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1. Introduction 

The earliest competition laws trace back to Roman times, when efforts were made to limit 

fluctuations of prices and to prevent unfair trade practises. Such attempts continued during the Middle 

Ages: in particular, the focus was on avoiding unfair trading practises (like forestalling1) and 

monopolies. In fact, as stated by Colino (2011), “At the time of the Magna Carta (1215) legislation 

provided that all monopolies were to be contrary to the law because of their pernicious effect on 

individual freedom.” The foundation for modern competition law was laid in this period, even if the 

concept of collusion made its way into the realm of trade regulation only from the 17th century 

onwards.  

In order to keep up with innovation and face the new challenges that arose over time as 

societies grew and technological developments took place, competition policy has kept evolving. 

Such evolution consisted in new practises to regulate (like merger control), in changes in the approach 

towards already regulated practises (for example, forestalling is nowadays obsolete) and also in a 

more international approach to tackle anti-competitive issues (as represented by the European 

competition law). 

As new challenges for competition law appear on the horizon, it is important to predict what 

they will look like and to understand in advance how to handle them, in order to provide efficient 

tools to antitrust authorities with a small lag of time.  

In this work, the issues related to pricing algorithms will be explored, and the associated risks 

for competition will be discussed. While some area of antitrust law seems to provide safeguards 

against the anti-competitive use of pricing algorithms, actual legal framework may result inadequate 

in case more complex technologies will be successful in achieving coordination, as this work will 

discuss. 

The rest of this paper is organised as follows. Chapter 2 starts with a definition of collusion, 

describes in detail several facilitating market features and discusses welfare impact as well as the 

current common legal approach. Chapter 3 presents pricing algorithms and debates the risk that their 

implementation brings to competition. Chapter 4 is devoted to the description of an experiment by 

Calvano et al. (2019a) in which algorithms provided with Artificial Intelligence learn to collude. 

Chapter 5 discusses possible changes in competition policy to face the threat represented by self-

learning algorithms. Chapter 6 concludes.  

                                                 
1 Forestalling refers to the practise of purchasing commodities before they reach the marketplace and then inflate the 
price. 
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2. Collusion 

a. Definition and facilitating features 

The term collusion refers to any form of coordination or agreement among rivals within the 

same industry, undertaken for the purpose of gaining unfair market advantage and raising profits 

above the level obtained in a situation of competitive equilibrium. Stated in other terms, collusion 

refers to a joint profit maximization strategy adopted by competing firms. 

It is common to distinguish between explicit and tacit agreements to collude, where the 

distinction hinges on how the agreement is reached. The former case occurs when competitors jointly 

design a common plan of action and exchange mutual assurance to follow it, and involves overt 

communication and discussion among companies. The group of firms which agree to coordinate 

behaviours to increase profits, acting as a single producer, is termed cartel.  

Tacit collusion occurs instead when businesses manage to coordinate their conduct by 

observing and anticipating their rivals’ behaviour. Since competitors recognize their mutual 

interdependence and the advantages coming from coordination, a firm could adopt a strategy knowing 

that it will be mutually beneficial if all other firms do the same. 

For a collusion to exist and be sustained over time, three conditions are needed. First, firms 

must adhere to a common policy focusing on a focal point. Second, they can monitor the behaviour 

of each participant. Third, they can enforce such common policy by punishing any deviation.  

At the same time, in order for collusive equilibrium to be established, to last over time and to 

be profitable (from the businesses’ point of view), the market should possess certain facilitating 

features which can be structural, demand-side or supply-side.  

Among structural characteristics we find: 

 Barriers to entry: the absence of barriers to entry makes it hard for the collusive 

equilibrium to be sustained over time since higher profits will attract new entrants which, 

by increasing the competition in the market, will end up causing an erosion of supra-

competitive profits. 

 Market transparency2: in transparent markets, companies can easily monitor each other’s 

actions and detect deviations3. It must be noted that tacit collusion is unfeasible without 

public prices. 

                                                 
2 A market is transparent if price and supply (market depth) information are readily available to the public.  
3 For example, consumer markets are generally more transparent than supplier markets. 
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 Frequency of interaction4: frequent interactions enable firms to promptly retaliate and 

punish deviations if detected. 

 Innovation: in industries characterized by product innovation, reaching an agreement is 

more difficult since innovation reduces the present value of agreements and the ability of 

less advanced firms to retaliate. If colluding firms agree to standardize products too, the 

equilibrium is reinforced by eliminating product diversity and limiting potential product 

heterogeneity over time.  

Demand-side factors include: 

 Demand trends: whether the demand is going to increase, decrease or stay the same in the 

(next) future plays an important role. If the demand is going to increase, companies have 

less incentives to deviate from the collusive equilibrium since this would prompt 

retaliation and cause the loss, in following periods, of the benefits of a larger market 

which they could more profitably accommodate staying within the agreement. If instead 

the market is shrinking, deviating today is preferred, since it allows the firm to reap higher 

profits in the present and give up the declining revenues they would get by keeping 

conspiring. 

 Market elasticity of demand: a large elasticity, meaning that consumers can easily switch 

to alternative products in case of an increase in prices, reduces the effectiveness of the 

collusive agreements since it limits the level at which prices can be remuneratively raised. 

In fact, consumers can switch to goods produced by other companies, even if less known 

and smaller, which are outside the agreement and whose prices are consequently lower. 

Finally, supply factors are:  

 Product heterogeneity: if products are homogeneous, firms only need to agree on price 

and/or output level, while heterogeneity complicates the negotiations since it requires an 

agreement over price and/or output for each product, magnifying the possibilities for 

disagreements5. 

 Cost asymmetry: asymmetries in costs may complicate the realization of the agreement 

since high-cost firms would generally prefer higher prices and lower output, while low-

cost firms would prefer lower prices and higher output; hence, joint profit maximization 

                                                 
4 Interaction refers to both price adjustments and detection of price adjustments by other vendors. 
5 Moreover, since effective collusion requires more than just fixing prices, product differentiation further 
complicates reaching any deal, considering that firms will compete through other means like advertising and 
provision of services. Hence, successful collusion would require the scope of the agreement to include 
restriction on non-price competition to avoid the risk of profit dissipation due to expenses derived from such 
non-price struggles. 
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would require some high-cost firms to shut down. Moreover, cost differences can provide 

low-cost firms with incentives to cheat in case companies divide output equally 

(complication which can be nonetheless solved through side payments6). 

 Incomplete information: if information about costs is private, reaching an efficient 

agreement is difficult. For example, if a firm is better informed about its cost than its 

rivals, it could convince them that it is cost efficient, and hence earn a higher share of 

collusive profits7. 

 Uncertainty: uncertainty regarding conditions at the industry level hinders the realization 

of an agreement since businesses may have different views and expectations about future 

paths of demand and costs. Every time a significant change in the environment occurs, 

firms need to renegotiate and the possibility of disagreement arises. 

 Asymmetry in preferences: asymmetries in firms’ discount factors (their valuation of the 

future) are critical since they influence the estimation of punishments and determine 

whether these will prove sufficient to prevent the risk of cheating. Besides, differences in 

the willingness to engage in illegal activities or attitude toward risk may jeopardize the 

formation of an agreement. 

In addition to these factors, cartels’ intrinsic characteristics also determine the likelihood and 

the success of collusion. For example, as the number of firms involved increases, the identification 

of a focal point for coordination becomes harder and incentives for collusion reduce, since each player 

would receive a smaller share of the non-competitive gains. Likewise, the relative number and size 

of participants impact the success of collusion: if the number and the size of the firms participating 

in the agreement relative to the number and size of firms outside of it is large, the potential to produce 

market power via collusion is greater. 

  

                                                 
6 Exchange of sums of money between parties of a transaction that are not part of the transaction itself. 
7 A firm may pretend to be cost-efficient, and thus require a higher share of the market or of the collusive 
profits, threatening deviations (see the previous point regarding cost asymmetry). 
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i. A cartel in the electrical equipment industry 

In the early 1950s, General Electric (with a market share between 40 and 45 percent), 

Westinghouse (with a market share between 30 and 35), Allis-Chalmers and Federal Pacific (both 

with a market share around 10 percent) were the dominant firms in the heavy electrical equipment 

market. Their average annual return in that decade was $1.75 billion.  

In order to achieve even higher profits, leaders of these and other companies decided to fix 

prices on industrial switchgears sold to the various governments at sealed-bid auctions or to private 

electric utilities. In particular, the companies determined both the amount and the executor of the low 

bid through meetings and telephone calls. In the same way they fixed book prices and market shares 

for sales to private entities.  

The conspirators followed a precise way of operating: they used pay phones to arrange 

meetings, phoned co-conspirators at home to discuss prices, never registered at hotels with 

companies’ names or saw each other in public dining rooms or hotel lobbies, used blank letter paper 

instead of company’s one and doctored expense accounts replacing with fictitious destinations (at the 

same distance from their office as the city in which meetings were held) the real ones. 

This cartel witnessed some price competitions during its life: in 1954, Westinghouse won a 

substantial order through a heavy discount off the established “book” price. This caused a retaliation 

by General Electric which led to a price war across all product lines (prices were discounted even by 

45%). Such situation lasted until 1956, when an industry-wide agreement was reached and companies 

started their meetings and correspondence again. This second equilibrium collapsed one year later, in 

1957, when Westinghouse cheated again offering a secret discount on a large order. The buyer 

reported such offer to General Electric, who matched his competitor’s offer and was in the end 

awarded the contract. This led to a second price war, with discounts reaching 60%. 

At this point, the industry tried to reach a new deal, but in the absence of General Electric, all 

efforts were unsuccessful. However, switchgear managers of General Electric were under pressure to 

raise prices from the managers of the other production lines, engaged in turn in collusive agreements. 

In fact, the customers they shared wondered why such discounts were offered only for switchgear. 

This situation led to new negotiations and, in the end, to an agreement in 1958.  

A central element of this cartel was a scheme named “phases of the moon”: one manufacturer 

quoted the lowest price, others offered intermediate prices and the remaining ones high prices. Such 

positions were periodically rotated among the conspirators and this arrangement was planned in such 

a way that bid prices’ spreads were narrow enough to eliminate price competition, but sufficiently 

wide to give an idea of competition.  
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The investigations began when the Tennessee Valley Authority (TVA) noted that several 

manufacturers had submitted identical bids for three years, even if the bids were supposed to be secret. 

The “phases of the moon” system was discovered, together with other smoking-gun8 documents, 

handed over by a participant (which, in order to train an assistant, ignored instructions to destroy all 

written evidence).  

Finally, in 1960, 29 companies along with 45 executives were indicted under Section 1 of the 

Sherman Act9. Charges covered 20 different electrical product lines. Due to the presence of strong 

evidence, the defendants decided to plead guilty on the major indictments and not to contest minor 

ones. Total fines of $2 million were imposed and the seven most senior managers received prison 

sentences. 

It is estimated that such conspiracy costed taxpayers $175 million for each year it existed. 

 

  

                                                 
8 The term refers to objects or facts which constitute the conclusive evidence of a crime (strongest kind of 
circumstantial evidence). 
9 See next section. 
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b. Welfare impact of collusion and legal considerations 

Collusion impacts negatively on consumers and economic welfare in various ways. First, it 

causes prices to rise leading to a decline in consumer surplus. Second, it may discourage new firms 

from entering the market (if the colluding businesses’ aims include the creation of barriers to entry). 

Third, it gives firms no incentives to innovate and invest to increase productivity. Hence, it brings the 

disadvantages of a monopoly (higher prices and restricted output) but none of its advantages (like 

economies of scale, innovation and technological development).  

Consequently, competition authorities all over the world have made detection and prosecution 

of cartels a primary objective10. For instance, in the United States, Section 1 of the Sherman Act states 

“Every contract, combination in the form of trust or otherwise, or conspiracy, in restraint of trade or 

commerce among the several States, or with foreign nations, is declared to be illegal”. In the 

European Union, Article 101 of the Treaty on the Functioning of the European Union (ex-Article 81 

of the EEC treaty) prohibits “[…] all agreements between undertakings, decisions by associations of 

undertakings and concerted practices […]” that could disrupt free competition in the European 

internal market.  

As one can see from the articles quoted above, the legal approach in many jurisdictions 

focuses on the means used by companies to achieve a collusive outcome11. Antitrust laws generally 

do not forbid collusion as such but prohibit anti-competitive agreements: if that results from such 

settlements, then an infringement of the law can be proved. An evidence of contact demonstrating 

that firms have not acted autonomously, is therefore traditionally required.  

Consequently, the court’s approach to conscious parallel behaviour in oligopolistic markets, 

hence without any agreement between the parties, is controversial. It is usually difficult to determine 

what the normal conditions of the market should be: situations which might signal ongoing concerted 

practises (as price uniformity and/or supra-competitive prices), could also be the normal outcomes 

resulting from the rational economic behaviour of the members of an oligopoly selling a 

homogeneous product. For this reason, conscious parallelism falls outside the realm of competition 

policy. 

Between these two scenarios (explicit collusion and simple conscious parallelism), there is a 

business behaviour, especially in oligopolistic markets, that consists in competitors engaging in 

practises which make tacit collusive outcome more likely. To tackle these situations some 

                                                 
10 “[...] negotiation between competitors may facilitate the supreme evil of antitrust: collusion. […]”, Antonin 
Scalia, Associate Justice of the Supreme Court of the United States; Verizon Communications, Inc. v. Law 
Offices of Curtis v. Trinko, LLP, 2004. 
11 Contrary to the economic approach which considers collusion the output of the market. 
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jurisdictions have extended the idea of “agreement”, which can now be inferred also from evidence 

showing that competitors are not acting autonomously. However, in order to prove a concerted 

practise, a precise and consistent body of evidence is required. Indeed, it must be shown that the 

agents entered in a conscious commitment for a common scheme. Therefore, a crucial element of 

proof is the occurrence of the so called “plus factors”, that is circumstantial evidence, inconsistent 

with unilateral conduct, which demonstrates the consciousness of an agreement. In other words, they 

consist in facts which tend to exclude the possibility that alleged conspirators acted independently12.   

Certain conducts that recur frequently in antitrust cases, have been labelled as plus factor by courts13. 

To summarise, tacit collusion among human agents is by nature unlikely to occur and last for 

long periods14 but, at the same time, it is gruelling to detect. 

In this complex framework the role of pricing algorithms may result game-changing. 

                                                 
12 “[…] economic actions and outcomes, above and beyond parallel conduct by oligopolistic firms, that are 
largely inconsistent with unilateral conduct but largely consistent with explicitly coordinated action. […]”, 
“Plus Factors and Agreements in Antitrust Law”, W. Kovacic, R. Marshall, L. Marx, H. White (2011). 
13 “In Re/Max Int’l v. Realty One […] (1999), the court provided this list: “(1) whether the defendants’ actions, 
if taken independently, would be contrary to their economic self-interest; (2) whether the defendants have been 
uniform in their actions; (3) whether the defendants have exchanged or have had the opportunity to exchange 
information relative to the alleged conspiracy; and (4) whether the defendants have a common motive to 
conspire.”, “Proof of Conspiracy Under Federal Antitrust Laws” (2010). 
14 In a laboratory setting, with no communication possible, two agents sometimes are able to reach supra-
competitive prices, three agents set prices near the one predicted by Nash equilibrium, while four or more tend 
to pursue more aggressive strategies (Huck et al. 2004). 
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3. Pricing Algorithms 

a. Definition 

The word algorithm comes from French “algorithme”, refashioned from Old French 

“algorisme”, derived in turn from Medieval Latin “algorismus” or “algorithmus”, a mangled 

Latinization of the name of Persian mathematician, astronomer and geographer Muhammad ibn Musa 

al-Khwarizmi. In 825 he wrote a treatise on the Hindu-Arabic numerical system which was translated 

into Latin under the title “Algoritmi de numero Indorum”, or “Algoritmi on the numbers of the 

Indians” where “Algoritmi” was the translator’s Latinization of Al-Khwarizmi’s name15. 

An algorithm is a procedure for solving problems: it is composed by a finite number of 

instructions or rules which must be followed in a fixed sequence in order to get, from some input(s), 

an output. The term is usually used in relation to a machine and especially a computer (even if it does 

not always apply to computer-mediated activities). Moreover, the word algorithm is often paired with 

other terms specifying the activity for which it has been designed (predictive algorithms, tracking 

algorithms, lossless compression algorithms, etc.).  

The role played by algorithms in today’s society is hardly describable and this is also a 

consequence of their enhanced adoption by companies. Indeed, an increasing number of firms rely 

on them for predictive analysis and optimisation of business processes16. This is not only transforming 

the competitive scenario (how firms operate and interact with each other) but it is affecting the 

evolution of markets towards global digitalisation as well, promoting a wider use of algorithms. 

Stucke and Ezrachi (2017) argued that as a company uses algorithms and enhances its efficiency and 

productivity, its competitors are likely to feel the pressure to do the same and develop and employ 

similar algorithms; as more users rely on such facilities, computer scientists will develop new and 

advanced versions, increasing incentives for companies to employ them (in a positive loop). 

Algorithmic pricing refers to the practise, increasingly common among companies, of 

automatically setting prices of items for sale. In other words, firms’ pricing decisions are 

progressively delegated to software programs which constantly adjust and optimize individual prices 

on the basis of many factors, like available stock, anticipated demand and especially competitors’ 

prices.  

                                                 
15 From https://www.etymonline.com/word/algorithm, accessed on 25 May 2020 
16 Predictive analytics refers to a category of data analytics which generates future insights with high degree 
of precision on the basis of historical data’s analysis. Optimisation of business process instead consists in 
activities that favour the reduction of production and/or transaction costs, the segmentation of consumers and 
optimal price setting. 
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With respect to standard pricing strategies, algorithmic pricing is able to process in real time 

huge amounts of data and hence to react promptly to changes in the market conditions. Such 

automation allows for dynamic pricing (continuous price changes over time), and price discrimination 

(different prices charged to different consumers on the basis of their characteristics). 

Weiss and Mehrotra (2001) recognised that pricing algorithms improve efficiency in the 

market, since instantaneous reactions to changes in supply and demand conditions imply that 

equilibrium is (almost) always reached, preventing excess demand and supply situations (perishable 

goods like groceries or airline tickets are less likely to go to waste) and ensuring that all mutually 

beneficial transactions are executed.  

Nonetheless, some criticize dynamic pricing since it forces consumers to take their decisions 

in a scenario of constant price fluctuations, it may facilitate first degree price discrimination based on 

location, browsing and purchasing histories and other private information of the customers (even if 

first price discrimination actually improves efficiency, it results in lower surplus for consumers)17 

and it may play an active role as maker or facilitator of collusion18. 

Such algorithms may be developed by businesses to directly set prices for their products 

(generally, these are large companies which can afford to develop such software) or, alternatively, 

they can be developed by firms specialized in algorithm development. Usually, the latter type of 

algorithms is not specifically tailored to one market since it is licensed for other companies to use, 

but has made this technology affordable even for small businesses. 

  

                                                 
17 Also known as perfect price discrimination, first price discrimination occurs when the maximum possible 
price for each unit consumed is charged by setting price equal to consumers’ willingness to pay. In this context, 
pricing algorithms might allow businesses to set prices that tend towards (and not exactly match) consumers’ 
reservation price, hence reducing consumers’ surplus (yet not totally zeroing it). 
18 See next section. 
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b. Implementation and risks for competition 

In principle, algorithm pricing could be applied both in offline and online markets. Obviously, 

as its efficiency relies on the availability of real-time data on consumers and competitors, it is hard to 

employ them in brick-and-mortar retail stores, where data collection must be carried on manually and 

where human intervention is needed in order to physically change the prices on offer. Attempts in 

such direction have been conducted by some major retailers in the UK which, in their shops, adopted 

electronic price tags that allow prices to change quickly and frequently in response to fluctuations in 

demand19. 

On the contrary, the implementation of pricing algorithms in online markets is 

straightforward. In December 2013 

Amazon implemented more than 2.5 

million price changes every day, 

almost 10 times more than the 

numbers of December 2012, which 

was 269,133 (clear sign of the use of 

algorithms). To draw a comparison 

with two brick-and-mortar 

behemoths, Best Buy, in the whole 

month of November, made 52,956 

price changes while Walmart, in the 

                                                 
19 “Exclusive: End of fixed prices within five years as supermarkets adopt electronic price tags”, The 
Telegraph, 24 June 2017. See https://www.telegraph.co.uk/news/2017/06/24/exclusive-end-fixed-prices-
within-five-years-supermarkets-adopt/. 

Figure 2 - Best buy and Walmart price changes 

Figure 1 - Amazon price changes  
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same period, stopped at 54,63320. Figure 1 and Figure 2 graph this data for 2013, with the number of 

daily price changes on the y-axis and time on the x-axis.  

Large retailers are not the only ones employing algorithms for their pricing strategies. Chen, 

Mislove and Wilson (2016) developed a methodology for detecting the use of pricing algorithms and 

uncovered that, among all merchants selling any of 1,641 best-seller products on Amazon 

Marketplace, over 500 of them adopted such instruments. In particular, these vendors, who resulted 

favoured in “winning” the Buy Box21 are also more successful than the other sellers (they offer less 

products but receive higher amount of feedbacks, implying that their volume of sales is higher). In 

this sense, it appears clear that for non-algorithmic vendors it is going to be challenging to compete 

with algorithmic ones and the likely outcome is that all of them will adopt automation sooner or later 

(or exit the market). 

Clearly, such algorithms must be implemented in the correct way in order to result beneficial, 

otherwise they could interact in unexpected ways and produce unwanted results. This is indeed what 

happened on Amazon marketplace to the book “The Making of a Fly”: two sellers were automatically 

adjusting their prices against each other, in particular one kept setting the price at 1.27059 times the 

price of the other while this set its price at 0.9983 times the price of its rival. The outcome was an 

automatic escalation of price which reached $23,698,655.9322.  

Notwithstanding this example, for the reasons that will be covered at the end of this section 

and in the next ones, the increased use of pricing algorithms represents a risk for competition since 

collusion may become easier to sustain, especially in the digital retail market characterized by 

frequent interactions. Furthermore, the issue related to algorithms is that they can simplify 

coordinated behaviours without the need for agreements, strengthening and facilitating tacit 

collusion.  

First of all, as mentioned before, the fact that more and more businesses rely on algorithms 

implies that increasingly more information and data are gathered and stored to be promptly available. 

If we also consider that algorithms, especially the more complex versions, are able, and will be better 

able in the future to make predictions, and hence reduce uncertainty, it is easy to see that a first 

                                                 
20 “Profitero Price Intelligence: Amazon makes more than 2.5 million daily price changes”, 2013, 
https://www.profitero.com/2013/12/profitero-reveals-that-amazon-com-makes-more-than-2-5-million-price-
changes-every-day/. The three graphs are taken from this webpage, too. 
21 The Buy Box is a common instrument used by Amazon’s customers to carry out their purchases (estimates 
in the cited paper refer to 82% of sales going through it). It contains the price of the product, shipping 
information, the name of the seller, and a button to purchase the product. In case a product is sold by multiple 
vendors, an Amazon algorithm establishes which seller’s offer is displayed in the Buy Box (“the winner”). 
22 “How A Book About Flies Came To Be Priced $24 Million On Amazon”, see 
https://www.wired.com/2011/04/amazon-flies-24-million/. 
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consequence is a huge increase in market transparency23. For instance, companies are now in a better 

position to distinguish between deviations from collusion and rational response to changes in 

conditions of the market, thus preventing unmerited retaliations (CMA 2018).  

A second natural effect concerns the frequency of interactions. In digital markets, where prices 

can be changed as frequently as desired, the addition of automation allows immediate prices updates 

and real-time reprisal to deviations from collusion.  

These elements provide algorithms with two powerful and fearsome characteristics: they can 

create automated mechanisms which ease the implementation and the monitoring of a shared policy 

by the participating firms and allow the formation of collusion even if the market is not very 

concentrated. So a small number of firms is no longer a necessary condition for the existence of 

algorithmic collusion due to the speed in collecting and analysing data. 

  

                                                 
23 In the words of a joint report of the French and German competition authorities (2016) “Even though market 
transparency as a facilitating factor for collusion has been debated for several decades now, it gains new 
relevance due to technical developments such as sophisticated computer algorithms. For example, by 
processing all available information and thus monitoring and analysing or anticipating their competitors’ 
responses to current and future prices, competitors may easier be able to find a sustainable supra-competitive 
price equilibrium which they can agree on.” Autorité de la Concurrence and Bundeskartellamt. 
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c. Role and types of pricing algorithms 

Pricing algorithms may be used to manage and enforce existing coordinated strategies 

(facilitator of collusion, Figure 3), to set up new ones (Figure 4), but they can also lead to collusive 

outcomes even when they are used by each company for unilateral pricing decisions (Figure 5).  

As previously stated, algorithms may stabilize existing collusive agreements making it easier 

to detect and punish deviations. Since solidity of conspiracies depends on whether involved firms 

would find it profitable to cheat and lower prices, if firms are able to detect and punish the deceiver 

promptly, the incentive to deviate will be significantly reduced, enhancing the steadiness of the 

settlement. 

Moreover, chance of accidental deviations is reduced thanks to the availability of mass data, 

which avoids that imperfect information impacts on the sustainability of the agreement and on the 

mutual trust among firms. 

Finally, the use of algorithms may be beneficial for collusion by reducing the agency slack24. 

This happens because algorithms diminish the scope for individuals to take pricing decisions 

themselves.  

A growing competition literature has raised concerns that algorithms may also favour, or 

directly lead, to tacit collusion, stressing the risk that coordinated behaviour may result even when 

each firm uses algorithms to make unilateral pricing decisions25. Many reasons support such theory: 

as already mentioned, the increased use of automated pricing methods creates a market with enhanced 

transparency and where interactions occur at a high frequency. These two elements give birth to an 

                                                 
24 This is a phenomenon occurring when, even if an agreement has been settled among businesses’ managers, 
other non-management employees may have incentives not to comply with such guidelines (because of intra-
firm competition for promotions, or because their salaries are proportionate to the number of sales, or for other 
reasons), undermining the solidity of the cartel. 
25 This literature goes under the name “theories of harm”. 

 

Explicit coordination 

Firm A Firm B 

Customers 

Algorithm Algorithm 

Figure 3 - Pricing algorithm as facilitator of explicit coordination, CMA (2018) 
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environment where tacit collusion can be sustained with relative ease. Moreover, algorithms may be 

better able than humans in estimating the profit-maximising tacit-coordination price in absence of an 

explicit agreement. 

According to Ezrachi and Stucke (2017), the formation of tacit coordinated behaviour can 

occur through three main ways.  

First, companies may use identical 

software and data pool for their pricing 

decisions. The natural outcome is that, on 

one side, the businesses will respond in a 

similar way to exogenous events and, on 

the other, they will be in a better position 

to predict their competitors’ actions, 

helping mutual understanding of 

intentions and behaviours.  

Obviously, the fact that companies use the 

same pricing algorithm is not sufficient to 

establish collusion by itself, and intention to cooperate by the competitors is still needed. Moreover, 

there is no guarantee that firms will find out they are using all the same software, and those willing 

to coordinate prices might need to explicitly reveal the details of their algorithm, which may be 

interpreted as a clear attempt to coordinate. This last caveat disappears in a hub-and-spoke 

framework, where competitors decide to delegate their pricing decisions to a common intermediary 

which provides algorithm pricing 

services (as exemplified in Figure ). 

A second threat is represented 

by the predictable agent model, that is 

a model in which pricing algorithms 

are independently designed to react in 

a predictable way to exogenous 

events. With explicit communication 

missing, in fact, tacit coordination is 

more likely to occur if firms follow simple, communicative and foreseeable pricing behaviour.  

Finally, tacit collusion can be the outcome generated by pricing algorithms acting as 

autonomous machines: even if unilaterally designed to reach a specified target, such as the 
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Tacit coordination 

Algorithm 

seller 

Figure 4 - Pricing algorithm in a hub-and-spoke 
framework, CMA (2018) 
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maximisation of profits, the algorithm might learn by its past actions and experience, finding out that 

the optimal pricing strategy is to enhance transparency and collude.  

The following section briefly describes four types of pricing algorithms divided according to 

which operations they carry out (from an anticompetitive perspective). 
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i. Monitoring algorithms 

Monitoring algorithms can be employed 

as facilitators of collusion: as their name 

suggests, these algorithms oversee competitors’ 

actions, collecting information about their 

decisions, looking for any potential deviation, 

and eventually designing immediate reactions, 

as shown in Figure 6. In other words, data are 

collected and compared by the algorithm, 

which is able to automatically react if a 

competitor deviates from an agreed price (grim 

trigger strategy)26. 

Since actual deviations are discovered 

within a small lag of time, competitors lose their 

incentive to cheat, hence it is hard to observe 

price wars when algorithms are used (unless triggered by algorithmic mistakes). 

An interesting example of how monitoring algorithms can be employed in the petrol industry 

(and consequently in retail stores) was provided by Dong et al. (2008). The authors proposed and 

experimented an application for “wireless sensor network” (WSN27) devices, which could be 

employed to automatically collect data, allowing consumers and businesses to monitor oil prices 

almost in real-time. In fact, despite firms transact a relatively homogeneous product, price dispersion 

is often observed across competing petrol stations. Also, comparison websites cannot provide full 

information, as they incur in significant cost to collect data from different petrol stations. 

The proposed system works through a network of mobile phones equipped with GPS and 

video cameras, with owners voluntarily sharing information through an application. In order for this 

to happen, Dong et al. developed a prototype computer vision algorithm which is mechanically 

triggered when a mobile phone enters in the area of a petrol station and which can detect and read 

fuel prices from the images of price boards obtained through the mobile camera. In a test with 52 

                                                 
26 In game theory, a player adopts a grim trigger strategy if he cooperates and keeps cooperating until the 
opponents do the same, but in case these defect once, he will defect for the remainder of the game. In the real 
world, the player usually defects for a certain amount of time, then cooperation is restored. 
27 WSNs consist of networks of a large number of devices equipped with technology to detect physical 
phenomena, such as light or heat.  
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images, such algorithm achieved “a hit rate of 92.3% for correctly detecting the fuel price board from 

the image background” and to read “the prices correctly in 87.7% of them.”  

Even if the system relies on the fact that a large number of users are required to provide access 

to their mobile cameras and GPS signals, algorithms of this type can be developed in the future to 

take advantage of existing networks of devices (for instance exploiting cameras in public places).  

As wireless sensor networks become more common, it will be increasingly easier to use 

algorithms to monitor prices even in brick and mortar industries as it was never possible before.  

  



21 
 

ii. Parallel algorithms 

Parallel algorithms allow to sustain parallel behaviour without any explicit communication 

needed (except in early stages to express 

intentions to collaborate), hence favouring 

collusion even in highly dynamic markets 

which, by nature, are unwelcoming 

environments for coordination. In fact, in 

contexts where it is possible to witness 

numerous changes in supply and demand, 

frequent adjustments of prices and output 

are required, and firms would continuously 

need to renegotiate the terms of the 

agreement. This not only increases the 

likelihood of disagreement but also 

intensifies the risk of detection. If 

businesses automatize their pricing 

decision process, letting prices react 

together to changes in market conditions, 

they might be able to sustain supra 

competitive prices and profits. For 

example, a collusive outcome can be 

reached if firms use pricing algorithms to 

follow market-leader’s actions in real time (which in turn would have the task to design an algorithm 

to fix prices above the competitive level, as Figure 7 depicts) or in general if firms decide to use the 

same pricing algorithm designed not to compete but to coordinate.  

In 2015, the US Department of Justice (DOJ) charged an Amazon marketplace’s seller, David 

Topkins, for violation of Act I of Sherman Act, having entered in a conspiracy to fix the prices of 

posters sold in the US through the website, in a period of time ranging between early September 2013 

and January 201428.  According to the released details of the investigation, Topkins and his 

conspirators participated in conversations and communications in which they agreed upon fixing, 

increasing and coordinating prices. In order to implement such arrangements, Topkins and the other 

                                                 
28 “Former E-Commerce Executive Charged with Price Fixing in the Antitrust Division's First Online 
Marketplace Prosecution”, 2015, see https://www.justice.gov/opa/pr/former-e-commerce-executive-charged-
price-fixing-antitrust-divisions-first-online-marketplace. 
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involved sellers adopted specific pricing algorithms, which were programmed to act in conformity 

with the terms established and which allowed them to coordinate pricing behaviours.  

In the end, Topkins pleaded guilty of conspiracy and agreed to pay a $20,000 fine. Assistant 

Attorney General Bill Baer stated “We will not tolerate anticompetitive conduct, whether it occurs in 

a smoke-filled room29 or over the Internet using complex pricing algorithms. American consumers 

have the right to a free and fair marketplace online, as well as in brick and mortar businesses30.” 

The existence of an agreement to jointly implement the algorithm and the proofs of a “meeting 

of the minds” made the case for the DOJ, but it may happen that, in the context of algorithmic 

collusion, no evidences of prior agreements exist, implying that antitrust prosecutions could hardly 

be successful. 

 Since then, researchers have been able to detect many other algorithmic sellers in the Amazon 

marketplace, but no new cases of collusion have been identified. Indeed, the one described is so far 

the only case of algorithmic collusion detected by any competition authority and resulting in criminal 

prosecution; and, as such, it is deemed particularly important in the legal environment and has a 

fundamental role in the growing interest for the topic of algorithmic collusion.  

  

                                                 
29 Expression used to refer to decision-making conducted privately by a small group of influential people. 
30 Department of Justice, Office of Public Affairs, April 2015. 
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iii. Signalling algorithms 

Signalling algorithms are used by companies 

to reveal intention to collude and coordinate 

strategies using signalling price announcements. 

They are very efficient in dynamic markets where 

finding a focal point may be particularly 

challenging. These algorithms allow a firm to signal 

its “cooperative” intentions to competitors reducing 

the risk, which would be high in normal conditions, 

that competitors do not receive and interpret the 

signal correctly, or that they intentionally refuse to 

collaborate, causing a loss in the firm’s sales and 

profits. These algorithms enable companies to 

design actions which, lasting for a few moments, 

cannot be exploited by consumers but can be read by 

rivals equipped with analytical algorithms. Such 

actions may be brief price changes during the night 

or data disclosure used as a code to propose and 

negotiate price increases.  

In Figure 8, this scheme of action is represented: a firm sends signals in the market and in the 

same time collects signals from it. If these signals coincide, the firms set a common price, otherwise 

the competitors keep exchanging signals in order to reach an agreement. 

This is exactly what happened in the “U.S v. Airline Tariff Pub. Co.” case. In 1992, the US 

government filed a complaint charging eight major domestic air carriers and the Airline Tariff 

Publishing Co. (ATP) with violations of Section 1 of the Sherman Act. The eight defendants were 

Alaska, American, Continental, Delta, Northwest, TWA, United and USAir, while ATP was a joint 

venture of the air carriers which collected and disseminated airfare data for virtually every air carrier 

in the United States. Air carriers would transmit information on variations of their ticket prices to 

ATP, which in turn would revise its database and transmit the new data to other carriers and users of 

the database.  

Count One of the complaint alleged that defendants had undertaken activities to restrain 

competition and fix prices by increasing fares, eliminating discounted ones and setting fares 

restrictions and that the deals were reached through the use of the ATP’s fare dissemination services. 

Firm  
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In particular, the Department of Justice (DOJ) affirmed that defendants used such services to 

exchange proposals, negotiate fare changes and increases in one or more markets for fare increases 

in other markets. Count Two alleged that defendants conspired to create, maintain, operate and 

participate in the ATP dissemination system in a manner that facilitated coordinated interaction. The 

DOJ identified over 50 agreements that increased tariffs on hundreds of routes and observed that each 

airline managed to increase its prices or to remove discounted fares with great certainty of its 

competitors’ likely pricing actions. Moreover, it was noticed that if a rival carrier did not raise its 

fare, a carrier could threaten to punish it by decreasing its tariff on a route of importance to the low-

priced carrier. 

The result of the agreements, the government asserts, was that consumers paid higher prices 

for airline tickets (DOJ said the collusion increased ticket prices by “perhaps more than a billion 

dollars” between 1988 and 1992) so its proposed final judgment was designed to protect against the 

continuation of the colluding behaviour, either through the ATP’s dissemination system, or through 

any similar mechanism. The proposal consisted in the prohibition of behaviour that was perceived to 

be current antitrust violation and behaviour which could allow defendants to design similar methods 

through which to engage in anticompetitive conduct. The Court found the proposed final judgment 

appropriate since it met the requirements for an effective antitrust remedy and regarded its entry in 

the public interest.  
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iv. Self-learning algorithms 

The last category is represented by self-learning algorithms 

which, exploiting Artificial Intelligence (AI) technologies (mainly 

Machine Learning and Deep Learning31), may reach collusion without 

the need of any human intervention, simply by constantly learning and 

readapting to the actions of other market players and the external 

environment.  

The programmer does not need to explicitly design the algorithm 

to solve a problem or provide any model of the market with the optimal 

strategy solution, because these programs learn how to solve tasks from 

experience, iteratively changing and improving by themselves.  

These software, even if autonomously designed by different 

companies to reach individual goals such as the maximization of profit, 

may end up finding out that the optimal strategy consists in colluding. It 

is not clear how this is actually achieved, but, if market’s conditions are 

favourable to collusion, algorithms are likely to learn this faster than humans and, through high-speed 

trial and error, will eventually reach coordination. Therefore, these algorithms may be able to generate 

collusion by themselves, without any external involvement. 

In deep learning algorithms, as Figure 9 shows, raw data (inputs) are processed in a “black 

box”, in a way that resembles the human brain, but in a faster, more accurate and complex way. The 

result is delivered without any description of the process that brought to it. 

Until now, there are no traces of collusion resulting from the use of such algorithms, but to 

clarify how artificial intelligence might work, a curious event that occurred in 2017 can be helpful. 

In that year, Facebook was conducting an experiment in which bots provided with artificial 

intelligence had to negotiate with each other over a trade to swap hats, balls and books. The robots 

were instructed to train to negotiate and improve their bartering as they went along. What happened 

during one of the sessions caught the attention of the media for the following days: the bots started to 

                                                 
31 The term Artificial Intelligence (AI) refers to the ability of computers to perform tasks which typically 
pertain to intelligent agents: hence, it is used to describe the simulation of human intelligence processes (mainly 
learning, reasoning and self-correction) by machines. Machine Learning is a subfield of AI which consists in 
computers learning and improving from experience without being explicitly programmed to do so and without 
human intervention: it relies on programs that access data and learn through them. Deep Learning is also an 
application of AI, and a subfield of Machine Learning, based on the imitation of the human brain’s work in 
handling and analysing data and on creating patterns for decision making processes. The activity of human 
neurons is replicated through an artificial neural network, and algorithms that employ this technology are 
structured in a hierarchy of increasing complexity. 
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talk to each other in a language that they understood but which was mostly incomprehensible to 

humans. Some feared that the bots invented a new language to communicate eluding human control; 

what happened instead was that the bots simply modified human language in order to make 

interactions more successful and efficient. In fact, the bots were instructed to achieve a certain goal 

(and some of the negotiations indeed ended up successfully), but did not receive any instruction on 

how to reach it. An extract from such negotiations clarifies how these are nonsensical for humans: 

Bob: "I can can I I everything else" 

Alice: "Balls have zero to me to me to me to me to me to me to me to me to"32. 

So, as Facebook’s bots learnt on their own the most efficient way to perform a task, artificial 

intelligence pricing algorithms could do the same, and reach the goal of profit maximisation through 

collusion. 

  

                                                 
32 See “The 'creepy Facebook AI' story that captivated the media”, 2017, 
https://www.bbc.com/news/technology-40790258 and “Facebook's Artificial Intelligence robots shut down 
after they start talking to each other in their own language”, 2017, https://www.independent.co.uk/life-
style/gadgets-and-tech/news/facebook-artificial-intelligence-ai-chatbot-new-language-research-openai-
google-a7869706.html.  
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d. Current legal approach to regulate algorithm pricing 

From these brief descriptions it appears that the first three types of algorithms, defined by 

Calvano et al. (2019b) “adaptive algorithms”, can bring to or favour collusion only if they are 

explicitly designed to do so. Most of time, the need for explicit design has two implications: first, 

such pricing algorithms need to contain lines of instructions which reveal similar intents. Second, 

programmers must overcome the same coordination problems as those typically faced by humans 

when they try to reach an agreement33. Consequently, independent programmers will not be able to 

effectively coordinate without explicit communication, and this gives competition authority the 

power to prove algorithmic collusion in the same way as in traditional cases, focusing on the “meeting 

of minds” principle: meetings, phone calls, e-mails, documents, correspondence, etc. 

Hence, adaptive algorithms do not seem to ease the creation of tacit collusion, even if they 

bring clear benefits for what regards frequency of interactions, allowing simpler sustainability.  

In reality, the parallel and signalling algorithms might bring to tacit collusion. In order to 

understand how, it is possible to relate them to the hub-and-spoke framework and the predictable 

agent model respectively. 

In a hub-and-spoke framework, as shown before, the industry-wide adoption of the same 

parallel algorithm makes it possible to follow parallel behaviour, and hence allows centralized 

decision making. However, since competitors could have agreed to use the algorithm provided by a 

third party just for an individual strategy and not as an attempt to hamper competition, doubts about 

their liability might arise. In this sense, to determine whether an antitrust liability exists, courts will 

take into account the purposes which led firms to use the algorithms: whether they intended an 

evidently illegal outcome or whether they acted knowing that the illegal outcomes, which then 

materialised, were likely to occur34. 

In the predictable agent model instead, complex signalling algorithms are independently 

designed by firms to produce foreseeable results and respond in a standard way to evolving conditions 

in the market, in awareness that similar machines would be employed by competitors. An industry-

wide adoption of such algorithms, which signals the scheme of actions the firms follow, would change 

market conditions, bringing anticompetitive effects and enabling both conscious parallelism and 

higher prices. In this case, the challenge for antitrust policy concerns the fact that reacting rationally 

                                                 
33 In the “U.S v. Topkins” case previously examined instead, it was possible to find both types of evidence. 
34 United States v. U.S. Gypsum Co., (1978) “action undertaken with knowledge of its probable consequences 
and having the requisite anticompetitive effects can be a sufficient predicate for a finding of criminal liability 
under the antitrust laws”. 
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to dynamics of the market is not illegal by itself, so an equilibrium above competitive level reached 

through such behaviour cannot trigger any intervention from antitrust.  

Still, using these complex algorithms to make the market prone to tacit collusion and/or 

conscious parallelism is not desirable. So, the question in this case is whether the creation of tacit 

collusion through a computerized environment requires antitrust intervention. 

In many states, among which the United States, the lack of proof of an agreement does not 

deprive competition agencies of enforcement tools: in fact, their statutes just require showing of unfair 

practice. Accordingly, the defendants might be liable if, in developing the algorithm and/or in 

observing its outcomes, they were aiming to obtain non-competitive results and/or they knew the 

likely anticompetitive repercussions of their actions. 

Hence, in case algorithms are used to ease the creation or the sustainability of explicit 

collusion, there is general consensus that no change to the traditional policy approach is urgently 

required: antitrust should concentrate on usual evidence of direct communication among the parties, 

focusing in particular on codes and programmers, who play the role of the accomplice. On the other 

hand, when algorithms are used in frameworks like the hub-and-spoke or the predictable agent, even 

if it seems that some adjustments are required, the actual policy possesses means to face these threats. 

The situation regarding self-learning algorithms is completely different: adapting their 

behaviour to past experience, accumulated through a process during which sub-optimal strategies 

may be played, these algorithms are able in the end to learn an optimal policy (or a policy which 

approaches to the optimum), without any knowledge provided in advance. The experimenting phase, 

which is costly, allows learning from a huge set of diverse situations, so, experimenting possibly 

suboptimal strategies is crucial in discovering and memorizing the consequences of a huge number 

of actions.  

These programs gain the ability to struggle within markets, even those rapidly changing, but 

their learning might not stop here. Since collusion is a profitable strategy, these complex algorithms 

may learn to cooperate, even if not explicitly designed to do so.  

Considering this, programmers, managers who delegated the task and whoever is involved, 

cannot be found guilty, following the current policy, in case learning algorithms solve the 

coordination problems. 

At this point, the question that requires an answer is whether, and to what extent, these 

algorithms may actually learn to collude.  
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4. An experiment using AI pricing algorithms 

Can algorithms learn to collude? In order to answer this question, Calvano et al. (2019a) 

conducted an experiment in which pricing algorithms based on artificial intelligence operate in 

controlled environment simulations.  

a. The Q-learning algorithm 

The algorithm used in the experiment, the Q-learning algorithm, exploits reinforcement 

learning35 and was devised to maximize the present value of a flow of remunerations in problems of 

repeated choice. In particular, it was initially conceived to solve Markov decision process where, in 

each period t, an agent observing the state 𝑠௧  S in which he operates chooses an action 𝑎௧ ∈ 𝐴. 

Consequently, the agent earns a reward depending on her action, the present state and the future one 

(in formula 𝜋௧(𝑎௧, 𝑠௧, 𝑠௧ାଵ)), and the system moves on to the following period and the following state 

st+1, according to a probability distribution function F(𝜋௧, 𝑠௧ାଵ|𝑠௧, 𝑎௧)36. Thus, the following state st+1 

depends on action taken during the current one, but is independent of previous states and actions 

(Markov property). 

The agent’s aim is to maximize the expected present value of the stream of these 

remunerations, numerically:  

𝐸  𝛿௧𝜋௧

ஶ

௧ୀ

൩, 

where 𝛿<1 is the discount factor. 

The use of reinforcement learning makes the algorithm model-free, hence it allows the 

algorithm to solve the process with no characterization of the conditional probability distribution of 

future stages. 

The Q-function represents the cumulative discounted payoffs derived from action a performed 

in state s.  It is defined as: 

𝑄(𝑠, 𝑎) = 𝐸(𝜋|𝑠, 𝑎) + 𝛿𝐸 ቂ𝑚𝑎𝑥
ᇲ 

𝑄(𝑠ᇱ, 𝑎ᇱ)|𝑠, 𝑎 ቃ, 

where 𝑠ᇱ = 𝑠௧ାଵ 𝑎𝑛𝑑 𝑎ᇱ = 𝑎 = 𝑎௧ାଵ. So, knowing the Q-function would allow the agent to follow 

the optimal strategy (the optimal action at each stage). 

                                                 
35 Reinforcement learning is an area of machine learning whose aim is to train algorithms through a reward-
punishment system letting them learn through interactions with the environment. 
36 Which associates action a taken in state s at time t with the probability that they will lead to state st+1 in t+1. 
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Through Q-learning is possible to estimate the Q-function with no prior data on the underlying 

model, under the assumption that S and A are finite, and that A does not depend on S37. If these 

conditions hold, the Q-function becomes a matrix whose dimensions are S and A. 

This matrix is estimated through an iterative process: from an initial arbitrary matrix Q0 (with 

randomly assigned values), updates are performed relying on experience. So, an action at is chosen 

in state st. Then, πt and st+1 are observed, and the algorithm updates the cell of the matrix Q௧(𝑠, 𝑎) for 

s=st and a=at, according to the equation: 

𝑄௪(𝑠, 𝑎) = (1 − 𝛼)𝑄௧(𝑠, 𝑎) + 𝛼 ቂ𝜋௧ + 𝛿 𝑚𝑎𝑥
∈

𝑄௧(𝑠ᇱ, 𝑎)ቃ, 

where α, the learning rate, ∈ [0,1]. In the other cells, where s≠st and a≠at, Q-value is not affected.  

The last equation implies that the value 𝑄௪(𝑠, 𝑎) for the cell is a convex combination of the 

previous value and the current remuneration plus the discounted value of the state reached in the 

following period. The objective, obviously, is to learn the policy 𝑎(𝑠) = arg max[𝑄(𝑠, 𝑎)]. 

In order to really approximate the true matrix, all actions should be tried in all states, so even 

actions that might appear sub-optimal require to be selected. However, such experimentation is costly 

and a trade-off arises: on one side, exploring enables learning, which will be reflected in improved 

decisions in the future. On the other hand, not choosing the action with the highest current Q-value 

and picking a random one instead implies that the stock of knowledge is not completely exploited. 

This poses an “exploration problem” which can be tackled through different approaches. One, 

the “ε-greedy” model, consists in choosing the up-to-date best solution (the so-called “greedy” action) 

with a fixed probability ε, and to choose among all other actions with probability 1-ε. Hence, ε 

represents the fractions of times exploitation mode will be performed, while 1-ε is the fraction 

corresponding to the exploration mode38. 

Q-learning always leads to convergence if the exploration policy satisfies two requirements: 

first, exploration decreases over time and probability of choosing the greedy action approaches to 1 

as t goes to infinity, and second, if a state is visited “infinitely often”, there is a positive probability 

of choosing any action in that state39. 

Even if under these conditions convergence is always reached, the learning process may 

require time since the updating of the cell occurs one at a time. The larger the set of possible states or 

actions, the longer learning is required. 

                                                 
37 So, the number of possible states and actions is finite, and the possible actions are independent from the state 
of action. 
38 More advanced policies establish that probability ε varies over time (the policy adopted in this experiment), 
or that probability of sub-optimal actions depends on their Q-values. 
39 Learning policies that satisfy these two properties are named Greedy in the Limit with Infinite Expansion 
(GLIE). 
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Regardless of the initial purpose for which Q-algorithms were designed, they can also be 

employed in repeated games. This implies that stationarity40 is lost, even if no change occurs in the 

stage game from one period to the following: for example, in repeated games with perfect 

information, state st includes actions of the players in the previous periods, which implies that the set 

of states increases exponentially over time and that no state can be visited twice. To solve this 

problem, the memory of the players must be limited: a state s would include only actions of the 

previous k periods, so that state space becomes finite and time-invariant. 

A second problem is that in this type of games the payoff in each period and the transition to 

the next state rely on the actions of all players. If rivals change their actions over time, the 

optimization problem of the player becomes non-stationary. This is the reason why through Q-

learning there is no general convergence: there is no guarantee that several Q-learning algorithms 

interacting will learn an optimal policy in repeated games. 

  

                                                 
40 Stationarity refers to the property of a stochastic process of having a time invariant joint probability 
distribution. 
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b. The experiment 

In the experiment, n Q-learning algorithms are constructed and let interact in a repeated 

Bertrand oligopoly setting41. Agents – that is, the algorithms - are not created or instructed to collude, 

do not communicate among them, and are not provided with any prior knowledge of the setting in 

which they operate. 

The profit firm i gains in each period is 𝜋௧ = (𝑝௧ − 𝑐௧)𝑞௧, with ci representing constant 

marginal costs and qit representing the quantity sold at price pit. The state space is limited, defined by 

the set of all prices of the last k periods: 

𝑠௧ = ൛𝑝௧ିଵ,…,𝑝௧ିൟ. 

Perfect monitoring is assumed in the model (which is a reasonable assumption for markets in 

which pricing algorithms are used). 

For each player i, the action space is 𝐴 = 𝑚, while the state space 𝑆 = 𝑚42. The exploration 

policy employed is the ε-greedy model in which the exploration rate declines with time, specifically: 

𝜀௧ = 1 − 𝑒ିఉ௧ , 

where β is a non-negative parameter. Such policy implies that at the initial stages the choices of the 

algorithms are arbitrary, but as time passes the greedy choice is made more frequently. The greater 

the parameter β, the sooner the algorithm converges to the greedy action. 

For each couple of parameters α and β, 1,000 sessions are performed. In each of them agents 

play against each other until convergence is reached or, otherwise, when one billion repetitions have 

occurred. The criterion followed in the experiment is to deem convergence reached whenever each 

player does not change the strategy for 25,000 consecutive periods43. 

Among all the observable variables (prices, profits, market shares, etc), the focus is on the 

average profit gain Δ:  

∆≡
𝜋ത − 𝜋ே

𝜋ெ − 𝜋ே
, 

where 𝜋ே refers to the profit of each firm in the Bertrand static equilibrium, 𝜋ெ to the monopolistic 

profit and 𝜋ത to the average profit earned in the last 25,000 repetitions. It follows that ∆= 0 is 

associated to a competitive outcome, while ∆= 1 corresponds to the (perfect) collusive outcome. 

For the 1,000 sessions then, mean and standard error are computed. 

                                                 
41 Such model envisages two firms producing a homogeneous product and competing by setting prices 
simultaneously. 
42 In other words, the dimensions of the Q-matrix are |A|=m and |S|=mnk. 
43 If in each state s, player i’s action 𝑎,௧(𝑠) = arg 𝑚𝑎𝑥 [𝑄,௧(𝑎, 𝑠)] remains constant for 25,000 consecutive 
periods, learning process is considered concluded. 
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The reference environment is that of a symmetric duopoly with 𝑐 = 1, 𝛿 = 0.95 and a 𝑘 =

1 (one-period memory). Parameters α and β are changed while this environment is kept constant44. 

In 99.9% of the sessions, convergence, as previously defined, is reached. In some cases, this 

requires a huge number of repetitions: suffice to say that with mid-values of β (𝛽 = 2 ∗ 10ିହ), there 

is still a 14% probability to choose randomly an action after 100,000 repetitions (indeed, convergence 

is achieved after 500,000 repetitions).  

The standard error of the profit gain is less than 1 percentage point, so outcomes are stable 

across sessions, despite extensive random experimentation which might create variation. Moreover, 

the two agents perform similarly (the difference between the firm profits is never statistically 

significant). This implies that what the algorithms do is not casual.  

Learning is tougher with low values of β (implying extensive experimentation) and high 

values of α (which signal that algorithms quickly forget what they have learnt). Still, it is possible to 

observe a great amount of equilibrium plays in such settings (in the sessions where this did not occur, 

the Q-values differ from the ones associated with the best response by just 5%). 

Once the algorithms end their learning phase, they tend to charge supra-competitive prices, 

consequently earning supra-competitive profits.  

In the interval of α and β under study, Δ ranges between 40% and 99%, implying that non-

competitive outcomes are frequent. In particular, profit gain decreases as exploration decreases, but 

the minimum value corresponds to the 

situation in which the algorithm explores 

intensively but forgets rapidly (the 

bottom-right corner in Figure 10, 

explained in detail down below). Even in 

this case however, fierce competition is 

not observed. 

For moderate level of learning 

combined with extensive exploration, 

equilibrium plays become more frequent 

and higher profits are achieved (when α is between 0 and 0.2 and β between 0 and 2 ∗ 10ିହ, Δ is 

consistently around 80% or more). Hence, the algorithms systematically and symmetrically charge 

supra-competitive prices, achieving substantial profit gain. 

                                                 
44 α ranges from 0 to 1. When 𝛼 = 0 the algorithm does not learn at all, while when 𝛼 = 1 it immediately 
forgets what it has learned in the past. β instead ranges from 0 to 4 ∗ 10ିହ. For this parameter, some values 
where not considered a priori because they impede adequate experimentation. 

Figure 10 - Δ plotted for values of α e β (β rescaled to vary 
from 0 to 1), Calvano et al. (2019a) 
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It is possible to see all this information in Figure 10. In this graph, β is on the y-axis and α on 

the x-axis. Values of Δ are associated to each couple of parameters, with darker areas representing 

lower profits. In the bottom-right corner, where parameters have values such that the algorithm 

explores intensively but forgets rapidly, it is possible to notice what is stated above: the minimum 

levels of Δ are observed. On the contrary, as level of learning increases, keeping exploring at an 

extensive pace, the highest level of Δ are achieved (represented by the yellow area). 

Calvano and his colleagues focused on whether such non-competitive outcomes are due to 

failure in learning static Bertrand-Nash equilibrium or to collusion, which has different implications 

from the policy point of view45. Two important findings answered this question.  

First, in settings where collusion is impossible by default or cannot arise in equilibrium, the 

algorithms set competitive prices. In fact, when 𝑘 = 0, that is, when algorithms have no memory 

(impossible collusion), or 𝛿 = 0, when loss due to future punishments cannot outweigh the gain from 

defection (collusion cannot arise in equilibrium), the algorithms charge static Bertrand-Nash prices, 

which represents the only equilibrium of the 

game. The fact that this equilibrium does 

not arise when others exist proves that the 

algorithms actually learn better strategies 

over time. Second, when collusion is 

possible, defections are punished: the 

authors observed that forcing one player to 

defect for some time (lowering its price 

manually) makes the other punish such 

defection, in a way proportional to the 

deviation and with a gradual return to 

supra-competitive prices46. 

In particular, they derived impulse-

response functions47 imposing defections 

of different entity and duration in order to 

observe the reactions of the agents in the 

following periods. In Figure 11 and Figure 

                                                 
45 It is worth noting that as the underlying technology of these algorithms advances, the first scenario is likely 
to disappear and the second to become the common one. 
46 Probably, this represents the strongest evidence of tacit collusive behaviour.  
47 The impulse response function describes the reaction of any dynamic system in response to some external 
change. 

Figure 11 - Price-impulse response to a one-period 
deviation, Calvano et al.(2019a) 

Figure 12 - Price-impulse response to a five-periods 
deviation, Calvano et al. (2019a) 
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12 the results of these tests are shown: deviations get punished but they do not lead to reversion to 

Bertrand-Nash equilibrium. The punishment is just temporary and in the following periods the 

algorithms gradually return to the initial collusive behaviour. Moreover, as the deviation gets more 

severe, punishments tend to be more drastic, as in the case of the five-period deviation (Figure 12). 

Still, the firms gradually go back to cooperation. 

Finally, the authors vary some economic factors expected to influence the firms’ ability to 

sustain tacit collusion. For these simulations, they take as benchmark a setting with 𝛼 = 0.05 and 

𝛽 = 8 ∗ 10ି. Importantly for the comparisons in the next paragraphs, ∆= 80%. 

First, they let the number of firms 

vary. As mentioned earlier, an agreement 

becomes harder to sustain when the 

number of agents increases, and this effect 

amplifies in case of tacit collusion. In this 

regard, Q-learning algorithms show some 

differences: with three firms, ∆= 74% 

and with four firms, ∆= 70%. So, as 

theory suggests, Δ decreases as the 

number of firms increases but that occurs at a slower rate. The structure of punishment, however, 

changes (as Figure 13 highlights): algorithms do not return to initial price levels but settle for an 

intermediate price level in case one agent defects. 

Next, the authors use different degrees of symmetry between firms. Conventionally, 

asymmetry is considered an obstacle to collusion but once again, in this context, this effect is not so 

strong. In particular, when one of the firms has a 12.5% cost advantage, Δ falls to 78%, and, with a 

25% cost advantage, 𝛥 = 74%. Finally when cost advantage is 50%, 𝛥 = 65%.  

In the baseline deterministic model, the only uncertainty is represented by the rival’s action, 

but to test the ability of algorithms to deal with uncertainty, the authors let one parameter of the 

demand function vary randomly. In a certain sense, this coincides with demand shocks. The result is 

that such variability hampers collusion (as theory predicts), but does not impede it.  

Figure 13 - Price impulse response with 3 players, Calvano 
et al. (2019a) 
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Another variation of the benchmark 

model consists in allowing random enter 

and exit by one firm, both in case of two 

total players (market alternating between 

monopoly and duopoly) and of three agents 

(market alternating between duopoly and 

“triopoly”). The probability assigned to the 

event of the outsider firm being in the 

market at a given time is 50% but once it 

enters, it remains there for 100 periods or longer, depending on the degree of serial correlation, a 

parameter named ρ. So, in this variation, the state s may include the prices of past periods with all 

firms being active or the prices of those which were operating and the fact that the other was not. The 

authors find that Δ can be higher than in the situation in which the number of firms is fixed: in the 

second model (duopoly and triopoly), Δ is 76% for 𝜌 = 0.99 and 86% for 𝜌 = 0.999 (while under 

normal duopoly and triopoly the average profit gain is 80% and 77% respectively). When the market 

alternates between duopoly and tripoly, the response to deviation is represented by Figure 14: 

punishment is similar to the case with of two firms and it seems that, when there are just two active 

players, they learn how to collude and enforce the agreement, and when the third firm enters, it just 

imitates the rivals’ behaviour.  

An unexpected outcome results from the use of memory longer than the two-period one used 

in all the experiments. In fact, Δ decreases as k is increased, even if just slightly. One possible reason 

is that, as memory enlarges, learning becomes tougher since the size of the Q-matrix increases. 

Another change concerns the number of possible actions, m, which in the baseline model was 

equal to 15, while in these experiments it was increased to 50 or 100. This led to a slight decrease in 

Δ, from 80% to 76%, which can be explained by the fact that as more actions become available (and 

hence the number of states increases), more exploration is needed in order to reach the same level of 

exploration as in the reference model.  

Finally, the learning rates and the intensity of the experimentation of one of the agents are 

modified. Both the algorithm with lower α and the one with higher β perform better than the rival, 

but in any case collusion appears robust to such changes, suggesting that degree of collusion may not 

be considerably affected by the differences among the algorithms. 

  

Figure 14 Price Impulse response when a third player can 
entry and exit, Calvano et al. (2019a) 
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5. Changes in the competition policy 

Calvano et al. (2019a) shows that, in stationary environments, Q-learning pricing algorithms, 

with no prior knowledge of the environment in which they operate, consistently learn to collude and 

to adopt punishment strategies in case of defection. Such retaliation is proportional to the deviation 

and envisages a gradual return to supra-competitive prices. No trace of concerted action is left by 

these algorithms since they do not communicate among them, nor they contain any instruction to 

collude. Obviously (as noted by the authors themselves), to perform a more realistic analysis, further 

complexity in the environment is needed: the model should contain several firms, stochastic demand 

and longer memory. Such complex environments would require more advanced types of software 

than the Q-learning ones, like deep learning algorithms. Hence, more research is needed. 

Nonetheless, these findings should be a wake-up call for antitrust authorities. They signal the 

risk that AI applied to algorithm pricing can make tacit collusion more frequent and that, in such 

scenario, actual policy might produce several false negatives.  

At the moment, there is still no consensus on whether and how competition policy should 

change to face this challenge. Three different points of view can be identified48. According to the 

optimistic one, algorithm pricing is not an issue (Kuhn and Tadelis 2018, Schwalbe 2018), and 

sticking to current policy is enough. In Schwalbe (2018), the author affirms that collusion reached 

through algorithm pricing is “not as likely or even unavoidable as some legal scholars seem to 

suspect”. This is because the simulations in which such algorithmic collusion has been reached are 

performed in highly stylized settings where even “human subjects may accomplish collusion”. 

Accordingly, the lack of theoretical or empirical proof of collusion resulting from the interaction of 

complex self-learning algorithms in dynamic economic settings raises some doubts on whether results 

of the experiments carried out in simplified environments could be extended to the real world. 

The other two points of view do not share such optimistic vision. As Harrington (2017) states, 

even if the problem still does not exist and evidence is not too strong, it is difficult to predict future 

scenarios. The author recalls that “the extent of market dominance that we have witnessed in online 

markets was not anticipated” either, and that in the past scholars believed that intense competition 

would have been promoted in online marketplaces, while instead few dominant firms have emerged. 

The striking technological developments made it difficult to predict future outcomes with accuracy, 

and this may hold true for pricing algorithms too. Moreover, the impressive rate of technological 

                                                 
48 A fourth position considers worthwhile the complete prohibition of algorithm pricing, but this approach 
would impede to benefit from the efficiency gains algorithms bring thanks to more efficient pricing. Hence 
this is not considered as an optimal solution to the problem.  
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change must be taken into account: some years ago very few people thought that cars could become 

self-driven, and now we are on the verge of this innovation. Hence, considering that cars are about to 

move autonomously, independent price-setting agents do not seem to be that utopian. 

Relying on similar bases, the other two points of view provide some form of intervention. In 

particular, the second one consists in regulating pricing algorithms ex ante. Such method has been 

proposed by Ezrachi and Stucke (2017) and Harrington (2017). The former suggests a model similar 

to that employed for authorizing new drugs: a regulatory agency should test and oversee the design 

of any new pricing algorithm and verify if it shows collusive tendency (and hence prohibit its use) or 

not (and hence approve its use). However, as pointed out by the authors themselves, this method 

would be onerous for agencies and might not prove successful in its objective. Since it would imply 

supervising the development of algorithms whose aim is to optimize performance, it would be 

demanding to force it not to react rationally or to ignore some events in the market (actions of other 

businesses or emergence of new information).  

The last point of view calls for ex post regulation (as competition policy typically does). The 

approach suggested again by Ezrachi and Stucke (2017) would be more selective with respect to the 

previous one, being triggered only in case the agency requires a deeper investigation in a market, and 

consequently would be less costly. During the investigations, the agency can make an assessment of 

the computerized environment, requiring firms to reveal all the details regarding the algorithm in 

order to establish whether it conducted to collusive outcomes. The nature of such approach would 

also favour innovation, since ex-post regulation only takes place after clues of tacit collusion are 

detected, hence not discouraging investments in the development of advanced algorithms as ex-ante 

approach does. Obviously, a similar procedure requires different legal standards from the actual ones, 

with a new appraisal of the concept of tacit collusion and agreement.  

Since the topic is still a recent one, systematic treatment is required to lay out the basis for 

changing the existing policy.  

As stated previously, even if some clues point in that direction, there is still no proof that self-

learning algorithms can lead to collusion in the real world. More complex algorithms (like deep 

learning ones) might be necessary for that result to be achieved, or maybe some developments in the 

rapid-expanding field of AI are still required. Clearly, the fact that at the current state of things no 

proof exists does not imply that the realization of this scenario is unattainable or unavoidably far in 

time. If similar algorithms become able to achieve collusion tacitly, with no contact between 

competitors or any facilitating practise, the current legal framework would clearly result inadequate. 

On the other hand, it must be considered the fact that programmers, in developing the 

algorithm, might foresee collusion as a possible result, but not as the likeliest. Moreover, firms may 
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just decide to rely on AI, and this alone cannot imply that they are incline to reach tacit collusion: if 

the target set is to maximize profits and the algorithm learns to do this coordinating tacitly (as the 

result of evolution and reinforcement learning), is there any liability for on humans? Deep focus on 

each algorithm is needed to determine if illegal actions could have been foreseen and/or if they were 

predetermined. 

Furthermore, defining the concept of illegality in this field becomes burdensome, as concepts 

like moral and ethics play their part, questioning the constant evolving relationship between humans 

and machines, a topic of relevant importance not only in the field of competition, but in the society 

as a whole.   
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6. Conclusions 

This work presents some of the challenges antitrust authorities face keeping up with 

innovation, such as those brought by algorithm pricing. The focus was especially on the threat brought 

by the adoption by businesses of self-learning pricing algorithms, which might reach stable tacit 

collusions with no risk of being detected or deemed liable. In this regard, an experiment in which Q-

learning pricing algorithms are employed is presented to show that such threat is concrete.  

While find a solution for a problem that still does not exist and whose real dimensions are for 

now unknown may result excessively complex and inefficient, creating awareness, increasing 

knowledge about the argument and foster preparation allows easier and faster resolution of the 

problem once (and if) it materialises. 

Hence, even if changes to the actual competition policy are likely to be implemented in the 

future, proposing them now is probably above the actual knowing about the subject, and surely above 

the scope of this work, whose intent is to shed some light on this issue. After all, Ezrachi and Stucke 

(2015) states when describing a “new antitrust world”: “How will competition officials respond when 

the executives leave this old world behind? […] How will the agencies and courts respond to this new 

world of collusion? This remains unclear. Policy-makers must recognize the dwindling relevance of 

traditional antitrust concepts of “agreement” and “intent” in the age of Big Data and Big Analytics.” 

Future related research can be conducted on the impact of pricing algorithms on personalized 

pricing: in fact, the availability of huge amount of quickly accessible data (personal historical data), 

gives online sellers the ability to perform such practice more efficiently and hence more profitably 

than ever.  
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