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Abstract

We empirically test the sufficient statistic result of Alvarez, Lippi and Oskolkov (2020). This theoretical

result predicts that the cumulative effect of a monetary shock is summarized by the ratio of two steady state

moments: frequency and kurtosis of price changes. Our strategy consists of three steps. In the first step, we

employ a Factor Augmented VAR to estimate the response of different sectors to a monetary shock. In the

second step, using microdata, we compute the sectorial frequency and the kurtosis of price changes. In the

third step, we relate the measures constructed in the previous two steps and directly test the sufficient statistic

result. Our findings show that the sufficient statistic result cannot be rejected, i.e. we find statistical statistical

support to the fact that frequency and kurtosis are relevant predictors of the propagation of monetary shocks.

Moreover, we find that other moments of the price change distribution, like the mean and skewness, are not

statistically significant in explaining the propagation of monetary shocks.



1 Introduction

A central question in macroeconomics is how monetary policy affects the real economy. The literature agrees

that monetary policy has a real effect in the short run but not in the long run. A well-known possible explana-

tion for the real effects of the monetary policy is that prices are sticky; stickiness means that firms must pay

a cost to adjust prices, which explains why prices do not change immediately after a monetary shock. For

example, menu cost models or costly information models formally rationalize price stickiness.

For a large class of sticky-price models, Alvarez et al. (2020) analytically show that the cumulative

impulse response to a once-and-for-all monetary shock is completely pinned down by two steady state statis-

tics: the frequency and the kurtosis of price adjustments (henceforth, sufficient statistic result). Frequency

represents the average time elapsed between price changes, higher frequency implies more price changes in

average and, thus, less real monetary effects. Kurtosis, instead represents the so called selection effect of

Golosov & Lucas Jr (2007): it is important to take in account which firms adjust their prices. When a firm

adjusts its price for the first time right after the shock, it completely internalizes the shock effects and, thus,

the shock effects vanishes for that firm. This result is important for two main reasons: (I) underlines the im-

portance of the kurtosis of price changes in explaining the propagation of monetary shocks and (II) provide

a general and clear method to compare the effect of a monetary shocks in different and various sticky-price

models.

The sufficient statistic result applies to a large class of sticky-price models such as the Calvo (1983)

model, the Golosov & Lucas Jr (2007) model, the calvo-plus model developed by Nakamura & Steinsson

(2010), the random menu cost problem of Dotsey & Wolman (2020) and the costly information model by
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Reis (2006). More generally, the sufficient statistic result holds for any model where firms’ price behavior

can be described by a generalized hazard function, which relates the firm’s probability to adjust its price to

its state, like the markup deviation from the desired level. Indeed, for example, in the canonical Calvo model,

the pricing behavior of firms can be described by a constant hazard function with unbounded state or, in the

Golosov & Lucas Jr (2007) model, by a bounded state with a zero hazard in the interior and with an ”infinite

hazard” at the thresholds. However, the notion of the generalized hazard function describes the firms’ behav-

ior for a broader class of models respect to the ones listed above. Hence, the Alvarez et al. (2020)’s sufficient

statistic result holds rather generally in a broad set of models, well-studied and known in the literature of

sticky-price models. The sufficient statistic result holds under some other assumptions, for example small

inflation, no strategic complementarities and no temporary price changes. The aim of this article is to explore

the empirical validity of this result. Our contribution is relevant because, to the best of my knowledge, this is

the first empirical test of the above-mentioned results.

Our empirical strategy to test the sufficient statistic result consists of three different steps. In the first step,

we exploit a Factor Augmented Vector Autoregression (FAVAR), first developed by Bernanke et al. (2005)

and by Boivin et al. (2009), to estimate the effects of a monetary shock and to construct summary measures

of the shock effects. In the second step, using microdata, we compute cross sectional moments, e.g. kurtosis

and frequency of the price adjustments. In the third step we relate the summary measures of the shock effects,

estimated in the first step, to the cross sectional moments, estimated in the second step. This last step directly

tests the sufficient statistic results.

We find evidence for the sufficient statistic result: kurtosis and frequency both have a central role in

explaining the propagation of monetary shocks. We find that an increase in the ratio of the kurtosis and
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the frequency reduces the response of prices, implying that prices are stickier, as predicted by the sufficient

statistic result. Moreover, disentangling the effect of frequency and kurtosis, we find that an increase in the

frequency or a reduction in the kurtosis implies that prices become more responsive to a monetary shock.

Hence, the stickiness of prices decreases in the frequency and increases in the kurtosis, as the sufficient

statistic result states. Moreover, in line with the sufficient statistic result, we find that a variation in the kur-

tosis or in the frequency of price changes has the same effect, in magnitude, in describing the propagation of

monetary shocks.

Our empirical strategy is strictly related to two different strands of literature. On one hand, our work is

strictly connected with the VAR literature, originally developed by Sims (1980) and Christiano et al. (1999)

to estimate the effects of a monetary shocks. The FAVAR, estimated in our first step, belongs to this strand

of literature: indeed, it is built on the VAR theoretical setup. However, the FAVAR model assumes that

some of the variables that drives the underlying economy are not observable, the so called factors. Once

the factors are estimated, the FAVAR can be treated as a VAR including observable variables and estimated

factors. Moreover, the FAVAR can incorporate any number of time series in his specification, overcoming

the problem of sparse information set, and it is able to estimate the impulse response function (IRF) to a

monetary shock of any of the time series included in the model. On the other hand, our work is related to the

cross sectional analysis literature, that aims to use microdata to infer macro patterns. For example, Klenow

& Malin (2010) summarize ten stylized facts for price setting to be incorporate in models with stickiness or

Cavallo (2018) compares scraped data and scanner data to discuss important feature of price stickiness.
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2 Sufficient Statistic for Monetary Shocks

This section discusses the sufficient statistic result of Alvarez et al. (2020), which characterizes the real output

effect of a monetary shock with a summary statistic. Indeed, the cumulative output generated by a small and

once-and-for-all monetary shock is represented by the output’s cumulative impulse response function, the

area under the impulse response function. Alvarez et al. (2020) analytically show that, for the large class of

sticky-price models in which the firm behavior can represented by a generalized hazard function, the output

cumulative impulse response,M(δ), to a small and once-and-for-all monetary shock, δ, up to a second order

approximation, is given by the ratio of the kurtosis of the steady state distribution of price changes, kurto,

over the frequency of price adjustment, freq, times sis, i.e.:

M(δ) =
1

6

kurto

freq
δ + o

(
δ2
)

(1)

Henceforth, we will refer to this as sufficient statistic result or kurtosis result, since this result underlines

the importance of the kurtosis in explaining monetary shock effects. The relevance of the frequency of price

adjustments has been stressed by the literature since it represents the average time elapsed between price

changes. Thus, higher frequency implies more price changes in average and, thus, less effect of monetary

shocks. Kurtosis, instead represents the so called selection effect of Golosov & Lucas Jr (2007): it is impor-

tant to take in account which firms adjust their prices because, for a given firm, the effect of a monetary shock

completely vanishes after its first adjustment.

Consider the following setup to understand the mechanism behind the sufficient statistic result. Firms

want to minimize the price gap, defined as the deviation of the actual price from to the optimal price, the one

that maximize the firms’ profits. It is optimal to set the price gap to zero at every point in time. However,

the price gap evolves accordingly to a Brownian motion without drift and firms face a cost to change their

4



prices. Therefore, firms do not continuously adjust their prices. In ”equilibrium” the economy is character-

ized by a distribution of the firms’ price gap; some firms will have a positive price gap, others a negative one.

Moreover, in each period of time some firms adjust their price and they return to the optimal price gap, zero.

When a monetary shock occurs, the distribution of price gaps is shifted. Hence, if the distribution does not

return to the original level immediately, there is a real effect because firms must always satisfy the demand

at the given price level. Furthermore, the real effect of the monetary shock depends on the time that it takes

for the distribution of price gaps to return to its original level. This depends on how fast, on average, firms

change their prices, the frequency, and on which firms have already adjusted their prices, the kurtosis of the

distribution of price changes. Precisely, the kurtosis captures the proportion of big and small price changes

relatively to medium price changes. A higher kurtosis leads to higher real effects because some firms some

firms wait for a long time before adjusting their prices and when they do so, they display a large price change.

Notice that the distribution of price changes is a different object with respect to the distribution of price gaps,

the former describes how much the firms’ prices change right after an adjustment.

Equation 1 precisely captures the mechanism described above and it generalizes the result of Alvarez

et al. (2016). Indeed, equation 1 holds in a much more broad class of models, precisely all the models in

which firms’ behavior can be characterized by a non-negative, piece-wise continuous symmetric, with at most

finitely many discontinuities hazard function. The hazard function is a function relating the firm’s probability

to adjust its price to its state, as for example the deviation of the current markup from the optimal markup,

i.e. the price-cost margin that maximizes profits.

Equation 1, however, requires some other assumptions. Firstly, the firm’s behavior depends only on its

current state, and not on the behavior/state of the other firms. Thus, in the model there are no general equi-
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librium effects after the monetary shock realization. However, Alvarez & Lippi (2014) show that given a

combination of the general equilibrium setup in Golosov & Lucas Jr (2007) and lack of strategic comple-

mentarities, these general equilibrium effects are of second order. Another important assumption is that the

firms return to their optimal level when they adjust prices, which, for example, happens in random menu

cost models. Another important assumption is that the firm’s state evolves according to a Brownian motion

without drift, this implies that the inflation must be small in the economic environment under study.

Notice that in the Alvarez et al. (2020)’s setup there is a one to one mapping to prices and output: this

means that the response of prices to a small and once-and-for-all monetary shock is completely pinned down

by the ratio of the kurtosis and frequency of price adjustments. Hence, testing equation 1 using prices or

output in the left hand side is the same. Moreover, equation 1 implies that the elasticity of output or price to

the ratio of kurtosis and frequency must be equal to one.

3 Empirical Strategy

This section discusses the empirical strategy used to test the sufficient statistic result. Our main hypothesis

to test the sufficient statistic result, or equivalently to test equation 1, is that each productive sector inside a

specific country1 responds differently to the same shock. In other words, that the agriculture sector reacts

differently than the manufacturing sector to the same monetary shock. Under this assumption, we can test the

sufficient statistic result in the following three steps.

In the first step, we employ a Factor Augmented VAR (FAVAR) to estimate the impulse response function

1In our application, the country under analysis is France.
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(IRF) of each sector to a monetary shock. Indeed, the FAVAR model is able to estimate the IRFs for any

number of time series to a given shock, which is precisely our aim2. Once the FAVAR model is estimated,

we construct the cumulative impulse response function (CIRF) of each sector, obtained by summing the IRF

of each sector up to a certain time horizon, n, e.g. two years. The CIRF is an important and useful measure

because it easily describes with one number the effect of a monetary shock.

In the second step, using microdata, we compute the frequency and kurtosis of price adjustments for each

sector of interest. In this step, we notice that there are two potential forces of upward bias for the estimates

of the kurtosis: heterogeneity and measurement error. Heterogeneity consists in having different goods in the

same category/sector; this could potentially bias the estimates of the kurtosis upwards since a mixture of dis-

tributions with different variances and the same kurtosis has a larger kurtosis than each subpopulation. On the

other hand, measurement error consists in incorrectly imputing big or small price changes when there were

none. To reduce the measurement error bias, we remove price changes below 0.1% in absolute value and the

top and bottom 1% of the overall distribution of price changes. Measurement error could also potentially bias

the estimates of the frequency upward; this potential bias can be solved in the same way as for the kurtosis.

The third step consists in running two different regressions relating the CIRF to the frequency and the

kurtosis of price adjustments. The first regression directly tests the sufficient statistic result and it is the

following one:

CIRF nj = α+ β ∗ log
(
kurtj
freqj

)
+ εj (reg1)

where j represents each sector, CIRF nj is the cumulative IRF calculated in the first step, n indicates the

time horizon considered, and kurtj and freqj are the measures constructed in the second step. A positive

2Appendix 1 provides a detailed description of the FAVAR model and discusses its theoretical framework.
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and statistically significant different from zero coefficient implies that the sufficient statistic result holds.

According to the theory, the above regression is imposing that a variation in the frequency and a variation in

the kurtosis have the same effect in magnitude on the CIRF. However, this could not be the case in the data,

and, to recover these differential responses, we estimate the following specification:

CIRF nj = α+ βf ∗ log (freqj) + βk ∗ log (kurtj) + εj (reg2)

where all the variables are the same as above. First over all, notice that the first regression, reg1, is the second

regression, reg2, under the additional restriction that −βf = βk. Moreover, reg2 has two important features.

On the one hand, reg2 shows whether frequency and kurtosis are both statistically significant in explaining

monetary shock effects. A βk coefficient positive and statistically different from zero provides evidence for

the importance of the kurtosis, and a negative βf coefficient has an analogous interpretation for the frequency.

On the other hand, reg2 separately recovers the effects that changes in the kurtosis and frequency have on

real output. Moreover, this allows to test whether these effects are equal in magnitude.

4 Data Description

This section describes the three different datasets used in the empirical analysis, the ”time series” dataset and

two ”microdata” datasets. The former dataset contains 601 monthly different time series used to estimate the

FAVAR, the other two microdata on consumer and production price changes, respectively, used to estimate

kurtosis and frequency of price adjustments. All the data were provided by Banque de France.

The ”time series” dataset contains 601 monthly different time series for the period from January 2005 to

April 2019. It contains information regarding the macroeconomic situation of the French economy, as for

example data on the level of production, consumption expenditure, the general level of prices, the unemploy-
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ment rate, the quantity of money in the euro area and exchange rates. Moreover, it contains also information

regarding disaggregated time series on production, production prices and consumer prices. Precisely, there

are 124 sectorial times series for production prices and 195 sectorial time series for industrial production,

both disaggregated at four digit level according to the CPF classification; 253 sectorial time series for con-

sumer prices, disaggregated at 4 digits according to che COICOP classification.

One ”microdata” dataset contains data on production price changes for 184 different sectors classified

according to the 4 digits NAVE/CPF product classification. The data were collected during the period 1994-

2005. The other ”microdata” dataset contains data on consumer price changes for 331 different sectors

classified according to the 5 digits COICOP 2016 classification. The sample period is 1994-2019 for most of

the products.

5 Results: Production Prices

This section shows the empirical results of the three step strategy developed in section 3, focusing on pro-

duction prices. Our baseline specification is using production prices instead of consumer prices because (I),

according to the Alvarez et al. (2020)’s theory, firms are better represented by producers respect to consumers

or retailers and (II) microdata and timeseries of production prices are both disaggregated at the same level;

instead, for consumer prices, microdata are more disaggregated with respect to the time series data. Time

series and microdata of production prices are both disaggregated at 4 digit level; instead, for consumer prices,

microdata are classified at 5 digits, time series at 4 digits.
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5.1 Step one: measuring responses to monetary shocks

Using the time series described in section 4, we estimate a FAVAR with 12 lags, 5 factors and the 3-month

Euribor as the observable variable. The 3-month Euribor is considered as the target interest rate of the mon-

etary policy. All the variables are in log differences, except for the 3-month Euribor for which we apply an

HP filter with φ = 1600. We use a Cholesky decomposition, ordering the 3-month Euribor last, to estimate

the IRFs to a contractionary monetary shock of 25 basis point. In other words, we estimate the IRFs to an

increase of the 3-month Euribor of 25 basis point, imposing that the Euribor can contemporaneously respond

to the shock and the factors cannot. The last factor can respond after one period to the shock, the second to

last after two periods and so on. Notice that, imposing a Cholesky decomposition in this setup does not imply

that the IRFs of production prices cannot respond simultaneously to the monetary shock.

Figure 1 reports the estimated IRFs of production price series; vertical axis is in log deviation from the

”steady state”, the level at which the system would be without any perturbation. The blue line (Aggr PPI)

represents the aggregate production price series, our most aggregate variable for PPI. This line shows that

price index reduces until a certain point from which it recovers towards the original level, this is completely

in line with the theory. Dashed red lines represent the IRFs of different sectors disaggregated at the 2-digit

level; recall that our production price time series are at 4-digits, thus the dashed red lines are constructed as

an average of estimated IRFs. The thick red line is the average of all the dashed red lines. This line has a very

similar shape to the blue line, as we should expect. However, notice that the discrepancy of the blue and the

thick red line is due to different weights and missing sectors for disaggregated time series (red lines).
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Figure 1: IRFs of PPI to a contractionary monetary shock of 25 bp

Table 1 reports the summary measure of the cumulative impulse response function of production prices

(CIRF PPI n), constructed as the sum from period zero up to period n of the IRFs, the area under the curve.

The CIRF is useful to summary the behavior of the IRF in a concise manner. Indeed, for a given sector, a

lower CIRF implies that price reacts more to the shock, thus they are less sticky. We consider different values

of n, as for example 24 and 36 months. Table 1 shows the summary statistics of the estimated sectorial CIRF.

The mean of the CIRF increases with the time horizon and it is always negative, as predicted by the theory.
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Indeed, according to the theory, in aggregate prices must decrease and gradually recover toward they original

level after a monetary shock. Table 1 also shows the standard deviation increases with the time horizon, this

implies that difference responses in sectors are persistent. According to the sufficient statistic result, the CIRF

should be calculated considering an infinite horizon. However, in our case this is not possible since we did

not impose any long run restriction in the FAVAR. Moreover, we estimated the FAVAR in difference, thus,

our time series are stationary in difference and not in levels. This implies that nothing ensures that the time

series return to their original level in the long run after a monetary shock. However, the IRF of each time

series must converges to some value, since the time series are stationary in the difference.

Table 1: CIRF of Production prices: Summary measures

Mean Std. Dev. 50% 25% 75% 5% 95%

CIRF PPI 6 -0.00 0.05 0.01 -0.00 0.01 -0.11 0.03

CIRF PPI 12 -0.03 0.17 0.01 -0.02 0.04 -0.47 0.08

CIRF PPI 18 -0.07 0.32 0.01 -0.06 0.05 -1.02 0.16

CIRF PPI 24 -0.13 0.48 0.00 -0.11 0.05 -1.46 0.18

CIRF PPI 30 -0.20 0.61 -0.03 -0.18 0.04 -1.62 0.24

CIRF PPI 36 -0.25 0.73 -0.04 -0.26 0.03 -1.73 0.22

Observations 119

5.2 Step two: measuring cross sectional moments

Using production prices micro data, we calculate the frequency kurtosis, mean and skewness of price changes

for each sector. To take into account measurement error, we exclude absolute price changes below 0.1% and
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the top and bottom 1% of the overall distribution of price changes. Table 2 reports the summary measures

of these statistics. The kurtosis and the frequency are interesting because, according to the sufficient statistic

result, they are the only two moments that matter in explaining monetary shocks. Instead, the skewness and

the mean are helpful in understanding the shape of the distribution of price changes. Frequency has a mean

around 19, this means that a given firm in average has a probability of 19% of adjust its price in a given

month. On the other hand, kurtosis has a mean of 7.2. Heterogeneity across sectors is captured by the large

standard deviation of both frequency and kurtosis. Moreover, the mean of price changes is calculated in log

difference and it is positive and around 0.85 with a standard deviation around one. The distribution of price

changes in average is symmetric around the mean, given the low value of the skewness.

Table 2: Frequency and kurtosis of Production prices: Summary measures

Mean Std. Dev. 50% 25% 75% 5% 95%

freq 18.85 20.91 12.27 8.42 18.69 5.90 90.21

kurto 7.20 3.27 6.56 5.23 8.47 4.04 11.81

mean 0.84 1.01 0.80 0.24 1.50 -0.55 2.33

skewness 0.04 0.64 0.01 -0.34 0.32 -0.90 0.95

Observations 119

5.3 Step three: testing the sufficient statistic result

In the last step, we relate the measures estimated in the first two steps according to reg1 and reg2. The suffi-

cient statistic result predicts that the ratio of kurtosis and frequency (reg1) should be positive and statistically

significant different from zero. Indeed, an higher ratio implies more stickiness, thus prices should react less to
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the monetary shock. For example, increasing the frequency, and thus reducing the ratio, keeping the kurtosis

constant, implies that in average prices change faster and thus they must be less sticky. On the other hand,

increasing the kurtosis implies that the selection effect of Golosov & Lucas Jr (2007) is smaller and, thus,

prices react less. For these reasons, the sufficient statistic result predicts that the coefficient of the frequency

in reg2 should be negative instead the one of kurtosis positive and both statistically significant different from

zero.

Table 3 reports the estimates of reg1 and it shows that the coefficient of log
(

kurto
freq

)
increases with

the time horizon and it is always positive and statistically significant different from zero. Sectors with an

higher ratio are sectors in which prices are more sticky and, thus, they react less to a monetary shock. Ta-

ble 3 also reports the implied average elasticity, η, of CIRF with respect to log
(

kurto
freq

)
, constructed as

η = β̂ ∗mean
(
log
(

kurt
freq

))
/mean(CIRF n) where β̂ is the estimated coefficient of reg1; the elasticity

reduces with the time horizon. Equation 1 predicts that the average elasticity must be equal to one, since

there is a linear relation between the ratio of the kurtosis and frequency and the cumulative response. For

this reason, table 3 reports the results of an F-test under the null that η = 1. The null cannot be rejected for

any time horizon, as shown by the p-value reported in the last row of the table. Hence, this table provides

evidence for the sufficient statistic result, given the sign and the significance of the estimated coefficient and

given that hypothesis that the elasticity is different from 1 cannot be rejected.

Table 4 shows the estimates of reg2. The coefficient of frequency is always negative and statistically

significant, as predicted by the sufficient statistic result. Moreover, it increases in the time horizon. On the

other hand, the coefficient of the kurtosis is positive and increases its significance with the time horizon.

However, the coefficient of the kurtosis is not statistically significant different from zero for short horizons.
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Table 3: Reg1 for Production Prices

(1) (2) (3) (4) (5) (6)

CIRF PPI 6 CIRF PPI 12 CIRF PPI 18 CIRF PPI 24 CIRF PPI 30 CIRF PPI 36

log
(

kurto
freq

)
0.0225** 0.0828*** 0.173*** 0.279*** 0.377*** 0.460***

(0.00975) (0.0301) (0.0579) (0.0873) (0.114) (0.137)

Constant 0.0126*** 0.0335** 0.0553* 0.0680 0.0726 0.0747

(0.00476) (0.0149) (0.0289) (0.0439) (0.0575) (0.0693)

Observations 119 119 119 119 119 119

R2 0.111 0.156 0.187 0.219 0.242 0.255

η 4.770 2.339 1.831 1.536 1.385 1.308

F-test η 3.328 2.474 1.837 1.241 0.845 0.627

P-val F-test 0.0707 0.118 0.178 0.268 0.360 0.430

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: η is the average elasticity constructed as η = β̂ ∗mean
(
log
(

kurt
freq

))
/mean(CIRF n).

F-test η reports the value of an F-test under the null η = 1 and P-val F-test the p-value of the test.

15



According to the sufficient statistic result, frequency and kurtosis should have the same coefficient in absolute

value. Hence, Table 4 also shows the results of an F-test under the null that −βf = βk, where βf is the

coefficient of the frequency, βk of the kurtosis. Recall that under this restriction reg2 becomes reg1. The

last row of the table reports the p-value of this test and it shows that the null cannot be ever rejected. These

results further provides evidence for the sufficient statistic results, since kurtosis and frequency are important

in explaining the effects of monetary shocks and it is not possible to reject the null that kurtosis and frequency

have the same coefficient but with opposite sign.

5.4 Further test of the sufficient statistic result

This section provides a more ambitious test of the sufficient statistic result: we want to test that only the

frequency and the kurtosis of price changes are important in explaining the propagation of monetary shocks

and that other moments, instead, are irrelevant. To do so, we regress the CIRF over the ratio of the kurtosis and

the frequency, over the mean and the skewness of price changes. Notice that, since the mean and the skewness

have both negative values, it is not possible anymore to take logs in the right hand side. Table 5 shows the

results of this regression and provides further evidence for the sufficient statistic result. Indeed, Table 5 shows

exactly that the ratio is statistically significant different from zero, instead the mean and the skewness are not.

Moreover, notice that the estimated coefficient of the ratio is very close to the one estimated without including

the mean and the skewness in the specification (not reported), implying that mean and kurtosis do not affect

at all our results. Moreover, our findings still hold when we separately regress the CIRF over the ratio and the

mean or over the ratio and the skewness of price changes; the ratio is statistically significant different from

zero in both specifications, the mean and kurtosis are both not statistically significant (not reported).
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Table 4: Reg2 for Production Prices

(1) (2) (3) (4) (5) (6)

CIRF PPI 6 CIRF PPI 12 CIRF PPI 18 CIRF PPI 24 CIRF PPI 30 CIRF PPI 36

log freq -0.0242** -0.0884*** -0.184*** -0.296*** -0.401*** -0.490***

(0.0108) (0.0330) (0.0629) (0.0938) (0.122) (0.146)

log kurto 0.0163 0.0629 0.132* 0.215* 0.291** 0.355**

(0.0124) (0.0386) (0.0746) (0.112) (0.145) (0.174)

Constant 0.0289 0.0861 0.162 0.236 0.298 0.353

(0.0292) (0.0872) (0.162) (0.234) (0.295) (0.346)

Observations 119 119 119 119 119 119

R2 0.113 0.158 0.189 0.222 0.245 0.259

F-test 0.367 0.420 0.493 0.577 0.651 0.722

P-val F-test 0.546 0.518 0.484 0.449 0.421 0.397

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: F-test reports the value of an F-test under the null −log freq = log kurto and P-val F-test the

p-value of the test.
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Table 5: Regression of CIRF over ratio, mean and skewness of price changes

(1) (2) (3) (4) (5) (6)

CIRF PPI 6 CIRF PPI 12 CIRF PPI 18 CIRF PPI 24 CIRF PPI 30 CIRF PPI 36

kurto
freq 0.0197* 0.0743* 0.156** 0.253** 0.344** 0.421**

(0.0115) (0.0390) (0.0785) (0.123) (0.163) (0.197)

mean -0.00164 -0.00266 -0.00161 0.00248 0.00763 0.0119

(0.00363) (0.0115) (0.0215) (0.0321) (0.0415) (0.0496)

skewness -0.00665 -0.0226 -0.0443 -0.0669 -0.0862 -0.102

(0.00624) (0.0195) (0.0373) (0.0556) (0.0716) (0.0851)

Constant -0.0145 -0.0704** -0.166** -0.293*** -0.421*** -0.531***

(0.0106) (0.0335) (0.0644) (0.0968) (0.125) (0.150)

Observations 119 119 119 119 119 119

R2 0.036 0.055 0.068 0.082 0.092 0.098

η 3.692 1.871 1.474 1.246 1.128 1.067

F-test η 1.564 0.788 0.410 0.165 0.0571 0.0182

P-val F-test 0.214 0.377 0.523 0.685 0.812 0.893

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: η is the average elasticity constructed as η = β̂ ∗mean
(

kurt
freq

)
/mean(CIRF n).

F-test η reports the value of an F-test under the null η = 1 and P-val F-test the p-value of the test.
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6 Robustness Checks

This section provides robustness checks that confirm our findings: it is not possible to reject the sufficient

statistic result from the data. Section 6.1 exploits the three step strategy using consumer price instead of

production prices. Section 6.2 reports the results of reg1 and reg2 pooling together production and consumer

to gain more precision in the estimates. Section 6.3 briefly discusses further robustness checks.

6.1 Consumer Prices

Using consumer prices, we exploit the three step strategy to further test the sufficient statistic result. Con-

sumer prices are considered as a robustness check because consumption price micro data and time series

are disaggregated at different levels; microdata are disaggregated at 5 digits, instead time series at 4 digits.

Hence, the match between CIRF and micro moments in the third step of the empirical strategy for consumer

prices is not as good as for production prices. We consider only the 5-digit category with the biggest weight

in the CPI for each 4-digit category available in the time series dataset. Notice that it would be not correct to

compute the kurtosis as the average of all the observation inside each 4-digit category because this generates

biased estimates.

In the first step, we estimate a FAVAR in the same way as in the previous section, however this time we

retrieve the IRFs of consumer prices, instead of production prices and we compute the CIRFs as above. Table

6 reports the summary measures of the cumulative IRFs of consumer prices. Notice that the mean is near

zero and it decreases with the time horizon, as for the CIRF of production prices.
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Table 6: CIRF of consumer prices: Summary measures

Mean Std. Dev. 50% 25% 75% 5% 95%

CIRF CPI 6 0.00 0.02 0.00 -0.00 0.01 -0.02 0.03

CIRF CPI 12 0.00 0.07 0.01 -0.01 0.03 -0.07 0.07

CIRF CPI 18 -0.00 0.15 0.02 -0.02 0.05 -0.13 0.11

CIRF CPI 24 -0.02 0.23 0.01 -0.03 0.06 -0.19 0.13

CIRF CPI 30 -0.04 0.30 0.00 -0.05 0.05 -0.25 0.15

CIRF CPI 36 -0.07 0.36 -0.01 -0.08 0.05 -0.31 0.17

Observations 217

In the second step, as done for production prices, we compute the frequency and kurtosis of price changes,

excluding price changes below 0.1% in absolute value and the top and bottom 1% of the overall distribution

of price changes. Table 7 provides the summary statistics of the estimated frequency and kurtosis of price

changes. Notice that the mean of the frequency is around 11%, lower respect to the frequency of production

prices. Moreover, the standard deviation of the frequency of consumer price is half with respect to the one of

production prices. On the other hand, the mean of kurtosis is quite similar, but the standard deviation of the

kurtosis is larger for consumer prices.
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Table 7: Frequency and kurtosis of consumption prices: summary measure

Mean Std. Dev. 50% 25% 75% 5% 95%

freq 10.75 10.51 8.95 4.08 14.58 1.80 24.26

kurto 7.63 5.12 6.78 4.65 8.88 3.00 16.51

Observations 217

The third step consists in estimating reg1 and reg2 using consumer prices. The results of reg1 and reg2

are reported in tables 8 and 9, respectively. Table 8 shows that as the time horizon increases it is not possible

to reject the sufficient statistic results, the coefficient of the ratio is statistically significant different from

zero. Moreover, table 8 reports the estimated average elasticity, η, and an F-test under the null η = 1, as

the sufficient statistic result predicts. However, the null can be rejected for any time horizon, the elasticity

is lower to one, in contrast to our finding with production prices. Nevertheless, recall that for the sufficient

statistic result firms are better represented by producers respect to retailers or consumers. Table 9 reports the

results of reg2 and it shows that both the coefficient of frequency and kurtosis increases in absolute value and

in significance with the time horizon, in line with the sufficient statistic result and with the results obtained

with producer prices. However, for consumer prices frequency is only statistically significant different from

zero for long time horizon. On the other hand, kurtosis is always statistically different from zero. These

results strengthen the validity of the sufficient statistic result. Moreover, table 9 shows the results of an F-test

under the null that the coefficient of kurtosis and frequency are the same in absolute value; the null can only

be rejected for time horizons equal to 6 or 12 months.
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Table 8: Reg1 Consumer Prices

(1) (2) (3) (4) (5) (6)

CIRF CPI 6 CIRF CPI 12 CIRF CPI 18 CIRF CPI 24 CIRF CPI 30 CIRF CPI 36

log
(

kurto
freq

)
0.00427 0.0188* 0.0425* 0.0733** 0.104** 0.130**

(0.00303) (0.0106) (0.0217) (0.0345) (0.0465) (0.0567)

Constant 0.00269** 0.00558 0.00279 -0.00951 -0.0273** -0.0465***

(0.00124) (0.00375) (0.00701) (0.0105) (0.0138) (0.0165)

Observations 217 217 217 217 217 217

R2 0.033 0.061 0.082 0.101 0.114 0.121

η -0.308 -0.998 1.797 0.533 0.360 0.293

F-test η 35.85 12.66 0.757 3.455 15.74 30.61

P-val F-test 8.85e-09 0.000460 0.385 0.0644 9.88e-05 9.14e-08

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: η is the average elasticity constructed as η = β̂ ∗mean
(
log
(

kurt
freq

))
/mean(CIRF n).

F-test η reports the value of an F-test under the null η = 1 and P-val F-test the p-value of the test.
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Table 9: Reg2 Consumer Prices

(1) (2) (3) (4) (5) (6)

CIRF CPI 6 CIRF CPI 12 CIRF CPI 18 CIRF CPI 24 CIRF CPI 30 CIRF CPI 36

log freq -0.00183 -0.0143 -0.0379 -0.0721* -0.107** -0.139**

(0.00362) (0.0125) (0.0255) (0.0406) (0.0545) (0.0664)

log kurto 0.0110*** 0.0312*** 0.0552*** 0.0768*** 0.0928*** 0.103**

(0.00262) (0.00836) (0.0162) (0.0250) (0.0330) (0.0399)

Constant -0.0149*** -0.0271 -0.0307 -0.0187 0.00106 0.0237

(0.00550) (0.0172) (0.0340) (0.0538) (0.0729) (0.0899)

Observations 217 217 217 217 217 217

R2 0.064 0.071 0.085 0.101 0.114 0.123

F-test 9.051 3.120 0.839 0.0258 0.136 0.551

P-val F-test 0.00294 0.0788 0.361 0.873 0.713 0.459

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: F-test reports the value of an F-test under the null −log freq = log kurto and P-val F-test the

p-value of the test.
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6.2 Pooled Data

To increase the number of observation and to obtain more precise estimates, we pooled together producer

and consumer price data. We run the two baseline specifications, reg1 and reg2, adding a dummy that takes

value one for consumer prices. The results confirms our findings: the ratio, the frequency and the kurtosis

are always statistically significant different from zero and with the appropriate sign. Appendix B provides a

detailed discussion of these findings.

6.3 Further robustness checks

Using producer prices, we explore other two robustness checks. The first one assume that the measurement

error for kurtosis is bigger. Hence, we estimate the kurtosis excluding the top and bottom 5% of distribution

of price changes in each category, instead of the 1% of the overall distribution. In the second robust checks,

we exclude the top and bottom 1% of the CIRF of producer prices. In both the scenarios, our findings still

holds even if they are weaken, since we are reducing the variability in our data. Overall, the sufficient statistic

result still holds. Appendix B provides a detailed discussion of these results.

7 Conclusion

Our findings provide evidence on the sufficient statistic result for monetary shocks, namely that the effect of

a monetary shock is completely pinned down by the ratio of kurtosis and frequency of price changes. Our

empirical analysis shows that the ratio of kurtosis to frequency is positively and statistically significantly

correlated with the response of price, the CIRF, as predicted by the sufficient statistic result, implying that

a higher ratio leads to more price stickiness. The sufficient statistic result predicts also that the average

elasticity of CIRF with respect to the ratio is equal to one; this hypothesis cannot be rejected in our baseline
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specification. Moreover, the sufficient statistic result predicts that frequency and kurtosis are both important

in explaining the propagation of monetary shocks and that they must have the same effect in magnitude. To

test this result, we disentangle the effect of kurtosis and frequency of price changes regressing the CIRF over

the frequency and the kurtosis. Our findings strengthen the evidence provided for the sufficient statistic result

since the coefficients of frequency and kurtosis are statically significant from zero and with the expected

sign; moreover, they are not statically different in magnitude. Moreover, we not only find that the kurtosis

and the frequency are statistically relevant in explaining the propagation of monetary shocks, but also that

other moments, as mean and skewness of price changes, are irrelevant and do not further information in

capturing the effects of monetary shocks. Moreover, our findings are robust to different specifications.
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Appendix A: FAVAR Theory

The Factor Augmented Vector Autoregression (FAVAR) was originally developed by Bernanke et al. (2005)

and by Boivin et al. (2009). Stock & Watson (2016) provide also a clear explanation of the model.

Let Yt be a vector of observable economic variables with dimensionM x 1,M ≥ 1, and let Ft be a vector

of unobserved factors with dimension K x 1, K ≥ 1. Assume that the dynamics of the economy is driven by

(Y ′t , F
′
t ) which follows the transition equation: Ft

Yt

 = Φ(L)

 Ft−1

Yt−1

+ vt (2)

where Φ(L) is a lag polynomial of finite order and vt is an error term with zero mean and covariance matrixQ.

Equation 2 looks like a VAR, but remind that Ft is unobserved and, thus, we cannot directly estimate equation

2. However, the factors Ft are interpreted as representing forces that potentially affect many economic

variables from which we can estimate the factors. Indeed, assume that a large number of time series Xt,

called informational time series, are related to the observed variables Yt and to the unobservable factors Ft

by the following equation:

Xt = ΛF+
t + et (3)

where F+
t ≡ [Ft Yt]

′ and et is a vector N x 1 of error terms with zero mean3. Notice that the number of

informational time series,N , must be large which meansN is much greater respect to the number of variables

that drives the economy (Ft and Yt), i.e. N > K +M , and potentially N can be bigger than the time period

under consideration, T . Moreover, notice that Ft can always capture arbitrary lags of fundamental factors,

3If factors are estimated using a principal components analysis, errors can display a small amount of cross-correlation that must

vanish as N goes to infinity. See Stock & Watson (2002) for a detailed discussion.
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thus it is not restrictive to assume that Xt depends only on the current values of the factors4.

Under the above assumptions, it is possible to estimate the model, using a two-step approach5: in the first step,

the common factors are estimated extracting the first K principal components, Ĉ(0), from the information

variables, Xt. Indeed, as shown by Stock & Watson (2002), for N large enough and if the number of

principal components used are at least as the true number of factors, the principal components of Xt span the

space generated by the factors Ft and the observable variables Yt; thus, the principal components represent

independent but arbitrary linear combinations of Ft and Yt. However, we want that these combinations do not

depend on Yt and that they are only independent combinations of the factors. For this reason, the factors are

precisely estimated as follow. Regress Xt on Ĉ(0) and Yt to obtain B̂(0)
r , the coefficient of Yt. After compute

X̃
(0)
t = Xt− B̂(0)

r Yt and estimate Ĉ(1) as the first K principal components of X̃(0)
t . Iterate until convergence

of B̂(i)
r to obtain the desired estimated factors, F̂t. The second step consists in estimating equation 2 as a

structural VAR6, replacing Ft with F̂t. Indeed, we can rewrite equation 2 as

F̂+
t = Φ(L)F̂+

t−1 + vt (4)

where F̂+
t ≡ [F̂t Yt]

′. Assuming vt = Hεt, it is clear that equation 4 can be treated as a structural VAR.

We are left with only one open question: how is it possible to estimate the IRFs of Xt? Consider again

equation 4 and assume that the MA representation exists. Denoting the MA coefficient with Ψ(L), we obtain

F̂+
t = Ψ(L)Hεt (5)

Moreover, using F̂t
+

instead of F+
t in equation 3 and replacing in this equation equation 5, we get

Xt = ΛΨ(L)−1Hεt + et (6)

4For this reason Stock & Watson (1999) refer to equation 3 as a dynamic factor model.
5The model can be estimated also using a single-step Bayesian likelihood approach.
6In our application, we estimate the structural VAR using a Cholesky decomposition. However, any other approach can be used.
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Equation 6 links the information variables, Xt, to the shocks and provides the theoretical framework to

retrieve the IRFs of Xt. However, in practice, the IRFs of Xt are not estimated using the MA representation

and, thus, equation 6. Indeed, let ̂IRF (A) be the estimated IRFs of the time series At to a given shock. The

IRFs of Xt is calculated as

̂IRF (X) = β̂ ∗ ̂IRF (F̂+) (7)

where ̂IRF (F̂+) is the VAR estimated IRF of F̂+
t and β̂ is the estimated coefficient of the regression of Xt

on F̂+
t .

Appendix B: Robustness Checks for production prices

In this section, we provide various robustness checks for producer prices to establish the validity of our find-

ings. If not specified, the measures for CIRF, kurtosis and frequency used are the same of section 5.

Table 10 and table 11 report the results of reg1 and reg2, respectively, using a different measure of kur-

tosis. The kurtosis is estimated excluding the top and bottom 5% of the distribution of price changes in each

category and price changes below 0.1% in absolute value. Notice that this alternative measure of kurtosis

generates values much lower respect with our baseline specification and reduces the variability of the kurto-

sis, this attenuates our findings. The results in table 10 are very similar to our baseline specification, table 3,

the coefficient of the ratio is positive and statistically significant from zero. However, it is possible to reject

the null that the elasticity is equal to one in any specification. Table 11 shows that the frequency is negative

and statistically significant from zero, as in table 3. However, the kurtosis is positive and not statistically

significant different from zero. Recall that this alternative measure measure of kurtosis reduces a lot the vari-

ability of kurtosis in our data and this can lead to a non-significant coefficient. Anyway, it is not possible to

30



reject the null that the frequency and the kurtosis have the same effect in magnitude.

Table 12 and table 13 report the results of reg1 and reg2, respectively, excluding the top and bottom 1%

of the production prices CIRFs. Table 12 confirms the findings in table 3, the ratio is positive and statistically

significant different from zero and it is not possible to reject the null that the elasticity is equal to one. Table

13 shows that the results for the frequency still hold and that the kurtosis is statistically significant from zero

for long horizons. Moreover, it is not possible to reject the null that both coefficient are equal in magnitude.

Table 14 and table 15 report the results of reg1 and reg2, respectively, including together the CIRF of pro-

duction and consumer prices and adding a dummy for consumer price as dependent variable (dummy cpi).

This specification has the advantage to have an higher number of observations. Both tables confirm exactly

our findings, all the coefficient are always statistically significant from zero and with the appropriate sign.

Moreover, it is not possible to reject the null that frequency and kurtosis have the same effect in magnitude.

However, for some time horizon it is possible to reject the nulla that the elasticity is equal to one.
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Table 10: Production prices: Reg1 using a different measure of kurtosis

(1) (2) (3) (4) (5) (6)

CIRF PPI 6 CIRF PPI 12 CIRF PPI 18 CIRF PPI 24 CIRF PPI 30 CIRF PPI 36

log
(

kurto
freq

)
0.0196** 0.0729*** 0.153*** 0.248*** 0.336*** 0.412***

(0.00861) (0.0264) (0.0503) (0.0751) (0.0973) (0.117)

Constant 0.0237** 0.0753*** 0.144*** 0.212** 0.269** 0.316**

(0.00929) (0.0285) (0.0543) (0.0812) (0.105) (0.126)

Observations 119 119 119 119 119 119

R2 0.094 0.135 0.163 0.194 0.215 0.228

η 8.040 3.990 3.142 2.649 2.396 2.268

F-test η 3.964 4.276 4.300 4.217 4.054 3.901

P-val F-test 0.0488 0.0409 0.0403 0.0423 0.0463 0.0506

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: η is the average elasticity constructed as η = β̂ ∗mean
(
log
(

kurt
freq

))
/mean(CIRF n).

F-test η reports the value of an F-test under the null η = 1 and P-val F-test the p-value of the test.
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Table 11: Production prices: Reg2 using a different measure of kurtosis

(1) (2) (3) (4) (5) (6)

CIRF PPI 6 CIRF PPI 12 CIRF PPI 18 CIRF PPI 24 CIRF PPI 30 CIRF PPI 36

log freq -0.0242** -0.0860** -0.178** -0.283*** -0.380*** -0.464***

(0.0117) (0.0362) (0.0695) (0.105) (0.136) (0.164)

log kurto 0.00239 0.0239 0.0617 0.116 0.171 0.215

(0.0111) (0.0354) (0.0689) (0.104) (0.136) (0.163)

Constant 0.0569 0.170 0.320 0.466 0.588 0.696

(0.0363) (0.114) (0.220) (0.334) (0.437) (0.527)

Observations 119 119 119 119 119 119

R2 0.101 0.141 0.169 0.199 0.221 0.234

F-test 1.303 1.056 0.967 0.864 0.792 0.771

P-val F-test 0.256 0.306 0.327 0.355 0.375 0.382

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: F-test reports the value of an F-test under the null −log freq = log kurto and P-val F-test the

p-value of the test.
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Table 12: Production prices: Reg1 eliminating top and bottom 1% of CIRFs

(1) (2) (3) (4) (5) (6)

CIRF PPI 6 CIRF PPI 12 CIRF PPI 18 CIRF PPI 24 CIRF PPI 30 CIRF PPI 36

log
(

kurto
freq

)
0.0224** 0.0846*** 0.136*** 0.219*** 0.280*** 0.342***

(0.00979) (0.0302) (0.0436) (0.0634) (0.0812) (0.0956)

Constant 0.0141*** 0.0392*** 0.0364* 0.0384 0.0272 0.0190

(0.00439) (0.0141) (0.0219) (0.0324) (0.0426) (0.0506)

Observations 117 117 117 117 117 117

R2 0.160 0.221 0.145 0.175 0.176 0.190

η 9.382 2.972 1.657 1.359 1.173 1.098

F-test η 4.185 3.450 1.539 0.833 0.259 0.102

P-val F-test 0.0431 0.0658 0.217 0.363 0.611 0.751

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: η is the average elasticity constructed as η = β̂ ∗mean
(
log
(

kurt
freq

))
/mean(CIRF n).

F-test η reports the value of an F-test under the null η = 1 and P-val F-test the p-value of the test.
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Table 13: Production prices: Reg2 eliminating top and bottom 1% of CIRFs

(1) (2) (3) (4) (5) (6)

CIRF PPI 6 CIRF PPI 12 CIRF PPI 18 CIRF PPI 24 CIRF PPI 30 CIRF PPI 36

log freq -0.0258** -0.0977*** -0.151*** -0.241*** -0.305*** -0.373***

(0.0109) (0.0333) (0.0498) (0.0719) (0.0905) (0.106)

log kurto 0.0101 0.0388 0.0852 0.142 0.189* 0.230*

(0.00970) (0.0309) (0.0593) (0.0871) (0.112) (0.132)

Constant 0.0466** 0.161** 0.172 0.242 0.265 0.314

(0.0223) (0.0671) (0.153) (0.218) (0.269) (0.312)

Observations 117 117 117 117 117 117

R2 0.172 0.238 0.151 0.181 0.181 0.196

F-test 2.434 3.695 0.918 1.001 0.889 1.010

P-val F-test 0.122 0.0571 0.340 0.319 0.348 0.317

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: F-test reports the value of an F-test under the null −log freq = log kurto and P-val F-test the

p-value of the test.
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Table 14: Pooled data: Reg1

(1) (2) (3) (4) (5) (6)

CIRF 6 CIRF 12 CIRF 18 CIRF 24 CIRF 30 CIRF 36

log
(

kurto
freq

)
0.00917*** 0.0360*** 0.0775*** 0.128*** 0.177*** 0.218***

(0.00353) (0.0115) (0.0228) (0.0353) (0.0468) (0.0567)

dummy cpi 0.000304 0.00803 0.0208 0.0378 0.0535 0.0646

(0.00447) (0.0140) (0.0269) (0.0404) (0.0524) (0.0626)

Constant 0.00311 9.45e-05 -0.0129 -0.0392 -0.0700 -0.0979*

(0.00379) (0.0118) (0.0224) (0.0333) (0.0428) (0.0508)

Observations 336 336 336 336 336 336

R2 0.056 0.093 0.119 0.144 0.162 0.172

η -28.71 1.727 1.023 0.752 0.635 0.575

F-test η 7.223 1.731 0.00571 1.433 4.713 8.072

P-val F-test 0.00756 0.189 0.940 0.232 0.0306 0.00477

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: η is the average elasticity constructed as η = β̂ ∗mean
(
log
(

kurt
freq

))
/mean(CIRF n).

F-test η reports the value of an F-test under the null η = 1 and P-val F-test the p-value of the test.
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Table 15: Pooled data: Reg2

(1) (2) (3) (4) (5) (6)

CIRF 6 CIRF 12 CIRF 18 CIRF 24 CIRF 30 CIRF 36

log freq -0.00804** -0.0349*** -0.0787*** -0.135*** -0.189*** -0.237***

(0.00406) (0.0131) (0.0257) (0.0395) (0.0522) (0.0631)

log kurto 0.0125*** 0.0392*** 0.0742*** 0.110*** 0.140*** 0.163***

(0.00353) (0.0113) (0.0220) (0.0336) (0.0442) (0.0532)

dummy cpi 0.00101 0.00872 0.0201 0.0339 0.0458 0.0527

(0.00466) (0.0146) (0.0279) (0.0418) (0.0540) (0.0643)

Constant -0.00614 -0.00892 -0.00351 0.0120 0.0325 0.0576

(0.00961) (0.0293) (0.0560) (0.0837) (0.109) (0.130)

Observations 336 336 336 336 336 336

R2 0.059 0.093 0.119 0.145 0.164 0.175

F-test 1.347 0.137 0.0405 0.540 1.286 2.060

P-val F-test 0.247 0.712 0.841 0.463 0.258 0.152

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note: F-test reports the value of an F-test under the null −log freq = log kurto and P-val F-test the

p-value of the test.
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