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1 Introduction 

 

Exchange rates influences a wide range of economic agents for different reasons: both 

countries and individuals trading goods, financial traders, foreign workers and investors are 

affected by changes in exchange rates.  

Different models have been proposed and empirically tested with the goal of linking 

exchange rate movements to macroeconomic fundamentals such as interest rates, inflation, 

outputs and money supplies. All the theories proposed state that exchange rates are determined 

by macroeconomic variables. However no model has managed to produce definitive answer 

when empirically tested.  As first established by Meese and Rogoff floating exchange rates 

between countries are best approximated as random walks. Meese and Rogoff (M-R) (1983a, 

1983b)  in their seminal papers used different monetary models for exchange rate determination  

(Frenkel Bilson, Dornbusch Frenkel, Hooper Morton) with the goal of explaining nominal 

exchange rate movements in terms of contemporaneous macroeconomic variables, showing that 

they failed to outperform a naïve random walk (RW without drift) when comparing the out of 

sample forecasts by root mean forecast square error (RMSE), mean forecast error (ME), and 

mean absolute forecast error (MAE). The models parameters were kept fixed and were at first 

estimated employing various econometric techniques, including ordinary least squares (OLS), 

generalized least squares (GLS), instrumental variables (IV), and then were constrained to values 

based on the economic and empirical theory of money demand and purchasing power parity. The 

authors list as possible reasons of the poor forecasting performance the sensitivity of the models 

to the choice of  proxy used to represent expected differences in inflation, temporary or permanent 

deviation from Purchasing Power Parity (PPP), misspecification of the money demand function, 

simultaneous equation bias, and changes in the parameters values over time. 

 The results were nonetheless interpreted as evidence of the inadequacy of the models to 

establish a meaningful relationship between exchange rates and macroeconomic fundamentals, 

starting  a discussion regarding the usefulness of the models and the forecastability of exchange 

rates, commonly referred to as “Meese Rogoff  puzzle”.  

Cheung and Chinn (1998) attribute the empirical failure to theoretical flaws in the 

models. Cheung, Chinn, and Pascual (2005) test the out of sample forecasts for different monetary 
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models obtaining generally negative results and conclude  that different specifications may work 

better for different exchange rates and at different time horizons. 

By following M-R’s suggestion that it may be fruitful to account for parameter instability, 

this thesis tries to improve on previous attempts by using a model based on Taylor rule 

fundamentals, allowing for parameter variation and heteroscedasticity by putting the model in 

state space form and estimating it using the Kalman filter.  Indeed this approach sounds, at least 

intuitively, more promising. It seems reasonable to assume that the impact of shocks in the 

macroeconomic variables on the exchange rate is related to the relative health of the economies 

of the home and foreign country. For instance if one of the two countries is experiencing a 

recession with very low inflation, the exchange rate reaction to a further lowering in the price 

level of this country is expected to be greater than what would happen if his economy was 

thriving.  

It must be noted however that this approach is not new. Different attempts to forecast 

exchange rates by state space methods have been made producing mixed results. Both Wolff 

(1987)  and Schinasi and Swamy (1989) make use of time varying parameters to forecast 

exchange rates using the same models as in MR and still taking the RW model as a benchmark 

with not very encouraging results. Rossi (2006, 2013) in an extensive study uses the Kalman filter 

with a random walk specification for the parameters with mixed results, but concludes that in 

general evidence of predictability is scarce.  Bacchetta et al. (2009)  study wether acoounting 

instability is sufficient for solving the Meese Rogoff puzzle and conclude that this is hardly the 

case. Molodstova and Papell (2009) deviating from H-R use different Taylor rule based models 

of exchange rate determination (1993) for a multitude of currencies, allowing for stochastic 

parameters using rolling OLS regressions they manage to outperform the RW model in few cases. 

Haskamp (2017), with the main focus of out of sample forecasting uses the Kalman filter to allow 

for parameter variation in the Molodtsova Papell model. He reports that the Kalman filter 

manages to incorporate more abrupt adjustments in the coefficients when compared to the OLS 

rolling  regression, however he still fails to outperform a random walk in terms of out of sample 

forecasts.   

Although accounting for time varying coefficients has in general failed to beat a random 

walk, it is clear that a sensible improvement has been made over the first attempts with fixed 

coefficients of MR.  
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Even if the results are encouraging neither any model has taken into account the well 

known time varying nature of exchange rates volatility, treated as constant over time, nor any 

attempt has been made to deviate from the Gaussianity assumption, despite large evidence that 

exchange rates follow a leptokurtic distribution as shown by the pioneering work of Mandelbrot 

(1960). 

In this thesis the efforts of linking exchange rates to macroeconomic fundamentals 

through  the state space formulation of Taylor rule based macro model are furthered by taking 

into account the heteroscedastic nature of exchange rates, and allowing Autoregressive 

Conditional Heteroscedasticity  (ARCH) effects to enter the model. 

In the following sections Taylor rule fundamentals for exchange rate determination will 

be  presented, and a reduced version proposed, then the general space time formulation of the 

model and the related Kalman Filter recursions are illustrated. Then ARCH effects will be 

included and dealt with using the approach proposed by Harvey Ruiz and Sentana (1992). An 

univariate time series analysis using the model will be carried out with the goal of investigating 

the relationship between macroeconomic fundamentals and exchange rates.  
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2 Models for exchange rate 

determination  
 

In this section a short presentation of the different monetary models used in the literature for 

forecasting exchange rate models will be given. We first present the models used by HR 

(Frenkel – Bilson, Dornbusch – Frenkel, Hooper – Morton), then we introduce models based on 

Taylor rule fundamentals1, with particular emphasis to the model of Molodtsova and Papell 

(2008). For the rest of the paper exchange rates are defined so that an increase in 𝑠௧ means 

depreciation of the Home currency and viceversa. 

2.1 Monetary models 

The flexible price Frenkel Bilson model is specified as follows:  

 

 𝑠௧ = α + αଵ(𝑚௧ − 𝑚௧
∗) + αଶ(𝑦௧ − 𝑦௧

∗) + αଷ(𝑖௧ − 𝑖௧
∗) + ϵ௧ (1) 

Where 𝑠௧ is the logarithm of the exchange rate measured as unit of domestic currency needed to 

buy one unit of foreign currency, 𝑚 is the log of money supply, 𝑦 is the log of real income, 𝑖 is 

the short term interest rate, ϵ is a stochastic error term, and the star represent the respective 

variable for the foreign country. PPP is assumed to hold both in the short and long run, and 

expectations do not play any role in driving exchange rate movements. The parameter αଵis 

expected to be positive and equal to one, meaning that a monetary expansion of the home 

country will lead to higher prices causing a depreciation of the home currency. αଶ is expected to 

be negative as an increase in real income for the home country will increase the demand for real 

money balances appreciating the home currency. 

 
1 All the variables are considered in 𝑙𝑜𝑔. Where for interest rate the following approximation has been made: 
𝑙𝑜𝑔(1 + 𝑥) ≈ 𝑥  using a first order Taylor expansion around 𝑥 = 0 . 
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 αଷ is expected to be positive, higher interest rates are expected to have a negative effect on the 

demand of real money balances producing a depreciation of the home currency. 

The so called sticky price monetary model of Dornbusch and Frenkel is formulated as 

follows: 

 

 𝑠௧ = α + αଵ(𝑚௧ − 𝑚௧
∗) + αଶ(𝑦௧ − 𝑦௧

∗) + αଷ(𝑖௧ − 𝑖௧
∗) + αସ(π௧

 − π௧
∗)

+ ϵ௧ 

 

(2) 

Where 𝑚, 𝑦, 𝑖, and the starred variables represents the same variables as in (1) and π௧
 is the 

expected long run inflation rate. Prices are assumed to be fixed in the short run but not in the 

long run. Inflation expectations are added  in the model to take into account the fact that prices 

do not react rapidly to shocks in the money supply. In this model a domestic monetary 

expansion leads to a fall in interest rate and consequently to the depreciation of the home 

currency. 

The sticky price monetary model incorporating current account effects of Hooper and 

Morton is: 

 

 𝑠௧ = α + αଵ(𝑚௧ − 𝑚௧
∗) + αଶ(𝑦௧ − 𝑦௧

∗) + αଷ(𝑖௧ − 𝑖௧
∗) + αସ(π௧

 − π௧
∗)

+ αହ𝐵௧ + α𝐵௧
∗ + ϵ௧ 

 

(3) 

Where 𝐵௧ is the current trade account and all the other variables have the same interpretation as 

in (2). 𝐵௧ is included to take into account the impact that the trade account balance has on 

exchange rate expectations. In particular αହ and α are expected to be positive and negative 

respectively, implying that a current account surplus of the home country will result in an 

appreciation of his currency. 
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2.2 Taylor rule based models for exchange rate determination 

Monetary  model  argues  that  it  is level  of money supply  in  domestic  and  foreign  

country,  which  acts as main  determinant  of exchange  rate. Each of the model in the previous 

paragraph imply that monetary policy controls directly the money supply in each country.  

In practice most central banks set their monetary policy in terms of interest rates. In this case the 

equilibrium in the money market becomes residual in the determination of exchange rates. 

Taylor (1993) argued that empirical evidence suggested that policy rules that targeted 

the short term interest rate worked better than the ones focused on money supply and/or 

exchange rates, in particular speculating that short term rates should be related to the price level 

and the economic output he proposed the following policy rule, commonly known as Taylor’s 

rule. 

 

 𝑖௧ = ı̃ + π௧ + γ(𝑦௧ − yത) + ϕ(π௧ − πഥ) (4) 

Where 𝑖௧ is the targeted short term interest rate, ı̃ is the equilibrium real interest rate, 𝑦௧ is the 

economy output, usually measured with GDP, π௧ is the inflation usually measured with CPI, 

πഥ is the targeted level of inflation, and the term  𝑦௧ − yത is the output gap, or the difference 

between output (measured in GDP) and the economy potential. In its original formulation 

Taylor assumed that for the US economy the Federal Reserve targeted an inflation rate of 2%, a 

real equilibrium interest rate of 2%, estimated the economy potential to be equal to the growth 

trend of GDP between 1984 and 1992 at 2.2%, and γ, ϕ = 0.5 . 

The Taylor rule has worked remarkably well over the years, providing and accurate description 

of the policy decisions of the Federal Reserve, especially under the guidance of  Paul Volcker 

and Alan Greenspan. 

Assuming that the foreign central bank follows an interest rate policy that targets inflation and 

output gap as in (4): 

 𝑖௧
∗ = ı̃∗ + π∗

௧ + γ(𝑦௧
∗ − y∗ഥ ) + ϕ(π௧

∗ − π∗തതത)   (5) 
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And under the assumption of no arbitrage opportunities, so that Uncovered interest rate parity2 

(UIRP) holds:  

 𝐸௧(𝑠௧ାଵ − 𝑠௧) = 𝑖௧ − 𝑖௧
∗  

 

(6) 

the Taylor rule can be used for exchange rate determination purposes, subtracting (4) from (5) 

and substituting the left hand side with (6) LHS we get: 

 𝐸௧(𝑠௧ାଵ − 𝑠௧) = (𝚤෩ − ı̃∗) + γΔy୲ + ϕΔπ୲  (7) 

With  Δ𝑦௧ = (𝑦௧ − 𝑦ത) − (𝑦௧
∗ − y∗ഥ ) and Δπ௧ = (π௧ − πഥ) − (π௧

∗ − π∗തതത) and making the 

simplifying assumption that γ and ϕ are equal for both central banks, implying that they react in 

the same manner to changes in the output gap and inflation. 

 Although as already mentioned this first formulation of the Taylor rule has performed 

well, it has several limitations. By Taylor own admission the unobservable nature of 

equilibrium real interest rate, inflation target, and economic potential posits a practical restriction 

to the estimation of the model. Instead of tackling the problem directly he proposes, with poor 

results, an alternative policy rule in which exchange rates are added as explanatory variables and 

the inflation target and the equilibrium real rate are set to zero. Also Clarida, Gali and Gertler 

(CGG for the rest of the paragraph) (1997, 1999)  defined this baseline formulation backward-

looking , in the sense that central bank should set the nominal interest rate according to 

expectations of future inflation and output instead of reacting to past realized values, proposing 

a “forward looking” version of (7): 

 𝑖௧ = ı̃ + γ[𝐸௧(𝑦௧ା) − yത] + ϕ[𝐸௧(π௧ା) − πഥ] (8) 

Moreover, they notice that it would be unfeasible for policy makers to respond to economic 

changes as aggressively as prescribed by the rule, such behavior could in fact results in loss of 

credibility and/or destabilization of the capital markets. In this respect they suggest that the 

central bank adjusts gradually to changes in economic conditions following:  

 𝑟௧ = (1 − ρ)𝑖௧ + ρ𝑟௧ିଵ + ϵ௧ (9) 

 
2 𝐸௧ denotes expectations conditional on all information known at time 𝑡 
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Where 𝑖௧ is as in (4) and ρ is the smoothing parameter. 

Finally setting  α = 𝚤̃ − ϕπഥ  in (7) and then plugging it into (9) we get: 

 𝑟௧ = (1 − ρ) ቀα + γ[𝐸௧(𝑦௧ା) − y]ഥ + ϕ𝐸௧(π௧ା)ቁ + ρ𝑟௧ିଵ + ϵ௧ (10) 

The model estimated by GMM  was shown by CGG to fit remarkably well the interest rate 

decisions of G3 and E3 countries after 1979. Moreover according to CGG all the countries 

reaction were strong relative to inflation and moderate at best relative to the output gap and all 

the other variables eventually taken under consideration (exchange rates, foreign interest rate), 

concluding that indeed the central banks set their monetary policy holding inflation in higher 

regard over other economic fundamentals.  

This specification of the Taylor rule was cleverly mixed and rearranged with its original 

formulation by Molodtsova and Papell (2008), with the goal of providing an estimable model 

for exchange rate forecasting. 

Assuming that the central banks have a reaction function as specified in (4) with the 

additional inclusion of the real exchange rate, and that the monetary policy is smoothed 

according to (9), we have:  

 𝑟௧ = (1 − 𝜌)(𝛼 + (1 +  𝜙)𝜋௧ + 𝛾𝑥௧ + 𝛿𝑞௧) + 𝜌𝑖௧ିଵ + 𝜖௧ (11) 

where 𝑞௧ is the real exchange, 𝑥௧ = 𝑦௧ − 𝑦ത, and all the other terms the same as before. 

Assuming that (11) also applies for the foreign country subtracting the foreign rule to (11)  we 

get the model formulated by Molodtsova and Papell (MP for the rest of the paragraph): 

 𝐸௧[𝑟௧ − 𝑟௧
∗] = ω + ωπ௧ − ω∗

∗ π௧
∗ + ω௫𝑥௧ − ω௫∗

∗ 𝑥௧
∗ − ω∗𝑞௧

∗

+ ω 𝑖௧ିଵ − ω∗
∗ 𝑖௧ିଵ

∗ + η௧     

(12) 

Where the intercept ω is constant, ω,௧ = (1 − ϕ௧)(1 − ρ), ω௫,௧ = γ(1 − ρ), and    

ω,௧ = δ(1 − ρ), the same applies for the foreign country.  

 

In order to obtain an exchange rate forecasting equation they predict that in accordance 

with empirical evidence UIRP do not hold, in particular they assume that an increase in 

domestic inflation and output gap, and consequently in the domestic nominal interest rate, will 

result in appreciation of the domestic currency, as opposed to the UIRP that predicts the 

opposite. In agreement with the survey evidence of Gourincha and Tornell (2004), they expect 
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investors to underestimate the persistence of interest rates shocks. This leads to a mechanism 

defined as updating effect  in which investors constantly revise upwards their expectations of 

future currency appreciation.  This effects is even more pronounced if the central bank follows 

an interest rate rule which includes smoothing, in which case the investors underestimation will 

be more severe. In accordance with this belief they expect that any change in economic 

conditions (inflation above target, increase in output gap), that makes the central bank set an 

higher interest rate will produce currency appreciation.  

Molodtsova and Papell combine this predictions with equation (12) to get the following 

exchange rate forecasting equation 

 Δ𝑠௧ାଵ = 𝛼 − απ௧ + α
∗ π௧

∗ − 𝛼௫𝑥௧ + 𝛼௫
∗𝑥௧

∗ − α𝑖௧ିଵ + 𝛼
∗𝑖௧ିଵ

∗ + 𝜂௧ (13) 

In the formulation of the model in the authors assumed smoothing as in (11),different time 

varying coefficients for the two central banks, and also the existence of difference between 

inflation targets and equilibrium interest rates, captured by the intercept.  

As the authors point out the model in (13) can be formulated for a variety of different 

specifications. The model is said to be symmetric/asymmetric if the foreign central bank 

doesn’t/do target the exchange rate (i.e. ω∗ = 0 / ω∗ ≠ 0 ). If lagged interest rates are 

included the model is said to be with smoothing, otherwise with no smoothing. Finally if the 

coefficients are the same for the domestic and foreign countries are the same the model is said to 

be homogeneous. Otherwise, it is heterogenous.  

The model  is readily estimable by rolling OLS regressions as done by the authors. They 

proceeded to calibrate the model with data from March 1973 to February 1982 . The forecast 

exercise was carried out using a moving window, as done by MR and many others, meaning 

that the estimation is started using the first 𝑛 in sample observation (in this case 120), and a one 

step ahead (1 month) forecast is generated. As soon as a new observation is available the 

procedure is repeated. 

The robustness of the forecasts was then tested using the Clark West test against a Random 

Walk without drift with mixed results. 
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3 Methodology 
 

In this section the model that will be used to forecast exchange rates is presented, in both its 

general and state space form. We explain the estimation techniques used in the empirical 

analysis of the next section, in particular the Kalman Filter (1960) and  an extended formulation 

proposed by Harvey, Ruiz, and Sentana (1992) to account for ARCH effects in the residuals. 

 

3.1 Model 

Following in the footsteps of Molodtsova and Papell, We compare two models (heterogeneous 

and homogeneous) based on the Taylor rule accounting for smoothing as in (13) with time 

varying parameters while deviating from MP in two important respects. 

 

 The output gap is not included in the central bank response function. 

 Estimation and forecast are made using the Kalman filter considering ARCH effects in 

the residuals. 

 

The models are formulated as follows: 

 Δ𝑠௧ାଵ = α௧ + α,௧π௧ + α∗,௧π௧
∗ + α,௧𝑖௧ିଵ + α∗,௧𝑖௧ିଵ

∗ + ϵ௧   (14) 

 
Δ𝑠௧ାଵ = 𝛼గ,௧(𝜋௧  −  𝜋௧

∗) + 𝛼,௧(𝑖௧ିଵ  −  𝑖௧ିଵ
∗ ) + 𝜖௧ (15) 

Where Δ𝑠௧ାଵ = 𝐸௧[𝑠௧ାଵ − 𝑠௧], all the other variables are as before. Equations 14 and 15 

represent the heterogeneous and the homogeneous model respectively. 

The intercept is meant to capture difference among countries of the smoothing coefficients, 

inflation targets and equilibrium interest rates, as time varying as opposed to H-P. 

The reason for excluding the output gap is dual. First as empirical evidence produced by 

Clarida et al. suggests the response of monetary policy to the output gap is mild at best, being 

primarily focused on inflation. The second reason is that for estimation purposes including the 

output gap can be almost comparable to adding a latent explanatory variable to the model. This 
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indicator defined as the level of output that can be achieved when the factors of production are 

used at non-inflationary levels, in theory is an important proxy for the amount of slack in the 

economy, in practice is unobservable. There is no general consensus on how to best estimate 

this indicator either; as Orphanides (2002) noted: “different methods would yield very different 

estimates of the output gap”. Compounding the problem is the fact that the data used to model it 

are often subject to revision, and there is a significant degree of parameter uncertainty. This 

features are evident in the work of Molodtsova and Papell: the forecasts accuracy of their model 

is affected by the method used for measuring the output gap.3 They also report in agreement 

with the finding of Clarida et al. that the time varying parameters for the output gap are in 

general very close to zero. 

For what concerns the different choice of estimation method, the Kalman filter is ideal to 

deal with the varying parameters problem. This algorithm has the advantage of being able to 

capture the dependence structure of the series both in terms of mean and variance. This type of 

modelling is in fact employed to analyze time series for which the data generating process  is 

subject to regime shifts. This feature of the filter helps in dealing with asymmetric behavior of 

the series, such as the one exhibited in exchange rates, which alternate periods of relative 

stability with periods of high volatility. 

 

43.2 Linear Gaussian State space models and Kalman Filter 

 
The general linear Gaussian state space model (LGSSM) is formulated as follows: 
 
 𝑦௧ = 𝑍௧α௧ + ϵ௧ (16) 

 
𝛼௧ାଵ = 𝑇௧𝛼௧ + 𝑅௧𝜂௧ 

 
(17) 

With   ϵ௧~𝑁(0, 𝐻௧)    η௧~𝑁(0, 𝑄௧) 
 

Where (16) is called the observation equation, (17) the state equation, 𝑦௧ is the (n × 1) 

observation vector, α௧ାଵ is the (𝑚 × 1) unobservable state vector, ϵ௧ is the 𝑖𝑖𝑑 (n × 1)  

 
3 They try three different methods: linear trend, quadratic trend, and Hodrick–Prescott (H-P) filter. H-P provides 
the best forecast. 
4 For a more thorough treatment of the subject see Durbin and Koopman (DK) (2012) 
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normally distributed vector of observation disturbances (not observed), η௧ is the 𝑖𝑖𝑑  (𝑟 × 1) 

normally distributed vector of state disturbances (not observable), 𝑍௧ is an (𝑛 × m) matrix,  

𝑇௧ is the (𝑚 × 𝑚) state transition matrix, 𝑅௧ is an (𝑚 × 𝑟) matrix, 𝐻௧ is the (n × n) 

observation disturbances covariance matrix, 𝑄௧ is the (𝑟 × 𝑟) state disturbances covariance 

matrix, and ϵ௧ and η௧ are mutually independent from each other and from α௧. 

The unobserved α௧’s state represents the states which define the development over time of the 

system under consideration, together with the observations 𝑦௧’s which are related to the states 

by (16). 

The goal of filtering is to update our knowledge of the system every time a new observation is 

brought in, or more precisely to obtain the conditional distributions of α௧ and α௧ାଵ given the set 

of all available information at time 𝑡. 

Since in the LGSSM the distributions of the disturbances are assumed to be normal we have 

that all the conditional joint distributions are normal: 

  𝑝(α௧|𝑌௧ିଵ) = 𝑁(𝑎௧, 𝑃௧)  
 

(18) 

 
𝑝(α௧|𝑌௧) = 𝑁(𝑎௧

∗, 𝑃௧
∗) 

 
(19) 

 
𝑝(α௧ାଵ|𝑌௧) = 𝑁(𝑎௧ାଵ

∗ , 𝑃௧ାଵ
∗ ) 

 
(20) 

Where 𝑌௧ denotes the set of all available information at time 𝑡. 𝑎௧, 𝑃௧ are assumed to be known 

and are equal respectively to 𝐸௧ିଵ(α௧) and 𝑉𝑎𝑟௧ିଵ(α௧)5. With 𝑎௧ the vector of unconditional 

stetes means of size (𝑚 ×  1)  , and 𝑃௧  the unconditional states covariance matrix of size 

(𝑚 × 𝑚). 

 𝑎௧
∗ = 𝐸௧(α௧) , 𝑃௧

∗ = 𝑉𝑎𝑟௧(α௧) are respectively called filtered state, and covariance matrix 

estimates. 

𝑎௧ାଵ
∗ = 𝐸௧(α௧ାଵ) ,𝑃௧ାଵ

∗ = 𝑉𝑎𝑟௧(α௧ାଵ) are respectively called the state , and covariance 

matrix updates. 

And additionally it is assumed that for the initial states the following holds αଵ~𝑁(𝑎ଵ, 𝑃ଵ),  

With 𝑎ଵ, 𝑃ଵ known6.  

 
5 The notation 𝐸௧ିଵ(α௧) is equivalent to 𝐸(α௧|𝑌௧ିଵ) 
 
6 This is hardly the case in practice, however it is convenient to explain the functioning of the algorithm. This 
assumption will be relaxed later. 
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Having established this quantities we move on by defining  one step prediction errors, which 

will be fundamental in the so called prediction error decomposition estimation that will be 

employed later. 

We define the one step ahead forecast error as: 

 𝑣௧ = 𝑦௧ − 𝐸௧ିଵ(𝑦௧) = 𝑦௧ − 𝑍௧𝑎௧ 
  

(21) 

Where the last equality in (21) comes from substituting (16) and taking expectations. 

We note also that: 

 𝐸௧ିଵ(𝑣௧) = 0 (22) 

 
𝑉𝑎𝑟௧ିଵ(𝑣௧) = 𝑉𝑎𝑟௧ିଵ(𝑍௧α௧ + ϵ௧ − 𝑍௧𝑎௧) = 𝑍௧𝑃௧𝑍௧

ᇱ + 𝐻௧ = 𝐹௧ 
 

(23) 

 
𝐶𝑜𝑣௧ିଵ(α௧, 𝑣௧) = 𝐸௧ିଵൣ൫α௧ − 𝐸௧ିଵ(α௧)൯൫𝑣௧ − 𝐸௧ିଵ(𝑣௧)൯′൧ =

= 𝐸௧ିଵ[α௧(α௧ − 𝑎௧)ᇱ𝑍௧
ᇱ] = 𝑃௧𝑍௧

ᇱ 
  

(24) 

Now we can proceed to obtain the filtered state and covariance estimate. 

In order to do so, since the model is conditionally Gaussian we can use a well known result 

from multivariate analysis7, the so called regression lemmas: 

 𝐸(𝑥|𝑦) = 𝐸(𝑥) + 𝐶𝑜𝑣(𝑥, 𝑦)𝑉𝑎𝑟(𝑦)ିଵ൫𝑦 − 𝐸(𝑦)൯ 
 

(25) 

 
𝑉𝑎𝑟(𝑥|𝑦) = 𝑉𝑎𝑟(𝑥) − 𝐶𝑜𝑣(𝑥, 𝑦)𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑥, 𝑦)ᇱ 

 
(26) 

Using α௧ and 𝑣௧ as respectively 𝑥 and 𝑦 in (24), (25) yields: 

 𝑎௧
∗ = 𝐸௧(α௧) = 𝐸(α௧|𝑌௧ିଵ, 𝑣௧) = 𝑎௧ + 𝑃௧𝑍௧

ᇱ𝐹௧
ିଵ𝑣௧ 

 
(27) 

 
𝑃௧

∗ = 𝑉𝑎𝑟௧(α௧) = 𝑉𝑎𝑟(α௧|𝑌௧ିଵ, 𝑣௧) = 𝑃௧ − 𝑃௧𝑍௧
ᇱ𝐹௧

ିଵ𝑍௧𝑃௧ 
 

(28) 

Which are the filtered state and covariance estimates. 

Now we can proceed to update the state and covariance update: 

 𝑎௧ାଵ
∗ = 𝐸௧(𝑇௧α௧ + 𝑅௧η௧) = 𝑇௧𝐸௧(α௧) = 𝑇௧𝑎௧

∗ (29) 

 
𝑃௧ାଵ

∗ = 𝑉𝑎𝑟௧(𝑇௧α௧ + 𝑅௧η௧) = 𝑇௧𝑃௧
∗𝑇௧

ᇱ + 𝑅௧𝑄௧𝑅௧
ᇱ   

 
(30) 

Equations (21), (23), (27), (28), (30) represents the Kalman filter recursions. 

 
7 For proofs see Feller (1970). 
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The model parameter can be estimated by Maximum likelihood estimation. Here I present the 

so called prediction error decomposition of the likelihood that will be used later. 

The Likelihood function is : 

 
𝐿(𝑌) = 𝑝(𝑦ଵ, … . , 𝑦) = 𝑝(𝑦ଵ) ෑ 𝑝(𝑦௧|𝑌௧ିଵ)



௧ୀଶ

  

 
 

(31) 

With 𝑌௧ = (𝑦ଵ
ᇱ , . … , 𝑦௧

ᇱ). Taking the log of  (31) we have: 

 
𝑙𝑜𝑔𝐿(𝑌) =  𝑙𝑜𝑔



௧ୀଵ

𝑝(𝑦௧|𝑌௧ିଵ) 

 
 

(32) 

Since 𝐸(𝑦௧|𝑌௧ିଵ) = 𝑍௧𝑎௧  ,𝑣௧ = 𝑦௧ − 𝑍௧𝑎௧  ,   𝑉𝑎𝑟(𝑦௧|𝑌௧ିଵ) = 𝐹௧, and 𝑝(𝑦௧|𝑌௧ିଵ) we 

get: 

 
𝑙𝑜𝑔𝐿(𝑌) = −

𝑛𝑝

2
𝑙𝑜𝑔2π −

1

2
(𝑙𝑜𝑔|𝐹௧| + 𝑣௧

ᇱ𝐹௧
ିଵ𝑣௧)



௧ୀଵ

 

 
 

(33) 

Where the variables in (33) are either constants or obtained from the filtering procedures. 

The likelihood can then be optimized by iterative numerical evaluations. 

 

 

 
 
3.3 Including ARCH effects in the model 
 

The estimation procedure just explained has been already tried although for a different model 

specification. Wolff (1987) formulated the Dornbusch Frenkel and the Frenkel Bilson model in 

state space form and used the Kalman Filter to estimate time varying parameters and generating 

forecast up to 24 months ahead. The comparison with the Random Walk was mixed and in 
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general not very favorable. Wolff imputed the low forecasting power of the model to correlation 

in the residuals. He do not address this problem directly. He goes on by proposing a revised 

version of the Dornbusch Frenkel model allowing for changes in the equilibrium real exchange 

rate, and tries to take  into account correlation in the residuals by modelling the observation 

equation as a first order autoregressive process. 

Here the problem of correlation and heteroscedasticity is dealt with directly, the assumption of 

homoscedasticity for the residuals is in fact too restrictive. This presents a considerable 

modelling limitation if one believes that important information is embedded in the conditional 

volatility of certain variables in the model. Thus, potentially important information is lost in a 

model that assumes conditionally homoscedastic errors. This is especially true if a series 

exhibits episodes  of  low  variance  followed  by  episodes  of  high  variance,  in  which  case  it  

is  said  to  have ARCH errors.  

Harvey, Ruiz, and Sentana (1992) (HRS) showed how ARCH effects could be handled 

theoretically in a state-space model where the conditional heteroskedasticity was present in 

either the measurement or the transition equation innovations, or in both. For the estimation, the 

authors proposed using an approximate (or a quasi-optimal) filter, which is a modification of the 

usual Kalman filter. We illustrate the general formulation of their approach 

 

 𝑦௧ = 𝑍௧α௧ + Λϵ௧ + ϵ௧
∗ 

 
(34) 

 
α௧ = 𝑇௧α௧ିଵ + Φη௧ + η௧

∗   
 
 
 

(35) 

Equation (43) and (44) are respectively the observation and the state equation. Λ, Φ are 

respectively of size (𝑛 × 1) and (𝑚 × 1). The sizes of the other matrices and vectors are the 

same as before. The notable difference is the inclusion of additional residual terms in both the 

state and the observation equations. 

We have  ϵ௧
∗~𝑁(0, 𝐻௧)  and η௧

∗~𝑁(0, 𝑄௧)  normally distributed and mutually independent. 

The ARCH effects enter the model by means of the two other scalar residuals terms: 

 ϵ௧ = ඥℎ௧ϵ௧  
  

(36) 

 
η௧ = ඥ𝑞௧η௧   

  

(37) 
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With 𝜖௧ ~𝑁(0,1) , 𝜂௧ ~𝑁(0,1) ,  ϵ௧, η௧ , 𝜖௧෦ , 𝜂௧  mutually independent. As for ℎ௧ , 𝑞௧, they 

represent either ARCH(p) or GARCH(p,q) models. 

Here, for illustration purposes, we consider the model with ARCH (1) 

 ℎ௧ = α + αଵϵ௧ିଵ
ଶ  

 
(38) 

 
𝑞௧ = γ + γଵη௧ିଵ

ଶ  
 

(39) 

The problem with the inclusion of these additional terms is that the usual Kalman filter, as 

described in section 3.2, is not operable. For the states and innovations variances, instead of (30) 

and (23) respectively we would now have: 

 𝐹௧ = 𝑍௧𝑃௧𝑍௧
ᇱ + 𝐻௧ + ℎ௧ (40) 

 
𝑃௧

∗ = 𝑇௧𝑃௧
∗𝑇௧

ᇱ + 𝑅௧𝑄௧𝑅௧
ᇱ + 𝑞௧ 

 
(41) 

The problem is that both ℎ௧ and 𝑞௧ are functions of the past unobserved shocks ϵ௧ିଵ
ଶ  and η௧ିଵ

ଶ , 

in fact making the estimation of the model by the usual Kalman filter unfeasible.  

Harvey et al. show that the problem at hand can be dealt with by treating the ARCH 

disturbances (45) and (46) as both observations and states and then replacing the disturbances in 

(47) and (48) by their conditional expectation.  

The state equation in the general LGSSM can be formulated with the inclusion of ARCH terms 

in the following way: 

 
α୲

∗ = 

α௧

η௧

ϵ௧

൩ = 
𝑇௧ 0 0
0 0 0
0 0 0

൩ 

α௧ିଵ

η௧ିଵ

ϵ௧ିଵ

൩ + 
𝐼 Φ 0
0 1 0
0 0 1

൩ 
η௧

∗

η௧

ϵ௧

൩   

 

(44) 

Or more compactly. 

 α∗
୲ = 𝑇௧

∗α∗
୲ିଵ + 𝑒௧   (45) 

Where α୲
∗ is called the augmented state vector., η௧

∗ is of size (𝑚 × 1), η௧  and ϵ௧ are scalars 

and 𝐼 is the identity matrix of size 𝑚. 

 

 ℎ௧ = α + αଵ𝐸௧ିଵ(ϵ௧ିଵ
ଶ ) 

 
(42) 

 
𝑞௧ = γ + γଵ𝐸௧ିଵ(η௧ିଵ

ଶ ) 
 

(43) 
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With 

 
𝐸௧ିଵ(𝑒௧𝑒௧

ᇱ) = 

𝑄 0 0
0 𝑞௧ 0
0 0 ℎ௧

൩ = 𝑄௧
∗ 

(46) 

Analogously the measurement equation now becomes 

 𝑦௧ = [𝑍௧0 Λ]α௧
∗ + ϵ∗

௧ = 𝑍௧
∗α௧

∗ + ϵ௧
∗ 

 
(47) 

With 

 𝐸(ϵ௧
∗ϵ∗

௧
ᇱ ) = 𝐻  (48) 

The values of the disturbances ϵ௧ and η௧ is not directly observable, in fact in general knowledge 

of prior observations do not imply knowledge of past disturbances. This yields a model that in 

fact is not conditionally Gaussian anymore. The Kalman Filter in this case would not yield 

minimum mean square error estimates (MMSE’s) and is said to be quasi optimal. 

The distribution of η௧ conditional on η௧ିଵ is normal with mean zero and variance given by 𝑞௧. 

However the distribution of η௧ conditional on past observations, which is the one needed for 

filtering is not known. Although this raises a further problem, as HRS shows since the mean and 

variance of  α௧ିଵ
∗   is known at time 𝑡, we can evaluate the first two moments of the conditional 

distribution of η௧ and ϵ௧. 

Under the model specification it follows that: 

 ϵ௧ିଵ = 𝐸௧ିଵ(ϵ௧ିଵ) + [ϵ௧ିଵ − 𝐸௧ିଵ(ϵ௧ିଵ)] 
 

(49) 

 
η௧ିଵ = 𝐸௧ିଵ(η௧ିଵ) + [η௧ିଵ − 𝐸௧ିଵ(η௧ିଵ)] 

 
(50) 

We can retrieve from the previous two equations the terms 𝐸௧ିଵ(ϵ௧ିଵ
ଶ ) and 𝐸௧ିଵ(η௧ିଵ

ଶ )   

 𝐸௧ିଵ(ϵ௧ିଵ
ଶ )  = 𝐸௧ିଵ(ϵ௧ିଵ)ଶ + 𝐸௧ିଵ ቂ൫ϵ௧ିଵ − 𝐸௧ିଵ(ϵ௧ିଵ)൯

ଶ
ቃ 

 

(51) 

 𝐸௧ିଵ(η௧ିଵ
ଶ ) = 𝐸௧ିଵ൫η௧ିଵ൯

ଶ
+ 𝐸௧ିଵ ቀη௧ିଵ − 𝐸௧ିଵ൫η௧ିଵ൯ቁ

ଶ

൨  

 

(52) 

The Kalman recursions for this latest specification will be8  

 
8 The notation 𝛼௧|௧ିଵ and 𝐸௧ିଵ(𝛼௧) are equivalent 
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 α௧|௧ିଵ
∗ = 𝑇௧ α௧ିଵ|௧ିଵ

∗  (53) 

 
𝑃௧|௧ିଵ

∗ = 𝑇௧𝑃௧|௧ିଵ
∗ 𝑇௧

ᇱ + 𝑄∗  (54) 

 
𝑣∗

௧ = 𝑦௧ − 𝑍௧
∗α௧|௧ିଵ

∗    (55) 

 
𝐹௧

∗ = 𝑍௧
∗α௧|௧ିଵ

∗  𝑍௧
∗ᇲ

+  𝑅   (56) 

 
α௧|௧

∗ = α௧|௧ିଵ
∗ + 𝑃௧|௧ିଵ

∗ 𝑍௧
∗ᇲ

𝐹௧
∗ିଵ𝑣௧ (57) 

 
𝑃௧|௧

∗ = 𝑃௧|௧ିଵ
∗ − 𝑃௧|௧ିଵ

∗ 𝑍௧
∗ᇲ

𝐹௧
∗ିଵ𝑍௧

∗𝑃௧|௧ିଵ
∗  (58) 

From which we can get the terms on the RHS of (60) and (61). The terms 𝐸௧ିଵ(ϵ௧ିଵ)  

and 𝐸௧ିଵ൫η௧ିଵ൯ are the last two elements of the filtered state vector α∗
௧ିଵ|௧ିଵ and the terms 

𝐸௧ିଵ ቂ൫ϵ௧ିଵ − 𝐸௧ିଵ(ϵ௧ିଵ)൯
ଶ

ቃ and 𝐸௧ିଵ ቀη௧ିଵ − 𝐸௧ିଵ൫η௧ିଵ൯ቁ
ଶ

൨  are the last two diagonal 

elements of the filtered covariance matrix 𝑃௧ିଵ|௧ିଵ
∗ . 

The estimation procedure can be carried out using the prediction error decomposition of the 

likelihood as for the general case. 

 
𝐿𝑜𝑔 (𝑌) = −

𝑛

2
𝑙𝑜𝑔2𝜋 −

1

2
 ቆ𝑙𝑜𝑔(𝐹∗

௧) +
𝑣∗

௧
ଶ

𝐹∗
௧
ቇ   



௧ୀଵ

  
(59) 

 In this case the procedure is referred to as quasi-maximum likelihood estimation, to stress the 

fact that the filter is quasi-optimal under the current specifications. 
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4. Empirical Analysis 
 

4.1 Model estimation in state space form  

Having established the Kalman filter recursions for the general state space model we proceed by 

illustrating how the model proposed  by Molodtsova and Papell (15) will be estimated. 

We estimate both the homogeneous and heterogenous specifications, without intercept and 

output gap. We decided to exclude the intercept since in general is very close to zero. 

The two model specification (homogenous and heterogeneous) are respectively  

 Δ𝑠௧ାଵ = 𝛼గ,௧(𝜋௧  −  𝜋௧
∗) + 𝛼,௧(𝑖௧ିଵ  −  𝑖௧ିଵ

∗ ) + 𝜖௧ (60) 

 
Δ𝑠௧ାଵ = α,௧π௧ + α∗,௧π௧

∗ + α,௧𝑖௧ିଵ + α∗,௧𝑖௧ିଵ
∗ + ϵ௧   (61) 

Where starred variables denotes foreign variables. We illustrate how the methods introduced in 

the preceding chapter are used for the specific estimation of the homogeneous model. Of course 

for the heterogeneous it is sufficient to adapt the observation matrix 𝑍௧ and the state vector 𝛼௧ as 

appropriate. 

In state space form  the homogeneous model becomes9 

 Δ𝑠௧ାଵ = 𝑍௧𝛼௧ + ϵ௧  
 

(62) 

 
𝛼௧ = T୲𝛼௧ିଵ + η௧  

 
(63) 

Where Δ𝑠௧ାଵ is now a scalar 𝑍௧ is a (1 × 2) vector of explanatory variables : 

𝑍௧ = [(π௧ − π௧
∗),    (𝑖௧ିଵ − 𝑖௧ିଵ

∗ )]  

𝛼௧ is of (2 × 1) vector state variables, in this case the coefficients: 

𝛼௧ = ൣ𝛼గ,௧,   𝛼,௧൧
ᇱ
   

ϵ௧~𝑁(0, σ
ଶ) is the scalar observation disturbance and η௧~𝑁(0, 𝑄௧) is the (2 × 1) vector of  

states disturbances. ϵ௧, η௧ are also considered mutually independent. In this case the state 

transition matrix 𝑇௧ is considered to be the (2 × 2) identity matrix: we assume that the states 

(i.e. the parameters) follow a random walk. Also we specify that  the states covariance matrix 

𝑄௧ is assumed to be diagonal. This assumptions of course is limiting as it will inhibit the ability 

 
9 𝑅௧is assumed to be a (5 × 5) identity matrix. 
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of estimating eventual interactions between the coefficients, however the decision stems from 

the fact that the Kalman filter is notoriously difficult to calibrate and sensitive to initial 

condition, and the data set used is relatively small, thus I decided to keep the parameter space as 

small as possible. We must also notice that the states, (in this case the parameters) ought not to 

follow necessarily a random walk, indeed in theory there is no difficulty to assume other type of 

processes. Here we decided for the simplest possible formulation, since as just mentioned we 

want to keep the parameter space as small as possible, and also because using different 

specifications have not yielded good results. Schinasi and Swamy assumed the parameters 

followed an AR(1) process with worse results compared to the random walk specification used 

by Wolff. 

The Kalman filter recursions following the reasoning of the previous paragraph now are. 

 α௧|௧ିଵ = α௧ିଵ|௧ିଵ (64) 

 
𝑃௧|௧ିଵ = 𝑃௧|௧ିଵ + 𝑄   (65) 

 
𝑣௧ = Δ𝑠௧ାଵ − 𝑍௧𝛼௧ିଵ|௧ିଵ (66) 

 
𝐹௧ = 𝑍௧𝑃௧|௧ିଵ𝑍௧

ᇱ + σ
ଶ (67) 

 
α௧|௧ = α௧|௧ିଵ + 𝑃௧|௧ିଵ𝑍௧

ᇱ𝐹௧
ିଵ𝑣௧   (68) 

 
𝑃௧|௧ = 𝑃௧|௧ିଵ − 𝑃௧|௧ିଵ𝑍௧

ᇱ𝐹௧
ିଵ𝑍௧𝑃௧|௧ିଵ (69) 

The parameters to be estimated are 3 corresponding to the 2 elements on the diagonal of 𝑄௧ and 

the observation disturbance variance σ
ଶ. 

The parameters estimates can be obtained optimizing the analogue of (33): 

 
𝐿𝑜𝑔 (𝑌) = −

𝑛

2
𝑙𝑜𝑔2𝜋 −

1

2
 ቆ𝑙𝑜𝑔(𝐹௧) +

𝑣௧
ଶ

𝐹௧
ቇ  



௧ୀଵ

  

 

(70) 

 
In this section we proceed by estimating different specifications of eq. (15) comparing in sample 

fit of the model with and without the inclusion of GARCH terms. We analyze the relationship 

between macroeconomic fundamentals and exchange rates in the model and finally we carry 

out an out of sample forecasting exercise. 

We update the model specified in section 3.2 including GARCH effects in the measurement 

equation. 



24 
 
 

 Δ𝑠௧ାଵ = 𝑋௧𝛼∗
௧ + ϵ∗

௧   
 

(71) 

 
α௧

∗ = α∗
௧ିଵ + η௧ 

 
(72) 

With ϵ∗
௧~𝑁(0, ℎ௧) , η௧~𝑁(0, 𝑄),    ℎ௧ = γ + γଵϵ௧ିଵ

∗మ
+ γଶℎ௧ିଵ   

To proceed with the application of the filtering procedure illustrated above the model is 

modified accordingly 

 
Δ𝑠௧ାଵ = [(𝑖௧ିଵ − 𝑖௧ିଵ

∗ ) (π௧ − π௧
∗) 1] 

α,௧

α,௧

ϵ௧
∗

൩ = 𝑍௧
∗α௧

∗ 

 
 

(73) 

 
 

α୲
∗ = 

α,௧

α,௧

ϵ௧
∗

൩ = 
1 0 0
0 1 0
0 0 0

൩ 

α,௧ିଵ

α,௧ିଵ

ϵ௧ିଵ
∗

൩ + 

η௧,

η௧,

ϵ௧
∗

൩ = 𝑇௧
∗α௧ିଵ

∗ + η௧
∗ 

  

 
(74) 

Where  𝐸௧൫η௧
∗η௧

∗ᇲ
൯ = 

𝑄 0
0 ℎ௧

൨ = 𝑄௧
∗ 

As mentioned before, the model can be formulated in many different  ways. We opted for this 

reduced formulation, which excludes the intercept and the output gap as in addition to reasons 

explained in section 3.1 it provides the best in sample fit for the data both in terms of AIC and 

BIC information criteria, as it will be shown below.  

 The model will be estimated  by Maximum Likelihood adapting the filtering recursion 

from the previous section. 

 α௧|௧ିଵ
∗ = 𝑇௧α௧ିଵ|௧ିଵ

∗  (75) 

 
𝑃∗

௧|௧ିଵ = 𝑇∗𝑃௧ିଵ|௧ିଵ
∗ 𝑇∗ᇲ

+ 𝑄௧
∗    (76) 

 
𝑣௧

∗ = Δ𝑠௧ାଵ − 𝑍௧
∗α௧|௧ିଵ

∗  (77) 

 
𝐹௧

∗ = 𝑍௧
∗𝑃∗

௧|௧ିଵ 𝑍௧
∗ᇲ

  (78) 

 
α௧|௧

∗ = α௧|௧ିଵ
∗ + 𝑃௧|௧ିଵ

∗ 𝑍௧
∗ᇲ

𝐹௧
∗షభ

𝑍௧
∗𝑣௧    (79) 

 
𝑃௧|௧ିଵ

∗ = 𝑃௧|௧ିଵ
∗ − 𝑃௧|௧ିଵ

∗ 𝑍௧
∗ᇲ

𝐹௧
∗షభ

𝑍௧
∗𝑃௧|௧ିଵ

∗   (80) 

The Log Likelihood function analogously becomes 



25 
 
 

 
𝐿𝑜𝑔 (𝑌∗

) = −
𝑛

2
𝑙𝑜𝑔2𝜋 −

1

2
 ቆ𝑙𝑜𝑔(𝐹∗

௧) +
𝑣∗

௧
ଶ

𝐹∗
௧
ቇ   



௧ୀଵ

  
 
(81) 

 

 
 
 
 
4.2 Exploratory data analysis: why GARCH disturbances? 
 

Financial returns time series are known to display changing variance and volatility clustering 

phenomena, meaning  that periods of high variance tend to be followed by high variance 

periods and viceversa.  To deal with this feature of the data Bollerslev (1986)  proposed a 

generalization of the ARCH model of Engle (1982). The intuition behind the model is that 

shocks of asset returns series are serially uncorrelated, but dependent, and this dependence is a 

quadratic function of its lagged values. The so called Generalized Autoregressive 

Heteroscedasticity model (GARCH) is an extension of the ARCH model with autoregressive 

moving average (ARMA) formulation. 

The general GARCH(p,q) is 

  
𝑟௧ = σ௧ϵ௧ 

 
σ௧

ଶ = γ +  γଵ,𝑟௧ି
ଶ



ୀଵ

+  γଶ,σ௧ି  
ଶ



ୀଵ

 
 
(82) 

With ϵ௧~𝑁(0,1) 

Several more sophisticated alternatives have been proposed in the literature such as the 

EGARCH of Nelson (1991), and the GJR-GARCH of Glosten et al. (1993), to allow for 

asymmetric effects between positive and negative shocks. 

 In this paper the easiest possible formulation is used. As shown by a Hansen and 

Lunde(2005) in an out of-sample comparison between 330 ARCH type model and the 

GARCH(1,1)  for the Deutsch Mark/US Dollar exchange rate, different types of GARCH 

models generally fail to outperform the GARCH(1,1). 

  
𝑟௧ = σ௧ϵ௧ 

 

 
σ௧

ଶ = γ + γଵ𝑟௧ିଵ
ଶ + γଶσ௧ିଵ

ଶ    
 

  
(83) 
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We require  γ, γଵ, γଶ > 0, and γଵ + γଶ < 1. If these conditions are satisfied the process is 

covariance stationary and the unconditional variance of 𝑟௧ is  

 𝑉𝑎𝑟(𝑟௧) =
γ

1 − γଵ − γଶ
 (84) 

If additionally we have  1 − 2γଵ
ଶ − (γଵ + γଶ)ଶ > 0, then the following is true10 

 𝐸(𝑟௧
ସ)

𝐸(𝑟௧
ଶ)ଶ

 =  
3[1 − (γଵ + γଶ)ଶ]

1 − (γଵ + γଶ)ଶ − 2γଵ
 >  3  

 
(85) 

This means that under these regularity conditions a GARCH(1,1) model has the nice property 

of having thicker tails than a normal distribution, which is a preferable for dealing with 

exchange rate returns, which are notoriously leptokurtic. 

 Although these attributes are more evident in high frequency data,  we maintain that 

including GARCH disturbances in the model is preferable. As evident from an exploratory data 

analysis of returns for the three currencies reported in Fig 1, the returns show signs of being 

leptokurtic and even if the ARCH effects are not as strikingly visible by visual inspection as for 

higher frequencies series, a more accurate analysis using the ARCH test of Engle (1982) for 

lags of 1,5, and 10 months shows that we should reject the null hypothesis of no conditional  

heteroscedasticity for all three currency pairs. Also by observing the QQ plots we clearly see 

deviation from normality, although for the EUR/USD exchange rate deviation from gaussianity 

appears to be milder than for the others exchange rates. 

 

 

Table 1  p-values for the ARCH test of Engle. 

 

 

Figure 1 log returns plot and QQ-plots for the three currencies. Data from FRED Saint Louis Database. 

 
10 For proofs see Tsay (2010). 

Lags   GBP/USD                GBP/EUR               EUR/USD 
1 0.0001 0.011104392 0.054600333 
5 0.0047 0.025009923 0.040012845 

10 0.0449             7.88E-07 0.046737909 
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4.3 Data 
 

The data used to estimate the model are very similar to the ones used by Molodtsova and Papell, 

and are taken from the Federal Reserve Bank of Saint Louis’s database and the International 

Monetary Fund’s International Financial statistics database.  

We use the Consumer Price Index (CPI) to measure the price level, the inflation rate is the 

annual rate, calculated as the 12 month difference of the CPI, the interest rate is the 3 month 

LIBOR rate based on the currency under consideration. All data are at monthly frequencies 

from March 1973 to September 2019 for GBP/USD, and from January 1999 to September 

2019 for EUR/USD and GBP/EUR. 

A point that must be emphasized is that the data used, as in Molodtsova and Papell, are the 

actual data, meaning the one we observe today. In the context of Taylor rule models this 

represents a problem. Since the central bank policymaking is forward looking an alternative 

suggested by Orphanides (2001,2004) would be to use historical real time forecast made by the 

central bank. However historical forecasts are available only for the Fed11. Another approach 

would be to use ex post data, however in this case producing out-of-sample forecasts would be 

impossible. 

 
 

4.4 In sample estimation: evaluating model fit and diagnostic       
checking 

We proceed by estimating the model specified in equation (59) with and without the inclusion 

of GARCH(1,1) disturbances for all three currency pairs. We will refer to the two 

homogeneous models as TVP and TVP GARCH, the two heterogeneous model are called  

TVP H  and TVP GARCH H. We compare which model fits the data best by Akaike (AIC) 

and Bayesian (BIC) information criteria. For all the exchange rates under consideration the 

inclusion of GARCH disturbances produces an increase in the log likelihood function for both 

model specifications.  The GARCH formulations are to be preferred by both AIC and BIC for 

GBP/USD and GBP/EUR. For EUR/USD the increase in the log likelihood is just marginal,  

 
11 The so called “Greenbook data”. 
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AIC and BIC are lower for the standard TVP model, also the coefficients 𝛾 and 𝛾ଵare not 

statistically significant at the 5% level.  

We report the results in the following tables. 

 

 
Table 2 parameter estimates and standard errors for the two homogeneous models. (Values in bold are statistically 

significant at the 5% level) 

 

GBP/USD TVP GARCH GBP/USD TVP 

LogL 1267.9663 LogL 1260.3577
AIC -2.53E+03 AIC -2.51E+03
BIC -2.504E+03 BIC -2.5017E+03

std error p-values std error p-values
0.0907 0.0347 0.0132 0.1376 0 0.0000
0.0509 0.013 0.1836 0.0033 0.4237 0.4237
0.0001 2.5E-05 0.0293 0.0005 3.00E-05 0.0000

0.085 0.0328 0.0085
0.8118 0.0619 0.0000

GBP/EUR TVP GARCH GBP/EUR TVP 

LogL 583.0307 LogL 572.84
AIC -1.16E+03 AIC -1.14E+03
BIC -1.14E+03 BIC -1.13E+03

std error p-values std error p-values
0.0236 0.0224 0.2949 0.0463 0.0421 0.2719
0.0000 0.0378 0.9994 5.68E-07 0.0014 0.9997
0.0001 4.76E-05 0.1260 0.0005 3.63E-05 0.0000

0.1970 0.0831 0.0186
0.6791 0.1387 0.0000

EUR/USD TVP GARCH EUR/USD TVP 

LogL 588.1643 LogL 586.5587
AIC -1.166E+03 AIC -1.1671E+03
BIC -1.15E+03 BIC -1.16E+03

std error p-values std error p-values
0.09430 0.04542 0.0389 0.0961 0.041927 0.0228
0.07998 0.07397 0.2806 0.0059 0.008649 0.4937
0.00008 0.00006 0.2233 0.0005 0.000039 0.0000

0.06238 0.04364 0.1542
0.76030 0.16305 0.0000
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Table 3  parameter estimates and standard errors for the two heterogeneouss models. (Values in bold are statistically 

significant at the 5% level) 

  

 

We can clearly see that for the Euro exchange rates under consideration few parameters 

are statistically significant. Particularly concerning is the fact that the variances of the 

coefficients are not statistically different from zero This suggests that a time varying parameter 

model may not be too appropriate for the present application, as Kim and Nelson (1989) note, 

GBP/USD TVP GARCH H GBP/USD TVP H

LogL 1254.568 LogL 1245.6559
AIC -2.50E+03 AIC -2.48E+03
BIC -2.465E+03 BIC -2.4597E+03

std error p-values std error p-values
0.0083 0.0113 0.4643 0.0167 0.0164 0.3088
0.0146 0.0109 0.1829 0.0373 0.0087 0
0.0247 0.0119 0.0389 0.0274 0.0127 0.0314
0.0169 0.0106 0.1131 0.0002 0.0003 0.6177

9.69E-05 4.6E-05 0.0365 0.0006 0.00E+00 0.0000

0.1089 0.0398 0.0064
0.7261 0.0989 0.0000

GBP/EUR TVP GARCH H GBP/EUR TVP H

LogL 576.8925 LogL 567.8022
AIC -1.14E+03 AIC -1.13E+03
BIC -1.115E+03 BIC -1.1081E+03

std error p-values std error p-values
0.0001 0.03824 0.9989 0.0005 3.1084 0.9999

0.0262 0.0173 0.1307 0.0245 0.0354 0.4895
4.95E-05 0.0350 0.9989 0.0004 8.366 1.0000
3.27E-05 0.0232 0.9989 2.07E-07 0.0032 0.9999

6.17E-05 3.2E-05 0.0519 0.0005 3.44E-05 0.0000

0.1624 0.071 0.0235
0.7293 0.090 0.0000

EUR/USD TVP GARCH H EUR/USD TVP H

LogL 588.601 LogL 586.215

AIC -1.16E+03 AIC -1.16E+03
BIC -1.139E+03 BIC -1.1449E+03

std error p-values std error p-values
3.56E-05 0.02542 0.9989 0.00086 2.1392426 0.9997
0.00012 0.048673 0.99796 0.0019 2.07261166 0.999
0.00009 0.049548 0.9986 0.0017 0.9961426 0.9986
0.13729 0.058064 0.0189 0.0245 0.01714636 0.155

8.09E-05 5.2E-05 0.1192 0.00041 3.74E-05 0.0000

0.1029 0.06177 0.0972
0.7054 0.147893 0.0000
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having coefficient variances equal to zero implies that coefficients are constant and not time 

varying.  For what concerns the GARCH(1,1) coefficients, all three are significant only for 

GBP/USD data. Although this is not encouraging by looking at the standardized residuals we 

argue that it is still preferable to include GARCH effects in the model as residuals for the 

standard Gaussian TVP shows larger kurtosis and serial correlation. We define 𝑒௧ and 𝑒௧
∗ the 

standardized residuals for the standard TVP model and the TVP GARCH respectively. They 

are computed as follows after the Kalman filter has been completed. 

 
𝑒௧ =

𝑣௧

ඥ𝐹௧

                                 𝑒௧
∗ =

𝑣௧
∗

ඥ𝐹௧
∗
  

 
(86) 

We check if serial correlation and ARCH effects are present in the standardized residuals for 

both models by means of the Ljung Box test and the ARCH test of Engle. The results are 

reported in tables 3 and 5. We also check whether the residuals are conditionally gaussian by 

means of the Jarque Bera test, we also report the sample kurtosis. The results are reported in 

tables 4 and 6. 

Looking at the above table we can see that for higher lags residuals of both models still shows 

sign of being autocorrelated, with the exception of the British Pound Euro exchange rate for 

which we cannot reject the null of no autocorrelation in the residuals. ARCH effects are 

displayed only for the TVP model making it inadequate for the present application. The 

inclusion of GARCH(1,1) disturbances manages to capture the ARCH feature present in the 

data. For the GBP/USD and GBP/EUR exchange rates deviation from normality in the 

residuals are still evident, however the inclusion of GARCH term produce an improvement of 

the sample Kurtosis. EUR/USD is the only currency pair for which the null hypothesis of 

normality cannot be rejected, the sample kurtosis for both models are very similar, indeed this 

confirms the argument made during exploratory data analysis that deviation from normality are 

milder for the Euro U.S Dollar exchange rate. 
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Table 3 p-values of diagnostic tests for correlation and ARCH effects for homogeneous model in standardized 

residuals 

 

 

 
Table 4  p-values of diagnostic tests for Jarque Bera test of standardized residuals, and standardized residuals sample 

kurtosis for homogeneous model. 

 

 

p-value p-value p-value p-value p-value p-value
Lags TVP TVP GARCH TVP TVP GARCH TVP TVP GARCH

1 1E-05 0.0094 0.001 0.9608 0.0001 0.9609

5 3E-05 0.0525 0.0005 0.9988 0.0002 0.999
10 3E-05 0.0088 0.0002 0.7409 0.001 0.7542

p-value p-value p-value p-value p-value p-value
Lags TVP TVP GARCH TVP TVP GARCH TVP TVP GARCH

1 0.4663 0.9408 0 0.427 0 0.4306

5 0.1632 0.3922 0.0023 0.8504 0.0019 0.8484
10 0.2012 0.3388 0.0199 0.9643 0.0243 0.9640

p-value p-value p-value p-value p-value p-value
Lags TVP TVP GARCH TVP TVP GARCH TVP TVP GARCH

1 0 0.0015 0.0603 0.657 0.0621 0.6592
5 0.0023 0.0172 0.0003 0.421 0.0029 0.4388

10 0.0266 0.1038 0.0021 0.5932 0.013 0.6131

EUR/GBP
Ljung Box Ljung Box ARCH test

EUR/USD
Ljung Box Ljung Box ARCH test

Ljung Box Ljung Box ARCH test
GBP/USD

𝑒௧ , 𝑒௧
∗ 𝑒௧

ଶ 𝑒௧
∗ଶ

𝑒௧ , 𝑒௧
∗ 𝑒௧

ଶ 𝑒௧
∗ଶ

𝑒௧ , 𝑒௧
∗ 𝑒௧

ଶ 𝑒௧
∗ଶ

TVP TVP GARCH TVP TVP GARCH TVP TVP GARCH

JB test 1.00E-03 1.00E-03 1.00E-03 1.00E-03 0.2235 0.1916
Kurtosis 4.7268 3.81 9.0346 6.8075 3.4437 3.5278

GBP/USD GBP/EUR EUR/USD
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Table 5 p-values of diagnostic tests for correlation and ARCH effects for heterogeneous model in standardized 

residuals 

 

 
Table 6  p-values of diagnostic tests for Jarque Bera test of standardized residuals, and standardized residuals sample 

kurtosis for heterogeneous model. 

 

 

  

p-value p-value p-value p-value p-value p-value
Lags TVP H TVP GARCH H TVP H TVP GARCH H TVP H TVP GARCH H

1 1.66E-05 0.0037 0.0005 0.6464 0.0006 0.6475
5 0.00028 0.0348 0.0004 0.9835 0.0035 0.9863

10 9.00E-05 0.0092 0.0005 0.8419 0.0057 0.8233

p-value p-value p-value p-value p-value p-value

Lags TVP H TVP GARCH H TVP H TVP GARCH H TVP H TVP GARCH H

1 0.4309 0.7384 0 0 0 0.4120

5 0.1416 0.3244 0.0003 0.0002 0.0019 0.8857
10 0.1949 0.3353 0.0043 0.0043 0.0243 0.9908

p-value p-value p-value p-value p-value p-value
Lags TVP H TVP GARCH H TVP H TVP GARCH H TVP H TVP GARCH H

1 0 0.0092 0.0362 0.1524 0.0376 0.1551

5 0.0015 0.0521 0.0001 0.2004 0.001 0.2449
10 0.0181 0.1524 0.0011 0.4615 0.0077 0.4598

EUR/USD
Ljung Box Ljung Box ARCH test

GBP/USD

Ljung Box Ljung Box ARCH test

GBP/EUR

Ljung Box Ljung Box ARCH test

𝑒௧ , 𝑒௧
∗ 𝑒௧

ଶ 𝑒௧
∗ଶ

𝑒௧ , 𝑒௧
∗ 𝑒௧

ଶ 𝑒௧
∗ଶ

𝑒௧ , 𝑒௧
∗ 𝑒௧

ଶ 𝑒௧
∗ଶ

TVP H TVP GARCH H TVP H TVP GARCH H TVP H TVP GARCH H

JB test 1.00E-03 1.00E-03 1.00E-03 1.00E-03 0.2235 0.1916
Kurtosis 4.9217 4.2676 8.2198 7.445 3.6434 3.4503

EUR/USDGBP/USD GBP/EUR
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4.5 Time varying coefficients 

 
We report the evolution of the parameters for the homogeneous TVP GARCH model in    

figure 2.   For the British Pound Euro exchange rate the parameters are close to zero and shows 

little variation over time, as expected from the results in table 2.  

For the two other currencies (GBP/USD, EUR/USD) 𝛼 is in general estimated to be 

positive, meaning that a positive difference between domestic and foreign lagged interest rate 

results in depreciation of the home currency. The parameter for inflation differential 𝛼గ is in 

general negative meaning that higher inflation for the home country, which is associated with an 

increase in the interest rate target of the central bank, generates appreciation in the domestic 

currency. This would be in agreement with empirical evidence produced by Chinn, and Engle 

and West, of failure in the short of UIRP and rational expectations. However by looking at the 

confidence intervals we are not able to make any conclusive statement. It is evident that only the 

inflation differential for the Euro US Dollar exchange rate is barely significant at the 5% level 

from 2010 onwards.  
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Figure 2 Evolution of the parameters for the three exchange rates TVP GARCH model. 

We report the evolution of the parameters for the heterogeneous TVP GARCH H model in    

figure 3,4, and 5.    
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Figure 3 Evolution of the parameters for the GBP/USD exchange rate TVP GARCH  H model. 
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Figure 4 Evolution of the parameters for the GBP/EUR exchange rate TVP GARCH  H model. 
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Figure 5 Evolution of the parameters for the EUR/USD exchange rate TVP GARCH  H model. 
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The heterogenous model specification does not make any improvement in establishing a link 

between exchange rate and the explanatory variables.  For British Pound US dollar and British 

Pound Euro none of the parameters can be said to be statistically different from 0 at the 5% 

level. For the Euro US Dollar exchange rate we confirm the results of the homogeneous model.  

Starting from 2010 the parameter for domestic inflation and foreign inflation are negative and 

positive respectively, while being statistically different from zero. We can’t make any 

conclusive statements about the influence  of lagged interest rates on EUR/USD movements. 

Athough after 2010 the parameter stays positive for US with the 95% confidence interval only 

narrowly including zero, suggesting that the exchange rate could  agree with UIRP in the long 

run, the parameter for the Euro zone inflation despite being negative for the period under 

consideration is not statistically significant.  

  In figure 6 we report the level of uncertainty in exchange rate movements , measured 

by the conditional variance of the forecast errors. There are no clear differences between the 

conditional variances implied by the two different model specifications. The higher variance 

periods for all currency pairs coincide with the great financial crisis of the 2007-2009, for the 

Euro US Dollar exchange high variance is displayed during the sovereign debt crisis of the 

eurozone. Almost all the uncertainty in the exchange rates is explained by the GARCH 

disturbances with parameter uncertainty having residual explanatory importance at best.  
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              Homogeneous                                                            Heterogeneous 

Figure 6  conditional variance implied by the homogenous TVP GARCH (left) and heterogeneous TVP GARCH H 

(right) models. The yellow line represents the total variance, the blue the part explained by the GARCH(1,1) 

disturbances, the orange line the part due to parameter uncertainty. 

 

 

 



41 
 
 

5. Conclusion 
 

This paper deviates from existing empirical literature on exchange rate determination by Taylor 

rule fundamentals by focusing on in sample properties of the model. Previous attempts have 

their attention exclusively restricted towards the out of sample forecasting power of Taylor rule 

models. The most notable, and promising endeavour is the one made by Molodtsova and 

Papell, followed more recently by Haskamp, which uses the Kalman filter with negative out of 

sample performance. Both authors completely fixate on out of sample forecasts, even avoiding 

the inclusion of parameter estimates, standard errors, and the value of the likelihood function, 

and just selectively showing the evolution through time of the parameters (for which Haskamp 

does not even provide a confidence interval). 

Starting from the encouraging results of Molodtsova and Papell, with the goal of 

establishing a relationship between macroeconomic fundamentals, we tried to improve by a 

state space formulation of a modified backward looking version of the Taylor rule of Clarida et 

al. that  involves GARCH disturbances for three exchange rates (GBP/USD EUR/USD 

GBP/EUR). Even if this constitutes an improvement over the standard homoscedastic 

formulation, which fails to capture ARCH effects in the residuals, the results overall are 

disheartening.  

For two exchange rates out of three (the exception being GBP/USD), we even reject the 

model specification of having parameters follow a random walk in favour of fixed parameters.  

Moreover we fail to give any definitive explanation of movements in the exchange rates in 

terms of changes in macroeconomic conditions, even for the British Pound US Dollar pair, as 

the parameters are never statistically different from zero. Also both model specifications shows 

little to no explanatory power in terms of exchange rate uncertainty, which is almost fully 

accounted for by the GARCH disturbances. 

In light of the evidence presented, seems surprising that Molodtsova and Papell 

managed to outperform, (although still in few cases), a random walk in terms of out of sample 

forecasts. A further inspection reveals that indeed the few patterns of the parameters they 

reported are rarely statistically significant  displaying similar behaviour  to our results.  

We can argue that the general outcome of their results can be sample dependent,  indeed they  

consider the US Dollar as the domestic currency for all tries, and focus on data ranging from 
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1986 to 2006 which correspond to the FED chairmanships of Volcker and Greenspan, during 

which  the Taylor rule fit remarkably well the monetary policy decisions of the United States. 

We conjecture that changes in macroeconomic conditions, and the great financial crisis have 

contributed to changes in the central banks monetary policy,  

We conclude that the model based on the backward Taylor rule formulation of    

Clarida et al. in general can hardly be considered informative in terms of linking exchange rates 

to macroeconomic factors for the currency pairs taken under consideration. Although we cannot 

identify precisely any reason, considering the fact that the both model specification fits best for 

the British Pound US Dollar exchange rate (for which we use data starting from 1973); we 

conjecture that the inappropriateness of the Taylor rule for exchange rate determination can be 

due to changes in the monetary policy decisions of the central bank brought by changing 

macroeconomic conditions in the last 20 years. 
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Appendix: MATLAB  
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The results reported were obtained by using MATLAB. Since there are no MATLAB built-in 

tools for the application of the Kalman Filter with GARCH disturbance of Harvey et al. the 

code used for the estimation of the model was written from zero. Here I provide the function 

used for  the computation of the likelihood. Once the likelihood has been maximized filtered 

state and variance estimates are obtained by running the same function and using as inputs the 

parameters obtained from the likelihood maximization step. 
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Summary 
 

Exchange rates influences a wide range of economic agents for different reasons: both 

countries and individuals trading goods, financial traders, foreign workers and investors are 

affected by changes in exchange rates.  

Different models have been proposed and empirically tested with the goal of linking 

exchange rate movements to macroeconomic fundamentals such as interest rates, inflation, 

outputs and money supplies. All the theories proposed state that exchange rates are determined 

by macroeconomic variables. However no model has managed to produce definitive answer 

when empirically tested.  As first established by Meese and Rogoff floating exchange rates 

between countries are best approximated as random walks. Meese and Rogoff (M-R) (1983a, 

1983b)  in their seminal papers used different monetary models for exchange rate determination  

(Frenkel Bilson, Dornbusch Frenkel, Hooper Morton) with the goal of explaining nominal 

exchange rate movements in terms of contemporaneous macroeconomic variables, showing that 

they failed to outperform a naïve random walk (RW without drift) when comparing the out of 

sample forecasts by root mean forecast square error (RMSE), mean forecast error (ME), and 

mean absolute forecast error (MAE). The models parameters were kept fixed and were at first 

estimated employing various econometric techniques, including ordinary least squares (OLS), 

generalized least squares (GLS), instrumental variables (IV), and then were constrained to values 

based on the economic and empirical theory of money demand and purchasing power parity. The 

authors list as possible reasons of the poor forecasting performance the sensitivity of the models 

to the choice of  proxy used to represent expected differences in inflation, temporary or permanent 

deviation from Purchasing Power Parity (PPP), misspecification of the money demand function, 

simultaneous equation bias, and changes in the parameters values over time. 

 The results were nonetheless interpreted as evidence of the inadequacy of the models to 

establish a meaningful relationship between exchange rates and macroeconomic fundamentals, 

starting  a discussion regarding the usefulness of the models and the forecastability of exchange 

rates, commonly referred to as “Meese Rogoff  puzzle”.  

Cheung and Chinn (1998) attribute the empirical failure to theoretical flaws in the 

models. Cheung, Chinn, and Pascual (2005) test the out of sample forecasts for different monetary 
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models obtaining generally negative results and conclude  that different specifications may work 

better for different exchange rates and at different time horizons. 

By following M-R’s suggestion that it may be fruitful to account for parameter instability, 

this thesis tries to improve on previous attempts by using a model based on Taylor rule 

fundamentals, allowing for parameter variation and heteroscedasticity by putting the model in 

state space form and estimating it using the Kalman filter.  Indeed this approach sounds, at least 

intuitively, more promising. It seems reasonable to assume that the impact of shocks in the 

macroeconomic variables on the exchange rate is related to the relative health of the economies 

of the home and foreign country. For instance if one of the two countries is experiencing a 

recession with very low inflation, the exchange rate reaction to a further lowering in the price 

level of this country is expected to be greater than what would happen if his economy was 

thriving.  

It must be noted however that this approach is not new. Different attempts to forecast 

exchange rates by state space methods have been made producing mixed results. Both Wolff 

(1987)  and Schinasi and Swamy (1989) make use of time varying parameters to forecast 

exchange rates using the same models as in MR and still taking the RW model as a benchmark 

with not very encouraging results. Rossi (2006, 2013) in an extensive study uses the Kalman filter 

with a random walk specification for the parameters with mixed results, but concludes that in 

general evidence of predictability is scarce.  Bacchetta et al. (2009)  study wether acoounting 

instability is sufficient for solving the Meese Rogoff puzzle and conclude that this is hardly the 

case. Molodstova and Papell (2009) deviating from H-R use different Taylor rule based models 

of exchange rate determination (1993) for a multitude of currencies, allowing for stochastic 

parameters using rolling OLS regressions they manage to outperform the RW model in few cases. 

Haskamp (2017), with the main focus of out of sample forecasting uses the Kalman filter to allow 

for parameter variation in the Molodtsova Papell model. He reports that the Kalman filter 

manages to incorporate more abrupt adjustments in the coefficients when compared to the OLS 

rolling  regression, however he still fails to outperform a random walk in terms of out of sample 

forecasts.   

Although accounting for time varying coefficients has in general failed to beat a random 

walk, it is clear that a sensible improvement has been made over the first attempts with fixed 

coefficients of MR.  
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Even if the results are encouraging neither any model has taken into account the well 

known time varying nature of exchange rates volatility, treated as constant over time, nor any 

attempt has been made to deviate from the Gaussianity assumption, despite large evidence that 

exchange rates follow a leptokurtic distribution as shown by the pioneering work of Mandelbrot 

(1960). 

In this thesis the efforts of linking exchange rates to macroeconomic fundamentals 

through  the state space formulation of Taylor rule based macro model are furthered by taking 

into account the heteroscedastic nature of exchange rates, and allowing Autoregressive 

Conditional Heteroscedasticity  (ARCH) effects to enter the model by the methods of Harvey 

Ruiz and Sentana. 

This paper deviates from existing empirical literature on exchange rate determination 

by Taylor rule fundamentals by focusing on in sample properties of the model. Previous 

attempts have their attention exclusively restricted towards the out of sample forecasting power 

of Taylor rule models. The most notable, and promising endeavour is the one made by 

Molodtsova and Papell, followed more recently by Haskamp, which uses the Kalman filter with 

negative out of sample performance. Both authors completely fixate on out of sample forecasts, 

even avoiding the inclusion of parameter estimates, standard errors, and the value of the 

likelihood function, and just selectively showing the evolution through time of the parameters 

(for which Haskamp does not even provide a confidence interval). 

Starting from the encouraging results of Molodtsova and Papell, with the goal of 

establishing a relationship between macroeconomic fundamentals, we tried to improve by a 

state space formulation of a modified backward looking version of the Taylor rule of Clarida et 

al. that  involves GARCH disturbances for three exchange rates (GBP/USD EUR/USD 

GBP/EUR). Even if this constitutes an improvement over the standard homoscedastic 

formulation, which fails to capture ARCH effects in the residuals, the results overall are 

disheartening.  

For two exchange rates out of three (the exception being GBP/USD), we even reject the 

model specification of having parameters follow a random walk in favour of fixed parameters.  

Moreover we fail to give any definitive explanation of movements in the exchange rates in 

terms of changes in macroeconomic conditions, even for the British Pound US Dollar pair, as 

the parameters are never statistically different from zero. Also both model specifications shows 
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little to no explanatory power in terms of exchange rate uncertainty, which is almost fully 

accounted for by the GARCH disturbances. 

In light of the evidence presented, seems surprising that Molodtsova and Papell 

managed to outperform, (although still in few cases), a random walk in terms of out of sample 

forecasts. A further inspection reveals that indeed the few patterns of the parameters they 

reported are rarely statistically significant  displaying similar behaviour  to our results.  

We can argue that the general outcome of their results can be sample dependent,  indeed they  

consider the US Dollar as the domestic currency for all tries, and focus on data ranging from 

1986 to 2006 which correspond to the FED chairmanships of Volcker and Greenspan, during 

which  the Taylor rule fit remarkably well the monetary policy decisions of the United States. 

We conjecture that changes in macroeconomic conditions, and the great financial crisis have 

contributed to changes in the central banks monetary policy,  

We conclude that the model based on the backward Taylor rule formulation of    

Clarida et al. in general can hardly be considered informative in terms of linking exchange rates 

to macroeconomic factors for the currency pairs taken under consideration. Although we cannot 

identify precisely any reason, considering the fact that the both model specification fits best for 

the British Pound US Dollar exchange rate (for which we use data starting from 1973); we 

conjecture that the inappropriateness of the Taylor rule for exchange rate determination can be 

due to changes in the monetary policy decisions of the central bank brought by changing 

macroeconomic conditions in the last 20 years. 

 

 

 

 


