
1

Summary – Financial Machine Learning – Stefano Ciccarelli

The analysis starts with the current worldwide technological landscape: answering why

Machine Learning is becoming relevant for Shareholders and how this can contribute to

generating value for the overall society.

This call has a focus on economic and social inclusiveness given the expected non-linear

risks generated by the potential Singularity’s developments on the overall society,

identifying the Governments as crucial in establishing a financial singularity strategy

without disincentivizing innovation.

The main scope is to nudge a preventive solution oriented to maximize the resilient abilities

of the local communities and to develop AI-indexed and passive alternative sources of

income, with a scale of importance specular to the level of automation inside the supply

chain of the main industries.

After explaining the current and projected trajectory of Machine Learning, since the

exponential trend of the Big Data and the Computer power, 4 technical practical financial

approaches using powerful computational statistical algorithms is shown.

Overall, the thesis is structured using a strongly quantitative and data-driven approach: to

let data prove the underlying assumptions and leveraging the analytical power of Python.

2

I. Deep Neural Networks for Stock Selection in Portfolio Optimization

The key final result in the last chapter seems to support how a Neural Network can

outperform the financial valuation abilities of a team of professional analysts in selecting

stocks, once the model is validated on data that were never observed by the machine,

obtaining an average YoY +42.43% return.

It was trained on a period span of 5 years data and on more than 100 fundamental

parameters (as relevant Balance Sheet and Income Statements voices) on a set of 30

Companies.

It automatically selected the most relevant interactions among the standardize parameters

(the relative relevancy of the ratio respect to the overall population), discriminating

accurately the best companies to select and insert in the portfolio optimization strategy.

3

Following the portfolio optimization and the obtention of the efficient frontier, a Sharpe

Ratio of 3.53 is found, with an expected return of +28.26% and a volatility of 8%, implying

that in the worst of all empirical case (99.9th Percentile) the return would be still positive

(+1.93%).

To give a benchmark on the same period of analysis the market index (S&P 500) obtained

a return of – 4.38%.

This result is of particular interest, especially in an historical period where the results

achievable by the emerging technologies are still debated, supporting, and clarifying the

long-term vision of the potential performances of Machine Learning in the next decade.

In fact, a similar approach could be used as a baseline to structure an AI-managed portfolio,

available inclusively at 0 fixed cost to the local population in order to incentive the

diversification of the sources of income and minimize the impacts of the expected negative

externalities of the AI on the long-term technological unemployment.

4

II. Optimized Neural Networks with AutoKeras: Analyzing the COVID-19 Impacts

on NASDAQ US Benchmark Airlines Index using Google Trends

In another case, the effects of the number of searches related to airlines on Google, together

with a sample of the behavioural “worrying level” related to COVID-19, were used to

analyse and monitor the NASDAQ US Benchmark Airlines Index level in a way that was

not possible before, clarifying when we can expect a recovery of this index

For example, if the demand for the US Airlines tickets will start to increase again, using a

Neural Network for classification purposes, with a Boolean class we can generate an

expectation regarding when the Index will turn back to the pre-virus status.

Here the correlations, between the variables (relative number of Google Searches) and the

Index and the standardized plot (on the same scale):

Airlines

Index

American Airlines 0.776127

Delta AirLines 0.739754

Southwest Airlines 0.819368

United Airlines 0.773032

flights 0.710131

coronavirus -0.621369

Here instead the 2 clusters observable:

5

I. High number of searches – High Index Values

II. Low number of searches – Low Index Values

Index on the y-axis and number of searches for flights on the x-axis, in red the COVID-19 “concern” period.

III. Applied Financial Machine Learning with Scikit-learn

Between the different techniques, a Machine Learning clustering method using Scikit-learn

was applied to the S&P 500 Index Companies, where after computing massively the returns

and the volatility and obtained the Sharpe Ratio (y-axis), this was plotted against the P/E

(x-axis) to automatically classify and consequentially identify the Buy companies against

the Not-Buy ones.

The results of this example can change according the parametrized Investor’s preferences.

S
h

a
r
p

e
R

a
ti

o

Price/Earning Ratio

6

IV. Deep Neural Networks to Forecast Market Implied Volatility (VIX) using the

Short-Term 3-M US Treasury Bonds Rates

Finally, the ML potential is also shown on forecasting the market implied volatility (VIX

Index), using the negatively correlated short term risk-free interest rates (3-M US Treasury

Bonds): to model how the Governments and Central Banks interventions applying

Quantitative Easing policies can negatively affect the short-term market volatility pushing

the Investor towards the equity market’s higher yields and defining when we can expect

the VIX Index to increase and consequentially to turn back to a normal level (under the

value of 20).

7

In this case the Neural Network is able, once observed the daily interest rates of the last 3

Weeks, to answer if the volatility is expected to gradually turn back to normality, under a

value of 20.

Final Comment:

The main vision of this work is to experiment how automation is affecting Finance in the

long-term and how interconnecting the dots and different models could be accretive in

constructing an automated financial mechanism to prevent the potential crises generated

by the Singularity risk, generating a sustainable monthly cash-flow for the most exposed

communities.

SUPERVISOR CO-SUPERVISOR

CANDIDATE

Academic Year

Course of

FinancialMachine Learning

ID No. 703861 - Ciccarelli S.

2019/2020

Machine Learning and Applied Statistics - Imperial College [ELE1]

Prof. LAURA L. Prof. ITALIANO G. F.

Department
of Business and Management & Economics and Finance

1

The Future will be Exponentially Better

Dedicated to My Parents

2

Financial Machine Learning

“Artificial intelligence programs like deep learning neural networks may be able to beat

humans at playing Go or chess, or doing arithmetic, or writing Navy Seal copypasta, but

they will never be able to truly think for themselves, to have consciousness, to feel any of

the richness and complexity of the world that we mere humans can feel.

Mere, unenlightened humans might be impressed by the abilities of simple deep learning

programs, but when looked at in a more holistic manner, it all adds up to… well, nothing.

They still don’t exhibit any trace of consciousness.

All of the available data support the notion that humans feel and experience the world

differently than computers do. While a computer can beat a human master at chess or Go

or some other game of structured rules, it will never be able to truly think outside of those

rules, it will never be able to come up with its own new strategies on the fly, it will never

be able to feel, to react, the way a human can.

Artificial intelligence programs lack consciousness and self-awareness. They will never be

able to have a sense of humor. They will never be able to appreciate art, or beauty, or love.

They will never feel lonely. They will never have empathy for other people, for animals, for

the environment. They will never enjoy music or fall in love, or cry at the drop of a hat.

Merely by existing, mere, unenlightened humans are intellectually superior to computers,

no matter how good our computers get at winning games like Go or Jeopardy. We don’t

live by the rules of those games. Our minds are much, much bigger than that.”

Written by the Artificial Intelligence GPT-3, Open-AI1

1 https://openai.com/blog/openai-api/

https://openai.com/blog/openai-api/

3

Machine Learning and Applied Statistics

Course Taken at Imperial College Business School

The Data-Driven approach was developed thanks to the QTEM

And the Brilliant Experiences at EDHEC Business School and Warwick Business School

4

Contents

Introduction .. 7

Financial Singularity Strategy .. 7

History ... 11

Why hedging against the Singularity Risk ... 13

Machine Learning .. 16

Why .. 16

The Big Data .. 16

The Computational Power ... 18

The Algorithms .. 20

How .. 22

Supervised Learning .. 23

Unsupervised Learning .. 24

Semi-Supervised Learning and Reinforcement Learning .. 26

Data-Driven Finance .. 28

Financial Automation with Python .. 28

Storing and Simulating Financial Big Data with NumPy and Pandas 29

Applied Financial Machine Learning with Scikit-learn ... 41

Optimized Neural Networks with AutoKeras: Analyzing the COVID-19 Impacts on

NASDAQ US Benchmark Airlines Index using Google Trends ... 48

Financial Machine Learning: A Practical Approach .. 65

Deep Neural Networks to Forecast Market Implied Volatility (VIX) using the Short-Term 3-M

US Treasury Bonds Rates .. 65

Deep Neural Networks for Stock Selection in Portfolio Optimization 78

Conclusions .. 94

Bibliography .. 97

5

6

7

Introduction

Financial Singularity Strategy

The main Vision of this work it is collocated in a framework that has as pillar a simple, but

game-changing, assumption.

In the next 50 years the evolution of the Artificial Intelligence, and consequently the

exploitation of the AGI – Artificial General Intelligence 2 – will be soon a high likely

reality.

Consequently, the human workforce, will become gradually unnecessary, exposing

societies, characterized by populations at high risk of unemployment and with the salary

as the only source of income3, to disruptive crises, and the fallen of the governments and

political decision makers under the control of a technocognitive aristocracy.

The preventive solution is connected to the resilient abilities of the local societies to

develop AI-indexed and passive alternative sources of income, with a scale of importance

specular to the level of automation inside the supply chain of the main industries.

We are going towards the greatest period of the known human history, until now, and to

ensure the future generated wellness will be spread meritocratically and democratically

among the population is necessary to ensure the consistent support to the education4 and

the consciousness, necessary to coexist and to improve systematically the support to the

scientific research.

Finally, a practical application of basic machine learning algorithms will be tested on

financial instruments, to show and validate the automation opportunities of diverse sources

2 Goertzel, B. (2014). Artificial General Intelligence: Concept, State of the Art, and Future Prospects,

Journal of Artificial General Intelligence, 5(1), 1-48.

https://doi.org/10.2478/jagi-2014-0001

3 Abbott, R., & Bogenschneider, B. (2018). Should robots pay taxes: Tax policy in the age of automation.

Harvard Law & Policy Review, 12(1), 145-176.

4 Duncan, G. J., Magnuson, K., & Votruba-Drzal, E. (2017). Moving Beyond Correlations in Assessing the

Consequences of Poverty. Annual review of psychology, 68, 413–434.

https://doi.org/10.1146/annurev-psych-010416-044224

https://doi.org/10.2478/jagi-2014-0001
https://doi.org/10.1146/annurev-psych-010416-044224

8

of income, and the potential effects of an educational income5 in supporting the skills

transfer6.

5 Ciccarelli, Stefano (2017), Manifesto della Geniocrazia, Cap. Reddito di Formazione (“Geniocracy
Manifesto, Chapter – The Educational Income”)

6 Adams, T. L., & Demaiter, E. I. (2008). Skill, education and credentials in the new economy: the case of

information technology workers. Work, Employment and Society, 22(2), 351–362.

https://doi.org/10.1177/0950017008089109

https://doi.org/10.1177/0950017008089109

9

Time

To standardize the chaotic changes of the absolute space, the humankind required time.

In fact, time should not exist in absolute terms, but it changes relatively 7 to the cognition

and its relative environment.

While it can take years, or decades, for a human mind to collect and process all the

necessary information and to develop an expertise, an AI Algorithm requires few instants8,

allowing for – perceived as exponential – growth opportunities.

To maximize the clearness of the relative picture of the absolute space, is strictly necessary

to precisely measure time, and consequentially to collect data with the optimal frequency,

directly increasing the demand for a firm infrastructure: and nowadays, for scientific

purposes, Caesium is the top performing resource to focus on.

Controlled, at the base of its Supply Chain, by China for 96% of its production, this material

is necessary to develop the necessary data-platform to reach the AI military and political

supremacy9: starting from 5G, consequentially allowing for the IoT organism next level

generation to evolve together with Smart Cities and Smart Devices, and arriving to the final

destination of an Artificial General Intelligence, able to generalize from the data collected

and to produce Academic and Industrial advancements.

Time is also the inverse output performance metric: instead of measuring the quantity of

real resources produced in a year, the Macroeconomics actors should focus on the time of

production/transformation of each unit of standardized good.

7 Buhusi CV, Meck WH (2009) Relativity Theory and Time Perception: Single or Multiple Clocks?. PLOS ONE

4(7): e6268.

https://doi.org/10.1371/journal.pone.0006268

8 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc

Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, Demis

Hassabis (2018),

A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play

(DeepMind).
https://doi.org/10.1126/science.aar6404

9 Ciccarelli, Stefano (2020), The US-China Cold War made easy (Article):

https://www.financecs.com/2020/05/22/the-us-china-tech-cold-war-made-easy/

https://doi.org/10.1371/journal.pone.0006268
https://doi.org/10.1126/science.aar6404
https://www.financecs.com/2020/05/22/the-us-china-tech-cold-war-made-easy/

10

Since, using GDP (subject to the demand volatility and the relative supply) as actual

measure, is not possible to measure directly for the opportunities-risks of automation, but

,instead, using the delta changes of production time of each unity of real average goods and

services, it is possible to have a clearer picture of the trajectory of the automation inside

the Industries to assess more objective data-driven global long-term policies.

In fact, the monetary exchanges, in performing a consume utilitarian or perceptual

experience, represent the perceived economic value generated: an increase in the

availability of resources, indirectly, imply a saving of time respect to the individual

gathering necessary to perform the same type of experience, suggesting that the time saved,

representing the energy exchanges economisation, is the main dimension of the

Macroeconomic scenario.

11

History

For the time, only the present exists, and the past is the collected memories regarding each

perceived experienced present, or more precisely a change in the relative perceived space:

it exists as it is necessary to the cognition to define the trend to project and anticipate the

next presents (alias “the future”).

To optimally understand the potential directions of the humankind, and determine the best

scenario to reach, is necessary to collect the empirical data in a clear and structured

framework: this is also necessary to AI, to be able to generalize patters with a reduced bias.

Practical automation applications are showing their effectiveness using this approach,

where not only the logical flow it is inscribed inside the procedures, but also the data and

the past are used to generate transformations inside the artificial “organism” without human

explicit directions.

We are in the phase of human history where the Financial applications and tools are shifting

gradually from a top-down to a bottom-up approach, where the necessaries human inputs

start to reduce.

From the first calculator, invented by Blaise Pascal around 1642, to automate the 4 main

arithmetic operations, reducing for the need of the human mind in executing the basic

mathematical computations, the willingness to automate, and consequentially improve the

tasks that require human intelligence, opened the doors to new opportunities and new

industries.

Especially the Globalised Financial Industry, that allows for faster and more efficient

capital allocations, could be considered a product of both technological and political

achievements: the spread of the Telegraph from the 1844 10 necessary to strongly reduce

the geographical information asymmetries and the first trans-Atlantic cable (1866) 11 that

10 Du Boff, R. (1980). Business Demand and the Development of the Telegraph in the United States, 1844-

1860. The Business History Review, 54(4), 459-479. Retrieved July 12, 2020, from

www.jstor.org/stable/3114215

11 Freezee, W. (1978). The First Trans-Atlantic Cable. Journal of the Washington Academy of Sciences,

68(1), 3-13. Retrieved July 12, 2020, from www.jstor.org/stable/24537173

http://www.jstor.org/stable/3114215
http://www.jstor.org/stable/24537173

12

allowed to reduce the communication between Europe and North American time from 10

days to only 3 hours, were the presage of the modern present destination.

The begin of the digitalization of financial markets around 1962, with the computerized

stock quotation system QUOTRON12, and the following establishment of the SWIFT 13

network (1972) to standardize the international communications, arriving to the GLOBEX

(between 1987 and 1992) electronic trading platform, can be considered the presage of the

future Artificial General Intelligence capital allocation.

The first phase of the history, has seen an elimination of geo-informational barriers in

accessing to investment opportunities, soon the second phase, given the internet diffusion

that produces the collective digital memory, together the evolution of the Fintech

applications that learn form it, will see a gradual reduction of the cognitive barriers to an

optimal capital allocation.

In this, the governments will be central to establish an efficient supervision during the

transition from a trust-based banking system, to an Open-Banking14 track-based one.

The firstcomer to reach an AGI Financial supremacy would, together a decentralized

Blockchain 2.015 system, produce the highest measurable returns worldwide, given the

reduced cost structure and superior performances, attracting capital worldwide and

reshaping the global industries.

12 IEEE History Center Staff, "Proceedings of the IEEE Through 100 Years: 1960-1969 [Scanning Our Past],"

in Proceedings of the IEEE, vol. 100, no. 7, pp. 2380-2386, July 2012.

https://doi.org/10.1109/JPROC.2012.2193712

13 Susan V. Scott & Markos Zachariadis (2012) Origins and development of SWIFT, 1973–2009, Business

History, 54:3, 462-482.

https://doi.org/10.1080/00076791.2011.638502
14 Zachariadis, Markos and Ozcan, Pinar, The API Economy and Digital Transformation in Financial

Services: The Case of Open Banking (June 15, 2017). SWIFT Institute Working Paper No. 2016-001,

Available at SSRN: https://ssrn.com/abstract=2975199 or http://dx.doi.org/10.2139/ssrn.2975199

15 Fanning, K. and Centers, D.P. (2016), Blockchain and Its Coming Impact on Financial Services. J. Corp.

Acct. Fin, 27: 53-57.

https://doi.org/10.1002/jcaf.22179

https://doi.org/10.1109/JPROC.2012.2193712
https://doi.org/10.1080/00076791.2011.638502
https://ssrn.com/abstract=2975199
http://dx.doi.org/10.2139/ssrn.2975199
https://doi.org/10.1002/jcaf.22179

13

Why hedging against the Singularity Risk

Externalizing and outsourcing the cognitive abilities generate a dependency towards the

unknown: the interactions inside the layers and the patterns frequently behave like a black

box even for the AI creator.

Consequentially societies must not become the victims of a technological cognitive Elite

able to build the systems that will push the economy to a zero-cost marginal structure16.

Being able to resiliently structure an Automation-Indexed public Fund (AIF) is a necessary

solution to ensure the democratic and inclusive generation of the income necessary to

sustain the part of population classified as not employable, ensuring a global ownership of

the wealth evolution, without disincentives to the free-market to produce innovation in case

an automation-tax would be the alternative.

This concept is inside the framework of a more general Financial Singularity Strategy,

where the capital allocation and the relative returns are maximized to ensure an inclusive

sustainability: to allow this, the main objective would be to prepare the necessary

environment for the Singularity17 who will invest and share the wealth as a definitive multi-

lateral and super-rational agent in behalf of the population.

16 Rifkin, J. (2014). The zero marginal cost society: The internet of things, the collaborative commons, and

the eclipse of capitalism. New York: Palgrave Macmillan.
17 Eden, Amnon & Moor, James & Søraker, Johnny & Steinhart, Eric. (2013). Singularity hypotheses. A

scientific and philosophical assessment.

https://doi.org/10.1007/978-3-642-32560-1

https://doi.org/10.1007/978-3-642-32560-1

14

1.1 Worldwide; Bahrain FinTech Bay; PwC; 2018

In the graph 1.1 is shown the projected AI worldwide contribution to GDP: this represent

the first step in the direction of a global commitment to a more automated society, that in

the long-term will increase the need for also an automated cash-flows generation to

increase the sustainability.

In fact, focusing only on the automation of the Supply would generate negative

externalities and produce technological powerful monopolies reducing the potential

scientific developments apported by a more inclusive society: investing in people via an

educational income would maximize the scientific output while automation increases

among production processes, otherwise the increase of the disparities and of the relative

sources of income scarcity would push people to focus only on the basics Maslow

pyramid’s needs18.

18 McLeod, S. A. (2020, March 20). Maslow's hierarchy of needs. Simply Psychology.

https://www.simplypsychology.org/maslow.html

https://www.simplypsychology.org/maslow.html

15

16

Machine Learning

Why

The knowledge applied to establish rational top-down decisions is not only based on the

collected information but also on the ability to account for the interactions of the different

objects and ideas and to recognize the underlying patterns.

Similarly, in statistical and probabilistic terms, we can observe the increasing abilities of

the machines to “learn” because of 3 main trends:

The Big Data

2.1 IDC; Seagate; Statista estimates

17

The online information is growing at an evident exponential trend (2.1), and according

McKinsey analysts “90 percent of the digital data ever created in the world has been

generated in just the past two years, only 1 percent of that data has been analyzed.”19

2.2 https://www.businesswire.com/news/home/20190516005700/en/Strategy-

Analytics-Internet-Things-Numbers-22-Billion

Taking also in account the expected development and the spread of the worldwide IoT

Ecosystem shown in the graph 2.2, it is reasonable to assume that the projected quantity of

19 https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/straight-talk-about-big-

data

https://www.businesswire.com/news/home/20190516005700/en/Strategy-Analytics-Internet-Things-Numbers-22-Billion
https://www.businesswire.com/news/home/20190516005700/en/Strategy-Analytics-Internet-Things-Numbers-22-Billion
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/straight-talk-about-big-data
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/straight-talk-about-big-data

18

structured data, together with the increase of normalization practices of the unstructured

types, will aliment and sustain the generation of the online useful information available.

Consequentially, a statistical algorithm can potentially use those data to boost its

“experience” and subsequentially to improve the generalization of patterns relative to a set

of tasks.

The Computational Power

According the empirical Moore’s law, 𝑛2 = 𝑛1*2[(𝑦_2−𝑦_1)/2] where n is the number of

transistors and y the year, the computing power double every two years.

Some members of the scientific community argue there will be soon a physical limit20 to

this trend, but until today the Moore observation is still holding.

This exponential rate allowed in the past years to increase the speed at which the

information is processed, determining not only a reasonable execution time of the

algorithms with a larger number of features and interactions, but also a more democratic

and accessible spread of the high-level programming languages, like Python, that open the

doors for a faster deployment and a higher number of industrial applications.

20 J. R. Powell (2008), "The Quantum Limit to Moore's Law," in Proceedings of the IEEE, vol. 96, no. 8, pp.

1247-1248.

https://doi.org/10.1109/JPROC.2008.925411

https://doi.org/10.1109/JPROC.2008.925411

19

2.3 https://ourworldindata.org/technological-progress

https://ourworldindata.org/technological-progress

20

The Algorithms

Alpha Go21 signed the Sputnik moment for China, increasing the competition and bringing

to the contemporaneous tech cold war.

2.4 CISTP

21

Consequentially not only the large pool of the previous algorithms from academia must be

taken in account in the final scenario, but the potential ones that will be developed in the

next 10 years in the aim of reaching the AI technological and military supremacy.

In the graph 2.4 we can observe the equilibrium during the period 1997-2017 of the number

of AI publications by country, but we can reasonably expect, given the current Geo-

Political tensions, a run towards the massive exploitation of the worldwide AI talents.

In fact, in the graph 2.5 we can deduct the increasing commitment in the United States for

Artificial Intelligence applications in terms of resources, and instead in the graph 2.6 is

possible to observe the “soft-power” abilities in terms of attractiveness for the AI talent

necessary to develop the future infrastructures required to win the tech challenge.

2.6 CMN; Statista estimates 2.5 https://www.pwc.com/us/en/moneytree-

report/assets/pwc-moneytree-2020-q1.pdf

https://www.pwc.com/us/en/moneytree-report/assets/pwc-moneytree-2020-q1.pdf
https://www.pwc.com/us/en/moneytree-report/assets/pwc-moneytree-2020-q1.pdf

22

How

Machine Learning can be defined, according Tom Mitchell, as “A computer program is

said to learn from experience E with respect to some class of tasks T and performance

measure P if its performance at tasks in T, as measured by P, improves with experience

E”22.

On the academic level it can also be collocated as the intersection of:

I) Computer Science, that provides the necessaries formalization of the

algorithms for the specific dataset.

II) Statistics, that provides an inferential approach, formalizing a model for the

specific dataset.

Consequentially it can be approached as a set of “statistical algorithm” able to perform a

defined task that improve among time according the higher data availability.

The main learning techniques are divided in 4 big categories: Supervised Learning,

Unsupervised Learning, Semi-Supervised Learning and Reinforcement Learning.

22 Mitchell, T. (1997). Machine Learning. McGraw Hill. p. 2. ISBN 978-0-07-042807-2.

23

Supervised Learning

Supervised Learning is characterized by labeled outcomes 𝑦𝑖 for each feature vector 𝑥𝑖.
A feature vector can have dimensionality D, with each feature describing different

quantifiable perspective of a phenomenon.

Instead, the label can have different complex structures, but in the framework of this

analysis we will focus mainly on the real numbers of a finite set of classes.

The main objective of this category of algorithms it is to predict starting from the feature

vectors, the description of the phenomenon, which is the corresponding label: in fact, once

the model is trained on the labeled data, according the quality (bias) and quantity of the

data, it should “learn” the common patterns among the features necessary to define the

interactions that characterize a specific class or population, or a specific output in the case

of real continuous numbers.

Typical examples of supervised learning are linear/logistic regression, k-nearest neighbors,

support vector machines, decision trees, random forests and neural networks.

In finance it can find its application for example in the case we have the returns (labels)

and the respective indicators (feature vector) necessary to try to predict, given a certain

market potential scenario, the expected performance or to classify if the portfolio will have

a positive or negative outcome.

24

Unsupervised Learning

Unsupervised Learning can be applied in the case we have an unlabeled dataset, with only

the feature vector 𝑥𝑖 available.

In this case it is produced a transformation in the original dataset, with the main objective

to assign a scalar value or to reduce the dimensionality of the original vector.

For example in the case of clustering is it possible to understand if there are common

pattern to establish classes which the data belong to: given for example the reaction to a

market exogenous shock, can we differentiate different stock classes?

In this case the data can give better insights respect a qualitative rating, and we can observe

that the chaotic market can be subjected to emotional biases that doesn’t take in account

necessarily the fundamental value of the companies, differently from the rating agencies.

Thus in the case of clustering we can differentiate and take in account if a stock belong to

a specific asset class or not – according the market - using the ex-post data.

Instead, if we want to deduct relevant insights on the overall performance of a series of

companies but there are too many parameters and indexes, we can shift to the

dimensionality reduction, using factor analysis to understand and analyze the relationships

among the different features or also the principal component analysis to build a low-

dimensional feature vector, with inside uncorrelated variables, that synthetize the

underlying phenomenon starting from a high number of variables characterized by

multicollinearity23.

23 Alin, A. (2010), Multicollinearity. WIREs Comp Stat, 2: 370-374.

https://doi.org/10.1002/wics.84

https://doi.org/10.1002/wics.84

25

Typical examples of unsupervised learning are k-means and hierarchical cluster analysis

in the case of clustering and PCA and Kernel PCA in the case of dimensionality reduction.

In general, it can also be applied to the identification of anomalies and outliers, and

consequentially to isolate for example abnormalities or rare market conditions as in the

case of a black swan24.

24 Taleb, Nassim Nicholas, 1960-. (2007). The black swan: the impact of the highly improbable. New York:

Random House.

26

Semi-Supervised Learning and Reinforcement Learning

Semi-Supervised Learning is applied to supervised learning problems that have relatively

few labeled observations and a higher number of unlabeled observations that have the same

distribution and are part of the population of the labeled ones.

Generally the algorithms are a mix between supervised and unsupervised approach, for

example if we have few balance sheets and the relative information regarding the type of

industry, we can try to classify all the balance sheets without an assigned industry to obtain

the information regarding which industry those companies belong to.

Reinforcement Learning instead has a different approach: the machine, in this case

denominated as the agent, perform a series of actions inside a dynamic environment.

The environment can be analyzed, and eventually modified, by the agent who take

“choices” according a policy and consequentially receives a specific reward, or also a

punishment.

The main objective of the agent is to learn an optimal policy in the long-term after a series

of trial and errors performed to maximize the expected reward.

For example a reinforcement learning trading algorithm25 that provides liquidity to the

market can learn from the time series of the prices to maximize the expected return, as the

reward, to reduce the mispricing of the asset among time according all the information /

sentiment available.

25 Abhishek Nan, Anandh Perumal, Osmar R. Zaiane (2020), Sentiment and Knowledge Based Algorithmic

Trading with Deep Reinforcement Learning.

https://arxiv.org/abs/2001.09403

https://arxiv.org/abs/2001.09403

27

28

Data-Driven Finance

Financial Automation with Python

Being an High-Level interpreted programming language, is really fast to deploy and

analyze applications written in Python, factors that contributed to its popularity (3.1) also

among finance professionals, indirectly opening the doors to the positive externalities of a

large community: in fact, it is an high versatile tool thanks to the high number of libraries

and modules available that increase the reliability and the velocity of the execution of

different functions and the development of different types of objects.

3.1 Roper, W. (March 3, 2020). Python Remains Most Popular Programming Language.

https://www.statista.com/chart/21017/most-popular-programming-languages/

https://www.statista.com/chart/21017/most-popular-programming-languages/

29

Storing and Simulating Financial Big Data with NumPy and Pandas

One of the main problems of the high-level interpreted languages is the low-efficiency on

the large datasets, but in some cases of Python can works as a “glue language”, in fact,

NumPy one of its most famous and powerful libraries is developed in C and Fortran,

apporting the efficiency of the low-level to the speed of deployment of the high-level.

Mainly used for scientific purposes, it is the pillar of a large amount of applications, since

it provides multidimensional array objects and a series of method to analyze them.

It is useful to develop vectorized code, emulating mathematically vectors and matrices and

consequentially to perform high-speed transformations and functions on the objects.

In terms of financial applications there is the specific package NumPy Financial, that

provides a set of high-level methods as NVP, FV, PV, IRR, etc.

For example, if we want to execute a Monte Carlo simulation, we will need to generate a

vector of standard errors, and in Python is not only easy but also fast and scalable, as

demonstrated in the following code: 100,000,000 standard errors are generated inside a

NumPy array and the mean and var methods are computed to confirm that the mean is

around zero and the variance around 1.

It takes circa 7 seconds, but according the machine and the necessities it can be applied

also for larger simulations and datasets.

Finally, a histogram frequency plot using seaborn is shown to proof graphically that the

errors are normally distributed around zero.

30

 Jupiter HTML version of the code available also at FinanceCS.com (Stefano

Ciccarelli):
https://www.financecs.com/wp-content/uploads/2020/08/100-Milion-Standard-Error-

1.html

Input:

-*- coding: utf-8 -*-

""" Created on Sat Aug 22 23:57:29 2020

@author: Stefano"""

import numpy as np

import time

start = time.time()

Creating a vector of one hundred million (10^8) standard errors

simulation = np.random.standard_normal(10**8)

end = time.time()

print("The generation of a vector composed by one hundred million of standard errors happen

ed in {:.2f} seconds".format(end-start))

Showing the mean value approximated to 2 decimals

print("The mean is approximately {:.2f}".format(simulation.mean()))

Showing the variance value approximated to 2 decimals

print("The variance is approximately {:.2f}".format(simulation.var()))

Output:

The generation of a vector composed by one hundred million of stand

ard errors happened in 6.59 seconds

The mean is approximately 0.00

The variance is approximately 1.00

Input:

import seaborn as sns

Plotting the frequency histogram

sns.distplot(simulation, bins=80, hist_kws={'edgecolor':'blue'})

https://www.financecs.com/wp-content/uploads/2020/08/100-Milion-Standard-Error-1.html
https://www.financecs.com/wp-content/uploads/2020/08/100-Milion-Standard-Error-1.html

31

Instead, if we want to handle different data types at the same time and improve the indexing

applying specific methods, especially in the case of time series, Pandas is a better suited

solution: it is the natural evolution of NumPy, that allows to store the data in a Data Frame

structure, allowing for an easier and faster high-level management.

Here an example of a generation of 5000 stock paths using a geometric Brownian motion

having as engine a Monte Carlo simulation and its relative output management using

Pandas.

 𝑆𝛥𝑡 = 𝑆0 ∗ 𝑒[(𝜇−𝜎22)∗𝛥𝑡+(𝜎∗√𝛥𝑡)∗𝜀]

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x234b4fd6808>

32

Jupiter HTML version of the code available also at FinanceCS.com (Stefano

Ciccarelli):

https://www.financecs.com/wp-content/uploads/2020/08/Monte-Carlo-Simulation-for-g

eometric-Brownian-motion-with-Pandas-1.html

Input:

import random

import string

Function to generate a random Stock Tiker with lengh n

def random_stock_tiker(n):

 l_upper = string.ascii_uppercase

 return ''.join(random.choice(l_upper) for i in range(n))

print("Example of a Randomly Generated Stock Ticker of lengh 4: {}".format(random_stock_tik

er(4)))

Output:

Example of a Randomly Generated Stock Ticker of length 4: FOYJ

Input:

Generating a list of 30000 random numbers beetween 1 and 4

lenghts = [random.randint(1,4) for i in range(30000)]

Generating 30000 Stock Tickets, each one of length n for each number inside list lengths

We keep only the unique Tickets and store the first 5000

stock_market = list(set([random_stock_tiker(ticket_l) for ticket_l in lenghts]))[:5000]

print("Sample of size 10 from the 5000 stock market {}".format(stock_market[:10]))

Output:

Sample of size 10 from the 5000 stock market ['AHC', 'QLEN', 'YUAS'

, 'ERBT', 'KUKO', 'UDL', 'PDF', 'SCZ', 'MHPO', 'AEW']

https://www.financecs.com/wp-content/uploads/2020/08/Monte-Carlo-Simulation-for-geometric-Brownian-motion-with-Pandas-1.html
https://www.financecs.com/wp-content/uploads/2020/08/Monte-Carlo-Simulation-for-geometric-Brownian-motion-with-Pandas-1.html

33

 Input:

import numpy as np

magnitude_volatility = 2.5

Generating 5000 expected returns, 5000 volatilities and 5000 starting prices (one for each stoc

k)

With a value between 0% and 10% and maximum 3 decimal points for expected returns and vo

latitlites

With a value between 1 and 1000 and maximum 2 decimal points for starting prices

expected_returns = np.array([round(random.uniform(0, 10),3)/100 for x in range(5000)])

volatilities = np.array([round(random.uniform(0, 10),3)/(10**magnitude_volatility) for x in r

ange(5000)])

starting_prices = np.array([round(random.uniform(1, 1000),2) for x in range(5000)])

print("Sample of annual returns of size 10: {} \n*Values are in %".format(expected_returns[:1

0]*100))

Output:

Sample of annual returns of size 10:

[8.482 5.848 8.847 6.658 8.471 4.566 5.681 3.45 9.46 5.145]

*Values are in %

Input:

def geometric_brownian_motion(P_0, delta_t, e_return, volatility, error):

 return P_0 * math.exp((e_return - (volatility**2)/2)*delta_t + (volatility * (delta_t**0.5))*er

ror)

Defining the frequency on a dailiy basis and a time horizon of 0.5 year, assuming there are 252

tradings day in a year

time_ex = np.array([t/252 for t in range(126)])

Showing an example of the price on the day number 2000 of the stock number 10

stock_n = 100

Generating 5000 standard normal errors for the stock number 10

errors = np.random.standard_normal(len(time_ex))

path = np.array([geometric_brownian_motion(starting_prices[stock_n], time_ex[n], expected_r

eturns[stock_n], volatilities[stock_n], errors[n]) for n in range(len(time_ex))])

print("Example of half year of the daily movement of a sampled stock price")

plt.plot(path)

plt.show()

34

Output:

Example of half year of the daily movement of a sampled stock price

Input:

import pandas as pd

Defining the frequency on a dailiy basis and a time horizon of 10 years, assuming there are 252

trading day in a year

time = np.array([t/252 for t in range(252*10)])

Data Frame initialization

virtual_scenario = pd.DataFrame()

for stock in stock_market:

 stock_n = stock_market.index(stock)

 errors = np.random.standard_normal(len(time))

 virtual_scenario[stock] = np.array([geometric_brownian_motion(starting_prices[stock_n], ti

me[n], expected_returns[stock_n], volatilities[stock_n], errors[n]) for n in range(len(time))])

print("Generation of a market scenario for all 5000 stocks, with each stock having 2520 obser

vations (10 years of daily returns), stored in a Data Frame.")

virtual_scenario

35

Output:

Generation of a market scenario for all 5000 stocks, with each stoc

k having 2520 observations (10 years of daily returns), stored in a

Data Frame.

AHC QLEN YUAS ERBT KUKO UDL PDF

0 984.910000 239.450000 831.690000 169.390000 722.350000 606.480000 674.0100

1 984.704858 239.468345 831.982085 169.708594 722.633886 607.032482 674.8881

2 986.347680 239.634796 832.691262 170.100244 722.790251 608.051722 676.8506

3 987.030921 239.611956 832.954032 169.397223 722.824237 607.024295 671.6481

4 986.378491 239.572654 832.722657 169.955736 723.613692 608.606500 672.0997

...

2515 2427.984396 434.103433 1963.923184 338.122920 1682.668372 955.620643 1273.8652

2516 2286.666375 442.479310 2039.274327 307.908286 1682.279109 965.217214 1197.0277

2517 2285.818411 439.942238 2018.843283 328.007042 1691.493259 904.606421 1287.3502

2518 2263.378407 436.766684 2010.588331 317.617832 1654.688150 944.211378 1240.2879

2519 2328.287111 426.633093 2044.900066 319.958085 1684.119455 925.764002 1138.4712

2520 rows × 5000 columns

36

It seems the perfect tool to handle financial data on a large scale in a small amount of time:

not casually it was developed by Wes McKinney while working as analyst of a Hedge Fund

to handle easily financial time series.

Once clarified the potentiality of NumPy and Pandas in performing high-speed numerical

computation on large amount of observations or dimensions, is it possible to show a

practical example of its applications with real financial data: computing the Sharpe Ratio

for all the Companies included in the S&P 500 Index for the period 2017-01-01 until today.

Input:

virtual_scenario[stock_market[0:30]].iloc[0:161].plot(legend=False)

print("Plot of 30 sampled stock for the first 6 months")

Output:

Plot of 30 sampled stock for the first 6 months

37

The assumed risk-free ratio, given the recent Quantitative Easing policies, is equal to zero,

and consequentially the average natural logarithm return, and the respective volatility are

computed starting from the daily adjusted close price directly.

Jupiter HTML version of the code available also at FinanceCS.com (Stefano

Ciccarelli):

https://www.financecs.com/wp-content/uploads/2020/09/Top-Performing-SP-500-C

ompanies-1.html

Input:

import pandas as pd

import yfinance as yf

from yahoofinancials import YahooFinancials

import datetime

import numpy as np

Taking from Wikipedia the list of the Companies inside the SP500 Index

SP_500_Data = pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_compa

nies')[0]

SP_500_Data.head()

Output:

Symbol Security

SEC

filings

GICS

Sector

GICS Sub

Industry

Headquarters

Location

Date

first

added

0 MMM
3M

Company
reports Industrials

Industrial

Conglomerates

St. Paul,

Minnesota

1976-

08-09

1 ABT
Abbott

Laboratories
reports

Health

Care

Health Care

Equipment

North

Chicago,

Illinois

1964-

03-31

2 ABBV AbbVie Inc. reports
Health

Care
Pharmaceuticals

North

Chicago,

Illinois

2012-

12-31
15

3 ABMD
ABIOMED

Inc
reports

Health

Care

Health Care

Equipment

Danvers,

Massachusetts

2018-

05-31
8

https://www.financecs.com/wp-content/uploads/2020/09/Top-Performing-SP-500-Companies-1.html
https://www.financecs.com/wp-content/uploads/2020/09/Top-Performing-SP-500-Companies-1.html

38

Input:

#Initializing the dataframe

SP500_adj_Close = pd.DataFrame()

For each stock ticker we download the stock close price daily data starting from 1st Janua

ry 2017 until today

for symbol in SP_500_Data["Symbol"]:

 SP500_adj_Close[symbol] = yf.download(symbol,

 start='2017-01-01',

 end=datetime.datetime.today(),

 progress=False)["Adj Close"]

#Initializing the dataframe

SP500_Returns = pd.DataFrame()

Generating the Daily Returns

SP500_Returns = np.log(SP500_adj_Close / SP500_adj_Close.shift(1)).iloc[1:]

SP500_Returns.head()

Output:

MMM ABT ABBV ABMD ACN ATVI ADBE AMD

Date

2017-

01-04
0.001515 0.007907 0.014002 0.029638 0.002401 0.019460 0.006358 0.000000

2017-

01-05

-

0.003427
0.008601 0.007556

-

0.008068

-

0.015104
0.015406 0.016854

-

0.016763

2017-

01-06
0.002922 0.026841 0.000314 0.005299 0.011328

-

0.000791
0.022315 0.007092

2017-

01-09

-

0.005401

-

0.000981
0.006562 0.014536

-

0.011241

-

0.005555
0.002490 0.014906

2017- - - - - -

39

 Input:

df = pd.DataFrame()

df["Avg_Returns"] = SP500_Returns.mean()

df["Volatilities"] = SP500_Returns.std()

df["Sharpe_Ratios"] = df["Avg_Returns"]/df["Volatilities"]*(252**0.5)

df["Sharpe_Ratios"].nlargest(10)

Output:

CARR 2.559158

OTIS 1.366332

AMZN 1.338054

AAPL 1.295516

NOW 1.270008

ADBE 1.258111

MSCI 1.247168

PYPL 1.228539

MSFT 1.217933

CDNS 1.211523

Name: Sharpe_Ratios, dtype: float64

Input:

df.plot(x='Volatilities', y='Avg_Returns', style='o', title='Average Daily Return vs Daily Vol

atility', legend = False)

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x1beb14e6788>

40

In the graph above is it possible to summarize an analysis conducted on large scale (the

S&P 500 Index companies) and have a plot of the daily volatility (x axis) against the

average daily return (y axis) and the relative list of the top 10 performing companies in

terms of Sharpe Ratio26 (average excess return over volatility).

This allow us to identify investment opportunities that maximize the return for each level

of volatility included in our portfolio.

26 William F. Sharpe, The Journal of Portfolio Management Fall 1994, 21 (1) 49-58.

DOI: https://doi.org/10.3905/jpm.1994.409501

https://doi.org/10.3905/jpm.1994.409501

41

Applied Financial Machine Learning with Scikit-learn

The large spread of Scikit-learn27 as a main reference for Machine Learning is not a

coincidence: it doesn’t only includes a series of algorithms already structured and

optimized, but also a range of techniques dedicate to processing the data (before and after).

Generally, is worth to remember that in applying Machine Learning to financial analysis

we must not only use advanced quantitative tools but also a deep qualitative acumen to

have a broad picture of why the model is generating specific results.

Following we will show the application of a k-means clustering algorithm:

I) In the first step we need to mix the Sharpe Ratios of the S&P500 Index

Companies together with the P/E Ratios, that we will obtain scraping Yahoo

Finance and the relative fundamental financial values inside each company’s

page.

II) Once stored the data in a Dataframe, the outliers inside P/E are removed (and

indirectly the stocks associated) and the remaining are plotted on the x axis

against the y axis (Sharpe Ratio).

III) On this level we are ready to apply a K-mean algorithm to identify the group of

stocks (4 in our case) that are discovered starting from the data and the relative

2 dimensions provided.

IV) Finally, we analyze the results and the characteristics of each single group to

try to identify starting backwards the meaning of each group and how this could

be valuable to find new potential investment opportunities.

27 https://scikit-learn.org/stable/index.html

https://scikit-learn.org/stable/index.html

42

 Jupiter HTML version of the code available also at FinanceCS.com (Stefano

Ciccarelli):

https://www.financecs.com/wp-content/uploads/2020/09/PE-vs-S

harpe-Ratio-1.html

Input:

Stefano Ciccarelli

import pandas as pd

import yfinance as yf

from yahoofinancials import YahooFinancials

import datetime

import numpy as np

from bs4 import BeautifulSoup as bs

import requests

from scipy import stats

Reading the previously computed Sharpe Ratios

df = pd.read_csv("Sharpe_Ratios.csv", index_col = 0)

Taking from Wikipedia the list of the Companies inside the SP500 Index

SP_500_Data = pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_compa

nies')[0]

import yahoo_fin.stock_info as si

Obtainf fundamental data: P/E Ratio

P_E_SP500 = dict()

for stock in SP_500_Data["Symbol"]:

 try:

 P_E_SP500[stock] = si.get_quote_table(stock)['PE Ratio (TTM)']

 except:

 print(stock, " not found!")

df["P/E"] = pd.Series(P_E_SP500)

P_E_SP500

Removing outliers from the P/E Ratios

df["P/E"] = df["P/E"][df["P/E"].between(df["P/E"].quantile(.15), df["P/E"].quantile(.85))

]

Cleaning the datset from missing values

df = df.dropna()

df.plot(x='P/E', y='Sharpe_Ratios', style='o') .set_ylabel("Sharpe Ratio")

https://www.financecs.com/wp-content/uploads/2020/09/PE-vs-Sharpe-Ratio-1.html
https://www.financecs.com/wp-content/uploads/2020/09/PE-vs-Sharpe-Ratio-1.html

43

Output:

Input:

df.corr()

Output:

Avg_Returns Volatilities Sharpe_Ratios P/E

Avg_Returns 1.000000 -0.258494 0.972602 0.377830

Volatilities -0.258494 1.000000 -0.388080 -0.089847

Sharpe_Ratios 0.972602 -0.388080 1.000000 0.412262

P/E 0.377830 -0.089847 0.412262 1.000000

44

In the graph above we can observe the raw data, where for each stock (after the outliers’

removal, with 270 observations remaining) the Sharpe Ratio is plotted against its relative

P/E.

The normalization outliers’ removal and the absence of multicollinearity (low correlation

between Sharpe Ratio and P/E) indicates that the data is ready for a K-mean clustering

model.

The main scope of the analysis, once removed the irrelevant stocks, as in the case of a

Sharpe Ratio inferior to 0.7 (subjective factor dependent on the preference of the Investor),

will be to identify the top 10 performing companies inside the “buy” group, defined in

terms of Sharpe Ratio and P/E.

Jupiter HTML version of the code available also at FinanceCS.com (Stefano

Ciccarelli):

https://www.financecs.com/wp-content/uploads/2020/09/Cluster

ing-for-Stock-Selection-1.html

Input:

import pandas as pd

from sklearn.cluster import KMeans

from sklearn.mixture import GaussianMixture

from sklearn.neighbors import NearestNeighbors

from pylab import mpl, plt

df = pd.read_csv("S&P500 Index - Shape and P_E.csv")

We want to invest only in stocks with a Sharpe Ratio superior to 0.7

All the stock not satisfying this criterion are removed

df = df[df["Sharpe_Ratios"] > 0.70]

45

Initialising the K-Mean Algorithm defining 2 clusters

algo = KMeans(n_clusters=2)

y = algo.fit_predict(df[["Sharpe_Ratios","P/E"]])

#algo.fit(X, columns=["Sharpe_Ratios", "P/E"])

plt.figure(figsize=(10,6))

plt.scatter(df["P/E"], df["Sharpe_Ratios"], c=y, cmap="coolwarm")

plt.legend(['Buy'])

Output:

<matplotlib.legend.Legend at 0x152b5cb3908>

46

Input:

The data is Labeled according its class (1 Buy 0 Not Buy)

df['Buy'] = 1 - y

Filtring only by the stock the algorithm suggests to buy

df = df[df["Buy"] == 1]

df.sort_values(by=["Sharpe_Ratios"], ascending=False).head(10)

Output:

Unnamed: 0 Avg_Returns Volatilities Sharpe_Ratios P/E Buy

29 AAPL 0.001599 0.019599 1.295516 36.70 1

185 MSFT 0.001397 0.018213 1.217933 37.20 1

51 CDNS 0.001546 0.020255 1.211523 29.12 1

80 CPRT 0.001419 0.019304 1.166650 35.32 1

228 SPGI 0.001293 0.018449 1.112825 32.55 1

91 DG 0.001090 0.016421 1.053425 21.30 1

188 MCO 0.001219 0.019764 0.979201 30.96 1

255 VRTX 0.001372 0.022386 0.973098 33.64 1

260 WMT 0.000886 0.014629 0.961559 22.79 1

236 STE 0.000955 0.015802 0.959521 32.90 1

47

The table above represent the top 10 Stocks classified as “Buy” by the clustering algorithm:

once all the stocks are classified binomially, the dataset is filtered by the stock the Investor

is interested to buy (discriminated by a combination of Sharpe Ratio and P/E Ratio) and all

the stocks are ranked according the highest Sharpe Ratio.

This algorithm can be useful to discriminate which company, outside the S&P 500 Index,

is behaving, in terms of P/E and Sharpe Ratios, as the top 10 performing one and

consequentially to select which stock should be inserted in the final portfolio.

It is worth to notice that the period is including the COVID-19 effect, consequentially the

Sharpe Ratios are affected by these “outliers” and this approach should be repeated in a

relatively more stable future period.

48

Optimized Neural Networks with AutoKeras: Analyzing the COVID-19 Impacts on

NASDAQ US Benchmark Airlines Index using Google Trends

Airlines is one of the main industries to be affected by the COVID-19: in the long-run it is

not only because of the effective diffusion of the virus, but also to the social perception of

it.

Stephens‐Davidowitz 28, used Google Trends as a Data-Driven approach to analyze the

online behavior of the masses to try to predict the future (specifically the US Elections): an

approach that I replicated on the European Elections in occasion of the meeting with him.

It mainly consists in finding patterns and behaviors related to an outcome of interest: it can

be improved substituting the human judgment with Neural Networks to account for

different interactions among data on a deeper level than a simple linear or logistic

regression.

For this analysis, the key mission will be to analyze and quantify the impact of the

Coronavirus “worries”, the number of Google Searches for “Flights” and the 4 main US

Airlines Companies on the Airlines Industry’s Financial performances.

First, we will start obtaining the NASDAQ US Benchmark Airlines Index values using

quandl, consequentially the number of searches for the flights and the airlines will be

scraped from Google Trends together with the number of Coronavirus related searches.

In the case of the Coronavirus searches, will be applied a transformation, where over a

threshold the value will be equal to 1, implying a minimum of amount of worrying among

the population is still persistent, and in all other cases will be equal to 0.

The 2 main pillars are:

28 Stephens‐Davidowitz, S. (2017). Everybody lies: Big data, new data, and what the Internet can tell us
about who we really are. New York, NY: HarperCollins, 352 pp

https://onlinelibrary.wiley.com/doi/abs/10.1111/jmft.12325

https://onlinelibrary.wiley.com/doi/abs/10.1111/jmft.12325

49

I) Most of the Airlines Tickets Bookings are performed online.

https://www.statista.com/statistics/291037/online-sources-leisure-business-travel-

planning-us/

II) The search airline index will be composed by the 4 most important US Airlines

by market share

https://www.statista.com/statistics/250577/domestic-market-share-of-leading-us-

airlines/

https://www.statista.com/statistics/291037/online-sources-leisure-business-travel-planning-us/
https://www.statista.com/statistics/291037/online-sources-leisure-business-travel-planning-us/
https://www.statista.com/statistics/250577/domestic-market-share-of-leading-us-airlines/
https://www.statista.com/statistics/250577/domestic-market-share-of-leading-us-airlines/

50

Jupiter HTML version of the code available also at FinanceCS.com (Stefano

Ciccarelli):

https://www.financecs.com/wp-content/uploads/2020/09/Untitle

d11-Copy3-1.html

Input:

import autokeras

import quandl

import pandas as pd

quandl.ApiConfig.api_key = "TyKZthWgcxsqfZf9yeXD"

data_air = quandl.get("NASDAQOMX/NQUSB5751-NQ-US-Bnchmk-Airlines-Index-NQUSB

5751", start_date="2019-01-01", end_date="2020-09-20")

data_air.index = pd.to_datetime(data_air.index)

data_air = data_air["2019-01-01":]

logic = {'Index Value' : 'last'}

offset = pd.offsets.timedelta(days=-6)

data_air = data_air.resample('W-SAT', loffset=offset).apply(logic)

data_air.plot()

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x207c42a9288>

https://www.financecs.com/wp-content/uploads/2020/09/Untitled11-Copy3-1.html
https://www.financecs.com/wp-content/uploads/2020/09/Untitled11-Copy3-1.html

51

The code above obtains the data of the Index from the beginning of 2019 until the 20th of

September 2020 daily, consequentially it is resampled on a weekly basis setting as price

the last price of the week available.

Instead, above we can observe the behavior from the 1st of January 2019 until the 20th of

September 2020 of the Google Searches for the keyword “Flights” in US.

Input:

from pytrends.request import TrendReq

pytrend = TrendReq(hl='en-US', tz=360)

keywords = ['flights']

pytrend.build_payload(

 kw_list=keywords,

 cat=0,

 timeframe='today 5-y',

 geo='US',

 gprop='')

searches = pytrend.interest_over_time()

searches = searches.drop(labels=['isPartial'],axis='columns')

#searches.index = pd.to_datetime(searches.index)

searches.index = pd.to_datetime(searches.index)

searches = searches["2019-01-01":]

#searches.index = searches.index.week

searches.plot()

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x207c5554088>

52

The

same

approach is repeated on the 4 main US Airlines Companies.

Input:

pytrend2 = TrendReq(hl='en-US', tz=360)

keywords2 = ['American Airlines','Delta AirLines','Southwest Airlines','United Airlines']

pytrend2.build_payload(

 kw_list=keywords2,

 cat=0,

 timeframe='today 5-y',

 geo='US',

 gprop='')

searches2 = pytrend2.interest_over_time()

searches2 = searches2.drop(labels=['isPartial'],axis='columns')

#searches.index = pd.to_datetime(searches.index)

searches2.index = pd.to_datetime(searches2.index)

searches2 = searches2["2019-01-01":]

#searches.index = searches.index.week

searches2.plot()

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x207c55a8048>

53

Input:

pytrend3 = TrendReq(hl='en-US', tz=360)

keywords3 = ['coronavirus']

pytrend3.build_payload(

 kw_list=keywords3,

 cat=0,

 timeframe='today 5-y',

 geo='US',

 gprop='')

searches3 = pytrend3.interest_over_time()

searches3 = searches3.drop(labels=['isPartial'],axis='columns')

#searches.index = pd.to_datetime(searches.index)

searches3.index = pd.to_datetime(searches3.index)

searches3 = searches3["2019-01-01":]

#searches.index = searches.index.week

searches3.plot()

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x207c54e6588>

54

Finally, the COVID-19 “worriedness” in US is sampled and plotted above, seeming to have

a negatively correlated behavior respect to the Index and the Airlines searches.

Input:

dataframe = searches2.copy()

dataframe['Index'] = data_air['Index Value']

dataframe['flights'] = searches['flights']

dataframe['coronavirus'] = searches3['coronavirus']

#dataframe.index.week

dataframe = dataframe.dropna()

dataframe.head()

dataframe.tail()

Output:

American

Airlines

Delta

AirLines

Southwest

Airlines

United

Airlines
Index flights coronavirus

date

2019-

01-06
20 8 15 11 3574.66 49 0

2019-

01-13
20 8 15 11 3692.80 48 0

2019-

01-20
20 8 14 11 3725.15 46 0

2019-

01-27
20 8 14 11 3871.17 46 0

2019-

02-03
19 8 14 10 3905.14 44 0

55

Once collected the data from different data sources, the time series are collected together

in a unique dataset according the Index (a datetime object).

In the first table we can observe the data at the beginning of 2019 and in the second one

the most recent observations.

There is a clear relationship between the decrease of number of searches, the drop of the

Index and the increase of the COVID-19 worriedness.

Output:

 American
Airlines

Delta
AirLines

Southwest
Airlines

United
Airlines

Index flights coronavirus

date

2020-
08-16

10 3 6 5 1967.17 22 6

2020-
08-23

10 3 7 5 2239.90 22 5

2020-
08-30

11 3 7 5 2254.08 23 5

2020-
09-06

10 3 7 5 2213.60 24 4

2020-
09-13

10 4 7 5 2268.02 25 4

56

We can observe the correlation of the variable, and conclude there is the presence of

Multicollinearity, an indicator that those variables are suitable as an input of our model.

In the case of the Index, all the correlations for google searches related to the flights are

superior to >0.7 and only in the case of coronavirus we find a -0.62, strongly negatively

correlated to the performance of the index, implying an increase of people worrying for

Input:

dataframe.corr()

Output:

 American

Airlines

Delta

AirLines

Southwest

Airlines

United

Airlines
Index flights coronavirus

American

Airlines
1.000000 0.964791 0.940771 0.985492 0.776127 0.921146 -0.216994

Delta

AirLines
0.964791 1.000000 0.913538 0.973014 0.739754 0.924918 -0.114226

Southwest

Airlines
0.940771 0.913538 1.000000 0.927562 0.819368 0.900298 -0.372909

United

Airlines
0.985492 0.973014 0.927562 1.000000 0.773032 0.927118 -0.165175

Index 0.776127 0.739754 0.819368 0.773032 1.000000 0.710131 -0.621369

flights 0.921146 0.924918 0.900298 0.927118 0.710131 1.000000 -0.134019

coronavirus -0.216994
-

0.114226
-0.372909

-

0.165175

-

0.621369

-

0.134019
1.000000

57

COVID-19 could potentially, but not necessarily since correlation doesn’t mean causation

in every case, determine a decrease of the Airline financial performance.

We clean the dataset removing all the outliers (all the observations that are distant from the

average at least 3 times the standard deviation).

But the plot is still not enough informative, implying is necessary to standardize the data

and work on the same scale to extract the meaning from the variables.

Input:

import numpy as np

#searches_clean = searches

dataframe_clean = dataframe[np.abs(dataframe-dataframe.mean())<=(3*dataframe.std()

)]

#dataframe_clean['flights'] = dataframe_clean['flights'].rolling(window=3).mean()

dataframe_clean.plot()

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x207c57f7188>

58

 Input:

from sklearn.preprocessing import MinMaxScaler

def condition(x):

 if x > 0.03:

 return 1

 else:

 return 0

scaler = MinMaxScaler()

data_standard = dataframe_clean.copy()

#data_standard[["flights","Index"]] = scaler.fit_transform(data_standard[["flights", "Index"]

])

data_standard[["flights","Index","coronavirus","American Airlines","Delta AirLines", "Sou

thwest Airlines", "United Airlines"]] = scaler.fit_transform(data_standard[["flights", "Inde

x","coronavirus","American Airlines","Delta AirLines", "Southwest Airlines", "United Airli

nes"]])

data_standard["coronavirus"] = data_standard["coronavirus"].apply(condition)

data_standard.plot()

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x15c6bf10608>

59

Now the graph clearly shows the Index moving on the same direction of the number of

searches for the flights and the airline companies.

The COVID-19 is represented as a Boolean, as 1 while a minimum threshold of searches

is present: when it is activated the index and the flights searches are pushed down, implying

that when the people will stop worrying about COVID-19 the market could potentially, but

not necessarily, generate a specular reaction.

A scatter plot above, where the flights searches are on the x-axis and the index is on the y-

axis, show how there are 2 evident clusters, where one is characterized by low searches

Input:

col = data_standard.coronavirus.map({0:'b', 1:'r'})

data_standard.plot.scatter(["flights"],["Index"], c = col)

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x15c6bfed948>

60

and low index values and the other one by high searches and high index values, implying

those 2 variables are strictly related.

The red color represents the COVID-19 activation.

Input:

def labeling(x):

 if x > 3000:

 return 1

 else:

 return 0

data_standard2 = data_standard.copy()

data_standard2["Index"] = dataframe_clean["Index"].apply(labeling)

data_standard2.tail()

Output:

 American

Airlines

Delta

AirLines

Southwest

Airlines

United

Airlines
Index flights coronavirus

date

2020-

08-16
0.111111 0.000000 0.117647 0.1 0 0.097561 1

2020-

08-23
0.111111 0.000000 0.176471 0.1 0 0.097561 1

2020-

08-30
0.166667 0.000000 0.176471 0.1 0 0.121951 1

2020-

09-06
0.111111 0.000000 0.176471 0.1 0 0.146341 1

2020-

09-13
0.111111 0.142857 0.176471 0.1 0 0.170732 1

61

In the code above, the Index is labeled, to prepare it for a classification algorithm: 0 when

the Index is less or equal to 3000 and 1 in all other cases.

The main purpose is to identify, using the parameters as discriminators, when will be likely

that the Index will turn back to the pre-virus levels (1).

Above the model is trained with AutoKeras, that generates a TensorFlow classification

algorithm already optimized after a series of epochs.

Input:

X, y = data_standard2[["flights","coronavirus","American Airlines","Delta AirLines", "Sout

hwest Airlines", "United Airlines"]], data_standard2['Index']

from sklearn.model_selection import train_test_split

X_train, X_test = X[:'2020-08-01'], X['2020-08-01':]

y_train, y_test = y[:'2020-08-01'], y['2020-08-01':]

import autokeras as ak

search = ak.StructuredDataClassifier(max_trials=15)

search.fit(x=X_train, y=y_train, verbose=1)

Output:

INFO:tensorflow:Reloading Oracle from existing project .\struct

ured_data_classifier\oracle.json

INFO:tensorflow:Reloading Tuner from .\structured_data_classifi

er\tuner0.json

INFO:tensorflow:Oracle triggered exit

Input:

loss, acc = search.evaluate(X_test, y_test, verbose=0)

print(acc)

Output:

1.0

62

The accuracy obtained is 100%, implying the model maximized its classification

capabilities over the Index, assuming absence of overfitting.

Since the data was previously split (training set and test set for both X and y), to test the

model on unobserved data, we can test it on the most recent market changes: the model

was trained until the 1st of August and doesn’t have information of what happens after.

Our model estimates that for all the period of August, until the second week of September

2020, the Index should remain under the threshold of 3000, since the market is still affected

by negative conditions.

Input:

y_predictions = search.predict(X_test)

print(y_predictions)

Ouput:

[[0]

 [0]

 [0]

 [0]

 [0]

 [0]

 [0]]

Input:

print(y_test)

Output:

date

2020-08-02 0

2020-08-09 0

2020-08-16 0

2020-08-23 0

2020-08-30 0

2020-09-06 0

2020-09-13 0

Name: Index, dtype: int64

63

This is exactly what happened, implying the model is correctly working on the short-term.

The main purpose of this model it is to monitor the market conditions and the relative

variables that could affect the financial performances of the index: if an unexpected event

happens, the model could estimate that the index should recover to the pre-virus conditions

before that it is understood by the investors, reducing the market informative asymmetries.

Input:

model = search.export_model()

model.summary()

Output:

Model: "functional_1"

__

Layer (type) Output Shape Param #

===

==

input_1 (InputLayer) [(None, 6)] 0

__

multi_category_encoding (Mul (None, 6) 0

__

dense (Dense) (None, 32) 224

__

re_lu (ReLU) (None, 32) 0

__

dense_1 (Dense) (None, 1) 33

__

classification_head_1 (Activ (None, 1) 0

===

==

Total params: 257

Trainable params: 257

Non-trainable params: 0

64

65

Financial Machine Learning: A Practical Approach

Deep Neural Networks to Forecast Market Implied Volatility (VIX) using the Short-Term

3-M US Treasury Bonds Rates

In finance the ability to account for different interactions of relevant variables is

fundamental to estimate and understand the impacts on the overall financial markets, and

especially on the market expected volatility (measured by the VIX Index).

In fact, we can observe how the financial actors are frequently “influenced” by nudging

policies29 with the main target to drive the consensus decisions.

A clear example happened recently where the COVID-19 negatively affected the financial

markets (especially the S&P 500 Index), pushing the FED towards a new Quantitative

Easing policy and consequentially lowering the interest rates of the US Treasury Bonds.

https://www.federalreserve.gov/monetarypolicy/bst_recenttrends.htm

29 Barton, A., Grüne-Yanoff, T. From Libertarian Paternalism to Nudging—and Beyond. Rev.Phil.Psych. 6,

341–359 (2015).

https://doi.org/10.1007/s13164-015-0268-x

https://doi.org/10.1007/s13164-015-0268-x

66

According Tan, Ji and Kohli, Vaibhav30 (2011), in fact, a Quantitative Easing policy tends

to introduce a higher volatility inside the financial markets in the Short-Term, with a

following volatility stabilization in the mid-term.

Consequentially we want to analyze if the negative correlation is still holding in the Market

Shift of 2020: is still true that lowering the interest rates of the Short Term 3-M US

Treasury Bonds the Investors will be pushed to look for higher yield in the stock markets?

Finally, a Deep Neural Network Classification model is built to predict, given the last 3

weeks daily interest rates of the 3-M US Treasury Bond as parameters, if the expected

volatility (VIX Index) is high (superior or equal to 20, labeled as 1) or normal (all other

cases – labeled as 0).

The model, will have dimensionality equal to 21 for the X and a Boolean y and will be

trained from the 1st of August 2019 to the to the 1st of August 2020 and consequentially

tested on the period from the 2nd of August 2020 to 20th of September 2020.

30 Tan, Ji and Kohli, Vaibhav, The Effect of Fed's Quantitative Easing on Stock Volatility (June 1, 2011).

http://dx.doi.org/10.2139/ssrn.2215423

http://dx.doi.org/10.2139/ssrn.2215423

67

First, we obtain the relevant data using quandl, consequentially as we can observe: the data

confirm the negative correlation between the VIX Index and the Interest Rates, a good

starting point to build our model.

The data found, confirms the original assumption regarding the relationship between the

Quantitative Easing policies and the short-term market volatility.

Jupiter HTML version of the code available also at FinanceCS.com (Stefano

Ciccarelli):

https://www.financecs.com/wp-content/uploads/2020/09/Deep-Ne

ural-Network-to-Predict-VIX-using-3-M-Treasury-Bonds.html

Input:

import quandl

import pandas as pd

quandl.ApiConfig.api_key = "INSERT YOUR API"

vix = quandl.get("CHRIS/CBOE_VX1-S-P-500-Volatility-Index-VIX-Futures-Continuous-Co

ntract-1-VX1-Front-Month", start_date="2019-08-01", end_date="2020-09-20")['Close']

interest_rate_3m = quandl.get("FRED/DTB3-3-Month-Treasury-Bill-Secondary-Market-R

ate", start_date="2019-08-01", end_date="2020-09-20")

dataframe = pd.DataFrame()

dataframe['Interest_Rate_3m'] = interest_rate_3m['Value']

dataframe['Vix'] = vix

Output:

Interest_Rate_3m Vix

Interest_Rate_3m 1.000000 -0.745343

Vix -0.745343 1.000000

68

In the data above the behavior of the 3-M short term US Treasury bond interest rate is

plotted to have a clear picture on how is evolving among time.

Is interesting to notice the significant drop following the FED announce regarding the

instauration of the QE regime.

Input:

dataframe['Interest_Rate_3m'].plot()

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x1f6550c9a48>

69

Instead, above we can observe the evolution of the VIX Index among time, and especially

we can identify the significant rise following the FED new policy announcement, signaling

an increase of the dynamism for the S&P 500 Index.

As expected from the theory: following the large short-term peak there is a clear trend

towards a stabilization on a lower level.

What we want to clarify is the impact of the gradual changes in the interest rates on the

daily expected volatility of the market and especially when the implicit volatility will turn

back to the previous level.

Input:

dataframe['Vix'].plot()

output:

<matplotlib.axes._subplots.AxesSubplot at 0x1f65527dc48>

70

Once standardized the data on the same scale, both the time series are plotted together to

have an overview of the relationships among them.

As we can immediately analyze the volatility tends to be lower wen the interest rates are

higher and vice versa, with a large peak when a large deviation is verified.

Input:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

data_standard = dataframe.copy()

data_standard[["Interest_Rate_3m","Vix"]] = scaler.fit_transform(data_standard[["Interes

t_Rate_3m","Vix"]])

data_standard.plot()

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x1f6572dfac8>

71

Instead, plotting the interest rates on the x axis and the VIX on the y axis, 2 main clusters

can be observed: when the interest rates are less than 0.25 the volatility tends to be superior

to 20, instead interest rates superior to 1.5 would imply a normal volatility level less than

20.

The pattern inside this scatter plot is a signal that using a Classification model can increase

the likelihood of success in forecasting when the VIX index could turn back to the pre-QE

policies.

Input:

dataframe.plot.scatter(["Interest_Rate_3m"],["Vix"])

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x1f65c5ddd08>

72

The single parameter interest rate is transformed in 21 parameters, where each, after the

first, represent a lag of one unit of time (third parameter represent the interest rate 2 days

ago).

Input:

for x in range(1, 20 + 1):

 dataframe['Interest_Rate_3m {} Tradig Day Ago'.format(x)] = dataframe['Interest_Rate_

3m'].shift(x)

dataframe = dataframe.dropna()

dataframe.tail()

Output:

Interest_Rate_3

m
Vix

Interest_Rate_3

m 1 Tradig Day

Ago

Interest_Rate_3

m 2 Tradig Day

Ago

Interest_Rate_3

m 3 Tradig Day

Ago

Inter

m

Date

2020

-09-

10

0.12
28.8

6
0.12 0.13 0.11

2020

-09-

11

0.11
26.6

0
0.12 0.12 0.13

2020

-09-

14

0.11
25.8

5
0.11 0.12 0.12

2020

-09-

15

0.11
25.4

5
0.11 0.11 0.12

2020

-09-

16

0.12
25.4

0
0.11 0.11 0.11

73

Input:

def labeling(x):

 if x >= 20:

 return 1

 else:

 return 0

list_X = [parameter for parameter in list(dataframe.columns) if parameter != 'Vix']

X, y = dataframe[list_X], dataframe['Vix'].apply(labeling)

from sklearn.model_selection import train_test_split

X_train, X_test = X[:'2020-08-01'], X['2020-08-01':]

y_train, y_test = y[:'2020-08-01'], y['2020-08-01':]

import autokeras as ak

search = ak.StructuredDataClassifier(max_trials=15)

search.fit(x=X_train, y=y_train, verbose=1)

Output:

Epoch 1/67

8/8 [==============================] - 0s 1ms/step - loss: 1.21

79 - accuracy: 0.4156

Epoch 2/67

8/8 [==============================] - 0s 1ms/step - loss: 0.90

37 - accuracy: 0.1948

Epoch 3/67

8/8 [==============================] - 0s 2ms/step - loss: 0.73

95 - accuracy: 0.2468

Epoch 4/67

8/8 [==============================] - 0s 1ms/step - loss: 0.64

69 - accuracy: 0.5238

Epoch 5/67

8/8 [==============================] - 0s 1ms/step - loss: 0.59

99 - accuracy: 0.5238

74

Once the model is trained with a classification algorithm using AutoKeras, we find an

accuracy of 100% and a loss of 0.19, implying the observation are correctly labeled in

almost any case on the data used for the training.

Above the forecasted outputs (0,1 labels) according the training inputs.

Input:

loss, acc = search.evaluate(X_test, y_test, verbose=0)

print("The Loss is {:.2f} and the Accuracy is {}".format(loss, acc))

Output:

The Loss is 0.19 and the Accuracy is 1.0

Input:

import matplotlib.pyplot as plt

model = search.predict(X_train)

plt.plot(model)

Output:

[<matplotlib.lines.Line2D at 0x1f65dbdb308>]

75

Above the real output verified on the market: the model is mostly accounting for persistent

changes, ignoring the single outliers.

Input:

plt.plot(y_train)

Output:

[<matplotlib.lines.Line2D at 0x1f65e044f88>]

76

Using the model on test data (on which it was never trained), it is still behaving optimally

with an accuracy of 100%, classifying the VIX Index at an high level (above 1), that is

what really happened for all the period of analysis.

In the graph both the real data and the forecasted one are plotted together but since they

are equal there is an overlapping

Input:

check = pd.DataFrame()

check["Real"] = y_test

check["Forecast"] = search.predict(X_test)

check.plot()

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x1f65d888a48>

77

Model: "functional_1"

__

Layer (type) Output Shape Param #

===

==

input_1 (InputLayer) [(None, 21)] 0

__

multi_category_encoding (Mul (None, 21) 0

__

dense (Dense) (None, 32) 704

__

re_lu (ReLU) (None, 32) 0

__

dense_1 (Dense) (None, 1) 33

__

classification_head_1 (Activ (None, 1) 0

===

==

Total params: 737

Trainable params: 737

Non-trainable params: 0

__

78

Deep Neural Networks for Stock Selection in Portfolio Optimization

In this last chapter the focus will be on applying a classification problem for Stock selection

purpose, with the main scope of generating an Optimal Portfolio from the best performing

stock.

We will start mining the main fundamental data of 30 companies, for all the years from

2011 to 2017: an equivalent of 104 parameters (as for example the value of Working

Capital, etc.) for 30 companies and for 7 years.

Once obtained those values, the return YoY is computed and if the return in 2018 was equal

or superior to 30% the Company in 2017 it is labeled as 1.

The main purpose is to discover the key patterns contributes the most to generating returns

among time on the financial markets looking to the fundamental data.

Using the discovered strategy in 2017, on data the algorithm never observed before, an

average return of 42.43% would be obtained: a value that would outperform most of the

current funds.

79

Above the data about 30 company is scraped over a decade and the relative returns YoY

are computed (close price end of the next year / close price end of current year – 1).

Consequentially the boolean labels are generated according the returns, if superior or equal

to 30%.

Jupiter HTML version of the code available also at FinanceCS.com (Stefano

Ciccarelli):

https://www.financecs.com/wp-content/uploads/2020/09/Deep-Neural-Network-fo

r-Stock-Selection-in-Generating-the-Optimal-Portfolio.html

Input:

import quandl

import pandas as pd

quandl.ApiConfig.api_key = "INSERT YOUR API"

data = dict()

for n in range(10):

 request = quandl.get_table('SHARADAR/SF1', calendardate='201{}-12-31'.format(n))

 request.index = request['ticker']

 data['201{}'.format(n)] = request

def labeling(x):

 if x >= 0.3:

 return 1

 else:

 return 0

for n in range(9):

 data['201{}'.format(n)]['Return'] = data['201{}'.format(n + 1)]['price']/data['201{}'.for

mat(n)]['price'] - 1

 data['201{}'.format(n)]['Label'] = data['201{}'.format(n)]['Return'].apply(labeling)

https://www.financecs.com/wp-content/uploads/2020/09/Deep-Neural-Network-for-Stock-Selection-in-Generating-the-Optimal-Portfolio.html
https://www.financecs.com/wp-content/uploads/2020/09/Deep-Neural-Network-for-Stock-Selection-in-Generating-the-Optimal-Portfolio.html

80

Input:

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

columns = list(data['2011'].columns[6:])

data_standard = pd.DataFrame(columns = data['2011'].columns)

for var in data:

 if var not in ("2010", "2018", "2019") :

 dataset_standard = data[var].copy()

 dataset_standard[columns] = scaler.fit_transform(dataset_standard[columns])

 data_standard = data_standard.append(dataset_standard)

 else:

 pass

data_standard.index = data_standard["calendardate"]

data_standard.tail()

Output:

ticker dimension calendardate datekey reportperiod lastupdated accoci

calendardate

2017-12-31 CSCO MRY 2017-12-31
2017-

07-29
2017-07-29 2020-09-03 0.910670 0.

2017-12-31 CAT MRY 2017-12-31
2017-

12-31
2017-12-31 2020-08-05 0.868346 0.

2017-12-31 BA MRY 2017-12-31
2017-

12-31
2017-12-31 2020-07-31 0.349356 0.

2017-12-31 AXP MRY 2017-12-31
2017-

12-31
2017-12-31 2020-07-24 0.826091 0.

2017-

81

In the code above, and inside the relative tables, we can observe the example data for the

year 2017 and the key fundamental values: a standardization method is applied to be able

to relate the variables on the same scale, since we want to analyze them in relation to the

other key Companies’ dimensions and not as standalone.

Output:

assets assetsavg assetsc ... shareswadil sps tangibles taxassets taxexp taxliab

0.042448 0.041329 0.498039 ... 0.230141 0.005520 0.030401 0.480667 0.479851 0.0

0.021393 0.021883 0.196461 ... 0.015472 0.341384 0.018651 0.191972 0.504957 0.0

0.035494 0.028950 0.507514 ... NaN 0.746081 0.033135 0.036399 0.440769 0.0

0.062915 0.058120 NaN ... 0.029303 0.150664 0.064469 0.000000 0.555775 0.0

0.140244 0.128110 0.783623 ... 1.000000 0.012523 0.143497 0.000000 0.975882 0.0

82

Above the classification algorithm is applied to all the data before the 1st of January 2017.

Input:

X, y = data_standard[columns], data_standard['Label']

from sklearn.model_selection import train_test_split

X_train, X_test = X[:'2017-01-01'], X['2017-01-01':]

y_train, y_test = y[:'2017-01-01'], y['2017-01-01':]

import autokeras as ak

search = ak.StructuredDataClassifier(max_trials=15)

search.fit(x=X_train, y=y_train, verbose=1)

Output:

Epoch 1/67

6/6 [==============================] - 0s 2ms/step - loss: 0.7960 - a

ccuracy: 0.2944

Epoch 2/67

6/6 [==============================] - 0s 2ms/step - loss: 0.6462 - a

ccuracy: 0.6778

Epoch 3/67

6/6 [==============================] - 0s 2ms/step - loss: 0.5743 - a

ccuracy: 0.7667

Epoch 4/67

6/6 [==============================] - 0s 2ms/step - loss: 0.5428 - a

ccuracy: 0.7667

Input:

loss, acc = search.evaluate(X_test, y_test, verbose=0)

print('{:.2f}%'.format(acc*100))

Output:

86.67%

83

The accuracy of the model is approximately 87%

In the code above the model is evaluated on data that was never trained on (test as a real

word example, to understand its performance once ready).

Input:

y_predictions = search.predict(X_test)

y_train, y_test = y[:'2017-01-01'], y['2017-01-01':]

df = pd.DataFrame(y_test)

df["Expected"] = y_predictions

returns = data["2017"]

returns.index = returns["calendardate"]

df["Return"] = returns["Return"]

df["Ticker"] = returns["ticker"]

84

Input:

df

Output:

Label Expected Return Ticker

calendardate

 2017-12-31 0.0 0.0 -0.184720 XOM

2017-12-31 0.0 0.0 -0.101032 WMT

2017-12-31 0.0 0.0 0.062158 VZ

2017-12-31 1.0 1.0 0.426169 V

2017-12-31 0.0 1.0 0.130001 UNH

2017-12-31 0.0 1.0 0.068894 TSLA

2017-12-31 0.0 0.0 -0.117148 TRV

2017-12-31 0.0 0.0 -0.104303 PG

2017-12-31 0.0 0.0 0.205135 PFE

2017-12-31 1.0 1.0 0.354973 NKE

2017-12-31 1.0 1.0 0.430582 MSFT

2017-12-31 1.0 1.0 0.357917 MRK

85

2017-12-31 0.0 0.0 -0.190466 MMM

 2017-12-31 0.0 0.0 0.031664 MCD

2017-12-31 0.0 0.0 0.032040 KO

2017-12-31 0.0 0.0 -0.087152 JPM

2017-12-31 0.0 0.0 -0.089107 JNJ

2017-12-31 0.0 0.0 0.012782 INTC

2017-12-31 0.0 0.0 -0.259093 IBM

2017-12-31 0.0 0.0 -0.110312 HD

2017-12-31 0.0 0.0 -0.344285 GS

2017-12-31 0.0 0.0 -0.566189 GE

2017-12-31 0.0 1.0 0.186365 DIS

2017-12-31 0.0 0.0 -0.249087 DD

2017-12-31 0.0 0.0 -0.131001 CVX

2017-12-31 1.0 1.0 0.350571 CSCO

2017-12-31 0.0 0.0 -0.193616 CAT

2017-12-31 0.0 0.0 0.093554 BA

2017-12-31 0.0 1.0 -0.040177 AXP

2017-12-31 1.0 1.0 0.464703 AAPL

86

Also, if the mode is not all time correct, when it suggests purchasing (label 1 in Expected)

the return is still positive or insignificantly negative.

Assuming an equal allocation to all the suggested stock, the average return would be

42.43% yearly, showing the power of DNNs in identifying the key patterns.

Once found the outperforming stock, according our classification algorithm, we can use it

as an “engine” for the selection in a portfolio optimization approach, where we assign a

specific weight to each stock and we account also for the volatility of the returns.

Input:

df["Strategy"] = df['Expected']*(df['Return']+1)

print("This Algorithm for Stock Selection produces an average annualized return of {:.2f}%".form

at(df["Strategy"].mean()*100))

Output:

This Algorithm for Stock Selection produces an average annualized ret

urn of 42.43%

87

Above we obtain the close stock price for all the selected stock on the time period from the

1st of January 2017 to the 30th of December 2017

Input:

import yfinance as yf

stocks = pd.DataFrame()

count = 0

insert = list(df["Expected"])

for i in df["Ticker"]:

 if insert[count] == 1:

 count += 1

 try:

 data = yf.download(i, start="2017-01-01", end="2017-12-30")

 stocks[i] = data['Adj Close']

 except:

 print('failed: ', i)

 else:

 count += 1

 pass

print(stocks)

stocks = stocks.dropna(axis='columns')

stocks.head(10)

Output:

[*********************100%***********************] 1 of 1 completed

[*********************100%***********************] 1 of 1 completed

[*********************100%***********************] 1 of 1 completed

[*********************100%***********************] 1 of 1 completed

[*********************100%***********************] 1 of 1 completed

[*********************100%***********************] 1 of 1 completed

[*********************100%***********************] 1 of 1 completed

[*********************100%***********************] 1 of 1 completed

[*********************100%***********************] 1 of 1 completed

[*********************100%***********************] 1 of 1 completed

 V UNH TSLA NKE MSFT

88

Input:

import sys

import yfinance as yf

import lxml

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import figure

from sklearn.preprocessing import MinMaxScaler

import os

log_ret = np.log(stocks/stocks.shift(1))

np.random.seed(42)

num_ports = 2000

all_weights = np.zeros((num_ports, len(stocks.columns)))

ret_arr = np.zeros(num_ports)

vol_arr = np.zeros(num_ports)

shape_arr = np.zeros(num_ports)

for x in range(num_ports):

 weights = np.array(np.random.random(len(stocks.columns)))

 weights = weights/np.sum(weights)

 all_weights[x,:] = weights

 ret_arr[x] = np.sum((log_ret.mean()*weights*252))

 vol_arr[x] = np.sqrt(np.dot(weights.T, np.dot(log_ret.cov()*252, weights)))

 shape_arr[x] = ret_arr[x]/vol_arr[x]

print('Max sharpe ratio in the array: {}'.format(shape_arr.max()))

print("Its location in the array: {}".format(shape_arr.argmax()))

max_sr_ret = ret_arr[shape_arr.argmax()]

max_sr_vol = vol_arr[shape_arr.argmax()]

print('Proportion ratio: ',100*all_weights[shape_arr.argmax(),:])

plt.figure(figsize=(12,8))

plt.scatter(vol_arr, ret_arr, c shape_arr)

plt.colorbar(label 'Sharpe Ratio')

89

plt.scatter(vol_arr, ret_arr, c=shape_arr)

plt.colorbar(label='Sharpe Ratio')

plt.xlabel('Volatility')

plt.ylabel('Return')

plt.scatter(max_sr_vol, max_sr_ret, c='red', s=50)

plt.show()

Output:

Max sharpe ratio in the array: 3.531086903574403

Its location in the array: 1451

Proportion ratio: [18.88535894 15.30726511 2.09109787 4.67307346

7.96875013 3.43896713

 10.0053844 9.52941807 19.33222169 8.7684632]

90

The Optimal Portfolio obtained has a Sharpe Ratio of 3.53, with an expected return of

28.26% and a volatility of 8%: this imply that in the worst case (99.9th Percentile) the return

would be still positive (1.93%).

Input:

print("The Expected return of this optimal portfolio would be {:.2f}%, with a volatility of {:.2f}%,

generating a Sharpe Ratio of {:.2f}".format(ret_arr[1451]*100,vol_arr[1451]*100,shape_arr[1451

]))

Output:

The Expected return of this optimal portfolio would be 28.26%, with a

volatility of 8.00%, generating a Sharpe Ratio of 3.53

Input:

equipment = list(stocks.columns.values)

sizes = list(100*all_weights[shape_arr.argmax(),:])

dictionary = {}

count = 0

for x in equipment:

 dictionary[x] = sizes[count]

 count += 1

print(dictionary)

a = pd.DataFrame.from_dict(dictionary,orient= "index")

a.to_csv("final.csv")

fig1, ax1 plt.subplots()

91

fig1, ax1 = plt.subplots()

fig1.set_size_inches(8, 6)

ax1.pie(sizes, labels=equipment, autopct='%1.1f%%',

 shadow=True, startangle=90)

ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.

fig1.set_facecolor('white')

plt.show()

Output:

{'V': 18.885358942238106, 'UNH': 15.307265108539687, 'TSLA': 2.091097

8697403197, 'NKE': 4.673073461941965, 'MSFT': 7.968750132080986, 'MRK

': 3.438967133987564, 'DIS': 10.00538439670626, 'CSCO': 9.52941807110

8267, 'AXP': 19.332221687280196, 'AAPL': 8.768463196376654}

92

Consequentially the portfolio in 2017 should be composed of:

'V': 18.885358942238106

'UNH': 15.307265108539687

'TSLA': 2.0910978697403197

'NKE': 4.673073461941965

'MSFT': 7.968750132080986

'MRK': 3.438967133987564

'DIS': 10.00538439670626

'CSCO': 9.529418071108267

'AXP': 19.332221687280196

'AAPL': 8.768463196376654

Those value are in % and sum up to 100%.

An expected return of 28.26% in a year where the market index S&P 500 obtained a return

of – 4.38% (2018 vs 2017) is an exceptional achievement that shows the potential of the

Neural Networks in discriminating the underlying fundamental values of the companies

that are relevant to predict the YoY success on the market of the listed Companies.

93

Model: "functional_1"

__

Layer (type) Output Shape Param #

===

==

input_1 (InputLayer) [(None, 107)] 0

__

multi_category_encoding (Mul (None, 107) 0

__

dense (Dense) (None, 32) 3456

__

re_lu (ReLU) (None, 32) 0

__

dense_1 (Dense) (None, 1) 33

__

classification_head_1 (Activ (None, 1) 0

===

==

Total params: 3,489

Trainable params: 3,489

Non-trainable params: 0

__

94

Conclusions

The thesis started with an analysis of the current worldwide landscape: why Machine

Learning is becoming relevant for Shareholders and how this can contribute to generating

value for overall society.

This call has a focus on economic and social inclusiveness given the expected non-linear

risks generated by the potential Singularity’s developments on the overall society,

identifying the Governments as crucial in establishing a financial singularity strategy

without disincentivizing innovation.

This was done using a strongly quantitative and data-driven approach: letting the data to

proof the underlying assumptions, via Python as a powerful analytical tool.

The key final result in the last paragraph shows how a Neural Network can outperform the

financial valuation abilities of a team of professional analysts in selecting stocks, according

data that never observed during the training, obtaining an average YoY +42.43% return.

It was trained on a period span of 5 years data and on more than 100 fundamental

parameters (as relevant Balance Sheet and Income Statements voices) on a set of 30

Companies.

It automatically selected the most relevant interactions among the standardize parameters

(the relative relevancy of the ratio respect to the overall population), discriminating

accurately the best companies to select and insert in the portfolio optimization strategy.

Following the portfolio optimization and the obtaining of the efficient frontier, is found a

Sharpe Ratio of 3.53, with an expected return of +28.26% and a volatility of 8%, implying

that in the worst of all empirical case (99.9th Percentile) the return would be still positive

(+1.93%).

95

This while the market index (S&P 500) obtained a return of – 4.38% the same year.

This show how, especially in the next Future, Artificial Intelligence will tend to outperform

the analytical abilities of human mind in executing specific and gradually more general

tasks.

In another case, the effects of the number of searches related to airlines on Google, together

with a sample of the “worrying level” related to COVID-19, were used to analyze and

monitor the NASDAQ US Benchmark Airlines Index level in a way that was not possible

before, clarifying when we can expect a recover of this index, if the demand for the US

Airlines tickets will start to increase again.

A similar approach was used on forecasting the market volatility (a consensus sample from

the VIX Index), using the negatively correlated short term risk-free interest rates (3-M US

Treasury Bonds): to model how the Governments and Central Banks interventions applying

Quantitative Easing policies can negatively affect the short-term market volatility pushing

the Investor towards the equity market’s higher yields and defining when we can expect

the VIX Index to turn back to a normal level (under the value of 20).

Concluding, once proved the high value generation abilities of this technology, my hope

goes to the correct applications of it, that Machine Learning will be used as a tool and not

as a gun against society: is Time for the Governments to establish a long-term automation-

indexed fund to sustain people when them will suddenly be exposed to the Singularity risk,

or the democracies will fall under the control of a cognitive monopoly.

96

97

Bibliography

Technical

Hilpisch Y. (2018). Python for Finance: Mastering Data-Driven Finance. "O'Reilly Media,

Inc.". ISBN 1492024317

Géron A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems, "O'Reilly Media, Inc.".

ISBN 1492032611

Prado M. L. (2018). Advances in Financial Machine Learning, Publisher Wiley, 2018.

ISBN 1119482119

Ozdemir S., Kakade S. (2018). Principles of Data Science, Safari, an O'Reilly Media

Company, ISBN 178980454X

Burkov, A. (2019). The Hundred-Page Machine Learning Book, Edition illustrated.

98

Methodological

Seth Stephens-Davidowitz (2018): EVERYBODY LIES: Big Data, New Data, and What

the Internet Can Tell Us about Who We Really Are. New York: Dey Street Books.

ISBN: 9780062390868.

Pentland, Alex, (2014). Social Physics: How Good Ideas Spread-the Lessons from a New

Science. New York: The Penguin Press, ISBN 9781594205651

Harari, Y. N. (2016). Homo deus: A brief history of tomorrow. ISBN 9781910701874

Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.

ISBN 9780199678112

Domingos, P. (2015). The master algorithm: How the quest for the ultimate learning

machine will remake our world. Basic Books. ISBN 9781501299353

