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Introduction

As the market state becomes ever more susceptible to the aggregate con-
tribute of multiple sources of instability and the proliferation of increasingly
sophisticated financial instruments is witnessed, each customizable to suit
the diverse adjustment needs, the common practice of minimizing the in-
trinsic portfolio risk by specular investments, known as hedging, has evolved
as a well established and clear-cut praxis, widely included among the retail
traders priorities and mandatorily required by regulators to institutional in-
vestors. Derivative securities, products whose payoff depends on the trend
of an underlying asset, are the principle devices used to channel the loss
uncertainty and balance the pool of diversified agent positions. Option con-
tracts, in particular, allow to manage a persistent and effective hedging if
properly offset by an opposite dynamic replication of their behaviour, ob-
tained by weighting a collection of stocks entangled with call or put varia-
tion. These weight measuring hedge ratios are known as Greeks and they
match the sensitivity of the option to a determinant pilot risk factor. The
most extensively accounted ones are the delta and the vega, corresponding
to the partial derivatives of the option price with respect to the level of the
underlying and to its volatility. The accuracy of the Greeks estimation is
responsible for the hedging quality and it is typically associated with the
methodology applied for the extrapolation of the risk-neutral density. This
function, whose existence is guaranteed only in arbitrageless venues, is the
probability distribution of the prices of the underlying asset in the measure
Q, which prices the contingent claims from the perspective of a risk-neutral
investor. In the vast and continuously updating literature on the density
extraction a first fundamental distinction is made between structural and
non-structural models. The former provide a complete description of the
stock prices dynamic, the latter derive instead the density by resourcing only
from a partial or absent definition of the underlying stochastic process. Non-
structural approaches could themselves be classified in parametric, where a
direct expression of the risk-neutral density is proposed, and semi or non-
parametric, where the density is estimated with approximation techniques.
A widespread trading strategy is the so-called practitioners’ Black-Scholes
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consisting in a delta hedging, with the hedging coefficient computed with the
Black-Scholes formula. This is a structural approach as in the Black-Scholes
setup the asset price follows a log-normal diffusion process, preserved in the
risk-neutral measure Q for the Girsanov theorem. The main caveats of this
procedure stand in the empirically proved failure of the hypotheses, since
the volatility of the underlying is not constant and the process may exhibit
jumps, and the absence of the vega. More and more refined models have
been proposed, with a stochastic volatility and volatility of volatility, but
in general any structural or non-structural parametric approach suffers from
some recurring drawbacks, especially when historical data are used. When,
indeed, a relatively simple model is taken the results could be biased and
not adherent to the actual observations, whereas when a complex model is
considered, the trade-off is detrimental for the processing time requested for
the determination of the parameters.
In this thesis we propose a non-structural semi-parametric approach for the
risk-neutral density extraction and the consequent hedging. Our method-
ology, along the lines of 9, will only rely upon weak regularity conditions
without imposing binding constraints for the underlying stochastic process,
revisiting and generalizing some standard procedures based on polynomial
expansion such as the Edgeworth series or, with the proper adaptation, the
Gram-Charlier A series. The Greeks will be then computed from the derived
risk-neutral moments via some cunning heuristic identities, later empirically
verified with the other assumptions. Beside this main purpose, the work
will be set for several additional aims. By venturing in the field of option
hedging we will notice how the areas of derivative pricing and economics will
intertwine with our findings. We will therefore often detail the whole con-
text by focusing on the VIX puzzle phenomen explanations, outlining how
the Greeks should in general change according to the option moneyness and,
most importantly, refer to the many ways the risk-neutral density could be
utilized in other academic areas. This is done to endow the work with a
broader scope, indirectly suggesting some possible variations on the theme
treated. The contents of the thesis articulate as follows :

• Chapter 1
We will start by building the mathematical apparatus of our strat-
egy. In particular, our main aim will be to construct the orthogonal
polynomials recursively and to study the conditions under which these
can allow an infinite series expansion for a function. The exposition
is formalized in such a way that any unfamiliar reader can follow its
development, starting from elements of Measure Theory and reaching
the proof of the completeness of the orthonormal polynomial basis.
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• Chapter 2
We will then move to implementing our results in the financial theory,
showing how to resort to the polynomials for constructing the hedging.
This will bring us to many technical passages since first we will have
to estimate the risk-neutral moments, then find a way to express the
Greeks as functions of tradable contracts and finally select properly the
kernel density.

• Chapter 3
The final chapter will be divided in two halves. The first part will
be dedicated to support our previous assumptions against an empir-
ical background, a procedure that will dissect the inner mechanism
determining the option variance. The second half will start with a di-
gression on the several applications of the risk-neutral density followed
by a guide on how to interpret its form and that of the Greeks and infer
the potential future market movements. The final section will describe
how to measure the hedging in a time span with periodic rebalancing
and how some potential flaws in the strategy, emerging in low volatility
times, could be resolved.



1
Orthogonal Polynomials

We will begin by rigorously deriving the theoretical framework underlying
the rationale of our hedging strategy. Our focus is to formally establish the
conditions under which a probability density of a stock price, itself deter-
mining the option payoff, can be expressed as an infinite linear combination
of polynomials. We will see that this process parallels a traditional result of
Real Analysis which is the construction of a complete basis for an Hilbert
space i.e., intuitively, an infinite dimensional vector space. In particular, our
aim will be to find an orthonormal basis of polynomials in the vector space of
square-integrable functions. We will do this in three steps. First, the unac-
quainted reader will be introduced to the lexicon of Measure Theory, to the
notions that will be extensively employed throughout the rest of the chapter
and to the few foundational results our proofs will be subsequently grounded
on. We will provide only the necessary elements and thus, for further details,
we recommend the reference [2]. Secondly, we will constructively prove the
existence of the orthogonal polynomials via a standard orthonormalization
procedure which will then pave the way for a recursive determination of their
coefficients. Finally, the last section will be devoted to the presentation of
the core statement and of the main theorem the proof centers upon.

6
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1.1 Elements of Measure theory
First we need to formally identify the measurable space and the Borel mea-
sure. We start with the basic definitions.
Note 1.1. Given a set X we recall the definition of its power set P(X) = {E :
E ⊆ X}.

Definition 1.1. Given a set X, a familiy of subsets A ∈ P(X) is an algebra
if :

i) ∅, X ∈ A.

ii) ∀A,B ∈ A ⇒ A ∪B ∈ A;Ac ∈ A.

A is a σ-algebra if for any family of subsets {Ai}i∈N ⊆ X we also have

iii) ⋃i∈NAi ⊆ X.

The pair (X,A) is then called a measurable space.

Definition 1.2. Given two measurable spaces (X,A1) and (Y,A2),a function
f : X → Y is said to be measurable if

f−1(E) := {x ∈ X : f(x) ∈ E} ∈ A1, ∀E ∈ A2 (1.1)

Definition 1.3. Given a set X and a subset F ∈ P(X), the σ-algebra gener-
ated by F is the σ-algebra A such that for any σ-algebra A′ that contains F
we have A ⊆ A′.

Definition 1.4. Given a non empty set X, a family of subsets Σ ∈ P(X) is a
topology on X if

i) ∅, X ∈ Σ.

ii) {Ai}i∈I ∈ Σ⇒ ⋃
i∈IAi ∈ Σ.

iii) A,B ∈ Σ⇒ A ∩B ∈ Σ.

The pair (X,Σ) is called a topological space and the elements of Σ are called
open sets of X.

Definition 1.5. Given a topological space (X,Σ), the σ-algebra generated by
the open sets of X is called Borel σ-algebra on X.

Definition 1.6. Given a measurable space (X,A), a measure µ on (X,A) is
a function µ : A → [0,+∞] such that
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i) µ(∅) = 0.

ii) {Ai}i∈N ∈ A : Ai ∩ Aj = ∅ ∀i, j ∈ N⇒ µ(⋃+∞
i=0 Ai) = ∑+∞

i=0 µ(Ai).

The triple (X,A, µ) is called measure space.

Definition 1.7. Given a measure space (X,A, µ), a property P is said to hold
µ-almost everywhere (abbreviated µ-a.e.) in X if there exists a set N ∈ A
such that µ(N) = 0 and all x ∈ X/N satisfy the property P .

Now we need to deliver our first standard result which will implicitly take
part to the hypothesis of the core statement : the Radon-Nikodym Theorem.

Definition 1.8. Given two measures µ and ν on a measure space (X,A), µ is
said to be absolutely continuous with respect to ν if

∀E ∈ A ν(E) = 0⇒ µ(E) = 0 (1.2)

In which case we will write µ << ν.

Definition 1.9. A measure µ on a measurable space (X,A) is called σ-finite
if there exists a family {An}n∈N ∈ A such that µ(An) < ∞ for any n ∈ N
and ⋃n∈NAn = X.

Definition 1.10. A Borel measure is any measure µ on a measure space
(X,B(X)) with B(X) Borel σ-algebra on X.

Remark 1.1. Given an interval (a, b) ⊆ R, a Borel measure on ((a, b),B(a, b))
with Borel σ-algebra generated by the open intervals of (a, b) is clearly σ-
finite. If a = −∞ and/or b = +∞ we take An = (−n, n).

Theorem 1.11 (Radon-Nikodym). Let µ and ν be two σ-finite measures on a
measurable space (X,A). If µ << ν then there exists a measurable function
f : X → [0,+∞) such that

µ(A) =
∫
A
fdν ∀A ⊆ X (1.3)

The function f is called Radon-Nikodym derivative and is denoted by dµ
dν
.

Proof. See [2], Theorem 6.10.

We can now gradually present the definition of Hilbert space, a pivotal con-
stituent of Real Analysis and a mathematical object that will be essential for
our discussion. Additionally, we will provide the definition of closure, whose
meaning will prove necessary thereafter to describe a complete basis. Let us
start from
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Definition 1.12. Given a vector space V over the field F equal to R or C, a
function 〈., .〉 : V × V → F is an inner product if for any x, y, z ∈ X and
a ∈ R the following holds:

i) 〈x, y〉 = 〈y, x〉

ii) 〈ax, y〉 = a〈x, y〉, 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

iii) 〈x, x〉 > 0 x ∈ V/{0}

The pair (V, 〈., .〉) is then called an inner product space.

Definition 1.13. Given a non empty space X, a function d : X ×X → R is
a distance on X if for any x, y, z ∈ X the following holds :

i) d(x, y) =⇔ x = y

ii) d(x, y) = d(y, x)

iii) d(x, z) ≤ d(x, y) + d(x, z)

The pair (X, d) is then called a metric space.

Remark 1.2. An inner product space is a metric space with the distance given
by d(x, y) = ‖x−y‖, which will be called induced distance, and a metric space
(X, d) is always a topological space. It is indeed easy to see that the family
of sets Br(x) = {y ∈ X : d(x, y) < r} with r ∈ R induces a topology on X.

Definition 1.14. Given a topological space (X,Σ) and a subset S ⊆ X the
closure of S is the set S = {x ∈ X|∀A ∈ Σ, x ∈ A⇒ A ∩ S 6= ∅}.

Remark 1.3. Given a metric space (X, d) with the topology induced by the
sets Br(x) and such that for a subset S ⊆ X the equality S = X holds, we
can always build a sequence of (xn)n∈N ∈ X such that limn→+∞ d(xn, x) = 0.
The sequence is built by taking xn ∈ B 1

n
(x) for each n ∈ N which exists by

the definition of closure.

Definition 1.15. A metric space (X, d) is complete if any sequence (xn)n∈N ∈
X such that

∀ ε > 0 ∃N s.t. ∀ m,n > N d(xm, xn) < ε (1.4)
converges in X i.e. limn→+∞ d(xn, x) = 0 for some x ∈ X.

Definition 1.16. An inner product space (H, 〈., .〉) that is also a complete
metric space with respect to the distance induced by the inner product is
called an Hilbert space.



10 1. Orthogonal Polynomials

Proposition 1.17 (Bessel’s inequality). Let fn be a sequence of vectors in an
Hilbert space (H, 〈., .〉) such that 〈fn, fm〉 = ∆nm. Then for any f in H we
have the Bessel’s inequality :

+∞∑
k=0

f 2
k ≤ ‖f‖2 (1.5)

Proof. Let sn = ∑n
k=0〈f, fk〉fk. The following equalities are easy to derive

〈sn, sn〉 = 〈sn, f〉 =
n∑
k=0
〈f, fk〉2 (1.6)

We then obtain the following

〈sn − f, sn − f〉 = 〈sn, sn〉 − 2〈sn, f〉+ 〈f, f〉 = 〈f, f〉 −
n∑
k=0
〈f, fk〉2 (1.7)

Since 〈sn − f, sn − f〉 ≥ 0 we have

n∑
k=0
〈f, fk〉2 ≤ 〈f, f〉 ∀n ∈ N (1.8)

Theorem 1.18 (Orthogonal decomposition). Given an Hilbert space (H, 〈., .〉)
and a closed vector subspace M ⊆ H, we have H = M ⊕M⊥ where

M⊥ = {x ∈ H : 〈x, y〉 = 0, y ∈M}. (1.9)

For any x ∈ H there thus exist two unique vectors y ∈M and z ∈M⊥ such
that x = y + z.

Proof. See [5], Proposition 4.11.

The last pillar is the Lp space. Our main concern will be just to prove
that L2 is an Hilbert space but, in order to structure this finding, an overall
description of these spaces as well as a complete overview of their nature is
strictly required.

Definition 1.19. Given a measure space (X,A, µ) and a function f : X → R,
we define the relation fρg ⇔ f ≡ g µ-almost everywhere.
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Definition 1.20. Given a measure space (X,A, µ) and a real number p ∈
[0,∞], we define the sets

Lpµ(X) = {f : X → R measurable : ‖f‖p = (
∫
X
|f |pdµ)

1
p < +∞}/ρ p ∈ [0,∞)

(1.10)
L∞µ (X) = {f : X → R measurable : ‖f‖∞sup{b ∈ R : µ({x : |f(x)| < b}) = 0} < +∞}/ρ

(1.11)
Where ρ denotes the relation of Definition 1.19.
We will call each set an Lp-space and the values ‖f‖p and ‖f‖∞ the Lp-norm
and the L∞-norm of f . If µ is the Lebesgue measure we will just write
Lp(X).
Note 1.2. The notation used to define the Lp space indicates that the sin-
gle elements of Lpµ(X) are so called equivalence classes i.e. sets [f ] for any
function f such that g ∈ [f ] if fρg.
Remark 1.4. Clearly (Lpµ(X), ‖.‖p) with p ∈ [0,∞] is a metric space.
Theorem 1.21. Given a measure space (X,A, µ) such that µ(B) ≥ 0 ∀B ∈ A,
the metric space (Lpµ(X), ‖.‖p) is complete for every p ∈ [0,∞].
Proof. See [2], Theorem 3.11.

Remark 1.5. Observe that if µ << ν with µ σ-finite and ν satisfying the
property of the Theorem, i.e. the positivity, then the Theorem holds also
for (Lpµ(X), ‖.‖p) since µ is positive for the Radon-Nikodym Theorem. In
particular this is true if ν is a Lebesgue measure.
Corollary 1.22. Given a measure space (X,A, µ) such that µ(B) ≥ 0 ∀B ∈ A,
the function 〈., .〉µ : L2

µ(X)× L2
µ(X)→ R such that

〈f, g〉µ =
∫
X
f(x)g(x)dµ ∀f, g ∈ L2

µ(X) (1.12)

is an inner product and the inner product space (L2
µ(X), 〈., .〉µ) is an Hilbert

space.
Proof. It is a consequence of Theorem 1.21 after having easily verified that
the properties of Definition 1.12 are satisfied.

1.2 Construction of the polynomials
To build the polynomials we will use the Gram-Schmidt orthogonalization,
a well-known technique of Linear Algebra that consists in extracting an or-
thogonal basis from a canonical one by subtracting the projection of each
vector on the span of the others to the vector itself. We deliver first the
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Definition 1.23. Given a Borel measure µ on an interval (a, b) ⊆ R a sequence
of real polynomials (pn(x))n∈N with degree pn(x) = n for each n ∈ N is called
orthogonal on (a, b) with respect to the weight function φ : (a, b)→ R if

∫ b

a
φ2(x)pn(x)pm(x)dµ(x) = hn∆nm, with ∆nm =

0 if n 6= m

1 if n = m
(1.13)

If hn = 1 for every n ∈ N the sequence of polynomials will be called or-
thonormal.

Proposition 1.24 (Gram-Schmidt orthogonalization). Let (H, 〈., .〉) be an Hilbert
space and let (v0, ..., vn, ...) ∈ H be a collection of linearly indipendent vectors.
Then the collection of vectors (w0, ..., wn, ...) obtained via the process:

w0 = v0, wj = vj −
j−1∑
h=0

〈vj, wh〉
〈wh, wh〉

wh j = 1, 2, ... (1.14)

Satisfies the following :

1. span(w0, ..., wj) = span(v0, ..., vj) ∀j ∈ N

2. 〈wn, wm〉 = 0, n 6= m ∀n,m ∈ N

3. 〈wj, vj〉 > 0 ∀j ∈ N

Proof. We will proceed by induction on n. For n = 0 conditions 1. and
2. are satisfied. If we assume the case n − 1 then we want to find wn =
αvn − β1w1 − ... − βn−1wn−1. Condition 1. with j = n requires α 6= 0 and
condition 2. implies

0 = 〈wn, wj〉 = 〈αvn − β0w0 − ...− βn−1wn−1, wj〉 = α〈vn, wj〉 − βj〈wj, wj〉
(1.15)

Which results in βj = α 〈vn,wj〉〈wj ,wj〉 for j = 1, 2, ... and thus

wn = α[vn −
n−1∑
h=0

〈vn, wh〉
〈wh, wh〉

wh] (1.16)

We can take α = 1 since 〈wn, vn〉 > 0 is verified if and only if α > 0. Indeed
we have that

〈wn, vn〉 = α[‖vn‖2 −
n−1∑
h=0

|〈vn, wh〉|2

‖wh‖
] = α[

n∑
h=0

|〈vn, wh〉|2

‖wh‖
−

n−1∑
h=0

|〈vn, wh〉|2

‖wh‖
]

(1.17)
Since vn /∈ span(v0, ..., vn−1) = span(w0, ..., wn−1) we have 〈wn, vn〉 6= 0 and
because the term in the parenthesis is positive we must have α > 0 to obtain
3.
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Given a weight function φ(x) with finite moments on (a, b) in the mea-
sure µ we will build a basis of orthonormal polynomials from the sequence
(φ, xφ, x2φ, ...) which is clearly a basis for φ-weighted polynomials.
Once we know the existence of the Gram-Schimdt procedure, though, we
can use a recursive formula to define directly the orthonormal polynomials
coefficients.

Theorem 1.25. A sequence of orthonormal polynomials {pn(x)}+∞
n=0 satisfies

pn(x) = An[xpn−1(x) +Bnpn−1(x) + Cnpn−2(x)] n = 2, 3, ... (1.18)

where

An 6= 0, Bn = −〈xpn(x), pn(x)〉, Cn = −〈xpn(x), pn−1(x)〉 n = 2, 3, ...
(1.19)

Proof. The first condition for An is obvious. We observe that pn(x) −
Anxpn−1(x) is a polynomial of degree ≤ n. Since degree pn(x) = n for
every n ∈ N we have

pn(x)− Anxpn−1(x) =
n−1∑
k=0

ckpk(x) (1.20)

From which we derive

〈pn(x)− Anxpn−1(x), pk(x)〉 = 〈
n−1∑
k=0

ckpk(x), pk(x)〉 = ck (1.21)

On the other hand

ck = 〈pn(x)−Anxpn−1(x), pk(x)〉 = −An〈xpn−1(x), pk(x)〉 = −An〈pn−1(x), xpk(x)〉
(1.22)

Where in the last equality we have used the fact that the product is induced
by an integral. For k < n − 2 we get degree xpk(x) < n − 1 which implies
〈pn−1(x), xpk(x)〉 = 0 and thus ck = 0. We therefore have

pn(x)− Anxpn−1(x) = cn−1pn−1(x) + cn−2pn−2(x) (1.23)

The Theorem results from rearranging the equation and gathering An and
the formulas for Bn and Cn can be obtained by taking the respective scalar
products.
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We can now fully derive the coefficients for the orthonormal polynomials.
We start by defining the s-th moment of φ2 by µ which are required to be
finite i.e.

µs =
∫ b

a
xsφ2(x)dµ(x) <∞ (1.24)

We then define wi,j as the j-th coefficient of the i-th polynomial. To build the
sequence of (pn(x))n∈N we orthonormalize (1, x, x2, ...) in the measure φ2µ.
The first two polynomials are derived by applying Gram-Schmidt directly :

p0(x) = w0,0 = 1 (1.25)

p1(x) = w1,0 + w1,1x =
x− µ1

µ0

(µ2 − µ2
1
µ0

)1/2
(1.26)

For n ≥ 2 we will use the recursive formula 1.18 :

pn(x) = wn,0 + ...+ wn,nx
n = An[(x+Bn)

n−1∑
k=0

wn−1,kx
k + Cn

n−2∑
k=0

wn−1,kx
k]

(1.27)
Where we can write the recursive coefficients as

Bn = −
n−1∑
k=0

n−1∑
q=0

wn−1,kwn−1,qµk+q+1, Cn = −
n−1∑
k=0

n−2∑
q=0

wn−1,kwn−2,qµk+q+1

(1.28)
Since An is just a normalization costant we start to define the coefficient
w′i,j = Anwi,j of orthogonal but not orthonormal polynomials which can be
obtained by matching the terms in the previous equation, this means that as
i = n varies we have

w′i,j =



Bnwn−1,0 + Cnwn−2,0 if j = 0,
wn−1,j−1 +Bnwn−1,j + Cnwn−2,j if j = 1, ..., n− 2,
wn−1,n−2 +Bnwn−1,n−1 if j = n− 1,
wn−1,n−1 if j = n,

0 if j > n.

(1.29)

Then An can be computed as the normalization term i.e.

An = ±(
n∑
k=0

n∑
q=0

w′n,kw
′
n,qµk+q)−1/2 (1.30)

Now that the recursive form for the construction of the orthonormal polyno-
mials coefficients is derived we need to show that this is an actual basis for
a probability density i.e. that this can be expressed as an infinite sum of the
polynomials.
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1.3 The orthogonal expansion
We are finally in the position to state our core Proposition which specifies the
assumptions for the existence of the orthogonal expansion and, consequently,
of our hedging approach.

Proposition 1.26. Given a Borel measure µ on an open set S ⊆ R let the
kernel φ : S → R and the target f : S → R be two measurable functions on
(S,B(S), µ) with supp(f) ⊆ supp(φ) ⊆ S and such that :

i) The kernel φ is different from zero almost everywhere and it satisfies∫
|x|kφ2(x)dµ(x) <∞, ∀ k ∈ N (1.31)

ii) The target f belongs to the space L2
µ, i.e.∫

f 2(x)dµ(x) <∞ (1.32)

Then the following holds :

1. There exists a family of polynomials (pk)k∈N such that the corresponding
φ-weighted family (φpk)k∈N is an orthonormal set in L2

µ, i.e.

〈φpk, φpl〉2,µ = ∆kl ∀ k, l ∈ N (1.33)

2. The Fourier coefficients are well defined, i.e.

ck = 〈f, φpk〉2,µ <∞ ∀ k ∈ N (1.34)

3. The sequence of the pseudo-densities

fn(x) = φ(x)
n∑
k=0

ckpk(x) n ∈ N (1.35)

converges in the space L2
µ.

If µ is absolutely continuous with respect to the Lebesgue measure and if,
given the Radon-Nikodym derivative dµ

dx
, the following condition holds :

∃ α > 0 s.t.
dµ

dx
φ2(x) = O(e−α|x|) as |x| → +∞ (1.36)

4. The pseudo-densities fn converge to the target f in norm, i.e.
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lim
n→+∞

‖f − fn‖2,µ = 0 (1.37)

Note 1.3. We recall that f(x) = O(g(x)) as |x| → +∞ if and only if there
exist two positive real numbersM and x0 s.t. |f(x)| ≤Mg(x) when |x| ≥ x0.

Proof.

1. Use the procedure outlined in Section 1.2 to build an orthonormal set
of φ-weighted polynomials (φpk)k∈N from the φ-weighted basis of poly-
nomials φ, xφ, x2φ, ... which would then be well defined for condition
i).

2. Use the Bessel’s inequality of Proposition 1.17 and condition ii) to get

ck ≤ (
+∞∑
k=0
|ck|2)1/2 ≤ ‖f‖2,µ < +∞ (1.38)

3. Use the Bessel’s inequality of Proposition 1.17 and condition ii) to get

lim
n→+∞

‖fn‖2,µ = (
+∞∑
k=0
|ck|2)1/2 ≤ ‖f‖2,µ < +∞ (1.39)

4. If µ << λ, with λ Lebesgue measure, by Theorem 1.11 we have dµ =
ψdx with ψ : S → R+ measurable function. Then the family hk =√
ψφpk, for every k ∈ N, is an orthonormal set in L2(S). Since we

also have that ‖g‖2,µ = ‖
√
ψg‖2, it is sufficient to prove that for any

g ∈ L2(S) the sequence

gn(x) =
n∑
k=0
〈g, hk〉hk(x) n ∈ N (1.40)

converges in norm to g. Then by defining g =
√
ψf we would have

lim
n→+∞

‖f − fn‖2,µ = lim
n→+∞

‖g − gn‖2 = 0 (1.41)

This fact is proven by the following two Theorems.

Definition 1.27. Given an Hilbert space H we will say that an orthonormal
set V ⊆ H is complete if span(V ) = H except for almost everywhere null
functions.
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To prove the following result we will make use of standard Real and Complex
Analysis theorems, all of them listed with the respective reference in the final
Appendix.

Theorem 1.28 (Hewitt (1954)). Let −∞ ≤ a < b ≤ +∞.Let p(x) ∈ L2(a, b)
be different from zero a.e. and such that p(x) = O(e−α|x|) for some α > 0 as
|x| → +∞. Then the family (hk)k∈N of orthonormal polynomials formed by
applying the Gram-Schmidt process on the set {xnp(x)}n∈N is a complete set
in L2(a, b).

Note 1.4. We recall, given a vector space V ⊆ L2(a, b), the definition of its
orthogonal complement V ⊥ := {f ∈ L2(a, b) : 〈f, v〉2 = 0 ∀v ∈ V }.
Note 1.5. Given a vector space V ⊆ L2(a, b), we will write V = {0} to mean
that any f in V is null almost everywhere.

Proof. Let B = {h1, h2, ..., hn, ...} be the collection of orthonormal polyno-
mials. By Theorem 1.18 we have L2(a, b) = span(B)⊕(span(B))⊥. Our aim
is to show that span(B)⊥ = {0} as this would imply the completeness of
(hk)k∈N. Let f be an element of (span(B))⊥. We have∫ b

a
xnp(x)f(x)dx = 0 ∀n ∈ N (1.42)

Let us then define the complex function

F (z) =
∫ b

a
eizxp(x)f(x)dx (1.43)

We now want to find the domain of differentiability and thus, by Theorem
A.1, analiticity of F (z). Let us first write

F (u+iv) =
∫ b

a
e−vxcos(ux)p(x)f(x)dx+i

∫ b

a
e−vxsin(ux)p(x)f(x)dx = g(z)+ih(z)

(1.44)
If a and b are finite we can use the Leibniz rule A.6 to differentiate under
the integral sign and show that the Cauchy-Riemann equations of Theorem
A.5 are satisfied.This implies that F (z) is analytic in C. If a = −∞ and/or
b = +∞ we show that, calling w(u, v, x) the integrand of g(z), for any |v| < α
we have

|wv(x)| = | − xe−vxcos(ux)p(x)f(x)| ≤ |xe−vxe−α|x|||eα|x|p(x)||f(x)| (1.45)

The first term is in L1(a, b) since |v| < α. The second term is bounded by
hypothesis for |x| ≥ x0 with x0 s.t. |eα|x|p(x)| ≤ Meα|x|e−α|x| = M for some
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M ∈ R. The third term is bounded almost everywhere for |x| greater than
some x1 since f(x) ∈ L2(a, b). Setting x2 = max(x0, x1) we have

g(z) =
∫ +∞

−∞
w(u, v, x)dx =

∫ −x2

−∞
w(u, v, x)dx+

∫ x2

−x2
w(u, v, x)dx+

∫ +∞

x2
w(u, v, x)dx
(1.46)

We always differentiate under the integral for the central one whereas for
the remaining we use Theorem A.2 with the conditions we have showed.
Applying the same reasoning to wu(x) and h(z) we see that the Cauchy-
Riemann equations are true for |v| < α which is thus where F (z) is analytic.
In this domain the n-th derivatives are

F (n)(z) = in
∫ b

a
eizxxnp(x)f(x)dx ∀n ∈ N (1.47)

From 1.42 we derive that

F (n)(0) = in
∫ b

a
xnp(x)f(x)dx = 0 ∀n ∈ N (1.48)

By Theorem A.3 we have that F (z) = 0 identically in its domain of differen-
tiability. In particular we have F (u) =

∫ b
ae

iuxxnp(x)f(x)dx = 0 for any real
u. F (u) corresponds to the Fourier transform of p(x)f(x) which is in L1(a, b)
for the inequality of Proposition A.7

|〈|p(x)|, |f(x)|〉| ≤ ‖p(x)‖‖f(x)‖ < +∞ (1.49)

Where the inner product denotes the integral. We therefore have a function
in L1(a, b) whose Fourier transform vanishes identically and thus by Theorem
A.4 we derive that p(x)f(x) = 0 almost everywhere. Given that p(x) 6= 0 al-
most everywhere by hypothesis, this implies that f(x) = 0 almost everywhere
i.e. (span(B))⊥ = {0}.

Remark 1.6. If (a, b) is a finite interval the condition of exponential decay is
actually not necessary. This means that if S ⊆ R is a finite connected set
condition 1.36 is not needed to prove the completeness.

Setting p(x) =
√
ψ(x)φ(x) we can apply the previous Theorem restricted to

the support of φ. A linear combination of polynomials will thus converge to
any f s.t. supp(f) ⊆ supp(φ). To complete the proof of Proposition 1.26 we
just need the following

Theorem 1.29. Suppose that for a function f and an orthonormal sequence
{fk}+∞

k=1 both in an Hilbert space (H, 〈., .〉) we have limn→+∞ ‖f−
∑n
k=0 ckfk‖ =

0. Then ck = 〈f, fk〉 for each k.
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Proof. Let sn = ∑n
k=0 ckfk. Fix an m and by Proposition A.7 we have

|〈sn, fm〉 − 〈f, fm〉| = |〈sn − f, fm〉| ≤ ‖sn − f‖‖fm‖ = ‖sn − f‖ (1.50)

Taking the limits we get

cm = lim
n→+∞

〈sn, fm〉 = 〈f, fm〉. (1.51)



2
Non-structural hedging

After having articulated in full the mathematical architecture behind our
main result, we can now move to the central part where the intuition of
the methodology, its formal implementation and the heuristics applied to
estimate the pivotal hedging entities will be explained and carefully derived.
This chapter will be dedicated to expose, dissect and clarify the strategy
in all its technical aspects and it is complementary to the following where
the theoretical statements will be matched and supported by their empirical
counterpart. Our main idea is to reintroduce a traditional non-structural
pricing practice in new terms, to exactly calibrate European options for a
hedging portfolio. To provide the necessary context and remark the weight
of this method in the existing literature, we will first introduce the reader
to the general assumptions as well as to the basic theorems of derivative
pricing. Then, we will outline our approach, display its advantages within
the structural and non-structural distinction and see how it resources from
the orthogonal expansion of the previous chapter. To preserve the model
independence we will compute the Greeks and the hedge ratios via some
smart approximations expressed and proved in the third section. The last
step will consist in finding an efficient way to extract the moments of the
underlying density which, to overcome some multicollinearity issues, will be
done by resorting to a Principal Component Regression. A final discussion
will be dedicated to the identification of the kernel function, another essential
constituent of the strategy, whose proper choice will prove determinant for
the accuracy of all the relations presented.

20
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2.1 General assumptions
Our strategy will work in a market model satisfying a set of specific hypothe-
ses which will be made explicit and formalized in this section. Beside setting
the firm background for the development of our method, this passage will
also help to briefly familiarize with the foundations of option pricing. Let us
then provide first some well-known and less well-known notions in a rigorous
form.

Definition 2.1. A stochastic process on a probability space (Ω,F ,P) is a
function ω → X(t, ω) such that for any fixed t the mapping ω → X(t, ω) is
a random variable on (Ω,F ,P).

Definition 2.2. An arbitrage is a portfolio whose value at time t is described
by a stochastic process Xt such that for some t+ τ > 0 the following holds:

X0 = 0, P{Xt+τ ≥ 0} = 1, P{Xt+τ > 0} > 0 (2.1)

A market with no arbitrage will be called arbitrage-free.

Note 2.1. We will often implicitly identify the securities and the portfolios
with their stochastic processes.
We will only adopt dynamic trading strategies that do not imply exogenous
injections or withdrawals of money. This means that to purchase or sell
additional amounts of the existing stocks we need to rebalance our portfolio.
More specifically

Definition 2.3. Given a vector of stocks St = (S1
t , ..., S

n
t ) and a bond Bt with

respective weights xt = (x1
t , ..., x

n
t ) and yt, the portfolio Pt = xtSt + ytBt is

said to be self-financing if

Stdxt + dStdxt +Btdyt + dBtdyt = 0 (2.2)

The definition could be better understood if we assume that St and Bt change
values in discrete times i.e. if for any t ∈ N and t+ ∈ [t, t+1) we have St = St+
and Bt = Bt+ . Condition 2.2 would then be rewritten only for rebalancing
times as

St(xt+1 − xt) +Bt(yt+1 − yt) = 0⇒ Pt = Pt+1 (2.3)

This means that, as the portfolio components remain constant in the time in-
terval, its value before changing the weights should equal its value afterwards
and thus there are no external money infusions.
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Definition 2.4. A market is complete if for every derivative security Vt it is
possible to create a portfolio Ht made only of riskless assets and stocks such
that at the derivative maturity time t+ τ we have Vt+τ = Ht+τ .

Definition 2.5. A filtered probability space (Ω, (Ft)t≥0,F ,P) is a probability
space (Ω, (Ft)t≥0,P) with a filtration i.e. a family of σ-algebras (Ft)t≥0 such
that Ft ⊆ F and Fs < Ft for s < t. If the following holds :

i) ∀N ∈ F s.t. P(N) = 0⇒ N ∈ F0.

ii) Ft ⊂ Fs for t ≤ s and Ft = ⋂
s>tFs.

we will say that (Ω, (Ft)t≥0,F ,P) satisfies the usual conditions.

Definition 2.6. Let (Ω,F ,P) be a probability space, G ⊆ F be a σ-algebra
and X be ab either nonnegative or integrable random variable. The con-
ditional expectation of X given G, denoted E[X|G], is any random variable
that satisfies

i) E[X|G] is measurable on (Ω,G).

ii)
∫
AE[X|G](ω)dP(ω) =

∫
AX(ω)dP(ω), ∀A ∈ G.

Definition 2.7. Given a filtered probability space (Ω, (Ft)t≥0,F ,P), a mar-
tingale with respect to P is a real-valued stochastic process Mt on (Ω,F ,P)
such that

i) Mt is Ft-adapted i.e. it is a measurable function on (Ω,Ft) for every
t ≥ 0.

ii) Mt ∈ L1(P) ∀t ≥ 0.

iii) E[Mt|Fs] = Ms P-almost everywhere.

Definition 2.8. Two σ-finite measures P and Q are equivalent if P << Q and
Q << P.

We will work with European derivative securities i.e. contingent claims that
can be exercised only at maturity. This is because the prominent literature
of structural and non-structural pricing methods, starting from the Black-
Scholes equation, is mainly centered on this kind of options. We will always
denote with Zt the value of a generic underlying asset at a time t ≥ 0 which
will be a stochastic process on the filtered probability space (Ω, (Ft)t≥0,F ,P).
we will set t + τ as the time of expiration for the contingent claim on this
underlying. We can now express the general assumptions we will be working
with :
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1. The market is arbitrage-free.

2. The market is complete.

3. The market is frictionless.

4. The risk-free interest rates are set to zero without loss of generality.

5. The price of any derivative security on the underlying Zt depends on a
finite number of traded risky factors ξt,τ = (ξ1

t,τ , ..., ξ
q
t,τ ).

6. ∃ n ≥ 2 s.t. EP[Zk
t+τ ] <∞, k = 0, 1, ..., n.

Assumptions 1. and 2. are at the basis of option pricing and they are
necessary to prove the existence and uniqueness of an equivalent martingale
measure Q via, respectively, the following two theorems :

Theorem 2.9 (First fundamental theorem of asset pricing). The market is
arbitrage-free if and only if there exists a probability measure Q equivalent to
P such that the discounted price process of every tradable asset is a martingale
with respect to Q.

Proof. See [6], Theorem 5.4.7.

We will only work with the measure Q which is called risk-neutral probability
measure.

Theorem 2.10 (Second fundamental theorem of asset pricing). The market is
complete if and only if there exists a unique risk-neutral probability measure.

Proof. See [6], Theorem 5.4.9.

Our assumptions guarantee thus the existence of a unique risk-neutral prob-
ability measure such that for any derivative security on the underlying Zt
with maturity t+ τ , payoff function Ψ(Zt+τ ) and value V Ψ

t,τ we have

V Ψ
t,τ (ξt,τ ) = EQ[e−rτΨ(Zt+τ )|Ft] = EQ[Ψ(Zt+τ )|Ft] (2.4)

Where ξt,τ is the vector of risky factors and in the last equality we have
used the hypothesis that r = 0. We will denote with fQ

t,τ the risk-neutral
density, or RND, i.e. the density of Zt+τ in Q. Due to Theorem 1.11 and
assumption 6., by taking the Radon-Nikodym derivative dQ

dP we have that
EQ[Zk

t+τ ] <∞, k = 0, 1, ..., n for Q as well.
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2.2 Option hedging approach
We can now explicitly characterize our hedging strategy. According to a
well established distinction in the literature of financial mathematics, the
approach we will develop falls in the category of non-structural methods.
The distinction between structural and non-structural approaches to esti-
mate the RND lies at the heart of option pricing and it is extensively treated
in Chapter 11 of 7. A structural model delivers a full description of the un-
derlying stochastic dynamics, usually specifying the process of its stochastic
volatility as well. A non-structural model provides instead an estimation of
the RND without completely describing the process of the underlying value.
The fertile field of non-structural methods originates from the Breeden and
Litzenberger formula, subsequently benefiting from a consistent stream of
contributions. Its advantages when applied to hedging usually rely on the
very few assumptions required for the form of the density and the fact that
the hedge ratios are not biased, which is instead one troubling issues con-
cerning structural models.
Before explaining our strategy let us clarify what we mean for hedging. Given
an option V Ψ

t,τ , our aim is to minimize its embedded risk with the following
hedging portfolio:

Pt,τ = V Ψ
t,τ + π1

t,τξ
1
t,τ + ...+ πqt,τξ

q
t,τ + πBt,τBt,τ , πit,τ = −

∂V Ψ
t,τ

∂ξit,τ
, i = 1, ..., q

(2.5)
Where πBt,τ is a position on a risk-free asset Bt,τ chosen to keep the portfolio
self-financing. The hedge ratios πit,τ correspond to the Greeks of the option
and they weight the contracts to make the portfolio constant with respect
to the risky factors. We indeed have ∂Pt,τ

∂ξit,τ
= 0 for every i = 1, ..., q, which

makes the portfolio riskless. We will compute these values by cleverly resort-
ing to the orthogonal polynomials theory derived in Chapter 1, an application
that will display a striking non-structural relation between the option and
the moments Greeks. Let us start by expressing the RND via the orthogo-
nal expansion of equation 1.35. Since fQ

t,τ clearly satisfies the hypothesis of
Proposition 1.3, by choosing a proper kernel φ, later specified in Section 2.5,
and the measure µ = φ−1 we can write

fQ
t,τ (x) ≈ fn(x) = φ(x)

n∑
k=0
〈fQ
t,τ , φpk〉2,µpk(x) = φ(x)

n∑
k=0

[
∫ +∞

0
fQ
t,τ (x)pk(x)dx]pk =

(2.6)

= φ(x)
n∑
k=0

k∑
i=0

k∑
j=0

wi,kM
i
t,τwj,kx

j = φ(x)
n∑
k=0

Mk
t,τ

(
n∑
i=k

n∑
j=i

wi,kwj,kx
j

)
(2.7)
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WhereMk
t,τ is the k-th risk-neutral moment EQ[Zk

t+τ |Ft] and the last equality
can be easily proved by induction. Using the martingale property of Q, we
also notice that

V Ψ
t,τ = EQ[Ψ(x)|Ft] =

∫
R+

Ψ(x)fQ
t,τ (x)dx (2.8)

Replacing fQ
t,τ with its truncated expansion 2.7 we have

V Ψ
t,τ ≈ HΨ

0 +M1
t,τH

Ψ
1 +...+Mn

t,τH
Ψ
n , HΨ

k =
n∑
i=k

n∑
j=i

wi,kwj,k

∫ +∞

0
xjΨ(x)φ(x)dx

(2.9)
The importance of the previous equation relies on the fact that the coefficients
HΨ
k do not depend neither on t nor on the risk-neutral moments. Introducing

the vectors Mt,τ = [1,M1
t,τ , ...,M

n
t,τ ]′ and HΨ = [HΨ

0 , ..., H
Ψ
n ] we can express

the equation in a compact form as V Ψ
t,τ = HMt,τ . Since φ does not change

with t either, we can observe that

∂V Ψ
t,τ

∂t
≈ HΨ∂Mt,τ

∂t
⇒

∂V Ψ
t,τ (ξt,τ )
∂ξt,τ

≈ HΨ∂Mt,τ (ξt,τ )
∂ξt,τ

(2.10)

Where ∂V Ψ
t,τ

∂ξt,τ
is a gradient and ∂Mt,τ (ξt,τ )

∂ξt,τ
a Jacobian matrix. If V Ψ

t,τ is a call
option CK

t,τ with strike K, we have Ψ(x) = (x−K)+ and we can denote with
HK the coefficients HΨ since the payoff only depends on K. For a given
set of strikes K1, ..., Kp we can then consider the vector of respective call
options Ct,τ = [CK1

t,τ , ..., C
Kp
t,τ ]′ and the p× n + 1 matrix H with components

Hi,j = HKi
j , to write the following approximations

Ct,τ ≈ HMt,τ ,
∂Ct,τ
∂ξt,τ

≈ H
∂Mt,τ

∂ξt,τ
(2.11)

The second equality, as well as equation 2.9, delivers a striking relation be-
tween the Greeks of the option, i.e. the negative hedge ratios, and the Greeks
of the risk-neutral moments. We observe indeed that, since the matrix of co-
efficients H does not depend on the vector ξt,τ , the sensitivity of the option
from the risk factors is all determined by Mt,τ whereas, for the same reason,
the relation with the payoff Ψ is solely ascribable to H. The dependance of
Ct,τ from the payoff function and the risk factors is thus decoupled in two
terms. This turns out to be the significant part of our strategy because the
creation of the hedging portfolio now all boils down to find a functional form
to express the moments in terms of tradable contracts. If the moments of the
underlying were for instance directly traded as derivative contracts we could
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immediately use the right member of relation 2.9 to complete our portfolio
and take the coefficients HΨ

i as the hedging ratios. Nevertheless this is not
the case, as the risk-neutral moments are not tradable. We will now see that
a more subtle relation could be found, connecting the risk-neutral moments
to the futures and the variance swaps of the underlying, which will be then
proven to be the main driving risk factors.

2.3 Computation of the Greeks
The two observable risk factors that we propose as main determinants for
the behaviour of the risk-neutral density are the futures on the underlying
and the variance swap. Here follows an explicit definition
Definition 2.11. Given an asset Zt, the derivative contracts with maturity
t+ τ and values

Ft,τ = EQ[Ψ1(Zt+τ )] = EQ[Zt+τ |Ft]] (2.12)

V St,τ = EQ[Ψ2(Zt+τ )] = −2
τ
EQ[log

(
Zt+τ
Ft,τ

)
|Ft] (2.13)

are respectively called its future and its variance swap. Their Greeks are
defined as

∆K
t,τ :=

∂CK
t,τ

∂Ft,τ
νKt,τ :=

∂CK
t,τ

∂V St,τ
(2.14)

and they are respectively called delta and variance swap vega.
These risk factors are tradable as respectively exchange-traded and over-
the-counter derivatives and the intuition behind their choice as candidates
is that they best incorporate the fundamental parameters of a density, as
well as absorbing the influence of the other non observable moments. The
futures is the first and only directly tradable moment of the underlying and
it determines the position of the risk-neutral density. Its related Greek, the
delta, is the primary almost compulsory ratio adopted by any practitioner
of a hedging strategy.The variance swap corresponds approximately to the
logarithm of the variance multiplied by a notional and its contribution to
the portfolio is manifold. On the one hand it allows to include the volatility
parameter in the hedging strategy. On the other, the fact that its payoff is
a smooth function results in the contract being sensitive to the change in
the following k-th risk-neutral moments. We indeed observe, via a Taylor
development of the k-th order, that

log
(
Zt+τ
Ft,τ

)
≈

k∑
i=0

aki

(
Zt+τ
Ft,τ

)i
(2.15)
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This means that the variance swap vega will carry information on the subse-
quent risk-neutral moments therefore including potential unobservable fac-
tors, something that another instrument on the volatility, e.g. a VIX deriva-
tive, would have not guaranteed us. As mentioned in the previous section,
to compute the Greeks of the option we need to derive a functional rela-
tion connecting the contracts to the moments. In the following Proposition
we introduce an efficient approximation that does not rely on any modeling
assumption.

Proposition 2.12. Given an asset Zt, letMk
t,τ be its k-th risk-neutral moment,

Ft,τ its future and V St,τ its variance swap. Given the coefficients

βk = 1
V St,τ

log
(
Mk

t,τ

F k
t,τ

)
, ∀k ∈ N (2.16)

We have that the following approximation holds :

Mk
t,τ ≈ F k

t,τe
βkV St,τ , ∀k ∈ N (2.17)

Proof. For a given k, let us first express the logarithm in the variance swap
definition with a Taylor expansion

log
(
Zt+τ
Ft,τ

)
≈

k∑
i=0

aki

(
Zt+τ
Ft,τ

)i
(2.18)

Where the coefficients aki satisfy the relation
k∑
i=0

aki ≈ log(1) = 0 (2.19)

We will then prove by strong induction that

Mk
t,τ ≈ F k

t,τ (1 + βkV St,τ ), ∀k ∈ N (2.20)

For k = 0 the statement is true. Let us then prove that if it holds for any
i ∈ [1, 2, ..., k− 1] it will hold also for k. If we take the conditional expansion
of relation 2.18 we have

V St,τ = −2
τ
EQ[log

(
Zt+τ
Ft,τ

)
|Ft] ≈ −

2
τ

k∑
i=0

aki
M i

t,τ

F i
t,τ

(2.21)

Which, using the induction hypothesis, allows us to express the k-th risk-
neutral moment as

Mk
t,τ ≈ −

2
τ

F k
t,τ

akk
[τ2

k−1∑
i=0

aki
M i

t,τ

F i
t,τ

+V St,τ ] = −2
τ

F k
t,τ

akk
[τ2

k−1∑
i=0

aki (1+βiV St,τ )+V St,τ ]

(2.22)
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Since by equation 2.19 we have 1
ak
k

∑k−1
i=0 a

k
i = −1, we can replace the term

to get relation 2.20. We finally derive the relation of the statement by using
1 + x ≈ ex.

Note 2.2. The reason why we have chosen the exponential instead of the
original approximation is that it generally proves more convenient for well-
known stochastic processes, in particular it turns to be exact when Zt is a
Brownian motion.
We remark that since the relation derived is model-free the non-structural
nature of the approach is still completely preserved.
Now, given a sequence of strikes K1, ..., Kp, by defining the vectors ∆t,τ =
[∆K1

t,τ , ...,∆
Kp
t,τ ] and νt,τ = [νK1

t,τ , ..., ν
Kp
t,τ ] we can rewrite the second relation in

2.11 as

∆t,τ ≈ HD, νt,τ ≈ HW (2.23)

Where

D[k] =
∂F k

t,τe
βkV St,τ

∂Ft,τ
= kF k−1

t,τ eβkV St,τ , (2.24)

W [k] =
∂F k

t,τe
βkV St,τ

∂V St,τ
= βke

βkV St,τ (2.25)

The high degree of accuracy of the method derived in this section relies on
the hypothesis that the futures and the variance swap are actually the two
main driving components of the underlying. This implicit statement will be
significantly validated in the empirical analysis of Chapter 3. For the moment
we are interested in the last essential step for the computation of the Greeks
which is the derivation of the exponential coefficients. Given that the values
Ft,τ and V St,τ are practically and, as we will see, also theoretically available,
we only need to find an efficient approximation of the risk-neutral moments.
This task will be completed in the following section.

2.4 Computation of the risk-neutral moments
Beside the case for k = 1 the risk-neutral moments are not directly observable
since there are no contracts allowing to trade them. In order to extract their
values we will minimize the squared distance between the actual option price
and an expression similar to 2.7, derived from the orthogonal expansion.
The k-th risk-neutral moments will thus correspond to the components of
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the related least squares coefficient vector.We will first rearrange the original
relation as follows

V Ψ
t,τ ≈ AΨ

0 + c1A
Ψ
1 + ...+ cnA

Ψ
n (2.26)

Where
AΨ
k =

k∑
i=0

wk,i

∫ +∞

0
xiΨ(x)φ(x)dx, ckt,τ =

k∑
i=1

wk,iM
i
t,τ (2.27)

Given a sequence of strikes K1, ..., Kp we will then define the values

Y = [CK1 , ..., CKp , PK1 , ..., PKp ]′ (2.28)

X0 = [AK1
0 , ..., AKM0 , BK1

0 , ..., BKM
0 ]′ (2.29)

X =



AK1
1 ... AK1

n

. . .

. . .

AKM1 ... AKMn
BK1

1 ... BK1
n

. . .

. . .

BKM
1 ... BKM

n


(2.30)

Given the vector Y∗ = Y−X0, we will estimate the risk-neutral moments by
solving the following problem

[ĉ1
t,τ , ..., ĉ

n
t,τ ] = arg minc1,...,cn(Y∗ −Xc)′(Y∗ −Xc) (2.31)

The values ĉ1
t,τ , ..., ĉ

n
t,τ will be called expansion coefficients. Since the terms

A
Kj
i may exhibit an increasing degree of multicollinearity, as n grows the

columns of X could become linearly dependent. This means that it is not
possible to apply the OLS method in this case as X′X would be singular
and thus not invertible. We will thus work out the least squares coefficient
vector via a principal component regression (PCR) technique. To apply this
method we will follow a sequence of steps.

1. First of all we have to center the cloud of 2M points of Y∗ by choosing
the suitable vector of parameters θ on which the kernel φ will depend
upon. The centering of Y∗ is done in order to work with a vector
space instead of an affine one. We will thus have to find θ such that
Y−X0(θ) = 0, where the bar denotes the sample mean of the vector
components. The same has to be done for the matrix X. We will
center each column vector fo X by subtracting the respective mean to
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its components.The standardized matrix will thus beX−u[X.,1, ...,X.,n],
where u is the vector of ones. Without loss of generality we will assume
that X is already standardized. This implies that X′X will correspond
to its covariance matrix.

2. Subsequently we want to find the n dimensional orthogonal vectors that
most explain the variance of the row vectors of X. These are called
weight vectors. We will start from w1, which has to satisfy

w1 = arg max
‖w‖=1

{
w′X′Xw

}
= arg max

{
w′X′Xw

w′w

}
(2.32)

This problem can be solved by setting the first order conditions for the
following Lagrangian

L(w) = w′X′Xw− λ (w′w− 1) (2.33)

We must have that
dL(w)
dw

= 0⇒ 2w′X′X−2λw′ = 0⇒ 2X′Xw−2λw = 0⇒ X′Xw = λw
(2.34)

Which implies that

w1 = arg max
{

w′X′Xw
w′w

}
= max {λ1, ..., λn} (2.35)

With λ1, ..., λn real non negative eigenvalues of X′X. The vector that
maximizes the variance of the projections thus corresponds to the max-
imal eigenvector of length 1. Given the weight vectors w1, ...,wk−1, to
find wk we apply the same method to the matrix

X̂k = X−
k−1∑
s=1

Xwsw
′

s (2.36)

The row vectors of X̂k are the projections of the row vectors of X on
the space orthogonal to the span of w1, ...,wk−1. Since the eigenvectors
are orthogonal to each other and since

wk = arg max
{

w′ X̂′
kX̂kw

w′ w

}
(2.37)

we have that the weight vector wk corresponds to the normalized eigen-
vector with the k-th greatest eigenvalue. The orthonormal matrix
W = [w1, ...,wn] will thus result from a spectral decomposition of
X′X.
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3. Now consider the matrix V = XW, whose i-th column corresponds
to the projection of the 2M row vectors of X on the weight vector wi.
These projections are called principal components. We will only include
the principal components that explain together the greatest percentage
of the variance of the rows of X. We will thus only consider the sub-
matrix V.,1:s = XW.,1:s of the first s columns. Finally, let us rearrange
the original regression as follows

Y∗ = Xc+ ε = XW.,1:sW′
.,1:sc+ ε = XW.,1:sγ + ε (2.38)

Where we have used the fact that W−1
.,1:s = W′

.,1:s since the columns
of W form an orthonormal basis. The fact that W.,1:s is made of lin-
early independent vectors implies that we can find γ̂ via standard OLS
i.e. γ̂ = (W′

.,1:sW.,1:s)−1W′
.,1:sY∗. Since γ̂ = W′

.,1:sĉ, by multiplying
W.,1:s on both sides we get our result

ĉ = W.,1:sγ̂ (2.39)

4. Finally, the vector of risk-neutral moments Mt,τ = M1
t,τ , ...,M

n
t,τ is re-

trieved by inverting the linear equation of the second relation in 2.27
as follows

ĉ = TMt,τ ⇒Mt,τ = T−1ĉ (2.40)

Where T is the triangular matrix of orthogonal polynomial coefficients

T =


w1,1 0 ... 0
w2,1 w2,2 ... 0
. . . 0

wn,1 wn,2 ... wn,n

 (2.41)

Since det T = w1,1...wn,n and wi,i 6= 0 for any i ∈ [1, ...n], the matrix is
non singular and thus invertible.

2.5 Choosing the kernel
We have always taken for granted so far the form of the kernel φ, an indirectly
determinant function for the estimations of the previous sections and an
essential element for the characterization of the non-structural nature of this
method. According to Proposition 1.26, to expand the RND in the measure
µ = φ−1 we need φ to satisfy the following
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i)
∫
|x|kφ(x)dx < +∞, ∀ k ∈ N

ii)
∫
(fQ
t,τ (x))2φ−1(x)dx < +∞

iii) ∃ α > 0 s.t. φ(x) = O(e−α|x|) as |x| → +∞

This means that our approach is intended as non-structural since the expan-
sion and thus the estimation of fQ

t,τ does not rely on assumptions concerning
its parametric form but only on weak inferences of two general properties that
are the support and the tail decay. If, for instance, we define φ as having
support on R+ and exponential tail decay, to perform an orthogonal expan-
sion we should implicitly assume that (fQ

t,τ )2 is positively supported as well
and that it decays at least exponentially, without any reference whatsoever
to an underlying native model. Now, a typical approach in the literature is
to consider the RND that describes the process log(Zt+τ

Zt
), i.e. the standard

log-returns, which would set the whole R as support. In our case this is not
possible, though, because the method we have used to compute the Greeks
and in particular equation 2.16 requires Mk

t,τ

Fkt,τ
to be positive, which may not

be true for some k. This restricts our support for fQ
t,τ and thus φ to R+.

Considering the fixed constraints ii) and iii) as well, our suggested kernel φ
will be the following "double-beta" density :

φ(x) ∼ w

(
x

λ1

)a1(
1− x

λ1

)b1
10≤x≤a1 + (1− w)

(
x

λ2

)a2(
1− x

λ2

)b2
10≤x≤a2

(2.42)
Where the parameters satisfy

a1, b1, a2, b2, λ1, λ2 > 0, 0 ≤ w ≤ 1 (2.43)

We have seen in the previous section that the vector of parameters θ =
[a1, ..., w] must be chosen before estimating the risk-neutral moments and in
such a way that the mean of the difference between the option prices and the
A0 coefficients is set to zero.
The advantages of this choice for the kernel rely upon the efficiency of the
double-beta in fitting the first expression of 2.9 even for relatively low expan-
sion orders n. Additionally, the bounded positive support solves at the same
time the uncomfortable requirements of an asymptotic tail decay for φ and
of the uncertain existence of the risk-neutral moments, now guaranteed by
the continuity of φ on a compact domain.The choice of a bounded support
solves another potential problem concerning our expansion. As extensively
treated in [8], the risk-neutral moments Mk

t,τ , with k > 1, could explode for
finite t, which is in particular true for processes where the tail decay is slower
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than the lognormal density one. This would imply the invalidation of rela-
tion 2.9, unless the risk-neutral moments of the sequence of pseudo-densities
fnt,τ is always kept finite, which is exactly the case for our bounded support
kernel. Clearly, some questions on the accuracy of the expansion may arise
also observing that a bounded positive support does not include the case
for a RND strictly positive on the entire R+. Nevertheless, as well outlined
in the numerical illustration of [9] , even in this scenario and with possible
explosive moments, by adjusting the arbitrarily large support, the efficiency
of the approximation of fQ

t and of the Greeks is not compromised and the
method perfectly captures the form of the RND predicted by an a priori
known model.



3
Empirical results

In this section we will first test the solidity of our conjectures on the firm
backbone of real data and then see the computationally implemented func-
tions at work. We will start by delving into the details concerning the SPX
and the CBOE VIX, the two fundamental indexes we will work with. Our
primary aim will be to remark a functional link between the VIX and the
variance swap. Thereafter we will perform a granular analysis on a vast panel
of options to find the risk factors and prove the hypotheses after which sec-
tion 2.3 and 2.4 were elaborated. The final section will be dedicated to a
study of the shape of the RND and of the Greeks plots as the market states
change affecting their structures. The work will be completed with an ex-
planation of the hedging gain measurement and of the possible solutions to
a factors correlation problem emerging in low volatility periods.

3.1 The SPX and the VIX : a brief retrospective
In section 2.3 we developed our methodology for the computation of the
Greeks after the primary hypothesis that the major determinants for the
behaviour of the option could be addressed to the futures and the variance
swap on underlying. This assumption lies at the heart of our hedging ap-
proach and it will be now provided with strong empirical support, studying
the benchmark case of SPX vanilla options. Our aim is to extract the two
main contributors to the variance of the option and highlight their direct link

34
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with the aformentioned tradable contracts.
Let us start with introducing the two stock market indexes guiding our anal-
ysis. The first is the very SP500 or SPX, the most referenced index for the
description of the US equity market, corresponding to a free-float adjusted
capitalization-weighted sum of the 500 largest listed companies in the US
market, selected and measured in terms of eligibility criteria such as market
capitalization, liquidity and public float. Denoting with Pi the price of the
i-th stock and with Qi the number of publicly available shares, thus exclud-
ing those held by insiders and non public shareholders, the formula for the
calculation is

SPX =
∑
i PiQi

divisor
(3.1)

where the divisor is a proprietary term adjusted by the rating agency to
prevent that that any change to the stocks while holding the stock prices
constant may alter the market value. Multiplying and dividing the right
member by the numerator we see that the index is the sum of the market
capitalization weights of each stock times the total market value. The impact
of the stock on the index is thus proportional to its market capitalization.
The second index is the VIX, a computationally more elusive term tracking
the SPX volatility. To understand the rationale behind its formulation we
should start from its native stochastic volatility model, where the dynamics
of the asset price St with variance Vt in the risk-neutral measure Q are dic-
tated by the following equations

d lnSt =
[
r− q− Vt2 +λ

(
µJ − eµJ+

σ2
J
2

)]
dt+

√
VtdWt +JtdNt−λµJdt (3.2)

dVt = −∆vθdt+ vV γ
t dB

∗
t (3.3)

In this modelWt and Bt are two correlated Wiener processes, Nt is a Poisson
process with rate λ and indipendent from Wt and Bt, Jt is an indipendent
normal with mean µJ and variance σJ , r,q and ∆V are respectively the risk-
free rate, the dividend yield and the volatility risk premium and the remain-
ing parameters are set to include fundamental models such as the Heston’s
or Hull and White’s ones which follow from the case λ = 0 and γ = 1 or
γ = 1/2. To outline our central identity we will now provide some relations
whose technical derivation is specified in [10] and will be here omitted for
the sake of an intuitive exposition. We start by dividing equation 3.2 by dt,
integrate both members from t to t + τ and take the risk-neutral expected
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value to obtain

EQ
t

(
ln St+τ

St

)
=
[
r− q− λ

(
eµJ+

σ2
J
2 − (µJ + 1)

)]
τ − 1

2

∫ t+τ

t
EQ
t (Vs)ds (3.4)

The last integral is the risk-neutral expected cumulative variance of the asset
and its square root discounted at the present value is the quantity that the
VIX aims to track. To estimate it we just have to find a way to compute
the left member of the equation. This is done by replicating the term ln St+τ

St
via a portfolio of European options which, with a continuous stream of strike
prices, is given at expiration time t+ τ and with strike K0 by

Πt+τ (K0, t+ τ) =
∫ K0

0

Pt+τ,τ (K)
K2 dK +

∫ ∞
K0

Ct+τ,τ (K)
K2 dK (3.5)

Where Pt+τ,τ (K) and Ct+τ,τ (K) are the put and call options expiring at t+ τ
with strike price K. This identity can then be expanded by using the Carr-
Madan formula elaborated in [11] to get

Πt+τ (K0, t+ τ) = St+τ −K0

K0
− ln St

K0
− ln St+τ

St
(3.6)

This relation can the be discounted at time t by taking the risk-neutral
expectation on both sides

erτΠt(K0, t+ τ) = Ft,τ −K0

K0
− ln St

K0
− EQ

t

[
ln
(
St+τ
St

)]
(3.7)

with Ft,τ forward price at time t with maturity at t+ τ . If we compute this
value at K0 = Ft,τ , recalling the definition of variance swap in section 2.3,
we see that

erτΠt(Ft,τ , t+ τ) = −EQ
t

[
ln
(
St+τ
Ft,τ

)]
= τ

2V St,τ (3.8)

We can now present the definition of VIX, taken directly from the CBOE
White Paper:

VIX2
t104 := 2

τ

∑
i

∆Ki

K2
i

erτQ(Ki)−
1
τ

[
Ft,τ
K0
− 1

]2

(3.9)

In this equation τ is the time to expiration, set in such a way that the 30-day
expected SPX volatility is measured and Q(Ki) is the bid-ask average price
of the options that are call for Ki > K0 and put for Ki < K0, where K0 is
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the first strike below the forward Ft,τ . Since the first term corresponds to
the discrete version of erτΠt(Ft,τ , t+ τ) we can rewrite the definition as

VIX2
t104 = 2

τ
erτΠt(Ft,τ , t+ τ)− 1

τ

[
Ft,τ
K0
−1

]2

= V St,τ −
1
τ

[
Ft,τ
K0
−1

]2

(3.10)

Which without the adjustment term leads us to the central identity that links
the VIX to the variance swap

VIX2
t104 ≈ V St,τ (3.11)

This fundamental bond will be used to complete our empirical analysis in
the following section and it is an essential constituent of our hedging strategy
relating the second moment of the SPX to a tradable contract. Now to see
how the cumulative volatility is tracked all we need to do is replace the risk-
neutral expected value term in 3.7 with its expression in 3.4 so that, ignoring
the adjusting terms, we can rewrite the VIX as follows

VIXt ≈ 10−2
(∫ t+τ

t
EQ
t (Vs)ds

)1/2

(3.12)

After having delivered the essential preliminary context, we are now ready
proceed with our analysis.

3.2 Analysis of driving risk factors for SPX options
In order to underpin the elemental assumption of section 2.3, we want to show
that the leading drivers for SPX options are 2 and that they are functionally
tied to the futures and the variance swap form. To achieve this, we perform a
principal component analysis (PCA) over a panel of 1-month maturity SPX
call options taken from the OptionMetrics platform. The call prices are set to
the bid and ask mid value and they are categorized in a pool of 9 moneyness
levels. This is done to assess how the risk drivers affect the option differently
according to its intrinsic value and to lay down an empirical basis for the
inference of the risk factors candidates. The spectre of intervals classifies
the instrument moneyness, defined as the ratio Ki

St
and it gradually spans

from in-the-money (ITM) to out-the-money (OTM) options with the aim
of capturing the stochastic processes differences. Each interval displays a
sequence of 30-day call mid prices collected at monthly frequency from 2006
to the first 4 months of 2016, for a total of 124 observations per time series.
The various plots of the call prices for each moneyness scope are reported in
Fig. 3.1 with the relative range.
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Fig. 3.1: Call mid prices from January 2006 to April 2016 classified by moneyness
interval.
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Fig. 3.2: SPX and VIX index time series from January 2006 to April 2016.

We notice how the behaviours exhibited by the time series are remarkably
dissimilar and, as we move from the first to the last extremity, we see that
a smooth evolution of the stochastic process unfolds, shifting from a non-
stationary pattern to a prominently stationary one. This piece of evidence
provides us with a line to follow for the identification of the risk factors, hint-
ing that a linear combination of a couple of time series from closely related
indexes with analogous stationary and non-stationary dynamics could be re-
sponsible for this change in trend. By looking at the very underlying, the
SPX, and at the index tracking its 30-day risk-neutral expected volatility,the
VIX, whose plots are displayed in Fig. 3.2 , we witness this exact distinc-
tion of processes. The SPX parallels the patterns of ITM options in the first
moneyness range as the VIX does with the OTM ones at the last intervals
supposedly contributing to the variance with opposite sign coefficients. The
final intuition that completes our argument is that the ITM option price as
its strike goes to zero should be equal to the futures on the SPX and, with a
similar reasoning, the value of the OTM instrument depends on its possibil-
ity to profit by converting to an ITM moneyness and thus to the volatility of
the underlying. This conjecture is here circumscribed to SPX options due to
the availability of a volatility index but it can be extended to vanilla options
on stocks in general, in particular to options with the VIX as the underly-
ing. We will test the correlation by considering the VIX2 instead of the VIX
because, by exploiting relation 3.11, we want to remark that the second risk
factor is functionally intertwined with the variance swap in the same way
that the SPX is linked with the futures.
To verify this hypothesis we adopt the PCA technique, a procedure already
treated in section 2.4 for the computation of the risk-neutral moments via
the principal component regression. The steps to follow are those already
covered. First we form the 124× 9 matrix X of call mid prices. This matrix
corresponds to a cloud of 124 dots in the 9-dimensional vector space. The
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Fig. 3.3: Cloud of 124 dots centered around the origin, for the simplified case of 3
intervals of moneyness each one corresponding to a dimensional axis. The asterisks
denote the heads of the orthonormal weight vectors for this dataset.

dots are then centered by removing their sample mean, which results in the
matrix Z = X − X̄. Then the weight vectors, i.e. the orthonormal vectors
maximizing the projection of the points, are computed by taking the eigen-
vectors of the correlation matrix Z′Z. Finally the principal components are
selected. These are the projections of the dots on the weight vectors with the
greatest eigenvalues i.e. the vectors explaining most of variance. A spatial
representation is given in Fig. 3.3 for the simplified case of 3 intervals of
moneyness. The first confirmation of our hypothesis comes after observing
the two principal weight vectors of the PCA, reported with the eigenvalues
and the cumulative variance in table 1. We see that the variance explained
by the first two vectors W1 and W2, equal to the sum of their eigenvalues, is
98% of the total one meaning that almost the whole influence on the option
is covered by the two main risk factors. Then, to verify that the principal
components are highly matched by the SPX and the VIX2 we compute their
respective sample correlation coefficients resulting in the following values

ρ̂1 = corr(SPX,ZW1) = 83.6824% (3.13)

ρ̂2 = corr(VIX2,ZW2) = 80.3048% (3.14)
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PCs λk Cumulative Ik W1 W2 R2
IDX R2

PCA
1 648.8e3 0.9287 0.93-0.945 0.6723 -0.2979 0.855 0.989
2 370.8e2 0.9818 0.945-0.96 0.5251 -0.1764 0.829 0.973
3 3603 0.9870 0.96-0.975 0.4037 0.1386 0.733 0.945
4 3104.3 0.9914 0.975-0.99 0.2622 0.3137 0.58 0.917
5 2032.5 0.9943 0.99-1.005 0.1641 0.4545 0.524 0.927
6 1698 0.9967 1.005-1.02 0.1018 0.4842 0.523 0.912
7 980.73 0.9982 1.02-1.035 0.0495 0.4580 0.67 0.923
8 752.86 0.9992 1.035-1.05 0.023 0.2957 0.391 0.709
9 502.33 1 1.05-1.13 0.0084 0.1546 0.352 0.537

Table 1: Elements of the principal component analysis derived from the
dataset.The components ZWk are sorted in descending order according to their
eigenvalues. The third column lists the amount of option variance explained by
the first k eigenvectors . The components of the first two weight vectors W1 and
W2 are reported in the fifth and sixth columns. Finally, the last two columns
display the R-square coefficients of the regression of the call prices in the interval
of moneyness, respectively on the SPX and VIX observable indexes and on the
two principal components.

The high sample correlations obtained, finally confirm our intuition and, via
the identity 3.11, the functional link between the options and the variance
swap, as well as with the futures, has been empirically established. The
correlations are well described in Fig. 3.4 where the indexes and the prin-
cipal components from 2006 to 2016 are overlaid.To assess the overall linear
contribution of the two weight vectors in the specific moneyness interval, in
table 1 we report additionally the R2 respectively derived by regressing in
each range the call price time series first on the indexes, thus with the model
Ct,τ = βSSPX + βV V IX

2, and then on the weight vectors, thus following
the model Ct,τ = β1W1 + β2W2.

Observe that, as previously argued, the weight components corresponding
to the coefficients of the linear combination are significantly positive for the
SPX and negative or close to zero for the VIX2 in the ITM range and almost
specularly inverted for the OTM region. Notice that the ATM options trend
is addressed almost solely to the second principal component thus indicating
the VIX2 as a close unique determinant for the central intervals.

The second observation we make concerns the dynamics of the VIX2 with
respect to the principal component from 2003 to 2016. We notice that the
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Fig. 3.4: SPX over first principal component time series and VIX2 over second
principal component time series.

two time series meet an increasing divergence thus losing their correlation
as we progress through the last years. This gradual detachment of the VIX2

statistically indicates that a factor with non null correlation emerges more
and more relevantly contaminating the purely orthogonal component. We
can indeed argue that from 2006 to 2013 the VIX2 roughly parallel its or-
thogonalized form VIX2 − Cov(SPX,VIX2)

V ar(SPX) , completely uncorrelated with the
SPX, and that thereafter, as it soars from the second principal components,
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it slowly incorporates the additional component exhibiting an ascending neg-
ative correlation. Indexing the 30-days expected volatility of the SPX and
thus measuring the level of uncertainty in the market it is curiously unusual
for the VIX to report historically low values in the 3 years, distinctly incom-
patible with the erratic pattern of the second component. This phenomenon
is known as VIX puzzle and, among the vast literature it originated, it is
perhaps arguably economically ascribable to the more typically recognized
leverage effect. This is the generally negative correlation observed between
an asset return and its volatility. More specifically, the recurring tendencies
are asymmetric : stock prices declined are paralleled by more than propor-
tional decreases in volatility, in opposition to the steadier volatility descents
as asset prices rise, this latter circumstance being our case. The term lever-
age carries the sign of the predominant cause interpretation, suggesting that
the rise in asset prices decreases the leverage level relative to the equity, re-
sulting in less riskier and thus less volatile stocks. From a wider perspective
this could explain the SPX-VIX negative correlation assuming that the 500
companies took part to an analogous mechanism on an aggregate scale.

As far as out technical analysis is concerned, this spike of correlation comes
as a detrimental occurrence for the hedging strategy, which is undermined
wheneverthe VIX loses a faithful measure of the actual market turbulence.
For the hedging to work efficiently, indeed, we require the portfolio to be re-
silient to risk i.e. we look for the condition Pt

ξt,τ
= 0. This could only be true

if the mixed partial derivatives of the risk factors are zero, thus if they are
reciprocally constant and a necessary condition for this is that they have null
covariance. This issue could be circumvented via several alternatives, such as
adopting an indirect form of hedging instead of directly adjusting the Greeks
in accordance with the volatility. While some of the methods to soothe the
leverage effect will be mentioned in the last section, for the moment we want
to highlight the possibility, suggested by our results, of adopting ATM op-
tions. As already showed, the table indicates that the variance of ATM call
options depends almost exclusively on the second principal component, which
means that these instruments are much less sensitive to the leverage effect
than those belonging to the other moneyness intervals. The reason why they
could overcome the correlation problem is that they tend to require almost
only one Greek, the vega, to synthesize the hedging portfolio which clearly
obviates the mixed partial derivatives problem previously mentioned. Addi-
tionally this is only true for the ATM strip because even if the weights of
the SPX components for the last OTM ranges are almost zero this is true for
the VIX2 component as well, indicating that the two are very far from being
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variance drivers as influential as in the ATM interval.

3.3 Analysis of the risk-neutral moments depen-
dency from the variance swap

We now move on to empirically sustain the second assumption, which is the
relation 2.17 of section 2.3. This is another key approximation since it defines
the form of the Greeks and the quality of the hedging is thus directly dictated
by its accuracy. Beside its already presented theoretical derivation, we want
to evaluate the validity of the heuristic equation by taking the logarithm on
both sides and rearranging the terms to perform the following regression

Yt = βkXt + εkt k = 2, 3, 4, 5 (3.15)

with
Yt := log(Mk

t,τ )− k log(Ft,τ ), Xt = V St,τ (3.16)

Similarly to the previous section, the dataset will be a time series of call and
put options with monthly maturity, thus τ = 30 days, collected at monthly
frequency for a total span of 41 values. The risk-neutral moments Mk

t,τ are
computed following the PCR procedure explained in section 2.3 with ex-
pansion order n set to 5. The variance swap in the regression is instead
computed after the estimation of the RND via the fundamental relation 2.9.
We compute the variance swap in the regressor Xt by adopting our method,
replacing the call option payoff (x − K)+ with log

(
x
Ft,τ

)− 2
τ for Ψ(x) in the

second identity, which is the expression of HΨ
k . The regressions are made

for k = 2, 3, 4 and 5 and the respective R-square values are reported in
the table below, together with the estimated OLS coefficients β̂k, the ac-
tual dependancy factors of 2.16 here identified with their time average as

βk = 1
N

∑N
t=1

1
V St,τ

log
(
Mk
t,τ

Fkt,τ

)
and the p-values.

k R2 β̂k βk p-value
2 0.94948 0.00276 0.0028 6.7749e-27
3 0.94779 0.008035 0.00821 1.2904e-26
4 0.94495 0.015605 0.01606 3.6261e-26
5 0.94106 0.025284 0.02623 1.3768e-25
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The degree of efficiency of our approximation is optimal regardless of the
moment order, as eloquently displayed by the peaking measurements of the
R-square values. The precision of this crucial functional relation is further
confirmed by the closeness of the β̂k and the βk terms, almost identically
matched despite computationally independent. The adherence of the left to
the right member is then ultimately exposed in Fig. 3.5, where the risk-
neutral moments time series and their heuristic approximations are being
overlaid.

Fig. 3.5: Time series of Mk
t,τ/F k

t,τ and eβ̂kV St,τ overlaid.
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3.4 How to read the RND in turbulent times :
from the 2008 crisis to COVID-19

We can now finally enter in the main section, where, over the firm building
blocks of our verified assumptions, we will put hand to a consistent set of
results concerning the RND form in different circumstances.
This paragraph is formally complementary to the subsequent one, since the
cross sectional approach here presented to show how information could be
derived from this sophisticated market snapshot will be followed by a time
series analysis aimed at illustrating how to measure the hedging efficiency in
extensive trading periods. In particular, this section serves the double pur-
pose of breaking the ice with the interpretation of the plots extracted and
of casting a light on the manifold applications of the RND which, far from
being employed merely for hedging or option pricing practices, could range
its scope from micro to macroeconomic enviroments. Its diverse function-
alities have originated a prolific varied literature in the last decade as this
distribution offers a precious prism, filtering a stream of information on the
risk preferences and the expectations of the traders. Avoiding to pigeonhole
our tool as a mere Greeks estimator and promoting an intelligent, aware and
eclectic employment of its properties, we briefly list here some of the many
services and insights it could provide:

• Analysis of the market average beliefs revealed by explicit trends in
the density. This is done by studying the center of the distribution and
its change over a periodic span. It could be used by the investor to ad-
just trading positions and adopt VAR-wise development of confidence
intervals for movement predictions.

• Forecasting of financial crises after the analysis of extreme shocks in
the third and fourth implied moments. See [12], where the authors
provide a statistical summary of the 2008 crisis with a detailed nar-
ration the SPX implied RND changes of flattening coefficients and a
study of the relations of its moments and quantiles with the forwards.

• Calibration, evaluation and monitoring of monetary policies by the
central banks and the regulatory authorities. See the ECB work-
ing papers [13] and [14], where in the latter the changes of implied
moments of the RND extracted from FX options are studied around
times of monetary policy decisions to gauge information on the poten-
tial predictability of exchange rates via density shape analysis and on
the reaction of the market to the policy outcomes.
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• Estimation of option-implied risk aversion. The degree of risk aversion
for the representative investor determines the risk premium implicit in
the option prices and tracking the average agent profile is a pivotal re-
source for professional practitioners and institutions to anticipate the
market movements.As explained in [15],the estimation is usually per-
formed by resorting to the historical series of the underlying asset to
derive the physical density and then by confronting it with the options
implied RND via their ratio, known as pricing kernel, which is equiva-
lent to the utility marginal rate of substitution, thus allowing to infer
its form.

There are several determinants behind the high quality of this instantaneous
market barometer. Most of all, the RND collects information from mul-
tiple available options thus incorporating a spectre of strikes, unlike some
frequently referenced indicators such as the futures rates, the at-the-money
volatility or the risk reversal, all relying upon a very restricted set of op-
tions. Indeed, tracking the change in the futures, which for the SP500 case
could be done by following the corresponding E-mini contracts, endows us
with a summary potentially unbiased overview of the density mean move-
ments which does not account for the possible presence of modes and devoid
of any information on the type of transformation undergone, be it a shape-
preserving traslation or a change in tail heaviness. The most likely outcome
for the futures could be very different from the one suggested by the mean if
its path diverges from the modal one, as showed in [13]. The at-the-money
volatility is the σ of the underlying log returns required by the Black-Scholes
formula to equate the option price. This measures typically varies with the
strike and the maturity, depicting the so called volatility smile in the implied
volatility surface (IVS) σimp(K,T ) and it is very narrow when compared to
the variety of data mirrored in the RND. Finally, the risk reversal attempts
to measure the volatility smile slope by computing the absolute difference
between the implied volatilities of a call and a put options, selected to be
equally out-of-the-money. Now, the steepness of the smile is the extent to
which the IVS distances itself from a flat surface which depends on how the
RND of log returns is far from being normal as assumed in the Black-Scholes
model, a distance more faithfully measured by the distribution skewness i.e.
its third standardized moment.
Without resourcing to overly crafted techniques, that would lie outside the
interest of our work, we provide the main statistics features to consider when
interpreting an RND plot, always aware of its intrisic difference with the real
world density :

1. Mean and standard deviation. The first two risk-neutral moments carry
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information on the market expectation on the future underlying value
and on the degree of related certainty. Since the terms are always con-
ditional on the present available knowledge, nested in the filtration Ft,
we usually observe that the RND volatility depends on the maturity of
the options it is extracted from as displayed in Fig. 3.6. The figures
report the RND of the same options after 26 days, with 31 and 5 days
to maturity. The closer the traders are to the expiration date the more
certain they are on the future outcome, the narrower the density. This
is also the reason why we denote it as fQ

t,τ , including the horizon τ in
the definition. This additionally suggests that the more ebullient the
times and thus the larger the uncertainty, the more platykurtic the dis-
tribution, as visible in Fig. 3.8. The pictures show the RND extracted
from 30-days maturity VIX options via a Generalized inverse Gaus-
sian kernel density first in a normal period and then in the tumultuous
COVID-19 alarm diffusion one, where as showed in Fig. 3.7, the VIX
suddenly escalated to outrageous levels.

2. Asymmetry measures : skewness, (mean-mode)/standard deviation, (mean-
median)/standard deviation. Asymmetry in the distribution ascribes to
the perception that the underlying has more chance to exceed (or fall
behind) the most anticipated value, than instead falling behind it (or
exceeding it), as it is evident for the VIX densities of Fig. 3.8. Fur-
thermore a rapid truncation in one of the tail, as slightly outlined for
the right tail in the first plot of Fig. 3.6, could mean that the market
has set a limit in the believed decline or rise of the asset. Besides, as
already mentioned, skewness could be regarded as a measure of the de-
tachment from the Black-Scholes assumptions of log-normality for the
returns and Brownian motion for the underlying stochastic process. To
track dynamically the symmetry fluctuations, a good procedure could
be the study of the pattern of the quantiles and their correlation with
the market indices, as performed in [12].

3. Kurtosis. The standardized fourth risk-neutral moment reflects the
fatness of the tails, thus revealing the risk of extreme movements in
the underlying, an indicator that could be used to evaluate the market
anticipation of a financial shock, as showed in [12] and Fig. 3.9 for the
2008 financial crisis case.

4. Modes. The modes of a continuous distribution are its local maxima
i.e. the set of most likely values. A multimodal density, such as the
one presented in the first plot of Fig. 3.9, describes an heterogeneity of
beliefs and thus a scattered probability, where the expectations of the
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agents are highly dispersed around the main value. On the contrary,
a unimodal density could indicate a homogeneous convergence of the
traders on the shape of the underlying future distribution resulting
either in a highly leptokurtic RND, such as the second of Fig. 3.6, or
a more platykurtic one, such as the second of Fig. 3.9.

Fig. 3.6: Risk-neutral density derived via double-beta density from the same panel
of SPX options on 2008-07-16 and 2008-08-11, with respectively 31 and 5 days to
expiration.

Let us now draw some parallel considerations on the Greeks. On Fig. 3.10
the Greeks for 2016 SPX options are plotted with respect to the strike and
on Fig. 3.11 we have the graphs of the deltas of the same 2016 and 2020 VIX
options of Fig. 3.8 . What we see is a concise and compact supplementary
confirmation of the assumption studied in section 2.3. Recalling the results
of the PCA, in particular the components of the weight vectors, we should
expect this scenario :

• ITM range. Very high sensitivity to the underlying (delta), usually
greater than 0.5, and very low sensitivity to the change in volatility
(vega).

• ATM range. Medium or negligible sensitivity to the underlying, usually
around 0.5, and high sensitivity to the change in volatility.

• OTM range. Very low sensitivity to the underlying and almost all
sensitivity loaded on the volatility. Null sensitivity to both for extreme
strikes where the option is illiquid.

The plots of Fig. 3.10 sustain our view. The delta descends while the vega
has a slightly asymmetrical bell curve form. The closer we get to the end
of the RND support, the less traded are the OTM options and thus the less
sensitive they are to both risk factors. In Fig. 3.11 the effects of peaking
VIX during the pandemic risk are evident when compared to the 2016 period
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Fig. 3.7: VIX time series from January 2015 to May 2020. The dates of the panel
of options selected are marked.

Fig. 3.8: Risk-neutral density derived via a Generalized inverse Gaussian kernel
from a panel of VIX options with monthly maturity, first on 2016-02-23 and then
on 2020-04-01.

Fig. 3.9: Risk-neutral density extracted from 30-day maturity SPX options in
2007-09-19 and in 2008-09-17, when the crisis hit strongly.

of historical lows. The VIX delta curve size is much more amplified in the
former case than in the latter, because the VIX is more expected to reach
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higher values, thus influencing even the most remote OTM options to possibly
convert their state. This implies that the hedging should work optimally
in 2020 as the correlation factor is low and their influence on the options
is consistent meaning that the fluctuations are well captured by the direct
positions taken.

Fig. 3.10: Delta and vega of 30-day maturity SPX call options on 2016-02-23 with
the strikes reported on the x-axis.

Fig. 3.11: Deltas of 30-day maturity VIX call options on 2016-02-23 and 2020-04-
01.

3.5 Measuring the hedging gain and solving the
correlation issues

In this final section we will illustrate how the hedging performance could be
measured in a sufficiently extended time span. Afterwards, we will present
some remarks on the already met technical issues emerging in low volatility
regimes and we will see how to possibly solve them.
Let us first consider a set of strikes K1, ..., KM , an issuing day t0 and an
horizon τ . We will assume that the rebalancing of the portfolio weights
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occurs periodically, with the time values set by t1 = t0 + τ
N
,...,tN = t0 + τ .

In order to lighten our notation, we will rewrite the familiar values as

C
Kj
i = C

Kj
ti,τ−ti , Fi = Fti,τ−ti , V Si = V Sti,τ−ti ,∆

Kj
i = ∆Kj

ti,τ−ti , ν
Kj
i = ν

Kj
ti,τ−ti
(3.17)

The hedging is performed here on SPX options and thus we know from section
2.3 that the Greeks are taken respectively from the futures and the variance
swap. The hedging is exectued on a portfolio for each strike, where the form
2.5 for the given Kj becomes

C
Kj
i + ∆Kj

i Fi + ν
Kj
i V Si + πBi Bi (3.18)

The hedging efficiency is not measured in payoff terms but depends on the
extent to which the option replication component in the portfolio is good
at tracking the variation of the call price between rebalancing times. This
difference , equal to Ci+h − Ci with the strike omitted for simplicity, can be
rearranged for small h as follows

h
Ci+h − Ci

h
≈ h

dCi
dh

= h

(
∂Ci
∂Fi

dFi
dh

+ ∂Ci
∂V Si

dV Si
dh

)
≈ ∆i(Fi+h−Fi)+νi(V Si+h−V Si)

(3.19)
Where we have used the total derivative formula and the fact that the call
Ci = Ci(Fi, V Si) is mainly influenced by the two factors. The goodness of
tracking can be thus framed in the replication squared error (RSE), which
corresponds to the term

RSE
Kj
i =

(
∆Kj
i−1(Fi − Fi−1) + ν

Kj
i−1(V Si − V Si−1)− (CKj

i − C
Kj
i−1)

)2

(3.20)

In order to adapt this value to a scale-free metric and give it a meaning to its
quality by confronting with another approach, we normalize it by the RSE
of a benchmark hedging strategy which is the practitioners’ Black-Scholes
(PBS). This employs only one Greek, the delta, still equal to the sensitivity
to the underlying futures but computed with the Black-Scholes closed formula
which, with the asset not paying dividends, is written as

∆BS,Kj
i = ∂C

Kj
i

∂Fi
= φ

( ln( Fi
Kj

) + (r + σ2

2 )(T − ti)
σ
√
T − ti

)
(3.21)

Where r is the risk-free interest rate and the term depends on Kj since the
parameter σ is the implied volatility of CKj i, which is typically influenced
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by the strike. The respective benchmark replication squared error (BRSE)
is then formulated as

BRSE
Kj
i =

(
∆BS,Kj
i−1 (Fi − Fi−1)− (CKj

i − C
Kj
i−1)

)2

(3.22)

Thus, given a set of M portfolios with respective strikes and N times, its
average gain measuring the hedging performance is the relative value of the
RSE on the BRSE, formally expressed as

G = 1
M

M∑
j=1

(
1−

∑N
i=1RSE

Kj
i∑N

i=1 BRSE
Kj
i

)
(3.23)

The better the hedging strategy with respect to the PBS the closer to 1 the
gain.
We have seen in section 3.2 that some troubling correlation between the SPX
and the VIX, emerging in low volatility regimes, could severely negatively
affect the hedging. Since, indeed, we minimize the risk by taking direct
positions on both the driving factors, we should always keep an eye on their
covariance which, for reasons related to overly favorable monetary policies
or market conditions, could significantly soar compromising the necessary
condition for the mixed partial derivatives to be null and the hedging to
work. This could be viewed as the VIX no longer translating the actual risk
intrinsic in the products, an occurrence which causes a distorted perception
of the market movements and induces the agents to over-leverage themselves
towards a sudden unpredicted crash. We should therefore expect our hedging
to be optimal in the highest turmoil, where the VIX adequately responds to
the havoc, and badly in the quiet times, with the PBS turning out to be
more solid as the options risk is loaded more on the delta.
We briefly outline in section 3.2 some possible methods to overcome this
complication. The main guiding intuition is to orthogonalize the VIX with
respect to the SPX, thus working the Greek of its perpendicular component
treated as the risk factor, which we wrote as V IX− Cov(V IX,SPX)

V ar(SPX) SPX. This
strategy is undermined by an inevitable caveat.To understand what could
occur we first have to identify the possible behaviour of the historical VIX2

t

vector in the space of Fig. 3.3, where we performed the principal component
analysis. We have that the coordinates of SPXt and VIX2

t are such that the
projections over them of the centered historical cloud of dots Zt are equal
to the observed time series of the two indexes i.e. SPXt = ZtSPXt and
V IX2

t = ZtVIX2
t . Now, since the SPXt corresponds to the first weight W1,

the vector remains still with respect to W2,W3, ...,Wn, which is instead not
true for VIX2

t that, as we have seen, will lose gradually its orthogonality. A
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natural adjustment consists in identifying the VIX2
t orthogonal component

as the new W2, but this is valid only if we assume that the orthogonal part
will remain still with respect to the Wi base. This constraint could be easily
violated if VIX2

t departs from the space generated by SPXt and W2, as
displayed in Fig. 3.12, invalidating the hypothesis that it is still related to a
principal factor. In order to decompose better the VIX we could extrapolate
its principal components, try to relate them with some observable values and
project the VIX on these as well which could be a tedious task.
Another more comfortable approach was the already discussed use of ATM
options to indirectly hedge on the vega, as explained in [16]. By denoting
with CK̄

i the ATM call option we could consider the portfolio

CK
i + πK,Fi Fi + πK,K̄i CK̄

i (3.24)

with
πK,F = −∆K

i − π
K,K̄
i ∆K̄

i , πK,K̄i = −ν
K
i

νK̄i
(3.25)

By taking the Fi derivative we get

∆K
i −∆K

i − π
K,K̄
i ∆K̄

i + πK,K̄i ∆K̄
i = 0 (3.26)

By taking the V Si derivative we get

νKi + πK,Fi

∂Fi
∂V Si

− νKi = (−∆K
i + νKi

νK̄i
∆K̄
i ) ∂Fi
∂V Si

(3.27)

The last term can be rewritten as

− dCK
i

dFi

dFi
dV Si

− dCK
i

dV Si

dV Si

dCK̄
i

dCK̄
i

dFi

dFi
dV Si

(3.28)

so that the hedging is preserved in its indirect form by including a normalized
vega.
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W3

SPXt ≡W1

W2

VIX2
t

Fig. 3.12: Possible configuration for the VIX2
t decomposition, with the vector

departing from the weight W2 but leaving the space Span(SPX, W2) as well,
guided also by the weight W3.

3.6 Conclusions
We have developed a non-structural approach for the estimation of the risk-
neutral density from vanilla options. The derivation could be carried out
under very mild regularity conditions, in particular an exponential tail decay
of the kernel, that are proven in Chapter 1 after a rigorous theoretical con-
struction. This pivotal finding helps us to generalize and refine some equiv-
alent extraction procedures such as the Laguerre polynomials expansion or
the Edgeworth expansion with Hermite polynomials. After the exposition
of our strategy rationale and its meaning within the option pricing context,
we empirically sustained our assumptions, above all the fact that the main
risk factors determining the option variance are functionally linked with the
tradable futures and variance swap contracts. This conjecture was verified
via a principal component analysis on a dataset of benchmark SPX options.
We have exposed the outcomes of our methodology first by providing an ar-
ray of manifold applications, lying beyond the restricted field of the hedging
techniques and ranging from monetary to general macroeconomic insights.
We then outlined an essential handbook to interpret this instrument show-
ing its shape alteration and those of the Greeks from tranquil to turbulent
times. Finally, we described how the hedging could be measured after the
time series of the replication squared errors and we addressed the difficulties
emerging in low volatility periods by proposing alternative strategies, most
of all the idea of changing the ratios for an indirect form of vega hedging.
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Appendix

Theorem A.1. Let f(z) be a complex function on a nonempty connected open
set Ω ∈ C and differentiable therein. Then f(z) has derivatives of all orders
in Ω.

Proof. See [1], Section 2.3.

Note A.1. The function f(z) is said to be analytic.

Theorem A.2 (Lebegue’s Dominated Convergence Theorem). Let fn be a
sequence of complex measurable functions on X ⊆ R such that

f(x) = lim
n→+∞

fn(x) (A.1)

Exists for every x ∈ X. If there is a function g(x) ∈ L1
µ(X) such that

|fn(x)| ≤ g(x) ∀n ∈ N,∀x ∈ X (A.2)
Then

f ∈ L1
µ(X), lim

n→+∞

∫
X
|fn−f |dµ = 0 lim

n→+∞

∫
X
fndµ =

∫
X
fdµ (A.3)

Proof. See [2], Theorem 1.34.

Theorem A.3. Let f(z) be a complex analytic function on a nonempty con-
nected open set Ω ∈ C such that fk(z0) = 0 ∀k ∈ N for some z0 ∈ Ω. Then
f ≡ 0 on Ω.
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Proof. See [1], Section 3.2.

Theorem A.4 (The Uniqueness Theorem). Let f(x) : (a, b)→ C with (a, b) ⊆
R and f ∈ L1(a, b). Denoting f̂(t) the Fourier transform of f , if we have
that f̂(t) = 0 for any t ∈ R then f(x) = 0 almost everywhere in (a, b).

Proof. See [2], Theorem 9.12.

Theorem A.5. A complex function f(z) = u(z)+iv(z) = u(x+iy)+iv(x+iy)
on a nonempty connected open set Ω ∈ C is analytic therein if and only u
and v have continuous partial derivatives which verify the following Cauchy-
Riemann equations :

ux = vy, uy = −vx ∀x, y ∈ R s.t. x+ iy ∈ Ω (A.4)

Proof. See [1], Section 1.2.

Proposition A.6 (Leibniz integral rule). Let f(x, t) be a real function such
that both f(x, t) and its partial derivative fx(x, t) are continuous in t and x
in some region of the (x, t)-plane, including a(x) ≤ t ≤ b(x), x0 ≤ x ≤ x1 for
two functions a(x) and b(x)that are both continuous and both with continuous
derivatives for x0 ≤ x ≤ x1. Then, for x0 ≤ x ≤ x1

d

dx

(∫ b(x)

a(x)
f(x, t) dt

)
= f

(
x, b(x)

)
· d
dx
b(x)−f

(
x, a(x)

)
· d
dx
a(x)+

∫ b(x)

a(x)

∂

∂x
f(x, t) dt

(A.5)

Proof. See [3], pp. 615-627.

Proposition A.7 (Cauchy-Schwarz inequality). Let (V, 〈., .〉) be an inner prod-
uct space. Then we have the following inequality

|〈v, w〉| ≤ ‖v‖‖w‖ ∀v, w ∈ V (A.6)

Proof. See [4], Theorem 1.35.
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Summary



2

This thesis focuses first of all on the construction of an efficient hedging strat-
egy for a portfolio of vanilla options, futures and variance swap contracts,
where the weights of the contingent claims, known as Greeks, are estimated
after the moments of the risk-neutral density (RND) of the underlying asset,
extracted via a non-structural semi-parametric approach based on a poly-
nomial expansion. The Greeks measure the sensitivity of the option to a
determinant pilot risk factor and the ones we refer to, as well as the most
extensively accounted for, are the delta and the vega, corresponding to the
partial derivatives of the option price with respect to the level of the un-
derlying and to its volatility. To accurately determine their value we need
an unbiased method to extrapolate the risk-neutral density. This function,
whose existence is guaranteed only in arbitrageless venues, is the probability
distribution of the prices of the underlying asset in the measure Q, which
prices the contingent claims from the perspective of a risk-neutral investor.
In the vast and continuously updating literature on the density extraction a
first fundamental distinction is made between structural and non-structural
models. The former provide a complete description of the stock prices dy-
namic, the latter derive instead the density by resourcing only from a partial
or absent definition of the underlying stochastic process. Non-structural
approaches could themselves be classified in parametric, where a direct ex-
pression of the risk-neutral density is proposed, and semi or non-parametric,
where the density is estimated with approximation techniques. A widespread
trading strategy is the so-called practitioners’ Black-Scholes consisting in a
delta hedging, with the hedging coefficient computed with the Black-Scholes
formula. This is a structural approach as in the Black-Scholes setup the as-
set price follows a log-normal diffusion process, preserved in the risk-neutral
measure Q for the Girsanov theorem. The main caveats of this procedure
stand in the empirically proved failure of the hypotheses, since the volatility
of the underlying is not constant and the process may exhibit jumps, and
the absence of the vega. More and more refined models have been proposed,
with a stochastic volatility and volatility of volatility, but in general any
structural or non-structural parametric approach suffers from some recur-
ring drawbacks, especially when historical data are used. When, indeed, a
relatively simple model is taken the results could be biased and not adherent
to the actual observations, whereas when a complex model is considered, the
trade-off is detrimental for the processing time requested for the determina-
tion of the parameters. Our methodology only relies upon weak regularity
conditions without imposing binding constraints for the underlying stochas-
tic process, revisiting and generalizing some standard procedures based on
polynomial expansion such as the Edgeworth series or, with the proper adap-
tation, the Gram-Charlier A series. The Greeks are then computed from the
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derived risk-neutral moments via some cunning heuristic identities, later em-
pirically verified with the other assumptions.
Beside this main purpose, the work is set for several additional aims. By
venturing in the field of option hedging we notice how the areas of deriva-
tive pricing and economics will intertwine with our findings. We therefore
often detail the whole context by focusing on the VIX puzzle phenomen ex-
planations, outlining how the Greeks should in general change according to
the option moneyness and, most importantly, refer to the many ways the
risk-neutral density could be utilized in other academic areas. This is done
to endow the work with a broader scope, indirectly suggesting some possible
variations on the theme treated.
We begin by rigorously deriving the theoretical framework underlying the
rationale of our hedging strategy. The main purpose is to formally establish
the conditions under which a probability density of a stock price, itself deter-
mining the option payoff, can be expressed as an infinite linear combination
of polynomials. We see that this process parallels a traditional result of Real
Analysis which is the construction of a complete basis for an Hilbert space
i.e., intuitively, an infinite dimensional vector space. The pivotal theorems
needed to implement our methods are two. The first defines how to build
the orthogonal polynomials from a recursive algorithm :

Theorem 0.1. A sequence of orthonormal polynomials {pn(x)}+∞
n=0 satisfies

pn(x) = An[xpn−1(x) +Bnpn−1(x) + Cnpn−2(x)] n = 2, 3, ... (1)

where

An 6= 0, Bn = −〈xpn(x), pn(x)〉, Cn = −〈xpn(x), pn−1(x)〉 n = 2, 3, ...
(2)

From which we derive the polynomials as

p0(x) = w0,0 = 1 (3)

p1(x) = w1,0 + w1,1x =
x− µ1

µ0

(µ2 − µ2
1
µ0

)1/2
(4)

pn(x) = wn,0 + ...+wn,nx
n = An[(x+Bn)

n−1∑
k=0

wn−1,kx
k+Cn

n−2∑
k=0

wn−1,kx
k] (5)

where we have

Bn = −
n−1∑
k=0

n−1∑
q=0

wn−1,kwn−1,qµk+q+1, Cn = −
n−1∑
k=0

n−2∑
q=0

wn−1,kwn−2,qµk+q+1

(6)
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With the coefficients wi,j derived from the computation of the non normalized
terms w′i,j = Anwi,j and the subsequent definition of the An factor

w′i,j =



Bnwn−1,0 + Cnwn−2,0 if j = 0,
wn−1,j−1 +Bnwn−1,j + Cnwn−2,j if j = 1, ..., n− 2,
wn−1,n−2 +Bnwn−1,n−1 if j = n− 1,
wn−1,n−1 if j = n,

0 if j > n.

(7)

An = ±(
n∑
k=0

n∑
q=0

w′n,kw
′
n,qµk+q)−1/2 (8)

The second proposition sets the condition under which a function can be
expanded as a series of orthogonal polynomials weighted by a kernel density,
only required to satisfy an exponential tail decay and it is the core statement
behind our approach :

Proposition 0.2. Given a Borel measure µ on an open set S ⊆ R let the
kernel φ : S → R and the target f : S → R be two measurable functions on
(S,B(S), µ) with supp(f) ⊆ supp(φ) ⊆ S and such that :

i) The kernel φ is different from zero almost everywhere and it satisfies∫
|x|kφ2(x)dµ(x) <∞, ∀ k ∈ N (9)

ii) The target f belongs to the space L2
µ, i.e.∫

f 2(x)dµ(x) <∞ (10)

Then the following holds :

1. There exists a family of polynomials (pk)k∈N such that the corresponding
φ-weighted family (φpk)k∈N is an orthonormal set in L2

µ, i.e.

〈φpk, φpl〉2,µ = ∆kl ∀ k, l ∈ N (11)

2. The Fourier coefficients are well defined, i.e.

ck = 〈f, φpk〉2,µ <∞ ∀ k ∈ N (12)
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3. The sequence of the pseudo-densities

fn(x) = φ(x)
n∑
k=0

ckpk(x) n ∈ N (13)

converges in the space L2
µ.

If µ is absolutely continuous with respect to the Lebesgue measure and if,
given the Radon-Nikodym derivative dµ

dx
, the following condition holds :

∃ α > 0 s.t.
dµ

dx
φ2(x) = O(e−α|x|) as |x| → +∞ (14)

4. The pseudo-densities fn converge to the target f in norm, i.e.

lim
n→+∞

‖f − fn‖2,µ = 0 (15)

Note 0.1. We recall that f(x) = O(g(x)) as |x| → +∞ if and only if there
exist two positive real numbersM and x0 s.t. |f(x)| ≤Mg(x) when |x| ≥ x0.

After having articulated in full the mathematical architecture behind our
main results, structuring it with the respective proofs, we move to the central
part where the intuition of the methodology, the financial theory and the
heuristics applied to determine the pivotal hedging entities are explained
and carefully derived. We start by defining formally familiar and less familiar
terms of finance from the notion of arbitrage to that of self-financing portfolio
and then finally lay the assumptions on which our analysis, and in general
option pricing, is based upon. By denoting with Zt the value of a generic
underlying asset at a time t ≥ 0 we set t+ τ as the time of expiration for the
contingent claim and state the following general assumptions :

1. The market is arbitrage-free.

2. The market is complete.

3. The market is frictionless.

4. The risk-free interest rates are set to zero without loss of generality.

5. The price of any derivative security on the underlying Zt depends on a
finite number of traded risky factors ξt,τ = (ξ1

t,τ , ..., ξ
q
t,τ ).

6. ∃ n ≥ 2 s.t. EP[Zk
t+τ ] <∞, k = 0, 1, ..., n.

This sets of assumptions guarantees the existence of a unique risk-neutral
probability measure, which is the one we will work with throughout our
work, due to the two fundamental theorems of asset pricing.
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Theorem 0.3 (First fundamental theorem of asset pricing). The market is
arbitrage-free if and only if there exists a probability measure Q equivalent to
P such that the discounted price process of every tradable asset is a martingale
with respect to Q.

Theorem 0.4 (Second fundamental theorem of asset pricing). The market is
complete if and only if there exists a unique risk-neutral probability measure.

With these premises, we then characterize our strategy as the minimization
of the embedded risk in the following hedging portfolio:

Pt,τ = V Ψ
t,τ + π1

t,τξ
1
t,τ + ...+ πqt,τξ

q
t,τ + πBt,τBt,τ , πit,τ = −

∂V Ψ
t,τ

∂ξit,τ
, i = 1, ..., q

(16)
The value V Ψ

t,τ and Bt,τ corresponding to the option with payoff φ and the
bond prices. To compute the Greeks πit,τ we resort to our mathematical re-
sults and rearrange the risk-neutral density as a weighted linear combination
of its moments Mk

t,τ

fQ
t,τ (x) ≈ fn(x) = φ(x)

n∑
k=0

Mk
t,τ

(
n∑
i=k

n∑
j=i

wi,kwj,kx
j

)
(17)

From this relation the option value becomes

V Ψ
t,τ ≈ HΨ

0 +M1
t,τH

Ψ
1 +...+Mn

t,τH
Ψ
n , HΨ

k =
n∑
i=k

n∑
j=i

wi,kwj,k

∫ +∞

0
xjΨ(x)φ(x)dx

(18)
This means that for a given set of strikes K1, ..., Kp we can then consider the
vector of respective call options Ct,τ = [CK1

t,τ , ..., C
Kp
t,τ ]′ and the p×n+1 matrix

H with components Hi,j = HKi
j , to write the following approximations

Ct,τ ≈ HMt,τ ,
∂Ct,τ
∂ξt,τ

≈ H
∂Mt,τ

∂ξt,τ
(19)

This means that to estimate the Greeks we only need to find a way of ex-
pressing the partial derivatives of the risk-neutral moments. To do this we
consider the following contracts.

Definition 0.5. Given an asset Zt, the derivative contracts with maturity t+τ
and values

Ft,τ = EQ[Ψ1(Zt+τ )] = EQ[Zt+τ |Ft]] (20)

V St,τ = EQ[Ψ2(Zt+τ )] = −2
τ
EQ[log

(
Zt+τ
Ft,τ

)
|Ft] (21)
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are respectively called its future and its variance swap. Their Greeks are
defined as

∆K
t,τ :=

∂CK
t,τ

∂Ft,τ
νKt,τ :=

∂CK
t,τ

∂V St,τ
(22)

and they are respectively called delta and variance swap vega.

We then can employ these derivative securities for this key relation

Proposition 0.6. Given an asset Zt, let Mk
t,τ be its k-th risk-neutral moment,

Ft,τ its future and V St,τ its variance swap. Given the coefficients

βk = 1
V St,τ

log
(
Mk

t,τ

F k
t,τ

)
, ∀k ∈ N (23)

We have that the following approximation holds :

Mk
t,τ ≈ F k

t,τe
βkV St,τ , ∀k ∈ N (24)

From this relation we can find the explicit definition of the moments deriva-
tives leading to the following Greeks expressions

∆t,τ ≈ HD, νt,τ ≈ HW (25)

Where

D[k] =
∂F k

t,τe
βkV St,τ

∂Ft,τ
= kF k−1

t,τ eβkV St,τ , (26)

W [k] =
∂F k

t,τe
βkV St,τ

∂V St,τ
= βke

βkV St,τ (27)

To compute the βk we need a direct estimation of the moments which is
achieved by performing a principal component regression and compute the
coefficients

[ĉ1
t,τ , ..., ĉ

n
t,τ ] = arg minc1,...,cn(Y∗ −Xc)′(Y∗ −Xc) (28)

Where Y∗ = Y−X0 and

Y = [CK1 , ..., CKp , PK1 , ..., PKp ]′ (29)

X0 = [AK1
0 , ..., AKM0 , BK1

0 , ..., BKM
0 ]′ (30)
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X =



AK1
1 ... AK1

n

. . .

. . .

AKM1 ... AKMn
BK1

1 ... BK1
n

. . .

. . .

BKM
1 ... BKM

n


(31)

Given the polynomial coefficients matrix

T =


w1,1 0 ... 0
w2,1 w2,2 ... 0
. . . 0

wn,1 wn,2 ... wn,n

 (32)

The risk-neutral moments can then be derived by exploiting the relation

ĉ = TMt,τ ⇒Mt,τ = T−1ĉ (33)

Having developed our methodology for the computation of the Greeks we
move to the last part where the empirical results are being reported and
studied. We start with a brief retrospection over the SPX and the VIX
dissecting their expressions to cast a light on the rationale of the measures.
In particular, to understand the VIX form we show how it estimates the
cumulative variance in relation to the stochastic model

d lnSt =
[
r− q− Vt

2 + λ

(
µJ − eµJ+

σ2
J
2

)]
dt+

√
VtdWt + JtdNt− λµJdt (34)

dVt = −∆vθdt+ vV γ
t dB

∗
t (35)

Furthermore we prove the key equation

VIX2
t104 ≈ V St,τ (36)

confirming the functional link between the variance swap and the second risk
factor.
We then move on to support the primary hypothesis that the major determi-
nants for the behaviour of the option should be addressed to the futures and
the variance swap on the underlying. To do this we perform a principal com-
ponent analysis (PCA) over a panel of 1-month maturity SPX call options
taken from the OptionMetrics platform, categorized in a pool of 9 moneyness



9

levels and collected at monthly frequency from 2006 to the first 4 months of
2016. We then prove that the leading drivers for SPX options are 2 and that
they are functionally tied to the aforementioned derivative contracts. This
is indeed clear after observing the very high correlations that the principal
components have with respectively the SPX and the VIX2 time series.
After proving also the optimal of degree of efficiency of our functional ap-
proximation linking the moment to the contracts values, we enter in the main
section, where a consistent set of results concerning the risk-neutral density
shape in different circumstances is provided together with a guide to inter-
pret the market according to its properties. This includes the following

1. Mean and standard deviation. The first two risk-neutral moments carry
information on the market expectation on the future underlying value
and on the degree of related certainty. Since the terms are always
conditional on the present available knowledge, nested in the filtration
Ft, we usually observe that the RND volatility depends on the maturity
of the options it is extracted from. The closer the traders are to the
expiration date the more certain they are on the future outcome, the
narrower the density. This is also the reason why we denote it as fQ

t,τ ,
including the horizon τ in the definition. This additionally suggests
that the more ebullient the times and thus the larger the uncertainty,
the more platykurtic the distribution.

2. Asymmetry measures : skewness, (mean-mode)/standard deviation, (mean-
median)/standard deviation. Asymmetry in the distribution ascribes to
the perception that the underlying has more chance to exceed (or fall
behind) the most anticipated value, than instead falling behind it (or
exceeding it). Furthermore a rapid truncation in one of the tail could
mean that the market has set a limit in the believed decline or rise of
the asset. Besides, as already mentioned, skewness could be regarded
as a measure of the detachment from the Black-Scholes assumptions of
log-normality for the returns and Brownian motion for the underlying
stochastic process. To track dynamically the symmetry fluctuations, a
good procedure could be the study of the pattern of the quantiles and
their correlation with the market indices.

3. Kurtosis. The standardized fourth risk-neutral moment reflects the
fatness of the tails, thus revealing the risk of extreme movements in
the underlying, an indicator that could be used to evaluate the market
anticipation of a financial shock.
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4. Modes. The modes of a continuous distribution are its local maxima
i.e. the set of most likely values. A multimodal density describes an
heterogeneity of beliefs and thus a scattered probability, where the ex-
pectations of the agents are highly dispersed around the main value.
On the contrary, a unimodal density could indicate a homogeneous
convergence of the traders on the shape of the underlying future distri-
bution.

In the last section we illustrate how the hedging performance could be mea-
sured in a sufficiently extended time span and present some remarks on how
to possibly solve the technical issues emerging in low volatility regimes. Given
a set of strikes K1, ..., KM and time values t1 = t0 + τ

N
,...,tN = t0 + τ , as-

suming a periodic rebalancing we define the replication squared error (RSE)
and the benchmark replication squared error (BRSE), measuring the hedging
performance of the practitioners’ Black-Scholes strategy (PBS), as

RSE
Kj
i =

(
∆Kj
i−1(Fi − Fi−1) + ν

Kj
i−1(V Si − V Si−1)− (CKj

i − C
Kj
i−1)

)2

(37)

BRSE
Kj
i =

(
∆BS,Kj
i−1 (Fi − Fi−1)− (CKj

i − C
Kj
i−1)

)2

(38)

Where ∆BS,Kj
i is the Black-Scholes delta corresponding to the value

∆BS,Kj
i = ∂C

Kj
i

∂Fi
= φ

( ln( Fi
Kj

) + (r + σ2

2 )(T − ti)
σ
√
T − ti

)
(39)

with r risk-free interest rate and φ is the standard normal cumulative distri-
bution function. From the above terms we can then define the hedging gain

G = 1
M

M∑
j=1

(
1−

∑N
i=1RSE

Kj
i∑N

i=1BRSE
Kj
i

)
(40)

The better the hedging strategy with respect to the benchmark Black-Scholes
hedging, the closer to 1 the gain.
The empirically observed rising correlation between the SPX and the VIX,
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emerging in low volatility regimes, could severely negatively affect the hedg-
ing. Since, indeed, we minimize the risk by taking direct positions on both
the driving factors, we should always keep an eye on their covariance which,
for reasons related to overly favorable monetary policies or market conditions,
could significantly soar compromising the necessary condition for the mixed
partial derivatives to be null and the hedging to work. This could be viewed
as the VIX no longer translating the actual risk intrinsic in the products, an
occurrence which causes a distorted perception of the market movements and
induces the agents to over-leverage themselves towards a sudden unpredicted
crash. We should therefore expect our hedging to be optimal in the highest
turmoil, where the VIX adequately responds to the havoc, and badly in the
quiet times, with the PBS turning out to be more solid as the options risk
is loaded more on the delta. The methods propose to overcome this com-
plication consist either in orthogonalizing the VIX with respect to the SPX,
thus working the Greek of its perpendicular component treated as the risk
factor, or using ATM options to indirectly hedge on the vega, exploiting the
fact that these kind of options exhibit very little sensitivity to changes in
the futures. Due to potential troubles arising in the first strategy the second
emerges as more promising and easier to apply.
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