
 

 

 

 

 

 

Department of Economics and Finance 

Major in Finance 

 

 

 

 

 

Portfolio Optimization: a comparison among Markowitz, Black - Litterman and 

Robust Optimization approach 

 

 

 

 

 

 

 

 

Candidate          Supervisor 

Simone Maestripieri        Prof. Nicola Borri 
Student ID 704501 

Co-Supervisor 

Prof. Pietro Reichlin 

 

 

 

 

 

 

 

 
Academic Year 2019/2020 

 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Table of Contents 

 

Introduction                 5 

 

1 From Modern Portfolio Theory (MPT) to CAPM           7 

1.1 Portfolio construction process…………………………………………………………………….. 7 

1.2 Markowitz and the Mean-Variance framework……………………………………………….... 9 

1.2.1 Model description……...………………………………………………………………... 9 

1.2.2 Utility functions and optimization problem……………………………………….... 13 

1.2.3 Markowitz’s limitations and improvement possibilities………………………......... 15 

1.3 Capital Market Theory (CMT)…………………………………………………………………… 17 

1.4 Capital Asset Pricing Model (CAPM)…………………………………………………………… 19 

1.4.1 CAPM limitations………………………………………………………………………. 21 

 

2 Black-Litterman              23 

2.1 Bayesian background…………………………………………………………………………….. 23 

2.2 Black-Litterman Model…………………………………………………………………………... 24 

2.2.1 Introduction…………………………………………………………………………….. 24 

2.2.2 Model……………………………………………………………………………………. 25 

2.2.3 Equilibrium returns…………………………………………………………………….. 26 

2.2.3.1 Specifying 𝜏…………………………………………………………………... 28 

2.2.4 Investor’s views………………………………………………………………………… 29 

2.2.5 Estimation model……………………………………………………………………….. 30 

2.2.5.1 Specifying Ω………………………………………………………………….. 32 

2.2.6 BLM’s limitations and improvement possibilities…………………………………... 33 

 

3 Robust Optimization             34 

3.1 Introduction……………………………………………………………………………………….. 34 

3.2 Model………………………………………………………………………………………………. 35 

3.2.1 Form of uncertainty set………………………………………………………………… 36 

3.3 RO with quadratic uncertainty set vs MVO……………………………………………………. 37 



4 
 

3.3.1 Choice of uncertainty matrix…………………………………………………………... 39 

3.3.2 Choice of the uncertainty level: k…………………………………………………….... 42 

 

4 Empirical application              43 

4.1 Introduction………………………………………………………………………………………... 43 

4.2 Data………………………………………………………………………………………………..... 43 

4.3 Procedure…………………………………………………………………………………………... 44 

 

5 Results               46 

5.1 In-sample analysis……………………………………………………………………………….... 46 

5.2 Out-of-sample analysis…………………………………………………………………………… 57 

5.2.1 No-rebalance approach………………………………………………………………… 60 

5.2.1.1 Low volatility.......…………………………………………………................ 61 

5.2.1.2 Middle volatility…………………………………………………………….. 64 

5.2.1.3 High volatility………………………………………………………….......... 66 

5.2.1.4 Summary……………………………………………………………………... 70 

5.2.2 Rebalance approach……………………………………………………………………. 72 

5.2.2.1 Low volatility.......…………………………………………………................ 72 

5.2.2.2 Middle volatility…………………………………………………………….. 77 

5.2.2.3 High volatility………………………………………………………….......... 81 

5.2.2.4 Summary……………………………………………………………………... 86 

 

6 Conclusion              88 

 

Bibliography               90 

 

Appendix A                96 

 

Appendix B               99 

 



5 
 

Introduction 

 

Investing in financial markets has always been seen as a kind of leap in the dark by people who do 

not work in the industry. Until the 1950s it was an activity based on naive strategies, intuition, and 

experience for practitioners. With the advent of the Markowitz model (MV), things have changed. 

He introduced the first quantitative model for the selection and construction of investment 

portfolios based on the maximization of expected returns and the simultaneous minimization of 

risk. From this model, despite its great limitations, all quantitative approaches have developed up 

to the present day.  

One such model is the Black - Litterman model (BLM) developed in the 1990s by F. Black and R. 

Litterman. This model can reduce MV deficits through reverse optimization starting from a 

reference market portfolio. It introduces another important improvement, the possibility of 

introducing in the mathematical model the own views on the future trend of the assets we are 

considering, making the model versatile with the possibility of adapting to the needs of investors. 

Another model developed from the Markowitz model as a starting point is the Robust Optimization 

approach (RO) introduced by Soyster (1973). It differs from the BLM, because it does not intervene 

on the prior inputs but takes into account the uncertainty in the optimization objective function, 

giving a more consistent and systematic improvement to the limitations of MV. 

The purpose of this thesis is to measure and compare the performance of these three models using 

the sectors that make up the S&P 500 as assets. We will use a ten-year data sample from 3rd January 

2005 to 31st December 2014, called in-sample period, to create the optimal portfolios calculated by 

the three models. Afterwards, from 2nd January 2015 to 30 th September 2020, called out-of-sample 

period, the three models will be compared with each other and with the market through multiple 

performance indicators used by the industry taking into consideration three different types of 

investor depending on the risk appetite. Two alternative approaches will be used: a no-rebalance 

approach, purely theoretical, in which the optimal portfolios of the various models will not be 

modified throughout the analysis period. A rebalance approach, in which, every 5 days, the optimal 

portfolios weights will be recalculated taking into account the new information deriving from the 

market data, as happens in reality.  

From the results of the empirical chapters, we will see how the use of the two more complex models, 

BLM and RO, will lead to better results with differences depending on the risk appetite.  In 
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particular, we will see how BLM has better performance when we consider the lowest risk appetites 

and how it will not always be able to implement the views in the best way while RO will be 

characterized by constant stability which however costs something in terms of return. As expected, 

the rebalance approach increases the possibility of the models to perform better in the analysis 

period, thanks to a huge increment from return point of view and a contemporary stability of 

volatility and risk exposure. In particular, the first three chapters are dedicated to the theoretical 

explanation of MV, BLM and RO respectively. The fourth chapter describes the data used and the 

procedure followed for the analysis. In chapter five the analysis of the performance of the models 

will be presented following the two alternative approaches previously mentioned. The last chapter 

will be devoted to conclusions. 
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1 From Modern Portfolio Theory (MPT) to CAPM 

 

1.1 Portfolio construction process 

 

As a first thing, we try to give a definition to a concept that is one of the bases of the entire economic 

world: “What is investment?” We can start from away to offer a solution to this question. For most 

of our life, we will be earning and pocket money. Additionally, if the current income exceeds current 

consumption desires, we will tend to save lots of the excess; we call it savings. With our savings we 

can do almost two things: the first possibility is to place the money blocked until a moment in the 

future when consumption desires will exceed current income, with a wrong confidence that the 

amount will well worth the same; the second possibility is to give up the immediate possession of 

these saving for a future larger amount of cash which will be available for future consumption. At 

this point of our thought process, we can provide a simplistic definition of investment: what we do 

with our savings to make them increase over time. 

 

From our discussion, we can give a formal definition of investment: specifically, it is the present 

commitment of dollars for a period to derive future payments that will compensate the investor for 

a) the time the funds are committed, b) the expected rate of inflation during this time period, and c) 

the uncertainty of the future payments. This definition includes all kinds of “investor”, like an 

individual, a government, a mutual fund or a corporation; similarly, it includes all types of 

investments, like investments by corporations in plant and equipment and investments in stocks, 

bonds, commodities etc... In all cases, the investor is trading a known dollar amount today for some 

expected future stream of payments that will be greater than the current dollar amount today. 

 

The ways in which we can invest are infinite and it is very important to define a structured four-

step portfolio management process. The first step consists in the construction of the policy 

statement. It is a road map, indeed in it the investors specify the kinds of risks they are willing to 

take and their investment goals and constraints; in the second step the portfolio manager studies 

current financial and economic conditions and forecasts future trends. The latter and therefore the 

investor’s needs will jointly determine the investment strategy; the third step is the Asset Allocation 
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process. The investor’s policy statement and financial market forecasts are used as inputs of the 

investment strategy formulated to determine how to allocate our wealth available among different 

countries, asset classes and securities. An asset class is formed from securities that have similar 

characteristics. The fourth step is the continual monitoring. It consists in overseeing the policy 

statement, the capital market conditions and the investment strategy to verify if are necessary some 

changes. A crucial component of the continual monitoring is the evaluation of the portfolio’s 

performance and make a comparison with the requirements listed in the policy statements. At the 

end of the four steps, it is essential to revisit all the steps periodically, because the portfolio 

management process must be a continuous procedure. 

 

About Asset Allocation process, we can make a distinction between two alternatives dependent on 

the investor’s time horizon. Strategic Asset Allocation is suitable for investors with a long-term 

horizon because the portfolio constructed is typically reviewed annually but, in normal periods, it 

is not suffering by recent market changes and has a horizon of 5 years more or less. On the other 

hand, Tactical Asset Allocation is acceptable for investors with short- and medium-term horizon 

because the portfolio is modified more frequently to adapt it to temporary market changes. We can 

conclude that the choice between them is driven by the conditions of the market: in a volatile market 

is recommended the usage of the TAA, while during a trending and predictable market is advisable 

the utilization of the SAA. Nothing stops to mix the two strategies to create a portfolio that meets at 

the best the needs of the investor. 
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1.2 Markowitz and the Mean-Variance framework 

 

1.2.1 Model description 

 

Until the primary development of optimization techniques within the 1950’s, portfolios were 

constructed with the so-called Naïve approach making only an analysis asset by asset. It consists in 

the creation of a portfolio following a criterion supported the overall concept of diversification and 

intuition about the future. A typical naïve strategy is “1/N Asset Allocation” (N is clearly the number 

of assets regarded), where the resulting portfolio consists by an equal amount of the assets that the 

investor is decided to take in consideration. 

 

It is important clarify some basic and general concepts about portfolio theory before the treatment 

of the cornerstone of it. The first basic assumption is that investors want to maximize the returns 

from the entire set of investments for a given level of risk, so it implies that the portfolio should 

include all of your assets and liabilities because the returns from all of them interact and this 

relationship is extremely important.  

Portfolio theory assumes (with the support of the empirical evidence of many studies) also that 

investors are basically risk averse, meaning that, given a choice between two assets with equal rates 

of return, they are going to select the asset with the lower level of risk. At this point we can give a 

general definition of risk with two different expressions that have the same meaning: for many 

investors, risk means the uncertainty of future outcomes, or the probability of an adverse outcome. 

 

The cornerstone, before mentioned, of all the thousands different models used today is the Modern 

Portfolio Theory (MPT), that was developed in 1952 by Harry Markowitz.  

It is supported by several assumptions regarding investor behaviour: 1) investors consider each 

investment alternative as being represented by a probability distribution of expected returns over 

some holding period; 2) investors maximize one-period expected utility and their utility curves 

demonstrate diminishing marginal utility of wealth; 3) investors estimate the risk of the portfolio on 

the basis of the variability of expected returns; 4) investors base decisions on expected return and 

risk, so their utility curves are a function only of them; 5) for a given risk level, investors prefer 
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higher returns to lower returns and, similarly, for a given level of expected return, investors prefer 

less risk to more risk. 

In general terms, MPT can be described as an investment framework for the choice and construction 

of investment portfolios based on the maximization of expected returns and the simultaneous 

minimization of investment risk through the diversification of the assets that compose the portfolio. 

Markowitz introduced a quantitative model to carry out MPT, called Mean-Variance Optimization; 

the elements taken in consideration for the optimization process are, respectively: 

• expected returns of the assets (for asset i, 𝜇𝑖) 

• risk of the assets, measured by the variance of the expected returns (for asset i, 𝜎𝑖
2) 

 

It is necessary to highlight that, between them, the key element is risk because it is the driver of the 

returns indeed investors require higher returns if risk is higher and vice versa. We can say that MPT 

face a risk-return trade off in creating a portfolio. 

 

Calculation of the expected returns of the assets is the first step in Markowitz’ model. They can be 

defined as “the average of a probability distribution of possible returns” . In a simple way, they can 

be viewed as the historic averages of the assets returns over a determined period of time. 

Calculations for a portfolio of securities involve calculating the weighted average of the individual 

expected returns. 

 
𝐸(𝑅𝑝) = ∑ 𝑤𝑖 ∗ 𝜇𝑖

𝑛

𝑖=1

 (1) 

 

The second step consists in calculating the risk of the assets. Before the introduction of the measures 

to calculate it, we have to underline that the risk of a security can be divided in two basic 

components: systematic risk and idiosyncratic risk. The former is the risk that virtually affects all 

securities with a different impact, so it cannot be eliminated; inflation, interest rates, unemployment 

levels are all examples of it. The latter is determined by risk factors that specifically affect a single 

asset or a narrow group of assets, so it can be significantly reduced by the diversification of securities  

within a portfolio; firm’s credit rating, negative press reports about a business or a strike affecting a 

particular company are some examples of idiosyncratic risk factors. 

 



11 
 

The two most common measures of risk are variance and standard deviation. Variance is a “measure 

of the squared deviations of an asset’s return from its expected return”. Extending the calculation 

to a portfolio, the total variance is always lower that a simple weighted average of the individual 

asset variances because when many assets are held together in a portfolio, assets that suffer a value 

decreasing are often offset by assets that gain value, thereby minimizing risk. 

 
𝜎𝑝

2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (2) 

 

About standard deviation, can be defined as the deviation of an asset return from the expected 

return. It is the square root of the variance. 

 

To understand (2) is necessary a brief dissertation about the concepts of covariance and correlation. 

Covariance is an absolute measure to which two variables move together relative to their individual 

mean values over time; in portfolio analysis we usually are concerned with the covariance of returns. 

For two assets, i and j, we define the covariance of rates of return as follows: 

 𝐶𝑜𝑣𝑖𝑗 = 𝐸{[𝑅𝑖  −  𝐸(𝑅𝑖)][𝑅𝑗  −  𝐸(𝑅𝑗)]} (3) 

 

If the returns are positively related to each other, their covariance will be positive; if negatively 

related, the covariance will be negative; if they are unrelated, the covariance will be zero. 

 

Covariance is affected by the variability of the two individual return indexes, so we want to 

standardize it as follows: 

 
𝜌𝑖𝑗 =

𝐶𝑜𝑣𝑖𝑗

𝜎𝑖𝜎𝑗
 (4) 

 

The result is the correlation coefficient, which can vary only between -1 and +1. A value of +1 

indicates a perfect positive linear relationship between the two asset returns. A value of -1 indicates 

a perfect negative relationship between the two asset returns. A value of 0 indicates the absence of 

relationship between the two asset returns.  

 

Correlation concept is fundamental to understand a cornerstone of MPT, namely the diversification 

effect. Markowitz was able to prove that putting together assets that have different characteristics 
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(different asset classes, different sectors, different geographical areas etc.) which react differently to 

same events (i.e. they have imperfect correlation, positive or negative), we can maximize returns 

and minimize risk.  

An immediate conclusion that can arise is that will be sufficient to construct a portfolio composed 

by very diversified assets to totally eliminate the risk, but it is not so simple. Markowitz argues that 

diversification cannot eliminates all risk because, as discussed earlier, investors face two main sorts 

of risk: systematic risk and idiosyncratic risk. The latter is the part of the risk equation that can be 

reduced or eliminated, while the former cannot be nor reduced nor eliminated since it derives from 

external factors, as we have explained before. 

At this point we can describe how the optimization process works in a qualitative way, and after we 

will describe it in mathematical terms. Going back to our framework of n assets available, we can 

invest our hypothetical budget across them in many ways, assigning all possible weights to all 

assets. Every portfolio constructable in this way is named achievable. Plotting all the achievable 

portfolios on the bases of their risk and return we obtain a graph like this: 

 

 

 

 

 

 

 

 

 

 

Achievable portfolios are represented by those situated on the frontier and within the blue area, but 

only those on the frontier are efficient because they produce the maximum expected return for a 

given risk level or, the opposite way around, they face the minimum risk for a given expected return. 

As a consequence, rational investors will construct one of the portfolios that lie on the Efficient 

Frontier. 

 

 

Figure 1: Efficient Frontier. Source: 

https://meetinvest.com/insights/how/value-create-portfolio 
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1.2.2 Utility functions and optimization problem 

 

As we have seen, on the Efficient Frontier there are many efficient portfolios. What is the criterion 

to settle on the best point to be on it? The answer is that we need additional information represented 

by a utility function. Utility can be defined as the personal satisfaction of an individual, so utility 

functions have the objective to give a value to the degree of satisfaction. 

 

In our case the satisfaction is a function of two inputs, expected return and risk. Now it is clearer the 

concept of risk-return trade off because it is very intuitive that the satisfaction increases if return is 

higher but at the same time higher return imply more risk and vice versa. 

 

In the MPT framework a utility function: 1) provides a “rule” for the trade-off between risk and 

return; 2) using such rule, for each efficient portfolio computes their utility through the expected 

returns and variances; 3) the efficient portfolio for the investor will be the one with the highest 

utility. 

 

In financial literature there are different utility functions, but the most common is the exponential 

utility function defined as follows: 

 𝑈(𝑊𝑡+1) = −𝑒𝑥𝑝(−𝜆𝑊𝑡+1) (5) 
 

𝑊𝑡+1 is next period’s wealth while 𝜆 ≥ 0 is the absolute risk aversion coefficient. 

 

Now we can treat the optimization process in mathematical terms. We present the problem as a risk 

minimization for a given target return using matrix notation since we are in a multivariate 

framework. 

 

Single-Period Analysis 

• m risky assets: i = 1, 2, …, m 

• Single-Period Returns: m-variate random vector  

𝐑 =  [𝑅1, 𝑅2, . . . , 𝑅𝑚]′ 
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• Mean and Variance/Covariance of Returns: 

 Ε[𝐑] = 𝛼 = [

𝛼1

⋮
𝛼𝑚

] , 𝐶𝑜𝑣[𝐑]  =  𝚺 =  [

Σ1,1 ⋯ Σ1,𝑚

⋮ ⋱ ⋮
Σ𝑚,1 ⋯ Σ𝑚,𝑚

] 

• Portfolio: m-vector of weights indicating the fraction of portfolio wealth held in each asset 

𝐰 =  (𝑤1, . . . , 𝑤𝑚)  ∶  ∑ 𝑤𝑖

𝑚

𝑖=1

 =  1 

• Portfolio Return: 𝑅𝑤 =  𝐰′𝐑 =  ∑ 𝑤𝑖𝑅𝑖
𝑚
𝑖=1  a r.v. with 

𝛼𝐰 = 𝛦[𝑅𝑤] = 𝐰′𝛼 

𝜎𝐰
2 = 𝑣𝑎𝑟[𝑅𝑤] = 𝐰′𝚺𝐰 

 

Evaluate different portfolios w using the mean-variance pair of the portfolio: 

(𝛼𝐰 , 𝜎𝐰
2 ) with preferences for  

• Higher expected returns 𝛼𝐰 

• Lower variance 𝑣𝑎𝑟𝐰 

 

Risk minimization: For a given choice of target mean return 𝛼0, choose the portfolio w to 

Minimize: 
1

2
𝒘′𝚺𝒘 

Subject to: 𝐰′𝛂 = 𝛼0 

𝐰′𝟏𝑚 = 1 

 

Solution: Apply the method of Lagrange multipliers to the minimization problem subject to linear 

constraints: 

• Define the Lagrangian 

𝐿(𝐰, 𝜆1, 𝜆2) =
1

2
𝒘′𝚺𝒘 + 𝜆1(𝛼0  −  𝐰′𝛼) + 𝜆2(1 −  𝒘′𝟏𝑚) 

• Derive the first order conditions 

𝜕𝐿

𝜕𝒘
= 𝟎𝑚 = 𝚺𝒘 −  λ1 𝛼 − 𝜆2𝟏𝑚 

𝜕𝐿

𝜕𝜆1
= 0 = 𝛼0  −  𝐰′𝛼 

𝜕𝐿

𝜕𝜆2
= 0 = 1 −  𝐰′𝟏𝑚 
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• Solve for w in terms of 𝜆1, 𝜆2: 

𝐰0 = 𝜆1𝚺−1𝛼 + 𝜆2𝚺−1𝟏𝑚 

• Solve for 𝜆1, 𝜆2 by substituting for w: 

𝛼0 = 𝐰′0𝛼 = 𝜆1 (𝛼′𝚺−1𝛼) + 𝜆2(𝛼′𝚺−1𝟏𝑚) 

1 = 𝐰′0𝟏𝑚 = 𝜆1 (𝛼′𝚺−1𝟏𝑚) + 𝜆2(𝟏′𝑚𝚺−1𝟏𝑚) 

⟹ [
𝛼0

1
] = [

𝑎 𝑏
𝑏 𝑐

] [
𝜆1

𝜆2
] 𝑤𝑖𝑡ℎ 

𝑎 = (𝛼′𝚺−1𝛼), 𝑏 = (𝛼′𝚺−1𝟏𝑚), 𝑎𝑛𝑑 𝑐 = (𝟏′𝑚𝚺−1𝟏𝑚) 

 

With the given values of 𝜆1and 𝜆2, the solution portfolio 

𝐰0 = 𝜆1𝚺−1𝛼 + 𝜆2𝚺−1𝟏𝑚 

has minimum variance equal to 

𝜎0
2 = 𝐰′0𝚺𝐰0 

Solving the problem as a risk minimization with a target expected return 𝛼0, we have obtained the 

less risky portfolio that give us 𝛼0. 

 

1.2.3 Markowitz’s limitations and improvement possibilities 

 

Despite its importance, MPT is based on assumptions that are faraway from the reality and each of 

them compromises MPT. The main criticism regards inputs used in the optimization process: they 

are estimated using historical data (the model also supposed that the estimation is perfect) and they 

have the tendency to create portfolios called “estimation error maximizers” that overweight assets 

with high estimation error in returns and low estimation error in risk and vice versa (Michaud 1989). 

So, the process can be really optimal only if the true population parameters are known.  

Additionally, optimal portfolios are very sensitive to small changes in the inputs and the immediate 

consequence is that they are highly concentrated in few assets, all the contrary to the diversification 

concept, milestone of MPT!  

Other more technical criticisms regarding the assumptions of the model are: 

1) Investor “Irrationality” – the assumption that investors are rational and seek to maximize 

returns while minimizing risk is contradicted by the observation of investors that routinely go 

for “hot” sectors, and markets regularly boom or bust due to speculative excesses (Morien). 
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2) Higher Risk = Higher Returns - the assumption that investors only accept higher risk if 

compensated by higher expected returns is not absolutely true because investors can have 

utility functions that may overweight distribution of returns. 

3) Perfect Information – MPT assumes that investors receive all information during a prompt 

and complete manner while, actually, financial markets comprise situations of information 

asymmetry and insider trading. 

4) No Taxes or Transaction Costs – MPT do not include taxes or transaction costs while real 

investment products are subject to both and factoring them may change the optimum portfolio 

selection. 

 

It is clear that there is the need to modify the model, in order to promote a greater diversification 

and overtaking the assumption that the inputs are completely certain. To realize this, there are two 

possibilities available: 

1) Heuristic Approach, that works on the adjustment of the optimization process 

2) Bayesian Approach, that focuses on the adjustment of the estimated inputs (above all 

the expected returns) 

 

About the first, one choice can be adding additional constraints (by limiting the weight that can be 

given to any singular asset) to force the optimization through an higher diversification; another 

choice is called 𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑇𝑀 that works in this way: firstly, a thousands of investment scenarios 

are created; secondly, the simulated expected returns, volatilities and correlation coefficients are 

used as input of a new Markowitz optimization; the final step consists in repeating the second step 

for every scenario created (i.e. thousands of Efficient Frontiers) and we will have the final Efficient 

Portfolios, called Resampled Portfolios, that have the composition of the “average” efficient 

portfolio. The third choice consists in running a Robust Optimization; it assumes that the estimated 

expected returns are random variables and seeks to create the optimal portfolio even when the 

realized values of inputs deviate from the estimated ones within some given set. It will be treated in 

the third chapter. 

 

About the second, that it is based on Bayesian statistics, the most common and widely used is The 

Black-Litterman Model that will be treated in the next chapter of this work. 
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1.3 Capital Market Theory (CMT) 

 

Capital market theory extends Markowitz portfolio theory by developing a model for pricing all 

risky assets. This development depends on the existence of a risk free asset which will lead to the 

designation of the market portfolio, a set of all the risky assets in the marketplace. 

We will start, as usual, with the assumptions: 1) all investors are Markowitz-efficient in that they 

seek to invest in tangent points on the efficient frontier (the exact location of the portfolio selected 

will depend on the individual investor’s risk-return utility function); 2) investors can borrow or lend 

any amount of money at the risk free rate of return; 3) all investors have homogeneous expectations; 

4) all investors have the same one-period time horizon; 5) all investments are infinitely divisible; 6) 

there are no taxes or transaction costs involved in buying or selling assets; 7) there is no inflation or 

any change in interest rates, or inflation is fully anticipated; 8) capital markets are in equilibrium.  

 

Now we will see what happens when we introduce the risk free asset into the risky world of the 

Markowitz portfolio model. First of all, we can demonstrate that the covariance of the risk free asset 

with any risky asset or portfolio of assets will always equal zero. Recalling equation (3), if we assume 

that the asset 𝑖 is the risk free asset, because the returns of it are certain (𝜎𝑅𝐹 = 0), 𝑅𝑖 = 𝐸(𝑅𝑖) during 

all periods; thus, 𝑅𝑖  −  𝐸(𝑅𝑖) will equal zero and the final product will equal zero. 

 

About expected return, a portfolio that includes a risk free asset with a collection of risky assets 

(Portfolio M) is the weighted average of the two returns: 

 𝐸(𝑅𝑝𝑜𝑟𝑡) = 𝑤𝑅𝐹(𝑅𝐹𝑅) + (1 −  𝑤𝑅𝐹)𝐸(𝑅𝑀) (6) 

 

𝑤𝑅𝐹 = proportion of the portfolio invested in the risk free asset 

𝐸(𝑅𝑀) = expected rate of return on risky Portfolio M 

 

About risk, because the correlation between the risk free asset and any risky asset is zero, the 

standard deviation of a portfolio that combines the risk free asset with risky assets is the linear 

proportion of the standard deviation of the risky asset portfolio: 

 𝜎𝑝𝑜𝑟𝑡 = (1 −  𝑤𝑅𝐹)𝜎𝑀 (7) 
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Now we are able to develop the risk-return relationship between 𝐸(𝑅𝑝𝑜𝑟𝑡) and 𝜎𝑝𝑜𝑟𝑡 by using 

algebraic manipulations, called Capital Market Line (CML): 

𝐸(𝑅𝑝𝑜𝑟𝑡) = (𝑤𝑅𝐹)(𝑅𝐹𝑅) + (1 −  𝑤𝑅𝐹)𝐸(𝑅𝑀) + {𝑅𝐹𝑅 −  𝑅𝐹𝑅} 

= 𝑅𝐹𝑅 −  (1 −  𝑤𝑅𝐹)𝑅𝐹𝑅 + (1 −  𝑤𝑅𝐹)𝐸(𝑅𝑀) 

= 𝑅𝐹𝑅 + (1 −  𝑤𝑅𝐹)[𝐸(𝑅𝑀) −  𝑅𝐹𝑅] 

= 𝑅𝐹𝑅 + (1 −  𝑤𝑅𝐹) {
𝜎𝑀

𝜎𝑀

}[𝐸(𝑅𝑀) −  𝑅𝐹𝑅] 

 
𝐸(𝑅𝑝𝑜𝑟𝑡) = 𝑅𝐹𝑅 + 𝜎𝑝𝑜𝑟𝑡 [

𝐸(𝑅𝑀) −  𝑅𝐹𝑅

𝜎𝑀

] (8) 

 

Equation (8) holds for each combination of the risk free asset with any collection of risky assets. Now 

we assume that Portfolio M is the set of risky assets that maximize the risk premium, so it is called 

market portfolio and, by definition, it contains all risky assets held in the marketplace and receives 

the highest level of expected return per unit of risk for any available portfolio of risky assets. CML 

represents the set of portfolio possibilities that dominates all other feasible combinations that 

investors could form, so it represents a new efficient frontier that combines the Markowitz efficient 

frontier of risky assets with the possibility to invest in the risk free asset. 

 

 

 

 

 

 

 

 

 

 

We have additional risk-return possibilities running along the CML. An investor may want invest a 

part of his/her money in the risk free asset (i.e. lend at the RFR) and the rest in the risky Portfolio M, 

or, alternatively, borrow at the RFR and invest these funds in the risky asset portfolio. 

 

Figure 2: Combination of Efficient Frontier with CML. 

Source: https://financenumericals.blogspot.com/2018/01/what-

is-capital-market-line-cml.html 
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We can conclude that the CML leads all investors to invest in the same risky asset Portfolio M, so 

they only differ regarding their position on the CML, which depends on their risk preferences. 

Specifically, to be somewhere on the CML efficient frontier, an investor initially decides to invest in 

the market Portfolio M (investment decision); then, based on his/her risk preferences, the investor 

makes a separate financing decision either to borrow or to lend to achieve the preferred risk position 

on CML. Tobin (1958) called this division of the investment decision from the financing decision the 

separation theorem. 

 

Unfortunately, CMT is an incomplete explanation for the relationship that exists between risk and 

return. We recall that the CML defined the risk as the total volatility 𝜎 of the investment. However, 

since investors cannot expect to be compensated for any portion of risk that they could have 

diversified (idiosyncratic risk), the CML must be based on the assumption that investors only hold 

fully diversified portfolios for which total risk and systematic risk are the same. The limitation of 

the CML is that cannot provide an evidence for the risk-return trade off for individual risky assets 

because the standard deviation of them include an amount of unique risk. 

 

1.4 Capital Asset Pricing Model (CAPM) 

 

At this point we have the evolution of CMT in the Capital Asset Pricing Model (CAPM), whose 

allows investors to evaluate the risk-return trade off for both diversified portfolios and individual 

assets. CAPM redefines the relevant measure of risk from total volatility to only the non-

diversifiable portion of the total volatility (systematic risk). This measure is named 𝛽 coefficient and 

it represents the systematic risk level of a security compared to that of the market portfolio (by 

definition, it has a 𝛽 of 1). 

 

From equation (8) we are able to derive the mathematical formula of CAPM, extending the 

expression to allow for the evaluation of any individual risky asset i. To do this the logical reasoning 

is to replace 𝜎𝑝𝑜𝑟𝑡 with that of the single security 𝜎𝑖. This approach overstates the relevant level of 

risk in the i-th security because it does not take under consideration how much of that volatility the 

investor could diversify by combining that asset with others. A solution is including only the portion 

of risk in security i that is systematically related to the risk in the market portfolio, multiplying 𝜎𝑖 
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by the correlation coefficient between the returns to security i and the market portfolio 𝑟𝑖𝑀. The 

resulting formula is the following: 

𝐸(𝑅𝑖) = 𝑅𝐹𝑅 + (𝜎𝑖𝑟𝑖𝑀) [
𝐸(𝑅𝑀) −  𝑅𝐹𝑅

𝜎𝑀

] 

Rearranging the terms: 

 𝐸(𝑅𝑖) = 𝑅𝐹𝑅 + 𝛽𝑖[𝐸(𝑅𝑀  −  𝑅𝐹𝑅)] (9) 

 

From equation (9) we can see that, instead of than calculate a different risk premium for every 

singular security that exists, the CAPM states that only the overall market risk premium 

(𝐸(𝑅𝑀) −  𝑅𝐹𝑅) matters and this quantity can be adapted to any risky asset by scaling it up or down 

according to asset’s beta 𝛽𝑖 . 

 

There are two ways to calculate the systematic risk (𝛽𝑖). First, it can be calculated directly from the 

following formula: 

 
𝛽𝑖 = (

𝜎𝑖

𝜎𝑀

)(𝑟𝑖𝑀) =
𝐶𝑜𝑣(𝑅𝑖 , 𝑅𝑀)

𝜎𝑀
2  (10) 

 

Alternatively, 𝛽𝑖  can be estimated as the slope coefficient in a linear regression between the security’s 

returns (𝑅𝑖𝑡) over time and the returns of the market portfolio (𝑅𝑀𝑡): 

 𝑅𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖(𝑅𝑀𝑡) + 𝜀𝑖𝑡 (11) 

 

𝛼𝑖 = intercept of the regression  

𝜀𝑖𝑡 = random error term that accounts for the idiosyncratic  risk of the security  i 

 

The graphical representation of equation (9) is called Security Market Line (SML): 

 

 

 

 

 

 

 

 Figure 3: Security Market Line (SML). Source: 

https://en.wikipedia.org/wiki/Security_market_line 
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There are two differences between the CML and the SML.  

First, the CML measures risk by the standard deviation (total risk) while the SML considers only the 

systematic component. Second, as a consequence of the first point, the CML can be applied only to 

portfolio holdings that are already fully diversified, whereas the SML can be applied to any 

individual asset or collection of assets. 

 

In equilibrium, all assets and all portfolios of assets should plot on the SML because they should be 

priced in order that their estimated rates of return are consistent with their levels of systematic risk. 

Any security plotted above the SML, is considered undervalued because it implies that you forecast 

receiving a rate of return on the security that is above the required rate of return of the asset based 

on its systematic risk. On the other hand, the security is considered overvalued. 

This difference between estimated return and expected return is called stock’s expected alpha (𝛼). 

If the stock is undervalued 𝛼 is positive, if the stock is overvalued 𝛼 is negative while if the stock is 

on the SML 𝛼 is zero. 

 

1.4.1 CAPM limitations 

 

Although CAPM was a very good improvement in portfolio modelling, it is not immune to many 

criticism and limitations. First of all, CAPM has many unrealistic assumptions that undermine its 

correspondence to the reality. Secondly, Roll (1977) put in evidence the problem that the market 

portfolio at the core of the model is theoretically and empirically elusive, indeed is not clear which 

assets can be excluded from the market portfolio and, however, data availability limits the assets 

that are included. 

Additionally, starting in the 1970s, many empirical works challenge the structure of CAPM and its 

functionality. Specifically, evidence highlights that much of the variation in expected return is 

unrelated to market beta. Basu’s (1977) put in evidence that when common stocks are sorted on 

earning-price ratios, future returns on high E/P stocks are higher than predicted by CAPM; Banz 

(1981) reports a size effect when stocks are sorted on market capitalization, average returns on small 

stocks are higher than predicted by the CAPM; Statman (1980) and Rosenberg, Reid and Lanstein 

(1985) document that stocks with high book-to-market equity ratios (B/M) have high average returns 

that are not predicted by CAPM. More recent work by Fama and French (1992), demonstrated that 
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“value” stocks (those with high B/M) tend to produce larger risk-adjusted returns than “growth” 

stocks (those with low B/M).  

In these four contradictions of the CAPM there is a common factor: ratios involving stock prices 

have information about expected returns missed by market betas. 

Concluding, if betas are not enough to explain expected returns, the market portfolio is not efficient 

and so the majority of applications of CAPM are invalidate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

2 Black-Litterman Model 

 

2.1 Bayesian background 

 

Before the treating of Black-Litterman Model, we recognize the necessity about an introduction 

regarding the Bayesian approach because it represents the mathematical ground of the model. 

In general, the Bayesian approach works in this way: 

• A model for data analysis is defined that is thought to be suitable for the problem 

• It is specified a prior probability distribution on the model parameters, reflecting our 

knowledge or beliefs about likely values of these parameters 

• We look at the data we have collected, and we compute how likely our data are for different 

assumed values for the parameters; this yields the likelihood function that has to be 

computed making use of the specified model and its assumptions 

• The combination of the prior distribution (representing the information outside the collected 

data) and the likelihood function (representing the information inside the collected data) 

returns the posterior probability distribution for the parameters; it reflects how likely 

different parameter values are true, after taking into account one’s prior beliefs and the 

information within the collected data. 

 

All the process can be represented in a mathematical way with the most important result in this 

statistic’s field, Bayes’ Theorem, formulated in this manner: 

 
𝑝(𝑥|𝑦) =

𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑦)
∝ 𝑝(𝑦|𝑥)𝑝(𝑥) (12) 

 

The symbol ∝ means “proportional to” and give the possibility to eliminate the denominator of the 

fraction. In this context, 𝑥 represents an event, 𝑦 represents some observed data, 𝑝(𝑥) represents the 

prior probability of 𝑥, 𝑝(𝑦|𝑥) is the likelihood function (the probability of 𝑦 given that 𝑥 is true) and 

𝑝(𝑥|𝑦) is the posterior probability of 𝑥 (the new probability assigned to 𝑥 given that we observed 𝑦). 

To conclude this brief treatment, this methodology is very important for mainly two reasons that 

will lead to an overcoming of two limitations of MPT: firstly, observed data became useful for the 

estimation of future events (in economic terms, we can mix our inputs with our views to obtain 
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more trustworthy); secondly, it incorporates uncertainty about the true parameter value, so it is a 

more valid approach since in general we have no exact knowledge about the true parameter value. 

 

2.2 Black-Litterman Model 

 

2.2.1 Introduction 

 

The Black-Litterman Model (BLM), created by Fischer Black and Robert Litterman, is a portfolio 

construction process which has its roots in MV optimization model and CAPM that overcomes the 

problem of highly concentrated portfolios, sensibility to inputs and estimation error maximization 

by using a Bayesian framework.  

BLM has two fundamentally key assumptions behind. First, the model assumes that all asset returns 

follow the same probability distribution (usually normal distribution is selected). Second, variance 

of the prior and the conditional distribution about the true means of the assets and inv estor views 

are unknown.  

Canonical BLM provided two significant contributions to the matter of asset allocation. First, it 

provides an intuitive prior, the equilibrium market portfolio, as a starting point for ‘reverse 

optimization’ to get a stable distribution of returns. Second, BLM provides a clear way to specify 

investors’ views on returns and to blend the investors’ views with prior information. 

To start utilizing the models, investors must obtain implied market returns of the equilibrium 

market portfolio that are derived from the CAPM model. If them accept the implied returns, they 

can use the neutral weights given by the BLM to develop their optimal portfolio, but this model 

makes a step ahead because gives the possibility to investors to adjust the neutral weights according 

to their views about the market. 

BLM expresses the investors’ views and market equilibrium in terms of probability distributions. It 

uses the Bayesian approach, explained before, to develop a probability distribution for the expected 

returns by using CAPM equilibrium distribution as a starting point and then combining views into 

the distribution. Using the implied returns from CAPM as the prior and then adding the investors’ 

views, can be obtained a posterior distribution which results in intuitive portfolios with sensible 

portfolio weights. 
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2.2.2 Model 

 

The reference model for returns is the base upon which the rest of Black-Litterman model is built. 

We start with normally distributed expected returns: 

 𝑟 ~ 𝑁(𝜇 , Σ) (13) 

 

The fundamental goal of BLM is to model these expected returns, which are assumed to be normally 

distributed with mean 𝜇 and variance Σ. 

 

We define 𝜇, the unknown mean return, as a random variable itself distributed as: 

 𝜇 ~ 𝑁(𝜋 , Σ𝜋) (14) 

𝜋 is our estimate of the mean and Σ𝜋 is the variance of the unknown mean, 𝜇, about our estimate. 

 

Another way to view this simple linear relationship is shown in the formula below: 

 𝜇 = 𝜋 + 𝜀  (15) 

The prior returns are normally distributed around 𝜋 with a disturbance value 𝜀. 𝜀 is normally 

distributed with mean 0 and variance Σ𝜋 and is assumed to be uncorrelated with 𝜇. 

 

We can complete the reference model by defining Σ𝑟  as the variance of the returns about our estimate 

𝜋. From formula (15) and the assumption above that 𝜀 and 𝜇 are not correlated, then the formula to 

compute Σ𝑟  is: 

 Σ𝑟 = Σ + Σ𝜋 (16) 

Formula (16) tells us that the proper relationship between the variances is (Σ𝑟 ≥ Σ, Σ𝜋 ). 

In the absence of estimation error, e.g. 𝜀 ≡ 0 , then Σ𝑟 = Σ. As our estimate get worse, e.g. Σ𝜋 

increases, then Σ𝑟  increases as well. 

 

The canonical reference model for BLM expected return is: 

 𝑟 ∼ 𝑁(𝜋, Σ𝑟) (17) 

 

While (13) is the reference formula for the Alternate Reference Model, an alternative to approach 

the problem. 
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2.2.3 Equilibrium Returns 

 

BLM starts with a neutral equilibrium portfolio for the prior estimate of returns. The model is based 

on General Equilibrium theory to state that if the aggregate portfolio is at equilibrium, each sub-

portfolio must even be at equilibrium. Ideally, it can be used with any utility function but in practice 

is used the Quadratic Utility function assuming the existence of a risk free asset, and thus the 

equilibrium model coincide with the Capital Asset Pricing Model (CAPM) and the neutral portfolio 

is the CAPM Market portfolio. 

Since we are starting with the market portfolio, we will start with a set of weights which are all 

greater than zero and sum to one. We will constrain the problem assuming that the covariance 

matrix of the returns, Σ, is known, but in the basic approach is estimated from historical return data. 

 

Here we derive the equations for “reverse optimization” starting from the quadratic utility function: 

 𝑈 = 𝑤𝑇Π −  (
𝜆

2
) 𝑤𝑇Σ𝑤 (18) 

 

U = Investors  utility (objective function during  optimization) 

w = vector of weights invested in each asset 

Π = vector of equilibrium excess  returns for each asset 

𝜆 = risk aversion parameter 

Σ = covariance matrix of the escess  returns  for the assets 

 

U is a convex function, so if we maximize it with no constraints, there is a closed form solution. We 

find the exact solution by taking the first derivative of (18) with respect to w and setting it to zero. 

𝜕𝑈

𝜕𝑤
= Π −  𝜆Σw = 0 

Solving this for Π yields: 

 Π = 𝜆Σ𝑤 (19) 

 

The risk aversion coefficient 𝜆 characterizes the expected risk-return trade-off; it is the speed at 

which an investor will forego expected return for less variance. In “reverse optimization” process, 

the risk aversion coefficient acts as a scaling factor for the reverse optimization estimate of excess 
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returns; the weighted reverse optimized excess returns equal the specified market risk premium, so 

a higher excess return per unit of risk (larger lambda) increases the estimated excess returns.  

 

One way to find 𝜆 is by multiplying both sides of (19) by 𝑤𝑇 and replacing vector terms with scalar 

terms. 

 𝜆 = (𝑟 −  𝑟𝑓)/𝜎2 (20) 

 

 

r = total return on the market portfolio(r = wTΠ + rf) 

𝑟𝑓 = risk free rate 

𝜎2 = variance of the market portfolio (𝜎2 = 𝑤𝑇Σ𝑤) 

 

Many authors specify the value of lambda that they use. Bevan and Wickelmann (1998) describe 

their process of calibrating the returns to an average Sharpe Ratio based on their experience. Black 

and Litterman (1992) use a Sharpe ratio closer to 0.5 in the example in their paper. 

 

We can rewrite formula (26) for lambda in terms of the Sharpe Ratio as 

 
𝜆 =

𝑆𝑅

𝜎𝑚
 (21) 

 

Once we have a value for 𝜆, we plug w, 𝜆 and Σ into formula (19) and generate the set of equilibrium 

returns. 

 

Now we are missing the variance of our estimate of the mean, we need Σ𝜋. Black and Litterman 

(1992) assumed that the structure of the covariance matrix of the estimate is proportional to the 

covariance of the returns Σ. More precisely, Σ𝜋 = 𝜏Σ, where 𝜏 is a scalar indicating the uncertainty 

of implied returns. 
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2.2.3.1 Specifying 𝜏 

 

𝜏 is extremely important because controls how distinctly the optimized portfolio may depart from 

the market portfolio. For very small values (𝜏 → 0) the combined returns converge to equilibrium 

returns and the BL optimized portfolio converges to the market portfolio.  

For large values of (𝜏 → ∞) the combined returns converge to the “views” and the BL optimized 

portfolio converges to the portfolio in which the “views” are the underlying return estimates.  

 

The most used method to calibrate 𝜏 relies on basic statistics. When estimating the mean of 

distribution, the variance of the mean estimate will be proportional to the inverse of the number of 

samples. Given that we are estimating the covariance matrix from historical data, then:  

𝜏 =
1

𝑇
               the maximum likelihood estimator  (22) 

 

𝜏 =
1

𝑇−𝑘
  the best quadratic unbiased estimator  (23) 

 

T = number of samples   

k = number of assets  

 

In the literature, the values used typically range between 0.025 and 0.05 (Black and Litterman (1992); 

He and Litterman (1999); Drobetz (2001); Idzorek (2005)). 
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2.2.4 Investor’s views 

 

In the last section we have mentioned the so called “views”.  They are the main innovation of this 

model, indeed they allow to the investor to incorporate in the optimization process some outlooks 

about the future tendency of the expected return of the assets taken in consideration. 

It is necessary to specify that the literature on the BLM does not provide a clear answer how to make 

subjective estimates and the reliability of these estimates. Several studies assume exogenously given 

estimates (He and Litterman (1999); Lee (2000); Drobetz (2001); Idzorek (2005)) and suggest 

confidence intervals of the return estimates as a measure of uncertainty (Black and Litterman (1992)). 

In this section we will describe the process of specifying the investors views on the estimated mean 

excess returns, defining the combination of the views as the conditional distribution. First, we will 

require that each view to be unique and uncorrelated with other views, giving to the conditional 

distribution the property that the covariance matrix will be diagonal, with all off-diagonal entries 

equal to zero. In this way we improve the stability of the results simplifying the analysis of the 

model. Second, we will require views to be fully invested, but we do not require a view on any or 

all assets. 

 

We will represent the k views on n assets using the following matrices: 

• P, a 𝑘 × 𝑛 matrix of the asset weights within each view. For a relative view the sum of the 

weights will be zero, for an absolute view the sum of the weights will be one. About the 

weights, He and Litterman (1999) and Idzorek (2005) use a market capitalization weightes 

scheme, whereas Satchell and Scowcroft (2000) use an equal weighted scheme. In practice 

weights will be a mixture depending on the process used to estimate the view returns. 

• Q, a 𝑘 × 1 vector of the returns for each view. 

• Ω, a 𝑘 × 𝑘 matrix of the covariance of the views. Ω is diagonal as the views are required to be 

independent and uncorrelated. Ω−1 is known as the confidence in the investor’s views. The i-

th diagonal element of Ω is represented as 𝜔𝑖 . 
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We describe how these matrices work with an example. 

There are 3 assets each with its own expected return. The investor has an absolute view on asset 1 

which states that the return of it will be 10%, and two relative views, the first that asset 2 will 

outperform asset 3 by 5% and the second that asset 3 will outperform asset 1 by 3%.  

This can be summarized as follows: 

𝑃 = [
1 0 0
0 1 −1

−1 0 1
]  ;  𝑄 = [

10%
5%
3%

]  ;  Ω = [

𝜔11 0 0
0 𝜔22 0
0 0 𝜔33

] 

 

2.2.5 Estimation model 

 

In BLM, the prior distribution is based on the equilibrium implied excess returns and has this form: 

 𝑃(𝐴) ~ 𝑁(Π, 𝜏Σ), 𝑟𝐴  ~ 𝑁(𝑃(𝐴), Σ) (24) 

 

It represents our estimate of the mean, which is expressed as a distribution of the actual unknown 

mean about our estimate. 

 

The conditional distribution is based on the investor’s views and has this form:  

 𝑃(𝐵|𝐴) ~ 𝑁(𝑃−1𝑄, [𝑃𝑇Ω−1𝑃]−1) (25) 

 

This representation is not usable practically. Incomplete views and relative views make the variance 

non-invertible. Additionally, [𝑃𝑇Ω−1𝑃]−1) is not invertible. Luckily, we do not need to calculate this 

formula. 

 

The posterior distribution from Bayes Theorem is the precision weighted average of the prior 

estimate and the conditional estimate. Now we can apply Bayes theory to create a new posterior 

distribution of the asset returns, called BL master formula. 

𝑃(𝐴|𝐵) ~ 𝑁([(𝜏Σ)−1Π + 𝑃𝑇Ω−1𝑄][(𝜏Σ)−1 + 𝑃𝑇Ω−1𝑃]−1, [(𝜏Σ)−1 + 𝑃𝑇Ω−1𝑃]−1)            (26) 

 

An alternative representation of the same formula for the mean returns Π̂ and covariance M is: 

 Π̂ = Π + τΣ𝑃𝑇[(𝑃𝜏Σ𝑃𝑇) + Ω]−1[𝑄 − 𝑃Π] (27) 

 

 𝑀 = ((𝜏Σ)−1 + 𝑃𝑇Ω−1𝑃)−1 (28) 
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Remember that M is the variance of the posterior mean estimate about the actual mean, so it is the 

uncertainty in the posterior mean estimate and is not the variance of the returns.  

 

Computing the posterior covariance of returns requires adding the variance of the estimate about 

the mean to the variance of the distribution about the estimate (He and Litterman (1999)). 

Σ𝑝 = Σ + 𝑀  (29) 

 

Substituting the posterior variance (36) we get 

Σ𝑝 = Σ + ((𝜏Σ)−1 + 𝑃𝑇Ω−1𝑃)−1  (30) 

 

In the absence of the views this reduces to 

Σ𝑝 = Σ + (𝜏Σ) = (1 + 𝜏)Σ  (31) 

 

 

A brief recap of the BL process is given by the following scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: BL Process. Source: Lejeune, Miguel. (2009). A 

VaR Black–Litterman model for the construction of absolute 

return fund-of-funds. Quantitative Finance  



32 
 

2.2.5.1 Specifying Ω 

 

Ω, the variance of the views is inversely related to the investor confidence in the views.  It is intuitive 

that if the confidence is null (i.e. Ω → ∞), then the posterior distribution (26) equals the prior (24), 

while, at the other extreme, if the confidence is full (i.e. . Ω → 0), then the posterior distribution (26) 

equals the conditional distribution (25). We will briefly discuss two ways to calculate Ω. 

1. Proportional to the variance of the prior. We can assume that the variance of the views will 

be proportional to the variance of the asset returns, like the variance of the prior distribution.  

• He and Litterman (1999) set the variance of the views as follows: 

𝜔𝑖𝑗 = 𝑝(𝜏Σ)𝑝𝑇  ∀𝑖 = 𝑗 

𝜔𝑖𝑗 = 0 ∀𝑖 ≠ 𝑗 

Or 

Ω = 𝑑𝑖𝑎𝑔(𝑃(𝜏Σ)𝑃𝑇)  (32) 

 

This specification essentially equally weights the investor views and the market 

equilibrium weights. Including 𝜏 in the expression, the posterior estimate of the 

returns become independent of 𝜏. This seems to be the most common method used in 

the literature. 

 

• Meucci (2006) does not take in consideration the diagonalization at all, setting:  

Ω =
1

𝑐
𝑃Σ𝑃𝑡 

 (33) 

 

He sets 𝑐 > 1, and the obvious choice for 𝑐 is 𝜏−1. This form lends itself to some 

simplifications of BL formulas. 

 

2. Use a confidence interval. The investor can specify the variance using a confidence interval 

around the estimated mean return. For example, asset 1 has an estimated 5% mean return 

with the expectation it is 95% likely to be within the interval (4%, 6%). Knowing that 95% of 

the normal distribution falls within 2 standard deviation of the mean allows us to translate 

this into a variance for the view of (5%) 2. 
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2.2.6 BLM limitations and improvement possibilities 

 

Used as a part of an asset allocation process, BLM gives the possibility to overcome many of the 

limitations of previous approaches about portfolio theory. The result of the optimization process 

will be portfolios with a high level of diversification and much more stable compared to the resulting 

portfolios of MPT and CAPM, due to the fact that the starting point is the market portfolio that is 

already diversified. Additionally, traditional models ask investors to provide expected returns for 

all the assets in the portfolio, while investors often are specialized in certain areas and cannot 

develop knowledgeable expected returns for all assets in the portfolio. Therefore, we can connect 

this fact with the major improvement of BLM, the possibility to insert the views and the level of 

confidence. This gives the possibility to investors specialized in certain markets to introduce some 

views with a high level of confidence to obtain optimal portfolio weights. The resulting model is 

extremely versatile and practical with a high level of usability. 

 

Nevertheless, all the improvements of BLM compared to previous approaches, it still has margins 

to make better. First, this model requires a broad sort of data, some of which are hard to seek out, 

indeed the investor need to identify the investable universe and find the market capitalization of 

each asset. Second, the investor must quantify their views, which will be derived from quantitative 

or qualitative processes, and they can be complete or incomplete or also conflicting; summarizing, 

views can be a double-edged sword. Linked to the previous point, the construction of the confidence 

matrix Ω is a weakness, because it is completely arbitrary and does not account for interdependence 

of the confidence over different views. Third, BLM is based on the assumption of normality of 

returns that is in conflict with the basic results in finance framework. 

 

Many authors tried to overcome these weak spots with the introduction of many extension to the 

traditional BLM. Some examples are: Idzorek (2005) presents a method to calibrate the confidence 

of variance of the investor view in a simple method; Jay Walters (2014) describes how use relative 

entropy to measure quality of the views; Krishnan and Mains (2006) presents a method to 

incorporate additional factors in the model; Qian and Gorman (2001) propose a way to integrate 

views on the covariance matrix as well as views on the returns. 
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3 Robust Optimization 

 

3.1 Introduction 

 

As we have explained in the first chapter of this work, Markowitz’s work was the ground for the 

modern portfolio construction theory, but its application has been disappointing for several 

drawbacks explained yet. The main problem of MVO is that it fails to take into consideration the 

uncertainty in the estimation process of expected returns and also tends to increase it; this is a big 

problem because Chopra and Ziemba (1993), Kallberg and Ziemba (1984) and Ya et al. (2016) find 

that the uncertainty in expected returns is roughly ten times as important as that in the covariance 

matrix for the sensitivity of the solution.  

In this chapter is treated one of the approaches that have been proposed to mitigate the drawbacks 

of MVO, the RO approach, first introduced by Soyster (1973) and developed by El Ghaoui et al. 

(1997, 1998) and Ben-Tal and Nemirovsky (1998). As opposed to the MVO that treats the estimated 

expected returns in a deterministic manner, RO assumes that the estimated expected returns are 

random variables and seeks to seek out the optimal portfolio even when the realized values of inputs 

deviate from the estimated ones within some given set. The latter is called uncertainty set and 

defines the degree of deviation one desire to be protected from. 

In RO literature applied to portfolio construction, two major forms of uncertainty set are considered. 

Ben-Tal and Nemirovski (1998 and 2000), El-Ghaoui et al. (1997, 1998) and Goldfarb and Iyengar 

(2003) analyse the quadratic uncertainty set for expected returns (𝜇 −  𝜇̂)𝑇Ω𝜇
−1(𝜇 −  𝜇̂) ≤ 𝑘2, with 𝜇 

the vector of expected returns, T transpose, 𝜇̂ estimated expected returns vector, Ω𝜇 the uncertainty 

matrix and k the level of uncertainty. 

Tütüncü and König (2004) introduce the box uncertainty set |𝜇𝑖  −  𝜇 𝑖̂| ≤ 𝜉𝑖 , 𝑖 = 1,2, . . . , 𝑛 with 𝜇𝑖 the 

expected return of asset I, 𝜇 𝑖̂ the estimated expected return of asset I and 𝜉𝑖 the level of uncertainty 

for the expected return estimation of asset i. 

The choice of uncertainty sets, the selection of uncertainty matrices for the quadratic uncertainty set 

as well as the calibration of k are the three challenges to implement robust portfolio optimization. 

The final objective of RO is to improve the MVO by reducing the sensitivity to inputs and increasing 

the diversification. 
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3.2 Model 

 

RO can be reformulated by modifying the MVO through a max-min process (Scherer 2006). Before 

to start treating the model, we can assume without loss of generality, that the expected returns are 

estimated by sample mean 𝜇̂ = 𝜇̅ because the draw backs of MVO exist no matter the estimated 

expected returns used. First, we have to find the worst-case expected returns of assets (defined as 

the realized returns that deviate most negatively form the estimated expected returns 𝜇̂), within the 

uncertainty set 𝑈𝜇 . At this point the optimization process maximizes the portfolio returns, computed 

with the worst case expected returns, under the risk constraint. 

 
max

𝑤
(min

𝜇∈𝑈𝜇

(𝑤𝑇𝜇)  −  
𝜆

2
𝑤𝑇Σ𝑤) (34) 

 

w the vector of portfolio weights, 𝜇 the vector of expected returns, 𝜆 the risk aversion parameter and 

Σ the covariance matrix of asset returns. 

 

Now we formulate the robust portfolio optimization assuming the choice of the quadratic 

uncertainty set (this assumption will be explained in the next section): 

 
max

𝑤
(min

𝜇∈𝑈𝜇

(𝑤𝑇𝜇) −  
𝜆

2
𝑤𝑇Σ𝑤) , 𝑈𝜇 = (𝜇 −  𝜇̅)𝑇Ω−1(𝜇 − 𝜇̅) ≤ 𝑘2 (35) 

 

The first step consists in finding the worst case realized returns from the confidence region derived 

from the uncertainty set. Minimizing 𝑤𝑇𝜇 for 𝜇 within the uncertainty set defined by 𝑈𝜇  is equivalent 

to maximizing 𝑤𝑇 𝜇̅  −  𝑤𝑇𝜇 for 𝜇 within the uncertainty set: 

 max
𝜇

(𝑤𝑇 𝜇̅ −  𝑤𝑇𝜇)  𝑠. 𝑡. (𝜇 −  𝜇̅)𝑇Ω−1(𝜇 −  𝜇̅) ≤ 𝑘2 (36) 

 

 

Rewriting equation (36) with the Lagrangian: 

 ℒ(𝜇̅, 𝛿) =  𝑤𝑇 𝜇̅  −  𝑤𝑇𝜇 −  𝛿((𝜇 −  𝜇̅) 𝑇Ω−1(𝜇 −  𝜇̅)  −  𝑘2) (37) 

 

Solving equation (35) with the help of Lagrangian yields: 

 
𝜇 = 𝜇̅  −  √

𝑘2

𝑤𝑇Ω𝑤
Ω𝑤 (38) 
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Substitute the formula for 𝜇 in equation (41): 

 
max

𝑤
(𝑤𝑇 𝜇̅  −  √

𝑘2

𝑤𝑇Ω𝑤
𝑤𝑇Ω𝑤 −  

𝜆

2
𝑤𝑇Σ𝑤) (39) 

 

We note the optimal robust portfolio weights as 𝑤𝑟𝑜𝑏
∗ : 

 
𝑤𝑟𝑜𝑏

∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑤𝑇 𝜇̅  −  𝑘√𝑤𝑇Ω𝑤 −  
𝜆

2
𝑤𝑇Σ𝑤) (40) 

 

 

3.2.1 Form of uncertainty set 

 

As mentioned in the introduction, in RO literature there are two most common forms of uncertainty 

sets: quadratic and box. About financial applications, Goldfarb and Iyengar (2003) demonstrate 

analytically that the quadratic uncertainty set comes out naturally from the estimation process using 

regression when the expected returns are estimated from a linear factor model, while Fabozzi et al. 

(2007) point out that the box uncertainty set assumes that all assets will deliver their worst case 

returns at the same time, an assumption that is not good in practice. 

According to results above, the quadratic uncertainty set in RO is chosen as more suitable for 

applications in finance as it is less conservative and more in line with the characteristics of the 

distribution of returns of financial assets. We will derive the robust formulation of it. 

 

The quadratic uncertainty set includes the uncertainty matrix Ω𝜇. It is assumed that the expected 

returns 𝜇 are normally distributed with mean vector 𝜇̅. So, the uncertainty 𝜇 − 𝜇̿ follow a 

multivariate normal distribution with mean 0 and covariance matrix of uncertainty in mean return 

Ω𝜇. 

 𝑈𝜇 = {𝜇 | (𝜇 −  𝜇̂) 𝑇Ω𝜇
−1(𝜇 −  𝜇̂) ≤ 𝑘2} (41) 

 

𝑘2 represents the level of uncertainty and this formulation gives the possibility to define the 

expected returns that deviate most negatively from the estimated returns within the level of 

uncertainty k. 
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3.3 RO with quadratic uncertainty set vs MVO 

 

Now we take a look to the potential improvements of RO compared to MVO. At the optimum the 

gradient of equation (40) is zero and the optimal robust weights 𝑤𝑟𝑜𝑏
∗  satisfy the following equality 

when at least one of the optimal weights is different from zero: 

 
𝜇̅  − 

𝑘

√𝑤𝑟𝑜𝑏
∗𝑇 Ω𝑤𝑟𝑜𝑏

∗
Ω𝑤𝑟𝑜𝑏

∗  −  𝜆Σ𝑤𝑟𝑜𝑏
∗ = 0 (42) 

 

MVO optimal portfolio weights 𝑤𝑀𝑉𝑂
∗  can be obtained by setting to zero the derivative of 𝑤𝑇 𝜇̅ −

 
𝜆

2
𝑤𝑇Σ𝑤, with respect to w: 

 𝜇̅  −  𝜆Σ𝑤𝑀𝑉𝑂
∗ = 0 (43) 

 

Rearranging the terms and inverting Σ, we get: 

 
𝑤𝑀𝑉𝑂

∗ =
1

𝜆
Σ−1𝜇̅ (44) 

 

Roncalli (2013) points out that the inversion of a covariance matrix Σ with small eigenvalues is the 

main cause of the high sensitivity to inputs and counter-intuitive long-short position suffered by 

MVO. But in a covariance matrix there are two elements, correlation coefficients and volatilities. Are 

they both responsible or only one is?  

To answer this question, we make an equivalence between optimizing on vector of weights w, 

covariance matrix Σ and vector of expected returns 𝜇̅ and optimizing on risk budgets x, pair-wise 

correlation matrix P and vector of Sharpe ratios 𝑆𝑅̅̅̅̅ . This equivalence is obtained by decomposing 

the covariance matrix Σ into the pair-wise correlation matrix P and variances 𝜎2. Expressing MVO 

with risk budgets and correlation matrix is that the effect of correlation on the small eigenvalues of 

Σ is separated from that of volatilies. 

Equation (44) can be reformulated in terms of 𝑆𝑅̅̅̅̅ , 𝑃 𝑎𝑛𝑑 𝑋𝑀𝑉𝑂
∗ , assuming 𝜆 = 1: 

 𝑋𝑀𝑉𝑂
∗ = 𝑃−1𝑆𝑅̅̅̅̅  (45) 

 

Equation (45) shows that Sharpe ratios and the correlation matrix are liable for the drawbacks of 

MVO. Indeed, MVO aims to take advantage of the differences in Sharpe ratios while taking under 

consideration the correlations among assets. Once the MVO optimal risk budgets are determined, 
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the volatilities are there to produce the final portfolio weights but this step is linear and does not 

involve any matrix inversion. 

Because P is symmetric and positive semi-definite, it can be decomposed into 𝑃 = 𝑍𝐿𝑍𝑇, with Z the 

matrix of eigenvectors of P and L the diagonal matrix with eigenvalues of P on the diagonal. 

Equation (45) can be transformed as: 

 𝑋𝑀𝑉𝑂
∗ = 𝑍𝐿−1𝑍𝑇𝑆𝑅̅̅̅̅  (46) 

 

By expressing equation (46) in the spaces spanned by the eigenvectors of P, we get: 

 𝑋𝑀𝑉𝑂
∗ ̈ = 𝐿−1𝑆𝑅̅̅̅̈̅  (47) 

 

Equation (47) shows two origins of the drawbacks of the MVO: 

1) Inversion of small eigenvalues in 𝐿−1 which is the diagonal matrix of eigenvalues of 

correlation matrix P. 

2) Non-negligible expected returns in 𝑆𝑅̅̅̅̈̅  of the eigenvectors of P associated with small 

eigenvalues. 

 

RO improves MVO in these two ways. Equation (42) modify the MVO optimality condition with 

the introduction of uncertainty in the objective function. 

There are two ways to interpret equation (42) compared to equation (43). These two interpretations 

represent two ways in which RO mitigates the drawbacks of the MVO. 

Modification of 𝚺: 𝜇̅  −  𝜆 (
𝑘

𝜆√𝑤𝑟𝑜𝑏
∗𝑇 Ω𝑤𝑟𝑜𝑏

∗
Ω + Σ) 𝑤𝑟𝑜𝑏

∗ = 0 (48) 

 

Factoring 𝑤𝑟𝑜𝑏
∗ , equation (42) illustrates the modification of covariance matrix when the uncertainty 

is introduced in the objective function. We can see that the robustness of the RO depends on the 

choice of Ω because it can have a big impact on the final covariance matrix that will be inverted. In 

the next section we analyse four different uncertainty matrices. 

Modification of 𝝁̅: (𝜇̅  −  
𝑘

√𝑤𝑟𝑜𝑏
∗𝑇 Ω𝑤𝑟𝑜𝑏

∗
Ω𝑤𝑟𝑜𝑏

∗ ) −  𝜆Σ𝑤𝑟𝑜𝑏
∗ = 0 (49) 

 

Grouping the first two terms on the left-hand side, equation (42) represents the modification on 

expected returns by the uncertainty. In this formulation the original covariance matrix is not 



39 
 

modified, however, the 𝜇̅ are adjusted so that the expected returns of eigenvectors of Σ associated 

with small eigenvalues are reduced. Later we will discuss the choice of k. 

 

3.3.1 Choice of uncertainty matrix 

 

In the RO literature, four types of uncertainty matrices are proposed. 

1) Scherer (2006) proposed Ω proportional to Σ  Ω = Σ  

2) Stubbs and Vance (2005) suggested to consider only the diagonal of Σ Ω ∝ diag(Σ) 

 

Heckel et al. (2016) proposed two others Ω: 

3) The uncertainty matrix equal to the identity matrix Ω = 𝐼𝑛 

4) The uncertainty matrix equal to the diagonal matrix of sample volatilities Ω = sqrt(diag(Σ)) 

 

The analysis of uncertainty matrix starts with equation (48), since at the optimum √𝑤𝑟𝑜𝑏
∗𝑇 Ω𝑤𝑟𝑜𝑏

∗  is 

just a number. Noting 
𝑘

√𝑤𝑟𝑜𝑏
∗𝑇 Ω𝑤𝑟𝑜𝑏

∗
 as 𝛽 and 

𝛽

𝜆+𝛽
 as 𝜂, we get: 

 𝜇̅ = (𝛽Ω + 𝜆Σ)𝑤𝑟𝑜𝑏
∗  (50) 

 

 𝜇̅

(𝜆 + 𝛽)
= (𝜂Ω + (1 −  𝜂)Σ)𝑤𝑟𝑜𝑏

∗  (51) 

 

Instead of inverting Σ, the solution to RO with a quadratic uncertainty set requires the inversion of 

a modified covariance matrix 𝜂Ω + (1 −  𝜂)Σ. 

 

Case 1: 𝛀 = 𝚺 = (
𝜎1

2 ⋯ 𝜌1𝑛 𝜎1𝜎𝑛

⋮ ⋱ ⋮
𝜌1𝑛 𝜎1𝜎𝑛 ⋯ 𝜎𝑛

2

) 

Replacing Ω by Σ in the modified covariance matrix: 

 𝜂Ω + (1 −  𝜂)Σ = Σ (52) 

 

There is no change to the original covariance matrix, so in this case RO cannot mitigate the 

drawbacks of MVO. 
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Case 2: 𝛀 = 𝐝𝐢𝐚𝐠(𝚺) = (
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛

2

) with 𝜎1
2, 𝜎𝑛

2 the variances of asset 1 and asset n 

Replacing Ω by 𝑑𝑖𝑎𝑔(Σ): 

𝜂Ω + (1 −  𝜂)Σ = η (
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛

2

) + (1 −  𝜂) (
𝜎1

2 ⋯ 𝜌1𝑛 𝜎1𝜎𝑛

⋮ ⋱ ⋮
𝜌1𝑛 𝜎1𝜎𝑛 ⋯ 𝜎𝑛

2

)     (53) 

 

The new covariance matrix is now a weighted average between the original covariance matrix and 

the diagonal matrix of sample variances. 

 

Case 3: 𝛀 = 𝑰𝒏, with 𝐼𝑛 the 𝑛 × 𝑛 identity matrix 

Replacing Ω by 𝐼𝑛: 

𝜂Ω + (1 −  𝜂)Σ = η (
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

) + (1 −  𝜂) (
𝜎1

2 ⋯ 𝜌1𝑛𝜎1𝜎𝑛

⋮ ⋱ ⋮
𝜌1𝑛𝜎1𝜎𝑛 ⋯ 𝜎𝑛

2

)      (54) 

 

The new covariance matrix is a weighted average between the original covariance matrix and the 

identity matrix. 

 

Case 4: 𝛀 = 𝐬𝐪𝐫𝐭(𝐝𝐢𝐚𝐠(𝚺)) = η (
𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛

) + (1 −  𝜂) (
𝜎1

2 ⋯ 𝜌1𝑛𝜎1 𝜎𝑛

⋮ ⋱ ⋮
𝜌1𝑛𝜎1 𝜎𝑛 ⋯ 𝜎𝑛

2

)   (55) 

 

The new covariance matrix is a weighted average between the original covariance matrix and the 

diagonal matrix of sample volatilities. 

As we have said before, equation (45) shows that the part of covariance matrix that is liable for the 

high sensitivity to inputs is the correlation matrix, while the volatilities, in the solution to MVO in 

terms of risk budgets, are only a scaling factor to define the final portfolio weights. Considering that, 

the objective is the elimination of small eigenvalues from the correlation matrix, according to 

equation (47), to scale back the sensitivity, while, if volatilities are unchanged, the relative 

magnitude of the Sharpe ratios is preserved. Kirby and Ostdiek (2012), Perchet et al. (2016) and 

Santos (2018) provide empirical evidence about the advantages of volatilities and the negative 

contribution of off-diagonal covariance elements to the results of optimal portfolios. 
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At the end of this reasoning, we can propose the subsequent criteria for the selection of the 

uncertainty matrix: 

The ideal uncertainty matrix reduces the sensitivity to inputs by shrinking the original correlation 

coefficients towards zero and keeping the original volatilities unchanged. 

 

About the sensitivity reduction, we note that in the case 1, where the uncertainty matrix is equal to 

the covariance matrix, there is no reduction of sensitivity to inputs of the optimization solution 

because the correlation coefficients are unmodified. On the other hand, in case 2,3 and 4 the resulting 

covariance matrix is a weighted average between the uncertainty matrix that is diagonal and 

covariance matrices; additionally, all the off-diagonal terms in the uncertainty matrices are zero so 

the original correlation coefficients are tighten towards zero achieving the sensitivity reduction. 

About keeping volatilities unchanged, we see immediately that in case 3 and 4 the diagonal terms 

of both uncertainty matrices are different from those of the original covariance matrix, consequently 

using those uncertainty matrices would cause a changes in volatilities. On the other hand, 

introducing the uncertainty matrices of case 1 and 2 keep the diagonal terms of the new covariance 

matrix unchanged. 

 

We can summarize the above results with a table that will give an idea about the final choice: 

 Case 1: 𝛀 = 𝚺 Case 2: 𝛀 = 𝐝𝐢𝐚𝐠(𝚺) Case 3: 𝛀 = 𝐈𝐧 Case 4: 𝛀 = 𝐬𝐪𝐫𝐭(𝐝𝐢𝐚𝐠(𝚺)) 

Reducing 

sensitivity 
NO YES YES YES 

Volatilities 

unchanged 
YES YES NO NO 

Table 1: Uncertainty matrix choice 

 

It is evident that the final best choice will be the case 2, namely Ω = diag(Σ). Choosing Ω as the 

diagonal of the original covariance matrix Σ, we will have a new covariance matrix that reduces the 

condition number of the correlation matrix, eliminates the small eigenvalues, and reduces the 

sensitivity of the solution to inputs keeping unchanged the volatility structure. 
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3.3.2 Choice of the uncertainty level: k 

 

The simplest approach to determine the level of uncertainty k is the utilisation of a rule of thumb to 

calibrate it. We recall that the solution to an MVO, viewed on the basis defined by the eigenvectors 

of the correlation matric and assuming 𝜆 equal to 1, is given by: 𝑋𝑀𝑉𝑂
∗ ̈ = 𝐿−1𝑆𝑅̅̅̅̈̅ . 

Both the uncertainty matrix and k address the sensitivity to inputs. About the uncertainty matrix 

we have determined an optimal solution yet, while k can be viewed as reducing the expected returns 

of the eigenvectors corresponding to the small eigenvalues. 

The proposed rule of thumb, that can be demonstrated with a multi asset example (C. Yin, R. 

Perchet, F. Soupè 2020), consists in choosing k as half of the average Sharpe ratios without a 

dependence to the amount of assets in the universe. In this way, k is able to reduce the returns of 

eigenvectors that correspond to 40% smallest eigenvalues. The mathematical explanation is tricky 

and is left to the curious reader in Appendix A where it is described all process (C. Yin, R. Perchet, 

F. Soupè 2020). 
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4 Empirical application 

 

4.1 Introduction 

 

This chapter will be dedicated to the application of the optimization approaches described in the 

first 3 chapters with real financial data. First it is necessary to obtain data and, luckily, today data 

sources are easily accessible through platforms such as Bloomberg and Thomson Reuters. We have 

downloaded data from Bloomberg, more specifically we have chosen as object analysis the sectoral 

decomposition of the most important north American equity index, S&P 500, to discover the 

relationship among them and the best combination that give birth to optimal portfolios. When we 

have all data that we need, we have to manage them to make them suitable for the application of 

the various models. To perform all the analysis, we have used MATLAB software. 

 

4.2 Data 

 

In this section we will go through a deeper description of the data used in the empirical application. 

S&P 500 contains 500 stocks of listed companies on NYSE and Nasdaq that represent the 80% of the 

market capitalization. It is divided in 11 sectors: 

• Information Technology sector 

• Healthcare sector 

• Consumer discretionary sector 

• Telecommunication sector 

• Financials sector 

• Industrials sector 

• Consumer staples sector 

• Utilities sector 

• Materials sector 

• Energy sector 

• Real estate sector 
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Thanks to a University license it was very simple the collection of data from Bloomberg, that also 

give the possibility to import them directly in Excel to manage them in an easier way. First, we 

choose to take in consideration SP&500 because it can be considered one of the major indices all over 

the world, so it ensures an adequate dimension and liquidity to be considered investable and 

reliable. As a consequence, we think that it is the best choice to conduct a sector analysis because it 

included many different sectors and the companies that are included in them are key players on the 

world market and so provide significant data. 

To keep the analysis congruent and meaningful, we choose to take in consideration only the first 10 

sectors because the Real estate sector has some data inconsistencies for the time period that we will 

take in consideration. 

Namely, the frequency of data used is daily, to have a big quantity of information. The data starts 

from 3rd January 2005 and ends on 30th September 2020. From 3rd January 2005 to 31st December 2014 

is called the in-sample set, namely the data used to obtain the optimal portfolios weights.  

From 2nd January 2015 to 30th September 2020 is called the out-of-sample set, namely the time period 

where we will see the results, in terms of risk/return using statistical techniques and different 

performance indicators, obtained by the portfolios created with in-sample data. We have to 

highlight the fact that the dataset include data about three critical financial crises. The subprime 

crisis of 2008 is included in our in-sample period as well as the sovereign debts crisis of 2010, while 

COVID-19 crisis is included in our out-of-sample period until September 2020. 

 

4.3 Procedure 

 

The analysis will be done with MATLAB software and could be summarized in this way: 

1) Data import 

2) MV optimization 

3) BL optimization without views 

4) BL optimization with three different scenarios 

5) RO optimization with different choice of Ω 

6) Analysis out-of-sample without rebalancing  

7) Analysis out-of-sample with 5 days rebalancing 

8) Comparison of the models in both points 6) and 7) 
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About the optimization models we have talked about them in the previous chapters of this work 

yet, while it is necessary specify what means the term “rebalancing”. In point 6), the analysis out-

of-sample is done without changing the portfolios composition resulting from the optimization 

process conducted in the in-sample period, namely without rebalancing the weights in the 

portfolios; on the other hand, in point 7) the analysis out-of-sample is built changing the portfolio 

composition every 5 days, namely the optimization routine runs at interval of 5 days incorporating 

in the process all data of the sample (also out-of-sample information) hand to hand we go forward 

through time. This constant adjustment in portfolios weights is called rebalancing.  

What we expect is that the analysis with rebalancing will be more efficient compared to that without 

rebalancing since, in the former, the optimizer processes a higher quantity of information and, 

especially, incorporating new information going ahead gives the possibility to react to market events 

in the out-of-sample period, whether good or bad. 

Given this clarification, we specify that we decide to set 10 different levels of risk (1 level = lower 

risk, 10 level = higher risk), and for each level we will have an optimal allocated portfolio by each 

model. 
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5 Results 

 

5.1 In-sample analysis 

 

In this section we will present the optimal weights provided by the four model, comparing the 

output allocations. Portfolios obtained are 10 for each model, due to the different level of risk taken 

in consideration.  

The four optimization methods are: 

1) Markowitz optimization 

2) Black-Litterman without views 

3) Black-Litterman with views 

4) Robust Optimization 

 

Making a brief recap of the four methods, the first performs an optimization using the mean of the 

assets as expected return and the historical covariance matrix for risk. The second case is 

characterized by the usage of the neutral expected returns instead of the simple mean, while as risk 

is still used the historical covariance matrix. Comparing these first two methods we can see already 

important differences about optimal allocation. The third method started to be very interesting 

because the inputs are dependent from the views of the investor and the confidence in those. The 

fourth method is formulated as a resolver of Markowitz problems, and is based on the calculation 

of the uncertainty matrix to obtain more stable results. 

 

The graphs representing the weights are organized as follows: on the x-axis we have the risk 

propensity (from 1 to 10), while on the y-axis we have the weight (from 0 to 1); the sum of the 

weights will sum to 1 and each asset has a different colour on the graph. 
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We can start with Markowitz allocation: 

 

 

 

 

 

 

 

 

 

 

 

 

From figure 5 we can see that we are fully invested only in two assets: healthcare sector and 

consumer staples sector. In this situation we are very exposed to shocks that could involve 

individual assets and we are not taking advantage from diversification, so the common problems of 

Markowitz optimization are recognised. 

 

Now we compare MV results with the allocation resulting from BL without views. Substantially, 

the difference regards the expected return input because BL introduced the neutral expected returns 

(calculated using the capitalization weights of S&P 500) that represents the beliefs of the market. 

 

 

 

 

 

 

 

 

 

Figure 5: MV weights 

Figure 6: BL weights 



48 
 

It is easy to see that we have a very different situation. With the exceptions of the extremes 

(minimum and maximum risk) portfolios are very diversified across all the sectors. In particular we 

can observe that, taking in consideration this universe of assets, we can identify two assets that are 

relevant: consumer staples sector is the most conservative asset that will reduce the overall risk, like 

bonds, while financial sector represents the most aggressive asset that provides higher risk, like 

stocks. As a consequence, in this situation risk adverse investors will have a big position on 

consumer staples sector, while whenever we take in consideration investors more incline to risk, 

they will overweight the position in financials sector. 

 

The introduction of views in the BLM gives the possibility to make a step ahead for the investor. We 

define a particular scenario to give a view about the functioning of the process.  

 

Basic Scenario 

1) IT sector performs 20% (uncertainty 5%) 

2) Energy sector performs -15% (uncertainty 5%) 

3) Industrials sector overperforms Financials sector by 12% (uncertainty 5%) 

 

These views and the confidence on them are defined in an arbitrary way, like simply an opinion 

based on the personal views of an investor. Now we will expect that the model creates an optimal 

portfolio with higher position in the assets that will perform good in the opinion of the investor. 

 

 

 

 

 

 

 

 

 

 

Figure 7: BLM basic scenario weights 
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We can see immediately that the model works in the right direction, but limited to the intermediate 

levels of risk, mainly from Portfolio 3 to Portfolio 8. Making a comparison with the BL allocation 

without views, we have a higher allocation in IT sector and Industrials sector and the presence of 

Energy sector is reduced in the graph. If the views are correct, this investor will obtain better results 

than an investor that does not provide any outlook and vice versa. 

We want to highlight that uncertainty level assumed is 5% (i.e., high confidence in the views). As a 

matter of fact, the confidence will have a high impact on the output. 

If we change the uncertainty level from 50% (high unconfident) to 0% (full confidence) we have 

these results: 

 

 

 

 

 

 

 

 

 

 

 

In figure 8, it is evident that the views are not considered so much due to the high uncertainty, that 

tilts back the allocation towards the market weights. Instead in figure 9, we can say that the views 

are taken as a “clairvoyant opinion”, because the mixture of BLM is eliminated, and we are going 

back to a Markowitz scenario where we take in consideration only our inputs. 

We can conclude that the role of the uncertainty matrix is very important and can conduct to 

different results. 

 

 

 

 

 

Figure 8: Uncertainty 50% Figure 9: Uncertainty 0% 
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Now we define two other scenarios that will be very important to provide an idea of views power. 

 

Best scenario 

1. Healthcare sector overperforms Financials sector by 34,78% (uncertainty 5%) 

2. IT sector overperforms Consumer Discretionary sector by 84,97% (uncertainty 5) 

3. Materials sector overperforms Utilities sector by 5,81% (uncertainty 5%) 

 

This scenario is defined using real market data and we will use, as a view, three comparisons 

between returns of the various sectors calculated using the out-of-sample data. In particular, this 

scenario simulates a situation where the investor has argued perfect views about the future.  

 

 

 

 

 

 

 

 

 

 

It is evident that also in this case the model is working very well, indeed all sectors that overperform 

are over allocated in the portfolios compared to the BLM without views. Even in this case, limited 

to the intermediate levels of risk, mainly from Portfolio 3 to Portfolio 8. 

 

Worst scenario 

1. Healthcare sector underperforms Financials sector by 34,78% (uncertainty 5%) 

2. IT sector underperforms Consumer discretionary sector by 84,97% (uncertainty 5%) 

3. Materials sector underperforms Utilities sector by 5,81% (uncertainty 5%) 

 

This scenario is the exact opposite of the previous, to obtain an idea of the differences that arise 

when the investor has good or bad views. 

Figure 10: BLM best scenario weights 
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As expected, the weights are very different from the best case and also from the other BLM 

situations. 

We have considered two extremes cases to highlight the fact that the allocations will be completely 

different according to the views expressed. 

 

Now we come back to a model that does not give the possibility to provide views but should have 

the power to provide very stable allocations compared to the previous models. 

 

 

 

 

 

 

 

 

 

 

With this approach is evident the differences with the previous approaches. First, the weights 

change in a very smooth manner, that is an indication of the stability of the portfolios, so the model 

reaches his objective to avoid corner-solutions, in particular for low risk levels. Additionally, the 

Figure 12: RO 𝛺 = 𝑑𝑖𝑎𝑔(𝛴) weights 

Figure 11: BLM worst scenario weights 
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model gives a predominant role to the Healthcare sector and to the Consumer Staples sector, 

distinguishing from the precedent models. 

 

In figure 12 are plotted the weights considering, as uncertainty matrix, the best choice provided by 

C. Yin et al. 2020, namely 𝛺 = 𝑑𝑖𝑎𝑔(𝛴).  

 

It will be interesting take a look to the other 3 cases to see the differences in terms of allocation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

About Figure 13, we can see the results that we expect, indeed using as uncertainty matrix the 

historical covariance matrix we obtain the same results of Markowitz optimization with the 

allocations divided between two assets. About figure 14 and 15, instead we can see results that differ 

Figure 13: RO 𝛺 = 𝛴 weights Figure 14: RO 𝛺 = 𝐼 weights 

Figure 15: RO 𝛺 = 𝑠𝑞𝑟𝑡(𝑑𝑖𝑎𝑔(𝛴)) weights 
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from the case of 𝛺 = 𝑑𝑖𝑎𝑔(𝛴) not so much as figure 11, but it is clear that we have allocations 

characterized by something like an “equal weighted approach” compared to figure 12. 

We will check with no-rebalance approach if taking 𝛺 = 𝑑𝑖𝑎𝑔(𝛴) will be the right choice in 

performance terms. 

 

First of all, we have to specify that the portfolios taken in consideration will be three:  Low volatility 

(Portfolio 2), Middle volatility (Portfolio 5), High volatility (Portfolio 9). What do they mean these 

three entries? We recall that we have defined ten different level of risk that corresponds to ten 

different optimal portfolios. With the help of a MATLAB function, these ten optimal portfolios are 

placed on the efficient frontier of each model equally spaced one from the other. This procedure 

helps us to obtain optimal portfolios with standardized risk levels and it is necessary because each 

model presents a different efficient frontier. 

 

About the low volatility portfolio and high volatility portfolio, we have not chosen Portfolio 1 and 

10 to avoid extreme allocations and, as a consequence, to be more near to real allocations that will 

be chosen by investors. Here we present a table that summarizes the output weights for every model 

taking in consideration the three portfolios specified above: 

 

LOW VOLATILITY 

 MV BLM BLM-basic BLM-best BLM-worst 

Telecomm. 0 5.99% 5.57% 4.12% 7.24% 

Utilities 0 3.74% 3.24% 3.54% 3.51% 

Materials 0 0 0 0 0 

IT 0 17% 16.91% 15.25% 14.10% 

Industrials 0 0 0 0 4.90% 

Healthcare 11.11% 14.16% 13.76% 14.54% 12.40% 

Financials 0 0 0 0 0 

Energy 0 0 0 0 0 

Cons. Staples 88.89% 59.11% 60.52% 62.55% 57.85% 

Cons. Discr. 0 0 0 0 0 

Table 2a: Low volatility portfolios weights 
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 RO Ω = diag(Σ) RO Ω = Σ RO Ω = I RO Ω = sqrt(diag(Σ)) 

Telecomm. 8.36% 0 8.75% 8.80% 

Utilities 12.16% 0 10.03% 11.33% 

Materials 5.60% 0 9.95% 7.85% 

IT 9.41% 0 10.75% 10.44% 

Industrials 8.07% 0 9.97% 9.35% 

Healthcare 16.77% 11.11% 11.01% 13.95% 

Financials 1.88% 0 7.43% 4.10% 

Energy 5.20% 0 10.71% 7.84% 

Cons. Staples 23.96% 88.89% 10.75% 16.36% 

Cons. Discr. 8.59% 0 10.66% 9.98% 
Table 2b: Low volatility portfolios weights 

 

From table 2a and 2b we have a numerical view of the figures presented before. We recall that these 

two tables refer to the level of risk 2. We can notice that, going from Markowitz optimization to RO, 

diversification among all sectors increases. BLM variants are characterized by over allocating IT and 

Consumer staples sector. On the other hand, RO differentiates from BLM because it over allocates 

Utilities and Healthcare sectors, with Consumer staples sector which is common to both models.  

Coming back to BLM, it is clear that, in low volatility framework, views are not well incorporated 

because the allocations in sectors considered by the views go down comparing BLM without views 

with the other variants.  

 

MIDDLE VOLATILITY 

 MV BLM BLM-basic BLM-best BLM-worst 

Telecomm. 0 11.07% 11.02% 11.01% 10.79% 

Utilities 0 2.51% 2.39% 1.16% 3.54% 

Materials 0 3.05% 3.11% 4.16% 1.90% 

IT 0 31.16% 33.97% 44.05% 18.62% 

Industrials 0 7.98% 9.62% 7.78% 8.07% 

Healthcare 44.44% 13.66% 13.42% 18.02% 8.93% 

Financials 0 11.72% 10.12% 7.24% 15.48% 

Energy 0 3.10% 1.01% 3.44% 2.57% 

Cons. Staples 55.56% 0.59% 0 0 4.83% 

Cons. Discr. 0 15.16% 15.34% 3.16% 25.26% 

Table 3a: Middle volatility portfolios weights 
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 RO Ω = diag(Σ) RO Ω = Σ RO Ω = I RO Ω = sqrt(diag(Σ)) 

Telecomm. 1.21% 0 4.66% 2.59% 

Utilities 10.51% 0 10.01% 10.44% 

Materials 4.63% 0 9.74% 7.01% 

IT 11.21% 0 13.04% 12.60% 

Industrials 6.73% 0 9.8% 8.44% 

Healthcare 21.52% 44.44% 14.14% 18.12% 

Financials 0 0 0 0 

Energy 6.14% 0 12.91% 9.37% 

Cons. Staples 28.13% 55.56% 13.01% 19.69% 

Cons. Discr. 9.90% 0 12.68% 11.73% 
Table 3b: Middle volatility portfolios weights 

 

Table 3a and 3b proposed us a different situation. Increasing the risk propensity, MV increases the 

weight of Healthcare sector, BLM variants increase the diversification in their optimal portfolios 

while RO confirmed its variegated allocation. Differently from the low volatility situation, views are 

very well incorporated by BLM variants, easily seen by over/under allocation of the sectors 

interested by the views (IT, Energy, Industrials for basic scenario, IT, Healthcare, Materials for 

best/worst scenarios).  

 

HIGH VOLATILITY 

 MV BLM BLM-basic BLM-best BLM-worst 

Telecomm. 0 0 0 0 0 

Utilities 0 0 0 0 0 

Materials 0 20.63% 22.84% 21.48% 17.11% 

IT 0 0 2.49% 0.95% 0 

Industrials 0 0 0 0 0 

Healthcare 88.89% 0 0 0 0 

Financials 0 74.59% 74.67% 72.05% 76.79% 

Energy 0 4.78% 0 5.52% 3.58% 

Cons. Staples 11.11% 0 0 0 0 

Cons. Discr. 0 0 0 0 2.52% 

Table 4a: High volatility portfolios weights 
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 RO Ω = diag(Σ) RO Ω = Σ RO Ω = I RO Ω = sqrt(diag(Σ)) 

Telecomm. 0 0 0 0 

Utilities 0 0 0 0 

Materials 0 0 0 0 

IT 9.30% 0 15.51% 11.98% 

Industrials 0 0 0 0 

Healthcare 69.72% 88.89% 59.20% 64.88% 

Financials 0 0 0 0 

Energy 2.51% 0 10.37% 5.46% 

Cons. Staples 18.47% 11.11% 14.01% 17.68% 

Cons. Discr. 0 0 0.91% 0 
Table 4b: High volatility portfolios weights 

 

Table 4a and 4b provide a very particular situation. MV continues with the tendency to over allocate 

Healthcare sector. BLM variants have very concentrated portfolios, mainly in Materials and 

Financials sector, implying that also for this risk propensity views do not work in the proper way. 

Even for RO we have a surprising result, indeed the optimal portfolio is composed only by four 

sectors with a 69.72% allocated in Healthcare sector. 

 

We can make a brief recap of models behaviour. Increasing the risk propensity: 

• MV over allocates gradually Healthcare sector, deducing that it may be the return driver for 

Markowitz approach, against Consumer staples sector. 

• BLM variants start with good diversified portfolios with a poor implementation of the views, 

passing to very diversified portfolios with views that work in a proper way and concluding 

with portfolios concentrated in four assets with the absence of views consideration. 

• RO present largely diversified portfolios for the first two level of risk, while, in the high return 

situation, RO loses the good diversification for a concentrated portfolio in four assets. The 

common factor is the increment of the allocation in Healthcare and Consumer staples sector. 

From this fact we can immediately see that, in contrast with MV approach, RO presents more 

stability because it is true that is going to search more return with aggressive sectors (i.e. 

Healthcare) but it does not “forget” to maintain in its optimal portfolio more defensive sectors 

(i.e. Consumer staples) to maintain a good ratio between risk and return. 
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5.2 Out-of-sample analysis 

 

Now we will focus on the evaluation of the performance of these models with back testing. After 

the construction of the portfolios done with the models in the in-sample period, we will assess the 

results of them during the out-of-sample period, as if all data after 31st December 2014 is unknown. 

We recall that the latter goes from 2nd January 2015 to 30th September 2020 with a daily interval, so 

we will have 1447 observations that give us the possibility to obtain a good analysis. 

 

We will start with the evaluation of Markowitz portfolios, going on with BLM without specifying 

any views. Then we will consider portfolios come out from BLM with the three different scenarios 

explained yet: 

1) Basic Scenario 

a. IT sector performs 20% (uncertainty 5%) 

b. Energy sector performs -15% (uncertainty 5%) 

c. Industrials sector overperforms Financials sector by 12% (uncertainty 5%) 

 

2) Best Scenario 

a. Healthcare sector overperforms Financials sector by 34,78% (uncertainty 5%) 

b. IT sector overperforms Consumer Discretionary sector by 84,97% (uncertainty 5%) 

c. Materials sector overperforms Utilities sector by 5,81% (uncertainty 5%) 

 

3) Worst Scenario 

a. Healthcare sector underperforms Financials Sector by 34,78% (uncertainty 5%) 

b. IT sector underperforms Consumer discretionary sector by 84,97% (uncertainty 5%) 

c. Materials sector underperforms Utilities sector by 5,81% (uncertainty 5%) 

 

The confidence level has been calibrated at 5% for all scenarios, following the level mostly used in 

the literature to produce meaningful results. In general, the range between 5% and 25% is acceptable.  

We remark that the two extreme cases of BLM, best and worst scenario, will be useful to understand 

if there is a margin to impact the performances with views formulation, but they are constructed in 

an artificial way so they will not be considered as best models to be picked. Finally, we will evaluate 
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the performance of RO portfolios, including all the alternatives about the choice of the uncertainty 

matrix. This will permit us to check if the choice proposed by the literature is the best also in our 

empirical application. We recall that out-of-sample analysis will be conducted in two alternative 

ways: without portfolios rebalancing and with a 5 days rebalance, explained yet. Before to start with 

them it is necessary an analysis of the behaviour of single sectors that represent our asset universe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

From figure 16 we can see that until 2017 there are not big differences in sectors’ performances. In 

the last three years IT, Consumer discretionary and Healthcare sectors stand out in a positive 

manner compared to the others, in particular they gain a lot during the pandemic period. On the 

other hand, Energy sector has suffered a lot Covid 19 crisis. 

 

 Telecomm. Utilities Materials IT Industrials 

Total return 13% 10% 13% 153% 17% 

Mean return 4.23% 3.89% 4.68% 18.99% 5.09% 

Volatility (𝜎) 20.12% 20.71% 21.96% 23.51% 21.42% 

Sharpe ratio 14.02% 11.96% 14.89% 74.80% 17.21% 

Table 5: Sectors basic statistic 

 Healthcare Financials Energy Cons. staples Cons. Discr. 

Total return 40% 1% -71% 23% 90% 

Mean return 7.62% 3.19% -16.58% 4.89% 13.13% 

Volatility (𝜎) 18.64% 24.37% 30.47% 15.95% 19.57% 

Sharpe ratio 33.30% 7.29% -59.04% 21.83% 59.87% 

Figure 16: Sectors total return 
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Table 5 represents the basic statistic of the single assets. We are able to see that the good results of 

SP&500 are mainly due to IT, Consumer discretionary and Healthcare sectors, indeed they have the 

best Sharpe ratios, a good summarizer of risk/return results (a brief description of it will be provided 

in the next section). Energy sector is the worst performer among all.  

Considering these results, we can better understand the differences in allocation terms between MV 

and RO. We recall that both models are focused on Healthcare and Consumer staples sectors, but 

between the two models, RO demonstrates a higher diversification and stability with a higher 

homogeneity in allocation between the two sectors. We can explain this approach with the fact that 

Consumer staples sector has the lowest volatility among all sectors, so it contributes to maintain the 

risk level under control against the weight increment of Healthcare sector, the aggressive one. At 

the same time, MV is not able to implement this fact and increments the allocation of Healthcare 

sector increasing the risk propensity without a counterweight. 

Table 6: Sectors correlation 

 

We can conclude the analysis of the single sectors with the correlation matrix, that is very important 

to understand the relation among all the assets.  

We observe that the correlations are mainly included between 0.5 and 1. This is an expected result 

because all these sectors are contained in the same index, but nevertheless there are sectors more 

correlated than others and will be interesting to see how this will influence the performance of the 

various models. In particular, we observe a high correlation with other sectors for Consumer 

discretionary, Financials and Industrials sector. 

 Telec. Util. Mat. IT Indus. Health. Financ. Ener. Cons. 

Stap. 

Cons. 

Disc. 

Telec. 1 0.5252 0.6494 0.7160 0.6826 0.6475 0.6517 0.5649 0.6753 0.7434 

Util. 0.5252 1 0.5453 0.5130 0.5692 0.5752 0.5161 0.4380 0.7475 0.5052 

Mat. 0.6494 0.5453 1 0.7751 0.8927 0.7431 0.8412 0.7745 0.6862 0.7935 

IT 0.7160 0.5130 0.7751 1 0.8030 0.7944 0.76 0.6291 0.6992 0.8874 

Industr. 0.6826 0.5692 0.8927 0.8030 1 0.7715 0.8945 0.7784 0.7162 0.8323 

Health. 0.6475 0.5752 0.7431 0.7944 0.7715 1 0.7465 0.5982 0.7360 0.7733 

Financ. 0.6517 0.5161 0.8412 0.76 0.8945 0.7465 1 0.7648 0.6739 0.7930 

Ener. 0.5649 0.4380 0.7745 0.6291 0.7784 0.5982 0.7648 1 0.5335 0.6614 

Cons. 

Stap. 

0.6753 0.7475 0.6862 0.6992 0.7162 0.7360 0.6739 0.5335 1 0.7020 

Cons. 

Discr. 

0.7434 0.5052 0.7935 0.8874 0.8323 0.7733 0.7930 0.6614 0.7020 1 
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5.2.1 No-rebalance approach 

 

In this section we will evaluate performances of the portfolios constructed with in-sample data 

without modify the weights for all the out-of-sample period. 

We will go through the analysis making an initial comparison among the models grouped for level 

of risk (low volatility, middle volatility and high volatility) and at the end we will select the final 

best choice on the basis of risk level. In the comparison we will include also the S&P 500, as a 

benchmark, to understand if the models are able to beat the market. 

We will analyse portfolios taking in consideration the basic statistics like total return, mean, 

volatility and Sharpe ratio. Additionally, we will calculate the Information ratio. Sharpe ratio is a 

very popular measure of performance that measures the amount of return per unit of risk taken, 

measured with standard deviation of returns. Information Ratio is an indicator calculated as the 

ratio between the excess return of the portfolio compared to the benchmark and the Tracking Error 

Volatility (volatility of the differential returns of the portfolio with respect to a benchmark). It gives 

the possibility to evaluate the manager's ability to outperform the benchmark in relation to the risk 

assumed (represented by the deviation from the benchmark). 

 

After this, we will go on with additional measures of risk exposure. 

Maximum drawdown (MDD) measures the maximum fall in the value of the portfolio, as given by 

the difference between the value of the lowest trough and that of the highest peak before the trough. 

Downside volatility takes into account the fact that volatility is a symmetric measure. It only focuses 

on the negative returns when computing volatility and disregards the "positive" volatility (due to 

positive returns). Value at Risk, on the other hand, answers to the question: what is the return that 

I will observe in the worst 5% of possible scenarios?". To proxy this quantity, we use the empirical 

5% quantile of the distribution. Expected Shortfall (ES) is a concept very close to VaR. If the VaR 

tells us what the 5% worst scenario is, ES tells us what the expected loss is given that we are in the 

worst 5% of possible outcomes. Using the downside risk measure we also provide another 

performance measure, the Sortino Ratio. The concept is analogous to the Sharpe Ratio but uses 

downside volatilities instead of normal standard deviations. 

Remark: all the indicators are annualized (considering 252 business days in a year) and expressed 

in percentage, with the exception of Sortino ratio that is in absolute value. 
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5.2.1.1 Low volatility 

 

Starting from low volatility portfolios, we present a table that summarizes the total return of them.  

 

 

 

 

 

 

 

 

 

Table 7: Low volatility portfolios total return 

 

From table 7 is evident that MV is the worst among them, the only one under 30% of total return. 

Concerning BML framework, we can confirm that views impact is not very relevant, indeed we can 

see that among the total return of all BLM optimizations is very similar. About the various RO 

optimizations, from a total return point of views the literature is confirmed indeed the best approach 

is RO with Ω = diag(Σ). Concluding, among low volatility portfolios, the best model in terms of total 

return results the BLM without views, but the basic scenario case is very close. We highlight that no 

one model is able to overperform the market, only BLM is very close to S&P500. 

 

 

 

 

 

 

 

 

 

 

 

 Total return 

MV 24.95% 

BLM 46.58% 

BLM-basic 46.50% 

BLM-best 44.56% 

BLM-worst 42.13% 

RO Ω = diag(Σ) 35.33% 

RO Ω = Σ 24.95% 

RO Ω = I 30.81% 

RO Ω = sqrt(diag(Σ)) 33.94% 

Market 47.40% 

Figure 17: Low volatility portfolios total return 
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Figure 17 presents the evolution of total return of low volatility portfolios on the out-of-sample 

period. 

 

 Mean return Volatility (𝜎) Sharpe ratio Information ratio 

MV 5.19% 15.76% 24.01% -32.97% 

BLM 7.60% 16.24% 38.10% -13.59% 

BLM-basic 7.58% 16.23% 38.03% -13.67% 

BLM-best 7.37% 16.16% 36.92% -15.98% 

BLM-worst 7.15% 16.21% 35.39% -20.55% 

RO Ω = diag(Σ) 6.06% 17.02% 27.33% -60.04% 

RO Ω = Σ 5.19% 15.76% 24.01% -32.97% 

RO Ω = I 5% 18.40% 19.51% -119.65% 

RO Ω = sqrt(diag(Σ)) 5.64% 17.68% 23.94% -90.21% 

Market 8.56% 18.86% 37.90%  
Table 8: Low volatility portfolios basic statistic 

 

Table 8 evidence that among all the low volatility portfolios, the best picking will be indifferent 

between BLM without views or BLM-basic. About RO variants, also from a risk/return point of view 

RO Ω = diag(Σ) is the best choice, so we will consider it the relevant RO. We can observe that MV is 

clearly more conservative compared to RO, despite it has a lower Sharpe ratio. In every case, they 

are united by the fact that BLM and BLM basic exploit completely them from return and risk point 

of view, clearly summarized by the Sharpe ratios. It is interesting the fact that BLM and BLM basic 

overperform the market from a Sharpe ratio, while their Information ratios are negatives. This 

means that two BLM variants perform better per unit of total volatility, but it is not the case per unit 

of volatility of the portfolio’s differential returns relative to a benchmark (i.e. TEV). In other words, 

BLM approaches do not over perform the market. 
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 Maximum 

drawdown 

Downside risk VaR (95%) ES (95%) Sortino ratio 

MV 26.95% 0.62% -22.3% -38.21% 5.94 

BLM 29.47% 0.67% -23.47% -39.94% 9.10 

BLM-basic 29.38% 0.67% -23.53% -39.92% 9.03 

BLM-best 29.24% 0.66% -23.53% -39.67% 8.82 

BLM-worst 29.97% 0.66% -23.64% -39.98% 8.48 

RO Ω = diag(Σ) 33.65% 0.70% -23.29% -42.69% 6.52 

RO Ω = Σ 26.95% 0.62% -22.3% -38.21% 5.94 

RO Ω = I 36.38% 0.78% -25.85% -46.84% 4.55 

RO Ω = sqrt(diag(Σ)) 35.03% 0.74% -24.75% -44.74% 5.58 

Market 36.10% 0.79% -27.68% -48.41% 8.95 

Table 9: Low volatility portfolios risk exposure measures 

 

Table 9 provide us a clear ranking in terms of risk exposure. We start with MV, that presents the 

lowest values for every indicator. Then we go through BLM variants, which have similar values 

among themselves. RO variants have the worst values with the exception of VaR, that is lower than 

BLM variants one. Additionally, all models present a lower risk exposure compared to the market 

but, despite this, only BLM variants present a higher Sortino ratio. This means that they have the 

better trade-off between negative outcomes and average returns. 
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5.2.1.2 Middle volatility 

 

Now we present the total return of middle portfolios in the following table: 

 Total return 

MV 30.62% 

BLM 68.55% 

BLM-basic 74.52% 

BLM-best 78.81% 

BLM-worst 57.84% 

RO Ω = diag(Σ) 39.96% 

RO Ω = Σ 30.62% 

RO Ω = I 35.69% 

RO Ω = sqrt(diag(Σ)) 38.94% 

Market 47.40% 
Table 10: Middle volatility portfolios total return 

 

In this risk framework, the power of views comes out, indeed from the worst scenario to the best 

scenario there is a big difference in total return, namely 20,97%. BLM basic scenario performs 

somewhat below BLM best, it means that views of basic scenario are very good. About other models, 

RO and Markowitz increase their performances, but not sufficiently to beat the market. On the other 

hand, all BLM approaches are able to beat the benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 presents the evolution of total return on the out-of-sample period. 

Figure 18: Middle volatility portfolios total return 
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 Mean return Volatility (𝜎) Sharpe ratio Information ratio 

MV 6.10% 15.98% 29.38% -30.20% 

BLM 9.95% 19.51% 43.78% 76.70% 

BLM-basic 10.84% 19.56% 48.20% 106.68% 

BLM-best 10.92% 20% 47.54% 85.64% 

BLM-worst 8.93% 18.95% 39.70% 20.65% 

RO Ω = diag(Σ) 6.45% 17.01% 29.61% -49.89% 

RO Ω = Σ 6.10% 15.98% 29.38% -30.20% 

RO Ω = I 5.26% 18.26% 21.07% -107.89% 

RO Ω = sqrt(diag(Σ)) 6% 17.62% 26.03% -78.08% 

Market 8.56% 18.86% 37.90%  
Table 11: Middle volatility portfolios basic statistic 

 

In the middle volatility framework, despite BLM approaches volatility levels increase, they have 

high Sharpe ratios. Additionally, positive Information ratios demonstrate that they over perform 

the market with conviction. In particular we will pick BLM basic scenario. About RO, the best 

performer is still RO Ω = diag(Σ) and it is interesting the fact that middle portfolio presents the same 

volatility of low volatility portfolio. Taking a look to the high return portfolio we will see if RO Ω =

diag(Σ) is able to maintain this trend of low volatility level and obtain better returns at the same time. 

 

 Maximum 

drawdown 

Downside risk VaR (95%) ES (95%) Sortino ratio 

MV 28.04% 0.62% -22.72% -38.85% 7.22 

BLM 35.49% 0.81% -28.33% -50.24% 10.16 

BLM-basic 35.28% 0.81% -28.38% -50.28% 11.20 

BLM-best 34.91% 0.82% -29.19% -51.38% 11.09 

BLM-worst 35.83% 0.78% -27.50% -48.80% 9.24 

RO Ω = diag(Σ) 33.03% 0.68% -23.29% -42.56% 7.10 

RO Ω = Σ 28.04% 0.62% -22.72% -38.85% 7.22 

RO Ω = I 35.50% 0.75% -25.67% -46.42% 4.95 

RO Ω = sqrt(diag(Σ)) 34.31% 0.72% -24.33% -44.54% 6.15 

Market 36.10% 0.79% -27.68% -48.41% 8.95 

Table 12: Middle volatility portfolios risk exposure measures 

 

Table 12 presents a different situation compared to low volatility framework. Risk exposure of all 

models increases, with the exception of RO Ω = diag(Σ), confirming the stability noted before also 

from volatility. Despite this, it is not sufficient to obtain a better result in terms of Sortino ratio 
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compared to one of the market. However, BLM variants confirm their good results for this risk 

propensity considering Sortino ratio values. 

 

5.2.1.3 High volatility 

 

Now we present the total return of high volatility portfolios in the following table: 

 

 

 

 

 

 

 

 

Table 13: High volatility portfolios total return 

 

For a higher propensity to risk, it is impressive to see that BLM fails completely the task. From the 

graph below it is clear that COVID-19 crisis impacted in a big manner BLM approach, no matter the 

views included. Equally impressive is the fact that Markowitz approach is close to the RO model, 

which in this case is the best in terms of total return. Additionally, it is interesting the fact that, for 

aggressive portfolio, all types of RO are very close. 

 

 

 

 

 

 

 

 

 

 

 Total return 

MV 38.19% 

BLM 0.27% 

BLM-basic 7.77% 

BLM-best 1.29% 

BLM-worst 2.92% 

RO Ω = diag(Σ) 44.70% 

RO Ω = Σ 38.19% 

RO Ω = I 44.24% 

RO Ω = sqrt(diag(Σ)) 44.59% 

Market 47.40% 

Figure 19: High volatility portfolios total return 
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Table 14: High volatility portfolios basic statistic 

 

From the table above we can see that BLM results are in free fall, with an increase in volatility and 

a fall of mean return. The result is that Sharpe ratios are very bad. About RO Ω = diag(Σ), the stable 

tendency noted before is confirmed indeed the volatility is slightly higher than low volatility and 

middle portfolio framework, but is a little increment compared to the return one. We can conclude 

that increasing the risk propensity, it is evident the RO exploit compared also to Markowitz 

optimization, but, taking a look to Information ratios, it is still insufficient for RO to overperform 

the benchmark. 

 

 Maximum 

drawdown 

Downside risk VaR (95%) ES (95%) Sortino ratio 

MV 29.90% 0.71% -26.53% -44.05% 8.07 

BLM 46.57% 0.92% -34.25% -58.62% 1.20 

BLM-basic 44.50% 0.92% -34.07% -58.01% 2.67 

BLM-best 46.21% 0.93% -34.28% -58.45% 1.22 

BLM-worst 45.81% 0.93% -33.88% -58.49% 1.66 

RO Ω = diag(Σ) 30.17% 0.70% -25.04% -43.43% 8.44 

RO Ω = Σ 29.90% 0.71% -26.53% -44.05% 8.07 

RO Ω = I 31.74% 0.74% -25.64% -45.71% 6.67 

RO Ω = sqrt(diag(Σ)) 30.73% 0.71% -25.42% -44.12% 7.82 

Market 36.10% 0.79% -27.68% -48.41% 8.95 

Table 15: High volatility portfolios risk exposure measures 

 

Table 15 presents predictable results, with an increasing of the risk exposure due to the higher risk 

propensity. RO Ω = diag(Σ) continues to be an exception in this sense, with values in line with them 

 Mean return Volatility (𝜎) Sharpe ratio Information ratio 

MV 7.32% 17.92% 32.96% -14.63% 

BLM 2.55% 23.29% 4.89% -63.04% 

BLM-basic 3.92% 23.04% 10.90% -50.67% 

BLM-best 2.56% 23.20% 4.98% -64.20% 

BLM-worst 2.98% 23.24% 6.77% -58.97% 

RO Ω = diag(Σ) 7.57% 17.60% 34.97% -14.81% 

RO Ω = Σ 7.32% 17.92% 32.96% -14.63% 

RO Ω = I 6.54% 18.19% 28.20% -39.45% 

RO Ω = sqrt(diag(Σ)) 7.18% 17.76% 32.47% -23.02% 

Market 8.56% 18.86% 37.90%  
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of lower risk propensities and in particular the maximum drawdown is the lowest. RO Ω = diag(Σ) 

obtains a good Sortino ratio but not enough to beat the market. 

 

Now we can summarize the choices that we have done in risk/return terms. 

 

 Total 

return 

Mean 

return 

Volatility (𝜎) Sharpe 

ratio 

Information 

ratio 

BLM (low volatility) 46.58% 7.60% 16.24% 38.10% -13.59% 

BLM-basic (middle volatility) 74.52% 10.84% 19.56% 48.20% 106.68% 

RO Ω = diag(Σ) (high volatility) 44.7% 7.57% 17.60% 34.97% -14.81% 

Market 47.4% 8.56% 18.86% 37.90%  

Table 16: Basic statistic summary 

 

From this table we notice some interesting facts. First, we observe that low volatility BLM portfolio 

overperform the RO high volatility portfolio due to the fact that RO volatility is higher while the 

mean return is practically the same. Second, only BLM-basic overperform the market with 

conviction, while BLM low volatility performs mainly the same from Sharpe ratio point of view. 

Third, total return of all approaches perfectly reflects the Sharpe ratios. Fourth, RO high volatility 

portfolio has a lower volatility compared to the middle volatility portfolio obtained with BLM, but 

there is no challenge about the return. Usually, increasing the risk propensity, the volatility increases 

in a significant manner, while, in the RO case, we observe that the increment in volatility is very 

moderate. We can find the cause of this phenomena in the correlation among assets and the 

particular feature of RO, namely the stability and the high level of diversification. We have seen 

before that the correlations among assets are very high because they are included in the same index. 

Given that, analysing the allocation weights of RO, we can see that going from low volatility 

portfolio (Portfolio 2) to high volatility portfolio (Portfolio 9), we have an increasing concentration 

in Healthcare and Consumer Staples sectors and these two sectors have a correlation of 0.7360, so 

they go mainly in the same direction. Additionally, they have the lowest values of volatility among 

all the assets. The combination of these two facts conducts to argue that, in this case, a lower 

diversification is a good fact and permits to RO model to maintain stable the overall risk increasing 

risk propensity.  
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In the following graph we plot total return of chosen models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Maximum 

drawdown 

Downside 

risk 

VaR 

(95%) 

ES 

(95%) 

Sortino 

ratio 

BLM (low volatility) 29.47% 0.67% -23.47% -39.94% 9.10 

BLM-basic (middle volatility) 35.28% 0.81% -28.38% -50.28% 11.20 

RO Ω = diag(Σ) (high volatility) 30.17% 0.70% -25.04% -43.43% 8.44 

Market 36.10% 0.79% -27.68% -48.41% 8.95 

Table 17: Risk exposure measures summary 

 

We notice from the table above that we have higher values for the middle volatility portfolio. This 

is a direct consequence of the RO exception. However, taking a look to the Sortino ratio, that 

summarizes the trade-off between negative outcomes and average returns, we observe that the best 

result is provided by BLM-basic middle volatility portfolio. 

 

 

 

 

 

 

Figure 20: Best portfolios total return 
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5.2.1.4 Summary 

 

From the analysis above we can summarize some general facts about all models. First, among all 

four variants of RO the choice falls on the alternative indicated by the literature, indeed it 

overperforms the other options for every risk propensity. Second, only BLM approaches in middle 

volatility framework overperform with conviction the market, while low volatility BLM is very 

similar to the benchmark. This is highlighted by the fact that views work in the proper way in middle 

volatility situation. Third, we have a performance escalation of RO from low volatility to high 

volatility portfolios. Fourth, Markowitz approach is always beaten by other models. 

 

• In the low volatility environment, MV is the most conservative model while RO is the most 

exposed portfolio despite the high level of diversification. BLM variants outstanding MV and 

RO models, and in particular BLM standard provides very good results so we can conclude 

that views are not relevant due to the composition of the BLM optimal portfolios. All 

information ratios negative mean that all models are not able to beat the market. On the other 

hand, from a risk exposure point of view, BLM variants perform better than the market 

thanks to Sortino ratios higher than the benchmark one. 

• In the middle volatility framework, we can see a big exploit of BLM approaches, despite the 

ascent of MV and RO models. In particular, all models increase volatility and return with the 

exception of RO that maintain a stable level of risk. In this case we can see a great influence 

of the views expressed, indeed all BLM with views are the best models on every level. BLM 

variants overperform the market, testified by Information ratios positive and Sortino ratios 

higher than the market one. 

• In the high volatility context, we can see a fully debacle of BLM approaches, mainly due to 

COVID-19 crisis, in favour of MV and especially of RO. It is interesting to observe that in this 

situation BLM come back to a situation where the views do not have a big effect on the 

performances. We observe a RO exploit thanks to the ongoing stability of volatility and risk 

exposure but is still not sufficient to beat the market. 

 

Concluding, increasing the risk propensity we can see that we go from good results of BLM to an 

outstanding of RO. In a low volatility environment, it is better making a BL optimization starting 
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from neutral weights with a negligible influence of the views. In this optimal portfolio we detect 

three main sectors: Consumer staples, IT and Healthcare. 

About middle volatility, the importance of the views arises, and we will shift to BLM-basic. The 

optimal allocation is high diversified, and we find five main sectors: IT, Consumer discretionary, 

Healthcare, Financials and Telecommunication. 

Finally, when the risk is higher, RO stability becomes the winning strategy despite the poor 

diversification of the optimal portfolio. In particular, we note two main sectors: Healthcare and 

Consumer staples. These two sectors are identified also in the optimal low volatility portfolio, so 

this is another point in favour of the RO capacity to maintain a less risky portfolio despite the 

increment of risk propensity. 

Without considering risk propensity distinction, our best choice from all points of view is middle 

volatility portfolio constructed with BLM-basic, marked by an elevate diversification that gives the 

possibility to work in a proper manner to the views. 

 

 Low volatility Middle volatility High volatility 

Choice BLM BLM-basic RO Ω = diag(Σ) 

Table 18: Best models choice 
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5.2.2 Rebalance approach 

 

In this section we will provide a performance analysis making a step ahead. We will not use the 

same weights calculated in the in-sample period, instead we will make a periodic rebalance of the 

optimal weights, in particular every 5 days. In practical terms, after the first 5 days of the out-of-

sample period the optimizer recalculates the weights on the basis of data of the in-sample period 

plus the 5 days additional and this process go ahead for all the out-of-sample period. It is intuitive 

that with approach we will have a more dynamic process that gives the possibility to the models to 

work in a better way, due to the higher quantity of information that they will process.  We highlight 

that we provide a starting value of 100 to the portfolios to evaluate their performances. 

We will apply the same schedule of the previous section: before we make a comparison of the 

models grouped by risk propensity, then we will make a final confrontation among the best models 

for each level of risk using the performance indicators used before. Concerning the four different 

cases of RO, we decided to limit the analysis only to the RO Ω = diag(Σ) because we have seen in the 

previous section that it is optimal, compared to other cases, in all situations. This conclusion is 

supported by the literature, as we mentioned. 

 

5.2.2.1 Low volatility 

 

As usual, we will start with less risky portfolios providing the total return of them. 

 

 Total return 

MV 34.55% 

BLM 62.85% 

BLM-basic 62.78% 

BLM-best 61.74% 

BLM-worst 61.31% 

RO Ω = diag(Σ) 52.14% 

Market 47.40% 

Table 19: Low volatility portfolios total return 

 

Looking at table 19, we will observe many similarities with the results of no-rebalance approach. 

The proportions among the models results are very similar, indeed BLM still performs very well in 
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all of his variants, the role of the views is not very relevant and the differences compared to 

Markowitz and RO are mainly the same. However, in absolute terms the results are very different, 

because all models have performed better than the previous approach, in particular Markowitz 

makes an increment in the order of 10%, while BLM and RO in the order of 16%. Considering these 

numbers, the other important difference is that all the models overperformed the market, with the 

only exception of Markowitz. 

 

Below we will provide, as usual, the graph representing the trend during the out-of-sample period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the following graphs we will see how the various sectors contribute to the portfolio value for each 

model. 

 

 

 

 

 

 

 

 

Figure 21: Low volatility portfolios total return 

Figure 22: MV low volatility sectors contribution 
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About MV optimization, we can see that the dynamic is provided mainly by the Consumer staples 

sector, while the Healthcare sector is practically constant overtime. It is immediately evident the 

advantage of rebalancing: in this case it gives the possibility to overweight the portfolio in the 

Consumer staples sector to obtain better results in terms of total return. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have regrouped all the four graphs because the influence of the views is irrelevant for this risk 

propensity, as a consequence all four variants of BLM are mainly the same. We immediately notice 

that the main contributors are IT sectors, Healthcare sector and Consumer staples sector, with the 

latter especially relevant. Even for BLM, the dynamical rebalancing provides better results. 

 

Figure 23: BLM low volatility 

sectors contribution 
Figure 24: BLM basic low volatility 

sectors contribution 

Figure 25: BLM-best low volatility 

sectors contribution 
Figure 26: BLM worst low volatility 

sectors contribution 
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About RO, we can observe a higher level of diversification with the involvement of all sectors in the 

optimal portfolio. All sectors present a high level of stability, but also for RO we can identify three 

driving assets, namely IT, Healthcare and Consumer staples sectors. 

 

In the table below we provide the same indicators used in the previous section to understand models 

performances from a risk/return point of view. 

 

 Mean return Volatility (𝜎) Sharpe ratio Information ratio 

MV 6.41% 15.74%  31.77%  -20.64% 

BLM 9.88% 16.62% 50.98% 21.05% 

BLM-basic 9.87% 16.61% 50.94% 20.83% 

BLM-best 9.75% 16.56% 50.37% 18.66% 

BLM-worst 9.71% 16.59% 50.04% 18.60% 

RO Ω = diag(Σ) 8.76% 17% 43.25% 5.16% 

Market 8.56% 18.86% 37.90%  

Table 20: Low volatility portfolios basic statistic 

 

From table 20 we can see that the model ranking is the same of no-rebalance approach, but there are 

some interesting facts. First, better performances are due to the return increase because volatility 

levels are mainly the same among BLM variants and RO. Second, RO reduces the distance from 

BLM variants, that still remain the best models for this risk propensity. Additionally, all models, 

with the exception of MV, are able to beat the market. 

Figure 27: RO low volatility sectors contribution 
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 Maximum 

drawdown 

Downside risk VaR (95%) ES (95%) Sortino ratio 

MV 25.12% 0.60% -22.18% -37.62% 7.94 

BLM 27.39% 0.65% -24.19% -40.47% 12.31 

BLM-basic 27.36% 0.65% -24.22% -40.47% 12.30 

BLM-best 27.31% 0.65% -24.10% -40.47% 12.16 

BLM-worst 27.60% 0.65% -24.18% -40.47% 12.12 

RO Ω = diag(Σ) 31.57% 0.68% -23.07% -42.10% 10.43 

Market 36.10% 0.79% -27.68% -48.41% 8.95 

Table 21: Low volatility portfolios risk exposure measures 

 

Table 21 provides us a non-uniform situation. About maximum drawdown and downside risk we 

note slightly better results than no-rebalance approach, while from VaR and ES point of view we 

identify a worst situation. This tells us that the stability of the models is improved, but at the same 

time, if one of the worst scenarios occur, we will have greater losses. The increased stability is 

confirmed by Sortino ratio values that overperform the market with conviction. 
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5.2.2.2 Middle volatility 

 

 

 

 

 

 

 

Table 22: Middle volatility portfolios total return 

 

From table 22 we can see that the exploit of BLM compared to Markowitz and RO is confirmed, and 

the distances are even greater. A difference from the no-rebalance approach is that views are less 

relevant, indeed the difference between the best case and the worst case is 11,44% compared to 

20,97%. Additionally, deserves to highlight the fact that rebalance approach gives the possibility to 

RO, also in middle volatility framework, to beat the benchmark. We can conclude that all models 

are taking advantage from rebalancing considering this level of risk, more than other BLM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Total return 

MV 42.38% 

BLM 93.79% 

BLM-basic 96.72% 

BLM-best 99.40% 

BLM-worst 87.96% 

RO Ω = diag(Σ) 56.97% 

Market 47.40% 

Figure 28: Middle volatility portfolios total return 
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Also for middle volatility we provide dynamical sectors positions graphs. 

 

 

 

 

 

 

 

 

 

 

 

 

We can see that MV takes in consideration the same sectors, but there is an evident difference. In 

middle volatility case there is not only Consumer staples as main driver of the return, but also the 

value of the position in Healthcare sector is increasing overtime. We can argue that Markowitz 

optimizer consider, as aggressive asset, Healthcare sector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: MV middle volatility sectors contribution 

Figure 30: BLM middle volatility 

sectors contribution 
Figure 31: BLM-basic middle volatility 

sectors contribution 
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From figures 30, 31, 32, 33 we can see that the four variants of BLM have a common factor. The views 

influence comes back in a strong way and all four allocations have a high position in IT sector while 

Consumer staples sector has practically vanished from the optimal allocations. This is mainly due 

to the fact that, increasing the risk propensity, the model shifts towards less conservative sectors. 

We can define it a winning strategy from the absolute return point of view.  

 

 

 

 

 

 

 

 

 

 

About RO, we can observe that the typical diversification of this model is confirmed but we have 

also to highlight that there is a tendency in overweighting some sectors compared to low volatility 

portfolio. With the traditional stability, we have mainly three sectors that drive the return: 

Consumer staples, Healthcare and IT.  

Figure 32: BLM-best middle volatility 

sectors contribution 
Figure 33: BLM-worst middle volatility 

sectors contribution 

Figure 34: RO middle volatility 

sectors contribution 
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 Mean return Volatility (𝜎) Sharpe ratio Information ratio 

MV 7.43% 15.99% 37.68% -13.78% 

BLM 13.48% 19.71% 61.24% 190.14% 

BLM-basic 13.75% 19.76% 62.46% 189.92% 

BLM-best 14.03% 19.99% 63.16% 179.08% 

BLM-worst 12.89% 19.42% 59.13% 195.42% 

RO Ω = diag(Σ) 9.31% 17.03% 46.41% 19.01% 

Market 8.56% 18.86% 37.90%  

Table 23: Middle volatility portfolios basic statistic 

 

From table 23 we can see that BLM variants are the best choices also in terms of risk/return. We 

observe a difference of 2% about volatility between BLM and RO, but thanks to higher levels of 

return BLM variants exploit with conviction RO, in particular BLM-basic. Comparing with no-

rebalance results, we find a convinced increment in performance because the levels of volatility are 

mainly the same while returns are much higher. Additionally, it is interesting to observe that RO 

presents the same level of volatility of low vol portfolio. Concluding, the capacity of BLM variants 

and RO to overperform the market is confirmed. 

 

 Maximum 

drawdown 

Downside risk VaR (95%) ES (95%) Sortino ratio 

MV 26.28% 0.62% -22.74% -38.37% 9.42 

BLM 33.06% 0.79% -28.10% -49.73% 14.45 

BLM-basic 32.97% 0.79% -28.19% -49.73% 14.73 

BLM-best 32.80% 0.80% -28.38% -49.73% 14.95 

BLM-worst 33.27% 0.77% -27.72% -49.73% 14.20 

RO Ω = diag(Σ) 30.96% 0.67% -23% -42.06% 11.30 

Market 36.10% 0.79% -27.68% -48.41% 8.95 

Table 24: Middle volatility portfolios risk exposure measures 

 

Table 24 tells us some important results. First, RO confirms is capacity to maintain a low and stable 

risk exposure going through all risk propensities, indeed present even lower values compared to 

low volatility portfolios. On the other hand, all other models present higher values as expected, but 

making a comparison with the same risk propensity of no-rebalance approach the situation is 

different. About maximum drawdown and downside risk we observe considerably smaller values, 

while VaR and ES values are slightly smaller. Concluding, the introduction of rebalancing has 

provided a reduction in the risk exposure, also evidenced by higher Sortino ratios. 



81 
 

5.2.2.3 High volatility 

 

In the table below we provide the total return for each model considering high volatility framework. 

 

 

 

 

 

 

Table 25: High volatility portfolios total return 

 

Table 25 provides a very different situation compared to the two other risk propensities. It is evident 

the exploit of Markowitz and RO, especially the latter one. On the other hand, BLM approaches 

completely fail their work, even considering the views impact, with a total return very far from 

Markowitz and RO, and, additionally, they are not able to overperform the market.  However, we 

have to highlight that rebalancing gives a big hand to BLM variants to reduce the damages, indeed 

BLM total return is 18% higher than the no-rebalancing one, while for BLM-basic is 14% higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Total return 

MV 52.83% 

BLM 18.46% 

BLM-basic 21.47% 

BLM-best 18.23% 

BLM-worst 18.66% 

RO Ω = diag(Σ) 61.33% 

Market 47.40% 

Figure 35: High volatility portfolios total return 
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About dynamical sectors positions, we provide below all the graphs concerning all the models.  

 

 

 

 

 

 

 

 

 

 

 

 

About MV optimization, we observe that moving from low volatility to a high volatility situation 

the model increases the overweighting in Healthcare sector, that is much more aggressive compared 

to Consumer staples sector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: MV high volatility sectors contribution 

Figure 37: BLM high volatility 

sectors contribution 
Figure 38: BLM-basic high volatility 

sectors contribution 
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The failure of BLM for the highest risk propensity is shown also graphically. We observe a high 

concentration in Financials sector, that is the worst sector in terms of risk/return. Additionally, the 

introduction of the views is not able to modify in a relevant way the allocations because sectors 

involved are others, namely Financials and Materials sectors. 

 

  

 

 

 

 

  

 

 

 

 

 

 

From figure 41 we can see that RO reduces the diversification in the high volatility optimal portfolio. 

We observe the presence of three main sectors: Healthcare, Consumer staples and IT. The difference 

between Markowitz and RO is the presence of IT sector, that gives a boost to the performances from 

a total return point of view.  

Figure 39: BLM-best high volatility 

sectors contribution 
Figure 40: BLM-worst high volatility 

sectors contribution 

Figure 41: RO high volatility 

sectors contribution 
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 Mean return Volatility (𝜎) Sharpe ratio Information ratio 

MV 9% 17.92% 42.35% 4.57% 

BLM 5.65% 23.17% 18.31% -30.50% 

BLM-basic 6.06% 23.07% 20.18% -26.66% 

BLM-best 5.61% 23.14% 18.16% -31.11% 

BLM-worst 5.69% 23.20% 18.44% -29.99% 

RO Ω = diag(Σ) 9.90% 17.71% 47.97% 19.96% 

Market 8.56% 18.86% 37.90%  

Table 26: High volatility portfolios basic statistic 

 

Table 26 confirms the problems of BLM variants considering high volatility situation. The reduced 

level of diversification provides high values for the volatility, that combined with low levels of mean 

return, provides low Sharpe ratios. On the other hand, RO presents a level of volatility very similar 

to those detected for low volatility and middle volatility, that combined with a great level of return 

declare it the winning strategy in this risk framework. It deserves to say that, in this situation 

Markowitz is able to beat the market together with RO. 

 

 Maximum 

drawdown 

Downside risk VaR (95%) ES (95%) Sortino ratio 

MV 28.15% 0.70% -26.34% -43.42% 10.53 

BLM 42.42% 0.90% -33.83% -57.23% 4.61 

BLM-basic 41.96% 0.89% -33.88% -57.23% 5.06 

BLM-best 42.42% 0.89% -33.86% -57.23% 4.56 

BLM-worst 42.43% 0.90% -33.74% -57.23% 4.64 

RO Ω = diag(Σ) 28.30% 0.69% -25.09% -43.09% 11.73 

Market 36.10% 0.79% -27.68% -48.41% 8.95 

Table 27: High volatility portfolios risk exposure measures 

 

Table 27 confirms the tendency that we have seen in the previous risk propensity, indeed all values 

are lower than those of no-rebalance approach. It is impressive the improvement of MV considering 

its closeness to RO, especially it presents the lowest maximum drawdown among all models. RO 

continue to be virtuous from risk exposure point of view, even it is able to obtain its lowest 

drawdown and highest Sortino ratio in the higher risk propensity. 
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As in the no-rebalance approach, we take the best models in terms of risk/return considering all the 

risk propensities to make a comparison among them. 

 

 Total 

return 

Mean return Volatility (𝜎) Sharpe 

ratio 

Information 

ratio 

BLM (low volatility) 62.85% 9.88% 16.62% 50.98% 21.05% 

BLM-basic (middle volatility)  96.72% 13.75% 19.76% 62.46% 189.92% 

RO Ω = diag(Σ) (high volatility) 61.33% 9.90% 17.71% 47.97% 19.96% 

Market  47.4% 8.56% 18.86% 37.90%  

Table 28: Basic statistic summary 

 

First of all, we can observe that best models for each risk propensity are the same of no-rebalance 

approach, but at the same time are all able to beat the market. This proves the fact that rebalancing 

approach gives the possibility to the models to work in a better way and make better performances. 

As a common factor, we notice that volatility level is mainly the same of no-rebalance procedure 

while return indicators are much higher, means return in the order of 2-3% and total return in the 

order of 16-22%. As in no-rebalance approach, we can explain the stability of volatility level of RO 

with the explanation provided yet considering that the relevant sectors are the same. Considering 

that, RO high volatility portfolio is able to be riskless than BLM-basic middle volatility portfolio, but 

this is not sufficient to make it the best among them in terms of risk/return because BLM-basic 

provides a huge level return with a resulting Sharpe ratio of 62.46% compared to 47.97%. At the 

same time, BLM low volatility portfolio is surprising because it obtains approximately the same total 

return of RO with lower volatility. 

 

 

 

 

 

 

 

 

 

 
Figure 42: Best portfolios total return 
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 Maximum 

drawdown 

Downside 

risk 

VaR (95%) ES (95%) Sortino 

ratio 

BLM (low volatility) 27.39% 0.65% -24.19% -40.47% 12.31 

BLM-basic (middle volatility) 32.97% 0.79% -28.19% -49.73% 14.73 

RO Ω = diag(Σ) (high volatility) 28.30% 0.69% -25.09% -43.09% 11.73 

Market 36.10% 0.79% -27.68% -48.41% 8.95 
Table 29: Risk exposure measures summary 

 

Table 29 highlights the fact that also the risk exposure indicators remain stable compared to those 

of no-rebalance approach, conducting to a general increment of Sortino ratios thanks to the returns 

increase. Despite its stability, RO fails to obtain a better Sortino ratio compared to BLM-basic and it 

is also overperformed by BLM low volatility portfolio because it has the lowest risk exposure 

compared to the two other portfolios. Concluding, BLM-basic can be considered the best if we take 

into account that if a worst scenario happens the suffer loss is higher than other models, testified by 

VaR and ES values. 

 

5.2.2.4 Summary 

 

In this section we will present some general facts about the application of rebalancing approach and 

then we focus on the single risk propensities. First, performances obtained by the models are much 

better of those obtained by them without a periodic rebalance. It is confirmed that making available 

to the optimizers more information, they will be able to create dynamical portfolios with the capacity 

to face various market phases. As a consequence of this, all models are capable to beat the market 

in various situations, but only RO has the capacity to overperform the benchmark for every risk 

propensity. Another general fact about RO, is that its optimal portfolios maintain a stable level of 

volatility and risk exposure reducing the diversification level going from low volatility to high 

volatility and at the same time is confirmed the performance increase. Second, MV is still the taillight 

among all models but, going through the three risk levels, it demonstrates a better performance 

growth than no-rebalance approach. 
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• In the low volatility environment, we notice a volatility level similar to that of no-rebalance 

approach and an increasing trend about returns. As a consequence, all models overperform 

the market with the only exception of MV. We observe also a reduction of maximum 

drawdown and downside risk, while at the same time a slightly increase of VaR and ES. 

• In the middle volatility framework, it is confirmed the predominance of BLM variants and, 

thanks to rebalance technique, they obtain much better performance. An interesting aspect is 

that we detect a lower impact of the views compared to no-rebalance approach. Additionally, 

we observe a reduction of risk exposure indicators, confirmed by higher Sortino ratios. 

• About high volatility portfolios, rebalancing gives a hand to BLM variants, helping them to 

obtain decent performances despite the increment in volatility and risk exposure. Even for 

the highest risk level, we note a lower risk exposure. Concluding, for the first time MV is able 

to beat the benchmark. 

 

Concluding, the best models are the same of no-rebalance approach but in a “powerful” version, 

indeed they provide better returns without an increasing in volatility and risk exposure.  Optimal 

portfolios are still characterized by the same main sectors: IT, Healthcare and Consumer staples. We 

can conclude that they are the best picking from S&P 500, also confirmed by the statistics provided 

at the begin of the out-of-sample analysis, and the high correlation among these sectors provides a 

boost to the performances. 

 

 Low volatility Middle volatility High volatility 

Choice BLM BLM-basic RO Ω = diag(Σ) 

Table 30: Best models choice 
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6 Conclusion 

 

The thesis deals with the application of three different models, MV, BLM and RO, using the S&P 

500 sectors as reference assets. The first part of our sample, namely in-sample period, will be used 

to compose the optimal portfolios, while in the second part, called out-of-sample period, we will 

analyse the performances with multiple risk and return indicators. Specifically, the first three 

chapters are dedicated to the theoretical background, the fourth chapter describes the data used and 

the analysis procedure, while the fifth chapter is the core of the work as it presents the results of the 

models by comparing them with each other and with the market with two different approaches: the 

first does not involve the rebalancing of the optimal portfolios for the entire period of analysis, 

consequently it can be considered a theoretical approach as we know how dynamic the financial 

markets are. The second approach involves a 5 days rebalancing of the portfolios, a common 

technique used in reality. Taking into consideration the empirical results, we can see several 

interesting points. Considering the no-rebalance approach, the challenge is always between BLM 

and RO. BLM appears to be more efficient in the first two risk appetites, achieving better returns 

having volatility levels similar to RO. Furthermore, thanks to the high level of diversification of the 

optimal portfolio, the views are crucial in the middle volatility framework. It is no coincidence that 

it is the only model that manages to beat the market using the no-rebalance approach. At the same 

time, RO has the peculiar characteristic of maintaining a stability in terms of risk exposure and 

volatility and will be the winning card considering the highest risk propensity. In the rebalance 

approach, the best models still remain BLM and RO but there is a generalized increase in return. 

Even MV manages to exploit rebalance to get closer to the other two models. Another point in favour 

of rebalance is the fact that the increase in return is not followed by an increase in volatility, giving 

the possibility to BLM and RO to beat the market more frequently, but only RO can do it in every 

situation, emphasizing its performance stability. The predominant sectors are the same for the two 

approaches: IT, Healthcare and Consumer staples. They actually pushed the S&P 500 higher over 

the period with an average level of volatility considering all the sectors, so it is not surprising. 

Interesting is the fact that BLM and RO improve MV by following two different paths. BLM achieves 

better results with a well diversified portfolio, while RO achieves them with a relatively 

concentrated portfolio. In conclusion, we have very clear results. As for low and middle volatility 

portfolios, BLM over performs MV and RO in both approaches. The views are relevant in the middle 
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volatility portfolio, thanks to its high diversification, and indeed it is the best performing portfolio, 

confirmed by its ability to beat the market both with rebalance and not. Conversely, concerning the 

high volatility portfolio, BLM completely fails while we detect a RO exploit, thanks to its ability to 

keep the risk constant despite the increased risk appetite. Like the low volatility BLM portfolio, 

portfolio rebalancing is required to beat the market. Further empirical applications, for example 

using assets belonging to different asset classes or introducing a dynamic manner to manage BLM 

views during the out-of-sample period performance analysis, can provide further insights for the 

comparison between these models. 
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Appendix A 

In this appendix we show the derivation of the value of k related to the Sharpe ratios of eigenvectors 

starting from the calculation of an upper bound. 

We reformulate the RO stated in equation (47) in terms of the estimated Sharpe ratios 𝑆𝑅̅̅̅̅ , risk budget 

𝑿 and correlation matrix 𝐏. Please note that in MVO as well as in RO, 𝜆 is a parameter that measures 

the overall risk aversion and can be scaled so that the ex-ante risk reaches a given target level. 

If we solve equations (55) or (56), we get: 

𝑤𝑟𝑜𝑏
∗ =

1

𝜆
Σ−1 (𝜇̅  −  

𝑘

√𝑤𝑟𝑜𝑏
∗𝑇 Ω𝑤𝑟𝑜𝑏

∗
Ω𝑤𝑟𝑜𝑏

∗ ) 

 

The optimal robust weights are homothetic with respect to 𝜆. We observe that the change of 𝜅 does 

not affect this homothetic relationship. For simplicity and without loss of generality, we assume that 

𝜆 is equal to one in this unconstrained case. 

We note the optimal robust risk budget as 𝑋𝑟𝑜𝑏
∗ : 

𝑋𝑟𝑜𝑏
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑋𝑇𝑆𝑅̅̅̅̅  −  𝑘√𝑋𝑇𝐼𝑛𝑋  − 

1

2
𝑋𝑇𝑃𝑋) 

Deriving the optimality condition: 

𝑆𝑅̅̅̅̅  −  (
𝑘

√𝑋𝑟𝑜𝑏
∗ 𝑇 𝑋𝑟𝑜𝑏

∗
𝐼𝑛 + 𝑃) 𝑋𝑟𝑜𝑏

∗ = 0 

In addition, rearranging it yields the following expression: 

𝑆𝑅̅̅̅̅ = (
𝑘

√𝑋𝑟𝑜𝑏
∗ 𝑇 𝑋𝑟𝑜𝑏

∗
𝐼𝑛 + 𝑃) 𝑋𝑟𝑜𝑏

∗  

The above formulation sheds light on the role of 𝜅 as the parameter that tackles the high sensitivity 

to inputs suffered by MVO. In fact, the greater 𝜅 is, the more 
𝑘

√𝑋𝑟𝑜𝑏
∗ 𝑇 𝑋𝑟𝑜𝑏

∗
𝐼𝑛 + 𝑃 shifts towards 𝑰𝑛.  

The shift of the modified correlation matrix towards 𝑰𝑛 helps reduce the high sensitivity caused by 

the small eigenvalues but the benefit does not come without cost: a large 𝜅 may distort completely 

the correlation structure that makes assets indistinguishable from a risk perspective. 

 

Taking the L2-Norm on both sides’ yields: 

𝑆𝑅̅̅̅̅ 𝑇𝑆𝑅̅̅̅̅ = 𝑘2 + 𝑋𝑟𝑜𝑏
∗ 𝑇 𝑃𝑇𝑃𝑋𝑟𝑜𝑏

∗ + 2 ×
𝑘

√𝑋𝑟𝑜𝑏
∗ 𝑇 𝑋𝑟𝑜𝑏

∗
𝑋𝑟𝑜𝑏

∗ 𝑇 𝑃𝑇𝑋𝑟𝑜𝑏
∗  
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Note that the second term on the right-hand side 𝑋𝑟𝑜𝑏
∗ 𝑇 𝑃𝑇𝑃𝑋𝑟𝑜𝑏

∗ , as the square of the L2 Norm of 𝑃𝑋𝑟𝑜𝑏
∗  

is non-negative; the third term on the right-hand side is also non-negative because 𝐏 is positive semi-

definite, the L2 Norm of 𝑋𝑟𝑜𝑏
∗  is non-negative and 𝑘2 is always non-negative. Therefore, the 

following upper bound for k holds: 

𝑘 ≤ √𝑆𝑅̅̅̅̅ 𝑇𝑆𝑅̅̅̅̅  

 

Note that if k is set higher than the upper bound, the first order derivative of the optimization with 

respect to 𝑿 will always be negative. Therefore, the solution to the RO will be no-investment, i.e., 

𝑿=0. 

 

Provided this upper bound, now we derive a rule of thumb that will be helpful to calibrate k. 

Recalling that RO is a max-min process, the objective is to maximize the objective function even 

under the worst return realization. Thus, the RO uses penalized returns 𝜇 instead of the traditional 

expected returns from the sample mean 𝜇̅: 

𝜇 = 𝜇̅  −  √
𝑘2

𝑤𝑇Ω𝑤
Ω𝑤, with Ω = 𝑑𝑖𝑎𝑔(Σ) 

Re-expressing just the above equation in terms of Sharpe ratios and risk budget yields the following 

expression: 

𝑆𝑅 = 𝑆𝑅̅̅̅̅  −  
𝑘

‖𝑋‖2
𝑋 

The expected returns on the eigenvectors can be found easily when we apply the L2 Norm of SR 

expressed in the spaces spanned by the eigenvectors of correlation matrix P. 

Consider the eigenvalues-eigenvectors decomposition of the correlation matrix𝑃 = 𝑍𝐿𝑍𝑇 , with 𝐙 the 

matrix of the eigenvectors and 𝐋 the diagonal matrix with the eigenvalues on the main diagonal, the 

expected returns on the eigenvectors 𝑆𝑅̅̅̅̈̅  of 𝐏 can be found with the upper limit of 𝑆𝑅̈: 

‖𝑆𝑅̈‖
2

= √𝑆𝑅̅̅̅̈̅ 𝑇𝑆𝑅̅̅̅̈̅ + 𝑘2  −  2 ∗ 𝑘
𝑆𝑅̅̅̅̈̅ 𝑇𝑋̈

‖𝑋̈‖
2

≤ √𝑆𝑅̅̅̅̈̅ 𝑇𝑆𝑅̅̅̅̈̅  −  𝑘2 

With 𝑆𝑅̅̅̅̈̅ = 𝑍𝑇𝑆𝑅̅̅̅̅ , 𝑆𝑅̈ = 𝑍𝑇𝑆𝑅 and 𝑋̈ = 𝑍𝑇𝑋 , see Appendix B for details. 

‖𝑆𝑅̈‖
2

≤ √(𝑍𝑇𝑆𝑅) 𝑇(𝑍𝑇𝑆𝑅) −  𝑘2 

The right-hand side of the precedent equation can be rewritten in two ways: 

√(𝑍𝑇𝑆𝑅)𝑇(𝑍𝑇𝑆𝑅)  −  𝑘2 = √(𝑍1
𝑇𝑆𝑅)2+. . . +(𝑍𝑛

𝑇𝑆𝑅)2 −  𝑘2 
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√(𝑍𝑇𝑆𝑅)𝑇(𝑍𝑇𝑆𝑅)  − 𝑘2 = √𝑆𝑅𝑇𝑍𝑍𝑇𝑆𝑅 −  𝑘2 = √𝑆𝑅𝑇𝑆𝑅 −  𝑘2 

The vectors of Z are ordered following the order of eigenvalues (from the largest to smallest). 

The key for calibrating 𝜅 is to make use of the equivalence between equation (36) and equation (37): 

when k is calibrated in terms of the Sharpe ratios (equation 37), it is able to reduce or even neutralize 

the cumulative sum of “returns” on eigenvectors that correspond to the small eigenvalues (equation 

36). Namely, 𝑘 = √(𝑍1
𝑇𝑆𝑅)2+.. . +(𝑍𝑛

𝑇𝑆𝑅)2 with 𝑖 to 𝑛 the indices that correspond to small 

eigenvalues. Small is a rather abstract term and it does not tell us how to choose the cut-off number 

𝑖. In the empirical experiment below, we propose a rule of thumb to help us determine the cut-off 

number and thus to calibrate κ.  

C. Yin et al. 2020 demonstrate, with a practical application in a multi-asset universe, that the 

proposed rule of thumb consists of choosing 𝜅 as half of the average of Sharpe ratios. This rule of 

thumb applies for multi-asset portfolios regardless of the number of assets they comprise and 

regardless of the assumptions on Sharpe ratios. 
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Appendix B 

In this appendix, we derive the upper limit of the L2 Norm of Sharpe ratios used in the RO in terms 

of the “returns” on the eigenvectors of the correlation matrix. Recall tha t the Sharpe ratio used for 

the RO is written as follows: 𝑆𝑅 = 𝑆𝑅̅̅̅̅  −  
𝑘

‖𝑋‖2
𝑋 

Applying the change of basis according to the coordinate defined by the eigenvectors 𝒁 of the 

correlation matrix 𝐏, we get: 

𝑍𝑇𝑆𝑅 = 𝑍𝑇𝑆𝑅̅̅̅̅  −  
𝑘

‖𝑍𝑇𝑋‖2
𝑍𝑇𝑋 

𝑆𝑅̈ = 𝑆𝑅̅̅̅̈̅  −  𝑘
𝑋̈

‖𝑋̈‖
2

 

Note that 𝑍𝑇𝑆𝑅 can be viewed as the “return” of the eigenvectors. Again, the exact solution for 𝜅 is 

not feasible because the above equation involves 𝑋̈, which is the solution of the RO itself. However, 

it is important to note that 𝜅 should be chosen so that the “returns” of the eigenvectors that 

correspond to the small eigenvalues could be reduced. Following this guideline, we consider the 

two terms on the right-hand side of the above equation separately by taking the L2 Norm. 

‖𝑆𝑅̅̅̅̈̅ ‖
2

= √𝑆𝑅̅̅̅̈̅ 𝑇𝑆𝑅̅̅̅̈̅ = √𝑆𝑅̅̅̅̈̅
1
2+. . . +𝑆𝑅̅̅̅̈̅

𝑛
2 

The 𝑆𝑅̅̅̅̈̅
𝑖
2, for i=1, …, n, follow the order of eigenvalues and the last 𝑆𝑅̅̅̅̈̅

𝑛
2 corresponds to the “returns” 

of the eigenvector that corresponds to the smallest eigenvalue: ‖𝑘
𝑋̈

‖𝑋̈‖2
‖

2
= 𝑘 

We take the L2 Norm on both side of equation (46) as follows: 

‖𝑆𝑅̅̅̅̈̅ ‖
2

= ‖𝑆𝑅̅̅̅̈̅  −  𝑘
𝑋̈

‖𝑋̈‖
2

‖

2

= √𝑆𝑅̅̅̅̈̅ 𝑇𝑆𝑅̅̅̅̈̅ + 𝑘2  −  2 ∗ 𝑘
𝑆𝑅̅̅̅̈̅ 𝑇𝑋̈

‖𝑋̈‖
2

 

Recall that the optimality condition of the RO mentioned earlier is written as: 

(
𝑘

√𝑋𝑇𝑋
𝐼𝑛 + 𝑃) 𝑋 = 𝑆𝑅̅̅̅̅  

Multiplying both sides of equation (47) by 𝑋𝑇 , we get: 

𝑘√𝑋𝑇𝑋 + 𝑋𝑇𝑃𝑋 = 𝑋𝑇𝑆𝑅̅̅̅̅  

Expressing both sides in the space spanned by the eigenvectors, our calculations could read as 

follows: 

𝑘√𝑋̈𝑇𝑋̈ + 𝑋̈𝑇𝑃𝑋̈ = 𝑆𝑅̅̅̅̈̅ 𝑇𝑋̈ 

Diving both sides by √𝑋̈𝑇𝑋̈ = ‖𝑋̈‖
2
, the equivalent to the previous equation is given by: 
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𝑘 +
𝑋̈𝑇𝑃𝑋̈

‖𝑋̈‖
2

=
𝑆𝑅̅̅̅̈̅ 𝑇𝑋̈

‖𝑋̈‖
2

 

As 𝑋̈𝑇𝑃𝑋̈ ≥ 0 and ‖𝑋̈‖
2

> 0, the optimality condition gives rise to the following inequality: 

𝑘 ≤
𝑆𝑅̅̅̅̈̅ 𝑇𝑋̈

‖𝑋̈‖
2

 

The inequality just derived can be used to yield an upper limit of ‖𝑆𝑅̈‖
2
: 

‖𝑆𝑅̈‖
2

= √𝑆𝑅̅̅̅̈̅ 𝑇𝑆𝑅̅̅̅̈̅ + 𝑘2  −  2 ∗ 𝑘
𝑆𝑅̅̅̅̈̅ 𝑇𝑋̈

‖𝑋̈‖
2

≤ √𝑆𝑅̅̅̅̈̅ 𝑇𝑆𝑅̅̅̅̈̅  −  𝑘2 

End of proof. 


