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Summary – Financial Machine Learning – Stefano Ciccarelli 

The analysis starts with the current worldwide technological landscape: answering why 

Machine Learning is becoming relevant for Shareholders and how this can contribute to 

generating value for the overall society. 

This call has a focus on economic and social inclusiveness given the expected non-linear 

risks generated by the potential Singularity’s developments on the overall society, 

identifying the Governments as crucial in establishing a financial singularity strategy 

without disincentivizing innovation. 

The main scope is to nudge a preventive solution oriented to maximize the resilient abilities 

of the local communities and to develop AI-indexed and passive alternative sources of 

income, with a scale of importance specular to the level of automation inside the supply 

chain of the main industries. 

After explaining the current and projected trajectory of Machine Learning, since the 

exponential trend of the Big Data and the Computer power, 4 technical practical financial 

approaches using powerful computational statistical algorithms is shown. 

 

 

 

Overall, the thesis is structured using a strongly quantitative and data-driven approach: to 

let data prove the underlying assumptions and leveraging the analytical power of Python. 
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I. Deep Neural Networks for Stock Selection in Portfolio Optimization 

The key final result in the last chapter seems to support how a Neural Network can 

outperform the financial valuation abilities of a team of professional analysts in selecting 

stocks, once the model is validated on data that were never observed by the machine, 

obtaining an average YoY +42.43% return. 

It was trained on a period span of 5 years data and on more than 100 fundamental 

parameters (as relevant Balance Sheet and Income Statements voices) on a set of 30 

Companies. 

It automatically selected the most relevant interactions among the standardize parameters 

(the relative relevancy of the ratio respect to the overall population), discriminating 

accurately the best companies to select and insert in the portfolio optimization strategy. 
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Following the portfolio optimization and the obtention of the efficient frontier, a Sharpe 

Ratio of 3.53 is found, with an expected return of +28.26% and a volatility of 8%, implying 

that in the worst of all empirical case (99.9th Percentile) the return would be still positive 

(+1.93%). 

 

 

 

 

To give a benchmark on the same period of analysis the market index (S&P 500) obtained 

a return of – 4.38%. 

This result is of particular interest, especially in an historical period where the results 

achievable by the emerging technologies are still debated, supporting, and clarifying the 

long-term vision of the potential performances of Machine Learning in the next decade. 

In fact, a similar approach could be used as a baseline to structure an AI-managed portfolio, 

available inclusively at 0 fixed cost to the local population in order to incentive the 

diversification of the sources of income and minimize the impacts of the expected negative 

externalities of the AI on the long-term technological unemployment. 
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II. Optimized Neural Networks with AutoKeras: Analyzing the COVID-19 Impacts 

on NASDAQ US Benchmark Airlines Index using Google Trends 

In another case, the effects of the number of searches related to airlines on Google, together 

with a sample of the behavioural “worrying level” related to COVID-19, were used to 

analyse and monitor the NASDAQ US Benchmark Airlines Index level in a way that was 

not possible before, clarifying when we can expect a recovery of this index 

For example, if the demand for the US Airlines tickets will start to increase again, using a 

Neural Network for classification purposes, with a Boolean class we can generate an 

expectation regarding when the Index will turn back to the pre-virus status. 

Here the correlations, between the variables (relative number of Google Searches) and the 

Index and the standardized plot (on the same scale):  

 
Airlines  

Index 

American Airlines 0.776127 

Delta AirLines 0.739754 

Southwest Airlines 0.819368 

United Airlines 0.773032 

flights 0.710131 

coronavirus -0.621369 

 

Here instead the 2 clusters observable: 
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I. High number of searches – High Index Values 

II. Low number of searches – Low Index Values 

 

Index on the y-axis and number of searches for flights on the x-axis, in red the COVID-19 “concern” period. 

III. Applied Financial Machine Learning with Scikit-learn 

Between the different techniques, a Machine Learning clustering method using Scikit-learn 

was applied to the S&P 500 Index Companies, where after computing massively the returns 

and the volatility and obtained the Sharpe Ratio (y-axis), this was plotted against the P/E 

(x-axis) to automatically classify and consequentially identify the Buy companies against 

the Not-Buy ones. 

 

The results of this example can change according the parametrized Investor’s preferences. 
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IV. Deep Neural Networks to Forecast Market Implied Volatility (VIX) using the 

Short-Term 3-M US Treasury Bonds Rates 

Finally, the ML potential is also shown on forecasting the market implied volatility (VIX 

Index), using the negatively correlated short term risk-free interest rates (3-M US Treasury 

Bonds): to model how the Governments and Central Banks interventions applying 

Quantitative Easing policies can negatively affect the short-term market volatility pushing 

the Investor towards the equity market’s higher yields and defining when we can expect 

the VIX Index to increase and consequentially to turn back to a normal level (under the 

value of 20). 
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In this case the Neural Network is able, once observed the daily interest rates of the last 3 

Weeks, to answer if the volatility is expected to gradually turn back to normality, under a 

value of 20. 

 

 

 

 

Final Comment: 

The main vision of this work is to experiment how automation is affecting Finance in the 

long-term and how interconnecting the dots and different models could be accretive in 

constructing an automated financial mechanism to prevent the potential crises generated 

by the Singularity risk, generating a sustainable monthly cash-flow for the most exposed 

communities. 
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Financial Machine Learning 

 

“Artificial intelligence programs like deep learning neural networks may be able to beat 

humans at playing Go or chess, or doing arithmetic, or writing Navy Seal copypasta, but 

they will never be able to truly think for themselves, to have consciousness, to feel any of 

the richness and complexity of the world that we mere humans can feel. 

Mere, unenlightened humans might be impressed by the abilities of simple deep learning 

programs, but when looked at in a more holistic manner, it all adds up to… well, nothing. 

They still don’t exhibit any trace of consciousness.  

All of the available data support the notion that humans feel and experience the world 

differently than computers do. While a computer can beat a human master at chess or Go 

or some other game of structured rules, it will never be able to truly think outside of those 

rules, it will never be able to come up with its own new strategies on the fly, it will never 

be able to feel, to react, the way a human can. 

Artificial intelligence programs lack consciousness and self-awareness. They will never be 

able to have a sense of humor. They will never be able to appreciate art, or beauty, or love. 

They will never feel lonely. They will never have empathy for other people, for animals, for 

the environment. They will never enjoy music or fall in love, or cry at the drop of a hat.  

Merely by existing, mere, unenlightened humans are intellectually superior to computers, 

no matter how good our computers get at winning games like Go or Jeopardy. We don’t 

live by the rules of those games. Our minds are much, much bigger than that.” 

 

Written by the Artificial Intelligence GPT-3, Open-AI1 

 

 

 

 

 

 
1 https://openai.com/blog/openai-api/  

https://openai.com/blog/openai-api/
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Machine Learning and Applied Statistics 

Course Taken at Imperial College Business School 

 

 

 

 

 

The Data-Driven approach was developed thanks to the QTEM 

And the Brilliant Experiences at EDHEC Business School and Warwick Business School 
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Introduction 

Financial Singularity Strategy 

The main Vision of this work it is collocated in a framework that has as pillar a simple, but 

game-changing, assumption. 

In the next 50 years the evolution of the Artificial Intelligence, and consequently the 

exploitation of the AGI – Artificial General Intelligence 2 – will be soon a high likely 

reality.  

Consequently, the human workforce, will become gradually unnecessary, exposing 

societies, characterized by populations at high risk of unemployment and with the salary 

as the only source of income3, to disruptive crises, and the fallen of the governments and 

political decision makers under the control of a technocognitive aristocracy. 

The preventive solution is connected to the resilient abilities of the local societies to 

develop AI-indexed and passive alternative sources of income, with a scale of importance 

specular to the level of automation inside the supply chain of the main industries. 

We are going towards the greatest period of the known human history, until now, and to 

ensure the future generated wellness will be spread meritocratically and democratically 

among the population is necessary to ensure the consistent support to the education4 and 

the consciousness, necessary to coexist and to improve systematically the support to the 

scientific research. 

Finally, a practical application of basic machine learning algorithms will be tested on 

financial instruments, to show and validate the automation opportunities of diverse sources 

 
2 Goertzel, B. (2014). Artificial General Intelligence: Concept, State of the Art, and Future Prospects, 

Journal of Artificial General Intelligence, 5(1), 1-48.  

https://doi.org/10.2478/jagi-2014-0001 

 
3 Abbott, R., & Bogenschneider, B. (2018). Should robots pay taxes: Tax policy in the age of automation. 

Harvard Law & Policy Review, 12(1), 145-176. 

 
4 Duncan, G. J., Magnuson, K., & Votruba-Drzal, E. (2017). Moving Beyond Correlations in Assessing the 

Consequences of Poverty. Annual review of psychology, 68, 413–434.  

https://doi.org/10.1146/annurev-psych-010416-044224 

 

https://doi.org/10.2478/jagi-2014-0001
https://doi.org/10.1146/annurev-psych-010416-044224
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of income, and the potential effects of an educational income5 in supporting the skills 

transfer6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5 Ciccarelli, Stefano (2017), Manifesto della Geniocrazia, Cap. Reddito di Formazione (“Geniocracy 
Manifesto, Chapter – The Educational Income”) 
 
6 Adams, T. L., & Demaiter, E. I. (2008). Skill, education and credentials in the new economy: the case of 

information technology workers. Work, Employment and Society, 22(2), 351–362. 

https://doi.org/10.1177/0950017008089109  

https://doi.org/10.1177/0950017008089109
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Time 

To standardize the chaotic changes of the absolute space, the humankind required time. 

In fact, time should not exist in absolute terms, but it changes relatively 7 to the cognition 

and its relative environment. 

While it can take years, or decades, for a human mind to collect and process all the 

necessary information and to develop an expertise, an AI Algorithm requires few instants8, 

allowing for – perceived as exponential – growth opportunities. 

To maximize the clearness of the relative picture of the absolute space, is strictly necessary 

to precisely measure time, and consequentially to collect data with the optimal frequency, 

directly increasing the demand for a firm infrastructure: and nowadays, for scientific 

purposes, Caesium is the top performing resource to focus on. 

Controlled, at the base of its Supply Chain, by China for 96% of its production, this material 

is necessary to develop the necessary data-platform to reach the AI military and political 

supremacy9: starting from 5G, consequentially allowing  for the IoT organism next level 

generation to evolve together with Smart Cities and Smart Devices, and arriving to the final 

destination of an Artificial General Intelligence, able to generalize from the data collected 

and to produce Academic and Industrial advancements. 

Time is also the inverse output performance metric: instead of measuring the quantity of 

real resources produced in a year, the Macroeconomics actors should focus on the time of 

production/transformation of each unit of standardized good. 

 
7 Buhusi CV, Meck WH (2009) Relativity Theory and Time Perception: Single or Multiple Clocks?. PLOS ONE 

4(7): e6268.  

https://doi.org/10.1371/journal.pone.0006268 

 
8 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc 

Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, Demis 

Hassabis (2018), 

A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play 

(DeepMind). 
https://doi.org/10.1126/science.aar6404 
 
9 Ciccarelli, Stefano (2020), The US-China Cold War made easy (Article): 

https://www.financecs.com/2020/05/22/the-us-china-tech-cold-war-made-easy/ 

https://doi.org/10.1371/journal.pone.0006268
https://doi.org/10.1126/science.aar6404
https://www.financecs.com/2020/05/22/the-us-china-tech-cold-war-made-easy/
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Since, using GDP (subject to the demand volatility and the relative supply) as actual 

measure, is not possible to measure directly for the opportunities-risks of automation, but 

,instead, using the delta changes of production time of each unity of real average goods and 

services, it is possible to have a clearer picture of the trajectory of the automation inside 

the Industries to assess more objective data-driven global long-term policies. 

In fact, the monetary exchanges, in performing a consume utilitarian or perceptual 

experience, represent the perceived economic value generated: an increase in the 

availability of resources, indirectly, imply a saving of time respect to the individual 

gathering necessary to perform the same type of experience, suggesting that the time saved, 

representing the energy exchanges economisation, is the main dimension of the 

Macroeconomic scenario. 
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History 

For the time, only the present exists, and the past is the collected memories regarding each 

perceived experienced present, or more precisely a change in the relative perceived space: 

it exists as it is necessary  to the cognition to define the trend to project and anticipate the 

next presents (alias “the future”). 

To optimally understand the potential directions of the humankind, and determine the best 

scenario to reach, is necessary to collect the empirical data in a clear and structured 

framework: this is also necessary to AI, to be able to generalize patters with a reduced bias. 

Practical automation applications are showing their effectiveness using this approach, 

where not only the logical flow it is inscribed inside the procedures, but also the data and 

the past are used to generate transformations inside the artificial “organism” without human 

explicit directions. 

We are in the phase of human history where the Financial applications and tools are shifting 

gradually from a top-down to a bottom-up approach, where the necessaries human inputs 

start to reduce. 

From the first calculator, invented by Blaise Pascal around 1642, to automate the 4 main 

arithmetic operations, reducing for the need of the human mind in executing the basic 

mathematical computations, the willingness to automate, and consequentially improve the 

tasks that require human intelligence, opened the doors to new opportunities and new 

industries. 

Especially the Globalised Financial Industry, that allows for faster and more efficient 

capital allocations, could be considered a product of both technological and political 

achievements: the spread of the Telegraph from the 1844 10 necessary to strongly reduce 

the geographical information asymmetries and the first trans-Atlantic cable (1866) 11 that 

 
10 Du Boff, R. (1980). Business Demand and the Development of the Telegraph in the United States, 1844-

1860. The Business History Review, 54(4), 459-479. Retrieved July 12, 2020, from 

www.jstor.org/stable/3114215 

 
11 Freezee, W. (1978). The First Trans-Atlantic Cable. Journal of the Washington Academy of Sciences, 

68(1), 3-13. Retrieved July 12, 2020, from www.jstor.org/stable/24537173  

 

http://www.jstor.org/stable/3114215
http://www.jstor.org/stable/24537173
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allowed to reduce the communication between Europe and North American time from 10 

days to only 3 hours, were the presage of the modern present destination. 

The begin of the digitalization of financial markets around 1962, with the computerized 

stock quotation system QUOTRON12, and the following establishment of the SWIFT 13 

network (1972)  to standardize the international communications, arriving to the GLOBEX 

(between 1987 and 1992) electronic trading platform, can be considered the presage  of the 

future Artificial General Intelligence capital allocation. 

The first phase of the history, has seen an elimination of geo-informational barriers in 

accessing to investment opportunities, soon the second phase, given the internet diffusion 

that produces the collective digital memory, together the evolution of the Fintech 

applications that learn form it, will see a gradual reduction of the cognitive barriers to an 

optimal capital allocation. 

In this, the governments will be central to establish an efficient supervision during the 

transition from a trust-based banking system, to an Open-Banking14 track-based one. 

The firstcomer to reach an AGI Financial supremacy would, together a decentralized 

Blockchain 2.015 system, produce the highest measurable returns worldwide, given the 

reduced cost structure and superior performances, attracting capital worldwide and 

reshaping the global industries. 

 

 

 
12 IEEE History Center Staff, "Proceedings of the IEEE Through 100 Years: 1960-1969 [Scanning Our Past]," 

in Proceedings of the IEEE, vol. 100, no. 7, pp. 2380-2386, July 2012. 

https://doi.org/10.1109/JPROC.2012.2193712  

 
13 Susan V. Scott & Markos Zachariadis (2012) Origins and development of SWIFT, 1973–2009, Business 

History, 54:3, 462-482. 

https://doi.org/10.1080/00076791.2011.638502  
14 Zachariadis, Markos and Ozcan, Pinar, The API Economy and Digital Transformation in Financial 

Services: The Case of Open Banking (June 15, 2017). SWIFT Institute Working Paper No. 2016-001, 

Available at SSRN: https://ssrn.com/abstract=2975199 or http://dx.doi.org/10.2139/ssrn.2975199  

 
15 Fanning, K. and Centers, D.P. (2016), Blockchain and Its Coming Impact on Financial Services. J. Corp. 

Acct. Fin, 27: 53-57.  

https://doi.org/10.1002/jcaf.22179  

https://doi.org/10.1109/JPROC.2012.2193712
https://doi.org/10.1080/00076791.2011.638502
https://ssrn.com/abstract=2975199
http://dx.doi.org/10.2139/ssrn.2975199
https://doi.org/10.1002/jcaf.22179
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Why hedging against the Singularity Risk 

Externalizing and outsourcing the cognitive abilities generate a dependency towards the 

unknown: the interactions inside the layers and the patterns frequently behave like a black 

box even for the AI creator. 

Consequentially societies must not become the victims of a technological cognitive Elite 

able to build the systems that will push the economy to a zero-cost marginal structure16. 

Being able to resiliently structure an Automation-Indexed public Fund (AIF) is a necessary 

solution to ensure the democratic and inclusive generation of the income necessary to 

sustain the part of population classified as not employable, ensuring a global ownership of 

the wealth evolution, without disincentives to the free-market to produce innovation in case 

an automation-tax would be the alternative. 

This concept is inside the framework of a more general Financial Singularity Strategy, 

where the capital allocation and the relative returns are maximized to ensure an inclusive 

sustainability: to allow this, the main objective would be to prepare the necessary 

environment for the Singularity17 who will invest and share the wealth as a definitive multi-

lateral and super-rational agent in behalf of the population. 

 

 
16 Rifkin, J. (2014). The zero marginal cost society: The internet of things, the collaborative commons, and 

the eclipse of capitalism. New York: Palgrave Macmillan. 
17 Eden, Amnon & Moor, James & Søraker, Johnny & Steinhart, Eric. (2013). Singularity hypotheses. A 

scientific and philosophical assessment.  

https://doi.org/10.1007/978-3-642-32560-1 

 

https://doi.org/10.1007/978-3-642-32560-1
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1.1 Worldwide; Bahrain FinTech Bay; PwC; 2018 

In the graph 1.1 is shown the projected AI worldwide contribution to GDP: this represent 

the first step in the direction of a global commitment to a more automated society, that in 

the long-term will increase the need for also an automated cash-flows generation to 

increase the sustainability. 

In fact, focusing only on the automation of the Supply would generate negative 

externalities and produce technological powerful monopolies reducing the potential 

scientific developments apported by a more inclusive society: investing in people via an 

educational income would maximize the scientific output while automation increases 

among production processes, otherwise the increase of the disparities and of the relative 

sources of income scarcity would push people to focus only on the basics Maslow 

pyramid’s needs18. 

 

 

 
18 McLeod, S. A. (2020, March 20). Maslow's hierarchy of needs. Simply Psychology. 

https://www.simplypsychology.org/maslow.html 

 

https://www.simplypsychology.org/maslow.html
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Machine Learning 

Why 

The knowledge applied to establish rational top-down decisions is not only based on the 

collected information but also on the ability to account for the interactions of the different 

objects and ideas and to recognize the underlying patterns. 

Similarly, in statistical and probabilistic terms, we can observe the increasing abilities of 

the machines to “learn” because of 3 main trends: 

The Big Data 

 

 

2.1 IDC; Seagate; Statista estimates 
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The online information is growing at an evident exponential trend (2.1), and according 

McKinsey analysts “90 percent of the digital data ever created in the world has been 

generated in just the past two years, only 1 percent of that data has been analyzed.”19 

 

 

2.2 https://www.businesswire.com/news/home/20190516005700/en/Strategy-

Analytics-Internet-Things-Numbers-22-Billion 

 

Taking also in account the expected development and the spread of the worldwide IoT 

Ecosystem shown in the graph 2.2, it is reasonable to assume that the projected quantity of 

 
19 https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/straight-talk-about-big-

data  

https://www.businesswire.com/news/home/20190516005700/en/Strategy-Analytics-Internet-Things-Numbers-22-Billion
https://www.businesswire.com/news/home/20190516005700/en/Strategy-Analytics-Internet-Things-Numbers-22-Billion
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/straight-talk-about-big-data
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/straight-talk-about-big-data
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structured data, together with the increase of normalization practices of the unstructured 

types, will aliment and sustain the generation of the online useful information available. 

 

Consequentially, a statistical algorithm can potentially use those data to boost its 

“experience” and subsequentially to improve the generalization of patterns relative to a set 

of tasks. 

 

The Computational Power 

According the empirical Moore’s law, 𝑛2 = 𝑛1*2[(𝑦_2−𝑦_1)/2] where n is the number of 

transistors and y the year,  the computing power double every two years. 

Some members of the scientific community argue there will be soon a physical limit20 to 

this trend, but until today the Moore observation is still holding. 

 

This exponential rate allowed in the past years to increase the speed at which the 

information is processed, determining not only a reasonable execution time of the 

algorithms with a larger number of features and interactions, but also a more democratic 

and accessible spread of the high-level programming languages, like Python, that open the 

doors for a faster deployment and a higher number of industrial applications. 

 

 
20 J. R. Powell (2008), "The Quantum Limit to Moore's Law," in Proceedings of the IEEE, vol. 96, no. 8, pp. 

1247-1248. 

https://doi.org/10.1109/JPROC.2008.925411  

https://doi.org/10.1109/JPROC.2008.925411
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2.3 https://ourworldindata.org/technological-progress  

https://ourworldindata.org/technological-progress
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The Algorithms 

 

Alpha Go21 signed the Sputnik moment for China, increasing the competition and bringing 

to the contemporaneous tech cold war. 

 

 

2.4 CISTP 
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Consequentially not only the large pool of the previous algorithms from academia must be 

taken in account in the final scenario, but the potential ones that will be developed in the 

next 10 years in the aim of reaching the AI technological and military supremacy. 

In the graph 2.4 we can observe the equilibrium during the period 1997-2017 of the number 

of AI publications by country, but we can reasonably expect, given the current Geo-

Political tensions, a run towards the massive exploitation of the worldwide AI talents. 

 

 

In fact, in the graph 2.5 we can deduct the increasing commitment in the United States for 

Artificial Intelligence applications in terms of resources, and instead in the graph 2.6 is 

possible to observe the “soft-power” abilities in terms of attractiveness for the AI talent 

necessary to develop the future infrastructures required to win the tech challenge. 

 

 

 

 

2.6 CMN; Statista estimates 2.5 https://www.pwc.com/us/en/moneytree-

report/assets/pwc-moneytree-2020-q1.pdf  

https://www.pwc.com/us/en/moneytree-report/assets/pwc-moneytree-2020-q1.pdf
https://www.pwc.com/us/en/moneytree-report/assets/pwc-moneytree-2020-q1.pdf
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How 

Machine Learning can be defined, according Tom Mitchell, as “A computer program is 

said to learn from experience E with respect to some class of tasks T and performance 

measure P if its performance at tasks in T, as measured by P, improves with experience 

E”22. 

On the academic level it can also be collocated as the intersection of: 

I) Computer Science, that provides the necessaries formalization of the 

algorithms for the specific dataset. 

 

II) Statistics, that provides an inferential approach, formalizing a model for the 

specific dataset.  

Consequentially it can be approached as a set of “statistical algorithm” able to perform a 

defined task that improve among time according the higher data availability. 

 

The main learning techniques are divided in 4 big categories: Supervised Learning, 

Unsupervised Learning, Semi-Supervised Learning and Reinforcement Learning.  

 

 

 

 

 

 

 

 

 

 

 

 
22 Mitchell, T. (1997). Machine Learning. McGraw Hill. p. 2. ISBN 978-0-07-042807-2. 
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Supervised Learning 

 

Supervised Learning is characterized by labeled outcomes 𝑦𝑖 for each feature vector 𝑥𝑖. 
A feature vector can have dimensionality D, with each feature describing different 

quantifiable perspective of a phenomenon. 

 

Instead, the label can have different complex structures, but in the framework of this 

analysis we will focus mainly on the real numbers of a finite set of classes. 

 

The main objective of this category of algorithms it is to predict starting from the feature 

vectors, the description of the phenomenon, which is the corresponding label: in fact, once 

the model is trained on the labeled data, according the quality (bias) and quantity of the 

data, it should “learn” the common patterns among the features necessary to define the 

interactions that characterize a specific class or population, or a specific output in the case 

of real continuous numbers. 

 

Typical examples of supervised learning are linear/logistic regression, k-nearest neighbors, 

support vector machines, decision trees, random forests and neural networks. 

 

In finance it can find its application for example in the case we have the returns (labels) 

and the respective indicators (feature vector) necessary to try to predict, given a certain 

market potential scenario, the expected performance or to classify if the portfolio will have 

a positive or negative outcome. 
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Unsupervised Learning 

 

Unsupervised Learning can be applied in the case we have an unlabeled dataset, with only 

the feature vector 𝑥𝑖 available. 

In this case it is produced a transformation in the original dataset, with the main objective 

to assign a scalar value or to reduce the dimensionality of the original vector. 

 

For example in the case of clustering is it possible to understand if there are common 

pattern to establish classes which the data belong to: given for example the reaction to a 

market exogenous shock, can we differentiate different stock classes? 

 

In this case the data can give better insights respect a qualitative rating, and we can observe 

that the chaotic market can be subjected to emotional biases that doesn’t take in account 

necessarily the fundamental value of the companies, differently from the rating agencies. 

 

Thus in the case of clustering we can differentiate and take in account if a stock belong to 

a specific asset class or not – according the market - using the ex-post data. 

 

Instead, if we want to deduct relevant insights on the overall performance of a series of 

companies but there are too many parameters and indexes, we can shift to the 

dimensionality reduction, using factor analysis to understand and analyze the relationships 

among the different features or also the principal component analysis to build a low-

dimensional feature vector, with inside uncorrelated variables, that synthetize the 

underlying phenomenon starting from a high number of variables characterized by 

multicollinearity23. 

 

 
23 Alin, A. (2010), Multicollinearity. WIREs Comp Stat, 2: 370-374.  

https://doi.org/10.1002/wics.84 

https://doi.org/10.1002/wics.84


25 

 

Typical examples of unsupervised learning are k-means and hierarchical cluster analysis 

in the case of clustering and PCA and Kernel PCA in the case of dimensionality reduction. 

In general, it can also be applied to the identification of anomalies and outliers, and 

consequentially to isolate for example abnormalities or rare market conditions as in the 

case of a black swan24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
24 Taleb, Nassim Nicholas, 1960-. (2007). The black swan: the impact of the highly improbable. New York: 

Random House. 
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Semi-Supervised Learning and Reinforcement Learning 

 

Semi-Supervised Learning is applied to supervised learning problems that have relatively 

few labeled observations and a higher number of unlabeled observations that have the same 

distribution and are part of the population of the labeled ones. 

 

Generally the algorithms are a mix between supervised and unsupervised approach, for 

example if we have few balance sheets and the relative information regarding the type of 

industry, we can try to classify all the balance sheets without an assigned industry to obtain 

the information regarding which industry those companies belong to. 

 

Reinforcement Learning instead has a different approach: the machine, in this case 

denominated as the agent, perform a series of actions inside a dynamic environment. 

The environment can be analyzed, and eventually modified, by the agent who take 

“choices” according a policy and consequentially receives a specific reward, or also a 

punishment. 

 

The main objective of the agent is to learn an optimal policy in the long-term after a series 

of trial and errors performed to maximize the expected reward. 

 

For example a reinforcement learning trading algorithm25 that provides liquidity to the 

market can learn from the time series of the prices to maximize the expected return, as the 

reward, to reduce the mispricing of the asset among time according all the information / 

sentiment available. 

 

 

 

 
25 Abhishek Nan, Anandh Perumal, Osmar R. Zaiane (2020), Sentiment and Knowledge Based Algorithmic 

Trading with Deep Reinforcement Learning. 

https://arxiv.org/abs/2001.09403  

https://arxiv.org/abs/2001.09403
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Data-Driven Finance 

Financial Automation with Python 

 

Being an High-Level interpreted programming language, is really fast to deploy and 

analyze applications written in Python, factors that contributed to its popularity (3.1) also 

among finance professionals, indirectly opening the doors to the positive externalities of a 

large community: in fact, it is an high versatile tool thanks to the high number of libraries 

and modules available that increase the reliability and the velocity of the execution of 

different functions and the development of different types of objects. 

 

 

 

3.1 Roper, W. (March 3, 2020). Python Remains Most Popular Programming Language. 

https://www.statista.com/chart/21017/most-popular-programming-languages/ 

https://www.statista.com/chart/21017/most-popular-programming-languages/
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Storing and Simulating Financial Big Data with NumPy and Pandas 

 

One of the main problems of the high-level interpreted languages is the low-efficiency on 

the large datasets, but in some cases of Python can works as a “glue language”, in fact, 

NumPy one of its most famous and powerful libraries is developed in C and Fortran, 

apporting the efficiency of the low-level to the speed of deployment of the high-level. 

 

Mainly used for scientific purposes, it is the pillar of a large amount of applications, since 

it provides multidimensional array objects and a series of method to analyze them. 

 

It is useful to develop vectorized code, emulating mathematically vectors and matrices and 

consequentially to perform high-speed transformations and functions on the objects. 

 

In terms of financial applications there is the specific package NumPy Financial, that 

provides a set of high-level methods as NVP, FV, PV, IRR, etc. 

 

For example, if we want to execute a Monte Carlo simulation, we will need to generate a 

vector of standard errors, and in Python is not only easy but also fast and scalable, as 

demonstrated in the following code: 100,000,000 standard errors are generated inside a 

NumPy array and the mean and var methods are computed to confirm that the mean is 

around zero and the variance around 1. 

 

It takes circa 7 seconds, but according the machine and the necessities it can be applied 

also for larger simulations and datasets. 

 

Finally, a histogram frequency plot using seaborn is shown to proof graphically that the 

errors are normally distributed around zero. 
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 Jupiter HTML version of the code available also at FinanceCS.com (Stefano 

Ciccarelli):  
https://www.financecs.com/wp-content/uploads/2020/08/100-Milion-Standard-Error-

1.html  
 

Input: 

 

# -*- coding: utf-8 -*- 

""" Created on Sat Aug 22 23:57:29 2020 

@author: Stefano""" 

import numpy as np 

import time 

 

start = time.time() 

 

# Creating a vector of one hundred million (10^8) standard errors 

simulation = np.random.standard_normal(10**8) 

 

end = time.time() 

 

print("The generation of a vector composed by one hundred million of standard errors happen

ed in {:.2f} seconds".format(end-start)) 

 

# Showing the mean value approximated to 2 decimals 

print("The mean is approximately {:.2f}".format(simulation.mean())) 

 

# Showing the variance value approximated to 2 decimals 

print("The variance is approximately {:.2f}".format(simulation.var())) 

 

Output: 

 

The generation of a vector composed by one hundred million of stand

ard errors happened in 6.59 seconds 

The mean is approximately 0.00 

The variance is approximately 1.00 

 

Input: 

 

import seaborn as sns 

 

# Plotting the frequency histogram 

sns.distplot(simulation, bins=80, hist_kws={'edgecolor':'blue'}) 

 

 

https://www.financecs.com/wp-content/uploads/2020/08/100-Milion-Standard-Error-1.html
https://www.financecs.com/wp-content/uploads/2020/08/100-Milion-Standard-Error-1.html
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Instead, if we want to handle different data types at the same time and improve the indexing 

applying specific methods, especially in the case of time series, Pandas is a better suited 

solution: it is the natural evolution of NumPy, that allows to store the data in a Data Frame 

structure, allowing for an easier and faster high-level management. 

 

Here an example of a generation of 5000 stock paths using a geometric Brownian motion 

having as engine a Monte Carlo simulation and its relative output management using 

Pandas. 

 

 

 𝑆𝛥𝑡 = 𝑆0 ∗  𝑒[(𝜇−𝜎22 )∗𝛥𝑡+(𝜎∗√𝛥𝑡)∗𝜀]
 

Output: 

 

<matplotlib.axes._subplots.AxesSubplot at 0x234b4fd6808> 
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Jupiter HTML version of the code available also at FinanceCS.com (Stefano 

Ciccarelli):  

https://www.financecs.com/wp-content/uploads/2020/08/Monte-Carlo-Simulation-for-g

eometric-Brownian-motion-with-Pandas-1.html 

 

Input: 

 

import random 

import string 

 

# Function to generate a random Stock Tiker with lengh n 

def random_stock_tiker(n): 

    l_upper = string.ascii_uppercase 

    return ''.join(random.choice(l_upper) for i in range(n)) 

 

print("Example of a Randomly Generated Stock Ticker of lengh 4: {}".format(random_stock_tik

er(4))) 

 

Output: 

 

Example of a Randomly Generated Stock Ticker of length 4: FOYJ 

 

Input: 

 

# Generating a list of 30000 random numbers beetween 1 and 4 

lenghts = [random.randint(1,4) for i in range(30000)] 

 

# Generating 30000 Stock Tickets, each one of length n for each number inside list lengths 

# We keep only the unique Tickets and store the first 5000 

stock_market = list(set([random_stock_tiker(ticket_l) for ticket_l in lenghts]))[:5000] 

 

print("Sample of size 10 from the 5000 stock market {}".format(stock_market[:10])) 

 

Output: 

 

Sample of size 10 from the 5000 stock market ['AHC', 'QLEN', 'YUAS'

, 'ERBT', 'KUKO', 'UDL', 'PDF', 'SCZ', 'MHPO', 'AEW'] 

 

https://www.financecs.com/wp-content/uploads/2020/08/Monte-Carlo-Simulation-for-geometric-Brownian-motion-with-Pandas-1.html
https://www.financecs.com/wp-content/uploads/2020/08/Monte-Carlo-Simulation-for-geometric-Brownian-motion-with-Pandas-1.html
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 Input: 

 

import numpy as np 

 

magnitude_volatility = 2.5 

 

# Generating 5000 expected returns, 5000 volatilities and 5000 starting prices (one for each stoc

k)  

# With a value between 0% and 10% and maximum 3 decimal points for expected returns and vo

latitlites 

# With a value between 1 and 1000 and maximum 2 decimal points for starting prices 

expected_returns = np.array([round(random.uniform(0, 10),3)/100 for x in range(5000)]) 

volatilities =  np.array([round(random.uniform(0, 10),3)/(10**magnitude_volatility) for x in r

ange(5000)]) 

starting_prices = np.array([round(random.uniform(1, 1000),2) for x in range(5000)]) 

 

print("Sample of annual returns of size 10:  {} \n*Values are in %".format(expected_returns[:1

0]*100)) 

 

Output: 

 

Sample of annual returns of size 10:   

[8.482 5.848 8.847 6.658 8.471 4.566 5.681 3.45 9.46  5.145]  

*Values are in % 

 

Input: 

 

def geometric_brownian_motion(P_0, delta_t, e_return, volatility, error): 

    return P_0 * math.exp((e_return - (volatility**2)/2)*delta_t + (volatility * (delta_t**0.5))*er

ror) 

 

# Defining the frequency on a dailiy basis and a time horizon of 0.5 year, assuming there are 252 

tradings day in a year 

time_ex = np.array([t/252 for t in range(126)]) 

 

# Showing an example of the price on the day number 2000 of the stock number 10 

stock_n = 100 

 

# Generating 5000 standard normal errors for the stock number 10 

errors = np.random.standard_normal(len(time_ex)) 

path = np.array([geometric_brownian_motion(starting_prices[stock_n], time_ex[n], expected_r

eturns[stock_n], volatilities[stock_n], errors[n]) for n in range(len(time_ex))]) 

 

print("Example of half year of the daily movement of a sampled stock price") 

plt.plot(path) 

plt.show() 
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Output: 

 

Example of half year of the daily movement of a sampled stock price 

 

 

 
 

Input: 

 

import pandas as pd 

 

# Defining the frequency on a dailiy basis and a time horizon of 10 years, assuming there are 252 

trading day in a year 

time = np.array([t/252 for t in range(252*10)]) 

 

# Data Frame initialization  

virtual_scenario = pd.DataFrame() 

 

for stock in stock_market: 

    stock_n = stock_market.index(stock) 

    errors = np.random.standard_normal(len(time)) 

    virtual_scenario[stock] = np.array([geometric_brownian_motion(starting_prices[stock_n], ti

me[n], expected_returns[stock_n], volatilities[stock_n], errors[n]) for n in range(len(time))]) 

     

print("Generation of a market scenario for all 5000 stocks, with each stock having 2520 obser

vations (10 years of daily returns), stored in a Data Frame.") 

virtual_scenario 
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Output: 

 

Generation of a market scenario for all 5000 stocks, with each stoc

k having 2520 observations (10 years of daily returns), stored in a 

Data Frame. 

 

 
AHC QLEN YUAS ERBT KUKO UDL PDF

0 984.910000 239.450000 831.690000 169.390000 722.350000 606.480000 674.0100

1 984.704858 239.468345 831.982085 169.708594 722.633886 607.032482 674.8881

2 986.347680 239.634796 832.691262 170.100244 722.790251 608.051722 676.8506

3 987.030921 239.611956 832.954032 169.397223 722.824237 607.024295 671.6481

4 986.378491 239.572654 832.722657 169.955736 723.613692 608.606500 672.0997

... ... ... ... ... ... ... 

2515 2427.984396 434.103433 1963.923184 338.122920 1682.668372 955.620643 1273.8652

2516 2286.666375 442.479310 2039.274327 307.908286 1682.279109 965.217214 1197.0277

2517 2285.818411 439.942238 2018.843283 328.007042 1691.493259 904.606421 1287.3502

2518 2263.378407 436.766684 2010.588331 317.617832 1654.688150 944.211378 1240.2879

2519 2328.287111 426.633093 2044.900066 319.958085 1684.119455 925.764002 1138.4712

2520 rows × 5000 columns 
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It seems the perfect tool to handle financial data on a large scale in a small amount of time: 

not casually it was developed by Wes McKinney while working as analyst of a Hedge Fund 

to handle easily financial time series. 

 

Once clarified the potentiality of NumPy and Pandas in performing high-speed numerical 

computation on large amount of observations or dimensions, is it possible to show a 

practical example of its applications with real financial data: computing the Sharpe Ratio 

for all the Companies included in the S&P 500 Index for the period 2017-01-01 until today. 

 

Input: 

 

virtual_scenario[stock_market[0:30]].iloc[0:161].plot(legend=False) 

print("Plot of 30 sampled stock for the first 6 months") 

 

Output: 

 

Plot of 30 sampled stock for the first 6 months 
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The assumed risk-free ratio, given the recent Quantitative Easing policies, is equal to zero, 

and consequentially the average natural logarithm return, and the respective volatility are 

computed starting from the daily adjusted close price directly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jupiter HTML version of the code available also at FinanceCS.com (Stefano 

Ciccarelli):  

https://www.financecs.com/wp-content/uploads/2020/09/Top-Performing-SP-500-C

ompanies-1.html 

 

Input: 

import pandas as pd 

import yfinance as yf 

from yahoofinancials import YahooFinancials 

import datetime 

import numpy as np 

 

# Taking from Wikipedia the list of the Companies inside the SP500 Index 

SP_500_Data = pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_compa

nies')[0] 

SP_500_Data.head() 

 

Output: 

 
Symbol Security 

SEC 

filings 

GICS 

Sector 

GICS Sub 

Industry 

Headquarters 

Location 

Date 

first 

added 

0 MMM 
3M 

Company 
reports Industrials 

Industrial 

Conglomerates 

St. Paul, 

Minnesota 

1976-

08-09 

1 ABT 
Abbott 

Laboratories 
reports 

Health 

Care 

Health Care 

Equipment 

North 

Chicago, 

Illinois 

1964-

03-31 

2 ABBV AbbVie Inc. reports 
Health 

Care 
Pharmaceuticals 

North 

Chicago, 

Illinois 

2012-

12-31 
15

3 ABMD 
ABIOMED 

Inc 
reports 

Health 

Care 

Health Care 

Equipment 

Danvers, 

Massachusetts 

2018-

05-31 
8

https://www.financecs.com/wp-content/uploads/2020/09/Top-Performing-SP-500-Companies-1.html
https://www.financecs.com/wp-content/uploads/2020/09/Top-Performing-SP-500-Companies-1.html
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Input: 

#Initializing the dataframe  

SP500_adj_Close = pd.DataFrame() 

 

# For each stock ticker we download the stock close price daily data starting from 1st Janua

ry 2017 until today  

for symbol in  SP_500_Data["Symbol"]: 

     

    SP500_adj_Close[symbol] = yf.download(symbol,  

                      start='2017-01-01',  

                      end=datetime.datetime.today(),  

                      progress=False)["Adj Close"] 

 

#Initializing the dataframe  

SP500_Returns = pd.DataFrame() 

 

# Generating the Daily Returns 

SP500_Returns = np.log(SP500_adj_Close / SP500_adj_Close.shift(1)).iloc[1:] 

         

     

SP500_Returns.head() 

 

Output: 

 
MMM ABT ABBV ABMD ACN ATVI ADBE AMD 

Date 
        

2017-

01-04 
0.001515 0.007907 0.014002 0.029638 0.002401 0.019460 0.006358 0.000000 

2017-

01-05 

-

0.003427 
0.008601 0.007556 

-

0.008068 

-

0.015104 
0.015406 0.016854 

-

0.016763 

2017-

01-06 
0.002922 0.026841 0.000314 0.005299 0.011328 

-

0.000791 
0.022315 0.007092 

2017-

01-09 

-

0.005401 

-

0.000981 
0.006562 0.014536 

-

0.011241 

-

0.005555 
0.002490 0.014906 

2017- - - - - -
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 Input: 

df = pd.DataFrame() 

 

df["Avg_Returns"] = SP500_Returns.mean() 

df["Volatilities"] = SP500_Returns.std() 

df["Sharpe_Ratios"] = df["Avg_Returns"]/df["Volatilities"]*(252**0.5) 

df["Sharpe_Ratios"].nlargest(10) 

 

Output: 

CARR    2.559158 

OTIS    1.366332 

AMZN    1.338054 

AAPL    1.295516 

NOW     1.270008 

ADBE    1.258111 

MSCI    1.247168 

PYPL    1.228539 

MSFT    1.217933 

CDNS    1.211523 

Name: Sharpe_Ratios, dtype: float64 

 

Input: 

df.plot(x='Volatilities', y='Avg_Returns', style='o', title='Average Daily Return vs Daily Vol

atility', legend = False) 

 

Output: 

<matplotlib.axes._subplots.AxesSubplot at 0x1beb14e6788> 
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In the graph above is it possible to summarize an analysis conducted on large scale (the 

S&P 500 Index companies) and have a plot of the daily volatility (x axis) against the 

average daily return (y axis) and the relative list of the top 10 performing companies in 

terms of Sharpe Ratio26 (average excess return over volatility). 

 

This allow us to identify investment opportunities that maximize the return for each level 

of volatility included in our portfolio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
26 William F. Sharpe, The Journal of Portfolio Management Fall 1994, 21 (1) 49-58.  

DOI: https://doi.org/10.3905/jpm.1994.409501  

https://doi.org/10.3905/jpm.1994.409501
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Applied Financial Machine Learning with Scikit-learn 

 

The large spread of Scikit-learn27 as a main reference for Machine Learning is not a 

coincidence: it doesn’t only includes a series of algorithms already structured and 

optimized, but also a range of techniques dedicate to processing the data (before and after). 

Generally, is worth to remember that in applying Machine Learning to financial analysis 

we must not only use advanced quantitative tools but also a deep qualitative acumen to 

have a broad picture of why the model is generating specific results. 

 

Following we will show the application of a k-means clustering algorithm: 

 

I) In the first step we need to mix the Sharpe Ratios of the S&P500 Index 

Companies together with the P/E Ratios, that we will obtain scraping Yahoo 

Finance and the relative fundamental financial values inside each company’s 

page. 

 

II) Once stored the data in a Dataframe, the outliers inside P/E are removed (and 

indirectly the stocks associated) and the remaining are plotted on the x axis 

against the y axis (Sharpe Ratio).  

 

III) On this level we are ready to apply a K-mean algorithm to identify the group of 

stocks (4 in our case) that are discovered starting from the data and the relative 

2 dimensions provided. 

 

IV) Finally, we analyze the results and the characteristics of each single group to 

try to identify starting backwards the meaning of each group and how this could 

be valuable to find new potential investment opportunities. 

 
27 https://scikit-learn.org/stable/index.html  

https://scikit-learn.org/stable/index.html
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 Jupiter HTML version of the code available also at FinanceCS.com (Stefano 

Ciccarelli):  

https://www.financecs.com/wp-content/uploads/2020/09/PE-vs-S

harpe-Ratio-1.html  

 

Input: 

# Stefano Ciccarelli 

import pandas as pd 

import yfinance as yf 

from yahoofinancials import YahooFinancials 

import datetime 

import numpy as np 

from bs4 import BeautifulSoup as bs 

import requests 

from scipy import stats 

 

# Reading the previously computed Sharpe Ratios 

df = pd.read_csv("Sharpe_Ratios.csv", index_col = 0) 

 

# Taking from Wikipedia the list of the Companies inside the SP500 Index 

SP_500_Data = pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_compa

nies')[0] 

  

import yahoo_fin.stock_info as si 

 

# Obtainf fundamental data: P/E Ratio 

 

P_E_SP500 = dict() 

 

for stock in SP_500_Data["Symbol"]: 

    try: 

        P_E_SP500[stock] = si.get_quote_table(stock)['PE Ratio (TTM)'] 

    except: 

        print(stock, " not found!") 

     

df["P/E"] = pd.Series(P_E_SP500) 

P_E_SP500 

# Removing outliers from the P/E Ratios 

df["P/E"] = df["P/E"][df["P/E"].between(df["P/E"].quantile(.15), df["P/E"].quantile(.85))

] 

 

# Cleaning the datset from missing values 

df = df.dropna() 

df.plot(x='P/E', y='Sharpe_Ratios', style='o') .set_ylabel("Sharpe Ratio") 

 

https://www.financecs.com/wp-content/uploads/2020/09/PE-vs-Sharpe-Ratio-1.html
https://www.financecs.com/wp-content/uploads/2020/09/PE-vs-Sharpe-Ratio-1.html
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Output: 

 

 
Input: 

 

df.corr() 

 

Output: 

 

 

 
Avg_Returns Volatilities Sharpe_Ratios P/E 

Avg_Returns 1.000000 -0.258494 0.972602 0.377830 

Volatilities -0.258494 1.000000 -0.388080 -0.089847 

Sharpe_Ratios 0.972602 -0.388080 1.000000 0.412262 

P/E 0.377830 -0.089847 0.412262 1.000000 
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In the graph above we can observe the raw data, where for each stock (after the outliers’ 

removal, with 270 observations remaining) the Sharpe Ratio is plotted against its relative 

P/E. 

 

The normalization outliers’ removal and the absence of multicollinearity (low correlation 

between Sharpe Ratio and P/E) indicates that the data is ready for a K-mean clustering 

model. 

 

The main scope of the analysis, once removed the irrelevant stocks, as in the case of a 

Sharpe Ratio inferior to 0.7 (subjective factor dependent on the preference of the Investor), 

will be to identify the top 10 performing companies inside the “buy” group, defined in 

terms of Sharpe Ratio and P/E. 

 

 

 

 

 

 

Jupiter HTML version of the code available also at FinanceCS.com (Stefano 

Ciccarelli):  

https://www.financecs.com/wp-content/uploads/2020/09/Cluster

ing-for-Stock-Selection-1.html  

 

Input: 

 

import pandas as pd 

from sklearn.cluster import KMeans  

from sklearn.mixture import GaussianMixture 

from sklearn.neighbors import NearestNeighbors 

from pylab import mpl, plt 

 

df = pd.read_csv("S&P500 Index - Shape and P_E.csv") 

 

# We want to invest only in stocks with a Sharpe Ratio superior to 0.7 

# All the stock not satisfying this criterion are removed 

 

df = df[df["Sharpe_Ratios"] > 0.70] 
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# Initialising the K-Mean Algorithm defining 2 clusters 

algo = KMeans(n_clusters=2) 

 

y = algo.fit_predict(df[["Sharpe_Ratios","P/E"]]) 

#algo.fit(X, columns=["Sharpe_Ratios", "P/E"]) 

 

plt.figure(figsize=(10,6)) 

plt.scatter(df["P/E"], df["Sharpe_Ratios"], c=y, cmap="coolwarm") 

plt.legend(['Buy']) 

 

Output: 

 

<matplotlib.legend.Legend at 0x152b5cb3908> 
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Input: 

 

# The data is Labeled according its class (1 Buy 0 Not Buy) 

df['Buy'] = 1 - y 

 

# Filtring only by the stock the algorithm suggests to buy 

df = df[df["Buy"] == 1] 

  

df.sort_values(by=["Sharpe_Ratios"], ascending=False).head(10) 

 

Output: 

 

 
Unnamed: 0 Avg_Returns Volatilities Sharpe_Ratios P/E Buy 

29 AAPL 0.001599 0.019599 1.295516 36.70 1 

185 MSFT 0.001397 0.018213 1.217933 37.20 1 

51 CDNS 0.001546 0.020255 1.211523 29.12 1 

80 CPRT 0.001419 0.019304 1.166650 35.32 1 

228 SPGI 0.001293 0.018449 1.112825 32.55 1 

91 DG 0.001090 0.016421 1.053425 21.30 1 

188 MCO 0.001219 0.019764 0.979201 30.96 1 

255 VRTX 0.001372 0.022386 0.973098 33.64 1 

260 WMT 0.000886 0.014629 0.961559 22.79 1 

236 STE 0.000955 0.015802 0.959521 32.90 1 
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The table above represent the top 10 Stocks classified as “Buy” by the clustering algorithm: 

once all the stocks are classified binomially, the dataset is filtered by the stock the Investor 

is interested to buy (discriminated by a combination of Sharpe Ratio and P/E Ratio) and all 

the stocks are ranked according the highest Sharpe Ratio. 

 

This algorithm can be useful to discriminate which company, outside the S&P 500 Index, 

is behaving, in terms of P/E and Sharpe Ratios, as the top 10 performing one and 

consequentially to select which stock should be inserted in the final portfolio. 

 

It is worth to notice that the period is including the COVID-19 effect, consequentially the 

Sharpe Ratios are affected by these “outliers” and this approach should be repeated in a 

relatively more stable future period. 
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Optimized Neural Networks with AutoKeras: Analyzing the COVID-19 Impacts on 

NASDAQ US Benchmark Airlines Index using Google Trends 

 

Airlines is one of the main industries to be affected by the COVID-19: in the long-run it is 

not only because of the effective diffusion of the virus, but also to the social perception of 

it. 

 

Stephens‐Davidowitz 28,  used Google Trends as a Data-Driven approach to analyze the 

online behavior of the masses to try to predict the future (specifically the US Elections): an 

approach that I replicated on the European Elections in occasion of the meeting with him. 

 

It mainly consists in finding patterns and behaviors related to an outcome of interest: it can 

be improved substituting the human judgment with Neural Networks to account for 

different interactions among data on a deeper level than a simple linear or logistic 

regression. 

 

For this analysis, the key mission will be to analyze and quantify the impact of the 

Coronavirus “worries”, the number of Google Searches for “Flights” and the 4 main US 

Airlines Companies on the Airlines Industry’s Financial performances. 

 

First, we will start obtaining the NASDAQ US Benchmark Airlines Index values using 

quandl, consequentially the number of searches for the flights and the airlines will be 

scraped from Google Trends together with the number of Coronavirus related searches. 

In the case of the Coronavirus searches, will be applied a transformation, where over a 

threshold the value will be equal to 1, implying a minimum of amount of worrying among 

the population is still persistent, and in all other cases will be equal to 0. 

The 2 main pillars are: 

 
28 Stephens‐Davidowitz, S. (2017). Everybody lies: Big data, new data, and what the Internet can tell us 
about who we really are. New York, NY: HarperCollins, 352 pp 

https://onlinelibrary.wiley.com/doi/abs/10.1111/jmft.12325   

https://onlinelibrary.wiley.com/doi/abs/10.1111/jmft.12325
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I) Most of the Airlines Tickets Bookings are performed online. 

 

https://www.statista.com/statistics/291037/online-sources-leisure-business-travel-

planning-us/ 

II) The search airline index will be composed by the 4 most important US Airlines 

by market share 

 

https://www.statista.com/statistics/250577/domestic-market-share-of-leading-us-

airlines/  

 

https://www.statista.com/statistics/291037/online-sources-leisure-business-travel-planning-us/
https://www.statista.com/statistics/291037/online-sources-leisure-business-travel-planning-us/
https://www.statista.com/statistics/250577/domestic-market-share-of-leading-us-airlines/
https://www.statista.com/statistics/250577/domestic-market-share-of-leading-us-airlines/
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Jupiter HTML version of the code available also at FinanceCS.com (Stefano 

Ciccarelli):  

https://www.financecs.com/wp-content/uploads/2020/09/Untitle

d11-Copy3-1.html  

 

Input: 

import autokeras 

import quandl 

import pandas as pd 

 

quandl.ApiConfig.api_key = "TyKZthWgcxsqfZf9yeXD" 

data_air = quandl.get("NASDAQOMX/NQUSB5751-NQ-US-Bnchmk-Airlines-Index-NQUSB

5751", start_date="2019-01-01", end_date="2020-09-20") 

data_air.index = pd.to_datetime(data_air.index) 

data_air = data_air["2019-01-01":] 

 

logic = {'Index Value'  : 'last'} 

offset = pd.offsets.timedelta(days=-6) 

 

data_air = data_air.resample('W-SAT', loffset=offset).apply(logic) 

data_air.plot() 

 

Output: 

<matplotlib.axes._subplots.AxesSubplot at 0x207c42a9288> 

 
 

https://www.financecs.com/wp-content/uploads/2020/09/Untitled11-Copy3-1.html
https://www.financecs.com/wp-content/uploads/2020/09/Untitled11-Copy3-1.html
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The code above obtains the data of the Index from the beginning of 2019 until the 20th of 

September 2020 daily, consequentially it is resampled on a weekly basis setting as price 

the last price of the week available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instead, above we can observe the behavior from the 1st of January 2019 until the 20th of 

September 2020 of the Google Searches for the keyword “Flights” in US. 

Input: 

from pytrends.request import TrendReq 

pytrend = TrendReq(hl='en-US', tz=360) 

keywords = ['flights'] 

pytrend.build_payload( 

     kw_list=keywords, 

     cat=0, 

     timeframe='today 5-y', 

     geo='US', 

     gprop='') 

searches = pytrend.interest_over_time() 

searches = searches.drop(labels=['isPartial'],axis='columns') 

#searches.index = pd.to_datetime(searches.index) 

searches.index = pd.to_datetime(searches.index) 

 

searches = searches["2019-01-01":] 

#searches.index = searches.index.week 

searches.plot() 

 

Output: 

<matplotlib.axes._subplots.AxesSubplot at 0x207c5554088> 
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The 

same 

approach is repeated on the 4 main US Airlines Companies. 

Input: 

pytrend2 = TrendReq(hl='en-US', tz=360) 

keywords2 = ['American Airlines','Delta AirLines','Southwest Airlines','United Airlines'] 

pytrend2.build_payload( 

     kw_list=keywords2, 

     cat=0, 

     timeframe='today 5-y', 

     geo='US', 

     gprop='') 

searches2 = pytrend2.interest_over_time() 

searches2 = searches2.drop(labels=['isPartial'],axis='columns') 

#searches.index = pd.to_datetime(searches.index) 

searches2.index = pd.to_datetime(searches2.index) 

 

searches2 = searches2["2019-01-01":] 

#searches.index = searches.index.week 

searches2.plot() 

Output: 

<matplotlib.axes._subplots.AxesSubplot at 0x207c55a8048> 

 
 



53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: 

pytrend3 = TrendReq(hl='en-US', tz=360) 

keywords3 = ['coronavirus'] 

pytrend3.build_payload( 

     kw_list=keywords3, 

     cat=0, 

     timeframe='today 5-y', 

     geo='US', 

     gprop='') 

searches3 = pytrend3.interest_over_time() 

searches3 = searches3.drop(labels=['isPartial'],axis='columns') 

#searches.index = pd.to_datetime(searches.index) 

searches3.index = pd.to_datetime(searches3.index) 

 

searches3 = searches3["2019-01-01":] 

#searches.index = searches.index.week 

searches3.plot() 

 

Output: 

<matplotlib.axes._subplots.AxesSubplot at 0x207c54e6588> 
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Finally, the COVID-19 “worriedness” in US is sampled and plotted above, seeming to have 

a negatively correlated behavior respect to the Index and the Airlines searches.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: 

 

dataframe = searches2.copy() 

dataframe['Index'] = data_air['Index Value'] 

dataframe['flights'] = searches['flights'] 

dataframe['coronavirus'] = searches3['coronavirus'] 

#dataframe.index.week 

dataframe = dataframe.dropna() 

dataframe.head() 

dataframe.tail() 

 

Output: 

 
American 

Airlines 

Delta 

AirLines 

Southwest 

Airlines 

United 

Airlines 
Index flights coronavirus 

date 
       

2019-

01-06 
20 8 15 11 3574.66 49 0 

2019-

01-13 
20 8 15 11 3692.80 48 0 

2019-

01-20 
20 8 14 11 3725.15 46 0 

2019-

01-27 
20 8 14 11 3871.17 46 0 

2019-

02-03 
19 8 14 10 3905.14 44 0 
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Once collected the data from different data sources, the time series are collected together 

in a unique dataset according the Index (a datetime object).  

 

In the first table we can observe the data at the beginning of 2019 and in the second one 

the most recent observations. 

 

There is a clear relationship between the decrease of number of searches, the drop of the 

Index and the increase of the COVID-19 worriedness. 

 

Output: 

 American 
Airlines 

Delta 
AirLines 

Southwest 
Airlines 

United 
Airlines 

Index flights coronavirus 

date 
       

2020-
08-16 

10 3 6 5 1967.17 22 6 

2020-
08-23 

10 3 7 5 2239.90 22 5 

2020-
08-30 

11 3 7 5 2254.08 23 5 

2020-
09-06 

10 3 7 5 2213.60 24 4 

2020-
09-13 

10 4 7 5 2268.02 25 4 
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We can observe the correlation of the variable, and conclude there is the presence of 

Multicollinearity, an indicator that those variables are suitable as an input of our model. 

 

In the case of the Index, all the correlations for google searches related to the flights are 

superior to >0.7 and only in the case of coronavirus we find a -0.62, strongly negatively 

correlated to the performance of the index, implying an increase of people worrying for 

Input: 

 

dataframe.corr() 

 

Output: 

 American 

Airlines 

Delta 

AirLines 

Southwest 

Airlines 

United 

Airlines 
Index flights coronavirus 

American 

Airlines 
1.000000 0.964791 0.940771 0.985492 0.776127 0.921146 -0.216994 

Delta 

AirLines 
0.964791 1.000000 0.913538 0.973014 0.739754 0.924918 -0.114226 

Southwest 

Airlines 
0.940771 0.913538 1.000000 0.927562 0.819368 0.900298 -0.372909 

United 

Airlines 
0.985492 0.973014 0.927562 1.000000 0.773032 0.927118 -0.165175 

Index 0.776127 0.739754 0.819368 0.773032 1.000000 0.710131 -0.621369 

flights 0.921146 0.924918 0.900298 0.927118 0.710131 1.000000 -0.134019 

coronavirus -0.216994 
-

0.114226 
-0.372909 

-

0.165175 

-

0.621369 

-

0.134019 
1.000000 
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COVID-19 could potentially, but not necessarily since correlation doesn’t mean causation 

in every case, determine a decrease of the Airline financial performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We clean the dataset removing all the outliers (all the observations that are distant from the 

average at least 3 times the standard deviation). 

 

But the plot is still not enough informative, implying is necessary to standardize the data 

and work on the same scale to extract the meaning from the variables. 

 

 

Input: 

import numpy as np 

#searches_clean = searches 

dataframe_clean = dataframe[np.abs(dataframe-dataframe.mean())<=(3*dataframe.std()

)] 

#dataframe_clean['flights'] = dataframe_clean['flights'].rolling(window=3).mean() 

dataframe_clean.plot() 

 

Output: 

<matplotlib.axes._subplots.AxesSubplot at 0x207c57f7188> 
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 Input: 

from sklearn.preprocessing import MinMaxScaler 

def condition(x): 

    if x > 0.03: 

        return 1 

    else: 

        return 0 

 

scaler = MinMaxScaler() 

data_standard = dataframe_clean.copy() 

#data_standard[["flights","Index"]] = scaler.fit_transform(data_standard[["flights", "Index"]

]) 

 

data_standard[["flights","Index","coronavirus","American Airlines","Delta AirLines", "Sou

thwest Airlines", "United Airlines"]] = scaler.fit_transform(data_standard[["flights", "Inde

x","coronavirus","American Airlines","Delta AirLines", "Southwest Airlines", "United Airli

nes"]]) 

data_standard["coronavirus"] = data_standard["coronavirus"].apply(condition) 

data_standard.plot() 

 

Output: 

<matplotlib.axes._subplots.AxesSubplot at 0x15c6bf10608> 
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Now the graph clearly shows the Index moving on the same direction of the number of 

searches for the flights and the airline companies. 

 

The COVID-19 is represented as a Boolean, as 1 while a minimum threshold of searches 

is present: when it is activated the index and the flights searches are pushed down, implying 

that when the people will stop worrying about COVID-19 the market could potentially, but 

not necessarily, generate a specular reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A scatter plot above, where the flights searches are on the x-axis and the index is on the y-

axis, show how there are 2 evident clusters, where one is characterized by low searches 

Input: 

 

col = data_standard.coronavirus.map({0:'b', 1:'r'}) 

data_standard.plot.scatter(["flights"],["Index"], c = col) 

 

Output: 

<matplotlib.axes._subplots.AxesSubplot at 0x15c6bfed948> 

 
 



60 

 

and low index values and the other one by high searches and high index values, implying 

those 2 variables are strictly related. 

The red color represents the COVID-19 activation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: 

 

def labeling(x): 

    if x > 3000: 

        return 1 

    else: 

        return 0 

 

 

data_standard2 = data_standard.copy() 

data_standard2["Index"] = dataframe_clean["Index"].apply(labeling) 

data_standard2.tail() 

 

Output: 

 American 

Airlines 

Delta 

AirLines 

Southwest 

Airlines 

United 

Airlines 
Index flights coronavirus 

date 
       

2020-

08-16 
0.111111 0.000000 0.117647 0.1 0 0.097561 1 

2020-

08-23 
0.111111 0.000000 0.176471 0.1 0 0.097561 1 

2020-

08-30 
0.166667 0.000000 0.176471 0.1 0 0.121951 1 

2020-

09-06 
0.111111 0.000000 0.176471 0.1 0 0.146341 1 

2020-

09-13 
0.111111 0.142857 0.176471 0.1 0 0.170732 1 
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In the code above, the Index is labeled, to prepare it for a classification algorithm: 0 when 

the Index is less or equal to 3000 and 1 in all other cases. 

The main purpose is to identify, using the parameters as discriminators, when will be likely 

that the Index will turn back to the pre-virus levels (1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Above the model is trained with AutoKeras, that generates a TensorFlow classification 

algorithm already optimized after a series of epochs. 

 

 

 

 

 

Input: 

 

X, y = data_standard2[["flights","coronavirus","American Airlines","Delta AirLines", "Sout

hwest Airlines", "United Airlines"]], data_standard2['Index'] 

 

from sklearn.model_selection import train_test_split 

X_train, X_test = X[:'2020-08-01'], X['2020-08-01':] 

y_train, y_test = y[:'2020-08-01'], y['2020-08-01':] 

 

import autokeras as ak 

search = ak.StructuredDataClassifier(max_trials=15) 

search.fit(x=X_train, y=y_train, verbose=1) 

 

Output: 

 

INFO:tensorflow:Reloading Oracle from existing project .\struct

ured_data_classifier\oracle.json 

INFO:tensorflow:Reloading Tuner from .\structured_data_classifi

er\tuner0.json 

INFO:tensorflow:Oracle triggered exit 

 

Input: 

loss, acc = search.evaluate(X_test, y_test, verbose=0) 

print(acc) 

 

Output: 

1.0 
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The accuracy obtained is 100%, implying the model maximized its classification 

capabilities over the Index, assuming absence of overfitting. 

 

Since the data was previously split (training set and test set for both X and y), to test the 

model on unobserved data, we can test it on the most recent market changes: the model 

was trained until the 1st of August and doesn’t have information of what happens after. 

 

 

 

 

 

 

 

 

 

 

Our model estimates that for all the period of August, until the second week of September 

2020, the Index should remain under the threshold of 3000, since the market is still affected 

by negative conditions. 

 

 

 

 

 

 

 

 

 

 

Input: 

y_predictions = search.predict(X_test) 

print(y_predictions) 

 

Ouput: 

[[0] 

 [0] 

 [0] 

 [0] 

 [0] 

 [0] 

 [0]] 

 

Input: 

print(y_test) 

 

Output: 

date 

2020-08-02    0 

2020-08-09    0 

2020-08-16    0 

2020-08-23    0 

2020-08-30    0 

2020-09-06    0 

2020-09-13    0 

Name: Index, dtype: int64 
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This is exactly what happened, implying the model is correctly working on the short-term. 

The main purpose of this model it is to monitor the market conditions and the relative 

variables that could affect the financial performances of the index: if an unexpected event 

happens, the model could estimate that the index should recover to the pre-virus conditions 

before that it is understood by the investors, reducing the market informative asymmetries. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: 

model = search.export_model() 

model.summary() 

Output: 

Model: "functional_1" 

_______________________________________________________________

__ 

Layer (type)                 Output Shape              Param #   

===============================================================

== 

input_1 (InputLayer)         [(None, 6)]               0         

_______________________________________________________________

__ 

multi_category_encoding (Mul (None, 6)                 0         

_______________________________________________________________

__ 

dense (Dense)                (None, 32)                224       

_______________________________________________________________

__ 

re_lu (ReLU)                 (None, 32)                0         

_______________________________________________________________

__ 

dense_1 (Dense)              (None, 1)                 33        

_______________________________________________________________

__ 

classification_head_1 (Activ (None, 1)                 0         

===============================================================

== 

Total params: 257 

Trainable params: 257 

Non-trainable params: 0 

_______________________________________________________________
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Financial Machine Learning: A Practical Approach 

Deep Neural Networks to Forecast Market Implied Volatility (VIX) using the Short-Term 

3-M US Treasury Bonds Rates 

 

In finance the ability to account for different interactions of relevant variables is 

fundamental to estimate and understand the impacts on the overall financial markets, and 

especially on the market expected volatility (measured by the VIX Index). 

 

In fact, we can observe how the financial actors are frequently “influenced” by nudging 

policies29 with the main target to drive the consensus decisions. 

 

A clear example happened recently where the COVID-19 negatively affected the financial 

markets (especially the S&P 500 Index), pushing the FED towards a new Quantitative 

Easing policy and consequentially lowering the interest rates of the US Treasury Bonds. 

 

https://www.federalreserve.gov/monetarypolicy/bst_recenttrends.htm 

 
29 Barton, A., Grüne-Yanoff, T. From Libertarian Paternalism to Nudging—and Beyond. Rev.Phil.Psych. 6, 

341–359 (2015).  

https://doi.org/10.1007/s13164-015-0268-x  

https://doi.org/10.1007/s13164-015-0268-x
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According Tan, Ji and Kohli, Vaibhav30 (2011), in fact, a Quantitative Easing policy tends 

to introduce a higher volatility inside the financial markets in the Short-Term, with a 

following volatility stabilization in the mid-term. 

 

Consequentially we want to analyze if the negative correlation is still holding in the Market 

Shift of 2020: is still true that lowering the interest rates of the Short Term 3-M US 

Treasury Bonds the Investors will be pushed to look for higher yield in the stock markets? 

 

Finally, a Deep Neural Network Classification model is built to predict, given the last 3 

weeks daily interest rates of the 3-M US Treasury Bond as parameters, if the expected 

volatility (VIX Index) is high (superior or equal to 20, labeled as 1) or normal (all other 

cases – labeled as 0). 

 

The model, will have dimensionality equal to 21 for the X and a Boolean y and will be 

trained from the 1st of August 2019 to the to the 1st of August 2020 and consequentially 

tested on the period from the 2nd of August 2020 to 20th of September 2020. 

 
30 Tan, Ji and Kohli, Vaibhav, The Effect of Fed's Quantitative Easing on Stock Volatility (June 1, 2011). 

http://dx.doi.org/10.2139/ssrn.2215423  

http://dx.doi.org/10.2139/ssrn.2215423
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First, we obtain the relevant data using quandl, consequentially as we can observe: the data 

confirm the negative correlation between the VIX Index and the Interest Rates, a good 

starting point to build our model. 

 

The data found, confirms the original assumption regarding the relationship between the 

Quantitative Easing policies and the short-term market volatility. 

 

 

Jupiter HTML version of the code available also at FinanceCS.com (Stefano 

Ciccarelli):  

https://www.financecs.com/wp-content/uploads/2020/09/Deep-Ne

ural-Network-to-Predict-VIX-using-3-M-Treasury-Bonds.html 

Input: 

 

import quandl 

import pandas as pd 

 

quandl.ApiConfig.api_key = "INSERT YOUR API" 

vix = quandl.get("CHRIS/CBOE_VX1-S-P-500-Volatility-Index-VIX-Futures-Continuous-Co

ntract-1-VX1-Front-Month", start_date="2019-08-01", end_date="2020-09-20")['Close'] 

interest_rate_3m = quandl.get("FRED/DTB3-3-Month-Treasury-Bill-Secondary-Market-R

ate", start_date="2019-08-01", end_date="2020-09-20") 

 

dataframe = pd.DataFrame() 

dataframe['Interest_Rate_3m'] = interest_rate_3m['Value'] 

dataframe['Vix'] = vix 

 

Output: 

 

 
Interest_Rate_3m Vix 

Interest_Rate_3m 1.000000 -0.745343 

Vix -0.745343 1.000000 
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In the data above the behavior of the 3-M short term US Treasury bond interest rate is 

plotted to have a clear picture on how is evolving among time. 

 

Is interesting to notice the significant drop following the FED announce regarding the 

instauration of the QE regime. 

 

 

 

 

 

Input: 

dataframe['Interest_Rate_3m'].plot() 

 

Output: 

<matplotlib.axes._subplots.AxesSubplot at 0x1f6550c9a48> 
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Instead, above we can observe the evolution of the VIX Index among time, and especially 

we can identify the significant rise following the FED new policy announcement, signaling 

an increase of the dynamism for the S&P 500 Index. 

 

As expected from the theory: following the large short-term peak there is a clear trend 

towards a stabilization on a lower level. 

 

What we want to clarify is the impact of the gradual changes in the interest rates on the 

daily expected volatility of the market and especially when the implicit volatility will turn 

back to the previous level. 

Input: 

 

dataframe['Vix'].plot() 

 

output: 

<matplotlib.axes._subplots.AxesSubplot at 0x1f65527dc48> 
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Once standardized the data on the same scale, both the time series are plotted together to 

have an overview of the relationships among them. 

 

As we can immediately analyze the volatility tends to be lower wen the interest rates are 

higher and vice versa, with a large peak when a large deviation is verified. 

 

Input: 

 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

data_standard = dataframe.copy() 

data_standard[["Interest_Rate_3m","Vix"]] = scaler.fit_transform(data_standard[["Interes

t_Rate_3m","Vix"]]) 

data_standard.plot() 

 

Output: 

<matplotlib.axes._subplots.AxesSubplot at 0x1f6572dfac8> 
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Instead, plotting the interest rates on the x axis and the VIX on the y axis, 2 main clusters 

can be observed: when the interest rates are less than 0.25 the volatility tends to be superior 

to 20, instead interest rates superior to 1.5 would imply a normal volatility level less than 

20. 

 

The pattern inside this scatter plot is a signal that using a Classification model can increase 

the likelihood of success in forecasting when the VIX index could turn back to the pre-QE 

policies. 

 

 

Input: 

dataframe.plot.scatter(["Interest_Rate_3m"],["Vix"]) 

 

Output: 

<matplotlib.axes._subplots.AxesSubplot at 0x1f65c5ddd08> 
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The single parameter interest rate is transformed in 21 parameters, where each, after the 

first, represent a lag of one unit of time (third parameter represent the interest rate 2 days 

ago). 

Input: 

 

for x in range(1, 20 + 1): 

    dataframe['Interest_Rate_3m {} Tradig Day Ago'.format(x)] = dataframe['Interest_Rate_

3m'].shift(x) 

     

dataframe = dataframe.dropna() 

dataframe.tail() 

 

Output: 

 
Interest_Rate_3

m 
Vix 

Interest_Rate_3

m 1 Tradig Day 

Ago 

Interest_Rate_3

m 2 Tradig Day 

Ago 

Interest_Rate_3

m 3 Tradig Day 

Ago 

Inter

m

Date 
     

2020

-09-

10 

0.12 
28.8

6 
0.12 0.13 0.11 

2020

-09-

11 

0.11 
26.6

0 
0.12 0.12 0.13 

2020

-09-

14 

0.11 
25.8

5 
0.11 0.12 0.12 

2020

-09-

15 

0.11 
25.4

5 
0.11 0.11 0.12 

2020

-09-

16 

0.12 
25.4

0 
0.11 0.11 0.11 
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Input: 

 

def labeling(x): 

    if x >= 20: 

        return 1 

    else: 

        return 0 

 

list_X = [parameter for parameter in list(dataframe.columns) if parameter != 'Vix'] 

 

X, y = dataframe[list_X], dataframe['Vix'].apply(labeling) 

 

from sklearn.model_selection import train_test_split 

X_train, X_test = X[:'2020-08-01'], X['2020-08-01':] 

y_train, y_test = y[:'2020-08-01'], y['2020-08-01':] 

 

import autokeras as ak 

search = ak.StructuredDataClassifier(max_trials=15) 

search.fit(x=X_train, y=y_train, verbose=1) 

 

Output: 

 

Epoch 1/67 

8/8 [==============================] - 0s 1ms/step - loss: 1.21

79 - accuracy: 0.4156 

Epoch 2/67 

8/8 [==============================] - 0s 1ms/step - loss: 0.90

37 - accuracy: 0.1948 

Epoch 3/67 

8/8 [==============================] - 0s 2ms/step - loss: 0.73

95 - accuracy: 0.2468 

Epoch 4/67 

8/8 [==============================] - 0s 1ms/step - loss: 0.64

69 - accuracy: 0.5238 

Epoch 5/67 

8/8 [==============================] - 0s 1ms/step - loss: 0.59

99 - accuracy: 0.5238 
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Once the model is trained with a classification algorithm using AutoKeras, we find an 

accuracy of 100% and a loss of 0.19, implying the observation are correctly labeled in 

almost any case on the data used for the training. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Above the forecasted outputs (0,1 labels) according the training inputs. 

Input: 

 

loss, acc = search.evaluate(X_test, y_test, verbose=0) 

print("The Loss is {:.2f} and the Accuracy is {}".format(loss, acc)) 

 

Output: 

 

The Loss is 0.19 and the Accuracy is 1.0 

 

Input: 

 

import matplotlib.pyplot as plt 

model = search.predict(X_train) 

plt.plot(model) 

 

Output: 

[<matplotlib.lines.Line2D at 0x1f65dbdb308>] 
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Above the real output verified on the market: the model is mostly accounting for persistent 

changes, ignoring the single outliers. 

 

 

 

 

 

 

 

 

Input: 

 

plt.plot(y_train) 

 

Output: 

[<matplotlib.lines.Line2D at 0x1f65e044f88>] 
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Using the model on test data (on which it was never trained), it is still behaving optimally 

with an accuracy of 100%, classifying the VIX Index at an high level (above 1), that is 

what really happened for all the period of analysis. 

 

In the graph both the real data and the forecasted one are plotted together but since they 

are equal there is an overlapping 

Input: 

 

check = pd.DataFrame() 

check["Real"] = y_test 

check["Forecast"] = search.predict(X_test) 

 

check.plot() 

 

Output: 

 

<matplotlib.axes._subplots.AxesSubplot at 0x1f65d888a48> 
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Model: "functional_1" 

_______________________________________________________________

__ 

Layer (type)                 Output Shape              Param #   

===============================================================

== 

input_1 (InputLayer)         [(None, 21)]              0         

_______________________________________________________________

__ 

multi_category_encoding (Mul (None, 21)                0         

_______________________________________________________________

__ 

dense (Dense)                (None, 32)                704       

_______________________________________________________________

__ 

re_lu (ReLU)                 (None, 32)                0         

_______________________________________________________________

__ 

dense_1 (Dense)              (None, 1)                 33        

_______________________________________________________________

__ 

classification_head_1 (Activ (None, 1)                 0         

===============================================================

== 

Total params: 737 

Trainable params: 737 

Non-trainable params: 0 

_______________________________________________________________

__ 
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Deep Neural Networks for Stock Selection in Portfolio Optimization 

 

In this last chapter the focus will be on applying a classification problem for Stock selection 

purpose, with the main scope of generating an Optimal Portfolio from the best performing 

stock. 

 

We will start mining the main fundamental data of 30 companies, for all the years from 

2011 to 2017: an equivalent of 104 parameters (as for example the value of Working 

Capital, etc.) for 30 companies and for 7 years. 

 

Once obtained those values, the return YoY is computed and if the return in 2018 was equal 

or superior to 30% the Company in 2017 it is labeled as 1. 

 

The main purpose is to discover the key patterns contributes the most to generating returns 

among time on the financial markets looking to the fundamental data. 

 

Using the discovered strategy in 2017, on data the algorithm never observed before, an 

average return of 42.43% would be obtained: a value that would outperform most of the 

current funds. 
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Above the data about 30 company is scraped over a decade and the relative returns YoY 

are computed (close price end of the next year / close price end of current year – 1). 

Consequentially the boolean labels are generated according the returns, if superior or equal 

to 30%. 

 

 

Jupiter HTML version of the code available also at FinanceCS.com (Stefano 

Ciccarelli):  

https://www.financecs.com/wp-content/uploads/2020/09/Deep-Neural-Network-fo

r-Stock-Selection-in-Generating-the-Optimal-Portfolio.html  

 

Input: 

 

import quandl 

import pandas as pd  

 

quandl.ApiConfig.api_key = "INSERT YOUR API" 

 

data = dict()  

 

for n in range(10): 

    request = quandl.get_table('SHARADAR/SF1', calendardate='201{}-12-31'.format(n)) 

    request.index = request['ticker'] 

    data['201{}'.format(n)] = request 

 

def labeling(x): 

    if x >= 0.3: 

        return 1 

    else: 

        return 0 

     

 

for n in range(9): 

    data['201{}'.format(n)]['Return'] = data['201{}'.format(n + 1)]['price']/data['201{}'.for

mat(n)]['price'] - 1 

    data['201{}'.format(n)]['Label'] = data['201{}'.format(n)]['Return'].apply(labeling) 

     

https://www.financecs.com/wp-content/uploads/2020/09/Deep-Neural-Network-for-Stock-Selection-in-Generating-the-Optimal-Portfolio.html
https://www.financecs.com/wp-content/uploads/2020/09/Deep-Neural-Network-for-Stock-Selection-in-Generating-the-Optimal-Portfolio.html
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Input: 

 

import pandas as pd  

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

 

columns = list(data['2011'].columns[6:]) 

data_standard = pd.DataFrame(columns = data['2011'].columns) 

 

for var in data: 

    if var not in ("2010", "2018", "2019") : 

         

        dataset_standard = data[var].copy() 

        dataset_standard[columns] = scaler.fit_transform(dataset_standard[columns]) 

        data_standard = data_standard.append(dataset_standard) 

         

    else: 

        pass 

 

data_standard.index = data_standard["calendardate"] 

data_standard.tail() 

 

Output: 

 
ticker dimension calendardate datekey reportperiod lastupdated accoci 

calendardate 
       

2017-12-31 CSCO MRY 2017-12-31 
2017-

07-29 
2017-07-29 2020-09-03 0.910670 0.

2017-12-31 CAT MRY 2017-12-31 
2017-

12-31 
2017-12-31 2020-08-05 0.868346 0.

2017-12-31 BA MRY 2017-12-31 
2017-

12-31 
2017-12-31 2020-07-31 0.349356 0.

2017-12-31 AXP MRY 2017-12-31 
2017-

12-31 
2017-12-31 2020-07-24 0.826091 0.

2017-
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In the code above, and inside the relative tables, we can observe the example data for the 

year 2017 and the key fundamental values: a standardization method is applied to be able 

to relate the variables on the same scale, since we want to analyze them in relation to the 

other key Companies’ dimensions and not as standalone. 

 

 

 

 

 

 

 

 

Output: 

assets assetsavg assetsc ... shareswadil sps tangibles taxassets taxexp taxliab

0.042448 0.041329 0.498039 ... 0.230141 0.005520 0.030401 0.480667 0.479851 0.0

0.021393 0.021883 0.196461 ... 0.015472 0.341384 0.018651 0.191972 0.504957 0.0

0.035494 0.028950 0.507514 ... NaN 0.746081 0.033135 0.036399 0.440769 0.0

0.062915 0.058120 NaN ... 0.029303 0.150664 0.064469 0.000000 0.555775 0.0

0.140244 0.128110 0.783623 ... 1.000000 0.012523 0.143497 0.000000 0.975882 0.0
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Above the classification algorithm is applied to all the data before the 1st of January 2017. 

Input: 

 

X, y = data_standard[columns], data_standard['Label'] 

 

from sklearn.model_selection import train_test_split 

X_train, X_test = X[:'2017-01-01'], X['2017-01-01':] 

y_train, y_test = y[:'2017-01-01'], y['2017-01-01':] 

 

import autokeras as ak 

search = ak.StructuredDataClassifier(max_trials=15) 

search.fit(x=X_train, y=y_train, verbose=1) 

 

Output: 

 

Epoch 1/67 

6/6 [==============================] - 0s 2ms/step - loss: 0.7960 - a

ccuracy: 0.2944 

Epoch 2/67 

6/6 [==============================] - 0s 2ms/step - loss: 0.6462 - a

ccuracy: 0.6778 

Epoch 3/67 

6/6 [==============================] - 0s 2ms/step - loss: 0.5743 - a

ccuracy: 0.7667 

Epoch 4/67 

6/6 [==============================] - 0s 2ms/step - loss: 0.5428 - a

ccuracy: 0.7667 

 

Input: 

 

loss, acc = search.evaluate(X_test, y_test, verbose=0) 

print('{:.2f}%'.format(acc*100)) 

 

Output: 

 

86.67% 
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The accuracy of the model is approximately 87% 

 

 

 

In the code above the model is evaluated on data that was never trained on (test as a real 

word example, to understand its performance once ready). 

 

 

 

 

 

 

 

 

 

Input: 

 

y_predictions = search.predict(X_test) 

y_train, y_test = y[:'2017-01-01'], y['2017-01-01':] 

df = pd.DataFrame(y_test) 

 

 

df["Expected"] = y_predictions 

returns = data["2017"] 

returns.index = returns["calendardate"] 

 

df["Return"] = returns["Return"] 

df["Ticker"] = returns["ticker"] 
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Input: 

 

df 

 

Output: 

 
Label Expected Return Ticker 

calendardate 
    

                                 2017-12-31 0.0 0.0 -0.184720 XOM 

2017-12-31 0.0 0.0 -0.101032 WMT 

2017-12-31 0.0 0.0 0.062158 VZ 

2017-12-31 1.0 1.0 0.426169 V 

2017-12-31 0.0 1.0 0.130001 UNH 

2017-12-31 0.0 1.0 0.068894 TSLA 

2017-12-31 0.0 0.0 -0.117148 TRV 

2017-12-31 0.0 0.0 -0.104303 PG 

2017-12-31 0.0 0.0 0.205135 PFE 

2017-12-31 1.0 1.0 0.354973 NKE 

2017-12-31 1.0 1.0 0.430582 MSFT 

2017-12-31 1.0 1.0 0.357917 MRK 
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2017-12-31 0.0 0.0 -0.190466 MMM 

                                        2017-12-31 0.0 0.0 0.031664 MCD 

2017-12-31 0.0 0.0 0.032040 KO 

2017-12-31 0.0 0.0 -0.087152 JPM 

2017-12-31 0.0 0.0 -0.089107 JNJ 

2017-12-31 0.0 0.0 0.012782 INTC 

2017-12-31 0.0 0.0 -0.259093 IBM 

2017-12-31 0.0 0.0 -0.110312 HD 

2017-12-31 0.0 0.0 -0.344285 GS 

2017-12-31 0.0 0.0 -0.566189 GE 

2017-12-31 0.0 1.0 0.186365 DIS 

2017-12-31 0.0 0.0 -0.249087 DD 

2017-12-31 0.0 0.0 -0.131001 CVX 

2017-12-31 1.0 1.0 0.350571 CSCO 

2017-12-31 0.0 0.0 -0.193616 CAT 

2017-12-31 0.0 0.0 0.093554 BA 

2017-12-31 0.0 1.0 -0.040177 AXP 

2017-12-31 1.0 1.0 0.464703 AAPL 
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Also, if the mode is not all time correct, when it suggests purchasing (label 1 in Expected) 

the return is still positive or insignificantly negative. 

 

 

Assuming an equal allocation to all the suggested stock, the average return would be 

42.43% yearly, showing the power of DNNs in identifying the key patterns. 

 

Once found the outperforming stock, according our classification algorithm, we can use it 

as an “engine” for the selection in a portfolio optimization approach, where we assign a 

specific weight to each stock and we account also for the volatility of the returns. 

 

 

 

 

 

 

 

 

 

 

 

Input: 

 

df["Strategy"] = df['Expected']*(df['Return']+1) 

 

print("This Algorithm for Stock Selection produces an average annualized return of {:.2f}%".form

at(df["Strategy"].mean()*100)) 

 

Output: 

 

This Algorithm for Stock Selection produces an average annualized ret

urn of 42.43% 
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Above we obtain the close stock price for all the selected stock on the time period from the 

1st of January 2017 to the 30th of December 2017 

Input: 

 

import yfinance as yf 

 

stocks = pd.DataFrame() 

count = 0  

insert = list(df["Expected"]) 

 

for i in df["Ticker"]: 

    if insert[count] == 1: 

        count += 1 

        try: 

            data = yf.download(i, start="2017-01-01", end="2017-12-30") 

 

            stocks[i] = data['Adj Close'] 

        except: 

            print('failed: ', i) 

    else: 

        count += 1 

        pass 

         

print(stocks) 

stocks = stocks.dropna(axis='columns') 

stocks.head(10) 

 

Output: 

 

[*********************100%***********************]  1 of 1 completed 

[*********************100%***********************]  1 of 1 completed 

[*********************100%***********************]  1 of 1 completed 

[*********************100%***********************]  1 of 1 completed 

[*********************100%***********************]  1 of 1 completed 

[*********************100%***********************]  1 of 1 completed 

[*********************100%***********************]  1 of 1 completed 

[*********************100%***********************]  1 of 1 completed 

[*********************100%***********************]  1 of 1 completed 

[*********************100%***********************]  1 of 1 completed 

                     V         UNH       TSLA        NKE       MSFT   
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Input: 

 

import sys 

import yfinance as yf 

import lxml 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from matplotlib import figure 

from sklearn.preprocessing import MinMaxScaler 

import os 

 

log_ret = np.log(stocks/stocks.shift(1)) 

 

np.random.seed(42) 

num_ports = 2000 

all_weights = np.zeros((num_ports, len(stocks.columns))) 

ret_arr = np.zeros(num_ports) 

vol_arr = np.zeros(num_ports) 

shape_arr = np.zeros(num_ports) 

 

for x in range(num_ports): 

    weights = np.array(np.random.random(len(stocks.columns))) 

    weights = weights/np.sum(weights) 

    all_weights[x,:] = weights 

    ret_arr[x] = np.sum((log_ret.mean()*weights*252)) 

    vol_arr[x] = np.sqrt(np.dot(weights.T, np.dot(log_ret.cov()*252, weights))) 

    shape_arr[x] = ret_arr[x]/vol_arr[x] 

 

print('Max sharpe ratio in the array: {}'.format(shape_arr.max())) 

print("Its location in the array: {}".format(shape_arr.argmax())) 

 

max_sr_ret = ret_arr[shape_arr.argmax()] 

max_sr_vol = vol_arr[shape_arr.argmax()] 

 

print('Proportion ratio: ',100*all_weights[shape_arr.argmax(),:]) 

 

plt.figure(figsize=(12,8)) 

plt.scatter(vol_arr, ret_arr, c shape_arr) 

plt.colorbar(label 'Sharpe Ratio') 
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plt.scatter(vol_arr, ret_arr, c=shape_arr) 

plt.colorbar(label='Sharpe Ratio') 

plt.xlabel('Volatility') 

plt.ylabel('Return') 

plt.scatter(max_sr_vol, max_sr_ret, c='red', s=50) 

plt.show() 

 

Output: 

 

Max sharpe ratio in the array: 3.531086903574403 

Its location in the array: 1451 

Proportion ratio:  [18.88535894 15.30726511  2.09109787  4.67307346  

7.96875013  3.43896713 

 10.0053844   9.52941807 19.33222169  8.7684632 ] 
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The Optimal Portfolio obtained has a Sharpe Ratio of 3.53, with an expected return of 

28.26% and a volatility of 8%: this imply that in the worst case (99.9th Percentile) the return 

would be still positive (1.93%). 

 

 

 

Input: 

 

print("The Expected return of this optimal portfolio would be {:.2f}%, with a volatility of {:.2f}%, 

generating a Sharpe Ratio of {:.2f}".format(ret_arr[1451]*100,vol_arr[1451]*100,shape_arr[1451

]))  

 

Output: 

 

The Expected return of this optimal portfolio would be 28.26%, with a 

volatility of 8.00%, generating a Sharpe Ratio of 3.53 

 

Input: 

 

equipment = list(stocks.columns.values) 

sizes = list(100*all_weights[shape_arr.argmax(),:]) 

 

dictionary = {} 

count = 0 

 

for x in equipment: 

    dictionary[x] = sizes[count] 

    count += 1 

 

print(dictionary) 

 

a = pd.DataFrame.from_dict(dictionary,orient= "index") 

a.to_csv("final.csv") 

 

 

fig1, ax1  plt.subplots() 
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fig1, ax1 = plt.subplots() 

fig1.set_size_inches(8, 6) 

ax1.pie(sizes, labels=equipment, autopct='%1.1f%%', 

        shadow=True, startangle=90) 

ax1.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle. 

fig1.set_facecolor('white') 

plt.show() 

 

Output: 

 

{'V': 18.885358942238106, 'UNH': 15.307265108539687, 'TSLA': 2.091097

8697403197, 'NKE': 4.673073461941965, 'MSFT': 7.968750132080986, 'MRK

': 3.438967133987564, 'DIS': 10.00538439670626, 'CSCO': 9.52941807110

8267, 'AXP': 19.332221687280196, 'AAPL': 8.768463196376654} 
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Consequentially the portfolio in 2017 should be composed of: 

 

'V': 18.885358942238106 

'UNH': 15.307265108539687 

'TSLA': 2.0910978697403197 

'NKE': 4.673073461941965 

'MSFT': 7.968750132080986 

'MRK': 3.438967133987564 

'DIS': 10.00538439670626 

'CSCO': 9.529418071108267 

'AXP': 19.332221687280196 

'AAPL': 8.768463196376654 

 

Those value are in % and sum up to 100%. 

 

An expected return of 28.26% in a year where the market index S&P 500 obtained a return 

of – 4.38% (2018 vs 2017) is an exceptional achievement that shows the potential of the 

Neural Networks in discriminating the underlying fundamental values of the companies 

that are relevant to predict the YoY success on the market of the listed Companies. 
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Model: "functional_1" 

_______________________________________________________________

__ 

Layer (type)                 Output Shape              Param #   

===============================================================

== 

input_1 (InputLayer)         [(None, 107)]             0         

_______________________________________________________________

__ 

multi_category_encoding (Mul (None, 107)               0         

_______________________________________________________________

__ 

dense (Dense)                (None, 32)                3456      

_______________________________________________________________

__ 

re_lu (ReLU)                 (None, 32)                0         

_______________________________________________________________

__ 

dense_1 (Dense)              (None, 1)                 33        

_______________________________________________________________

__ 

classification_head_1 (Activ (None, 1)                 0         

===============================================================

== 

Total params: 3,489 

Trainable params: 3,489 

Non-trainable params: 0 

_______________________________________________________________

__ 
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Conclusions 

 

The thesis started with an analysis of the current worldwide landscape: why Machine 

Learning is becoming relevant for Shareholders and how this can contribute to generating 

value for overall society. 

 

This call has a focus on economic and social inclusiveness given the expected non-linear 

risks generated by the potential Singularity’s developments on the overall society, 

identifying the Governments as crucial in establishing a financial singularity strategy 

without disincentivizing innovation. 

 

This was done using a strongly quantitative and data-driven approach: letting the data to 

proof the underlying assumptions, via Python as a powerful analytical tool. 

 

The key final result in the last paragraph shows how a Neural Network can outperform the 

financial valuation abilities of a team of professional analysts in selecting stocks, according 

data that never observed during the training, obtaining an average YoY +42.43% return. 

 

It was trained on a period span of 5 years data and on more than 100 fundamental 

parameters (as relevant Balance Sheet and Income Statements voices) on a set of 30 

Companies. 

 

It automatically selected the most relevant interactions among the standardize parameters 

(the relative relevancy of the ratio respect to the overall population), discriminating 

accurately the best companies to select and insert in the portfolio optimization strategy. 

 

Following the portfolio optimization and the obtaining of the efficient frontier, is found a 

Sharpe Ratio of 3.53, with an expected return of +28.26% and a volatility of 8%, implying 

that in the worst of all empirical case (99.9th Percentile) the return would be still positive 

(+1.93%). 
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This while the market index (S&P 500) obtained a return of – 4.38% the same year. 

 

This show how, especially in the next Future, Artificial Intelligence will tend to outperform 

the analytical abilities of human mind in executing specific and gradually more general 

tasks. 

 

In another case, the effects of the number of searches related to airlines on Google, together 

with a sample of the “worrying level” related to COVID-19, were used to analyze and 

monitor the NASDAQ US Benchmark Airlines Index level in a way that was not possible 

before, clarifying when we can expect a recover of this index, if the demand for the US 

Airlines tickets will start to increase again. 

 

A similar approach was used on forecasting the market volatility ( a consensus sample from 

the VIX Index), using the negatively correlated short term risk-free interest rates (3-M US 

Treasury Bonds): to model how the Governments and Central Banks interventions applying 

Quantitative Easing policies can negatively affect the short-term market volatility pushing 

the Investor towards the equity market’s higher yields and defining when we can expect 

the VIX Index to turn back to a normal level (under the value of 20). 

 

 

 

 

 

 

Concluding, once proved the high value generation abilities of this technology, my hope 

goes to the correct applications of it, that Machine Learning will be used as a tool and not 

as a gun against society: is Time for the Governments to establish a long-term automation-

indexed fund to sustain people when them will suddenly be exposed to the Singularity risk, 

or the democracies will fall under the control of a cognitive monopoly. 
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