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Chapter 1

Introduction

1.1 Motivations

There has always been a tension in economics between the endeavour to

describe the optimal decisions of perfectly rational individuals (�positive eco-

nomics�) and the attempt to use di�erent models to optimize people's imper-

fect decisions (�normative economics�).

This thesis takes its origin in the work of Michael W. Brandt, Pedro Santa-

Clara and Jonathan R. Stroud, that presented a simulation-based approach

to solving dynamic portfolio allocation issues.

Brandt et al. introduced a straightforward method applied in discrete-

time, �involving non-standard preferences, a large number of assets with ar-

bitrary return distribution, and, most importantly, a large number of state

variables with potentially path-dependent or non-stationary dynamics.�1

The most important feature of their study is that this method could ac-

commodate a large number of assets, with arbitrary return distribution de-

termined by a large number of state variables with potential path-dependency

1Brandt, Michael W., et al. "A simulation approach to dynamic portfolio choice with
an application to learning about return predictability." The Review of Financial Studies
18.3 (2005): 831-873.
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CHAPTER 1. INTRODUCTION 4

and non-stationary dynamics.

In other words, their article introduced a simulation and regression method

that is based on the predictability of the dynamic evolution of returns by the

presence of one or more state variables.

The simulation-based method implemented in this thesis is a �exible,

fast and dynamic application of the method of Brandt et al. about portfolio

choice problems, applied to multi-asset investment opportunities that could

accommodate both portfolio constraint and non-standard preferences.

1.2 Aims

The optimal portfolio choices depend on the characteristics of the environ-

ment: the availability of �nancial securities, their historical returns, their

expected returns, their risks and the investor's preferences.

In this thesis, the methodology is applied to build an algorithm that could

include a realistic investor's environment and solve portfolio choice problems

for long-term horizons, where these details are particularly relevant.

Long-term investors are not only interested in the short-term expected

return and risks, but also in how they may change over time.

This attention in the dynamic portfolio choice follows both the renewed

interest in the study of non fully rational investor's preferences and the recent

empirical evidence of return predictability.

Financial planners have traditionally emphasized the need for each in-

vestor to build a diversi�ed portfolio that could re�ect his unique personal

preferences and situations.

To construct a balanced, �exible and fast dynamic method to determine

the investor's optimal portfolio allocation strategy it is necessary to argue

that the traditional academic analysis of portfolio problems should be mod-

i�ed to accommodate the long-term investment horizons in its peculiarities

and details.
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The main purpose of this thesis is to implement such a method and, as

people face continuously �nancial decisions, it is interesting to ask whether

an investor with a long-term horizon allocates his wealth di�erently form the

optimal short-term allocation.

1.3 Outline

The rest of this document is organized into the following chapters:

Chapter 2 - Myopic portfolio Choice This chapter contains an intro-

duction to the general set-up and frameworks in the Modern Portfolio Theory

and how these concepts can be used to improve traditional academic analysis.

Chapter 3 - Utility Functions This chapter provides an introduction to

the utility functions, which can capture the risk averseness of investors and

thus enable ranking between possible portfolios.

Chapter 4 - Dynamic Portfolio Choice This chapter explains the struc-

ture and contents of the method implemented.

Chapter 5 - Methodology Here, the methodology is extensively dis-

cussed and have an in-depth study of the features and assumptions used in

this thesis.

Chapter 6 - Implementation This chapter presents the method applied

to a setting with multiple assets with simulated returns, describing the code

structure implemented for the model.

Chapter 7 - Results This chapter presents all the test results and some

preliminary conclusions.
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Chapter 8 - Conclusions Conclusions and hints for future improvements

and research.



Chapter 2

Myopic Portfolio Choice

This chapter is a review analysis that aims to introduce in detail some of

the concepts and tools contained and used in the follow-up of the thesis.

The de�nition of Excess returns, Performance and Risk are recalled, while

the Mean-Variance optimization is discussed in detail. Then a single-period,

static portfolio choice is introduced and extended with a risk-free investment.

2.1 Introduction

In the �nancial �eld, the problem of portfolio choice plays a major role, as

�one of the most important decisions many people face is the choice of a

portfolio of assets for retirement savings�.1

Institutional investors face complex investment decisions, and some of

them are similar to individuals in that they seek to �nance a long term

stream of discretionary spending.

The problem to be addressed concerns the determination of the optimal

portfolio allocation.

This selection is con�gured as the decision making between di�erent al-

1Campbell, John Y., and Luis M. Viceira. "Strategic asset allocation." Book Manu-
script, Harvard University, November (2000).
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CHAPTER 2. MYOPIC PORTFOLIO CHOICE 8

ternatives to invest in the portfolio that minimizes risks and maximizes its

value.

Modern �nancial theory about portfolio allocation probably began with

the theoretical model developed in the article �Portfolio Selection�, published

in 1952 by Harry Markowitz. In his paper, he outlined a framework for static

optimal portfolio allocation based on the Mean-Variance analysis.

Despite the validity of the �rst model of portfolio selection, it is developed

purely on the theoretical level and is based on some strict assumptions that

diminish its value.

The main assumption of the static model is the invariance of the expected

returns and volatilities, based on the idea that the characteristics of the assets

and their composition should not change over time.

Therefore, the underlying investment strategy suggested by this method

is the determination of the optimal asset allocation, based on short-term his-

torical data, and then holding the portfolio for the entire investment horizon.

Despite the model does not consider the possibility of changes in the

conditions and could be useful only for short-term, myopic, investors, it is

considered the starting point of the Modern Portfolio Theory.

Empirically portfolio choices depend on a great number of factors such

as investor preferences, availability of securities in the market and expected

returns of assets and risk. All these factors become more relevant for investors

with a long-term horizon.

Investors with long-term goals are not only interested in the expected

return and risk, but above all in how returns vary over time. Optimal port-

folio allocations for investors with a long-term horizon must have a di�erent

composition than those for short-term investors.

In 1994 Siegel, with his widespread work �Stocks for the long run�, �sealed

the conventional wisdom that most of us should be in the stock market� 2,

recommending investing more in shares than in �xed income over the long

2Siegel, Jeremy J. "Stocks for the Long Run McGraw-Hill." New York (1998).
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term.

The construction of an e�cient portfolio has been the subject of several

research and theories about the ideal combination of investments that allows

investors to minimize risk and maximize the overall return.

2.2 De�ning a Financial Asset Return

Most �nancial studies about portfolio selection do not consider prices but

returns, which represent the link between the �nal wealth and the initial

investment.

A generic rational investor is not attracted by the absolute gain, i.e. the

di�erence between the purchase and the sale price of a security, as by the

percentage gain, which does not depend on the amount initially invested.

Returns represent a complete, non-dimensional summary of the invest-

ment opportunities, and their historical data are easier to deal with from a

statistical point of view.

Asset's Excess Returns are de�ned as the di�erence between the actual

return on a security, or a portfolio, Rt and the return on a risk-free asset Rf .

Excess Returns are shown in literature statistically more attractive prop-

erties than the price series, that evolve following a stochastic Random Walk

process with drift.

The random walk process describes a path where the current value of a

variable consists of random steps composed by the past value of the variable

plus an error term de�ned as white noise (a random variable that is normally

distributed with mean zero and variance σ2).

This model implies that the best prediction of the variable for the next

period is the current value, as the process does not allow to predict future

values.

The price of �nancial securities follows a random walk model with drift,

where the drift acts like a trend.
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De�ning Pt the price of a �nancial security at time t, the process is not

stationary and has the following form:

log(Pt) = µ+ log(Pt−1) + ut (2.1)

Where µ is the drift parameter and ut is white noise with mean 0 and vari-

ance σu. The random shocks are also called innovations since they indicate

the new information that arrives at time t.

Before start introducing the de�nition of �nancial return, it is important

to de�ne the concept of stationarity.

Despite there are di�erent de�nitions of stationarity, known as weaker

and stronger, for the purposes of this introduction, it is su�cient to consider

the de�nition of weak stationarity.

A generic time series {yt} is said to be weakly stationary if it satis�es the

following three conditions:

E(yt) = µ (2.2)

var(yt) = E(yt − µ)2 = σ2 (2.3)

and

cov(yt, yt−s) = E(yt − µ)(yt−s − µ) = γs (2.4)

The �rst condition states that the mean of the series is µ in every time t.

The second condition states that also the variance of the series is the same

in every time t, while the third condition states that the covariance between

two observations yt and yt−s depends only on the lag between them, s, and
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is the same in every time period.3

The price of a generic �nancial security that follows a random walk process

with drift is a trended time series with a non-constant mean, that violates

the �st condition for weak stationarity.

The use of non-stationary time series data in �nancial models produces

unreliable results and could lead to an incorrect forecast.

For this reason, it is useful to introduce the concept of �nancial returns

that, as introduced above, shown in literature statistically more attractive

properties than the price series.

There are di�erent de�nition of Return, but the most common de�nitions

are:

� the linear Gross Rate of Return between times t and t− 1, given by:

1 +Rt =
Pt

Pt−1

(2.5)

� the Continuously Compounded Return between times t and t−1, given

by:

rt = log(1 +Rt) = log

(
Pt

Pt−1

)
(2.6)

Using the Continuously Compounded Return the yield is given by the natural

logarithm of the simple gross return and represents the compounded growth

rate in prices between t− 1 and t.

The latter return is also called log return and, as stated in the literature,

is more compatible with the hypothesis of normality than the gross rate of

return.
3Pierse, Richard G. "Economic Forecasting Lecture 2: Forecasting the Trend."
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The assumption of the normality of the log-returns of �nancial securities

is one of the most important assumptions in econometrics.

It is a fundamental assumption because, assuming that rt is normally

distributed with mean µ and standard deviation σ, the simple return has a

log-normal distribution and the multiperiod log-return is just the sum of the

single-period log-returns. Therefore, the assumption of normality remains

valid for the multiperiod returns.

The two ways of de�ning returns lead to very similar results, especially

for short-term periods.

This could be veri�ed by developing a second-order Taylor expansion of

Pt as a series of Pt−1. It can be noted that rt < Rt and that the di�erence

between the two de�nitions is usually very small.

The choice of which type of return to use is strictly dependent on the

type of analysis to be conducted.

The linear return works easily with single investment period calculation,

but involve more complex calculations for the multiperiod horizons.

When time-series of returns are considered, the log-returns are used be-

cause of several advantages as the additive property, the prevention of negat-

ive prices and the symmetry between returns i.e. returns of equal magnitude

cancel each other, while linear returns do not.

As the model implemented in this thesis deals with time-series, continu-

ously compounded returns are preferred because it would be easier to ag-

gregate consecutive returns.

2.3 Portfolio Returns and The E�ect of Diver-

si�cation

A portfolio is a set of �nancial assets in which the wealth is allocated.

It is quite common to �nd that individuals tend to diversify their in-

vestment in portfolios made up of various securities, rather than concentrate
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their wealth in a single security.

De�ning Ri,t the gross rate of return of the security i with weight wi in a

portfolio of n assets, the gross portfolio return is:

Rp,t =
n∑

i=1

wiRi,t (2.7)

with the weights summing up to 1.

The estimation of the portfolio risk measure is a complex problem because

it can not be calculated as a weighted average of the risk measures associated

with the securities in the portfolio. Such a measure would neglect the e�ect

of diversi�cation given by the imperfect correlation of the returns on the

securities in the portfolio.

The estimation of the riskiness of a portfolio requires the statistical in-

dicator known as the Linear Correlation Coe�cient ρ, which measures the

direction and the strength of the linear association between two variables.

Recalling that the linear correlation coe�cient between two security x

and y is :

ρx,y =
Covx,y
σxσy

(2.8)

The use of ρ allows evaluating how the return of a �nancial security

change when the return of another security varies.

Diversi�cation aims to mitigate unsystematic risk events in a portfolio of

risky assets. In a diversi�ed portfolio, if the securities respond in di�erent

ways to market movements, the negative performance of some assets are

reduced by the positive performance of others.

Thus, the diversi�cation of the portfolio investments leads to manage

risk and reduce the volatility of the portfolio returns compared to the risk

associated with the various asset's volatility.

To take account of this e�ect, the portfolio variance is calculated as:
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σ2
p,t =

N∑
i=1

N∑
j=1

wiwjσiσjρij =
N∑
i=1

N∑
j=1

wiwjCov(Ri,t, Rj,t) (2.9)

Obviously, for any value of ρ < 0 the variance of the portfolio returns is

lower than the weighted average of the variances of the individual securities

return.

However, it should be noted that the bene�ts in terms of portfolio variance

reduction generally occur for any value of ρ < 1. In some special cases, it is

possible to obtain a portfolio variance lower than the variance of each of the

securities in the portfolio.

In practice, the bene�ts of diversi�cation in terms of risk reduction justify

the existence of �nancial institutions such as mutual funds and �nancial

securities such as the exchange-traded funds (ETF).

Both of them allow an investor to directly purchase a highly diversi�ed

portfolio without incurring high transaction and information gathering costs

that would involve investing in a range of individual �nancial securities.

2.4 The Markowitz Approach

As stated above, the Modern Portfolio Choice Theory was originally de-

veloped by Harry Markowitz in 1952 through the publication of his article

�Portfolio Selection�, which outlined the problem of portfolio allocation.

The main outcome of this paper is the theoretical mean-variance model

for the solution of short-term asset allocation problems.

This theory is made by two large conceptual blocks: an optimization

phase, related to the identi�cation of the e�cient portfolios among those

considered, and a maximizing phase, where the goal is to maximize the sat-

isfaction of the decision-maker.

In the latter step, the introduction of an individual's preferences allows

comparing optimal portfolios with others.
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The Portfolio Theory of Markowitz is based on the Perfect Market As-

sumptions, under which the investor environment is an economy entirely

e�cient in terms of both equal access to information and rational economic

actors.

The most important assumptions are the same as Merton4:

� All assets have limited liability

� Each security can be sold or purchased in any amount at the market

price at any time.

� The bid-ask spread is zero, which means that the selling price of each

asset is the same as the purchasing price.

� The investors are price-takers, as they can't in�uence the market prices.

� There are no transaction costs or taxes involved.

These are the standard assumptions of a perfect market, but transaction

costs and indivisibles do exist.

Assuming that in the market exist n risky assets and a generic investor

chooses his portfolio at time 0, intending to hold it for one period.

After a period, at time 1 the true value of the portfolio is determined.

Denoting by Pi,0 the price of asset i at time 0, analogously at time 1 the price

of the asset i is Pi,1.

As stated above, the relative change in price during one period is the

gross return on the asset Ri,t.

In this model, the gross return of a security is assumed to be a random

variable with conditional mean µi and conditional variance σ2
i , where the

conditional mean and the conditional variance are the mean and variance

conditional on the investor's information at time t.

4Merton, Robert C. "An intertemporal capital asset pricing model." Econometrica:
Journal of the Econometric Society (1973): 867-887.
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The model assumes that the investor allocates his wealth entirely over

the n risky assets, with the weights adding up to one and the possibility

to impose constraints about the borrowing and the shorting assets, which

impose to invest only in long positions (wi > 0).

Once that the allocation is determined, it is possible to compute the

conditional expected mean µp and variance σp of the portfolio return.

By denoting as w and µ respectively the column vectors composed by the

portfolio weights wi and the means µi, and denoting by Σ the covariance

matrix which contains the covariances between the asset returns, the mean

and the variance of the portfolio returns are easily calculated as:

µp =
n∑

i=1

wiµi = µ′w (2.10)

σ2
p =

n∑
i=1

n∑
j=1

wiwjσij = w′Σw (2.11)

imposing that Σ is invertible.

Moreover, being Σ a covariance matrix, it is positive semi-de�nite and

symmetric.

In his paper, Markowitz uses the expected variance of the portfolio returns

σp as the only measure of risk, without taking account of the other conditional

moments of the distribution.

A useful concept in this analysis is the Sharpe Ratio St, de�ned as the

mean of the excess return over a risk-free asset return to the standard devi-

ation:

St =
Et[Rt+1]−Rf

t+1

σt
(2.12)

The Sharpe Ratio is an important tool as it is used from investors to

understand the expected return of a speci�c investment compared to its risk.
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As stated before, the main reason to invest in a portfolio instead of invest-

ing in a single asset the whole wealth is the possibility to �nd combinations

of assets that are more mean-variance e�cient than a single asset, due to the

bene�ts of diversi�cation.

�Diversi�cation allows the investor to take advantage of the potential risk

reduction by combining assets, which are not perfectly correlated and which

do not react to movements in the market in the same way respectively�.5

2.5 E�cient Frontier

Simulating a great number of portfolios, in�nitely di�erent allocation could

be constructed, but what matters to a generic investor are the best perform-

ing portfolios, in terms of both return and risk.

The so-called E�cient Portfolios are the asset combinations characterized

by the minimum expected risk associated with a given expected return, or

symmetrically, the maximum expected return associated with a given degree

of risk.

By determining all the e�cient portfolio achieved with di�erent combin-

ations of expected return and risk, given a set of n risky assets, it is possible

to construct the E�cient Frontier.

The E�cient Frontier is a theoretical concept that includes all the e�cient

portfolios, based on the available underlying single securities historical data.

The results of the Markowian portfolio analysis are shown in the mean-

variance standard diagram (Figure 2.1), where the vertical axis contains the

expected return and the horizontal axis show the risk as measured by the

standard deviation.

The E�cient Frontier is a curved line that expresses a set of means and

standard deviations that could be achieved by combining the n risky asset

5Levy, Haim, and Marshall Sarnat. "International diversi�cation of investment portfo-
lios." The American Economic Review 60.4 (1970): 668- 675.
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Figure 2.1

in a risky portfolio.

Stocks are shown to o�er a high mean return and a high standard devi-

ation, while Bonds are shown to o�er a lower mean return and lower standard

deviation.

All the portfolios lying below the e�cient frontier are de�ned ine�cient

because it is possible to enhance the expected return with the same risk by

changing the portfolio allocation. While it is not possible that a portfolio

lies above the e�cient frontier.

The portfolio characterised by the lowest degree of risk is called the min-

imum variation portfolio, de�ned as the collection of securities which, taken

as a whole, minimise the volatility of the overall portfolio.

2.6 Including a Risk-Free Asset

Usually, portfolio theory, next to the n risky assets, assumes the existence of

a risk-free asset, characterized by a gross rate of return Rf and the absence

of risk i.e. σf = 0.

The risk-free security used in practice is identi�ed in �nancial securities
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characterized by a low risk of default, as a bank deposit or a short-term

government bond.

The returns of these securities, deemed as to be risk-free, may �uctuate

and appear risky, as their sample variance is di�erent from zero.

However, their sample variance is always minimal compared to that of

risky securities and could be approximated to zero.

A generic investor may choose to invest a part of his wealth in the risk-free

asset as well as in the n risky securities.

Denoting with w0 the portion of wealth invested in the risk-free asset with

certain return Rf , being r the column vector composed by the rate of return

Ri,t of each risky asset i in the portfolio, the rate of return of the portfolio is

given by:

Rp = w0Rf + w′r = rf + w′(r − rf ι) (2.13)

with w0 + ι′w = 1, where ι is the unit vector, and the vector r − rf ι

represents the excess return of the n risky assets over the risk-free asset.

By including the risk-free asset in the portfolio calculation, the set of

possible means and standard deviations that can be achieved is a straight

line, called the Capital Market Line, on the diagram in Figure 2.2.

2.7 Capital Market Line

The Capital Market Line is a theoretical representation de�ned in terms

of the total risk/return of all the e�cient portfolios that could include the

risk-free asset.

As with the E�cient Frontier, any portfolio that lies below the Capital

Market Line doesn't represent the best allocation for the investor because,

with the same overall risk and di�erent weights, the portfolio could deliver

higher returns.
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Figure 2.2: Campbell and Viceira, 2002

The Capital Market Line, which starts at the risk-free rate Rf and is

tangent to the E�cient Frontier described above, represents the combinations

of the highest mean return for any given standard deviation.

All the portfolios with the best risk/return ratio lie on this line, while the

tangent point is called the Market Portfolio and is the �Best Mix of Stocks

and Bonds�.

The striking conclusion of this analysis is that, under the assumption of

homogeneous expectations between the market participants, all the investors

will hold the same portfolio of risky assets, the Market Portfolio.

Thus, the �tangency portfolio represents the best allocation of risky assets

and no investor should alter the relative proportions of the weights in the

overall portfolio, but only choose how much to invest in the market portfolio

and in the risk-free asset�6, this result is the mutual fund theorem of James

Tobin (1958).

Tobin's Mutual Fund Separation Theorem underlines the relevance of di-

6Tobin, James. "Liquidity preference as behavior towards risk." The review of economic
studies 25.2 (1958): 65-86.
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versi�cation in the asset allocation process and suggests to build portfolios

using mutual funds as their presence could easily increase the portfolio diver-

si�cation and reduce transaction costs associated with the individual assets

purchasing.

According to Tobin's Theorem, the problem of de�nition of the market

portfolio and the best possible asset allocation are two di�erent problems.

The ratio behind this separation between the asset allocation problems

relies on the risk-aversion of the investor.

Despite the concept of risk-aversion is described in the third chapter of

this thesis, it might be useful to mention that the trade-o� between expected

portfolio return and variance can be modeled by the risk aversion parameter

γ. Depending on this parameter value, each investor chooses how to solving

this trade-o� between the certainty of the risk-free asset and the Market

Portfolio.

Risk-averse investors would select portfolio close to the risk-free asset,

preferring portfolios with a low variance to portfolios with a high expec-

ted return, while investors which preferences are characterized by low risk-

averseness would higher up to the Capital Market Line, increasing both ex-

pected portfolio returns and risk.

2.8 Limits of the Myopic Portfolio Choice

In recent years, the attention of economists has been focused on models

for the portfolio allocation that could re�ect the investor's situation and

characteristics.

Financial planners usually suggest to conservative investors holding more

bonds in their portfolio than aggressive investors, in contradiction with the

Markowian solution about the portfolio allocation which suggests a �xed

bond-shares ration for any type of investor.

The static model introduced my Markowitz assumes that investor's pref-
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erences are described by a mean-variance utility function, which is a very

restrictive assumption.

Another consideration about this model concerns the mono-periodical

nature of the portfolio allocation problem, as it is based on the assumption

that investors are interested only in the distribution of their wealth in the

following period, while empirical investors are more interested in maintaining

a certain standard of living through long-term investments.

To summarize, the main theoretical weakness of the model developed by

Markowitz are:

� The limited one-period investment horizon, that appears unrealistic

and does not include the possibility to rebalance the portfolio allocation

and hedge risks.

� The dependency of the model on the �rst two conditional moments of

the return distribution, leaving aside other possible statistical indicat-

ors that could include useful information about performance and risk

of the assets. The standard deviation of returns appears a simplistic

risk measure, that appears inadequate to express the riskiness of the

security.

� Data used to carry out the optimization process could bring to mistakes

in results.

� The e�cient portfolio identi�ed through the mean-variance model is

unstable to slight variation in the expected return or variance of secur-

ities.

All these limitations, together, make the mean-variance analysis unrealistic

and it should be argued if the traditional analysis of portfolio choice needs

to be modi�ed to handle with long investment horizons

Empirically, the single securities returns and their combinations are time-

varying.
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Therefore, for a generic investor, it is more appropriate to manage fre-

quently and regularly his investment decisions, but this process requires deep

market knowledge, it is expensive and consuming both in terms of time and

e�ort.

Most individuals lack the experience or training to make a wise saving,

investment, and withdrawal decisions.

Due to the empirical inadequacy of this static model, it is interesting

to ask whether and how it is possible to modify the assumption and the

methodology to construct a model that could better re�ect the di�erences

between investors, in terms of risk aversion and investment horizons.



Chapter 3

Utility Functions

So far it was assumed that investors care only about the mean and the

variance of portfolio returns.

This chapter deals with the problem of defying the most appropriate

Utility Function for the model implemented in this thesis, an extension to

the myopic portfolio theory that concerns the use of the loss aversion function,

developed by Kahneman and Tversky1 in the Prospect Theory, to describe

the preferences of a generic investor in a condition of uncertainty.

3.1 De�nition of Expected Utility

Investors are assumed to make intertemporal choices in uncertainty as the

future payo�s are not deterministic but stochastic, i.e. given a generic in-

vestment at time t, its value in t+ 1 will be known only after its realization,

and will be di�erent based on the state of nature that will be realized.

A model that introduces the behaviors and choices of rational investors is

the Expected Utility Theory developed by Von Neumann and Morgenstern

1Kahneman, Daniel, and Amos Tversky. "Prospect theory: An analysis of decision
under risk." Handbook of the fundamentals of �nancial decision making: Part I. 2013.
99-127.
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in 1947.2

Their analysis is based on the assumption that an agent in a condition

of uncertainty can determine the expected utility by calculating the average

utility of each possible state, weighted by the estimated probabilities.

The authors have shown how it is possible to determine numerical values

representing the investor's subjective values in such a way that actions with

probabilistic consequences are preferred if the expected utility of the same is

greater than the expected utility of the other options not chosen.

The idea is that rational individuals should evaluate the �nancial payo�s

not directly on their amount, but rather on the level of �nancial �satisfaction�

that subjectively attribute to their possession.

Therefore, the goal of a generic investor is not to maximize his expected

terminal wealth but it is to maximize his expected utility of terminal wealth.

The Utility Function is de�ned as a function of the wealth achieved W

or consumption C.

It is strictly concave, strictly increasing, and continuous, where the curvature

of the function expresses the investor's risk aversion.

The risk aversion is the degree to which an investor prefers a lower and

more certain gain than a possible higher return with a lower certainty about

results.

The individual preferences, represented by the Utility Function, are char-

acterized by two properties: must re�ect the subject preferences and must

be increasing, i.e. must have marginal utility positive in wealth because it is

natural to associate greater payo�s with greater utility.

The Expected Utility Theory can be applied in a condition of uncer-

tainty, i.e. when the individual has to make decisions without knowing with

certainty what state of nature will occur but knows the possible events and

the probability of realizations of such events.

2Von Neumann, John, and Oskar Morgenstern. "Theory of games and economic beha-
vior, 2nd rev." (1947).
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Thus, investors that have to choose between di�erent alternatives char-

acterized by uncertain outcomes, whose probability of occurrence is known,

associate an expected utility value to each alternative.

Then the risky alternatives are ordered by their expected utility, expressed

as a function of the possible results and the probability that these results will

occur.

Given a function u(x), where x is the value of wealth in t+1 and assuming

u′(xt+1) > 0, the expected utility of wealth is:

E[u(x)] =
S∑

i=1

piu(xi) (3.1)

Where S is the number of states of natures, pi is the probability of oc-

currence of each possible result xi and
∑S

i=1 pi = 1.

As various risky combinations exist, investor's decisions are based on his

expected utility values.

The rational investor will choose the alternative that provides him the

greatest utility, referring not to the expected value of the consequences, but

the expected value of the corresponding utility, i.e. the combination associ-

ated with the highest Expected Utility.

Considering a generic investor that has to choose between two investment

opportunities, one risk-free with a certain return Rf and one risky asset, with

expected return R, the choice is made comparing both u (E([x])) and E[u(x)].
A decision-maker is de�ned as to be risk-averse if, for the same return, he

prefers the certain return, i.e. u (E([x])) > E[u(x)]. In this case, the investor

is willing to give up part of the possible gain to get a certain outcome, as

uncertainty is considered a negative element.
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3.2 Quadric Utility, Exponential Utility and Power

Utility

The Utility Functions can take several forms:

� Concave when describing the preferences of a risk-averse individual.

� Convex when describing the preferences of a risk-taking individual, i.e.

when u (E([x])) < E[u(x)].

� Linear for a risk-neutral individual, i.e. when the investor is indi�erent

between the two opportunities.

In this thesis, the risk-aversion hypothesis is considered in order to include

the behavior of investors who, when have to cope with uncertainty, attempt

to reduce the risks as they prefer more predictable outcomes to greater but

riskier payo�s.

To measure the intensity of risk aversion the second derivative of the

utility function u′′(x) is considered but, of course, it is not invariant to the

form of u(x).

The introduction of the Arrow-Pratt's risk aversion indicators is useful to

solve this problem.

Arrow-Pratt's Coe�cient of Absolute Risk Aversion and the Coe�cient

of Relative Risk Aversion are de�ned, respectively, as:

ARA(x) =
u′′(x)

u′(x)
(3.2)

and

RRA(x) = x
u′′(x)

u′(x)
(3.3)

both positive due to the concavity of the utility function.
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The reciprocals of these measures are known as Absolute Risk Tolerance

and Relative Risk Tolerance.

As in the classical results contained in the works of Pratt3 and Arrow4

referred to small gambles, the ARA determines the absolute dollar amount

that an investor is willing to pay to avoid a gamble of a given absolute size

and it is commonly assumed that it decreases with wealth.

The RRA determines the fraction of wealth that an investor will pay to

avoid a gamble of a given size relative to wealth.

The starting point of the models of portfolio choice, and more generally

of every utility calculation, require assumptions about the form of the utility

function.

Three alternative sets of assumptions are consistent with the risk adverse-

ness analysis: Quadric Utility, Exponential Utility and Power Utility.

The Quadric Utility Function is de�ned as u(x) = x− bx2, implying that

ARA and RRA are increasing in wealth and that the maximization process is

equivalent to the maximization of a linear combination of mean and variance

of the asset returns.

The Exponential Utility Function is de�ned as u(x) = 1 − e−θx, where

asset returns are normally distributed, implying that ARA is always equal

to θ and that RRA increases in wealth.

The Power Utility Function is de�ned as u(x) = xγ−1−1
1−γ

, where asset re-

turns are log-normally distributed, implying that ARA is declining in wealth

and RRA is constant.

The latter function, which takes also the name of Constant Relative Risk

Aversion Function (CRRA), appears the most suitable for the study of long-

term portfolio problems for two main reasons: the assumption about the

3Pratt, JohnW. "Risk aversion in the small and in the large." Uncertainty in economics.
Academic Press, 1978. 59-79.

4Arrow, K. J. "The Theory of Risk Aversion in Aspects of the theory of risk-bearing.
Helsinki: yrjo Jahnssonin Saatio." Reprint in Arrow, KJ (1971). Essays in the Theory of
Risk-Bearing. Chicago: Markham Publishing (1965): 28-44.
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asset returns log distribution and the consistency of the assumptions about

the Arrow-Pratt's risk aversion indicators.

The assumption of log-normal random variables holds for every time ho-

rizon since, as stated in the previous chapter, the product of log-normal

random variables is themselves distributed log normally.

Although this reasoning, the empirical results about the type of risk

aversion and the empirical values of the parameters are mixed. For ex-

ample, Schooley and Worden5, report that an individual's RRA is constant

or decreasing in wealth, depending on the samples and wealth measurement.

Friend and Blume6, found that in the context of myopic allocation house-

holds typically have constant RRA with γ being at least 1, and more likely

to exceed 2.

Institutional investors probably have a higher γ than households.

Bali7, has used several time-series to conclude that γ is between 1 and 5.

5Schooley, Diane K., and Debra Drecnik Worden. "Risk aversion measures: Comparing
attitudes and asset allocation." Financial services review 5.2 (1996): 87-99.

6Friend, Irwin, and Marshall E. Blume. "The demand for risky assets." The American
Economic Review (1975): 900-922.

7Bali, Turan G. "The intertemporal relation between expected returns and risk."
Journal of Financial Economics 87.1 (2008): 101-131.



Chapter 4

Dynamic Portfolio Choice

So far it was assumed that investors have short investment horizons and care

only about the distribution of wealth at the end of the next period.

The framework developed by Markowitz is a useful construction that

could easily be implemented and extended with a risk-free asset, but the ob-

vious shortcoming of the application of this portfolio theory is the assumption

of constant mean and constant covariance between the assets returns during

the investment horizon.

Hence, the assumption that long-horizon investor cannot rebalance his

portfolio appears super�cial, because it makes the long-term investment prob-

lem formally analogous to the short-horizon problem.

The static portfolio choice, introduced in the second chapter of this thesis,

is stated to as myopic portfolio choice because it is not capable of adapting to

possible changes in the �nancial markets, while the dynamic asset allocation

overcomes this shortcoming enabling the adaption of the model to changes

in market conditions.

As it is explained in this chapter, the long-term investor's optimal portfo-

lio depends not only on his objective but also on what the decision-maker is

allowed to do in each period, particularly on whether the investor is allowed

to rebalance his portfolio each period.

30
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The dynamic portfolio choice appears more realistic than the myopic

Markowitz model because it allows the portfolio rebalancing, but it involves

several complexities in the implementation.

As stated by Jhon. H. Cochrane: �Classical mean-variance brilliantly

declares victory and goes home just before the hard part begins�. 1

4.1 Merton's approach to Portfolio Choice in

Continuous Time

The �rst authors to contribute to the modern literature about Dynamic Port-

folio Choice was Merton2 and Samuelson.3

Both their theories are based on the idea that means and variances of

asset returns are time-varying and do not remain �xed over time, as they

change in response to economic conditions.

The Dynamic Portfolio baseline is that the construction of an e�cient in-

vestment strategy must include protection against the �uctuations of the �rst

and second moments of asset returns, including an �intertemporal hedging

component to provide insurance against shocks in returns moments�.4

Merton considered a dynamic portfolio problem in continuous time with

intertemporal consumption, designing the solution in order to protect the

investment against �uctuations and, eventually, taking advantage of these

�uctuations.

1Cochrane, John H. "A mean-variance benchmark for intertemporal portfolio theory."
Manuscript, University of Chicago (2008).

2Merton, Robert C. "Lifetime portfolio selection under uncertainty: The continuous-
time case." The review of Economics and Statistics (1969): 247-257.

3Samuelson, Paul A. "Lifetime portfolio selection by dynamic stochastic programming."
The review of economics and statistics (1969): 239-246.

4Detemple, Jérôme, René Garcia, and Marcel Rindisbacher. "Intertemporal asset alloc-
ation: A comparison of methods." Journal of Banking & Finance 29.11 (2005): 2821-2848.
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Then Merton5 proves a mutual fund theorem very similar to Tobin6, stat-

ing that: �Given n assets with prices Pt whose changes are log-normally dis-

tributed, then there exists a unique pair of mutual funds constructed from

linear combinations of these assets such that, independent of preferences (i.e.

the form of the utility function), wealth distribution, or time horizon, in-

dividuals will be indi�erent between choosing from a linear combination of

these two funds or a linear combination of the original n assets�.7

Merton's theory starting point is the distribution of returns, that is as-

sumed to be log-normally distributed and follow a Geometric Brownian Mo-

tion.

The latter assumption considered by the author is a generic supposition

about the economic prices stochastic process.

Thus, Merton showed that the price of the assets follows the stochastic

di�erential equation:

dPt = µPtdt+ σStdBt (4.1)

where Bt is a single Werner process, a stochastic process with three im-

portant characteristics summarized by Shreve8:

� B0 = 0

� It is continuous

� Bt has independent increments with distribution Bt−Bs ∼ N(0, t− s)

for 0 ≤ s ≤ t.

5Merton, Robert C. "Optimum consumption and portfolio rules in a continuous-time
model." Stochastic Optimization Models in Finance. Academic Press, 1975. 621-661.

6Tobin, James. "Liquidity preference as behavior towards risk." The review of economic
studies 25.2 (1958): 65-86.

7Cass, David, and Joseph E. Stiglitz. The structure of investor preferences and asset
returns, and separability in portfolio allocation: A contribution to the pure theory of
mutual funds. 1970.

8Shreve, Steven E. Stochastic calculus for nance II: Continuous-time models. Vol. 11.
Springer Science & Business Media, 2004.
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Following this Dynamic Allocation Strategy introduced by Merton, a generic

investor with an investment horizon T should allocate his wealth at each

period on the optimal portfolio weights xt and determining the optimal in-

tertemporal amount to consume Ct.

The dynamic of the investor's wealth Wt is dependent on the previous

asset allocation and its return, net of the consumption referred to the speci�c

period.

The wealth dynamic could be expressed as:

dWt = Wtxt
dPt

Pt

+Wt(1− xt)Rfdt− Ctdt

= ((xt(µ−Rf ) +Rf )Wt − Ct)dt+ xtσWtdBt (4.2)

The solution to this continuous dynamic problem is constrained by some

strict assumptions about the return distribution and dynamics.

However, the solution to this method is not discussed as it is not the

object of this work.

By the increasing of the number of assets, calculate analytically the

closed-form solution with the Merton's model could become very complic-

ated.

For this reason, the dynamic portfolio choice problem is often discretized

to be solved numerically in discrete time.

4.2 Dynamic Portfolio Choice in Discrete Time

Even if the discretization of the problem appears as a theoretical assumption

that could limit the prediction power of the model, it is more realistic than the

continuous-time approach, as it overcomes the limitations of the continuous-

time formulation.
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Despite the continuous-time represent an e�cient analytical approxima-

tion of the portfolio choice problem, an investor will not continuously trade

during his investment horizon, but it is more empirically correct to consider

the portfolio rebalancing over discrete timestamps.

The �rst step of the dynamic methodology implemented in this thesis is

the simulation of a large number of sample paths of asset return and state

variables, through their known or estimated joint dynamics.

As stated by Brandt et al. (2005), the most relevant idea of these simu-

lations is that: �the joint dynamics of the asset returns and state variables

can be high-dimensional, arbitrary complicated, path-dependent, and even

non-stationary�.9

The problem of portfolio selection is then addressed recursively in stand-

ard dynamic programming.

Starting from T − 1, for each simulated path, the optimal portfolio al-

location is computed as the weights that maximize a Tylor expansion of the

investor's value function.

This problem has a straightforward semi-closed form solution that in-

volves conditional moments of the value function, its derivatives and asset

returns.

These conditional expectations are calculated through ordinary least square

regression of the realized utility, its conditional moments and asset returns

at the following period based on functions of the realized state variables at

T − 1 across the simulated paths.

Then the model proceeds backward until time zero, in order to �nd the

portfolio allocation that �maximizes the conditional expectation of the in-

vestor's utility, given the optimal portfolios for all future periods until the

end of the horizon�.10

9Brandt, Michael W., et al. "A simulation approach to dynamic portfolio choice with
an application to learning about return predictability." The Review of Financial Studies
18.3 (2005): 831-873.

10See (9)
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To summarize, this method allows evaluating the closed-form solution

of the approximate optimal portfolio allocation by simulating the asset re-

turns and the state variables paths and then computing a set of across-paths

regression for each period.

This approach is inspired by a method for pricing American-style options

introduced in the paper �Valuing American Option by Simulation: a Simple

Least-Squares Approach� published by Longsta� and Schwartz in 2001.

These authors used across-paths regression on simulated sample paths in

order to estimate the conditional expectations about the payo� to the option

holder. The model is based on the calculation of the expectation of the

�continuation value of the option and compares these conditional expectations

to the immediate exercise value at all future dates along each simulated

path�.11

This approach is �readily applicable in path-dependent and multifactor

situations where traditional �nite di�erence techniques cannot be used�.12

This method is adopted to use conditional expectations as input in the

portfolio optimization process.

4.3 Description of the Problem

The investor problem could be summarized as the maximization of a given

utility function.

At each time, the investor aims to �maximize the expected utility of wealth

at some terminal date T , by by trading n risky assets and a risk-free asset

at times t, t+ 1, ..., T − 1�.13

11Brandt, Michael W., et al. "A simulation approach to dynamic portfolio choice with
an application to learning about return predictability." The Review of Financial Studies
18.3 (2005): 831-873.

12Longsta�, Francis A., and Eduardo S. Schwartz. "Valuing American options by sim-
ulation: a simple least-squares approach." The review of �nancial studies 14.1 (2001):
113-147.

13van Binsbergen, Jules H., and Michael W. Brandt. "Solving dynamic portfolio choice
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As stated before, the investor wealth at the end of each period is directly

related to his previous allocation, so that the investor's problem could be

expressed by a value function J(.):

Jt(Wt, Zt) = max
{xs}T−1

s=t

Et[u(WT ) | Wt, Zt]

s.t. : Ws+1 = Ws(x
′
sR

e
s+1 +Rf ) ∀s ≥ t (4.3)

Where xs represents the vector of weights of the portfolio over the risky

asset chosen at time s and held until the next period.

The gross return on the risk-free asset is denominated as Rf and Re
s+1

represents the vector of the risky assets excess return over the risk-free return.

Wt is the investor wealth at time t and it is an endogenous variable as it

is in�uenced only by the previous decisions about the portfolio allocation.

Zt represents the collection of the state variables at time t, exogenous

variables that include economic factors as interest rates, in�ation rate, or

stock index:

Zt =


z1,t

z2,t
...

zk,t

 (4.4)

The main concept of this dynamic approach is that future decisions about

the optimal allocation of the investor's wealth depend on the allocations

made earlier. i.e. an investor that holds a high realized portfolio return

might behave di�erently from an investor with a low realized past portfolio

return.

problems by recursing on optimized portfolio weights or on the value function?." Compu-
tational Economics 29.3-4 (2007): 355-367.
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This concept is described by Richard Bellman in the Principle of Optim-

ality: �An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute an optimal

policy concerning the state resulting from the �rst decision�.14

In his article `Dynamic Programming and Stochastic Control Processes'

Richard E. Bellman discussed the analytic translation of the previous state-

ment, rewriting the investor problem as a recursive problem.

�A Bellman equation, named after Richard E. Bellman, is a necessary con-

dition for optimality associated with the mathematical optimization method

known as dynamic programming�.15

�This breaks a dynamic optimization problem into a sequence of simpler

sub-problems, as Bellman's Principle of Optimality prescribes�.16

Therefore, in each period, the optimal portfolio allocation has to be made

taking into account that the future optimal portfolios will depend on his

previous decisions.

The Value function expressed above could be written as:

Jt(Wt, Zt) = max
{xs}T−1

s=t

Et[Jt+1(Wt+1, Zt+1)]

s.t. : Ws+1 = Ws(x
′
sR

e
s+1 +Rf ) ∀s ≥ t (4.5)

Where, for notational convenience, the conditional expectation is written

with a subscript:

E[X] = E[X | Wt, Zt]

14Bellman, Richard. "Dynamic programming and stochastic control processes." Inform-
ation and control 1.3 (1958): 228-239.

15Dixit, Avinash K., and John JF Sherrerd. Optimization in economic theory. Oxford
University Press on Demand, 1990.

16Kirk, Donald E. "optimal control theory: an introduction. Printice- Hall." Englewood
Clis, NJ 228 (1970).
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The �sts step of this problem is straightforward and follows the law of

iterated expectations:

Jt(Wt, Zt) = max
{xs}T−1

s=t

Et[u(WT )] = max
xt

max
{xs}T−1

s=t

Et[Et+1[u(WT )]] (4.6)

While the second step is to include the interchange of expectation:

max
xt

max
{xs}T−1

s=t

Et[Et+1[u(WT )]] = max
xt

Et[ max
{xs}T−1

s=t

Et+1[u(WT )]] (4.7)

The formula that relates the current wealth and the wealth one step before

is called the budget constraint.

The formula that expresses the recursive relation between the value func-

tion at time t and the conditional expectation of the value function one step

ahead is known as the Bellman Equation and it is the basis of the dynamic

discretized portfolio problem.

4.4 Numerical Approaches

In recent years both the computing power and the numerical methods have

seen huge advances, to the point that multivariate analysis and multiperiod

portfolio selection problems could be solved numerically.

During this period, several authors have published di�erent articles about

numerical methods to solve the problem of portfolio allocation and they

tried to incorporate realistic features into the problem. For example, Bren-

nan, Schwartz and Lagnado17 solve numerically the partial di�erential equa-

tion characterizing the solution to the dynamic optimization. Campbell and

17Brennan, Michael J., Eduardo S. Schwartz, and Ronald Lagnado. "Strategic asset
allocation." Journal of Economic Dynamics and Control 21.8- 9 (1997): 1377-1403.
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Viceira18 log-linearize the �rst-order conditions in order to obtain closed-

form solutions. While Das and Sundaram19 and Kogan and Uppal20 solved

analytically the problem trough di�erent expansions of the value function.

The most popular approaches involve the discretization of the state space,

which is done by Barberis21, Balduzzi and Lynch22, Dammon, Spatt, and

Zhang23 and Brandt24, among many others.

�Once the state space is discretized, the value function can be evalu-

ated by a choice of quadrature integration (Balduzzi and Lynch), simulations

(Barberis), binomial discretizations (Dammon, Spatt, and Zhang), or non-

parametric regressions (Brandt), and then the dynamic optimization can be

solved by backward recursion�.25

All these methods rely on Constant Relative Risk Aversion preferences

in order to eliminate the dependence of the portfolio policies on wealth and

thereby make the portfolio allocation problem path-independent.

Despite a large number of possible approaches, unfortunately, almost all

of them assume unrealistically simple return distribution and cannot include

18Campbell, John Y., and Luis M. Viceira. "Consumption and portfolio decisions when
expected returns are time varying." The Quarterly Journal of Economics 114.2 (1999):
433-495.

19Das, Sanjiv Ranjan, and Rangarajan K. Sundaram. "Of smiles and smirks: A term
structure perspective." Journal of �nancial and quantitative analysis (1999): 211-239.

20Kogan, Leonid, and Raman Uppal. Risk aversion and optimal portfolio policies in
partial and general equilibrium economies. No. w8609. National Bureau of Economic
Research, 2001.

21Barberis, Nicholas. "Investing for the long run when returns are predictable." The
Journal of Finance 55.1 (2000): 225-264.

22Balduzzi, Pierluigi, and Anthony W. Lynch. "Transaction costs and predictability:
Some utility cost calculations." Journal of Financial Economics 52.1 (1999): 47-78.

23Dammon, Robert M., Chester S. Spatt, and Harold H. Zhang. "Optimal consumption
and investment with capital gains taxes." The Review of Financial Studies 14.3 (2001):
583-616.

24Brandt, Michael W. "Estimating portfolio and consumption choice: A conditional
Euler equations approach." The Journal of Finance 54.5 (1999): 1609-1645.

25Brandt, Michael W., et al. "A simulation approach to dynamic portfolio choice with
an application to learning about return predictability." The Review of Financial Studies
18.3 (2005): 831-873.
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constraints on the portfolio weights.

In 2005 Brandt, Goyal, Santa Clara and Stroud published an article that

includes an innovative approach to solve the problem of portfolio choice,

called the BGSS method, trough a simulation-based method that uses a

Tylor expansion of the value function and regressions on all simulated samples

paths.

The idea behind the Brand's model came from an innovative and powerful

approach of Longsta� and Schwartz for the approximation of the expected

payo�s of American options.

The BGSS method overcomes the limitations of the other methods cited

above, enabling the simulation of a large number of hypothetical sample

paths of asset returns and state variables to form the known, estimated, or

bootstrapped joint dynamics of the returns and state variables. �The key

feature of this simulation is that the joint dynamics of the asset returns and

the state variables can be high-dimensional, arbitrarily complicated, path-

dependent and even non-stationary�.26

Given the set of simulated paths, the optimal portfolio policies are solved

recursively in a standard dynamic programming fashion deeply explained in

the following chapter.

This method is promising for its speed and �exibility to accommodate

both asset returns and state variable returns complex dynamics.

As observed by Detemple27, and Garlappi and Skoulakis28, the addition

of constraints on the portfolio weights may be necessary to constrain the

error of this method.

26Brandt, Michael W., et al. "A simulation approach to dynamic portfolio choice with
an application to learning about return predictability." The Review of Financial Studies
18.3 (2005): 831-873.

27Detemple, Jérôme, René Garcia, and Marcel Rindisbacher. "Intertemporal asset alloc-
ation: A comparison of methods." Journal of Banking & Finance 29.11 (2005): 2821-2848.

28Garlappi, Lorenzo, and Georgios Skoulakis. "Numerical solutions to dynamic portfolio
problems: The case for value function iteration using Taylor approximation." Computa-
tional Economics 33.2 (2009): 193-207.
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In this thesis, the BGSS method is applied to a simple environment of a

multiple asset case.



Chapter 5

Methodology

This chapter aims to describe the methodology as published by Brandt et

al. in 20051. It involves the expansion of the value function, the backward

recursion by approximating terminal wealth and the determinants of a generic

investor's preferences characterized by constant relative risk aversion.

The conditional expectations are calculated using several across-paths

regressions.

The optimal portfolio allocation strategy is discussed for higher orders of

Taylor series and the constraints used in the model.

5.1 Expanding the value function

The starting point of the methodology of this thesis is the Bellman equation

and the budget constraints introduced in the previous chapter:

1Brandt, Michael W., et al. "A simulation approach to dynamic portfolio choice with
an application to learning about return predictability." The Review of Financial Studies
18.3 (2005): 831-873.
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Jt(Wt, Zt) = max
{xs}T−1

s=t

Et[Jt+1(Wt+1, Zt+1)]

s.t. : Ws+1 = Ws(x
′
sR

e
s+1 +Rf ) ∀s ≥ t (5.1)

To implement the BGSS Method the budget constraint is substituted in

the one step ahead value function:

Jt+1(Wt+1, Zt+1) = Jt+1(Wt(x
′
tR

e
t+1 +Rf ), Zt+1)

The next step is the employment of a Taylor series of the Value function

around WtRf , which lead to an explicit solution for the portfolio weights xt:

Jt+1(Wt(x
′
tR

e
t+1 +Rf ), Zt+1) ≈ Jt+1(WtRf , Zt+1)

+ ∂1Jt+1(WtRf , Zt+1)(Wtx
′
tR

e
t+1)

+
1

2
∂21Jt+1(WtRf , Zt+1)(Wtx

′
tR

e
t+1)

2 (5.2)

Where ∂1 denotes the partial derivative concerning the �rst variable of

the value function.

Then the value function is substituted in the Bellman equation to obtain

the approximation of the value function in t:

J̄t(Wt, Zt) = max
xt

Et[Jt+1(WtRf , Zt+1)

+ ∂1Jt+1(WtRf , Zt+1)(Wtx
′
tR

e
t+1)

+
1

2
∂21Jt+1(WtRf , Zt+1)(Wtx

′
tR

e
t+1)

2] (5.3)
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The gradient towards xt is taken and imposed equal to zero, in order to

�nd the weights that maximizes the right-hand side of the value function

approximation at each time t:

−→
0 = ∇{Et[Jt+1(WtRf , Zt+1)

+ ∂1Jt+1(WtRf , Zt+1)(Wtx
′
tR

e
t+1)

+
1

2
∂21Jt+1(WtRf , Zt+1)(Wtx

′
tR

e
t+1)

2]} (5.4)

If it is assumed that the Lebesgue's dominated convergence theorem is

allowed, which �provides su�cient conditions under which almost everywhere

convergence of a sequence of functions implies convergence in the L norm�2

then the interchange of expectation and derivative is allowed.

It is possible to write:

−→
0 = WtEt[∂1Jt+1(WtRf , Zt+1)R

e
t+1]

+W 2
t Et[∂

2
1Jt+1(WtRf , Zt+1)(x

′
tR

e
t+1)R

e
t+1] (5.5)

Because the commutativity of the inner product and the associativity of

matrix operations allows to rewrite (x′tR
e
t+1)R

e
t+1 = (Re

t+1R
e′
t+1)xt.

This leads to an explicit expression for xt, which depends on the condi-

tional expectations.

It is denoted by x̄t because it is an approximation of the true value of xt.

The explicit expression for the approximated value of the weights is:

2Bartle, R.G. (1995). The Elements of Integration and Lebesgue Measure. Wiley
Interscience.
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x̄t = −{WtEt[∂
2
1Jt+1(WtR

f , Zt+1)(R
e
t+1R

e′

t+1)]}−1

× Et[∂1Jt+1(WtR
f , Zt+1)(R

e
t+1)] (5.6)

This reformulation relies on the assumption of non-singularity of the mat-

rix Et[∂
2
1Jt+1(WtR

f , Zt+1)(R
e
t+1R

e′
t+1)], that thus is invertible.

Analytically it is not necessary true, as for a single asset, neglecting

∂21Jt+1(WtR
f , Zt+1), the matrix is not invertible for Et[(R

e
1,1+t)

2] = 0.

For two assets, the matrix is not invertible if Cov(Re
1,t+1, R

e
2,t+1) = 0.

But the conditional expectations are calculated separately for each element

of the matrix, based on the simulation and regression analysis and, as the

number of simulation grows, the probability that the approximated matrix

is not invertible becomes very small.

De�ning:

At+1 := ∂1Jt+1(WtR
f , Zt+1)R

e
t+1 (5.7)

Bt+1 := ∂21Jt+1(WtR
f , Zt+1)R

e
t+1R

e′

t+1 (5.8)

It is possible to rewrite the explicit expression for the approximation of

xt as:

x̄t = −{WtEt[Bt+1]}−1 × Et[At+1] (5.9)

�The two conditional expectations in the formula above are the second-

moment matrix of returns scaled by the second derivative of the value func-

tion and the risk premia of the assets scaled by the �rst derivative of the

value function�.3

3Brandt, Michael W., et al. "A simulation approach to dynamic portfolio choice with
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Taking a closer look at the derivatives used in the previous formula it is

necessary to recall the initial maximization problem:

Jt+1(Wt+1, Zt+1) = max
{xs}T−1

s=t+1

Et+1[u(WT )] (5.10)

Using the budget constraint formula, it is possible to rewrite the terminal

wealth in terms of current wealth:

WT = Wt

T−1∏
s=t

(x′sR
e
s+1 +Rf ) (5.11)

Then, assuming that all the optimal portfolio allocations for every timestamp

in the investor horizon are already determined and denoted by x̂t, the ter-

minal wealth WT , in terms of Wt+1, can be written as:

WT = Wt+1

T−1∏
s=t

(x̂′sR
e
s+1 +Rf ) (5.12)

For notational convenience, used also by Brandt et al. (2005), the port-

folio returns from t + 1 to the end of the investment horizon T , under the

optimal portfolio allocation strategy, are de�ned by:

ψt+1 =
T−1∏
s=t

(x̂′sR
e
s+1 +Rf ) (5.13)

So that the terminal wealth WT can be written as WT = Wt+1ψt+1.

As stated above, assuming that all the future portfolio weights are already

known, the maximizer disappears.

By substituting the above equation in the objective equation, the value

function turns out to be:

an application to learning about return predictability." The Review of Financial Studies
18.3 (2005): 831-873.
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Jt+1(Wt+1, Zt+1) = Et+1[u(Wt+1ψt+1)] (5.14)

Computing the partial derivative of the previous expectations towards

the �rst variable, which is Wt+1 in the above, it can be stated that:

∂1Jt+1(Wt, Zt+1) = Et+1[∂u(Wt+1ψt+1)ψt+1] (5.15)

Because u is a function of just one variable, it is possible to write ∂ instead

of ∂1.

Analogously for the second derivative of Jt+1:

∂21Jt+1(Wt, Zt+1) = Et+1[∂
2u(Wt+1ψt+1)ψ

2
t+1] (5.16)

5.2 Simulating sample paths

One of the most important steps of this methodology consists in the data

generating model.

Monte Carlo simulation is used to generate a speci�c number M of inde-

pendent sample paths of the vector {Ys}Ts=1 = {Re
s, Zs)}Ts=1:

Yt+1 = f(Yt, Yt−1, ...; ϵt+1) (5.17)

where ϵt+1 is a random innovation.

Each sample-path generated in the Monte Carlo simulation describes a

hypothetical realized evolution of the asset returns and state variable from

the beginning until the end of the investment horizon.
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The most common way to model the economy in econometrics is the

VAR(p)-model, which is also known as a vector autoregressive model of order

p.

It is an extension of the univariate autoregression model, as often provides

superior forecast to those from univariate time series models, and represent a

�exible and straightforward model for the analysis of multivariate time series.

It describes the evolution of a generic vector Y over the given sample

horizon period from t to T as a linear function of its past evolution.

The VAR(p) model has proven to be very useful in describing the dynam-

ics of economic and �nancial time series.

5.3 Backward recursion by approximating ter-

minal wealth

Assuming that the optimal portfolio weights have already been determined

and denoted by x̂s, it is possible to solve recursively the optimal portfolio

problem backward for each date t and sample-path m.

Denoting WtR
f the current wealth growing at the risk-free rate of return

and ψt the portfolio return generated by the optimal portfolio weights x̂s,

the terminal wealth approximation is known and equal to:

ŴT = WtR
f

T−1∏
s=t+1

(x̂sR
e
s+1 +Rf ) = WtR

fψt+1 (5.18)

Using the above approximation it is possible to rewrite the equation of

the value function as:

Jt+1(WtR
f , Zt+1) = Et+1[u(ŴT )] (5.19)



CHAPTER 5. METHODOLOGY 49

Where the maximizer disappears because the optimal future portfolio

allocation has already been determined.

In order to compute the value function approximation through the Tylor

expansion, it is necessary to evaluate the expressions previously de�ned

Et[At+1] and Et[Bt+1].

The �rst expression is computed by substituting Wt+1 with WtR
f :

Et[At+1] = Et[Et+1[∂u(WtR
fψt+1)ψt+1]R

e
t+1] (5.20)

That is di�erent from the original article because Rfψt+1 is used as a

chain factor.

Applying the law of iterated expectations gives:

Et[At+1] = Et[∂u(WtR
fψt+1)ψt+1R

e
t+1] (5.21)

Analogously for Et[Bt+1]:

Et[Bt+1] = Et[∂
2u(WtR

fψt+1)ψ
2
t+1R

e
t+1R

e′

t+1] (5.22)

Where both these equations depend on the determination of the utility

function u that better describes the investor's preferences.

As the majority of literature, the utility function is assumed to be a power

function, with the generic investor that is characterized by a constant relative

risk aversion.

As stated in chapter 3, this is consistent with the power utility function

described by u(W ) = W 1−γ

1−γ
, for γ ̸= 0.

For this type of function it is straightforward to compute that ∂u(W ) =

W−γ and ∂2u(W ) = −γW−γ−1.
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Now that the utility function and his derivatives are explicated it is pos-

sible to use them to rewrite the conditional expectations of At+1 and Bt+1

as:

Et[At+1] = (WtR
f )−γEt[ψ

1−γ
t+1 R

e
t+1] (5.23)

Et[Bt+1] = −γ(WtR
f )−γ−1Et[ψ

1−γ
t+1 R

e
t+1R

e′

t+1] (5.24)

Assuming Wt ̸= 0.

By using these simpli�cations in the explicit expression for the approx-

imated value of the optimal weights, it becomes:

x̄t =
Rf

γ
{Et[ψ

1−γ
t+1 R

e
t+1R

e′

t+1]}−1Et[ψ
1−γ
t+1 R

e
t+1] (5.25)

From the latter expression, it is possible to conclude that the optimal

portfolio allocation for a generic investor with constant relative risk aversion

is independent of the current or initial wealth Wt.

Moreover, assuming γ = 1, the optimal portfolio allocation is also inde-

pendent of the future portfolio returns ψt+1.

The above expression is a generic step to be applied in the backward

recursion, in order to determine the optimal portfolio allocation for all the

timestamps in the investment horizon.

The �rst step of this recursion is the determination of the optimal portfolio

weight at time T − 1, de�ned as x̄T−1.

It is necessary to notice that at time T − 1 the product of ψt is empty, so

ψT = 1.

This leads to:

x̄T−1 =
Rf

γ
{ET−1[R

e
TR

e′

T ]}−1ET−1[R
e
T ] (5.26)
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The latter formula slightly di�ers from the formula found by Brandt et

al. in their calculations because they lose the factor Rf.

The linear combination between the portfolio allocation in risky assets

and the Risk-free gross return is counter-intuitive: if Rf increases the alloca-

tion to the risky asset will be higher, while, following the CRRA assumptions,

if the Rf is higher and the Excess return remains the same, the relative volat-

ility of the asset return compared to the mean return decreases, therefore,

for an investor with CRRA this implies a higher allocation to the risky asset.

5.4 Compute expectation through regression

�Regression analysis is almost certainly the most important tool at the eco-

nometrician's disposal�.4

As mentioned before, the BGSS model relies on the approximation of

the two conditional expectation explicated above, to determine the optimal

portfolio allocation.

The approximation process of these conditional expectations is computed

by an across-path regression as the idea formulated by Longsta� and Schwartz5

in their paper �Valuing American Option by Simulation: A Simple Least-

Squares Approach�.

Their article was based on a simple approach that solves the most import-

ant problem in option pricing theory, the valuation of the optimal exercise

of American-style options.

This method is a powerful alternative to the traditional approaches, since

the key intuition is that the conditional expectation can be estimated from

the cross-sectional information in the simulation using the least squares.

4Brooks, Chris. Introductory econometrics for nance. Cambridge university press,
2019.

5Longsta�, Francis A., and Eduardo S. Schwartz. "Valuing American options by sim-
ulation: a simple least-squares approach." The review of �nancial studies 14.1 (2001):
113-147.
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As stated in their paper: �Speci�cally, we regress the ex-post realized pay-

o�s from continuation on functions of the values of the state variables. The

�tted value from this regression provides a direct estimate of the conditional

expectation function�.6

They refer to this method as the Least Squares Monte Carlo (LSM) ap-

proach. It is straightforward to implement as nothing more than the simple

least square method is required.

In the BGSS model, this approach is applied in order to approximate

the conditional expectations in the portfolio optimization problem trough an

across-paths regression.

This regression is employed at each timestamp on the M sample paths

of the N asset returns generated in the Monte Carlo simulation, �tted in a

linear model with the observations at time t + 1 for each generic element of

At+1 and Bt+1.

Let Xt denote the matrix with the M realization of the state variables at

time t at all simulation path.

For simplicity, it is assumed that in Xt there is only one state variable Zt

and a quadric polynomial is used as a basis. When more state variables are

involved, as in the model that will be implemented in the following chapter,

Xt grows larger as the asset returns and the cross-sections of the state vari-

ables should be involved.

With only one state variable, Xt is:

Xt =


1 Z1,t Z2

1,t

1 Z2,t Z2
2,t

...

1 ZM,t Z2
M,t

 (5.27)

6Longsta�, Francis A., and Eduardo S. Schwartz. "Valuing American options by sim-
ulation: a simple least-squares approach." The review of �nancial studies 14.1 (2001):
113-147.
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Assuming that for each path m there exist a linear combination between

the element in the mth row of the matrix Xt and the realizations ym,t+1:

ym,t+1 = Xm,tβ + ϵm (5.28)

where ϵm are residuals assumed to be an i.i.d. sequence.

The aim of this regression is the determination of an approximation β̂ of

β.

The �tted model is:

ym,t+1 = Xm,tβ̂ + em (5.29)

where em are the residuals of the �tted regression.

In this methodology n regressions are performed for Et[At+1] and n
2 re-

gressions are performed for Et[Bt+1], following the procedure explained above.

Using this regression method it is possible to approximate the value of

the conditional expectations for each realization of the state variables.

Therefore, for each path m the approximate optimal portfolio allocation

at each time t is given by:

x̂m,t =
Rf

γ
(b̂m,t+1|t)

−1âm,t+1|t (5.30)

5.5 Increase the order of the Tylor expansion

So far the BGSS was introduced using a second-order Taylor series of the

value function. To adapt the model for the e�ect of the non-zero third and

fourth moment of excess return, it is possible to increase the order of the

Tylor expansion of the value function:
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Jt(Wt, Zt) = max
xt

Et[Jt+1(WtR
f , Zt+1)

+ ∂1Jt+1(WtR
f , Zt+1)(Wtx

′
tR

e
t+1)

+
1

2
∂21Jt+1(WtR

f , Zt+1)(Wtx
′
tR

e
t+1)

2

+
1

6
∂31Jt+1(WtR

f , Zt+1)(Wtx
′
tR

e
t+1)

3

+
1

24
∂41Jt+1(WtR

f , Zt+1)(Wtx
′
tR

e
t+1)

4] (5.31)

To obtain the maximum, it is necessary to take the gradient of the fore-

going equation with respect to xt and set it equal to zero:

−→
0 = WtEt[∂1Jt+1(WtR

f , Zt+1)R
e
t+1

+W 2
t Et[∂

2
1Jt+1(WtR

f , Zt+1)(x
′
tR

e
t+1)R

e
t+1]

+
1

2
W 3

t Et[∂
3
1Jt+1(WtR

f , Zt+1)(x
′
tR

e
t+1)

2Re
t+1]

+
1

6
W 4

t Et[∂
4
1Jt+1(WtR

f , Zt+1)(x
′
tR

e
t+1)

3Re
t+1] (5.32)

Because of the high orders of xt it is possible to compute the above equa-

tion only implicitly.

Therefore, the solution of xt is written in terms of the other orders:
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x̄t = −{W 2
t Et[∂

2
1Jt+1(WtR

f , Zt+1)R
e
t+1R

e′

t+1]}−1

× {WtEt[∂1Jt+1(WtR
f , Zt+1)R

e
t+1]

+
1

2
W 3

t Et[∂
3
1Jt+1(WtR

f , Zt+1)(x
′
tR

e
t+1)

2Re
t+1]

+
1

6
W 4

t Et[∂
4
1Jt+1(WtR

f , Zt+1)(x
′
tR

e
t+1)

3Re
t+1]} (5.33)

The result of the above equation could be written as:

x̄t = −{WtEt[Bt+1]}−1 × {Et[At+1] +
W 2

t

2
Et[Ct+1(xt)] +

W 3
t

6
Et[Dt+1(xt)]}

(5.34)

Where Ct+1(xt) and Dt+1(xt) are:

Ct+1(xt) := ∂31Jt+1(WtR
f , Zt+1)(x

′
tR

e
t+1)

2Re
t+1 (5.35)

Dt+1(xt) := ∂41Jt+1(WtR
f , Zt+1)(x

′
tR

e
t+1)

3Re
t+1 (5.36)

For a generic investor with constant relative risk aversion preferences, it

is possible to approximate the terminal wealth equation and write the above

as:

Et[Ct+1(xt)] = −γ(−γ − 1)(WtR
f )−γ−2Et[ψ

1−γ
t+1 (x

′
tR

e
t+1)

2Re
t+1] (5.37)

Et[Dt+1(xt)] = −γ(−γ − 1)(−γ − 2)(WtR
f )−γ−3Et[ψ

1−γ
t+1 (x

′
tR

e
t+1)

3Re
t+1]

(5.38)
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Substituting these expression in the optimal portfolio weight formula it

gives:

x̄t =
Rf

γ
{Et[ψ

1−γ
t+1 R

e
t+1R

e′

t+1]}−1Et[ψ
1−γ
t+1 R

e
t+1]− {Et[ψ

1−γ
t+1 R

e
t+1R

e′

t+1]}−1

× {−1

2

(γ + 1)

Rf
Et[ψ

1−γ
t+1 (x

′
tR

e
t+1)

2Re
t+1]

+
1

6

(γ + 1)(γ + 2)

(Rf )2
Et[ψ

1−γ
t+1 (x

′
tR

e
t+1)

3Re
t+1]} (5.39)

Simplifying:

x̄t =
Rf

γ
{Et[bt+1]}−1Et[at+1]− {Et[bt+1]}−1

× {−1

2

(γ + 1)

Rf
Et[ct+1(xt)] +

1

6

(γ + 1)(γ + 2)

(Rf )2
Et[dt+1(xt)]} (5.40)

Calculating the conditional expectations of Ct+1(xt) and Dt+1(xt) with

the same procedure used for At+1 and Bt+1.

The above expression is an implicit expression, where the �rst part at the

right-hand side equals the solution obtained for xt by second-order expansion,

which is written as xt,0.

It is possible to approximate the solution above by an iteration process,

known as the Newton method, that follows:

x̃t,i = x̃t,0 − {Et[bt+1]}−1 × {−1

2

(γ + 1)

Rf
Et[ct+1(x̃t,i)]

+
1

6

(γ + 1)(γ + 2)

(Rf )2
Et[dt+1(x̃t,i)]} (5.41)
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Then it is possible either to choose to end the iteration process after

a �xed number of iterations or to continue the iteration process until the

di�erence between the two subsequent values is less than a speci�ed tolerance.

5.6 Imposing constraint on the portfolio weights

Empirically, almost all investors face constraints on the portfolio allocation

process. If the investor does not have the opportunity to borrow money or

go short on the securities, this means that 0 ≤ xt ≤ 1.

Once that constraints are applied, �the portfolio weights is bounded and,

therefore, the error is bounded as well�.7

Imposing constraints with only one risky asset is straightforward and does

not include any particular problem in the implementation.

At each timestamp of the recursive process the weights of the tied portfolio

are:

xconstrt = max(0,min(xunconstrt , 1)) (5.42)

In the multiple risky asset case, the xconstri,t calculation involves more com-

plex calculations: the constrained optimal portfolio allocation problem does

not follow the same equation as the single risky asset equation. It is in-

stead necessary to use an optimization algorithm for each timestamp t and

sample-path m, which increase signi�cantly the computation time.

The mathematical optimization deals with the problem of �nding numer-

ically minimum or maximums of an objective function.

Within this thesis the SciPy.optimize package in Python is used with the

constrained algorithm for multivariate scalar functions.

With a second order expansion the objective function is :

7Van Binsbergen, Jules H., and Michael W. Brandt. "Solving dynamic portfolio choice
problems by recursing on optimized portfolio weights or on the value function?." Compu-
tational Economics 29.3-4 (2007): 355-367.



CHAPTER 5. METHODOLOGY 58

max
xt

x′tEt[At+1]−
1

2

γ

Rf
x′tEt[Bt+1]xt

s.t. : 0 ≤ xt ≤ 1 (5.43)

Higher order Tylor expansions cannot be computed directly with this

routine, because xt is inside the conditional expectations of Ct+1 and Dt+1.

Therefore, the second-order Tyler series is used to �nd an initial solution

that is used as the guess solution in the iteration procedure afterwards.

Due to the di�culties to apply the short-sale and borrowing constraint

to the fourth-order Tyler series, in the multi-asset environment, the solu-

tion obtained by the second-order series is used as the optimal constrained

allocation.



Chapter 6

Implementation

This chapter aims to illustrate the analysis conducted in this thesis, where

the BGSS model is implemented using monthly data on prices and yields of

certain variables.

The examined yields were calculated assuming continuous capitalization

from monthly historical price series.

The U.S. Bond yields for di�erent maturities, the U.S. 10-years break-

even in�ation and the S&P 500 stock market index time-series have been

downloaded from the �Quandl� website.

The Treasury Bond yields refer to the monthly quotations of the U.S.

Treasury Bills with a 3-month constant maturity and the monthly quotations

of the 10-Year U.S Treasury Bond Rate with constant maturity.

Subsequently, the European government Bond benchmark with a duration

of 10 years, the MSCI World index and the other assets considered have been

derived from �Thomson Reuters Eikon�.

The analysed sample consists of 108 monthly data, covering the period

from January 2009 to January 2018. It was chosen to examine this 9-year

interval to assess the dynamics of equity returns over a fairly long period,

without incurring in the extreme global �nancial markets stress caused by

the global �nancial crisis in 2007.

59
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January 2018 was chosen as the endpoint of this study to backtest the

model's outcome in the following two years, even though the Covid-19 �nan-

cial crisis of 2020 leads to underestimating the results of this model.

6.1 VAR-Model

As stated before, the most common method to model the economy in eco-

nometrics is the VAR(p)-Model, that is known as a vector autoregressive

model and describe the evolution of a vector yt over the same sample period

t = 1, ..., T , as the linear function written as:

yt = c+ A1yt−1 + A2yt−2 + ...+ Akyt−p + ϵt (6.1)

With c that represents the intercept, Ak are the coe�cient assigned to

each past vector realization yt−k and ϵt that represents a vector of errors

terms ϵi,t satisfying:

� E(ϵt) = 0

� E(ϵtϵ′t) = Σ

� E(ϵtϵt−k) = 0 ∀k ̸= 0

In other words, all the error terms ϵi,t have mean equal to 0, its contem-

poraneous matrix Σ is constant in time and there is no correlation between

the errors therms across time.1

In this thesis, a VAR(1) is used to model the economy with log excess

return of the risky assets and state variables.

1Brockwell, Peter J., Richard A. Davis, and Matthew V. Calder. Introduction to time
series and forecasting. Vol. 2. New York: springer, 2002.
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The VAR(1)-model implemented by Brandt et al. (2005)2 with a risk-free

asset, only one risky asset and one state variable, that in this example is the

log dividend yield, is given by:

[
ret+1

zt+1

]
=

[
0.227

−0.155

]
+

[
0 0.060

0 0.958

][
ret

zt

]
+

[
ϵ1,t+1

ϵ2,t+1

]
(6.2)

where the innovation are bi-normally distributed:

[
ϵ1,t+1

ϵ2,t+1

]
∼ N(

[
0

0

]
,

[
0.0060 −0.0051

−0.0051 0.0049

]
(6.3)

These coe�cients are equal to those used by Brand et al. (2005) in

their model with a quarterly basis on the value-weighted CRSP Index. This

example implies an almost perfect correlation ρ = −0.95 between the excess

asset return and the state variable considered.

In this implementation the gross asset excess returns Re
t are used, while

in the VAR-model the log excess returns ret are used.

To calculate Re
t from the log return the following transformation is ap-

plied:

Re
t = Rf (er

e
t − 1) (6.4)

It is necessary to specify that the evolution of the state variables and the

assets return considered in the multi-asset model are calculated through a

VAR(1)-Model with the same speci�cations described above, involving mul-

tiple risky assets and a larger number of state variables.

2Brandt, Michael W., et al. "A simulation approach to dynamic portfolio choice with
an application to learning about return predictability." The Review of Financial Studies
18.3 (2005): 831-873.
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Figure 6.1: Multiasset VAR(1) input

Figure 6.1 illustrates all the time series used as inputs for the VAR(1)-

Model in the multi-asset case, where the �rst four time-series are the asset

returns historical values, while the latter �ve series are the state variables

returns historical values.

As stated above, the VAR model is useful when the goal is to predict

multiple time series variables using a single model. This model is an extension

of the univariate autoregressive model to k time series regressions, where the

lagged vectors of all the k series appear as regressors.

Hence, in the VAR model, each variable is modeled as a linear combina-
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tion of the past values of itself and the past values of the other variables in

the system.

The VAR model implemented in this thesis assumes that the passed time

series of the assets and state variables returns are stationary. It is assumed

that the non-stationary time series can often be transformed to be stationary

by �rst-di�erencing or some other methods, because the VAR model is not

appropriate for direct analysis of non-stationary time series.

In statistics, time series are stationary if they are not dependent on time.

That is, the mean or the variance of the observations are consistent over

time.

The Dickey-Fuller Test is a statistical test that can help determine whether

a process is stationary or not. It tests the null hypothesis that a unit root

is present in an autoregressive model. The alternative hypothesis states that

the unit root is not present and stationarity exists.

To implement this test in Python the statsmodels.tsa.stattools module

is used with the adfuller function, which performs the Augmented Dickey-

Fuller Test Statistical Test, returning the p-value and the value of the test

statistic.

The test statistic value should be negative and the p-value should be

beneath a threshold value to reject the null hypothesis.

Using a 5% con�dence level, If the p-value is less than 0.05 the null

hypothesis is rejected and the time series is considered to be stationary,

while if the p-value is greater than 0.05, it is not possible to reject the null

hypothesis because the data has a unit root and is non-stationary.

Table 6.1 presents the results of the test on the assets and state variables

returns considered in this thesis.

This table shows that all the p-values are less than the threshold value,

except for the US 10 years break-even in�ation that is slightly more than 0.06.

Hence, it is possible to state that the time series considered are stationary.
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ADF p-value

EU 10y Bonds -8.54725 9.42983e−14

EU ind RE -9.57857 2.18949e−16

EU index -8.48925 1.32718e−13

MSCI EMM -5.03002 1.93495e−05

US 10y Bonds -6.96449 8.98789e−10

US 3m Bills -7.44679 5.80987e−11

US 10y in� -2.74097 0.0672131
MSCI World -9.75107 8.01345e−17

S&P 500 -8.20327 7.13549e−13

Table 6.1: Augmented Dickey-Fuller Test results

After the con�rmation of the stationarity of the time series, it is straight-

forward to estimate the VAR model.

In Python, a feasible approach is to use statsmodel.tsa.vector_ar.var_model

to estimate individual equations. It contains methods that are useful for sim-

ultaneously modeling and analysing multiple time series.

For this implementation the VAR(1) model is processed and each variable

is modeled as a linear combination of the past values of all the variables

considered. The output is a system of 9 equations, one for each variable.

Table 6.2 shows the coe�cients of the estimation for each variable. The

sign of the coe�cients indicates the direction of the relationship between

term and response, while the size of the coe�cients indicate the signi�cance

of the e�ect that a term has on the response variable.

These coe�cient have the same interpretation as the coe�cients in any

regression.

The standard errors of the coe�cients measure the precision of the es-

timation. The smaller the standard error, the more precise the estimate.

Due to the di�culties to interpret the large number of coe�cient, the

interest is not in these coe�cients, but rather on the dynamic properties of

the whole model.
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In order to estimate the dynamic properties of the whole model it is

important to focus on the Impulse Response Functions (IRFs) of the VAR

model, which provide the cumulative total derivatives of the endogenous

variables with respect to an exogenous shock to one of the variables i.e.

tracks the impact of any variable on the others in the system. Technically it

is equivalent to invert the VAR representation to obtain the vector moving

average representation and describes the reaction of the system as a function

of time.

In Python the irf function of the statsmodel.tsa.vector_ar.var_model

could be used to obtain forecast error impulse responses.

The IRFs are plotted in Figure 6.2 as a matrix 9× 9 of graphs, with the

impulse variable (the shock) on one dimension and the response variable on

the other and with a time lag of 10 periods.

The aim is to study the interdependence between the variables through

the decomposition of the dynamic system in its outputs when a brief input

signal, called impulse, is presented.

If the VAR is stable, then the Impulse Response Functions should con-

verge to zero, as the time from the impulse get larger and one-time shock

should not have permanent e�ects.

It could be noticed as almost all the IRFs of the VAR model implemented

decay to zero as the time horizon increases, underlying the stability of the

model.

Only few impulse response functions decay to zero slowly, hence the shock

to the variable tend to change its value for many periods.

The diagonal panels in Figure 6.2 show the e�ects of shocks of a variable

on the same variable, while the o�-diagonal panels show the e�ects of the

shocks of a variable on all the other variables.

Table 6.3 presents the correlation matrix of the residuals derived from

the VAR model. While the correlation refers to the degree and the direction
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Figure 6.2: Impulse Response Analysis of the VAR model
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to which a pair of variables are linearly correlated and ranges from −1.0 to

+1.0, a correlation matrix is a square table showing the correlation coe�cient

between sets of variables. This matrix is symmetrical, with a line of 1 going

from the top left to the bottom right.

The graphs in Figure 6.3 illustrates all the simulated paths of the scenario

generation for two state variables and two risky assets.

The plotted state variables returns are derived from the US 3 month

Treasury Bill monthly yields and the S&P 500 index monthly return, while

the plotted assets returns are derived from the Euro area 10 year Government

Benchmark Bond yields and the European Stock Index monthly return.

6.2 Set-up of the model

The BGSS model is applied to a set of four risky assets and �ve state vari-

ables.

The evolution of these assets and state variables is simulated with the

VAR(1)-model introduced above.

The algorithm implemented assumes monthly rebalancing of the portfolio

weights, which is as often as the scenario model permits.

The main constraints of the model are both the borrowing and short-sale

constraints.

A polynomial of degree two is used as a basis for the regression, including

the cross-terms of the state variables.

The four asset classes considered are:
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Figure 6.3: 10,000 Monte Carlo simulations of two assets and two state vari-
ables returns
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Mean Rt Standard deviation Rt

EU 10y Bonds 0.028255 0.003455
EU ind RE 0.053131 0.215890
EU index 0.020327 0.230254

MSCI EMM 0.053788 0.202127

Table 6.4: Description of asset classes

� European government Bond benchmark with a duration of 10 years,

traded monthly to keep the maturity of the portfolio constant.

� Indirect Real Estate (RE) Europe.

� Stock of European MSCI-index

� Stock of emerging markets (EMM).

All these assets are considered to be characterized by enough liquidity to be

traded in each desirable amount.

The �ve most important drivers are selected as state variables and, even if

the main assets are mostly non-American, the main drivers of the VAR-model

are American:

� 3 months US nominal interest rate.

� 10 years US nominal interest rate.

� Stock of World MSCI-index.

� 10 years break-even in�ation US.

� Stock of S&P500 index.

Basis statistics of these returns are in Table 6.4.
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Figure 6.4: Index simulations of: European 10-years government Bond bench-
mark, Indirect Real Estate (RE) Europe, Stock of European MSCI-index and
Stock of emerging markets (EMM).

We see that in terms of standard deviation, the bond is relatively safe,

while the stocks EMM have the highest mean excess return but are also

highly volatile.

In the implementation of this model, Monte Carlo simulation is used to

generate a sample of 10,000 economic scenarios.

The evolution of the asset returns simulations is displayed in Figure 6.4,

while the evolution of the state variables simulations are displayed in Figure

6.5. All these plots start from an initial value of 100.
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Figure 6.5: Index simulations of: 3-months US nominal interest rate, 10-
years US nominal interest rate, 10 years break-even in�ation US, Stock of
S&P500 index and Stock of World MSCI-index.
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6.3 Description of the dynamic strategy

As introduced above, the algorithm involves the generation of 10,000 sim-

ulations from the VAR-model and the application of the constrained solu-

tion method based on the second-order Tylor expansion for an investor with

CRRA preferences on an investment horizon of 36 months.

While the VAR-model is used to �nd a model that could re�ect the asset

returns dynamics, the Monte Carlo simulation is involved to forecast 10,000

simulated paths for each variable.

Each path is generated from the same model, with an error term drawn

randomly from a multivariate normal distribution with a vector of zeros as

the mean and the covariance between the state variables and assets error

terms as the covariance matrix.

All Variables are monthly generated, as in the dynamic portfolio optim-

ization algorithm the rebalancing is assumed to be monthly.

For the regression, an ordinary least square (OLS) is used.

This method is based on the minimization of the total sum of the squares

of the vertical distances from the point to the line and it is the most common

method used to �t a line with the data.

A polynomial of degree two is used as a basis for the regression, where

the regression matrix includes both the asset returns and the state variables

cross-terms. The asset returns are considered as is assumed that the asset

returns at t+ 1 are correlated to the asset returns at t.

Under this methodology the portfolio allocation is di�erent for each sim-

ulated path and the mean allocation is used to visualize the strategy, as well

as the standard deviation.

However, behind these �uctuations, there is an upward trend in equity

allocation over a long investment horizon. This trend is comparable with the

results found in most literature: the longer the horizon T − t is, the greater

the equity allocation is.
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6.4 Numerical issues

Under a second-order Tylor expansion, an horizon of 36 months, constant

relative risk aversion preferences with γ = 5, OLS regression and constraints

on the portfolio weights, the gains of a dynamic allocation strategy are trans-

parent.

Unfortunately, the method does not work correctly for high values of T

or γ.

An increase in the investment horizon gives peaks in the standard devi-

ation caused by extreme portfolios allocation. The position and the mag-

nitude of these extreme weights di�er between the various simulations but

their presence is persistent.



Chapter 7

Results

7.1 Mean asset allocation and performance meas-

ures

In Figure 7.1 the mean values of both the assets and the state variables

simulated returns are displayed with the mean asset allocation against the

remaining investment horizon.

Looking at the mean asset allocations in Figure 7.1, behind the �uctu-

ations, it is possible to notice a trend of decreasing allocation to the risky

asset, as the uncertainty about the future outcomes increases with the hori-

zon and the optimal portfolio choice shifts to more certain allocations.

It is important to state that these �gures assume a path-independent

dynamic, as they are computed as the mean of all the individual dynamic

strategies.

As mentioned in the previous chapter, the dynamic strategy considered

in this thesis is path-dependent, therefore the optimal portfolio rebalancing

at each step is dependent on each simulated path.

To underline the advantages of the dynamic strategies, it is possible to

compare this strategy with the optimal mean-variance strategy and other

76
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static strategies.

To compare the performances, in Figure 7.1, with an initial wealth W1 =

100, the backtested values of wealth at time t,Wt, are plotted for the dynamic

strategy implemented in this thesis, for the myopic mean-variance optimal

strategy and for four static strategies.

In the static allocations, the investor is considered to invest fully in the

asset classes or in the optimal mean-variance portfolio, while in the dynamic

strategy it is considered to monthly rebalance its investment following the

mean allocations suggested by the dynamic algorithm.

The bottom-left graph of Figure 7.1 shows the backtest of the dynamic

strategy, where it could be noticed that, even with the �nancial e�ects of the

COVID-19 recession, the dynamic strategy terminal wealth is always higher

than the wealth generated by the static strategies at every time step, slightly

underperforming the strategy that invests fully in indirect European Real

Estate at the end of the investment horizon.

The bottom-right graph of Figure 7.1 compares the backtested wealth

values of the Dynamic Strategy with the Myopic mean-variance optimization

strategy values, highlighting the gains of the Multiasset over the Myopic

static strategy.

The di�erence between the dynamic and myopic policies is called hedging

demand. It arises when, deviating from the one-period optimal portfolio

choice, the investor tries to hedge against changes in the investment oppor-

tunities.

The hedging demand is de�ned as the �demand for �nancial securities

that are used to diversify or reduce risk beyond normal mean-variance diver-

si�cation�.1

As stated in Chapter 2, classical Myopic portfolio selection �nds portfolio

weights based on �rst and second moments, assuming that investment op-

portunities are constant or returns are independently distributed over time

1Hedging Demand. (n.d.) Farlex Financial Dictionary. (2009).
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(IID).

The myopic solution does not take into account events beyond the cur-

rent period, while long-term investment problems focus on �nding portfolio

weights with variable investment opportunities over several periods. Thus,

the multi-period investor's portfolio di�ers from the single-period investor

due to the hedging demand.

As stated by Campbell and Viceira: �While the myopic assumption allows

analytical tractability and abstracts away from dynamic hedging consider-

ations, there is growing evidence that intertemporal hedging demands may

comprise a signi�cant part of the total risky asset demand�.2

As a result, investors will hold lower related assets in the current period

to cover the possibility of lower expected returns in future periods.

The economic role of the hedging demands is straightforward: when the

stock return is negatively related to the anticipated portfolio gains, the gains

in one o�set the losses in the other, leading to a lower variability of wealth.

Figure 7.2 illustrates the intertemporal mean hedging demand for stocks

and bonds in the dynamic strategy implemented, as the means of the dif-

ferences between the dynamic optimal portfolio allocations and the Myopic

mean-variance optimal weights, shown in Table 7.1.

The main results that could be observed are the decreasing trend of the

hedging demand for MSCI Emerging Markets Stocks and the increasing trend

of the hedging demand for European Government Bonds.

The ratio behind these trends is that when the investment horizon in-

creases, the hedging demand decreases for the riskier assets and increase for

the safer assets due to the increased uncertainty about future returns.

Basic statistics of the overall hedging demands are shown in the table.

2Campbell, John Y., and Luis M. Viceira. "Strategic asset allocation." Book Manu-
script, Harvard University, November (2000).
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Figure 7.1: Asset's mean returns, State Variable's mean returns, mean values
of the portfolio allocations and Terminal Wealth backtested values following
the Dynamic Strategy, the static strategies and the myopic mean-variance
strategy.

Asset Classes EU 10y Bonds EU ind RE EU index MSCI EMM

Mean 7.456% 4.028% 32.168% 56.348%
Standard Deviation 5.953% 5.226% 7.567% 11.112%

(a) Basic statistics of the dynamic strategy overall allocations
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Asset Classes EU 10y Bonds EU ind RE EU index MSCI EMM

Weights 20.0% 2.8% 33.3% 43.9%

Table 7.1: Mean-Variance Myopic optimal portfolio weights

Figure 7.2: Intertemporal hedging demand

Mean Standard Deviation
EU 10y Bonds -0.122813 0.0606158
EU ind RE 0.0105134 0.0439359
EU index -0.0053567 0.0767072

MSCI EMM 0.117656 0.109402

(a) Basic statistics of the hedging demand
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7.2 Gains of the dynamic strategy

In this thesis, a realistic multi-asset investment problem for an investor who

has access to several asset classes is solved.

Despite the investor has to comply with borrowing and short-sale con-

straints, the gains of a dynamic strategy are clear.

One of the most important features of the dynamic strategy is path-

dependency, not expressed it the previous �gures because of the path-independent

gains computed as the mean of all individual dynamic strategies.

In order to consider the path-dependency of the dynamic strategy, the

histogram of the terminal values WT , forecasted by the dynamic strategy,

with an initial wealth of W1 = 100, is shown in Figure 7.3 and is compared

to the histograms of all the possible values of WT , obtained by the myopic

strategy and by the four static strategies of fully investing in the single risky

assets.

The mean and the distribution of the dynamic strategy terminal wealth

is high compared to the other possible static strategies.

The static strategies of investing fully in the risky assets, except for the

bond asset class, show similar peaks on the distribution respect to the multi-

asset dynamic strategy outcome.

The most important di�erences between the distributions can be noticed

on the tails of the distribution in Figure 7.3, where it can be noticed that

the static strategies present higher variances of terminal wealth and the dis-

tributions of the left tail values are more heavy-tailed.

To highlight this feature, a direct comparison between the static and the

dynamic strategy is represented in Figure 7.4.

In Table 7.2 basic statistics of Terminal Wealth values of the four static

strategies, the static strategy and the multi-asset strategy are displayed with

the Sharpe Ratio and the yearly Value at Risk of each strategy with a 95%

con�dence level.

It is possible to see that, in terms of standard deviation, the Bond is
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WT mean WT st.dev Sharpe Ratio VaR (α = 5%) YoY

EU 10y bond strategy 107.0713 1.8649 3.791785 -1.65922%
EU RE index strategy 174.4029 57.1305 1.302332 -31.2059%

EU Stocks index strategy 197.1392 64.4095 1.495063 -31.1243%
MSCI EMM strategy 217.2057 61.9733 1.729869 -27.1804%
Myopic Strategy 182.6368 41.5680 1.94128 -21.6817%
Dynamic Strategy 241.7225 68.4474 2.070531 -26.9751%

Table 7.2: Basic Statistics for six di�erent strategies

relatively safe, while the Stocks of the EMM index and the Stocks of the

European index have both greater mean returns but are also very volatile.

We can conclude that applying a dynamic strategy has clear gains over

applying a static strategy.

By a path-dependent rebalancing strategy, it is possible to increase the

mean portfolio return with signi�cantly lower downside risk.

7.3 Alternative individual characteristics

This section involves the computation of the optimal strategies for investors

with di�erent individual characteristics.

Those characteristics involve di�erent risk preferences, expressed by γ,

and investment horizons, expressed by T .

First, the model is solved for more aggressive, γ = 1, and more conser-

vative, γ = 8, individuals.

The results of these computations show that more aggressive individuals

allocate on average more to the riskier assets than the benchmark investor

with γ = 5. In contrast, more conservative investors shift earlier to long-term

nominal bonds than the benchmark investor.
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Figure 7.3: Terminal wealth values with the multi-asset dynamic strategy,
Terminal wealth values with the myopic strategy and Terminal wealth values
with static strategies for each of the four assets.
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Figure 7.4: WT for the optimal Dynamic and Myopic strategies

Comparing the asset allocation strategies for di�erent investment horizons

is more di�cult than comparing di�erent risk preferences because as the

horizon increases, the method starts performing badly.

Once the combination of γ and T reaches a certain level, the regression

does not work properly. The allocation to all risky assets tends to zero and

the wealth is fully invested in the less risky asset, which cannot be optimal.

Investors with γ = 1 are an exception as their portfolio weights at each

time does not depend on the factor ψ1−γ
t+1 .

In Figures 7.5, 7.6, 7.7 and 7.8 the distribution of terminal wealth for four

values of risk aversion γ are shown for T =36, 48, 60, 72 respectively.

It is possible to notice that for lower values of γ the distribution of ter-

minal wealth is more heavy-tailed, especially the righter tail becomes more

profound, an e�ect which is leveraged by an increase of T .

Additionally, the tables show the values of the performance measures for

the di�erent values of risk aversion and the length of the investment horizon.

The four tables again show us the high gains of dynamic strategies.
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Figure 7.5: Terminal wealth distribution for T = 36 and γ=1,3,5,8

Risk aversion γ WT mean WT st.dev

1 243.449077 70.080151
3 242.802563 68.769423
5 241.722493 68.44743
8 240.433486 67.485338

(a) Multiasset strategy terminal wealth basic statist-
ics for T=(36)
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Figure 7.6: Terminal wealth distribution for T = 48 and γ=1,3,5,8

Risk aversion γ WT mean WT st.dev

1 296.072633 101.557279
3 295.477859 97.8137
5 294.648436 98.305707
8 295.291044 98.197249

(a) Multiasset strategy terminal wealth basic statist-
ics for T=(48)
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Figure 7.7: Terminal wealth distribution for T = 60 and γ=1,3,5,8

Risk aversion γ WT mean WT st.dev

1 353.228912 134.83212
3 350.064984 132.530982
5 347.607607 134.866769
8 348.177277 133.65403

(a) Multiasset strategy terminal wealth basic statist-
ics for T=(60)
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Figure 7.8: Terminal wealth distribution for T = 72 and γ=1,3,5,8

Risk aversion γ WT mean WT st.dev

1 416.918002 181.076248
3 413.199366 179.193595
5 412.643291 178.628045
8 412.735731 179.099352

(a) Multiasset strategy terminal wealth basic statist-
ics for T=(72)
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Conclusions

In the last decades, dynamic portfolio allocation has become a popular sub-

ject of research.

Despite this interest, closed-form and analytical solutions are available

only under strict assumptions of return dynamics, and numerical approaches

are needed.

Nowadays several methods have been published, but almost all of them

su�er from in�exibility towards the number of assets and require a very

speci�c structure of the asset's return dynamics.

The method published by Brand et al. (2005)1 represents an exception

as they developed a simulation-based method that involves Taylor series,

backward recursion and regression analysis to predict returns. The so-called

BGSS method is fast, accurate and �exible in the way asset returns dynamic

are modeled.

However, in their paper, they showed results for a situation with only one

risky asset and one state variable.

In this thesis, the aim was to apply this method in a realistic environment

of multiple assets, without strict assumptions about the return dynamics,

1Brandt, Michael W., et al. "A simulation approach to dynamic portfolio choice with
an application to learning about return predictability." The Review of Financial Studies
18.3 (2005): 831-873.
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various state variables and portfolio constraints.

With the knowledge obtained by the Brandt et al. (2005) paper, an

evaluation of a more realistic environment, that consists of four risky asset

classes with di�erent mean and volatilities, is computed.

In this model, �ve state variables were included and were supposed to

contain su�cient predicting power.

The multivariate investment environment dynamic strategy outperforms

the static strategies as described in Chapter 7.

Unfortunately for low values of γ and long investment horizon, it is still

possible to observe numerical issues. These issues lead to strategies that

invest fully in the less risky asset, which is suboptimal.

Of course, the methodology considered in this thesis is capable of dealing

with a more realistic investor's environment.

Implementation is therefore recommended, although additional research

is needed.

For general future research, it would be appropriate to investigate if other

regression methods are capable of reducing the numerical issues observed.

Other researches could be appropriate about the quanti�cation of the

investor's risk aversion, to �nd a good proxy of the exact individual's risk

aversion parameter.

If the intuitions behind the methodology of this thesis are correct, this

model would be a very suitable candidate for implementation.
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Appendix

Python code:

1 import numpy as np

2 import s ta t smode l s . ap i as sm

3 import pandas as pd

4 import quandl

5 import datet ime

6 from s ta t smode l s . t sa . s t a t t o o l s import a d f u l l e r

7 from s c ipy . opt imize import minimize

8 from s ta t smode l s . t sa . vector_ar . var_model import VAR

9

10 #========================================================================#

11 # FUNCTIONS

12 #========================================================================#

13

14 con_ON = 1 #Constra int we igh t s 0 ,1 comand

15

16 #========================================================================#

17 # DEFINE GLOBAL PARAMETERS

18 #========================================================================#

19

20 M=10000 #number o f paths

21 T=36 #Horizon (monthly data )

22 R_f = 1.000 #Risk f r e e ra t e (monthly )

23 gamma = 5 #Risk avers ion

24 s t a r t = datet ime . datet ime (2009 , 1 , 1)

25 end = datet ime . datet ime (2018 , 1 , 1)

26

27 #========================================================================#

28 # DATA

29 #========================================================================#

30

31 f i l e_ l o c = "path . x l sx "
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32 df = pd . read_excel ( f i l e_ l o c , index_col=None , na_values=[ 'NA' ] )

33 columns = df . columns

34

35 #========================================================================#

36 # ASSETS

37 #========================================================================#

38

39 MSCI_em_mkt = df [ [ columns [ 4 7 ] , columns [ 4 8 ]

40 ] ] . set_index ( columns [ 4 7 ] )

41 EU_index = df [ [ columns [ 5 3 ] , columns [ 5 4 ] ] ] . set_index ( columns [ 5 3 ] )

42 EU_10y_bonds = quandl . get ( "ECB/FM_M_U2_EUR_4F_BB_U2_10Y_YLD" , authtoken="

####") /100

43 EU_ind_real_estate = pd . DataFrame ( quandl . get ( "NASDAQOMX/NQEU8600" , authtoken

= "####") [ ' Index Value ' ] )

44

45 #========================================================================#

46 # STATE VARIABLES

47 #========================================================================#

48

49 in f l_10y = quandl . get ( "FRED/T10YIE" , authtoken="####") /100

50 US_bond = quandl . get ( 'USTREASURY/YIELD ' , authtoken = "####") /100

51 SP500_index = quandl . get ( "MULTPL/SP500_INFLADJ_MONTH" , authtoken="####")

52 MSCI_World = df [ [ columns [ 2 9 ] , columns [ 3 0 ] ] ] . set_index ( [ columns [ 2 9 ] ] )

53

54 #========================================================================#

55 # DATA MODELING

56 #========================================================================#

57

58 A_EU_10y_bonds_ret = (np . l og (EU_10y_bonds+1)/12) . dropna ( ) . resample ( "M" ) .mean

( )

59 A_EU_ind_real_estate_ret =(np . l og ( EU_ind_real_estate )=np . l og (

EU_ind_real_estate . s h i f t (1 ) ) ) . dropna ( ) . resample ( "M" ) .sum( )

60 A_MSCI_em_mkt_ret =(np . l og (MSCI_em_mkt)=np . l og (MSCI_em_mkt. s h i f t (1 ) ) ) . dropna

( ) . resample ( "M" ) .sum( )

61 A_EU_index_ret=(np . l og (EU_index)=np . l og (EU_index . s h i f t (1 ) ) ) . dropna ( ) .

resample ( "M" ) .sum( )

62 SV_10y_bond = (np . l og (US_bond [ ' 10 YR' ]+1) /12) . dropna ( ) . to_frame ( ) .

resample ( "M" ) .mean ( )

63 SV_3m_bond = (np . l og (US_bond [ ' 3 MO' ]+1) /12) . dropna ( ) . to_frame ( ) . resample

( "M" ) .mean ( )

64 SV_10y_br_infl = (np . l og ( in f l_10y+1)/12) . dropna ( ) . resample ( "M" ) .mean ( )

65 SV_SP500_index = (np . l og ( SP500_index )=np . l og ( SP500_index . s h i f t (1 ) ) ) . dropna ( )

. resample ( "M" ) .sum( )

66 SV_MSCI_World = (np . l og (MSCI_World)=np . l og (MSCI_World . s h i f t (1 ) ) ) . resample ( "

M" ) .sum(

67
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68 #========================================================================#

69 # DATAFRAMES

70 #========================================================================#

71

72 frames_a =[A_EU_10y_bonds_ret , A_EU_ind_real_estate_ret , A_EU_index_ret ,

A_MSCI_em_mkt_ret ]

73 frames_sv=[SV_10y_bond ,SV_3m_bond, SV_10y_br_infl , SV_MSCI_World,

SV_SP500_index ]

74

75 df_sv = pd . concat ( frames_sv , ax i s = 1) . dropna ( ) [ s t a r t : end ]

76 df_a = pd . concat ( frames_a , ax i s = 1) . dropna ( ) [ s t a r t : end ]

77

78 a s s e t_ l i s t = [ 'A_EU_10y_bonds_ret ' , ' A_EU_ind_real_estate_ret ' , '

A_EU_index_ret ' , 'A_MSCI_em_mkt_ret ' ]

79 s v_ l i s t= [ 'SV_10y_bond ' , 'SV_3m_bond ' , ' SV_10y_br_infl ' , 'SV_MSCI_World ' , '

SV_SP500 ' ]

80

81 df_a . columns = a s s e t_ l i s t

82 df_sv . columns = sv_ l i s t

83

84 frames = [ df_a , df_sv ]

85 df = pd . concat ( frames , ax i s=1) . dropna ( )

86

87 #========================================================================#

88 # DICKY FULLER TEST

89 #========================================================================#

90

91 def d i cky_fu l l e r ( data ) :

92

93 index = data . columns

94 data = data . dropna ( ) . to_numpy ( )

95 dicky_ful l er_matr ix= np . z e r o s ( ( len ( data .T) ,2 ) )

96

97 for i in range ( len ( data .T) ) :

98

99 adf_test = a d f u l l e r ( data [ : , i ] )

100 dicky_ful l er_matr ix [ i ,0 ]= adf_test [ 0 ]

101 dicky_ful l er_matr ix [ i ,1 ]= adf_test [ 1 ]

102 dicky_ful l er_matr ix = pd . DataFrame ( dicky_ful ler_matr ix , columns = [ '

ADF' , 'p=value ' ] , index=index )

103

104 return dicky_ful l er_matr ix

105

106 dicky_matrix_sv = d i cky_fu l l e r ( df_sv )

107 dicky_matrix_a = d i cky_fu l l e r ( df_a )

108 dicky_matrix = d i cky_fu l l e r ( df )
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109

110 #========================================================================#

111 # VAR

112 #========================================================================#

113

114 def VAR_df( data ) :

115 data = data . dropna ( ) . to_numpy ( )

116 model = VAR( data )

117 s o l u t i o n = model . f i t ( )

118

119 return s o l u t i o n

120

121 so lut ion_sv = VAR_df( df_sv )

122 so lut ion_a = VAR_df( df_a )

123 s o l u t i o n = VAR_df( df )

124

125 params = so l u t i o n . params

126 re s id_cor r = s o l u t i o n . r e s id_cor r

127

128 #========================================================================#

129 # MONTECARLO SIMULATION

130 #========================================================================#

131

132 #Monte Carlo s imu la t i ons

133 #Simulate Paths o f a s s e t l o g re turn ( r ) and s t a t e v a r i a b l e ( dp )

134 #simula te M hypo t e t i c a l sample paths o f r and dp o f l engh t T

135 #These Paths are s imula ted from the known es t imated j o i n t dynamics o f the

re turns and s t a t e va r i a b l e s , g iven by a Vector Auto Regress ion

136

137 #I n i t i a l i z e Matrices

138 N_asset =( int ( len ( df_a .T) ) )

139 N_sv=( int ( len ( df_sv .T) ) )

140 N_tot =N_sv+N_asset

141 x = np . z e r o s ( (M,T=1,N_asset ) )

142 x_0 = np . z e r o s ( N_asset )

143 r = np . z e r o s ( ( N_asset ,T,M) )

144 sv = np . z e r o s ( (N_sv ,T,M) )

145 ep s i l o n = np . z e r o s ( (M,T, N_tot ) )

146

147 #I n i t i a l i z e e p s i l on with random va lue s

148 E_mean = np . z e r o s (N_tot )

149

150 E_cov = so l u t i o n . res id_acov ( ) [ 0 , : , : ]

151

152 ########################simu la t ion

153 #Run a l l the s imu la t ion M, fo r each t imes tep T
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154

155 for m in range (M) :

156 for t in range (T) :

157 ep s i l o n [m, t , : ] = np . random . mult ivar iate_normal (E_mean, E_cov)

158

159 for m in range (M) :

160

161 r [ : , 0 ,m] = df_a . t a i l ( 1 )

162 sv [ : , 0 ,m]= df_sv . dropna ( ) . t a i l ( 1 )

163

164 for t in range (T=1) :

165 for m in range (M) :

166 for j in range ( N_asset ) :

167 r [ j , t+1,m]= params [ 0 , j ] +params [ 1 : N_asset+1, j ] . dot ( r [ : , t ,m] )+

params [ N_asset+1: , j ] . dot ( sv [ : , t ,m] ) + ep s i l o n [m, t , j ]

168

169 for i in range (N_sv) :

170 sv [ i , t+1,m]= params [ 0 , i+N_asset ]+params [ 1 : N_asset+1, i+N_asset ] .

dot ( r [ : , t ,m] )+params [ N_asset+1: , i+N_asset ] . dot ( sv [ : , t ,m] )+

ep s i l o n [m, t , i+N_asset ]

171

172 R_e = R_f*np . exp ( r )=R_f #exces s re turn

173

174 #========================================================================#

175 # WEIGHTS SOLVER

176 #========================================================================#

177

178 t=T=1

179

180 X = np . t ranspose (np . array ( [ np . ones (M) , r [ 0 , t =1 , : ] , r [ 1 , t =1 , : ] , r [ 2 , t =1 , : ] , r [ 3 ,

t =1 , : ] , sv [ 0 , t =1 , : ] , sv [ 1 , t =1 , : ] , sv [ 2 , t =1 , : ] , sv [ 3 , t =1 , : ] , sv [ 4 , t =1 , : ] , sv [ 0 ,

t =1 , : ]**2 , sv [ 1 , t =1 , : ]**2 , sv [ 2 , t =1 , : ]**2 , sv [ 3 , t =1 , : ]**2 , sv [ 4 , t =1 , : ]**2 , sv

[ 0 , t =1 , : ]* sv [ 1 , t =1 , : ] , sv [ 0 , t =1 , : ]* sv [ 2 , t =1 , : ] , sv [ 0 , t =1 , : ]* sv [ 3 , t =1 , : ] , sv

[ 0 , t =1 , : ]* sv [ 4 , t =1 , : ] , sv [ 1 , t =1 , : ]* sv [ 2 , t =1 , : ] , sv [ 1 , t =1 , : ]* sv [ 3 , t =1 , : ] , sv

[ 1 , t =1 , : ]* sv [ 4 , t =1 , : ] , sv [ 2 , t =1 , : ]* sv [ 3 , t =1 , : ] , sv [ 2 , t =1 , : ]* sv [ 4 , t =1 , : ] , sv

[ 3 , t =1 , : ]* sv [ 4 , t = 1 , : ] ] ) )

181

182 ahat = np . z e r o s ( (M, N_asset ) )

183 B = np . z e r o s ( (M, N_asset , N_asset ) )

184 bhat = np . z e r o s ( (M, N_asset , N_asset ) )

185

186 for i in range ( N_asset ) :

187 abeta = sm .OLS( r [ i , t , : ] ,X) . f i t ( )

188 ahat [ : , i ] = abeta . p r ed i c t (X)

189

190 for m in range (M) :



APPENDIX 102

191 B[m, : , : ] = r [ : , t ,m] [ np . newaxis ] .T* r [ : , t ,m]

192

193 for i in range (2 ) :

194 for j in range (2 ) :

195 bbeta = sm .OLS(B [ : , i , j ] ,X) . f i t ( )

196 bhat [ : , i , j ] = bbeta . p r ed i c t (X)

197

198 def ob j e c t i v e ( x ) :

199 y1 = x [ 0 ]

200 y2 = x [ 1 ]

201 y3 = x [ 2 ]

202 y4 = x [ 3 ]

203 y = np . array ( [ y1 , y2 , y3 , y4 ] ) [ np . newaxis ]

204 output= =(y . dot ( ahat [m, : ] [ np . newaxis ] .T)=0.5*gamma/R_f*y . dot ( bhat [m

, : , : ] ) . dot ( y .T) )

205 return output

206

207 cons = ({ ' type ' : ' eq ' , ' fun ' : lambda x : np .sum( x )=1})

208 b1 = (0 , 1 )

209 bounds = [ b1 ]*N_asset

210

211 i f con_ON == 1 :

212

213 for m in range (M) :

214 s o l = minimize ( ob j e c t i v e , x_0 , c on s t r a i n t s=cons , bounds=bounds , method

= 'SLSQP ' )

215 x [m, t =1 , : ] = s o l . x

216 i f con_ON == 0 :

217

218 for m in range (M) :

219

220 s o l = minimize ( ob j e c t i v e , x_0 , c on s t r a i n t s=cons , method= 'SLSQP ' )

221 x [m, t =1 , : ] = s o l . x

222

223 #SECOND PERIOD

224

225 t=T=2

226

227 X = np . t ranspose (np . array ( [ np . ones (M) , r [ 0 , t =1 , : ] , r [ 1 , t =1 , : ] , r [ 2 , t =1 , : ] , r [ 3 ,

t =1 , : ] , sv [ 0 , t =1 , : ] , sv [ 1 , t =1 , : ] , sv [ 2 , t =1 , : ] , sv [ 3 , t =1 , : ] , sv [ 4 , t =1 , : ] , sv [ 0 ,

t =1 , : ]**2 , sv [ 1 , t =1 , : ]**2 , sv [ 2 , t =1 , : ]**2 , sv [ 3 , t =1 , : ]**2 , sv [ 4 , t =1 , : ]**2 , sv

[ 0 , t =1 , : ]* sv [ 1 , t =1 , : ] , sv [ 0 , t =1 , : ]* sv [ 2 , t =1 , : ] , sv [ 0 , t =1 , : ]* sv [ 3 , t =1 , : ] , sv

[ 0 , t =1 , : ]* sv [ 4 , t =1 , : ] , sv [ 1 , t =1 , : ]* sv [ 2 , t =1 , : ] , sv [ 1 , t =1 , : ]* sv [ 3 , t =1 , : ] , sv

[ 1 , t =1 , : ]* sv [ 4 , t =1 , : ] , sv [ 2 , t =1 , : ]* sv [ 3 , t =1 , : ] , sv [ 2 , t =1 , : ]* sv [ 4 , t =1 , : ] , sv

[ 3 , t =1 , : ]* sv [ 4 , t = 1 , : ] ] ) )

228
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229 p s i = np . z e r o s (M)

230

231 for m in range (M) :

232 p s i [m] = (x [m, t , : ] . dot ( r [ : , t+1,m] )+R_f) **(1=gamma)

233

234 for i in range ( N_asset ) :

235 abeta = sm .OLS( p s i * r [ i , t , : ] ,X) . f i t ( )

236 ahat [ : , i ] = abeta . p r ed i c t (X)

237

238 for m in range (M) :

239 B[m, : , : ] = r [ : , t ,m] [ np . newaxis ] .T* r [ : , t ,m]

240

241 for i in range (2 ) :

242 for j in range (2 ) :

243 bbeta = sm .OLS( p s i *(B [ : , i , j ] ) ,X) . f i t ( )

244 bhat [ : , i , j ] = bbeta . p r ed i c t (X)

245

246 i f con_ON == 1 :

247

248 for m in range (M) :

249

250 s o l = minimize ( ob j e c t i v e , x_0 , c on s t r a i n t s=cons , bounds=bounds , method

= 'SLSQP ' )

251 x [m, t =1 , : ] = s o l . x

252

253 i f con_ON == 0 :

254

255 for m in range (M) :

256

257 s o l = minimize ( ob j e c t i v e , x_0 , c on s t r a i n t s=cons , method= 'SLSQP ' )

258 x [m, t =1 , : ] = s o l . x

259

260 #OTHER PERIODS

261

262 t_delta=3

263 while t_delta<T:

264 t = T=t_delta

265

266 X = np . t ranspose (np . array ( [ np . ones (M) , r [ 0 , t =1 , : ] , r [ 1 , t =1 , : ] , r [ 2 , t =1 , : ] ,

r [ 3 , t =1 , : ] , sv [ 0 , t =1 , : ] , sv [ 1 , t =1 , : ] , sv [ 2 , t =1 , : ] , sv [ 3 , t =1 , : ] , sv [ 4 , t

=1 , : ] , sv [ 0 , t =1 , : ]**2 , sv [ 1 , t =1 , : ]**2 , sv [ 2 , t =1 , : ]**2 , sv [ 3 , t =1 , : ]**2 , sv

[ 4 , t =1 , : ]**2 , sv [ 0 , t =1 , : ]* sv [ 1 , t =1 , : ] , sv [ 0 , t =1 , : ]* sv [ 2 , t =1 , : ] , sv [ 0 , t

=1 , : ]* sv [ 3 , t =1 , : ] , sv [ 0 , t =1 , : ]* sv [ 4 , t =1 , : ] , sv [ 1 , t =1 , : ]* sv [ 2 , t =1 , : ] , sv

[ 1 , t =1 , : ]* sv [ 3 , t =1 , : ] , sv [ 1 , t =1 , : ]* sv [ 4 , t =1 , : ] , sv [ 2 , t =1 , : ]* sv [ 3 , t

=1 , : ] , sv [ 2 , t =1 , : ]* sv [ 4 , t =1 , : ] , sv [ 3 , t =1 , : ]* sv [ 4 , t = 1 , : ] ] ) )

267
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268 p s i = np . z e r o s (M)

269

270 for m in range (M) :

271 p s i [m] = (x [m, t , : ] . dot ( r [ : , t+1, i ] )+R_f) **(1=gamma)

272

273 for i in range ( N_asset ) :

274 abeta = sm .OLS( p s i * r [ i , t , : ] ,X) . f i t ( )

275 ahat [ : , i ] = abeta . p r ed i c t (X)

276

277 for m in range (M) :

278 B[m, : , : ] = r [ : , t , i ] [ np . newaxis ] .T* r [ : , t , i ]

279

280 for i in range (2 ) :

281 for j in range (2 ) :

282 bbeta = sm .OLS( p s i *(B [ : , i , j ] ) ,X) . f i t ( )

283 bhat [ : , i , j ] = bbeta . p r ed i c t (X)

284

285 i f con_ON == 1 :

286

287 for m in range (M) :

288

289 s o l = minimize ( ob j e c t i v e , x_0 , c on s t r a i n t s=cons , bounds=bounds ,

method= 'SLSQP ' )

290 x [m, t =1 , : ] = s o l . x

291

292 i f con_ON == 0 :

293

294 for m in range (M) :

295

296 s o l = minimize ( ob j e c t i v e , x_0 , c on s t r a i n t s=cons , method= 'SLSQP ' )

297 x [m, t =1 , : ] = s o l . x

298

299 t_delta = t_delta+1
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Methodology: The methodology relies on a simulation-based

approach to solve realistic discrete-time portfolio

choice problem involving a large number of assets with

arbitrary distribution and non-standard preferences.

Statistical Software: Python

Literature review: This study is based on theories of econometrics,

Asset Allocation and Dynamic Programming,

as well as on previous �ndings about

the dynamic portfolio selection.

Empirical framework: The quantitative study is based on a

sample of four asset classes and �ve

state variables, while the analysed sample

consists of 108 monthly data.

Findings: The study concludes that the dynamic strategy

implemented has a signi�cant impact on the

portfolio overall performances. As a result, the

dynamic strategy outperforms the static strategies

considered.
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1 Introduction

This thesis takes its origin in the work of Michael W. Brandt, Pedro Santa-

Clara and Jonathan R. Stroud, that presented a simulation-based approach

to solve dynamic portfolio allocation issues.

Their article introduced a simulation and regression method that is based

on the predictability of the dynamic evolution of returns by the presence of

one or more state variables.

The most important feature of their study is that this method could ac-

commodate a large number of assets, with arbitrary return distribution de-

termined by a large number of state variables with potential path-dependency

and non-stationary dynamics.

The simulation-based method implemented in this thesis is a �exible,

fast and dynamic application of the method of Brandt et al. about portfolio

choice problems, applied to multi-asset investment opportunities, that could

accommodate both portfolio constraint and non-standard preferences.

The methodology is applied to build an algorithm that could include a

realistic investor's environment and solve portfolio choice problems for long-

term investment horizons, that are not only interested in the short-term

expected returns and risks, but also in how they may change over time.

To construct a balanced, �exible and fast dynamic method to determine

the investor's optimal portfolio allocation strategy it is necessary to argue

that the traditional academic analysis of portfolio problems should be mod-

i�ed to accommodate the long-term investment horizons in its peculiarities

and details.

The main purpose of this thesis is to implement such a method and, as

people continuously face �nancial decisions, it is interesting to ask whether

an investor with a long-term horizon allocates his wealth di�erently form the

optimal short-term allocation.



SUMMARY REPORT 108

2 Theory

In the �nancial �eld, the issue of portfolio choice plays a major role.

The problem to be addressed concerns the determination of the optimal

portfolio allocation.

Modern �nancial theory about portfolio allocation probably began with

the theoretical model developed in the article Portfolio Selection, published

in 1952 by Harry Markowitz. In his paper, he outlined a framework for static

optimal portfolio allocation based on the Mean-Variance analysis.

Despite the validity of this model, it is developed purely on a theoretical

level and is based on some strict assumptions that diminish its value.

The main assumption of the static model is the invariance of the expected

returns and volatilities, based on the idea that the characteristics of the assets

and their composition should not change over time.

Empirically portfolio choices depend on a great number of factors such

as investor preferences, availability of securities in the market and expected

returns of assets and risk. All these factors become more relevant for investors

with a long-term horizon.

The Portfolio Theory of Markowitz is based on the Perfect Market As-

sumptions, according to which the investor's environment is an entirely ef-

�cient economy, in terms of both equal access to information and rational

economic actors.

The striking conclusion of this analysis is that, under the assumption of

homogeneous expectations between the market participants, all the investors

will hold the same portfolio of risky assets, the Market Portfolio.

In recent years, the attention of economists has been focused on models

for the portfolio allocation that could re�ect the investor's situation and

characteristics.

The �rst authors to contribute to the modern literature about Dynamic

Portfolio Choice were Merton and Samuelson.

Both their theories are based on the idea that means and variances of
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asset returns are time-varying and do not remain �xed over time, as they

change in response to economic conditions.

The Dynamic Portfolio baseline is that the construction of an e�cient

investment strategy must include protection against the �uctuations of the

�rst and second moments of asset returns.

Despite the continuous-time formulation of Merton and Samuelson rep-

resent an e�cient analytical approximation of the portfolio choice problem,

an investor will not continuously trade during his investment horizon, but it

is more empirically correct to consider the portfolio rebalancing over discrete

timestamps.

The �rst step of the discrete dynamic methodology considered in this

thesis is the simulation of a large number of sample paths of asset return and

state variables, through their known or estimated joint dynamics.

The problem of portfolio selection is then addressed recursively in stand-

ard dynamic programming fashion.

Starting from T − 1, for each simulated path, the optimal portfolio al-

location is computed as the weights that maximize a Tylor expansion of the

investor's value function.

This problem has a straightforward semi-closed form solution that in-

volves conditional moments of the value function, its derivatives and asset

returns. These conditional expectations are calculated through ordinary least

square regression of the realized utility, its conditional moments and asset re-

turns at the following period based on functions of the realized state variables

at T − 1 across the simulated paths.

Then the model proceeds backward until time zero.

To summarize, this method allows evaluating the closed-form solution

of the approximate optimal portfolio allocation by simulating the asset re-

turns and the state variables paths and then computing a set of across-paths

regression for each period.
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3 Methodology

The starting point of the methodology of this thesis is the Bellman equation

and the budget constraints introduced in the previous chapter:

Jt(Wt, Zt) = max
{xs}T−1

s=t

Et[Jt+1(Wt+1, Zt+1)]

s.t. : Ws+1 = Ws(x
′
sR

e
s+1 +Rf ) ∀s ≥ t

To implement the BGSS Method the budget constraint is substituted in

the one step ahead value function:

Jt+1(Wt+1, Zt+1) = Jt+1(Wt(x
′
tR

e
t+1 +Rf ), Zt+1)

The next step is the employment of a Taylor series of the Value function

around WtRf , which lead to an explicit solution for the portfolio weights xt:

Jt+1(Wt(x
′
tR

e
t+1 +Rf ), Zt+1) ≈ Jt+1(WtRf , Zt+1)

+ ∂1Jt+1(WtRf , Zt+1)(Wtx
′
tR

e
t+1)

+
1

2
∂21Jt+1(WtRf , Zt+1)(Wtx

′
tR

e
t+1)

2

Where ∂1 denotes the partial derivative concerning the �rst variable of

the value function.

Then the value function is substituted in the Bellman equation to obtain

the approximation of the value function in t:
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J̄t(Wt, Zt) = max
xt

Et[Jt+1(WtRf , Zt+1)

+ ∂1Jt+1(WtRf , Zt+1)(Wtx
′
tR

e
t+1)

+
1

2
∂21Jt+1(WtRf , Zt+1)(Wtx

′
tR

e
t+1)

2]

The gradient towards xt is taken and imposed equal to zero, in order to

�nd the weights that maximizes the right-hand side of the value function

approximation at each time t:

−→
0 = ∇{Et[Jt+1(WtRf , Zt+1)

+ ∂1Jt+1(WtRf , Zt+1)(Wtx
′
tR

e
t+1)

+
1

2
∂21Jt+1(WtRf , Zt+1)(Wtx

′
tR

e
t+1)

2]}

This leads to an explicit expression for xt, which depends on the condi-

tional expectations.

It is denoted by x̄t because it is an approximation of the true value of xt.

The explicit expression for the approximated value of the weights is:

x̄t = −{WtEt[∂
2
1Jt+1(WtR

f , Zt+1)(R
e
t+1R

e′

t+1)]}−1

× Et[∂1Jt+1(WtR
f , Zt+1)(R

e
t+1)]

De�ning:

At+1 := ∂1Jt+1(WtR
f , Zt+1)R

e
t+1
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Bt+1 := ∂21Jt+1(WtR
f , Zt+1)R

e
t+1R

e′

t+1

It is possible to rewrite the explicit expression for the approximation of

xt as:

x̄t = −{WtEt[Bt+1]}−1 × Et[At+1]

As mentioned before, the BGSS model relies on the approximation of

the two conditional expectation explicated above, to determine the optimal

portfolio allocation.

The approximation process of these conditional expectations is computed

by an across-path regression as the idea formulated by Longsta� and Schwartz

in their paper �Valuing American Option by Simulation: A Simple Least-

Squares Approach�.

Their article was based on a simple approach that solves the most import-

ant problem in option pricing theory, the valuation of the optimal exercise

of American-style options.

This method is a powerful alternative to the traditional approaches, since

the key intuition is that the conditional expectation can be estimated from

the cross-sectional information in the simulation using the least squares.

They refer to this method as the Least Squares Monte Carlo (LSM) ap-

proach, that is straightforward to implement as nothing more than the simple

least square method is required.

In the BGSS model, this approach is applied in order to approximate

the conditional expectations in the portfolio optimization problem trough an

across-paths regression.

This regression is employed at each timestamp on the M sample paths

of the N asset returns generated in the Monte Carlo simulation, �tted in a

linear model with the observations at time t + 1 for each generic element of

At+1 and Bt+1.
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4 Implementation

The examined yields were calculated assuming continuous capitalization from

monthly historical price series.

The analysed sample consists of 108 monthly data, covering the period

from January 2009 to January 2018. It was chosen to examine this 9-year

interval to assess the dynamics of returns over a fairly long period, without

incurring in the extreme global �nancial markets stress caused by the global

�nancial crisis in 2007.

January 2018 was chosen as the endpoint of this study to backtest the

model's outcome in the following two years, even though the COVID-19

�nancial crisis of 2020 leads to underestimating the results of this model.

The BGSS model is applied to a set of four risky assets and �ve state

variables.

The evolution of these assets and state variables is simulated with the

VAR(1)-model.

The algorithm implemented assumes monthly rebalancing of the portfolio

weights, which is as often as the scenario model permits.

The main constraints of the model are both the borrowing and short-sale

constraints.

A polynomial of degree two is used as a basis for the regression, including

the cross-terms of the state variables.

The four asset classes considered are:

� European government Bond benchmark with a duration of 10 years,

traded monthly to keep the maturity of the portfolio constant.

� Indirect Real Estate (RE) Europe.

� Stock of European MSCI-index

� Stock of emerging markets (EMM).
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All these assets are considered to be characterized by enough liquidity to be

traded in each desirable amount.

The �ve most important drivers are selected as state variables and, even if

the main assets are mostly non-American, the main drivers of the VAR-model

are American:

� 3 months US nominal interest rate.

� 10 years US nominal interest rate.

� Stock of World MSCI-index.

� 10 years break-even in�ation US.

� Stock of S&P500 index.

In the implementation of this model, Monte Carlo simulation is used to

generate a sample of 10,000 economic scenarios.

Hence, the algorithm involves the generation of 10,000 simulations from

the VAR-model and the application of the constrained solution method based

on the second-order Tylor expansion for an investor with CRRA preferences

on an investment horizon of 36 months.

While the VAR-model is used to �nd a model that could re�ect the asset

returns dynamics, the Monte Carlo simulation is involved to forecast 10,000

simulated paths for each variable. Each path is generated from the same

model, with an error term drawn randomly from a multivariate normal dis-

tribution with a vector of zeros as the mean and the covariance between the

state variables and assets error terms as the covariance matrix.

All Variables are monthly generated, as in the dynamic portfolio optim-

ization algorithm the rebalancing is assumed to be monthly.

For the regression, an ordinary least square (OLS) is used.

A polynomial of degree two is used as a basis for the regression, where

the regression matrix includes both the asset returns and the state variables

cross-terms.
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The asset returns are considered as is assumed that the asset returns

at t + 1 are correlated to the asset returns at t . Under this methodology

the portfolio allocation is di�erent for each simulated path and the mean

allocation is used to visualize the strategy, as well as the standard deviation.

5 Results

In this thesis, a realistic multi-asset investment problem for an investor who

has access to several asset classes is solved.

Despite the investor has to comply with borrowing and short-sale con-

straints, the gains of a dynamic strategy are clear.

In Figure 8.1 the mean values of both the assets and the state variables

simulated returns are displayed with the mean asset allocation against the

remaining investment horizon.

Looking at the mean asset allocations in Figure 8.1, behind the �uctu-

ations, it is possible to notice a trend of decreasing allocation to the risky

asset, as the uncertainty about the future outcomes increases with the hori-

zon and the optimal portfolio choice shifts to more certain allocations.

It is important to state that these �gures assume a path-independent

dynamic, as they are computed as the mean of all the individual dynamic

strategies.

To underline the advantages of the dynamic strategies, it is possible to

compare this strategy with the myopic optimal mean-variance strategy.

The di�erence between the dynamic and myopic policies is called hedging

demand. It arises when, deviating from the one-period optimal portfolio

choice, the investor tries to hedge against changes in the investment oppor-

tunities.

The myopic solution does not take into account events beyond the cur-

rent period, while long-term investment problems focus on �nding portfolio
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Figure 8.1: Asset's mean returns, State Variable's mean returns, mean values
of the portfolio allocations and intertemporal hedging demand.

Asset Classes EU 10y Bonds EU ind RE EU index MSCI EMM

Mean 7.456% 4.028% 32.168% 56.348%
Standard Deviation 5.953% 5.226% 7.567% 11.112%

(a) Basic statistics of the dynamic strategy overall allocations
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Asset Classes EU 10y Bonds EU ind RE EU index MSCI EMM

Weights 20.0% 2.8% 33.3% 43.9%

Table 8.1: Mean-Variance Myopic optimal portfolio weights

weights with variable investment opportunities over several periods. Thus,

the multi-period investor's portfolio di�ers from the single-period investor

due to the hedging demand.

As a result, investors will hold lower related assets in the current period

to cover the possibility of lower expected returns in future periods.

The bottom-right graph in Figure 8.1 illustrates the intertemporal mean

hedging demand for stocks and bonds in the dynamic strategy implemen-

ted, as the means of the di�erences between the dynamic optimal portfolio

allocations and the Myopic mean-variance optimal weights, shown in Table

8.1.

The main results that could be observed are the decreasing trend of the

hedging demand for MSCI Emerging Markets Stocks and the increasing trend

of the hedging demand for European Government Bonds.

The ratio behind these trends is that when the investment horizon in-

creases, the hedging demand decreases for the riskier assets and increase for

the safer assets due to the increased uncertainty about future returns.

One of the most important features of the dynamic strategy is path-

dependency, not expressed it the previous �gures because of the path-independent

gains computed as the mean of all individual dynamic strategies.

In order to consider the path-dependency of the dynamic strategy, histo-

grams of the terminal valuesWT , forecasted by the dynamic strategy for both

the Dynamic and Myopic allocations, with an initial wealth ofW1 = 100, are

shown in Figure 8.2.

In Table 8.2 basic statistics of Terminal Wealth of the �ve static strategies
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Figure 8.2: WT for the optimal Dynamic and Myopic strategies

WT mean WT st.dev Sharpe Ratio VaR (α = 5%) YoY

EU 10y bond strategy 107.0713 1.8649 3.791785 -1.65922%
EU RE index strategy 174.4029 57.1305 1.302332 -31.2059%

EU Stocks index strategy 197.1392 64.4095 1.495063 -31.1243%
MSCI EMM strategy 217.2057 61.9733 1.729869 -27.1804%
Myopic Strategy 182.6368 41.5680 1.94128 -21.6817%
Dynamic Strategy 241.7225 68.4474 2.070531 -26.9751%

Table 8.2: Basic Statistics for six di�erent strategies

and of the multi-asset strategy are displayed with the Sharpe Ratio and the

yearly Value at Risk of each strategy with a 95% con�dence level.

We can conclude that applying a dynamic strategy has clear gains over

applying a static strategy.

By a path-dependent rebalancing strategy, it is possible to increase the

mean portfolio return with signi�cantly lower downside risk.
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6 Conclusion

In the last decades, dynamic portfolio allocation has become a popular sub-

ject of research.

Despite this interest, closed-form and analytical solutions are available

only under strict assumptions of return dynamics, and numerical approaches

are needed.

Nowadays several methods have been published, but almost all of them

su�er from in�exibility towards the number of assets and require a very

speci�c structure of the asset's return dynamics.

The method published by Brand et al. (2005) represents an exception

as they developed a simulation-based method that involves Taylor series,

backward recursion and regression analysis to predict returns. The so-called

BGSS method is fast, accurate and �exible in the way asset returns dynamic

are modeled.

However, in their paper, they showed results for a situation with only one

risky asset and one state variable.

In this thesis, the aim was to apply this method in a realistic environment

of multiple assets, without strict assumptions about the return dynamics,

with various state variables and portfolio constraints.

With the knowledge obtained by the Brandt et al. (2005) paper, an

evaluation of a more realistic environment, that consists of four risky asset

classes with di�erent mean and volatilities, is computed.

In this model, �ve state variables were included and were supposed to

contain su�cient predicting power.

Despite the investor has to comply with borrowing and short-sale con-

straints, the gains of the dynamic strategy are clear.

Of course, the methodology considered in this thesis is capable of dealing

with a more realistic investor's environment.

Implementation is therefore recommended, although additional research

is needed.
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Other researches could be appropriate about the quanti�cation of the

investor's risk aversion, to �nd a good proxy of the exact individual's risk

aversion parameter.

If the intuitions behind the methodology of this thesis are correct, this

model would be a very suitable candidate for implementation.


