
LIBERA UNIVERSITÀ INTERNAZIONALE DEGLI STUDI SOCIALI

“LUISS - GUIDO CARLI”

Department of Economics and Finance

Chair of Asset Pricing

MACHINE LEARNING
FOR VOLATILITY FORECASTING

Supervisor:
Prof. Emilio Barone

Co-Supervisor:
Prof. Nicola Borri

Candidate:
Simone Romano

Academic Year 2019-2020

Contents

Introduction 1

1 Volatility 3
1.1 Defining and measuring volatility . 3
1.2 Realized volatility . 6
1.3 Implied volatility . 7
1.4 The VIX Index . 9
1.5 Stylized facts: evidence from the S&P 500 11

2 Econometric Models 19
2.1 The EWMA model . 19
2.2 The ARCH model . 21
2.3 The GARCH model . 23
2.4 Maximum likelihood estimation . 25

3 Machine Learning Models 29
3.1 Artificial neural networks . 29
3.2 Gradient descent and backpropagation 32
3.3 Recurrent neural networks . 35
3.4 Long short-term memory (LSTM) . 36

4 Experimental setup and results 41
4.1 Data description . 41
4.2 Methodology . 42
4.3 Hyperparameter tuning . 44
4.4 Results . 47

Conclusion 53

Bibliography 57

Appendix A Python Code 59
A.1 Preliminary work . 59
A.2 LSTM . 61
A.3 GARCH(1,1) . 71
A.4 EWMA . 74
A.5 Comparing the models . 76

Introduction

Volatility is a central topic in the financial literature and such paramount importance

lies in the vast array of its applications.

For example, volatility represents an essential element to many investment de-

cisions as it is often taken as the starting point for optimal portfolio allocations.

In 1952, Harry Markowitz laid the foundation of the Modern Portfolio Theory by

which investors are risk averse and have a utility function increasing with expected

return and decreasing with volatility.

Volatility is also a key input in the pricing of many derivatives. Indeed, to eval-

uate options’ fair value, the volatility of the underlying asset until the expiration

date must be known. Besides, in recent years, even derivatives with volatility it-

self as the underlying have been introduced, and in these cases, the definition and

measurement of volatility must be specified in the derivative contracts.

In risk management, volatility is relevant for computing the Value at Risk (VaR),

whose estimation has become a standard practice for financial institutions. Indeed,

since the first Basel Accord was established in 1996, banks and trading venues are

required to set aside a reserve capital of at least three times that of VaR.

Volatility can also have wide consequences on the economy as a whole. Thus,

policymakers regard volatility as an indicator of uncertainty in the financial market.

For example, both the Federal Reserve and the Bank of England take into account

the securities volatility in establishing their monetary policies. Besides, volatility

negatively affects market liquidity since when the former spikes, the latter usually

declines.

Volatility is crucial for hedging strategies as well. Indeed, during stressed market

conditions, not only volatility increases but also correlations among different secu-

2

rities do so. In these circumstances, derivative instruments may work as insurance

against sudden market downturns.

For all these reasons, the relevance of volatility forecasting follows as a natural

consequence. Although the literature on this subject is extensive and many models

have been proposed, in the last years, we have been assisting to a rise in the applica-

tions of machine learning techniques to many different sectors. Hence, this thesis is

aimed at bridging the gap between the classical financial literature and the machine

learning models for volatility forecasting.

The rest of the work is organized as follows: in the first chapter, we will provide

the reader with a background of volatility together with some stylized facts from

the S&P 500 Index.

In the second chapter, we will describe the most relevant econometric models

for volatility forecasting. The Exponential Weighted Moving Average (EWMA)

model, the AutoRegressive Conditional Heteroscedasticity (ARCH) model, and the

Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) model will

be presented. Afterwards, the model parameters estimation through the maximum

likelihood method will be illustrated.

In the third chapter, we will introduce some machine learning models. In particu-

lar, being the best suited for regression analyses, we will circumscribe our discussion

to Artificial Neural Networks (ANNs). We will describe them in comparison, and as

alternative tools, to econometric models. After a general description of ANNs, we

will see in particular the Feedforward Neural Network (FNN), the Recurrent Neural

Network (RNN), and the Long Short Term Memory (LSTM).

Finally, in the last chapter, we will describe the steps taken to build a machine

learning model and compare its predictive power to that of the presented econometric

models.

Chapter 1

Volatility

1.1 Defining and measuring volatility

The volatility of a security or a market index is a measure of the dispersion of

its returns across their mean. Usually denoted by σ, it is defined as the standard

deviation of logarithmic returns observed over fixed time intervals:

σ =

√√√√ 1

n

n∑
t=1

(rt − µ)2

where:

rt = ln(St

St−1
)

St is the price at time t

µ is the mean of rt

n is the number of observations

Estimating the population variance from the sample variance can be done with the

following unbiased estimator:

s2 =
n

n− 1
σ2

Although it is common practice to take the square root to get the volatility, it should

be noted that this gives an estimate which is biased low. Indeed, since the square

root is a strictly concave function, by Jensen’s inequality:

E
[√

s2
]
≤
√

E [s2] =
√
σ2 = σ

4 Volatility

Assuming returns are normally distributed, Holtzman (1950) proved that:

E [s] = c(n)σ

where

c(n) =

√
2

n− 1

Γ(n
2
)

Γ(n−1
2

)

where Γ(·) is the gamma function.

Figure 1.1 shows the size of the correction factor c(n) for different sample sizes.

0 5 10 15 20 25 30 35 40 45 50
n

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

c(
n)

Figure 1.1: Correction factor to obtain an unbiased estimate of σ

Then, an unbiased estimator, s̃, of the population standard deviation could be

obtained by dividing s by c(n).

s̃ =
s

c(n)

However, when comparing s with s̃ by their Mean Squared Error (MSE)1, the former

is nevertheless to be preferred (see Figure 1.2). Indeed, despite s̃ produces estimates

that are on average correct, its higher variance makes it converge to the true volatility

more slowly than s.

1 MSE(θ̂)= E
[
(θ̂ − θ)2

]
= Var(θ̂ − θ) + E

[
θ̂ − θ

]2
= Var(θ̂) + bias2

1.1. Defining and measuring volatility 5

0 5 10 15 20
n

0.000

0.005

0.010

0.015

0.020

0.025
M

SE
s
s

Figure 1.2: MSE for two volatility estimators. A value of 20% has been assigned to σ for
illustrative purposes.

Both the estimators suggest that using more data would increase the accuracy

of the estimation. That would not be a problem if we were measuring the volatility

of an unchanging process. Though, volatility is not constant over time and using

too much data could lead at including information no longer relevant to the current

state of the market. A good compromise could be found by using the last 30-60

closing prices from daily data.

By convention, volatility is expressed in annual terms. Since most of the variation

in securities’ returns come from trading activity, practitioners consider a year as

formed by 252 days, which is usually the number of days stocks are traded within

a year. Assuming independent returns and constant volatility, the annual volatility

can then be calculated as:

σannual =
στ√
τ

where τ is the length of time interval in years. For example, if we had to express

daily volatility per annum:

σannual = σdaily ·
√

252

6 Volatility

The aforementioned volatility is usually referred to as historical volatility. There

exist other two types of volatility: the realized volatility and the implied volatility.

1.2 Realized volatility

When computing the historical volatility, the mean return needs to be estimated.

Although its sample estimator is unbiased, estimates of the mean return are noisy,

especially for small samples. Besides, even increasing the sample size, Merton (1980)

noted that periods when a security experiences a downtrend result in a negative

average return which conflicts with the prior non-negativity restriction to the ex-

ante expected return. In light of these shortcomings, many authors and professionals

set the mean return to zero. This type of volatility is referred to as realized volatility.

However, with the availability of high frequency data, the term is more often

associated with the estimation of volatility using intraday returns proposed by An-

dersen and Bollerslev (1998). The intuition behind the use of realized volatility is

conveyed within the popular continuous-time diffusion setting:

ds(t) = µ(t)dt+ σ(t)dW (t) t ≥ 0

where s(t) is the logarithmic asset price at time t, µ(t) is the drift term and σ(t)

is the instantaneous volatility that inflates the change in price relative to dW (t),

which is a stochastic Brownian step. The continuously compounded return over the

time interval from t− δ to t, 0 ≤ δ ≤ t, is therefore:

r(t, δ) = s(t)− s(t− δ) =

∫ t

t−δ
µ(τ)dτ +

∫ t

t−δ
σ(τ)dW (τ)

and its quadratic variation QV (t, δ):

QV (t, δ) =

∫ t

t−δ
σ2(τ)dτ

Considering a discrete partition {t − δ + j
n
, j = 1, ...n · δ} of the [t − δ, t] interval,

1.3. Implied volatility 7

the realized volatility, RV , is defined as

RV (t, δ;n) =

√√√√ n·δ∑
j=1

r2(t− δ +
j

n
,

1

n
)

If the returns are serially uncorrelated and the sample path for σ is continuous, it

follows by the theory of quadratic variation (see Karatzas and Shreve (1988)), that

RV 2(t, δ;n)
p−→ QV (t, δ), as n→∞

Hence, RV 2 approximates QV as the sampling frequency n increases. However,

this result presents some issues. First, continuous price recording is unfeasible in

practice even for the most liquid assets. This gives rise to measurement errors due

to the discretization of the observations. Second, intraday returns can be affected by

spurious autocorrelations due to many microstructure effects, like noise trades, price

discreteness, bid-ask bounces, market fragmentation... etc. These autocorrelations

may lead to an overestimation of the RV and give rise to a trade-off between bias

and variance. Indeed, although the highest possible sampling frequency should be

adopted to improve the efficiency, that would induce biased RV estimates. In order

to deal with these issues, 5-15 minutes returns are then commonly used to compute

realized volatility.

1.3 Implied volatility

Both the historical and the realized volatility are computed using past observations.

Implied volatility (IV), instead, is derived from current option prices observed in

the market and represents investors’ expectations about the future volatility of the

underlying asset. For that reason, in contrast with the other two types of volatility,

IV is also said to be a forward looking measure.

Once specified an option pricing model, the implied volatility is the value that

equates the theoretical to the observed option price. The most used model to price

European options written on stocks paying no dividends is the Black–Scholes–Merton

8 Volatility

model, according to which the price of a call and a put, denoted by c and p respec-

tively, is equal to

c = S0N(d1)−Ke−rTN(d2) (1.1)

p = Ke−rTN(−d2)− S0N(−d1) (1.2)

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ
√
T

where S0 is the stock price at time zero, K is the strike price, r is the continuously

compounded risk-free rate, σ is the stock price volatility, T is the time to maturity of

the option and N(·) is the cumulative distribution function of the standard normal

distribution.

Unfortunately, it is not possible to invert Equations (1.1) and (1.2) so that σ is

expressed as a function of the other parameters. However, being the options prices

monotonic in volatility, the IV can be easily found by numerical search methods.2

According to the Black-Scholes-Merton model, all European options written on

the same underlying and having the same time to maturity should have the same

implied volatility. Actually, that is not true in practice. When implied volatility is

plotted against moneyness (K/S), the resulting graph is typically convex and the

phenomenon is so systematic that it is referred to as volatility smile. The explanation

of such an inconsistency lies in the fact that the implied (and actual) distribution of

returns is not correctly captured by the model (see Section 1.5) and that the future

volatility is uncertain. Besides, errors in the implied volatility estimation may arise

from asynchronous reporting of options prices and underlying asset price. Thus, the

existence of multiple implied volatilities, one for each strike price, has led to the

need for a single measure, and so to the introduction of the VIX Index.

2 One efficient way to find the implied volatility is to use Newton-Raphson method. It consists
in setting an initial estimate σ0 of the volatility and producing better estimates σ1, σ2, ... using
the formula σi+1 = σ0− f(σi)/f ′(σi) where f(σi) is the difference between the theoretical price
of the option when σ = σi and its market price, f ′(σi) is the first derivative of the option value
with respect to σi, also known as vega.

1.4. The VIX Index 9

1.4 The VIX Index

The VIX Index, also referred to as the fear index or fear gauge, is an index of the

implied volatility of 30-day options on the S&P 500 Index (ticker symbol SPX).

It was introduced in 1993 by the Chicago Board Options Exchange (CBOE). In its

original formulation developed by Whaley (1993), the index was based on the option

prices of eight at-the-money calls and puts written on the S&P 100 (ticker symbol

OEX). In 2003, since most of the trading volume shifted to SPX and out-of-the-

money put options also became largely bought for insurance purposes, the CBOE

updated the VIX calculation to account for these changes. Since 2004, VIX is also

tradable through futures contracts and since 2006 through options contracts as well.

Unlike to the usual calculation of implied volatility, the VIX is not computed

using any option pricing model but it derives IV directly from option prices belong-

ing to one of two consecutive maturities between 23 and 37 days. The variances,

σ1 and σ2, resulting from near-term and next-term options respectively, are then

interpolated in order to return the 30-day implied volatility. The current formula to

compute the VIX is the following:

V IX = 100

√√√√[T1σ2
1

(
NT2 −N30

NT2 −NT1

)
+ T2σ2

2

(
N30 −NT1

NT2 −NT1

)]
N365

N30

where:

σ2
j =

2

Tj

∑
i

∆Ki

K2
i

erjTjQ(Ki)−
1

Tj

(
Fj
K0

− 1

)2

, j ∈ {1, 2}

j = 1 and j = 2 indicate near-term and next-term options respectively

Tj is the time to maturity for j-type options

Fj is the forward index level derived from j-type index option prices

K0 is the first strike below the forward index level, Fj

Ki is the strike price of ith option having a non-zero bid price

∆Ki = (Ki+1 −Ki−1)/2

rj is the risk-free interest rate to expiration for j-type options

10 Volatility

Q(Ki) is the midpoint of the bid-ask spread for each option with strike Ki

NTj is the number of minutes to settlement of j-type options

N30 and N365 are the number of minutes in 30 and 365 days respectively

Figure 1.3 shows the VIX Index between January 1990 and December 2020. At

the beginning of the ’90s, the Asian financial crisis and the collapse of Long Term

Capital Management (LTCM) can be seen from the highs. In the early 2000s, the

burst of the dot-com bubble caused the index to peak again. After readjusting to

normal levels in the following years, the VIX touched one of its major peaks in 2008,

during the global financial crisis. Then, the flash crash, the Euro area crisis and

the oil crisis led to further spikes in the implied volatility in 2010, 2012 and 2016

respectively. Finally, the last spike refers to the COVID-19 crash in March 2020.

1990 1995 2000 2005 2010 2015 2020

10

20

30

40

50

60

70

80

pr
ice

Figure 1.3: The VIX index, January 1990 to December 2020

1.5. Stylized facts: evidence from the S&P 500 11

1.5 Stylized facts: evidence from the S&P 500

Many stylized facts about volatility have emerged over the years and been confirmed

in numerous studies. A good volatility model, then, must be able to capture and

reflect these stylized facts. Without loss of generality, we will show some evidence

from the S&P500, sometimes looking at volatility itself, sometimes analyzing the

returns, other times including both in our study. All data are downloaded from

CBOE and refer to the period from January 1990 to December 2020.

Starting from returns, many models assume they are normally distributed. How-

ever, when compared with the normal density function, actual returns distribution

has fatter tails and slight negative skewness meaning that large moves occur more

frequently than expected according to the normal distribution, and that when these

occur, they are more likely to be negative (see Figure 1.4).

-6% -4% -2% 0% 2% 4% 6%
Daily return of S&P 500 Index (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e

fre
qu

en
cy

Figure 1.4: Distribution of daily S&P 500 returns

The presence of fat tails is more evident in Figure 1.5, where the quantiles of the

standardized actual and normal distributions are compared.

12 Volatility

4 2 0 2 4
Theoretical Quantiles

10

5

0

5

10
Sa

m
pl

e
Qu

an
til

es

Figure 1.5: Q-Q plot for standardized daily S&P500 log returns

Returns are notoriously difficult to predict by simply looking at their past values.

The same cannot be said about absolute returns, though. An analysis of the correla-

tions between weekly returns across multiple lags is presented in Figure 1.6. It shows

that returns are persistent in their absolute value and that this serial dependency

decays slowly over time.

0 5 10 15 20 25
Lag (weeks)

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

of
 re

tu
rn

s

0 5 10 15 20 25
Lag (weeks)

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

of
 a

bs
ol

ut
e

re
tu

rn
s

Figure 1.6: Autocorrelation function (ACF) for weekly S&P 500 returns (left) and abso-
lute returns (right)

In other terms, as described by Mandelbrot (1963), who first noted such returns

1.5. Stylized facts: evidence from the S&P 500 13

behaviour, "large changes tend to be followed by large changes - of either sign - and

small changes tend to be followed by small changes".

The phenomenon, concerning the amplitude of returns, reflects also in volatility

and is known as volatility clustering. Then, volatility exhibits a long memory as well,

and such a feature reveals particularly important when making forecasts. Figure 1.7

illustrates how the current volatility is a good estimate of next month’s volatility.

0% 20% 40% 60% 80% 100%
Realized Volatility at month t

0%

20%

40%

60%

80%

100%

Re
al

ize
d

Vo
la

til
ity

 a
t m

on
th

 t
+

1

R2 = 0.46

Figure 1.7: Clustering effect in realized volatility

However, the relationship is not linear: the higher the current volatility, the

higher the expected divergence next month from its actual value. This is due to

another stylized fact about volatility, i.e. its mean reverting behaviour. In order

to give a better look to such a property, we have taken two buckets from realized

volatilities representing the highest and lowest 10% respectively of all the historical

observations and we monitored how the average volatility of each bucket has changed

through time after initially observed within the top/bottom 10% of the distribution

(see Figure 1.8).

Besides the slow convergence of both the buckets to the long-term average volatil-

ity, a different pattern can be detected: in line with Figure 1.7, observations in the

top bucket tend faster to the mean volatility. This suggests that low levels of volatil-

ity are much more stable and persistent than high ones.

14 Volatility

0 1 2 3 4 5 6
Months after observation in top/bottom 10%

5%

10%

15%

20%

25%

30%

35%

40%
Vo

la
til

ity
top 10%
long-term average
bottom 10%

Figure 1.8: Volatility converges towards long-term average

Another feature of volatility can be inferred by Figure 1.8 and regards its distri-

bution. Indeed, volatility is heavily skewed to the right with many more periods of

high volatility that we would expect if the distribution was normal. This is better

shown in Figure 1.9.

0% 20% 40% 60% 80% 100%
Realized volatility

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Re
la

tiv
e

fre
qu

en
cy

Figure 1.9: Distribution of realized volatility

1.5. Stylized facts: evidence from the S&P 500 15

However, in line with the evidence found by Andersen et al. (2001) using intraday

returns, the distribution of logarithmic monthly realized volatility approximates the

normal distribution (see Figure 1.10).

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
ln(RV)

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.01

Re
la

tiv
e

fre
qu

en
cy

Figure 1.10: Distribution of logarithmic realized volatility

Another well-known stylized fact about volatility regards its negative relationship

with equity returns. Also in this case the relationship is not linear: the greater

the percentage fall in prices, the higher the change in volatility. Although the

phenomenon was first noted by Black (1976) in realized volatility, it concerns implied

volatility as well. In order to avoid measurement errors from the realized volatility

estimation, Figure 1.11 compares the daily returns of the S&P 500 with the daily

percentage change in VIX.

The reason for the negative relationship has been the subject of much research.

The explanation suggested by Black was that when stock prices decline, companies

become more leveraged and perceived riskier, therefore more volatile. Hence the

term leverage effect often used to refer to that phenomenon. An alternative ex-

planation, known under the name of volatility feedback effect, reverts the causality:

when volatility increases, higher rates of returns are demanded causing stock prices

to decline. Both the hypothesis have been explored by a number of authors and,

on balance, the empirical evidence appears to favour the volatility feedback effect.

16 Volatility

Indeed, the negative relationship holds also in companies which have low leverage.

-15% -10% -5% 0% 5% 10% 15%
Daily change in S&P 500 Index (%)

-40%

-20%

0%

20%

40%

60%

80%

Da
ily

 c
ha

ng
e

in
 V

IX
 (%

)

R2 = 0.50

Figure 1.11: Relationship between S&P 500 daily returns and daily percentage changes
in VIX

Finally, comparing through time the implied volatility (measured by the VIX),

to the realized volatility, the former appears systematically higher than the latter

(see Figure 1.12).

1990 1995 2000 2005 2010 2015 2020

-20%

0%

20%

40%

60%

3-
m

on
th

 ro
llin

g
av

er
ag

e

VIX
Realized volatility
Risk premium

Figure 1.12: Volatility risk premium

1.5. Stylized facts: evidence from the S&P 500 17

Such a positive difference between the two variables has then been explained as

a risk premium. Since options can provide protection against losses in periods of

market downturns, sellers demand a higher price to be compensated for the risk of

large movements in the underlying asset. In other terms, the volatility risk premium

can be regarded as an insurance premium demanded by options underwriters to

investors willing to hedge their portfolios. However, the premium has not always

been positive. Indeed, during the global financial crisis and the COVID-19 crash,

realized volatility spiked and overcame past investors’ expectations about volatility.

Chapter 2

Econometric Models

2.1 The EWMA model

In the last chapter, we saw that absolute returns display high and significant auto-

correlations which cause volatility to cluster. The effect on volatility may be more

evident from Figure 2.1, which shows that squared returns exhibit slowly decaying

serial dependency as well.

0 10 20 30 40 50 60
Lag (days)

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

of
 sq

ua
re

d
re

tu
rn

s

Figure 2.1: Autocorrelation function (ACF) for daily S&P 500 squared returns

The Exponential Weighted Moving Average (EWMA) model takes into account

this behaviour. Its application to volatility modelling and forecasting was first in-

20 Econometric Models

troduced by JP Morgan’s RiskMetrics system.

According to the model, assuming

εt = rt − µt = σtzt, zt ∼ IID N (0, 1) (2.1)

the conditional variance is expressed as:

σ2
t = (1− λ)

∞∑
i=1

λi−1ε2t−i, λ ∈ (0, 1) (2.2)

where εt is the demeaned return at time t, zt is a Gaussian white noise with unit

variance and λ is the decay factor. In practice, for the same reasons mentioned in

Section 1.2, µ is set to zero and so:

rt = εt (2.3)

Then, the model forecasts variance from averaging squared returns in the past

and it implies that recent returns are more informative than distant ones. Indeed, it

attributes weights to past squared returns that exponentially decrease as we move

backwards in time. They depend just on λ and the lower its value, the higher the

importance the model gives to recent observations (see Figure 2.2).

Equation (2.2) is not the common form in which the EWMA model is usually

known and used, though. Indeed, rearranging σ2
t and σ2

t−1 as follows,

σ2
t = (1− λ)r2t−1 + (1− λ)

∞∑
i=2

λi−1r2t−i

= (1− λ)r2t−1 + (1− λ)
∞∑
i=1

λir2t−1−i

= (1− λ)r2t−1 + λ
(1− λ)

λ

∞∑
i=1

λir2t−1−i (2.4)

σ2
t−1 =

1

λ
(1− λ)

∞∑
i=1

λir2t−1−i (2.5)

And substituting Equation (2.5) into Equation (2.4), we arrive at a much simpler

2.2. The ARCH model 21

formula:

σ2
t = (1− λ)r2t−1 + λσ2

t−1 (2.6)

1 20 40 60 80 100
Lag (i)

0.00

0.02

0.04

0.06

0.08

W
ei

gh
t o

f i
-th

 p
as

t s
qa

ur
ed

 re
tu

rn

= 0.9
= 0.94
= 0.97
= 0.99

Figure 2.2: Weights of past observations for different values of λ

Equation (2.6) turns out appealing to practitioners, indeed, at any given time,

only the current estimate of the variance and the most recent return need to be

stored to forecast the volatility.

That is not the only attractive feature it has. Indeed, the model contains only

one parameter to be estimated: λ. In 1996, RiskMetrics found that the estimates

for λ were quite similar across 480 different assets and therefore suggested to set the

decay factor to 0.94 and 0.97 for daily and monthly data respectively.

2.2 The ARCH model

The EWMA model captures the volatility clustering but it does not account for

the tendency of volatility to return to its long-term average. The AutoRegressive

Conditional Heteroscedasticity (ARCH) model, instead, was proposed by R. F. Engle

(1982) to capture both the stylized facts. Assuming Equations (2.1) and (2.3), the

22 Econometric Models

structure of the model in its simplest form, denoted by ARCH(1), is represented as

follows:

σ2
t = ω + αr2t−1 (2.7)

Although, on the one hand, the EWMA model in Equation (2.6) can be seen as a

special case of ARCH(1) with ω = 0, on the other hand, the ARCH model gives no

weight to the current volatility estimate and relies just on the last squared return.

Not surprisingly, this setting results in less accurate forecasts with respect to the

EWMA model and so more past observations are usually included in the ARCH

model. Indicating with q the number of included past returns, then the ARCH(q)

model becomes:

σ2
t = ω +

q∑
i=1

αir
2
t−i (2.8)

Sometimes, Equation (2.8) is also represented with ω = γVL in order to show that

the model assign a weight (γ) to the long-run variance (VL) as well:

σ2
t = γVL +

q∑
i=1

αir
2
t−i (2.9)

However, for the purpose of parameters estimation, Equation (2.8) is usually used,

and the long-run volatility can then be computed by finding the unconditional vari-

ance. Indeed, since E [r2t] = E [σ2
t z

2
t] = E [σ2

t]E [z2t] = E [σ2
t] · 1 = E [σ2

t], setting

VL = E [σ2
t] ∀t,

VL = ω +

q∑
i=1

αiE
[
r2t−i
]

= ω +

q∑
i=1

αiE
[
σ2
t−i
]

= ω + VL

q∑
i=1

αi =
ω

1−
∑q

i=1 αi
(2.10)

Because both the conditional and unconditional variances must be positive numbers,

the following conditions must holds: ω ≥ 0 and
∑q

i=1 αi < 1.

2.3. The GARCH model 23

2.3 The GARCH model

Although the ARCH(q) model could seem a simple way to forecast volatility, ac-

counting both for the clustering and mean reverting behaviour of volatility, from

a statistical perspective it is not as innocuous as it may seem. Indeed, even after

individuating the correct amount of q observations to include within the model, as

q increases, the parameters result hard to estimate and unstable in forecasting. The

Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) model was

proposed by Bollerslev (1986) in order to deal with these shortcomings.

Its general formulation, denoted by GARCH(p,q), is represented as follow:

σ2
t = ω +

q∑
i=1

αir
2
t−i +

p∑
i=1

βjσ
2
t−i (2.11)

where ω, αi, βj > 0 ∀i, j and the same assumptions made for ARCH and EWMA

must hold.

Analogously to the ARCH model, ω can be decomposed as ω = γVL and the

long-run variance expressed as

VL =
ω

1−
∑q

i=1 αi −
∑p

j=1 βj
(2.12)

from which, for VL to be defined, the following condition must be true:

q∑
i=1

αi +

p∑
j=1

βj < 1 (2.13)

However, p and q values exceeding 1 are rarely encountered in practice, and thus

GARCH(1,1) is by far the most popular of the GARCH models:

σ2
t = ω + αr2t−1 + βσ2

t−1 (2.14)

One reason for such popularity is that the GARCH(1,1) model is equivalent to

24 Econometric Models

an ARCH(∞) model. Indeed, by recursive substitution,

σ2
t = ω + αr2t−1 + βσ2

t−1

= ω + αr2t−1 + β[ω + αr2t−2 + βσ2
t−2]

= ω(1 + β) + αr2t−1 + αβr2t−2 + β2σ2
t−2

= ω(1 + β) + αr2t−1 + αβr2t−2 + β2[ω + αr2t−3 + βσ2
t−3]

= ω(1 + β + β2) + αr2t−1 + αβr2t−2 + αβ2r2t−3 + β3σ2
t−3

...

= ω
∞∑
i=0

βi + α

∞∑
j=0

βjr2t−1−j + lim
j→+∞

βjσ2
t−j

since 0 > β < 1 implies that limj→+∞ β
jσ2
t−j = 0 and

∑∞
i=0 β

i = 1
1−β , it follows:

σ2
t =

ω

1− β
+ ARCH(∞) (2.15)

where the ARCH has weights for the lagged squared returns which decay exponen-

tially by α
∑∞

j=0 β
j.

Then, GARCH(1,1) not only results to be an ARCH model of infinite order,

but it also has the advantage to be simple to use: once estimated the parameters

ω, α and β, just the last squared return and the current estimate for the variance

are needed to forecast the volatility one-step ahead. Notice that the EWMA model

needs the same variables to be stored and it can be seen as a particular case of the

GARCH(1,1) model, where ω = 0, α = 1− λ and β = λ.

There is another useful way to re-write the GARCH(1,1) model: from Equa-

tion (2.12), setting p, q = 1, we have:

ω = (1− α− β)VL (2.16)

substituting this expression in Equation (2.14), we can reformulate the GARCH(1,1)

as:

σ2
t = VL + α(r2t−1 − VL) + β(σ2

t−1 − VL) (2.17)

This means that under GARCH(1,1), the one step ahead forecast of variance corre-

2.4. Maximum likelihood estimation 25

sponds to the long-run variance adjusted by a term which measures the gap between

the last squared return and VL, and another term which accounts for the gap between

the current estimate for the variance and VL. Therefore, GARCH(1,1) captures the

volatility mean reversion as well. This feature is even more evident when forecasting

the variance h+ 1 steps ahead. Indeed,

Et−1
[
σ2
t+h

]
= VL + α

(
Et−1

[
r2t+h−1

]
− VL

)
+ β

(
Et−1

[
σ2
t+h−1

]
− VL

)
Since Et−1

[
r2t+h−1

]
= Et−1

[
σ2
t+h−1

]
,

Et−1
[
σ2
t+h

]
= VL + (α + β)

(
Et−1

[
σ2
t+h−1

]
− VL

)
By recursive substitution,

Et−1
[
σ2
t+h

]
= VL + (α + β)h+1(σ2

t−1 − VL) (2.18)

Equation (2.18) implies that as the forecast horizon h grows, because (α + β) < 1

the expected variance converges to its long-run average. Instead, notice that under

the EWMA model, being α + β = 1, the variance is expected to stay at the same

level in the future. That is why the coefficient (α+β) is also called persistence level

of the model.

2.4 Maximum likelihood estimation

Now that we have seen the most relevant econometric models to forecast volatility, in

this section, we illustrate how to estimate parameters. The method used is known as

Maximum Likelihood Estimation (MLE). The idea behind is to estimate the model’s

parameters in such a way that the sample would be most likely if the model was

true. In other terms, it implies that once the parameters’ values are known, all

necessary information is available to simulate the observed random variables. This

means that the joint density function of the sample data has to be known.

Since all the models covered in this chapter assume rt = σtzt, zt ∼ IID N (0, 1),

26 Econometric Models

the following joint density function for r1, r2, ..., rt can be derived as follows:

f(r1, r2, ..., rt|θ) =
t∏
i=1

f(ri|θ) =
t∏
i=1

[
1√

2πσ2
i (θ)

exp
(
− r2i

2σ2
i (θ)

)]
(2.19)

Equation (2.19) expresses the joint density function of the sample conditioned

on the parameter vector, θ. When interested in a function of the parameters con-

ditioned on the data, the equation is called likelihood function and it is denoted as

L(θ|r1, r2, ..., rt). Although the two functions are the same, the likelihood function

has not to be interpreted as a probability density function of the parameters: its

scope is just to highlight the interest in the parameters.

Because we are interested in finding the argmax of the likelihood function and

it is simpler to work with sums than products, the log of the likelihood function

is usually maximized. This is possible because the natural logarithm function is

monotonically increasing and so it ensures that the log of a function is maximized

at the same point as the original function. The log-likelihood function can then be

written as:

ln L(θ|r1, r2, ..., rt) = ln f(r1, r2, ..., rt|θ) = ln
t∏
i=1

f(ri|θ) =
t∑
i=1

ln f(ri|θ)

=
t∑
i=1

[
−1

2
ln(2π)− 1

2
ln σ2

i (θ)− r2i
2σ2

i (θ)

]

= −1

2

[
t · ln(2π) +

t∑
i=1

ln σ2
i (θ) +

t∑
i=1

r2i
2σ2

i (θ)

]
(2.20)

Let Θ be a space of all the possible values of the parameters which satisfy any

constraints. Estimating the parameters through MLE involves finding a unique

θ̂ ∈ Θ such that Equation (2.20) is maximized when θ = θ̂. In the case of the

GARCH(1,1) model, the parameter vector θ ≡ [ω, α, β]′ is estimated as follows:

θ̂t = argmax
θ∈Θ

[
− t

2
ln(2π)− 1

2

t∑
i=1

ln
(
ω + αr2i−1 + βσ2

i−1
)
− 1

2

t∑
i=1

r2i
ω + αr2i−1 + βσ2

i−1

]

where σ2
0 is initialized at VL = ω

1−α−β .

This method presents several advantages: first, among all the unbiased estima-

2.4. Maximum likelihood estimation 27

tors it is the most efficient; second, if the likelihood function has a unique global

maximum at θ0, it is consistent, meaning that as the sample size t → ∞, then

θ̂
p−→ θ0; third, should the joint distribution of the sample misspecified, MLE is still

consistent. When this is the case, the method takes the name of Quasi Maximum

Likelihood Estimation (QMLE). However, this advantage does not come without a

cost: although QMLE turns out to be one of the most useful and exploited findings

in modern Econometrics, it is less efficient than MLE.

Chapter 3

Machine Learning Models

3.1 Artificial neural networks

Artificial Neural Networks (ANNs) are mathematical models inspired by biological

neural networks. They were first introduced by McCulloch and Pitts (1943), who

presented a simplified model for nervous activity in the human brain. In recent years,

as computer’s processing speed and volume of available data has increased dramati-

cally, ANNs have experienced a renewed interest within the Machine Learning field.

Artificial neural networks can detect the underlying functional relationships within

a set of data and perform tasks such as pattern recognition, classification and re-

gression. Their application is ubiquitous. This chapter aims to present them as

alternative tools to forecast time series, with a focus on volatility.

Compared to traditional econometric models, ANNs have, indeed, many inter-

esting features. First, they are able to detect nonlinear structures in data without

any a priori knowledge about the true relationships between input and output vari-

ables. Such characteristic of being non-parametric models makes them particularly

suited to situations where the assumptions underlying parametric models do not

adequately describe the reality. Second, the structure of ANNs can be modified

to approximate a wide range of statistical and econometric models. Third, ANNs

can generalize the information learned from the training set (in-sample) in order to

correctly infer unseen data in the test set (out-of-sample). For all these reasons,

ANNs are attractive in forecasting volatility.

The basic building block of every ANN is the artificial neuron. Similarly to its

30 Machine Learning Models

biological counterpart, the artificial neuron receives one or more inputs and convert

them in a signal. This process was modelled by McCulloch and Pitts as a weighted

sum of the inputs whose output is passed through a transfer function, also called

activation function, which according to a threshold, produces a binary output. The

human brain is a collection of fully connected neurons, hence the name neural net-

work. An average brain contains around 100 billion neurons. ANNs, instead, rarely

exceed a few hundred or a few thousand neurons, also known as nodes or processing

elements (PE). Artificial neural networks can have different architectures, but they

all arrange nodes in three different types of layers: an input layer, a hidden layer and

an output layer. When the signal flow is from input to output nodes, they are called

Feedforward Neural Networks (FNN). Inputs, referred to as features, are fed to the

hidden layer and finally to the output layer where the output, referred to as target

or label, is produced. ANNs can also have multiple hidden layers and when this is

the case they are called Deep Neural Networks (DNNs). However, the Universal

Approximation Theorem, proved by Hornik (1991), states that ANNs with a single

hidden layer can approximate any continuous function arbitrarily closely. For this

reason, without loss of generality, a single hidden layer network is assumed through-

out this thesis. Figure 3.1 depicts an example of a feedforward neural network with

m features, q hidden nodes and one output.

Input Layer Hidden Layer Output Layer

Figure 3.1: Feedforward Neural Network diagram

3.1. Artificial neural networks 31

In order to provide the reader with a better understanding of Figure 3.1 for the

case of volatility forecasting, imagine we want to predict volatility at n different

time steps, each based on the volatility and squared return of the previous time

step. In this case, the number of features, m, is 2 and each n-th predicted target

value, ŷn, is produced using only the n-th set of features which are denoted by

x1,n and x2,n. The nodes indicating "+1" inside are meant to add a bias to each

node in the next layer. They act as the constant term in a regression analysis.

Let xn = [x1,n, x2,n, ..., xm,n,+1]ᵀ be the (m + 1) × 1 vector of input variables for

the n-th time step, hn = [h1,n, h2,n, ..., hq,n]ᵀ the q × 1 vector of hidden nodes,

β = [β1, β2, ..., βq] the 1×q vector of weights for the connections between the hidden

and output layer, andW the q× (m+ 1) matrix of weights between the inputs and

hidden nodes. The predicted target value, ŷn, can be then expressed as follows:

ŷn = F
(
βhn + β0

)
hn = G

(
Wxn

) (3.1)

where F is the activation function for the output layer and G is the activation func-

tion for the hidden layer. The notation in bold for G is to denote that the function

is applied element-wise to a vector or matrix.1 F and G can be chosen among a

variety of functions. The most common activation functions are: the sigmoid (or

logistic) function, the hyperbolic tangent (tanh) function, and the Rectified Linear

Unit (ReLU) function. Their expressions are listed below:

sigmoid : f(x) =
1

1 + exp−x

tanh : f(x) =
expx− exp−x

expx + exp−x

ReLU : f(x) = max(0, x)

Since the sigmoid function is bounded by 0 and 1, and the tanh function between

-1 and 1, they are usually adopted in the hidden layer to mimic the behaviour

1 We will use this notation throughout this thesis to refer to similar functions.

32 Machine Learning Models

of biological neurons. The ReLU function, instead, is more used in the output

layer for classification problems, while a linear function (f(x) = x) is preferred for

regression problems. The choice of the activation functions plays an important role

in the architecture of an ANN. Notice that if all the activation functions were linear,

the ANN would reduce to a linear regression model, whereas non-linear functions

as the sigmoid and the tanh function, allow ANNs to discover complex functional

relationships that may exist between targets and features.

5 0 5
(a) sigmoid function

1

0

1

5 0 5
(b) tanh function

1

0

1

5 0 5
(c) ReLU function

5

0

5

Figure 3.2: Activation Functions

3.2 Gradient descent and backpropagation

Similarly to the human brain, ANNs learn by experience. Both are able to adjust

themselves in response to mistakes. However, the mechanisms involved in the learn-

ing process of the human brain are by far more complex and there is still much to

be discovered, hence, what follows is limited to describe the functioning of artificial

neural networks. In order to talk about mistakes, an error function, E, has to be

introduced. For regression problems, like volatility forecasting, the MSE is usually

chosen for this purpose:

E =
1

n

n∑
n=1

(yn − ŷn)2 (3.2)

The learning algorithm behind ANNs is all about finding the weights such that E is

minimized. The most widely used method to deal with this numerical optimization

problem is called gradient descent. This method iteratively seeks a minimum of a

differentiable function by taking, at each iteration, a step in the opposite direction

3.2. Gradient descent and backpropagation 33

of the gradient of the function at the current point. To put it simpler, think about

a convex function, f , of a single variable, x: if f ′(x) > 0 at a certain point, it means

that f(x) approximately increases if also x increases and by reducing x we get closer

to a local minimum. Conversely, if f ′(x) < 0 we must increase x for f(x) to decrease.

When we seek a minimum of a multi-variable function, the procedure is the same

but, instead of looking just at x, all the partial derivatives are computed in order to

adjust the movement on the curve with respect to multiple dimensions. The vector

containing all the partial derivatives ∂f
∂x
, with x = [x1, x2, .., xz], is called gradient,

and it is indicated by ∇f(x) =
[
∂f
∂x1
, ∂f
∂x2
, ..., ∂f

∂xz

]
. According to the gradient descent

method, after each iteration, the weights of the FNN depicted in Figure 3.1 are then

adjusted as follows:

∆β = −η∇E(β) (3.3)

∆w = −η∇E(w) (3.4)

where β and w are the vectors containing all the weights between the last and first

two layers, respectively, and η is a parameter called learning rate which controls

the magnitude of the changes in weights. The learning rate is very sensitive to set

because if it is too high it will overshoot the local minimum but if it is too low it will

take longer to converge. Usually, a trial-and-error procedure is performed in order

to set it properly.

For complex architectures of ANNs, involving many parameters, computing all

the partial derivatives could be cumbersome. This is made computationally feasible

by backpropagation. Such a method, proposed by Rumelhart et al. (1986), consists

in working back through the layers calculating the partial derivatives using the chain

rule. Indeed, recalling Equation (3.1), the output of an ANN is expressed as a com-

pound function, and calculating its derivative with respect to the weights, by the

chain rule, corresponds to computing the product of the derivatives of its individual

functional parts. As we move backwards through the layers, the derivatives can be

stored and used to calculate the new gradients, thus, avoiding redundant calcula-

tions. For example, in the case of our 3-layer FNN, both ∇E(β) and ∇E(w) need

34 Machine Learning Models

the quantity − 2
n

∑n
n=1 (yn − ŷn)F ′ to be computed, and once the result is found for

∇E(β), it can be stored and reused to compute ∇E(w). Of course, the advantages

of the backpropagation can be better appreciated for deep neural networks, where

more hidden layers and millions of weights are present.

Note that the backpropagation algorithm requires the derivative of the activation

functions to exist. That is also why smooth, nonlinear activation functions, such as

the sigmoid or tanh function, are used.

Although backpropagation allows to efficiently compute partial derivatives with

respect to lots of weights, large data sets involving many examples in the training

set could still make the learning process unfeasible. Indeed, vanilla gradient descent,

also known as batch gradient descent, iteratively computes the gradient after each

epoch, i.e. after all the n examples are passed through the ANN. Then, it is easy

to see that, since each partial derivative of Equation (3.2) with respect to weights

includes all the n sets of features, computations become more complex as n increases.

One solution to this problem is provided by the so-called Stochastic Gradient

Descent (SGD). According to this method, instead of changing the weights after

each epoch, they are adjusted after a single example. Since the gradient is calculated

only on an example at a time, the steps towards the minimum of the error curve are

less precise and do not necessarily let the error decrease. However, in the long run,

the method succeeds in its attempt to minimize the error. Moreover, it has been

recently proved by Kleinberg et al. (2018) that the noisy gradient of SGD represents

an advantage with respect to vanilla gradient descent since it helps to escape from

local minima and so to better minimize the error.

Another solution is provided by a mixture of batch gradient descent and SGD

and it is called mini-batch gradient descent. As the name suggests, it is like the

gradient descent but instead of having a batch including all the examples in the

training set, it computes the gradient on a portion of them. Note that SGD can be

seen as a particular case of mini-batch gradient descent with a batch size equal to 1.

3.3. Recurrent neural networks 35

3.3 Recurrent neural networks

Traditional FNNs are commonly referred to as static neural networks since they try

to forecast target variables given sets of independent features of fixed length. They

ignore the sequential order of features within each example and every new set of

input variables is considered in isolation, with no memory of the previous inputs.

For these reasons, feedforward neural networks are not suitable for sequential data

like time series.

In response to this shortcoming, Recurrent Neural Networks (RNNs) were pro-

posed by Elman (1990). Unlike FNNs, these types of ANNs allow data to propagate

not only from inputs to output but also from hidden layers of earlier examples. In

addition to signals from inputs, hidden nodes receive data coming from past hidden

nodes as well, hence the term recurrent. In Figure 3.3, a diagram of the RNN is

shown.

Figure 3.3: Unfolded Recurrent Neural Network diagram

Compared to Figure 3.1, here circles represents layers, and xn, hn are vectors

containing all the input and hidden nodes respectively, in the n-th example. On

the right-hand side, from the unfolded representation, notice that an RNN can be

seen as multiple copies of FNNs each passing a message to the successor. Such a

message, represented by hn, in the context of RNNs, is also commonly referred to

as hidden state, to emphasize its encoded and unseen nature. In this way, recurrent

neural networks manage to have a memory of previous examples and detect time-

dependencies in the data.

36 Machine Learning Models

Keeping the notation used for FNNs (see Equation (3.1)), the output, ŷn, can

be expressed as follows:

ŷn = F
(
βhn + β0

)
hn = G

(
Wxn +Uhn−1

) (3.5)

where U is a q × q matrix containing the weights for all the connections between

hn−1 and hn. Another way to look at RNNs is then as FNNs with additional inputs

represented by past hidden nodes.

Because of all these similarities with feedforward neural networks, RNNs can be

trained by backpropagation too. The only difference is that the error is not only

propagated through layers but also through time. However, although backpropaga-

tion does not pose any computational issue in RNNs, it suffers from vanishing or

exploding gradient problems. Indeed, computing the gradient implies many partial

derivatives to be multiplied together, and when the sequences are quite long, the

product of many numbers between −1 and 1 can cause the gradient to decrease

exponentially, hence to vanish. Conversely, when many partial derivatives assume

absolute values greater than 1, the gradient will explode. Vanishing gradients result

in the neural network to stop adjusting the weights and so to stop learning, while ex-

ploding gradients lead to over-adjustments of the weights and so to unstable weight

matrices. Therefore, both these issues prevent RNNs from the capture of long-term

dependencies.

3.4 Long short-term memory (LSTM)

To overcome the gradient issues associated with RNNs, Hochreiter and Schmidhuber

(1997) introduced a special kind of RNN called Long Short-Term Memory (LSTM).

This type of neural network has been so successful in detecting long-term depen-

dencies that, at the time we write, it constitutes one of the most used models for

speech recognition, language modelling, translation... etc.

Compared to RNNs, LSTMs are able to select at each time-step of the training

process, what past information to forget, what new one to add and what to output.

3.4. Long short-term memory (LSTM) 37

This is accomplished through three gate mechanisms, the forget gate, the input gate

and the output gate, which regulate the information contained in the so-called cell

state.

To give a better idea of how the LSTM works, for the rest of this section we will

implicitly refer to the diagram shown in Figure 3.4.

xn

sigm sigm t anh sigm

t anh

hn

hn-1 hn

cn-1 cn

fn in ~cn
on

Figure 3.4: Long Short-Term Memory Diagram

Information flows both vertically from the input to the hidden layer, and horizon-

tally from the previous to the next example. Since all the innovations to traditional

RNNs are contained within the grey shaded area, referred to as LSTM layer or

LSTM unit, the output layer is not shown. Rectangular shapes represent layers

and the text inside indicates the applied activation function. Circles and ellipses

within the LSTM unit stand for element-wise operations and annotated lines denote

passing vectors. All the vectors except xn have dimension q × 1 whereas the input

vector has dimension (m+ 1)× 1 (recall that, as for FNNs, xn includes m features

and one constant, "+1", such that a bias can be added to the following layers).

The cell state, cn, is key to the LSTM unit. It acts like a conveyor belt that

carries the relevant information to predict the target variable.

Starting from the left, xn and hn−1 are passed through a sigmoid layer to return

38 Machine Learning Models

the vector fn. This is what constitutes the forget gate. Since the sigmoid function

outputs values in the range [0, 1], elements of fn corresponding to a value of 1 mean

"keep all the information", whilst values of 0 mean "forget all this information".

fn = sigm
(
Wfxn +Ufhn−1

)
(3.6)

The next step is to decide what new information to include in the cell state. This

is done through two layers that serve as the input gate. The first layer looks at

the current inputs and the past hidden state and applies to their weighted sum a

sigmoid function to chose which elements should be updated. The second layer,

instead, applies to the same two vectors a tanh function to create new candidate

elements for the cell state. The output from these two layers, in and c̃n respectively,

is computed as follows:

in = sigm
(
Wixn +Uihn−1

)
(3.7)

c̃n = tanh
(
Wcxn +Uchn−1

)
(3.8)

Once decided what to forget and what to add, the cell state is updated as follows:

cn = fn � cn−1 + in � c̃n (3.9)

where � denotes the Hadamard product or element-wise product.

Then, a third gate, the output gate, decides which information contained in the

cell state should be output. Similarly to fn and in, a sigmoid layer is thus applied

to xn and hn−1.

on = sigm
(
Woxn +Uohn−1

)
(3.10)

Before filtering the output of the LSTM unit, a final tanh function is applied to cn

in order to scale its elements between -1 and 1. The new hidden state can now be

computed as follows:

hn = on � tanh
(
cn

)
(3.11)

A copy of the vector is passed forward to the next example and the predicted target

3.4. Long short-term memory (LSTM) 39

value is computed in the same way as FNNs and RNNs:

ŷn = F
(
βhn + β0

)
(3.12)

Chapter 4

Experimental setup and results

Following the review of the main econometric and machine learning models for

volatility forecasting, in this chapter, we will assess and compare their predictive

power. In particular, to avoid redundancy, since GARCHmodels are a generalization

of ARCH models and LSTM neural networks are by construction better suited

for time series than FNNs and vanilla RNNs, our experiment will be confined on

comparing LSTM, GARCH(1,1) and EWMA. Because volatility is a latent variable,

to assess the forecasting power of our candidate models we will use the realized

volatility as a measure of the second moment of returns. For further details about

the experiment, the Python code can be found in Appendix A.

4.1 Data description

Our study is conducted on the S&P 500 Index. We collect daily data about adjusted1

close prices from Yahoo Finance between 30 December 1927 and 31 December 20202.

Then, the realized volatility at month t is computed as follows:

RVt =

√√√√252

n

n∑
i

r2i,t (4.1)

where ri,t is the i-th daily logarithmic return in month t, and n is the number

of trading days within that month. Finally, also the monthly return at time t is

1 Adjusted for dividends and stock splits
2 Prior to March 1957 the index contains only 90 stocks

42 Experimental setup and results

computed as:

rt =
n∑
i

ri,t (4.2)

After removing any missing values, the resulting dataset is thus composed of

23361 daily returns and 1116 monthly realized volatilities and returns. A summary

of statistical properties is provided in Table 4.1.

Close price Daily return RV Monthly return

count 23362 23361 1116 1116

mean 492.19 0.02% 15.63% 0.48%

std 737.04 1.20% 10.99% 5.40%

min 4.40 -22.90% 3.08% -35.59%

25% 23.88 -0.45% 9.23% -1.93%

50% 99.61 0.05% 12.46% 0.91%

75% 843.43 0.54% 17.59% 3.51%

max 3756.07 15.37% 96.55% 33.03%

skewness 1.85 -0.48 2.92 -0.62

kurtosis 5.94 22.11 14.69 10.29

ADF 4.84 −22.36∗ −4.82∗ −8.01∗

Note: *, ** and *** indicate significance at 1%, 5%, and 10% level, respectively.

Table 4.1: Descriptive statistics

4.2 Methodology

In order to conduct a fair comparison between the three different models, the LSTM

is trained only on the monthly returns and RV series. In this way, all the models

forecast one-step ahead monthly volatility conditional on the same information set.

Since the Augmented Dickey-Fuller test (ADF) rejects the null hypothesis of a

unit root at the 1% level for RV and monthly returns (see Table 4.1), we do not

difference these series.

4.2. Methodology 43

We split the dataset into training, validation, and test sets, with a 6:2:2 ratio.

We use the training set and the validation set to tune the hyperparameters involved

in the LSTM (see Section 4.3) and then both the sets are used as the training set

for the out-of-sample predictions of all the models. The time intervals for the three

sets are the following:

• Training set: January 1928 - October 1983

• Validation set: November 1983 - May 2002

• Test set: June 2002 - December 2020

This framework allows us not only to validate the LSTM model on a set as large as

the test set, but also to include at least one of the most extreme events inside each

set. Indeed, the training set covers the years of the Great Depression, the validation

set includes the Black Monday of 1987 and the test set contains the global financial

crisis in 2008 and the recent COVID-19 crash. Figure 4.1 illustrates the dataset

split.

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
0%

20%

40%

60%

80%

100%

Re
al

ize
d

Vo
la

til
ity

training
validation
test

Figure 4.1: Dataset Split

Forecast accuracy is evaluated both in-sample and out-of-sample according to

two performance measures: the Root Mean Squared Error (RMSE) and the Mean

44 Experimental setup and results

Absolute Error (MAE). They are formulated as follows:

RMSE =

√√√√ 1

n

n∑
t

(σ̂t − σt)2

MAE =
1

n

n∑
t

|σ̂t − σt|

Whilst the MAE measures the average magnitude of errors, each equally weighted,

the RMSE gives higher weights to large errors. For such a feature, since unexpected

big jumps in volatility are particularly undesirable, the LSTM is trained using the

MSE as the loss function, which is more efficient to compute than the RMSE.

4.3 Hyperparameter tuning

Building the LSTM model requires the proper tuning of some hyperparameters.

These are parameters that need to be specified by the researcher and which affect

the learning process. It is common practice to evaluate all the possible combinations

and to choose the one which performs the best in the validation set. However,

since this method becomes computationally expensive as the number of parameters

increases, we set up an initial architecture and then proceed to investigate the best

values for a smaller set of hyperparameters.

We start by implementing an LSTM neural network in Keras3 with a single hid-

den layer. A tanh activation function and a linear activation function are applied to

the hidden and output layer respectively. As the optimizer, we use Adam (Adaptive

Moment Estimation), which is a variant of the mini-batch gradient descent that

adjusts the learning rate at each iteration for each model parameter.4

Then, the hyperparameters left to be tuned are the following:

• Number of features

• Number of hidden neurons

3 Keras is an open-source library that provides a Python interface for developing ANNs through
another library for machine learning called TensorFlow

4 For further details, see Kingma and Ba (2014)

4.3. Hyperparameter tuning 45

• Batch size

• Number of epochs

In order to speed up the research of the optimal parameter values, we first look

up the best combination between the number of features and the number of hidden

nodes, which are the parameters mostly affecting the model’s ability to learn. Since

we want the LSTM model to be trained on the realized volatility and monthly return

series, the choice regarding the optimal number of features translates into how many

lags to include per feature. For simplicity, we assume this number to be the same

for both the features, leaving the machine to adjust the weights accordingly. Thus,

we validate the model for each different combination of the number of neurons and

lags per feature. We set the seed so that differences among results are not due

to randomness. The batch size is set to 32 and the model is left training for a

maximum of 2000 epochs, allowing an early stopping in case the validation error

does not decrease for 100 consecutive epochs. In that case, the best weights are

retrieved and the minimum error is reported. Table 4.2 shows the validation RMSE

for different architectures.

No. of hidden

neurons

N. of lags per feature

1 2 3 4 5 6

2 0.0715 0.0709 0.0709 0.0717 0.0724 0.0722

4 0.0726 0.0719 0.0714 0.0717 0.0708 0.0704

6 0.0727 0.0723 0.0716 0.0722 0.0725 0.0723

8 0.0729 0.0718 0.0712 0.0715 0.0720 0.0719

10 0.0730 0.0724 0.0718 0.0728 0.0735 0.0733

12 0.0736 0.0726 0.0715 0.0723 0.0728 0.0727

14 0.0733 0.0727 0.0716 0.0722 0.0728 0.0728

16 0.0731 0.0722 0.0714 0.0725 0.0731 0.0730

18 0.0726 0.0719 0.0714 0.0723 0.0729 0.0728

20 0.0731 0.0723 0.0714 0.0722 0.0728 0.0727

Table 4.2: RMSE for different combinations of hidden neurons and lags per feature

46 Experimental setup and results

The higher the number of hidden nodes and lags per feature, the more likely the

model will overfit the training data. Hence, we take into account both the RMSE

and the model complexity to select the optimal combination. As a result, 2 lags per

feature and 2 hidden neurons are chosen.

Once updated our initial LSTM architecture for these findings, we look into the

best value for the batch size. It is common practice to use powers of 2 as the size

of the batch because of better computational efficiencies.5 In following this custom,

we also add to the candidate values the case when the batch size equals 1, i.e. when

it reduces to the use of SGD, and the opposite case when the batch size equals the

total number of examples in the training set, which implies the use of batch gradient

descent. From Figure 4.2, the optimal batch size results to be 128.

1 32 64 128 256 512 668
Batch size

0.07080

0.07085

0.07090

0.07095

0.07100

0.07105

0.07110

0.07115

0.07120

0.07125

RM
SE

Figure 4.2: RMSE for different batch sizes

Finally, including also this finding in our LSTM model, the number of epochs is

tuned. The idea, in this case, is to choose after how many epochs the LSTM should

stop learning in order to perform best out-of-sample, but looking only at training

and validation error. From Figure 4.3, it can be seen that starting from around 1250

epochs, both the training and validation error stabilize and the gap between the two
5 CPUs and GPUs organize the memory in powers of 2

4.4. Results 47

lines keeps relatively tight. That means the model has a good ability to generalize

to new data and to not overfit when increasing the number of epochs. Hence, 1250

is the value chosen for our last hyperparameter.

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.08

0.10

0.12

0.14

0.16

0.18

0.20

RM
SE

training
validation

Figure 4.3: History of training and validation RMSE

4.4 Results

Once built the LSTM neural network, the three models can now be compared. Since

out-of-sample forecasts are based on weights or parameters learned from data in the

training and validation set, we will henceforth refer to these two sets as just the

"training set".

Starting from the GARCH(1,1) and EWMA models, their respective parameter

values are estimated through MLE and shown in Table 4.3.

ω α β

GARCH 0.0000543 0.1246538 0.8622846

EWMA 0.1063281 0.8936719

Table 4.3: Estimated parameters for GARCH(1,1) and EWMA

48 Experimental setup and results

The log-likelihood function is maximized through the Nelder-Mead method6, or

simplex method. The results for EWMA are expressed making use of the equiva-

lence relations for which β = λ and α = 1−λ. Applying Equation 2.12, the long-run

volatility implied by the estimated GARCH(1,1) model parameters is 22.34%. Fig-

ures 4.4 and 4.5 show the fitted and predicted realized volatility by the GARCH(1,1)

and EWMA model respectively.

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
0%

20%

40%

60%

80%

100%

Re
al

ize
d

Vo
la

til
ity

RV
fitted
predicted

Figure 4.4: GARCH(1,1): fitted and predicted realized volatility of the S&P 500 Index

Being the estimated parameters for the two models very similar, there is no much

difference between the two figures. The only source of difference is due to the push

of GARCH towards the long-run volatility. However, the implied value for VL is

higher than the actual sample mean, equal to 15.63%, hence the GARCH results to

have a slight upward bias in realized volatility.

Notice also that in the EWMA, the optimal value for λ is largely different from

both 0.97 and 0.94, which are the values suggested by RiskMetrics for monthly and

daily data respectively.

6 For further details, see Gao and Han (2012)

4.4. Results 49

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
0%

20%

40%

60%

80%

100%
Re

al
ize

d
Vo

la
til

ity

RV
fitted
predicted

Figure 4.5: EWMA: fitted and predicted realized volatility of the S&P 500 Index

Then, in Figure 4.6, the fitted and predicted realized volatility by the LSTM

neural network are shown. Two characteristics can be noted: first, the estimated

volatility by the LSTM is much more flexible than the econometric models, which

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
0%

20%

40%

60%

80%

100%

Re
al

ize
d

Vo
la

til
ity

RV
fitted
predicted

Figure 4.6: LSTM: fitted and predicted realized volatility of the S&P 500 Index

50 Experimental setup and results

instead, tend to smooth the realized volatility; second, the LSTM has successfully

learned the typical mean reverting behaviour of volatility which implies a faster

convergence to the mean after shocks.

However, the model flexibility may also signal that our network is not able to

generalize to out-of-sample data and that it overfits the examples in the training set.

To remove any doubt and correctly compare the models, we present in Table 4.4

both their in-sample and out-of-sample RMSE and MAE.

RMSE MAE

In-sample Out-of-sample In-sample Out-of-sample

EWMA 0.0786 0.1059 0.0520 0.0606

GARCH 0.0784 0.1022 0.0543 0.0598

LSTM 0.0696 0.0815 0.0411 0.0453

Table 4.4: In-sample and out-of-sample performance measures

We find that the LSTM neural network produces better results than EWMA and

GARCH(1,1) both in-sample and out-of-sample. In particular, the LSTM improves

the RMSE of the EWMA and GARCH models by 20.25% and 23.04% respectively,

and the MAE by 24.25% and 25.24% respectively. Moreover, LSTM produces also

smaller differences between out-of-sample and in-sample measures. Indeed, whilst

the average differences for the econometric models correspond to 0.026 for the RMSE

and 0.007 for the MAE, the LSTM yields a difference of 0.012 and 0.004 for the

respective measures. That means that apart from the absolute results, the LSTM

is relatively better at dealing with the problem of overfitting.

Finally, in Figure 4.7 we leave the reader with a comparison of the out-of-sample

forecasts among the three different models.

4.4. Results 51

2004 2006 2008 2010 2012 2014 2016 2018 2020
0%

20%

40%

60%

80%

100%
Re

al
ize

d
Vo

la
til

ity

RV
LSTM
EWMA
GARCH(1,1)

Figure 4.7: Compared out-of-sample forecasts

Conclusion

In this thesis, we compared the main econometric models for volatility forecasting

to some machine learning models. In particular, our analysis covered the EWMA,

ARCH and GARCH models and the FNNs, RNNs and LSTM neural networks.

A first theoretical discussion, allowed us to restrict our empirical research to

the EWMA, GARCH, and LSTM models. These were compared based on their

forecasting accuracy of the one-month ahead realized volatility.

We found that the LSTM neural network produces more accurate predictions,

both in-sample and out-of-sample, than the econometric models considered. More-

over, the LSTM model results to better generalize to new data, hence revealing to

be preferred in forecasting.

Such an outperformance may be explained by the ability of artificial neural net-

works to detect nonlinear relationships between input and output variables. How-

ever, the lack of a model specification, albeit attractive, does not let us catch and

explain the true process governing volatility. Maybe, we must just accept that

reality is too much complex to human understanding. We then let our thinking

be expressed by Black (1976), who in the conclusion of his Studies of Stock Price

Volatility Changes, states:

"Still, I don’t have great confidence that I’m interpreting the results correctly.

There may be other forces here that I haven’t thought of. And I don’t dare write

down any sort of formal model of the process by which volatilities change. I’m not

sure I ever will".

Bibliography

Abraham, A. (2005). Artificial neural networks. Handbook of measuring system de-

sign.

Andersen, T. G., & Bollerslev, T. (1998). Answering the skeptics: Yes, standard

volatility models do provide accurate forecasts. International economic re-

view, 885–905.

Andersen, T. G., Bollerslev, T., Diebold, F. X., & Ebens, H. (2001). The distribution

of realized stock return volatility. Journal of financial economics, 61 (1), 43–

76.

Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2003). Modeling and

forecasting realized volatility. Econometrica, 71 (2), 579–625.

Black, F. (1976). Studies of stock price volatility changes. 1976 Proceedings of the

American Statistical Association Business and Economic Statistics Section.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Jour-

nal of econometrics, 31 (3), 307–327.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series

analysis: Forecasting and control. Wiley.

Brownlee, J. (2017). Multivariate time series forecasting with lstms in keras. https:

//machinelearningmastery.com/multivariate-time-series-forecasting-lstms-

keras/

CBOE. (2019). Cboe volatility index. White Paper, 1–23.

Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical

issues.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14 (2), 179–211.

https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/
https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/
https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/

56 Bibliography

Engle, R., & Patton, A. (2001). What good is a volatility model? Quantitative Fi-

nance, 1 (2), 237–245.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates

of the variance of united kingdom inflation. Econometrica: Journal of the

Econometric Society, 987–1007.

Figlewski, S. (1997). Forecasting volatility. Financial markets, institutions & instru-

ments, 6 (1), 1–88.

Gao, F., & Han, L. (2012). Implementing the nelder-mead simplex algorithm with

adaptive parameters. Computational Optimization and Applications, 51 (1),

259–277.

Greene, W. (2018). Econometric analysis. Pearson.

Hewamalage, H., Bergmeir, C., & Bandara, K. (2020). Recurrent neural networks

for time series forecasting: Current status and future directions. International

Journal of Forecasting, 37 (1), 388–427.

Hinton, G. E. (1992). How neural networks learn from experience. Scientific Amer-

ican, 267 (3), 144–151.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural compu-

tation, 9 (8), 1735–1780.

Holtzman, W. H. (1950). The unbiased estimate of the population variance and

standard deviation. The American Journal of Psychology, 63 (4), 615–617.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.

Neural networks, 4 (2), 251–257.

Huang, W., Lai, K. K., Nakamori, Y., Wang, S., & Yu, L. (2007). Neural networks

in finance and economics forecasting. International Journal of Information

Technology & Decision Making, 6 (01), 113–140.

Hull, J. (2018). Options, futures, and other derivatives. Pearson.

Hull, J. (2020). Machine learning in business: An introduction to the world of data

science. Independently Published.

Karatzas, I., & Shreve, S. E. (1988). Brownian motion and stochastic calculus.

Springer-Verlag New York.

57

Kim, H. Y., & Won, C. H. (2018). Forecasting the volatility of stock price index:

A hybrid model integrating lstm with multiple garch-type models. Expert

Systems with Applications, 103, 25–37.

Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. Inter-

national Conference on Learning Representations.

Kleinberg, B., Li, Y., & Yuan, Y. (2018). An alternative view: When does sgd escape

local minima? International Conference on Machine Learning, 2698–2707.

Longerstaey, J., & Spencer, M. (1996). Riskmetrics — technical document. Morgan

Guaranty Trust Company of New York, 51, 54.

Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of

Business, 36 (4), 394–419.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5 (4), 115–133.

Merton, R. C. (1980). On estimating the expected return on the market: An ex-

ploratory investigation. Journal of Financial Economics, 8 (4), 323–361.

Olah, C. (2015). Understanding lstm networks. http://colah.github.io/posts/2015-

08-Understanding-LSTMs/

Poon, S.-H., & Granger, C. W. (2003). Forecasting volatility in financial markets:

A review. Journal of economic literature, 41 (2), 478–539.

Rubinstein, M. (1999). Rubinstein on derivatives. Risk Books.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations

by back-propagating errors. Nature, 323 (6088), 533–536.

Sinclair, E. (2013). Volatility trading. Wiley.

Tang, Z., & Fishwick, P. A. (1993). Feedforward neural nets as models for time

series forecasting. ORSA journal on computing, 5 (4), 374–385.

Whaley, R. E. (1993). Derivatives on market volatility: Hedging tools long overdue.

The journal of Derivatives, 1 (1), 71–84.

Whaley, R. E. (2009). Understanding the vix. The Journal of Portfolio Management,

35 (3), 98–105.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Appendix A

Python Code

A.1 Preliminary work

Load libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.ticker as mtick

import matplotlib.dates as mdates

from scipy.optimize import minimize

from keras.layers.core import Dense, Activation, Dropout

from keras.layers.recurrent import LSTM

from keras.models import Sequential

from keras.callbacks import EarlyStopping

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error as mse

from sklearn.metrics import mean_absolute_error as mae

from statsmodels.stats.descriptivestats import describe

from statsmodels.tsa.stattools import adfuller as adf

import tensorflow as tf

import random as rn

import os

60 Python Code

Dataset

define a function to compute realized volatility from daily␣

↪→returns

def realized_vol(x):

return np.sqrt(sum(x**2)*252/(len(x)))

load the daily data

data = pd.read_csv(’SPX.csv’, parse_dates=True)

daily log returns

data[’SPX_log_ret’] = np.log(data[’Adj Close’]).diff()

convert ’Date’ in datetime format

data[’Date’]=data[’Date’].astype(’datetime64[ns]’)

monthly realized volatility

RV_m = data.resample(’M’, on=’Date’)[’SPX_log_ret’].

↪→apply(realized_vol)

monthly returns

ret_m = data.resample(’M’, on=’Date’)[’SPX_log_ret’].sum()

concatenate data

data_m=pd.concat([RV_m,ret_m],axis=1)

data_m.columns = [’RV_m’,’ret_m’]

drop NaN values

data_m.dropna(axis=0,inplace=True)

export dataset description to Excel

data_desc = pd.concat([describe(data),describe(data_m)],axis=1)

data_desc.to_excel("data_description.xlsx")

A.2. LSTM 61

compute Augmented Dickey-Fuller test

for i in [data[’Adj Close’],data[’SPX_log_ret’].iloc[1:

↪→],data_m[’RV_m’],data_m[’ret_m’]]:

result = adf(i)

print(’ADF stat: %.2f’ % result[0],’p-value: %f’ % result[1])

def perf_measures(x, x_hat,lags,row_split,row_name):

rmse_in = np.sqrt(mse(x.iloc[lags:row_split], x_hat.iloc[lags:

↪→row_split]))

rmse_out = np.sqrt(mse(x.iloc[row_split:], x_hat.

↪→iloc[row_split:]))

mae_in = mae(x.iloc[lags:row_split], x_hat.iloc[lags:

↪→row_split])

mae_out = mae(x.iloc[row_split:], x_hat.iloc[row_split:])

data={’RMSE_in’: rmse_in, ’RMSE_out’: rmse_out,’MAE_in’:␣

↪→mae_in, ’MAE_out’: mae_out}

output = pd.DataFrame(data,index = [row_name])

return output

A.2 LSTM

Auxiliary function

convert series to supervised learning (Source:␣

↪→machinelearningmastery.com)

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):

n_vars = 1 if type(data) is list else data.shape[1]

df = pd.DataFrame(data)

cols, names = list(), list()

input sequence (t-n, ... t-1)

62 Python Code

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

names += [(’var%d(t-%d)’ % (j+1, i)) for j in␣

↪→range(n_vars)]

forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

if i == 0:

names += [(’var%d(t)’ % (j+1)) for j in range(n_vars)]

else:

names += [(’var%d(t+%d)’ % (j+1, i)) for j in␣

↪→range(n_vars)]

put it all together

agg = pd.concat(cols, axis=1)

agg.columns = names

drop rows with NaN values

if dropnan:

agg.dropna(inplace=True)

return agg

Main function

def LSTM_model(neurons,lags,batch_size, epochs=1000,␣

↪→validation=False, early_stop=False):

#---- The following part is necessary to ---

#---- get reproducible results in Keras ----

seed_value=1234

os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"

A.2. LSTM 63

os.environ["CUDA_VISIBLE_DEVICES"] = ""

os.environ[’PYTHONHASHSEED’]=str(seed_value)

np.random.seed(seed_value)

rn.seed(seed_value)

tf.compat.v1.set_random_seed(seed_value)

session_conf = tf.compat.v1.

↪→ConfigProto(intra_op_parallelism_threads=1,␣

↪→inter_op_parallelism_threads=1)

sess = tf.compat.v1.Session(graph=tf.compat.v1.

↪→get_default_graph(), config=session_conf)

tf.compat.v1.keras.backend.set_session(sess)

#--

values = data_m[[’RV_m’,’ret_m’]].values

normalize features

scaler = MinMaxScaler(feature_range=(-1, 1))

scaled = scaler.fit_transform(values)

number of lags per feature

timesteps = lags

number of features

features = 2

create examples from our data set to be fed into the LSTM

reframed = series_to_supervised(scaled, timesteps, 1)

values = reframed.values

64 Python Code

split the dataset

train_row = int(round(0.60 * reframed.shape[0]))

valid_row = int(round(0.80 * reframed.shape[0]))

if validation == True:

train = values[:train_row, :]

test = values[train_row:valid_row,:]

else:

train = values[:valid_row, :]

test = values[valid_row:,:]

split into input and outputs

train_X, train_y = train[:, :(timesteps * features)], train[:,␣

↪→-features]

test_X, test_y = test[:, :(timesteps * features)], test[:,␣

↪→-features]

reshape input to be 3D [samples, timesteps, features]

train_X = train_X.reshape(train_X.shape[0], timesteps,␣

↪→features)

test_X = test_X.reshape(test_X.shape[0], timesteps, features)

design network

model = Sequential()

model.add(LSTM(neurons, input_shape=(train_X.shape[1], train_X.

↪→shape[2]), activation=’tanh’))

model.add(Dense(1, activation=’linear’))

model.compile(loss=’mse’, optimizer=’adam’)

early stopping

if early_stop == True:

A.2. LSTM 65

early_stopping = [EarlyStopping(monitor="val_loss",␣

↪→verbose=0, mode=’min’, patience=100, restore_best_weights=True)]

else:

early_stopping = False

learning process

learning = model.fit(train_X, train_y, epochs=epochs,␣

↪→batch_size=batch_size, validation_data=(test_X,test_y),␣

↪→verbose=0, shuffle=False, callbacks=early_stopping)

define a function to return predictions from LSTM

def LSTM_predict(model, X, y):

make a prediction

yhat = model.predict(X)

X = X.reshape((X.shape[0], features*timesteps))

invert scaling for forecast

inv_yhat = np.concatenate((yhat, X[:, -1:]), axis=1)

inv_yhat = scaler.inverse_transform(inv_yhat)

inv_yhat = inv_yhat[:,0]

invert scaling for actual

y = y.reshape((len(y), 1))

inv_y = np.concatenate((y, X[:, -1:]), axis=1)

inv_y = scaler.inverse_transform(inv_y)

inv_y = inv_y[:,0]

return pd.DataFrame({’RV’: np.array(inv_y), ’LSTM’: np.

↪→array(inv_yhat)})

predicted values in-sample and out-of-sample

LSTM_train = LSTM_predict(model, train_X, train_y)

LSTM_test = LSTM_predict(model, test_X, test_y)

66 Python Code

compute performance measures in-sample and out-of-sample

rmse_in = np.sqrt(mse(LSTM_train[’RV’], LSTM_train[’LSTM’]))

rmse_out = np.sqrt(mse(LSTM_test[’RV’], LSTM_test[’LSTM’]))

mae_in = mae(LSTM_train[’RV’], LSTM_train[’LSTM’])

mae_out = mae(LSTM_test[’RV’], LSTM_test[’LSTM’])

data = {’RMSE_in’: rmse_in, ’RMSE_out’: rmse_out,’MAE_in’:␣

↪→mae_in, ’MAE_out’: mae_out}

perf_meas = pd.DataFrame(data,index = [’LSTM’])

yhat = np.concatenate([np.full((lags,), np.

↪→nan),LSTM_train[’LSTM’].values,LSTM_test[’LSTM’].values],axis=0)

class output:

def __init__(self):

self.learning = learning # data about learning

self.perf_meas = perf_meas # performance measures

self.yhat = yhat # predicted values

return output()

Hyperparameter Optimization

find the optimal number of neurons and lags

n_lags = []

n_neurons = []

rmse = []

for lags in np.arange(1,7,1):

for neuron in np.arange(2,22,2):

n_lags.append(lags)

A.2. LSTM 67

n_neurons.append(neuron)

output = LSTM_model(neuron, lags, batch_size=32,␣

↪→epochs=2000, validation=True, early_stop=True).

↪→perf_meas[’RMSE_out’][0]

rmse.append(output)

print(lags,neuron,output)

hyp_1 = pd.DataFrame({’lags’: n_lags,’neurons’: n_neurons,’rmse’:

↪→rmse})

hyp_1.to_excel("table_neurons-lags.xlsx")

######## find the best batch size ########

lags = 2

neurons = 2

batchsize = []

rmse = []

bs_list = [int(round(2**i)) for i in np.arange(5,10,1)]

stochastic gradient descent

bs_list.insert(0, 1)

batch gradient descent

n = int(round(0.60 * (data_m.shape[0]-lags)))

bs_list.append(n)

for bs in bs_list:

batchsize.append(bs)

output = LSTM_model(neurons, lags, batch_size=bs, epochs=2000,␣

↪→validation=True, early_stop=True).perf_meas[’RMSE_out’][0]

rmse.append(output)

print(bs,output)

hyp_2 = pd.DataFrame({’batch_size’: batchsize,’rmse’:rmse})

hyp_2.to_excel("table_batch_sizes.xlsx")

68 Python Code

#plot RMSE vs batch size

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.plot(rmse, ’k-’)

aesthetic adjustments

ax.grid()

ax.set_xticks(np.arange(0,len(batchsize),1))

numbers_str = [str(i) for i in batchsize]

ax.set_xticklabels(numbers_str)

ax.set_xlim(0,6)

ax.set_ylim(0.07080,0.07125)

ax.set(xlabel=’Batch size’, ylabel=’RMSE’)

plt.subplots_adjust(left=0.15)

fig.savefig("Best_batch_size.pdf")

plt.show()

######## find the best epoch ########

best_LSTM = LSTM_model(neurons, lags, batch_size=128, epochs=2000,␣

↪→validation=True, early_stop=False)

loss_train = best_LSTM.learning.history[’loss’]

loss_valid = best_LSTM.learning.history[’val_loss’]

plot train error vs test error

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.plot(np.sqrt(loss_train), ’k-’, label=’training’)

ax.plot(np.sqrt(loss_valid), ’k--’,label=’validation’)

aesthetic adjustments

A.2. LSTM 69

ax.grid()

leg = ax.legend(loc="best")

for line in leg.get_lines():

line.set_linewidth(2)

ax.set(xlabel=’Epoch’, ylabel=’RMSE’)

fig.savefig("Best_epoch.pdf")

plt.show()

######## plot the dataset split ########

train_row = int(round(0.60 * (data_m.shape[0]-lags))) + lags

valid_row = int(round(0.80 * (data_m.shape[0]-lags))) + lags

create figure

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.xaxis.set_major_locator(mdates.YearLocator(10))

ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y’))

ax.plot(data_m[’RV_m’].iloc[lags:train_row],label=’training’)

ax.plot(data_m[’RV_m’].iloc[train_row:valid_row],␣

↪→label=’validation’)

ax.plot(data_m[’RV_m’].iloc[valid_row:], label=’test’)

aesthetic adjustments

ax.grid()

leg = ax.legend(loc="upper left", bbox_to_anchor=(0.02, 0.995))

for line in leg.get_lines():

line.set_linewidth(2)

datemin = np.datetime64(data_m.index[lags], ’D’)

datemax = np.datetime64(data_m.index[-1])

ax.set_xlim(datemin,datemax)

ax.set_ylim(0,1)

70 Python Code

ax.yaxis.set_major_locator(mtick.FixedLocator(ax.get_yticks()))

ax.set_yticklabels([’{:.0f}%’.format(y*100) for y in ax.

↪→get_yticks()])

plt.subplots_adjust(bottom=0.1)

ax.set_ylabel(’Realized Volatility’)

fig.savefig("Dataset_split.pdf")

plt.show()

Out-of-sample forecasting

best_LSTM = LSTM_model(neurons=2, lags=2, batch_size=128,␣

↪→epochs=1250, validation=False, early_stop=False)

data_m[’LSTM’] = best_LSTM.yhat

create figure

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.xaxis.set_major_locator(mdates.YearLocator(10))

ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y’))

ax.plot(data_m[’RV_m’].iloc[lags:],label=’RV’)

ax.plot(data_m[’LSTM’].iloc[lags:valid_row],lw=0.75,␣

↪→label=’fitted’)

ax.plot(data_m[’LSTM’].iloc[valid_row:],’gold’,lw=0.75,␣

↪→label=’predicted’)

aesthetic adjustments

ax.grid()

leg = ax.legend(loc="upper left", bbox_to_anchor=(0.02, 0.995))

for line in leg.get_lines():

line.set_linewidth(2)

datemin = np.datetime64(data_m.index[lags], ’D’)

A.3. GARCH(1,1) 71

datemax = np.datetime64(data_m.index[-1])

ax.set_xlim(datemin,datemax)

ax.set_ylim(0,1)

ax.yaxis.set_major_locator(mtick.FixedLocator(ax.get_yticks()))

ax.set_yticklabels([’{:.0f}%’.format(y*100) for y in ax.

↪→get_yticks()])

plt.subplots_adjust(bottom=0.1)

ax.set_ylabel(’Realized Volatility’)

fig.savefig("LSTM_train-test.pdf")

plt.show()

show performance measures

pm_LSTM = best_LSTM.perf_meas

pm_LSTM

A.3 GARCH(1,1)

define a function to create a GARCH(1,1) process

def garch_fct(omega, alpha, beta, rets):

T = len(rets)

sigma2 = np.zeros(T)

for i in range(T):

if i==0:

sigma2[i] = omega/(1-alpha-beta)

else:

sigma2[i] = omega + alpha*rets[i-1]**2+beta*sigma2[i-1]

return sigma2

define a function to compute the negative log-likelihood

def garch_loglik(param,rets):

72 Python Code

T = len(rets)

omega=param[0]

alpha=param[1]

beta=param[2]

sigma2 = garch_fct(omega, alpha, beta, rets)

loglik = np.sum(-np.log(sigma2)-rets**2/sigma2)

return -loglik

initial parameters

param0 = (0.00001, 0.01, 0.9)

log-returns

rets = data_m[’ret_m’].values

result = minimize(garch_loglik, param0, args=rets,␣

↪→method=’nelder-mead’, options={’disp’:True})

omega=result.x[0]

alpha=result.x[1]

beta=result.x[2]

data_m[’GARCH’] = np.sqrt(garch_fct(omega, alpha, beta, rets)*12)

#create figure

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.xaxis.set_major_locator(mdates.YearLocator(10))

ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y’))

ax.plot(data_m[’RV_m’].iloc[lags:],lw=0.75,label=’RV’)

ax.plot(data_m[’GARCH’].iloc[lags:valid_row],label=’fitted’)

A.3. GARCH(1,1) 73

ax.plot(data_m[’GARCH’].iloc[valid_row:],’gold’,label=’predicted’)

aesthetic adjustments

ax.grid()

leg = ax.legend(loc="upper left", bbox_to_anchor=(0.02, 0.995))

for line in leg.get_lines():

line.set_linewidth(2)

datemin = np.datetime64(data_m.index[lags], ’D’)

datemax = np.datetime64(data_m.index[-1])

ax.set_xlim(datemin,datemax)

ax.set_ylim(0,1)

ax.yaxis.set_major_locator(mtick.FixedLocator(ax.get_yticks()))

ax.set_yticklabels([’{:.0f}%’.format(y*100) for y in ax.

↪→get_yticks()])

plt.subplots_adjust(bottom=0.1)

ax.set_ylabel(’Realized Volatility’)

fig.savefig("GARCH.pdf")

plt.show()

show results and performance measures

print(omega,alpha,beta)

V_L = np.sqrt((omega/(1-alpha-beta))*12)

print(’Long-run volatility: %.4f’ % V_L)

pm_GARCH = perf_measures(data_m[’RV_m’],␣

↪→data_m[’GARCH’],2,valid_row,’GARCH’)

pm_GARCH

74 Python Code

A.4 EWMA

define a function to create a EWMA process

def EWMA_fct(lam, rets):

T = len(rets)

sigma2 = np.zeros(T)

for i in range(T):

if i==0:

sigma2[i] = (0.2**2)/12

else:

sigma2[i] = (1-lam)*rets[i-1]**2 + lam*sigma2[i-1]

return sigma2

define a function to compute the negative log-likelihood

def EWMA_loglik(lam,rets):

T = len(rets)

sigma2 = EWMA_fct(lam, rets)

loglik = np.sum(-np.log(sigma2)-rets**2/sigma2)

return -loglik

result = minimize(EWMA_loglik, 0.90, args=rets,␣

↪→method=’nelder-mead’, options={’disp’:True})

lambda value

lam = result.x[0]

data_m[’EWMA’] = np.sqrt(EWMA_fct(lam, rets)*12)

A.4. EWMA 75

#create figure

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.xaxis.set_major_locator(mdates.YearLocator(10))

ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y’))

ax.plot(data_m[’RV_m’].iloc[lags:],lw=0.75,label=’RV’)

ax.plot(data_m[’EWMA’].iloc[lags:valid_row],label=’fitted’)

ax.plot(data_m[’EWMA’].iloc[valid_row:],’gold’,label=’predicted’)

aesthetic adjustments

ax.grid()

leg = ax.legend(loc="upper left", bbox_to_anchor=(0.02, 0.995))

for line in leg.get_lines():

line.set_linewidth(2)

datemin = np.datetime64(data_m.index[lags], ’D’)

datemax = np.datetime64(data_m.index[-1])

ax.set_xlim(datemin,datemax)

ax.set_ylim(0,1)

ax.yaxis.set_major_locator(mtick.FixedLocator(ax.get_yticks()))

ax.set_yticklabels([’{:.0f}%’.format(y*100) for y in ax.

↪→get_yticks()])

plt.subplots_adjust(bottom=0.1)

ax.set_ylabel(’Realized Volatility’)

fig.savefig("EWMA.pdf")

plt.show()

show results and performance measures

print(’Lambda: %.7f’ % lam)

pm_EWMA = perf_measures(data_m[’RV_m’],␣

↪→data_m[’EWMA’],2,valid_row,’EWMA’)

pm_EWMA

76 Python Code

A.5 Comparing the models

#create figure

fig = plt.figure()

ax = fig.add_subplot(1, 1, 1)

ax.xaxis.set_major_locator(mdates.YearLocator(2))

ax.xaxis.set_major_formatter(mdates.DateFormatter(’%Y’))

ax.plot(data_m[’RV_m’].iloc[valid_row:],label=’RV’)

ax.plot(data_m[’LSTM’].iloc[valid_row:],label=’LSTM’)

ax.plot(data_m[’EWMA’].iloc[valid_row:], label=’EWMA’)

ax.plot(data_m[’GARCH’].iloc[valid_row:], label=’GARCH(1,1)’)

aesthetic adjustments

ax.grid()

datemin = np.datetime64(data_m.index[valid_row], ’D’)

datemax = np.datetime64(data_m.index[-1])

ax.set_xlim(datemin,datemax)

ax.yaxis.set_major_locator(mtick.FixedLocator(ax.get_yticks()))

ax.set_yticklabels([’{:.0f}%’.format(y*100) for y in ax.

↪→get_yticks()])

ax.set_ylim(0,1)

ax.legend(loc="best")

plt.subplots_adjust(bottom=0.1)

ax.set_ylabel(’Realized Volatility’)

fig.savefig("Summary.pdf")

plt.show()

show and export performance measures to Excel

summary = pd.concat([pm_EWMA,pm_GARCH,pm_LSTM],axis=0)

summary.to_excel("summary_results.xlsx")

summary

Summary

Volatility is a central topic in the financial literature and such paramount importance

lies in the vast array of its applications.

For example, volatility represents an essential element to many investment de-

cisions as it is often taken as the starting point for optimal portfolio allocations.

In 1952, Harry Markowitz laid the foundation of the Modern Portfolio Theory by

which investors are risk averse and have a utility function increasing with expected

return and decreasing with volatility.

Volatility is also a key input in the pricing of many derivatives. Indeed, to eval-

uate options’ fair value, the volatility of the underlying asset until the expiration

date must be known. Besides, in recent years, even derivatives with volatility it-

self as the underlying have been introduced, and in these cases, the definition and

measurement of volatility must be specified in the derivative contracts.

In risk management, volatility is relevant for computing the Value at Risk (VaR),

whose estimation has become a standard practice for financial institutions. Indeed,

since the first Basel Accord was established in 1996, banks and trading venues are

required to set aside a reserve capital of at least three times that of VaR.

Volatility can also have wide consequences on the economy as a whole. Thus,

policymakers regard volatility as an indicator of uncertainty in the financial market.

For example, both the Federal Reserve and the Bank of England take into account

the securities volatility in establishing their monetary policies. Besides, volatility

negatively affects market liquidity since when the former spikes, the latter usually

declines.

Volatility is crucial for hedging strategies as well. Indeed, during stressed market

conditions, not only volatility increases but also correlations among different secu-

2 Summary

rities do so. In these circumstances, derivative instruments may work as insurance

against sudden market downturns.

For all these reasons, the relevance of volatility forecasting follows as a natural

consequence. Although the literature on this subject is extensive and many models

have been proposed, in the last years, we have been assisting to a rise in the appli-

cations of machine learning techniques to many different sectors. Thus, this thesis is

aimed at bridging the gap between the classical financial literature and the machine

learning models for volatility forecasting.

In particular, we compare the predictive power of the Exponential Weighted

Moving Average (EWMA) model and the Generalized AutoRegressive Conditional

Heteroscedasticity (GARCH) model with a Long Short Term Memory (LSTM) neu-

ral network.

Our study is conducted on the S&P 500 Index. We collect daily data about

adjusted1 close prices from Yahoo Finance between 30 December 1927 and 31 De-

cember 20202. Then, the realized volatility at month t is computed as follows:

RVt =

√√√√252

n

n∑
i

r2i,t (1)

where ri,t is the i-th daily logarithmic return in month t, and n is the number

of trading days within that month. Finally, also the monthly return at time t is

computed as:

rt =
n∑
i

ri,t (2)

After removing any missing values, the resulting dataset is thus composed of

23361 daily returns and 1116 monthly realized volatilities and returns. A summary

of statistical properties is provided in Table 1.

1 Adjusted for dividends and stock splits
2 Prior to March 1957 the index contains only 90 stocks

3

Close price Daily return RV Monthly return

count 23362 23361 1116 1116

mean 492.19 0.02% 15.63% 0.48%

std 737.04 1.20% 10.99% 5.40%

min 4.40 -22.90% 3.08% -35.59%

25% 23.88 -0.45% 9.23% -1.93%

50% 99.61 0.05% 12.46% 0.91%

75% 843.43 0.54% 17.59% 3.51%

max 3756.07 15.37% 96.55% 33.03%

skewness 1.85 -0.48 2.92 -0.62

kurtosis 5.94 22.11 14.69 10.29

ADF 4.84 −22.36∗ −4.82∗ −8.01∗

Note: *, ** and *** indicate significance at 1%, 5%, and 10% level, respectively.

Table 1: Descriptive statistics

In order to conduct a fair comparison between the three different models, the

LSTM is trained only on the monthly returns and RV series. In this way, all the

models forecast one-step ahead monthly volatility conditional on the same informa-

tion set.

Since the Augmented Dickey-Fuller test (ADF) rejects the null hypothesis of a

unit root at the 1% level for RV and monthly returns (see Table 1), we do not

difference these series.

We split the dataset into training, validation, and test sets, with a 6:2:2 ratio.

We use the training set and the validation set to tune the hyperparameters involved

in the LSTM and then both the sets are used as the training set for the out-of-sample

predictions of all the models. The time intervals for the three sets are the following:

• Training set: January 1928 - October 1983

• Validation set: November 1983 - May 2002

• Test set: June 2002 - December 2020

4 Summary

This framework allows us not only to validate the LSTM model on a set as large as

the test set, but also to include at least one of the most extreme events inside each

set. Indeed, the training set covers the years of the Great Depression, the validation

set includes the Black Monday of 1987 and the test set contains the global financial

crisis in 2008 and the recent COVID-19 crash. Figure 1 illustrates the dataset split.

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
0%

20%

40%

60%

80%

100%

Re
al

ize
d

Vo
la

til
ity

training
validation
test

Figure 1: Dataset Split

Forecast accuracy is evaluated both in-sample and out-of-sample according to

two performance measures: the Root Mean Squared Error (RMSE) and the Mean

Absolute Error (MAE). They are formulated as follows:

RMSE =

√√√√ 1

n

n∑
t

(σ̂t − σt)2

MAE =
1

n

n∑
t

|σ̂t − σt|

Whilst the MAE measures the average magnitude of errors, each equally weighted,

the RMSE gives higher weights to large errors. For such a feature, since unexpected

big jumps in volatility are particularly undesirable, the LSTM is trained using the

MSE as the loss function, which is more efficient to compute than the RMSE.

5

Building the LSTM model requires the proper tuning of some hyperparameters.

These are parameters that need to be specified by the researcher and which affect the

learning process. It is common practice to evaluate all the possible combinations and

to choose the one which performs the best in the validation set. However, since this

method becomes computationally expensive as the number of parameters increases,

we set up an initial architecture and then proceed to investigate the best values for

a smaller set of hyperparameters.

We start by implementing an LSTM neural network in Keras3 with a single hid-

den layer. A tanh activation function and a linear activation function are applied to

the hidden and output layer respectively. As the optimizer, we use Adam (Adaptive

Moment Estimation), which is a variant of the mini-batch gradient descent that

adjusts the learning rate at each iteration for each model parameter.4

Then, the hyperparameters left to be tuned are the following:

• Number of features

• Number of hidden neurons

• Batch size

• Number of epochs

In order to speed up the research of the optimal parameter values, we first look

up the best combination between the number of features and the number of hidden

nodes, which are the parameters mostly affecting the model’s ability to learn. Since

we want the LSTM model to be trained on the realized volatility and monthly return

series, the choice regarding the optimal number of features translates into how many

lags to include per feature. For simplicity, we assume this number to be the same

for both the features, leaving the machine to adjust the weights accordingly. Thus,

we validate the model for each different combination of the number of neurons and

lags per feature. We set the seed so that differences among results are not due

to randomness. The batch size is set to 32 and the model is left training for a
3 Keras is an open-source library that provides a Python interface for developing ANNs through

another library for machine learning called TensorFlow
4 For further details, see Kingma and Ba (2014)

6 Summary

maximum of 2000 epochs, allowing an early stopping in case the validation error

does not decrease for 100 consecutive epochs. In that case, the best weights are

retrieved and the minimum error is reported. Table 2 shows the validation RMSE

for different architectures.

No. of hidden

neurons

N. of lags per feature

1 2 3 4 5 6

2 0.0715 0.0709 0.0709 0.0717 0.0724 0.0722

4 0.0726 0.0719 0.0714 0.0717 0.0708 0.0704

6 0.0727 0.0723 0.0716 0.0722 0.0725 0.0723

8 0.0729 0.0718 0.0712 0.0715 0.0720 0.0719

10 0.0730 0.0724 0.0718 0.0728 0.0735 0.0733

12 0.0736 0.0726 0.0715 0.0723 0.0728 0.0727

14 0.0733 0.0727 0.0716 0.0722 0.0728 0.0728

16 0.0731 0.0722 0.0714 0.0725 0.0731 0.0730

18 0.0726 0.0719 0.0714 0.0723 0.0729 0.0728

20 0.0731 0.0723 0.0714 0.0722 0.0728 0.0727

Table 2: RMSE for different combinations of hidden neurons and lags per feature

The higher the number of hidden nodes and lags per feature, the more likely the

model will overfit the training data. Hence, we take into account both the RMSE

and the model complexity to select the optimal combination. As a result, 2 lags per

feature and 2 hidden neurons are chosen.

Once updated our initial LSTM architecture for these findings, we look into the

best value for the batch size. It is common practice to use powers of 2 as the size

of the batch because of better computational efficiencies.5 In following this custom,

we also add to the candidate values the case when the batch size equals 1, i.e. when

it reduces to the use of SGD, and the opposite case when the batch size equals the

total number of examples in the training set, which implies the use of batch gradient

descent. From Figure 2, the optimal batch size results to be 128.
5 CPUs and GPUs organize the memory in powers of 2

7

1 32 64 128 256 512 668
Batch size

0.07080

0.07085

0.07090

0.07095

0.07100

0.07105

0.07110

0.07115

0.07120

0.07125
RM

SE

Figure 2: RMSE for different batch sizes

Finally, including also this finding in our LSTM model, the number of epochs is

tuned. The idea, in this case, is to choose after how many epochs the LSTM should

stop learning in order to perform best out-of-sample, but looking only at training

and validation error. From Figure 3, it can be seen that starting from around 1250

epochs, both the training and validation error stabilize and the gap between the two

lines keeps relatively tight. That means the model has a good ability to generalize

to new data and to not overfit when increasing the number of epochs. Hence, 1250

is the value chosen for our last hyperparameter.

8 Summary

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.08

0.10

0.12

0.14

0.16

0.18

0.20

RM
SE

training
validation

Figure 3: History of training and validation RMSE

Once built the LSTM neural network, the three models can now be compared.

Since out-of-sample forecasts are based on weights or parameters learned from data

in the training and validation set, we will henceforth refer to these two sets as just

the "training set".

Starting from the GARCH(1,1) and EWMA models, their respective parameter

values are estimated through MLE and shown in Table 3.

ω α β

GARCH 0.0000543 0.1246538 0.8622846

EWMA 0.1063281 0.8936719

Table 3: Estimated parameters for GARCH(1,1) and EWMA

The log-likelihood function is maximized through the Nelder-Mead method6, or

simplex method. The results for EWMA are expressed making use of the equivalence

relations for which β = λ and α = 1− λ.

6 For further details, see Gao and Han (2012)

9

Notice that in the EWMA, the optimal value for λ is largely different from both

0.97 and 0.94, which are the values suggested by RiskMetrics for monthly and daily

data respectively.

The long-run volatility, VL, that is implied by the estimated GARCH(1,1) model

parameters can be obtained as follows:

VL =
ω

1− α− β
= 22.34%

Notice that this results to be higher than the actual sample mean, equal to

15.63%, thus implying the GARCH to have a slight upward bias in realized volatility.

We report in Table 4 the in-sample and out-of-sample performance measures for

the LSTM model as well as the EWMA and GARCH models.

RMSE MAE

In-sample Out-of-sample In-sample Out-of-sample

EWMA 0.0786 0.1059 0.0520 0.0606

GARCH 0.0784 0.1022 0.0543 0.0598

LSTM 0.0696 0.0815 0.0411 0.0453

Table 4: In-sample and out-of-sample performance measures

We find that the LSTM neural network produces better results than EWMA and

GARCH(1,1) both in-sample and out-of-sample. In particular, the LSTM improves

the RMSE of the EWMA and GARCH models by 20.25% and 23.04% respectively,

and the MAE by 24.25% and 25.24% respectively. Moreover, LSTM produces also

smaller differences between out-of-sample and in-sample measures. Indeed, whilst

the average differences for the econometric models correspond to 0.026 for the RMSE

and 0.007 for the MAE, the LSTM yields a difference of 0.012 and 0.004 for the

respective measures. That means that apart from the absolute results, the LSTM

is relatively better at dealing with the problem of overfitting.

Finally, we leave the reader with a comparison of the out-of-sample forecasts

among the three different models (see Figure 4).

10 Summary

2004 2006 2008 2010 2012 2014 2016 2018 2020
0%

20%

40%

60%

80%

100%
Re

al
ize

d
Vo

la
til

ity

RV
LSTM
EWMA
GARCH(1,1)

Figure 4: Compared out-of-sample forecasts

	Introduction
	Volatility
	Defining and measuring volatility
	Realized volatility
	Implied volatility
	The VIX Index
	Stylized facts: evidence from the S&P 500

	Econometric Models
	The EWMA model
	The ARCH model
	The GARCH model
	Maximum likelihood estimation

	Machine Learning Models
	Artificial neural networks
	Gradient descent and backpropagation
	Recurrent neural networks
	Long short-term memory (LSTM)

	Experimental setup and results
	Data description
	Methodology
	Hyperparameter tuning
	Results

	Conclusion
	Bibliography
	Appendix Python Code
	Preliminary work
	LSTM
	GARCH(1,1)
	EWMA
	Comparing the models

