and 

return evolves over time. In recent years, a growing capital flow has poured onto the financial 

markets by means of increasingly diverse and complex portfolio techniques with the goal of 

achieving a satisfactory level of return. However, a portfolio is always and anyhow exposed to 

some level and type of risk, which is directly and strongly correlated with the portfolio return 

level. Therefore, the person in charge of managing the portfolio needs to set the risk/return 

profile in compliance with his/her preferences and objectives. The pioneer of the theories 

governing this process is the American economist Harry Markowitz, who in 1952 published the 

paper “Portfolio Selection” introducing the Mean-Variance portfolio allocation approach, which 

would have marked a milestone in the portfolio theory. Considered the father of the Modern 

Portfolio Theory (MPT), Markowitz was the first scholar developing a meticulous mathematical 

structure for portfolio optimization that could recognize the subtle yet strong relation existing 

between risk and return. He rejected the common idea that the optimal portfolio is necessarily 

the one achieving the highest return. His mean-variance approach is indeed an investment theory 

which tries to maximize the portfolio expected return for a defined and accepted level of risk, or 
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equivalently minimize risk for a given level of expected return, by carefully deciding the various 

securities allocation. Markowitz managed to formulate the “optimal” approach for allocating 

resources across risky securities in a static world, where people are only interested in the mean 

and variance of the portfolio’s return. According to the mean-variance environment, everyone 

faces a trade-off when constructing his/her optimal portfolio. Risk-averse investors would be 

willing to give up a bit of return in change of safer portfolios, while risk-seeking people want to 

maximize the expected return no matter the variance. The only efficient portfolios are those that 

for any defined amount of variance, have the highest possible expected return. The set of all 

these portfolios would construct the so called “efficient frontier” defined as the bundle of optimal 

portfolios that show the highest expected return for a given level of risk or the lowest risk for a 

given level of expected return. In addition to publishing his masterpiece “Portfolio Selection” 

in 1952, Markowitz, while working for the RAND Corporation, developed an algorithm for 

solving quadratic problems in 1956. The brilliant and young economist implemented his 

groundbreaking mean-variance approach into an optimization algorithm, the Critical Line 

Algorithm (CLA). The Markowitz efficient frontier solution requires both an equality constraint 

(that the portfolio’s weights sum up to one) and an inequality constraint (a lower and upper 

bound for the weights, which are 0 and 1 respectively), in order to be solved. As there is no 

analytic solution to this problem, the breakthrough of the young American scholar was to 

develop an open-source algorithm that could solve inequality-constrained portfolio optimization 

problems and compute the optimal set of efficient portfolios lying on the curve119. 

 

 
119 CLA-derived Efficient Frontier. Data Source: A personal elaboration on Python. 
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The next larger step in the modern portfolio theory was the development of the Capital-Asset 

Pricing Model (CAPM) by William Sharpe in 1964, which became another evidence for 

researchers and investors of the interconnections between the asset risk and asset return. Unlike 

the mean-variance approach, the CAPM introduces the distinction of two types of risks: the 

systematic risk (that portion of risk that cannot be diversified away and affects all the securities) 

and the idiosyncratic or unsystematic risk (which depends on the company/industry specific 

characteristics, and can be eliminated through diversification). 

Since Markowitz work, asset managers as well as academics around all the world have been 

focusing on carrying out theories and new approaches to build robust portfolios. The financial 

industry, however, is a very volatile one:  a constant critical analysis of the rules governing the 

risk-return relationship is therefore always required.  The global financial crisis of 2008 has 

displayed all the limitations and drawbacks of the traditional portfolio allocation methodologies. 

The Markowitz efficient frontier theory has demonstrated to lead to inconsistent outcomes 

especially due to the challenges in estimating the expected returns and the covariances for the 

different asset classes. Furthermore, even the CLA solution somewhat produced unstable results. 

Indeed, small deviations in the forecasted returns lead the algorithm to develop very different 

portfolios. The CAPM instead, although widely used in the academic financial world due to its 

simplicity and well-defined framework for estimating the cost of capital, was subject to criticism 

due to its unrealistic and oversimplified assumptions. Therefore, academics in the asset 

management world felt the need to develop new theoretical frameworks that could lead to an 



Machine Learning Portfolio Optimization: Hierarchical Risk Parity and Modern Portfolio 

Theory 
 

138 
 

optimal asset allocation. Among the new portfolio allocation approaches, the ones that grasped 

the most attention from practitioners and researchers are the risk-based methodologies. Since the 

portfolio expected return is considered unpredictable, these new strategies are risk-based ones 

because they try to estimate the risk factors affecting each asset in the portfolio. The new 

portfolio weights depend only on the specific risk factors affecting each security in the portfolio. 

Some of the most relevant risk-based models include: Equal Risk Contribution portfolio (ERC) 

where each security contributes the same amount to the overall portfolio volatility; the Equally 

Weighted portfolio or Naïve portfolio strategy (EW) that evenly allocates the same weight on 

each asset; the Global Minimum Variance portfolio (GMV), which indicates the efficient frontier 

portfolio exhibiting the lowest possible volatility ; the Maximum Diversification Portfolio 

(MDP) that maximizes the diversification ratio; the Maximum Sharpe Ratio Portfolio (MSP) 

finding the optimal capital allocation in the presence of a riskless asset; the Inverse Volatility 

Strategy or Naïve Risk Parity (IV), a portfolio allocation strategy which allocates to each 

component a weight equal to the inverse of their volatilities, measured by the standard deviation; 

the Market-Capitalization-Weighted Portfolio (MCWP) which computes the weights as the 

average of the market capitalizations of the portfolio constituents over the sum of the average of 

the same capitalizations. 

All these new portfolio allocation strategies prevented the estimation of the unpredictable asset 

returns by focusing exclusively on the covariance matrix. However, over the course of the years, 

a large empirical evidence has demonstrated that risk-based allocation methodologies, requiring 

the covariance matrix inversion, result into serious estimation errors that may cancel out the 

advantages of portfolio diversification. 

In order to overcome this problem, the Spanish economist Marcos Lopez de Prado was the first 

researcher proposing a hierarchical model for the portfolio construction. A hierarchical structure 

can indeed help solving complex problems breaking them down into smaller and simpler 

subgroups whose solutions are then grouped together afterwards. The breakthrough of de Prado 

was to develop an algorithm, the Hierarchical Risk Parity portfolio (HRP), that could solve CLA 

instability issues and at the same time produce portfolios that could outperform the traditional 

risk-based allocation strategies. The HRP model, by avoiding the inversion of the covariance 

matrix and identifying a hierarchical structure in the portfolio weights, applies graph theory and 
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machine learning techniques to construct a diversified portfolio based on the information 

contained in the covariance matrix. The HRP algorithm fully concentrates on the covariance 

matrix, hence dropping the forecasted returns. It operates through three distinct phases: 1) Tree 

Clustering, 2) Quasi-diagonalization and 3) Recursive Bisection. The first step of the HRP 

approach allows to group the securities in the portfolio under a hierarchical structure, where 

clusters of similar assets are created using the correlation coefficients. A typical hierarchical 

portfolio visualization is a dendrogram graph120. 

 

 

 

The quasi-diagonalization process instead, allows a reorganization of the columns and rows of 

the covariance matrix using the information of the formed clusters, so that the largest entries 

are placed along the diagonal. The main goal of the quasi-diagonalization algorithm is to group 

similar holdings together while dissimilar ones lie around the matrix121. 

 

 
120 Tree Clustering Dendrogram graph. Data Source: A personal elaboration on Python. 
121 Quasi-diagonalization stage of the HRP algorithm. Data Source: A personal elaboration on Python. 
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Finally, the last stage of the algorithm, the Recursive Bisection, defines the optimal allocation 

by assigning the final weights to the securities in the portfolio122. 

 

 

 

 
122 HRP Portfolio weights. Data Source: A personal elaboration on excel. 
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The HRP portfolio proposed by de Prado in his famous paper “Building Diversified Portfolios 

that outperform out-of-sample” in 2016, presents outstanding results in terms of robustness. 

Indeed, one of the main discoveries of de Prado, is that the machine learning based portfolio 

provides better risk performance indicators out-of-sample, thus outperforming the traditional 

portfolio allocations methodologies 

Since an investor doesn’t have the option of not risking, the only option he has is to choose the 

amount and type of risk he wants to be exposed to. In order to do this, it is necessary to manage 

the portfolio risks on a continuous basis. This is the main goal of risk management, which is the 

set of actions aimed at configuring the portfolio to maintain risk exposure within set limits and 

to optimize risks with respect to the conditions imposed. Only after this meticulous and 

comprehensive assessment it is possible to identify the most efficient portfolio that provides the 

best returns for the accepted level of risks. For this reason, I was intrigued by the possibilities of 

the de Prado’s Hierarchical Risk Parity model as it provides an innovative and dynamic portfolio 

optimization framework which gives strong empirical results in terms of risk minimization and 

remarkably uses a machine learning algorithm, offering a high-level understanding through 

digital images. I also observed the empirical literature on the HRP model is quite scarce, 

something which may prevent other practitioners from further adopting the algorithm. 

The above-mentioned considerations lead me to empirically test the validity of the HRP portfolio 

approach. For the empirical analysis I have decided to compare five different portfolio allocation 

approaches for two distinct portfolios: the Dow Jones Industrial Average portfolio and all ETFs 

portfolio. The choice of the Dow 30 index for the analysis is motivated both because it is 

computed in a different way and because it presents a diversified composition across several 

sectors which makes it more interesting for creating different scenarios123. On the other hand, I 

have concentrated my attention on an all ETFs portfolio due to the great importance these index-

based funds cover in the financial markets nowadays124.  

The analysis is carried out over the period that goes from 01/01/2012 to 01/01/2019. I apply the 

optimization models on the performance of the two studied portfolios from 01/01/2012 to 

01/01/2016 for the in-sample test and out-of-sample from the 01/01/2016 to 01/01/2019. The 

 
123 ETFs portfolio constituents. Data Source: A personal elaboration on excel from Yahoo-finance. 
124 Dow Jones 30 constituents. Data Source: A personal elaboration on excel from Yahoo-finance. 
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main purpose of this empirical research is to investigate whether HRP based portfolios 

outperform the traditional strategies out-of-sample, as noted by de Prado. 
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I have constructed and analyzed 4 long-only asset allocation strategies that are used as a good 

benchmarking tool for the HRP approach: The Minimum Variance portfolio (MV) or CLA, the 

Inverse Variance portfolio (IV), the Equal Weighted portfolio (EW) and a Random Weighted 

portfolio (RDM), where the weights are randomly chosen according to the total number of 

simulations, which I set equal to 10000. Subsequently I have applied these strategies on the two 

constructed portfolios. The main goal of the final analysis is to compare the two Hierarchical 

Risk Parity portfolios (the Dow Jones Index one and the one built with the fifteen ETFs), with 

other three traditional portfolio allocation approaches in terms of profitability, diversification 

and risk minimization. I have personally encoded all the analysis on the Anaconda Jupyter 

notebook of Python (vv.3.7). 

Ticker Company Sector Industry 

AAPL  

Apple Consumer Goods Electronic Equipment 

AXP  

American Express Financial Consumer Financial Services 

BA  

Boeing Capital Goods Aerospace & Defense 

CAT  

Caterpillar Capital Goods Construction & Agriculture Machinery 

CSCO  

Cisco Systems Technology Networking & Communication Devices 

CVX  

Chevron Energy Oil & Gas - Integrated 

DIS  

Disney Services Broadcasting 

DOW  

Dow Basic Materials Chemicals 

GS 

Goldman Sachs Financial Investment Brokerage - National 

HD  

Home Depot Services Retail (Home Improvement) 

IBM  

International Business 

Machines 

Technology Computer Hardware 

INTC  

Intel Technology Semiconductors 

JNJ  

Johnson & Johnson Healthcare Major Drugs 

JPM 

JP Morgan Chase Financial Money Center Banks 

KO  

Coca-Cola Consumer/Non-

Cyclical 

Beverages (Non-Alcoholic) 

MCD  

McDonald's Services Restaurants 

MMM 

3M Conglomerates Conglomerates 

MRK  

Merck Healthcare Major Drugs 

MSFT 

Microsoft Technology Software & Programming 

NKE  

Nike Consumer Goods Textile - Apparel Footwear & 

Accessories 

PFE  

Pfizer Health Care Major Drugs 

PG 

Procter & Gamble Consumer/Non-

Cyclical 

Personal & Household Products 

TRV  

The Travelers Companies Financial Property & Casualty Insurance 

UNH  

Unitedhealth Group Healthcare Health Care Plans 

UTX  

United Technologies Conglomerates Conglomerates 

V 

Visa Financial Credit Services 

VZ 

Verizon Services Communications Services 

WBA  

Walgreens Services Pharmaceutical Retailers 

WMT 

Wal-Mart Services Retail (Department & Discount) 

XOM  

ExxonMobil Energy Oil & Gas - Integrated 
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The Dow Jones Index Hierarchical Risk Parity (HRP) portfolio notably manages to strengthen 

its robustness in the out-of-sample test. Not only, in line with de Prado’s findings, it achieves the 

lowest annualized volatility outperforming even the CLA solution, but it also achieves a very 

good Sharpe ratio result125. In the out-of-sample test, the MV portfolio seems to be subject to 

random shocks, and therefore it is much more volatile as demonstrated by its cumulative return 

and annualized volatility’s results. 

 

 

 

 

 

 
125 Dow Jones Portfolio Sharpe ratio and annualized volatility. Data Source: A personal elaboration on Python. 
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For what concerns the all ETFs HRP portfolio, the in-sample efficient frontier, shows the HRP 

portfolio is the only one, together with the MV portfolio, to lie on the line126. 

 

 

 

Though it does not manage to beat the MV portfolio in terms of risk minimization out-of-sample, 

it still achieves a very low level of volatility, and it presents the highest level of Sharpe ratio 

compared to the other allocation approaches127.  

 

 
126 In-sample ETF portfolio efficient frontier. Data Source: A personal elaboration on Python. 
127 ETF Portfolio Sharpe ratio and annualized volatility. Data Source: A personal elaboration on Python. 
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Both the Dow Jones Index and the all ETFs HRP portfolios exhibit the lowest level of maximum 

drawdown, a very low level of Value at Risk (even if higher than the one achieved with the 

minimum variance approach) and a very good return distribution as well. Furthermore, the HRP 

algorithm, allows for a much more uniform weight allocation especially if compared with the 

portfolios built with the CLA algorithm, which literally concentrate 75% of their holdings on the 

top 4-5 investments. This means the HRP methodology allows for a better risk diversification128. 

 

 
128 Dow Jones HRP & CLA portfolio weights distribution. Data Source: A personal elaboration on Python. 
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From the empirical results, therefore, it is possible to conclude the HRP strategy seems a good 

approach to obtain well diversified portfolios. In addition to that, it leads to an optimization of 

the risk and performance metrics, especially in the out-of-sample test.  

Nonetheless, there are few features that might be implemented to improve the model presented 

in this thesis I leave as a suggestion for further research. First, the HRP portfolio allocation 

approach allows only for long positions. Therefore, short sales and capital gains taxes can be 

added in the analysis. Secondly, new portfolio allocation strategies can be proposed for 

benchmarking the HRP portfolio. For instance, a Maximum Diversification portfolio (MD) and 

an Equal Risk Contribution portfolio (ERC) can be used as a good comparison tool. Then, the 

HRP method still does not produce fully diversified portfolios, with certain securities exhibiting 

the greatest weight for an extended period of time. Lastly, it would be interesting to evaluate the 

HRP performance out-of-sample via Monte Carlo as done by de Prado in his paper “Building 

Diversified Portfolios that Outperform Out-of-Sample”. Indeed, a Monte Carlo experiment 
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might provide even a better result in terms of variance minimization when the model is tested 

out-of-sample. 
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