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Introduction

The main objective of this thesis is to provide a comprehensive description of the pioneer of
the cryptocurrency revolution, Bitcoin, and perform a comparative analysis between the classic
econometric and the modern machine learning approaches in modeling time series and forecasting
the price of a financial asset, while accounting for the theoretical background of both methods to

interpret and understand their functioning.

Chapter 1 provides an overview of the technical characteristic of the Bitcoin technology, the
basic concepts of cryptography, hash functions and decentralization, by which Bitcoin draws its
innovative and disruptive features that, throughout the years, attracted the attention of tech enthu-
siasts and investors in financial markets, setting the cornerstone for an unprecedented technological
revolution. After describing how the blockchain works and how its application could be beneficial
in many use cases, I reported the main criticisms about Bitcoin and considered the future outlooks
for the whole cryptocurrency sector. Finally, I analyzed the Bitcoin economics, comparing it to
more traditional store of value like gold, its state of adoption, if and why it should be considered
a bubble and finally compared its returns in the last years with respect to other financial assets.

In Chapter 2, after outlining the theoretical framework of the Box and Jenkins approach to
time series modeling and the Engle and Bollerslev models for conditional heteroscedasticity, I
downloaded the historical 4 hour close prices of BTC/USDT through Python, calling the API of
Binance exchange, and performed a statistical and econometric analysis of the data set with R.
I started to fit a simple ARIMA model to the log-transformed time series of Bitcoin and then
augmented it with GARCH, with the aim of finding if the extension for conditional volatility
can provide an adequate approximation of the high volatile price dynamics of BTC and if the
out-of-sample forecasts could contribute in enhancing a speculative trading strategy.

Finally, in Chapter 3, I explored the cutting-edge architectures of recurrent neural networks
by describing the path from the first artificial neuron, to the complex sequential learning models,
passing through an overview of state of the art learning and optimization algorithms that made
possible to apply deep learning techniques in real life problems and made neural networks popular
in every filed, including the financial sector. With Scikit-learn, Keras and Tensorflow Python
libraries, I trained an a-RNN model with exponentially weighted hidden states and analyzed the

final results, comparing the out-of-sample performance with respect to the econometric model



specified in the earlier chapter, indicating the potentialities of the model and how it could be
tweaked to obtain a more accurate approximation of the non-linear patterns in the Bitcoin time

series.



Chapter 1

The Bitcoin Technology

1.1 History of Bitcoin

1.1.1 A Brief Overview

When in late 2008, an unknown person, or perhaps a group of people, under the pseudonym of
Satoshi Nakamoto posted on the website bitcoin.org a white paper called “Bitcoin: a Peer-to-Peer
electronic Cash System” [1], presenting an innovative solution of a trustless and decentralized
payment system, the first cryptocurrency was set to be the cornerstone for a new type of digital
asset, paving the way to the creation of thousands of other different cryptocurrencies in subsequent
years.

Gradually but consistently gaining the attention of multiple institutions, ranging from the
financial to the technology sectors, and of numerous individuals such as academics, researchers
and investors, implications and effects of cryptocurrecies on the global economy have been under
scrutiny, with the main concern about the potential risks that they could bring to the financial
system, not to mention the benefits that the underlying technology, the blockchain, could bring
not only to financial companies but to society as a whole.

While the identity of Nakamoto is still unknown, one might focus on his disruptive yet inspiring
idea, a decentralized network that would allow its participants to send and receive digital currency
directly, without the need of an intermediary. As a matter of fact, the modern payment systems are
built around the need of a trusted central party, like a bank, to ensure that the transaction between
the payer and the payee goes through, bearing all the operations needed to transfer the designated
amount of money between them, like for example in cross-border payments. One of the main
concerns of Nakamoto was to overcome the intrinsic limitations of the modern, centralized, payment
system, namely the cost of mediation that would hinder the possibility of using electronic payments
for small casual transactions and the limited feasibility of making non-reversible payments for non-

reversible services, as financial institutions often need to mediate disputes between parties of a



transaction.

The role of the trusted third party is then completely replaced by a cryptographic algorithm that
builds confidence between the participants of the network, acting as a proof that the transactions
are genuine and the funds transferred exists, avoiding Bitcoins counterfeiting, a problem called
double-spending. All the transactions between the peers are immutably recorded in blocks, and
every new transaction points back to previous transactions contained in earlier blocks, thus forming
a chain of blocks. This chain, called the blockchain, is the ledger where the information about
the entire history of all the transactions that ever happened in the network is recorded on. The
peculiarity of this electronic ledger lies in its distributed nature as anyone can become a ‘node’ of
the network by downloading the open-source bitcoin client and start participating in the network.
The creation of a bitcoin address is needed to start transferring funds in a peer-to-peer fashion.

Additionally, some nodes will act as miners, participants that make the computing power at
their disposal available to the network in order to compete in the creation of new blocks, that is,
wrapping new pending transactions up and earning both a fee for their effort and newly minted
bitcoins when they manage to create a new block before everyone else. A more technical overview

about the bitcoin and its underlying technologies is presented in the next sections.

1.1.2 From Inception to Modern Days

Bitcoin was officially implemented in January 2009, and the Bitcoin network was created in the
same month after Nakamoto successfully mined the first block, called the genesis block. The coin-
base ! contained a message quoting the following headline of The Times newspaper: “The Times
03/Jan/2009 Chancellor on brink of second bailout for banks”, which functioned as a timestamp,
proving that the block could not have been mined beforehand, and was also interpreted as a crit-
icism. Shortly thereafter, the first transaction on the Bitcoin network was made from Satoshi to
cypherpunk? and cryptographer Hal Finney. Numerous leading figures in the cypherpunk commu-
nity started supporting Bitcoin, like Wei Dai, the creator of b-money which is considered to be
the predecessor of modern cryptocurrencies, and Nick Szabo, inventor of bit gold. In 2010 Laszlo
Hanyecz bought two pizzas for 310,000, which are now worth more than 200 million USD, this
was the first successful commercial transaction made with Bitcoin. Before disappearing, Nakamoto
mined approximately one million bitcoins and left the control of the code repository to Gavin An-
dersen, who later became the lead developer at the Bitcoin Foundation, a nonprofit organization
founded in 2012 and centered around the development and promotion of Bitcoin.

In 2010, Jed McCaleb founded Mt Gox, which was the largest, most well-known and used

Bitcoin exchange. Mt Gox would eventually go bankrupt in 2014 due to a number of reasons and

11t is the very first transaction in a new block and of a special kind since it indicates the amount of new bitcoins

that is to be awarded to the miner who successfully created the block.
2 An activist engaged in the homonym movement started in 1980s, advocating and supporting privacy-enhancing

technologies heavily backed and secured by cryptography, as the foundation for a socio-political change.



scandals, such as a security breach which led to the loss of a considerable amount of customers’
funds. Later this year, the first mining pool was created. A mining pool is an organization of
miners that join their computing power, called the hash power, to cooperate in mining blocks on
the network. As the the difficulty of creating a new block is dynamically adjusted in proportion
to the number of competing miners and the amount of hash power in the network, an increasing
number of miners started to participate in mining pools to reduce the variance of their profits
and get rewarded in proportion to the percentage of the total hash power they contributed to. In
version 0.9.0 the Bitcoin software was renamed Bitcoin Core to distinguish it from the network
itself. The protocol has been updated several times over the years to fix various bugs and glitches

and overcome potential security risks for the network.

In 2011, Wikileaks and other organizations started accepting bitcoins for donations, mainly due
to their censorship-resistant characteristic. In November the 28" 2012, known as the first halving
day, the block rewards were halved from 350 to 325. In 2013, the first Bitcoin ATM was launched in
San Diego, California, where you could exchange bitcoins for cash. In the next months, a moderate
number of two-way Bitcoin ATMs were installed around the world, for example in Singapore. In
the same year the Winklevoss twins filed with the US Securities and Exchange Commission the
first Bitcoin ETF proposal. In subsequent years many other Bitcoin ETFs proposals where filed
and an increasing number of financial instruments providing exposure to Bitcoin began trading on

the exchanges.

Regulatory measures started to be taken by different countries, the US Financial Crimes En-
forcement Network classified mining in the United States as Money Service Business, making
miners subject to registration and legal obligations. China, amongst other countries, banned cryp-
tocurrency trading and prohibited the use of cryptocurrencies for financial institutions and for
buying real goods. Due to the decentralized nature of Bitcoin and the lack of a globally consistent
definition of its nature, whether it has to be considered a currency, a property or a financial asset,
there is still a lack of a consistent regulatory framework for Bitcoin and other cryptocurrencies as
well, but rather and highly fragmented one, which greatly differs by jurisdictions. This also affects

taxation in different countries around the world.

In late 2013, Bloomberg made Bitcoin searchable through his platform and, in accordance with
the ISO currency code standards, the ticker used was “XBT”. In Germany, Bitcoins started to be
considered as private money and therefore exempt form taxation if investors held it for a period

greater or equal than one year [2].

In 2016, the Seg Wit software upgrade to the Bitcoin source code was proposed and later in 2017
was finally approved and implemented. The aim of this upgrade was to increase the scalability of the
network through the optimization of the blocksize, thus lowering transaction fees and increasing
the maximum transaction capacity. This upgrade also made the Bitcoin ecosystem compatible

with the Lightning Network, an additional protocol built on top of the Bitcoin blockchain, which



enabled faster transactions between nodes. Due to a disagreement of some Bitcoin developers and
proponents regarding this significant upgrade and on technical details about the size of the blocks,
on 1 August 2017 an hard fork, was carried out to create the Bitcoin Cash cryptocurrency, which
shared all the transaction history of Bitcoin up to that point.

In 2019 the ICE, Intercontinental Exchange owner of the New York Stock Exchange, launched
its own cryptocurrencies trading platform called Bakkt, listing Bitcoin options and futures. In 2020
a remarkable number of institutional investors, funds and technology companies started investing
in Bitcoin or increasing their stake in the digital asset. During the COVID-19 outbreak and Bitcoin
hitting a low of around $4,000, an increasing number of retail and professional investors showed
interest in it, primarily seeking the opportunity of making a relevant capital gain in the following
months. During the pandemic, Bitcoin kept up with expectations and performed considerably well
in comparison with other financial assets and stock indices, registering a substantial recovery from
the low of March 2020 and eventually hitting an all time high in December 2020, demonstrating

his resilience against time, economic and financial turmoil and negative beliefs of its opponents.

1.2 Cryptography

In general, investing in a digital assets or a new technology should not be performed blindly but
knowing how it works, where its intrinsic value is derived from, and what are the factors that might
influence its financial value.

In order to better understand how Bitcoin really works, the main concepts of cryptography
needs to be described. Cryptography has many security and privacy related applications, the
main one being sending encrypted messages that can be read only by a designated recipient,
preventing unwanted third parties from intercepting it. Trough the use of mathematics, the message
is encrypted, that is, transformed in an unreadable format called digest, and sent to the receiver
who will then proceed to decrypt it, reverting the encryption through the use of a special key. For
example, cryptography is widely used for securing the access to internet web sites, it can be seen
from the “https” prefix where “s” stands for secure. The encryption makes the connection between
the user and the server, where the web site is hosted, secure from potential malicious snoopers,
blocking them from getting their hands on the data flow that is being exchanged, thus ensuring
that the connection established is genuine.

In the most basic method of encryption, called symmetric encryption, the sender of a message
transforms a human-readable plaintezrt according to a single or a set of rules, and send the ciphered
message to the recipient who will proceed to decipher the text back, in order to read it, knowing
which rule the original message was encrypted with. For example, if a person A wants to send
an encrypted message to another person B, he will choose a specific rule to encode the message,
like shifting every letter of the message by some determined positions in the alphabet. Let’s say

the message contains the world ‘HELLO’, what B will receive is ‘JGNNQ’ which is the original



message with each of its letters shifted by two positions in the alphabet. In order for B to decode
the message and be able to know what A really meant, he has to know the rule, called the key,
established by A beforehand. This simple method of encryption, know as the Caesar cipher, has
many drawbacks. First of all, it is easy for someone with a lot of patience and a computer to
reverse engineer the method used for encryption, for example with a letter frequency analysis, and
be able to read the private data contained in the message. Additionally, symmetric encryption is
really weak in terms of security because the same key is used for both encrypting and decrypting
the message, forcing A to tell B which key is needed to read the message. The need to transfer the
key expose both of them to the possibility of an unwanted eavesdropper intercepting whatever type
of communication they chose to send the secret key with. Due to its shortcomings, the symmetric
encryption is hardly used anymore, the reason being that, nowadays, there is an increasing need

of safer layers of security protecting the highly sensitive data underlying internet connections.

In order to overcome these deficiencies, in the asymmetric cryptography two different keys are
used for encryption and decryption respectively. A user who wants to receive encrypted messages
generates the so called key pair using a specific scheme of his choice, for example PGP which

3. The key pair is composed by

stands for Pretty Good Privacy, invented by Phil Zimmerman
a public key, which the user will broadcast to the public for encrypting messages, and a private
key that he needs to keep secret and store somewhere safe, which will be used only by him to
decrypt the messages received. These keys, which look like a sequence of random numbers and
letters, are mathematically linked together but different from each other, thus eliminating the need
of communicating a private key to decrypt messages and avoiding related risks. For example, a
user generates a key pair using a software and then can share his public key to everyone who
needs to send him a private message containing sensible data. Only in the occasion of receiving an

encrpyted message, he will proceed to use his secret key and the senders are confident that only

him can read its content.

Bitcoin uses the ECDSA, which stands for Elliptic Curve Digital Signature Algorithm, crypto-
graphic scheme to generate the key pairs. As prescribed, the private key is a seventy-eight digits
number picked randomly between 0 and 22°6 — 1 and the ECDSA computes the public key from
it in a way that mathematically links them. A Bitcoin address is derived by the public key and
the private key is used to grant access to it, withdraw and send funds to other addresses. In this
way, the private key works as a proof of ownership of funds in a specific address and it is used
to digitally sign outbound transactions. The user needs to share only his public address to be
able to receive payments from others and the ECDSA protocol ensures that it is mathematically
unfeasible to derive a private key from a public one. Moreover, the probability of generating a key
pair that is already in use is extremely low, given the huge pool of random number the private

keys are generated from.

Shttps://www.openpgp.org/



1.2.1 Hash Functions

An hash function takes any alphanumeric data string as input, called preimage, which is then
passed through a set of mathematical algorithms that outputs the so called hash or digest. There
are two main types of hash functions, the basic hash functions, that have a basic linear hashing
process, and cryptographic hash functions, which are based on complex and advanced mathematics
that yield a more secure encryption process. A basic hash function can be as simple as a position

identifier function that outputs the last character of the input string that is passed to, for example:

H('simple hash function’) = 'n’

Where H is the hash function that wraps the text, and returns the last letter, ‘n’ in this case, of
the input phrase. Basic hash functions are lacking some characteristics that make them usable for
security and safety applications. Indeed, taking as example the H hash function defined above,
its main drawback is the non-uniqueness of the digest, namely, the same output could have been
obtained with a totally different line of text but ending with an n. This hinders its viability for
identification purposes, that is why in the Bitcoin network cryptographic hash functions are used
instead. The latter satisfy some properties that make them suitable for a cryptocurrency network,
where an undeniable proof of the mining process is necessary to link genuine blocks in a chain,
the transactions inside the blocks need to be identified by a unique hash and any attempt to
compromise the network can be rapidly recognized by the nodes of the network.

Some industry standard crypthographic hash functions, like MD5 (Message Digest) and SHA-
256 (Secure Hash Algorithm), the one used in the Bitcoin blockchain, are widely employed in
modern network security applications because they are deterministic functions, hashing the same
input give always the same digest, the hash is computed quickly but it is unfeasible to revert it,
that is, retrieve the original message from the hash going backward, and even a small change in the
preimage results in a different and unique hash, such that different inputs are linked to different
hashes. Another characteristic of the two algorithms mentioned above is that they always output
a fixed-length hash, fostering comparability and readability criteria. An example of the SHA-256

algorithm is:

S H A256('better hash function’) = '0df3a1b5ba’5943318b5876b fbcIc3537886be fc
694d1d3 f0cle37ae5db5705d8’

SHA256(' Better Hash Function’) = 'eaca307e7d3e732bb30d 72818 fb09e3408 f40b2
c07 £3753b6046ed321758¢cbd9’

I have used an online tool * to generate SHA-256 hashes for two similar lines of text but

4https://emn178.github.io/online-tools/sha256.html
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being case sensitive, a slight change in the input makes the output hashes completely different and

unique.

1.2.2 Digital Signatures

In a decentralized blockchain, due to the absence of a central authority managing users’ accounts,
there is the need to prove account ownership and a mean to validate transactions between peers
in a trusted and secure manner. This is where digital signatures are used. Each user digitally
signs outbound transactions using his private key and the recipient is confident that the sender
was entitled to move coins from his account and the transaction is authentic. Digital signatures,
a subset of the wider domain of electronic signatures, are based on both cryptographic key pairs
and hash functions, thus providing a far more secure and reliable way to sign something than any
other electronic signature or the classic handwritten signature. The latter can be counterfeited
or duplicated for fraudulent uses even without the knowledge of his owner. A digital signature,
instead, provides a unique and one-time valid proof for a specific transaction, such that it cannot
be reproduced for signing a different transaction. The user that wants to send Bitcoins from his
account needs to sign with his private key the hash of the transaction, such that the private key is
mathematically linked to it and anyone holding the payer’s public key can mathematically verify
that this transaction has been generated and authorized by him. Apart for security, one reason
why the hash, and not the plain transaction, is signed is to benefit from the fixed length of the
SHA-256 digest, letting the digital signatures to be independent from the length of the underlying
transaction or message. The validity of the digital signature, and the integrity of what was signed,
can be independently and mathematically be verified by any party, even offline, and both parties

can be reassured that the transaction cannot be reverted.

1.3 The Bitcoin Network

Bitcoins are the native digital ‘coins’ of the Bitcoin network, a peer-to-peer system that is freely
accessible by anyone through the open-source Bitcoin Core client, whose source code can be found
on GitHub?®, or any other compatible software. The network is governed by an hard-coded software
protocol, a set of rules that dictates every functional aspect of the system and is what every

participant in the network abide by.

1.3.1 The Blockchain

Every Bitcoin transaction is recorded on an electronic ledger that, unlike a traditional ledger, is
distributed, meaning that it is maintained by a wide number of computer machines disseminated

all around the globe, called nodes, running the Bitcoin software to access the network. In this way,

Shttps://github.com/bitcoin/bitcoin
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the ledger is not controlled by a single entity or a single group of people but is run simultaneously

by all the nodes connected to the network that will contribute in managing it.

Thus, according to the protocol, every change in the ownership of Bitcoins is broadcast to every
node of the network that will validate each related transaction, flagging them as ‘pending’, and
update its own version of ledger, downloaded through the client. All the pending transactions
are grouped together in the so called mempool or memory pool, waiting to get included in a new
block of transactions that will be created through the process of mining by specialist nodes called
‘miners’.

Each new block of transactions is then shared to all the nodes that will proceed to validate it
and add it to their own record of the ledger. Each active node constantly listens to new upcoming
transactions and repeats the process described above, leading to the formation of new blocks of
transactions which will be uniquely linked to the previous ones, thus forming a chain of blocks
called blockchain, ultimately reaching a network-wide consensus that the chain is genuine and each

block contains valid transactions.

The Bitcoin blockchain is deemed decentralized and permissionless because instead of a single
entity maintaining it, acting as a gatekeeper that decides who is allowed to participate in the
network, it is operated by independent peers, the nodes, and the regulatory burden of performing
KYCS process, like every financial intermediary has, is replaced by cryptography. Indeed, the
creation of an account does not require the permission from the system administrator, the accounts
ID are derived from public key cryptography described in section 1.2 and the password to access
the accounts and sign transactions are replaced by the user’s private key. The account holder can
sign transactions even offline and can manage its public-private key pair with a software wallet.

Transaction validation is not performed by the administrator anymore but by nodes who act
as bookkeepers of the ledger. Indeed, anyone, anywhere, with an internet connection can become
a bookkeeper by downloading the blockchain on their computer. Through a gossip system, every
new transaction is propagated between the nodes and the system is resilient as long as there is a
consistent number of connected nodes maintaining the same book of records, such that the any
attempt of censoring or manipulating transactions would be easily exposed and the malicious node
excluded form the network. This is what makes the Bitcoin network censorship resistant as there
is not a singe central point of control that maintains records of accounts and balances, chooses
which and how to execute transactions. The absence of a hierarchy between nodes makes them
important but not essential, as one can go offline and leave at any time without hindering the
network functionality.

The reason why each transaction is bundled in a block comes from practicality for bookkeepers
when recording and ordering the entries in the ledger. Choosing to work with batches instead

of single transactions makes the propagation of new blocks less frequent, thus giving the nodes

6 Acronym for Know Your Customer, is the process of gathering personal data of clients
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more time to acquire them and to agree on their order before new ones are mined, making a
network-wide consensus about the correct order of blocks more likely. Once a new block reaches
a bookkeeper, it is validated, stored in his copy of the blockchain and propagated to other nodes
and all the transactions in it are said to be confirmed with one confirmation. After new blocks are
appended to the chain, previous blocks become more and more ‘deep’ in the network, increasing
the confidence that the transactions in it have received enough confirmations to be considered

valid.

1.3.2 The Mining Process

According to the Bitcoin protocol, new blocks are created each ten minutes on average through
a process called ‘mining’ where each of the specialized nodes compete to find a solution to a
cryptographic puzzle before every other miner, earning newly minted bitcoins and the fees attached
to the transactions they are including in the block when they provide the proof of their work to
the whole network. This scheme is called ‘proof-of-work’ and helps the network to find consensus
about the validity of the entire chain of blocks, firstly proposed by Adam Back with Hashcash [3].
All pending transactions in the mempool require confirmation, so a miner choose to include some
of them in a block and leaves a space for an arbitrary number, called the nonce, that he will tweak
until, once the entire block is hashed, the hash of the block is smaller than a target number defined
by the protocol. The hash of the block obtained in this way will be like a fingerprint of the miner
and nodes of the network will be able to easily verify that the hash meets the criterion prescribed
by the rule, functioning as a proof of the miner’s work.

The process of finding the right nonce, called mining, is not straightforward but rather time-
consuming and repetitive as the miner is forced to check recursively if the nonce picked is correct
by running tedious mathematical algorithms, hash functions. The computational complexity of
‘proof-of-work’ puzzles requires a lot of hashing power to mine a block” thus requiring miners to
equip themselves with powerful computers to speed up the process and have a chance to get the
block reward. The miner profits from mining new block in two ways. First, he will collect the
commission attached to each of the transactions included in a new block that have been specified
by the creators of the transactions. This market-based approach makes block-creators prioritize
the transactions with the highest commissions therefore making confirmation faster the higher the
fee. Secondly, the more substantial reward comes form the coinbase transaction that points to an
address specified by the miner and is only transaction in the network that creates new Bitcoins as
a reward for mining the block. The maximum amount of new Bitcoins the miners can include in
the coinbase is specified in the protocol and is halved every 210,000 blocks, which at 10 minutes

per block is approximately every 4 years. The last halving happened on the 11** May 2020 where

7As of January 2021, the average hashrate needed to mine a block is about 130 EH/s, one-hundred quintillion

hashes per second. Source: btc.com

13



the reward lowered from 312.5 to 136.25 per block. Bitcoins have limited supply capped around
21 million units in circulation that will eventually be reached sometime around the year 2140.

As the number of competing miners and their hashing power increases over time, in order to
keep the block-creation time equal to ten minutes on average, the protocol dynamically adapts the
target for the hash calculations every 2160 block® based on the time elapsed from the creation of
the last 2160 blocks. The new target is computed from a number called ’difficulty’ such that the
network self-balances itself, the faster the previous blocks were mined the higher the difficulty and
the lower the target number will be.

To prevent miners from cheating and trying to pre-mine the next blocks, each new block must
contain the hash of the previous block as the header identifying it. Thus blocks are not sequentially
numerated, which could easily be predicted, but are linked together by previous hashes which
cannot be predicted because of their randomness, ensuring that no miner can skip ahead. This
principle creates the blockhain, which history is a sequence of uniquely chained and identified

blocks and cryptography makes it tamper-evident.

)
Alice pays Bob 3 bitcoins

Figure 1.1: A Chain of Blocks Linked Together By Hash ‘Fingerprints’ [4]

1.3.3 The Consensus Protocol

The Bitcoin protocol contains the ‘longest chain rule’ which determines how the network comes to
consensus and dictates what happens when two competing and valid blocks, created by different

miners, are broadcast to the nodes at the same time. When there are two valid block at the same

8 Approximately two weeks at ten minutes per block.
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height?, miners will choose one of them to start the mining process and when done they will add
the new block to the chain where in the meantime another new block has been eventually added,
thus choosing the longest chain available. The other valid block, called the orphan block, is still
considered valid but the transactions inside it remain unconfirmed and have to be re-inserted in a

new block.

The longest chain rule is essential for the resilience of the network against attacks, miscreants
and the double-spending problem. Let’s say someone sends a payment to another person according
to a business contract, the payer broadcasts the payment that will then be added to a valid block
and the payee will send the goods as per the contract. Once the buyer has received the goods, in
theory, he could start a longer chain where he replaced the transaction containing the payment to
the counterparty with a payment to himself, thus deceiving the payee as the network will accept
the longest chain by protocol and the block containing the fraudulent transaction will be deemed
valid. Therefore it is best to wait the block containing a transaction to be enough deep in the chain
such that it becomes more and more confirmed when enough blocks are added after it, and then
send the goods. In order to subvert the network and change or reverse transactions at will, someone
should have enough hashing power to re-mine the blocks he wants to tamper, for example to be
able to double spend like in the previous example, but he must also keep up with the the honest
chain and eventually surpass it to make all the nodes in the network choose his. This requires an
exceptional amount of hashing power and as described in the white paper, unless the malicious
miner has more than the 50% of the total hashing power of the entire network, his probability to
revert older blocks and catching up the other chain, beating the other miners, drops exponentially
as the difference in terms of number of blocks between the chains increases. The so called 51%
attack happens when the dishonest miners have the potential to undermine the entire blockchain
and the honest nodes cannot keep up in terms of computer power, that is why the more hashing
power in the network, the more resistant to this kind of attacks it will be. Although 51% attacks
are possible, nowadays the popularity of Bitcoin has made it more robust, as a matter of fact, given
that the hash power to mine Bitcoin is now exceptionally high, the computational power required
to overtake the blockchain would be enormous and supposing that a miner, or a group of them,
has enough power at their disposal to perform an attack, they would be discouraged to do so as
the mining equipment they already have is worth millions, the electricity costs they bear should
be already astronomical, if their actions would undermine the confidence of network participants
and of the Bitcoin market, causing the value of coins to plunge, they would be left with a lump of

worthless coins in their wallets, thus making the attack counterproductive.

A malicious miner could deliberately choose which transactions to add or exclude from his
block, effectively censoring data, or try to double spend bitcoins but they would be eventually

excluded from the network if the other participants reach consensus that he his behaving against

9The height term is used to identify the position of a block in the chain.
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the authenticity of the network itself and other miners can agree to not mine other new blocks on
top of his. Miners, however, cannot steal coins from other users as long as they don’t have access
to their private key to sign transactions and cannot create Bitcoins out of thin air because that
would mean go against the protocol and have their block refused by nodes. Malicious bookkeepers
can try to withhold transactions and blocks or share a fraudulent version of the blockchain to other
bookkeepers but any discrepancy form the copies of the majority of other nodes can swiftly be

exposed, getting them excluded from the network.

1.3.4 How Transactions Work

Differently from other ledgers, the blockchain does not store accounts balances but transactions
between every address registered in the network so one has to infer from all the inbound and
outbound transactions how many Bitcoins are available at a specific address. Give that only
the coinbase is able to mint new bitcoins, the ordinary transactions move Bitcoin between the
addresses, for example, let’s say A have 5 Bitcoins available from previous transactions and wants
to send 2 Bitcoins to B, the transaction he creates to pay B will move all A’s Bitcoins, that is 5,
sending B2 to B’s address and the remaining back to A’s account. If later A wants to spend the
leftover Bitcoins he will create a new transaction that will take as input the output of the previous
transaction, namely 133. More specifically, to perform a payment, the user needs to specify which
coins, called UTXOs', to move by referring to the hash of their related transaction. By this way,
identically to blocks, every transaction is linked to the hashes of prior transactions, creating a
public and transparent chain that can easily be inspected to trace every movement of a specific
lump of bitcoins, including every account it went through, all the way back to the coinbase source.

Afterwards, the transaction is created and signed, giving it an hash ID, and sent directly to the
peer-to-peer network of bookkeepers that will proceed to validate and broadcast it to all nodes.
Unlike client-server systems with a central third party, the peers of the bitcoin blockchain will
act as intermediaries but with no seniority, data is shared between them through the internet
connection and even if some nodes disconnect from the network, accidentally or deliberately, the
network will continue to work as data is replicated and updated simultaneously by all remaining
nodes.

Unlike one might think, Bitcoin wallets do not store coins but a copy of the private key of
one or more addresses. There are different types of wallets with distinct features fulfilling many
purposes and users needs. Software wallets can be used to create a bitcoin account, safely store
the private key, share the address to others, like through a QR code, sign payments and check
the balance of an account. To perform these tasks, the wallet needs to connect to the blockchain
and does this in two ways, either acting as a full node by downloading the full blockchian, which

is worth more than two-hundred gigabytes, or by storing a lighter version of the blockchain and

10Unspent Transactions Output.
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connecting via server with a full node, relegating all the heavy tasks to it. While a full node needs
to maintain an ongoing internet connection in order to keep the blockchain up to date, lightweight
nodes query the server hosting a full node when performing tasks on behalf of the user, making
it better suited for less powerful machines like mobile phones. When making a transaction, the
wallet gathers all the needed information and then sends it to the network. Some software wallets
offer security functionalities like private key backup and password encryption and some of them are
connected to either cloud services providers or to exchanges for quick transactions between different
cryptocurrencies. Some wallets can perform private key sharding, namely splitting the the private
key in multiple pieces and requiring a certain amount of shards for the key to be used. There are
wallets that make possible to create multi-signature addresses requiring multiple private keys to
approve a transaction. Hardware wallets instead are much like OTP tokens provided by banks,
small handheld devices that are not connected to the internet and safely store the user’s private
key. They are equipped with a chip that perform basic pre-programmed actions like signing an
incoming transaction with a click of a button. Of course private keys can be kept on a machine not
connected to the internet, on an unwired hard disk or even written on a piece of paper or multiple
bits of paper each stored in locked deposits in different banks, these methods are called cold storage.
Hot wallets instead, are automated wallets that require little to no human intervention to perform
tasks like creating and signing transactions and are often used by exchanges that need a quick
method to meet their clients’ sudden withdrawal requests. In this case, the private keys are stored
on online machines thus making them more exposed to hackers and cyber attacks, making them
less safe, which is the reason why exchanges keep only a small part of their total coin holdings in

the related addresses.

1.4 Criticism

Since its implementation in 2009, Bitcoin has been heavily criticized for multiple reasons but have
also received several appraisals and positive opinions, thus gaining more and more supporters and

interest from investors.

1.4.1 Ideology Behind Bitcoin

Firstly, the ideology that shines through the words of Nakamoto, “The root problem with con-
ventional currencies is all the trust that’s required to make it work. The central bank must be
trusted not to debase the currency, but the history of fiat currencies is full of breaches of that
trust.” [5], has been criticised by many economists to be techno-anarchist and, at least initially,
that Bitcoin has attracted mostly populism and libertarianism advocates for its potential to de-
tach money from the governments control and not for its investment or real value. In line with

an article on the New York Times and the argument by Bitcoin early supporter Roger Ver, in
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the early stages, the first cryptocurrency gained the most attention by the people who embraced
the idea of subverting the modern financial system and jailbreak from the stranglehold of central
banks’ monetary policies. From the The Declaration of Bitcoin’s Independence, the philosophy of
the so called crypto-anarchists stems up, sinking its roots in the idea of supporting a disruptive
technology that can withhold the control of the wealth in the system from malicious interference

of banks and states, endorsing humanitarian values.

1.4.2 Regulation and Legal Concerns

Throughout the years, the US Commodity Futures Trading Commission, the SEC and the Euro-
pean Banking Authority, amongst other institutions, issued several warnings, alerting investors of
the risks associated to trading and investing in cryptocurrencies due to their extremely speculative
nature. The main financial risk comes from the high volatile environment of cryptocurrencies,
including Bitcoin, and when analyzing the risks attached to them, one cannot refrain from consid-
ering that due to their decentralized nature there is often neither an authority nor an institution
backing them, and in the occurrence of a security breach of their network or of the exchange’s
system, a bug in the source code or another uncontrollable event, they can sink and go bust,
without anyone bailing them out. Ultimately, retail investors have often been exposed to frauds
on the web, for example solicited on social media sites, Ponzi and pyramid schemes, deceived by
false promises of earning profits and/or cryptocurrencies. Some cases of price manipulation, such
as spoofing and wash trades, have been investigated and exposed by the competent authorities.
Bitcoin, along other cryptocurrencies, has often been associated with its use for illegal purposes,
and its censorship-resistant feature has been accused of facilitating money laundering and the use
of it by criminal organizations and terrorists. If on one hand Bitcoin has been the main virtual
currency to be accepted by the shady merchants of the illicit deep-web marketplace, it has to be
considered that by now, the use of Bitcoin for illegal activities is just a small percentage of its
total market value and its increasing adoption functions as a deterrent for bad actors who seek
to use it for unlawful acts. As a matter of fact, even though the creation of a Bitcoin account
for sending and receiving payments is completely anonymous, the Bitcoin blockchain is completely
transparent and every single transaction can be traced back from its inception and all the capital
flows can be tracked by accessing many websites like blockchain.com, or if one has the need of
getting the complete chain examined, the whole Bitcoin blockchain can be downloaded on any
computer. Additionally, fiat currencies still remain the most used for illegal activities in defiance

of the law as cash is really anonymous and untraceable.

1.4.3 Resources Consumption and Centralization Concerns

Bitcoin has been targeted by many climate change activists, associations and scientific organiza-

tions for its environmental impact and power consumption related to the mining process. As a
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matter of fact, the significant amount of computer processing power required for mining Bitcoin,
which as prescribed by its protocol dynamically increases as new miners enter the network, raised
concerns about the electricity demand of the equipment designated for this type of process. As
reported by the BBC [6], by the end of 2019 the Bitcoin electricity consumption in gigawatts
was comparable to that of the entire country of Switzerland, and estimated to be the 0,2% of the
global electricity consumption. Conversely, a study performed by the American journal Politico
[7] claimed that even though the Bitcoin electricity demand is high, its power consumption is con-
siderably lower than the levels of the whole global banking sector, and when approximating the
future maximum consumption level the Bitcoin network might require according to its technology,

this projection would still be under 2% of the global power consumption.

Thus, due to the power hungry mining rigs, the vast majority of mining farms, huge warehouses
where several high-performance computers are connected together to generate the most hashing
power, are often geographically located in areas were the cost of electricity is lower than the
average and the climate conditions are more favorable. Most miners opted to locate their farms in
Iceland for example, in order to exploit the cold temperatures and cut the cost of computer-cooling
equipment. Moreover, as of 2020, a prevalent portion of mining farms and pools are based in China,
the main reason being that miners are able to exploit electricity subsidies provided by the Chinese
government, resulting in more than 50% of the global Bitcoin hashrate concentrated in the PRC!!.
This brings up the concern of a centralization of the computing power needed to generate new
Bitcoins, going in the complete opposite direction of the decentralization on which Bitcoin is based
on and the ideology at long avowed by its proponents. Considering that the most widespread and
preeminent way of acquiring Bitcoins, and other digital currencies, is trough exchanges, centralized
by definition, a perfect decentralization is farther than one might hope.

During the years, the exponential increase of the hash power needed to mine Bitcoin fostered
the proliferation of mining pools, some of which, like BTC.com and AntPool, owned by the same
Chinese company Bitmain, are estimated to control a prevalent portion of the total Bitcoin hash
power. Moreover, some of these pools started selling ASIC'? powered mining hardware, raising
concerns about the centralization of miners, hash power and mining equipment manufacturing
and distribution. This exposes the network to the risk that if the biggest mining pools join their
forces, resulting in more than 50% of the total hashing power, they could undermine the network
by double-spending and re-writing blocks. Even if they might get discouraged because doing so
would wipe the confidence in Bitcoin, making their holding practically worthless, one might argue

that they could open a short position and profit from the price plunging.

Additionally, the vast majority of nodes are running on the same software, the Bitcoin core,

Source: checi.org
12 ASIC stands for Application Specific Integrated Chips. These chips are specifically designed and optimized for

SHA-256 hashing, giving them a competitive advantage over general-purpose CPUs and GPUs not only in terms of

hash power but in energy efficiency and power consumption.
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which is maintained by a single organization and developed by a small amount of developers, in
response to this concern it must be noted that the Bitcoin software is open-source an anyone can

contribute to its development.

1.4.4 Noteworthy Criticisms and Future Outlook

At last, many economists and Nobel laureates, like Paul Krugman and Robert Shiller, labeled
Bitcoin as a bubble that will explode eventually. Renowned professional investors, like George
Soros and Warren Buffet, referred to Bitcoin as poised to die and disappear. In response to
these heavy criticisms, the community around Bitcoin even created a web site that keeps counting
each time Bitcoin has been declared dead, attaching the relative citation. Even if Bitcoin has
its own drawbacks and vulnerabilities, like every new technology that presents itself as having a
revolutionary potential, it needs to be well-known and assimilated by the vast majority of actors
in the economy for its value to be really appreciated. The blockchain concept and its capabilities,
as well as the cryptography based security measures, should not be overlooked, and its crucial
to evaluate their usefulness and applicability in every economic sector. The decentralization of a
system contributes to avoid the risks associated with having a single point of failure, like most of
the modern electronic and software systems, where a negative feedback loop could propagate from,

affecting every unit and its participants.

The shift towards a complete digitalization of money seems the next step to take in our modern
society, electronic payments are now a standard, and an increasing number of Fintech companies are
participating in the financial sector, urging their traditional competitors to look for technological
innovations to invest in. The adoption of the blockchain technology by many leading financial
institutions, like for example JP Morgan Chase with Quorum, is representative of how much this
technology is set to transform the economy and affect financial services in the near future. Every
company need a fast and reliable database to store important data about their business or need
a business-to-business communication system that ensures a tamper-resistant mean of sharing
vital information, like contracts, reports or even digital assets. That is why firms are consistently
starting to explore this new technology and develop private blockchains, although relaxing some of
the concepts and requirements of public blockchains, to overcome the shortcomings of traditional
database systems that have not received many radically innovative upgrades during their life cycle.
For example, they can benefit from the automation of specific processes through pre-programmed
smart-contracts based on the Ethereum platform, or increase the quality and security of data flows
getting rid of the costs and risks, like leakage or mishandling, related to a central repository or a

third party whose failure would have a significant impact on the entire business process.
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1.5 Bitcoin Economics

1.5.1 Definitions and Use Cases

When referring to Bitcoin, there is no universal definition for it, some may call it a currency, given
that it is a cryptocurrency, some say that it is a store of value, others, especially in the financial
sector, purport that digital speculative asset might be the most suitable definition for it. As a
matter of fact, when comparing it to the academic definition of money, Bitcoin is lacking some

necessary attributes required to be considered as a proper currency.

First, it needs to fulfill the medium of exchange function, it has to be widely accepted as a
payment method in a commerce environment, namely, used to buy tangible or intangible goods,
pay for services, or extinguish debt and financial obligations. Although its popularity, Bitcoin’s
inherent volatility drags most merchants away from accepting it as a directed payment method
like traditional currencies because that would mean exposing themselves to the risks related to
frequent exchange rate fluctuations. This does not mean that there aren’t exceptions and even if
during Bitcoin’s early years, where its technology had to be explored and appreciated first, there
were an inconsistent number of companies willing to accept Bitcoin in exchange for their goods and
services, nowadays there are some notorious names in the list of retailers allowing payments with
Bitcoin, notably, Microsoft that halted its acceptance but later resumed it to buy digital goods
on its online marketplace, American telecommunication company AT&T and well know fast-food
restaurant chains and even online computer hardware and accessories vendor NewEgg.com. This
list is enlarging as time goes by, mainly due to agreements between merchants and cryptocurencies
exchanges offering competitive commission fees schedules for in-store and real-time crypto-fiat
currency exchange with respect to other POS and electronic payments providers, like Visa and

MasterCard.

Secondly, following the definition, money has to fulfill the store of value function, meaning that
individuals in the economy should be confident in holding their wealth denominated in a currency
such that the same amount of money that would take them to buy a specific basket of goods
remains the same as time goes by. In reality, even for fiat currencies this does not hold well due to
inflation, induced by central banks’ monetary policies, that erodes the purchasing power of a specific
currency. This drives investors to look for a way to hedge their wealth against higher expected
levels of inflation inducing them to seek for opportunities on the financial markets, like stocks,
ETFs and commodities. Analyzing the historical evolution of inflation in the U.S. represented by
CPI index!3, it is evident that the dollar, like any other government currency, failed to ensure
an adequate hedge against inflation over the last hundred years, and even more dangerous to
the stability of a state-issued currency would be the phenomenon of hyperinflation which would

crumble its value.

L3https:/ /fred.stlouisfed.org/series/ CUURO000SAOR,
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FRED ,.,j — Consumer Price Index for All Urban Consumers: Purchasing Power of the Consumer Dollar in U.S. City Average
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Figure 1.2: Consumer Price Index: Purchasing Power of the Consumer Dollar in U.S. City Average.

Bitcoin has often been labelled as the 21st century gold, digital gold or gold 2.0, and under
certain aspects this comparison may probably be accurate but has to be supported by an accurate
analysis of the assets’ respective intrinsic characteristics. Both assets have limited supply, gold is
by nature a limited resource and Bitcoins in circulation will be at maximum 21 million, today’s
circulating supply is approximately 18.5 million'* and geometrically decaying with time as designed
by its protocol. What makes gold good at fulfilling this particular function is the perceived value
the economy has of it, apart from industrial applications, like in the electronic circuits sector, and
the jewellery sector, which is itself driven by the value of gold more than the other way around, it
has even been the chosen standard for backing fiat currencies in the past, so is considered by people
as a secure way to store their wealth outside the traditional banking system and attracts many
speculators due to its inherent value. On the other hand, in response to the criticisms that Bitcoin
has no intrinsic value and there is no authority backing it, it should be noted that are exactly
its innovative and disruptive characteristics, like decentralization, lower intermediaries, and the
clever use of cryptography, that propagate confidence and trust between its users, bolstering it
effective utility. In an historical period where the use of cash is decreasing and digital payments
are sometimes preferred either for their convenience or when they are the only way to pay for
exclusively digital goods or services on web-sites, it is only a matter of time before more actors
in the economy would want to benefit from Bitcoin, and cryptocurrencies in general, capabilities.
Additionally, the pre-programmed supply limit has deflationary effects, thus helping to maintain
the value of Bitcoin high in the future due to its inevitable scarcity as long as demand for it stay
constant or increases, miners will stop getting block rewards so the market for fees should become
more competitive. But, citing Robert Sams, “the downside of a known, predictable, and completely
inelastic supply unrelated to a fluctuating demand results in perpetual price volatility” [8].

The last property for money to be considered as such is the unit of account, meaning that agents

in the economy should reliably use a currency as a benchmark for comparing different assets or

MSource: https://coinmarketcap.com/
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evaluating their total holdings. As a unit of account, people tend to estimate their total wealth
in terms of a specific currency thus needing a fairly stable one to peg their possessions to. The
high volatility of Bitcoin hinders its viability as a conventional unit of account and is the main
reason why most merchants are restraining form pricing their goods or services in Bitcoin. On
the contrary, Bitcoin functions as vehicle currency for a manifold of altcoins, ultimately satisfying
the unit of account properties for the cryptocurrencies market. Altcoins is the definition for the
enormous amount of cryptocurrencies that surged after their precursor, either by forking Bitcoin
codebase or by chainsplits'® like Litecoin and Bitcoin Cash respectively, and especially the ones
with a low trading volume and market capitalization are quoted and traded only in terms of
Bitcoins similarly to USD in respect to other fiat currencies. The thicker volume of USD markets
ensure a lower bid-ask spread and is often more convenient to take an extra step trough USD when
exchanging two currencies than a direct exchange between them. As the Bitcoin-USD market is
the thickest in terms of volume, it is often cheaper, or the only way, to exchange USD for BTC
and BTC for altcoins, making Bitcoin an effective unit of account for most altcoin markets.
Some merchants are adding an additional payment method amongst the others to accommodate
users needs and to capitalize on the wave of Bitcoin’s popularity but are still requiring an additional
service of a third party intermediary to perform seamless crypto-fiat exchanges as the majority
of them prefers to have their money in the currency of the jurisdiction where they operate. One
function where Bitcoin might do well and be highly competitive is in international remittances.
As a substantial portion of this market is taken by two established companies, Western Union
and MoneyGram, that charge quasi-monopolistic taxes for sending money abroad, there is where
Bitcoin might shine. Indeed, someone who need to send a sum of capital to another person overseas
could use Bitcoin as vehicle for other fiat currency and even without a BTC address one could access
a simple Bitcoin ATM and by showing the QR code obtained therefrom to a local “reBITtance”
office, exchange bitcoin for cash right-away or instruct the service provider to exchange BTC for

fiat and send fiat to a the recipient’s bank account (Ferraz 2014 [9], Buenaventura 2014 [10]).

1.5.2 Is Bitcoin a Bubble?

Bitcoin and other cryptocurrencies are not redeemable at the state bank for fiat currency or for
any kind of commodity, still the pre-programmed cap of their supply prevents the risks related

to an overissue that would affect their market price. As seen before, the fixed supply leaves the

15The fork of a codebase happens when the original source code of a cryptocurrency is customized by enriching
its features, adding some improvements, tweaking its original parameters or radically changing its protocol like
block generation and consensus procedures, departing from the proof-of-work, thus creating a blockchain from
scratch which will support a new cryptocurrency that will be traded with a new ticker symbol. A fork of a live
blockchain, in jargon a chainsplit, instead stems from a disagreement between some members of the community of
a cryptocurrency, often about the modus operandi of the network, leading them to create a new cryptocurrency

governed by a different protocol that will share a common history with the old cryptocurrency up to a certain block.
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demand to move freely and drive the price, thus resulting in an highly volatile environment which
for some cryptocurrencies, whose demand was not supported by any inherent usefulness but just
by speculation, was lethal and their prices plummeted to zero wiping their entire market cap. This
raised concerns about the instability and riskiness of most altcoins markets that were inevitably
labelled as speculative bubble as their value did not have any floor under their equilibrium market
price supported by a sovereign authority or by utility in other contexts like commodities. According
to the monetary supply theory, agents in the economy might want to hold an irredeemable currency
if it is a mean of exchange or because they have positive expectations about their future value,
but if there is no price-independent characteristic backing it, its demand is purely speculative and
expectations driven, thus falling in the definition of a bubble. But this does not mean that all
cryptocurrencies are bubbles as the ones with the highest market cap have many fundamental
values sustaining the price from piercing a certain threshold and explaining their positive market
value. If one looks from the prospective of a tech-enthusiast, a crypto-developer, a member of
the cypherpunk community or even someone whose endorsing the ideological values behind a
certain cryptocurrency, holding Bitcoin, or Ethereum for example, could be like holding gold or
a rare numbered piece of art, to the extent that often there is a psychological support level for
their market price that when reached would steadily trigger a sustained demand and bring the
price back up. The other price-independent features that would sustain the price of Bitcoin are
the confidence in the use of cryptography and its technology in general, adding more value to
the mere expactation of Bitcoin becoming a widely accepted medium of exchange, although the
latter remains beneficial for its market price as it would increase the liquidity premium over its
fundamental value.

Velde (2013) [11] curbed the enthusiasm towards Bitcoin along with the prospect for it to
become widely accepted and compete with the U.S. dollar, criticizing the fact that its software is

maintained by just a small set of programmers by saying:

“Although some of the enthusiasm for bitcoin is driven by distrust of state-issued cur-
rency, it is hard to imagine a world where the main currency is based on an extremely
complez code understood by only a few, and controlled by even fewer, without account-

ability, arbitration, or recourse.”

In response to that, Lawrence H. White (2015) [12] pointed out that if one replaces the word code
with bureaucratic agency this statement becomes a fair description of the modern Federal Reserve
controlled currency system thus leading him to purport that the drawbacks and shortcomings of
Bitcoin could be offset by the benefits of a public and cryptography secured public ledger when
compared to the byzantine central bank.

Bitcoin can be traded on exchanges with the ticker BTC and there are BTC-fiat currency
pairs available for major traditional currencies, moreover, beyond established and conventional

brokers, there is a cluster of crypto-to-crypto exchanges where BTC is traded in pair with other
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cryptocurrencies only, and in order to get a sense of how much BTC is worth in terms of fiat
currencies there is a large number of so-called stablecoins in circulation, digital tokens that are
programmed to be pegged to a specific fiat currency, like EUR or USD, but not without flaws,
such as technical difficulties to peg a digital currency to a real one, and risks about how these coins
are managed by their issuer. Indeed, some of these stablecoins are minted by private companies,
like in the case of the popular USDT, operating in a total legal grey area and often do not
undergo the prudential audits envisioned for traditional financial companies, thus the mishandling
of their reserves can expose crypto-markets to serious stability and systemic risks and some of
these companies have already been accused by market participants of allegedly flooding the price
of cryptocurrencies and not being transparent enough about the mechanism and the rate at which

their stablecoin is backed with real money.

1.5.3 Price Analysis

I downloaded the historical data of BTC/USD from Coindesk.com for the period going from 31
December 2020 all the way back to 1 October 2013, which was the earliest date available. Then I
plotted the time series with Python library Matplotlib to obtain a subplot of the Bitcoin price in

dollars in order to analyze its historical behaviour:
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Figure 1.3: Bitcoin Historical Price Evolution

From Fig. 1.3 (a) it can be seen that after reaching an all-time-high of around 1,200 USD in
November 2013, Bitcoin price plunged to $600 in the first months of 2014 when Mt Gox exchange,

which accounted for a significant portion of total volume, started its tormented path through
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scandals and hacks and ultimately going bankrupt. Moreover, in the first quart of 2014 the Chinese
government announced that it would have banned cryptocurrencies trading and commercial uses
such that the price crumbled, getting back to $200. Reaching another peak by the end of 2017, Fig.
1.3(b), Bitcoin was entering what has later been labeled as the the great crypto crash, a substantial
sell-off that can be linked to various factor happened in that year. The largest cryptocurrencies
exchange in Japan, Coincheck, disclosed an loss of over 500 million US dollars after being the target
of an hack, spreading fear amongst investors that their money were at risk and started withdrawing
from the network, and the tough criticisms by prominent individuals in the financial sector, like
Warren Buffett and hedge fund managers, worsened the confidence people had in cryptocurrencies
in general. Additionally, in that year Bitcoin Cash was created from a Bitcoin chainsplit and the
community that was agreeing to the hard fork was emphasizing Bitcoin shortcomings, in part to
lure the attention and capital in favour of the new cryptocurrency, making the price of BTC to slide
under the $5,000 price point in the final month of 2018. After regaining some momentum in the
first two quarters of 2019, the priced declined back to its level in Q4 when Russia started enacting
regulations towards smart-contracts and cryptocurrency tokens. In 2020, Bitcoin, together the
whole financial market, registered a substantial loss of more than 50% in March 2021 following
the beginning of the COVID-19 pandemic that heavily affected most economic sectors. Despite
the economic downturn, Bitcoin held up and started from the low of $4,000 to achieve higher than
average returns over the last half of the year and ultimately sky-rocketing to a new all time high
and contributing to set the $1 trillion total market capitalization milestone of the cryptocurrencies

market.

The are two main factor that could help to explain the performance of Bitcoin from April
2020 until the end of the year. First of all, in a bleeding economy where the coronavirus disease
forced the population to stay home and many companies to shut down and eventually declare
bankruptcy, BTC steadily rose in value along with the tech sector because investors closed or
resized their position in losing sectors and moved their funds where they saw an opportunity to buy
undervalued assets. Moreover, most countries’ central banks and authorities started to implement
policy measures providing financial aid to support and stir up the economy, an example can be
the U.S. Cares Act by which the American government envisaged a stimulus package to contain
the effect of the economic fallout such as helping small-medium sized business, loosening taxes and
interests on loans and ultimately providing a one-time check payment to individuals and families.
In a critic environment, the shift to a more expansionary monetary policy leads to a reduction
of interest rates and investors might build an expectation about an higher inflation in subsequent
months and years such that they start investing in assets they deem to be an efficient store of value
to protect their capital from inflationary erosion. Moreover, in the last two quarters of 2020, many
companies and hedge funds, like Microstrategy and MassMutual, announced that they would take

or increase their position in Bitcoin, and in the October 2020 PayPal opened its digital payments
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platform to cryptocurrencies, allowing its subscribers to buy and sell crypto directly form their
PayPal dedicated crypto wallet, making transactions in Bitcoin easier for users. The adoption
by large institutional investors drove an unprecedented bull market that lasted through the last
months of 2020 and the number of Bitcoin mined, transferred and the number of new accounts
created hit record values'S.

Remarkably, Bitcoin market capitalization is approximately 700 billion dollars and accounts for
70% of the total cryptocurrencies market cap'?, confirming Bitcoin dominance among this market.
But when comparing these values with the market cap of other well established assets like gold
and tech giants like Apple (figure 1.4), Bitcoin market cap is conspicuously lower, signaling that
despite being around for more than ten years, its market is still in his early days and mass adoption

is far from being reached.

Market Cap 11751
Bitcoin
Apple
Gold
2222
749
BTC AAPL GOLD

Figure 1.4: Market Capitalization of Bitcoin, Apple and Gold in billion U.S. dollars

The small market cap makes investing in Bitcoin more riskier and this accounts for its higher
returns when compared to traditional assets. The higher volatility does not help with wide ac-
ceptance and Bitcoin needs to prove itself for a longer time frame before it can be considered like
gold which have been recognised as a store of value for over 300 years. In figure 1.5 I plotted
the compounded gross returns of daily prices of Bitcoin, priced in US dollars, and gold futures,
ticker GC=F traded on Comex exchange,'® to grasp the performance of both assets in the time
span between 2017 and 2020 and I added the mean of their respective compounded returns series

to get an idea of their long term volatility. Price fluctuations around a fixed level of Bitcoin are

16Source: chainalysis.com & wsj.com
17Source: coinmarketcap.com/
183ource of the data: finance.yahoo.com/
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noticeably higher and the latter has been characterized by a larger price excursion in some days
when the percentage change was higher than average. I decided to leave the gross return to better
understand how much an investment made in the first day of 2017 would have been worth at the
end of December 2020, for example an investment of $1,000 dollars on the 1%t of January, 2017
would have been valued approximately $30,000 dollars on 31 December 2020, that is around a

2,900% return in two years, not bad for a digital asset.
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Figure 1.5: Bitcoin and Gold Return Comparison

Finally, a factor that contributes to the high volatility and the speculative nature of Bitcoin is
the lack of a widely accepted and used pricing model and, differently from stocks where investors
can perform duly fundamental analysis to get valuable insights to build their decisions on, there is
neither a financial statement or report related to BTC nor an academy acknowledged method of
valuation, but still, information on its blockchain and data about the network is publicly available
on a variety of trusted web sites and could provide a good understanding of the price evolution.
In order to get a general overview of the performance of different markets, I plotted in Fig. 1.6 the
compounded percentage returns for the entire year 2020 of different assets and indexes, namely
BTC/USD, the S&P 500 US index, the FTSE MIB Milan stock exchange index, silver (ticker
GC=F) and crude oil (ticker CL=F) futures traded on COMEX and NYMEX respectively, and
EUR/USD currency pair. As it can be seen form the chart, the Bitcoin has managed to gain
massive returns in comparison to more traditional assets and its price evolution is quite volatile,
this is the main reason why in the next chapter I have chosen to employ an econometric approach

to model the time varying conditional volatility of BTC along with its conditional mean, trying to
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find a model that provides a suitable fit for the time series of Bitcoin.

BTC/USD vs Traditional Assets and Indexes Compounded Net Returns (%) For the Year 2020
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Figure 1.6: Comparison Between Returns
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Chapter 2

Time Series Analysis of Bitcoin

In this chapter I will apply ARIMA and GARCH econometric models to perform a univariate
time series analysis and prediction of Bitcoin price series. I have downloaded the 4 hours close
prices through Python, calling the API' of Binance exchange with an open-source wrapper?. I
have chosen the ‘4h’ time frequency to be able to work with more granular data than daily prices
and test how much an higher-frequency sampling of the data affects the performance of the fitted
models when making out-of-sample predictions compared with the frequently used lower frequency

sampling, such as daily observations, in the literature.

2.1 Theoretical Framework

The ARIMA(p,d,q), Autoregressive Integrated Moving Average, process first introduced by Box
and Jenkins [13] is one of the most popular in the econometric literature and has been widely used
for time series analysis and forecasting in discrete time. It is composed by two parts, the autore-
gressive one which is represented by the AR(p) process, and the moving average part, represented

by the MA(q) process.

2.1.1 Stationarity

Both AR(p) and MA(q) are based on the assumption of stationarity, namely that both processes
have a time-invariant distribution characterized by finite moments. A stochastic process, namely a
ordered sequence of continuous random variables Y7,Ys, ..., YN, N € T the set of times, is said to
be strictly stationary if the moments of its distribution are constant for every point in time, that
is, given two subsets of realizations of the stochastic process, {V;}i, and {Y;}}/"} , Vt € N, both
sequences have the same probability distribution, thus the same moments, independently from

time shifts ‘m’. The assumptions of strict stationarity are too rigid for most applications because

L Application Programming Interface.
2https://github.com/sammchardy/python-binance
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of the difficulty to verify their validity and often do not hold for financial time series. Instead
of imposing that every moment is time invariant, weak stationarity assumes that only the first
two moments of the distribution of a process are finite and time-independent, thus increasing the

feasibility of verifying that the assumption holds in practice. For a weakly stationary process:

E[Y] =/_Oc yfily)dy=p<oo, WVt (2.1)
Var[Y;]) =E[Y —E[Y]? =02 < o0, Wt (2.2)
Cov[Yy, Y] = E[(Y; — E[Y3]) (Ys — E[YJ])] = (|t —s]) <oo, Vi (2.3)

Hence, the autocovariance function y(h) does not depend on time indexes themsleves, but only
on time lags, namely the difference between two point |t — s| in time where the stochastic process is
being observed, this is why a weakly stationary process is often called covariance stationary. The
autocovariance function can also be written as y(h) = Cov[Yiin, Y] = E[(Yign — p) (Y — p)] where
~(h) depends only on the lag h = |t + h — ¢| and the autocovariance function is symmetric, that is
~v(h) = v(—h). The autocorrelation function is than derived as:

Cov(Yin, Y1) ()

plh) = \/Var(ﬁ+h) Var(Y:) ~ 7(0)

(2.4)

By definition the autocorrelation function is a standardized measure of the linear relationship
between sequences of variables drawn form the same stochastic process and shifted in time, such
that —1 < p(h) < 1.

In equation (2.1), fi(y) is the marginal probability density function of the random variable Y;
defined as fi(y) = 5F57?5y) where Fi(y) = Pr(Y; < y) is the marginal distribution function. The
benefit of stationarity assumptions is that there are less parameters to calculate in order to describe
the distribution of a stochastic process, and given that all random variables have the same expected
value p, the mean of the process can be accurately calculated by averaging trough the r.v.’s, Y.

Hence, a stationary time series, which is a collection of equally spaced realizations of a stochastic
process, {z:}7_, chronologically ordered and with time index taking integer values, shows a well-
defined behaviour when observing its evolution through time, that is, it is mean-reverting and
randomly varying around a fixed level u. When the time series shows an evident time trend,
departing form the initial mean level, the series is not stationary but behaving more like a random
walk.

Even if the price of financial assets is best described as a continuous stochastic process, due to
the method of sampling, that is, observing the price in equally spaced and discrete time points,
often a time series is considered a discrete-time process and an approximation of a continuous
stochastic one. In this context, the models employed in next sections assume that the values

of the time series are observed in discrete time, reducing the number of parameters to estimate

when fitting the distribution of the series, thus making calculations more feasible. Having said
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that, in order to take advantage of the statistical properties of continuous random variables, one
can chose a specific method of transforming the series, for example continuous functions like the
natural logarithm or the square root, or calculating the log returns of the corresponding prices,
thus obtaining a series that can be modeled as a discrete-time continuous process [14].

The most basic stationary process is the white noise process defined as € ~ W N (u,0?) with

moments:

Ele)) =p, Vi (2.5)

Varle] = o2 vt (2.6)

€

o, ift=s
Covleg, €5] =

0, ift#s
Hence, a white noise process is a sequence of uncorrelated random variables and weakly stationary
with autocovariance function vy(h) = 0 Vh # 0 and consequently p(h) = 0 Yh # 0 autocorrelation.
When the expected value of the process is equal to zero, it is said to be distributed with mean zero
and a finite variance with notation € ~ WN(0, 02), additionally when €1, €a, ..., ¢ are i.i.d., inde-
pendent and identically distributed random variables, the notation used is € ~ i.i.d. WN(0,02),
and if €1, €9, . . ., € follow a specific distribution, such as the normal distribution, the noise variables
are i.i.d. normally distributed € ~ i.i.d. N(0,0?). These properties imply that when forecasting,
the best linear predictor of a an i.i.d. white noise process is its mean because all the observations
are uncorrelated and past observations do not provide any information about the future values of

the process, indeed:

Eletsn | €.yl =pn, VYh>0 (2.8)

2.1.2 Autoregressive Process

+oo

=2 of corre-

An autoregressive process is based on the assumption that given a time series {y:
lated variables, the current observation y; can be expressed as a linear function of past observations,
treated as explanatory variables, plus an unobservable noise term which adds randomness to the
process. Thus an AR(p), where ‘p’ is the order of the process, can be defined as a weighted average

of past values:

(Ye — 1) = p1(ye—1 — 1) + P2(ye—2 — 1) + - + Op(Ys—p — 1) + € (2.9)

Where ¢1, ¢2, . .., ¢, are constant and e ~ WN (0, 02) is the ‘shock’ produced by new information at
time t, thus €; is an uncorrelated white noise process by definition as the effects of new information
on the current value y; can not be predicted by past shocks if they are truly unexpected, thus they

need to be independent through time. The process may also be rewritten as:
Y =c+ Pryi—1 + G2Yyr—2 + -+ Gpyr—p + € (2.10)
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Where ¢ = (1 — ¢1 — ¢p2 — -+ — ¢p), and p is the long run unconditional mean of the process.
Considering, for simplicity, a mean zero AR(1) process written as y; = ¢y;—1 + €; by recursive

iteration:

Yo = Qye—1 + € = G(dyr—2 + €1—1) + € (2.11)

= Q%Yo+ der_1 + €

k—1
="+ dea; (2.12)

Jj=0

: [ee]
- Z Per; (2.13)

§=0
Where in (2.12) the first term on the right hand side converge to zero as k — oo if |¢| < 1
meaning that the dependency between current value y; and past values of the series decays to zero
as the time distance increases. Additionally, the term Zf;é @7 €;—; shows that when k increases
the weights of the shocks decay geometrically, namely that the effect on y; of distant past shocks is
zero or negligible. (2.13) is also called M A(co) representation of an AR(1) process and the latter
is stationary if the condition |¢| < 1 holds. Indeed, calculating the moments of AR(1) using (2.13)

we obtain:
Ely) =) ¢'Ble;]=0, Wt (2.14)
§=0
Var|y] = Var| Z Pe il= =o? Z % = 06 vt (2.15)
o2
Cov[yitn, yi] = Z ¢ erin— j Z e )] = 76¢2 , Vtand h >0 (2.16)
_ Cov[yt-‘rha Yi) _ h
Corrlyern, y] = =¢", Vtandh>0 (2.17)

\/ Var(ysn|Var(y]

as € ~ WN(0,02) and (2.15) is obtained by using the property of a geometrical series Z o

if |¢| < 1. From (2.17), the autocorrelation function of a stationary AR(1) process p(h) =

v%

(h
7(0
for h > 1.

Q»—‘

= ¢" deacays geometrically to zero and follows an autoregressive process as p(h) = ¢p(h — 1)

|

Given the lag operator L such that L"y; = y;_;, the AR(p) process may be written in terms

of the noise ¢;:

(1 =¢1L—¢1L? = = ¢ LP)y; = & (2.18)

or
L)y = & (2.19)
v = d(L) e = Y(L)ey (2.20)



Where ¢(L) is the autoregressive operator. The necessary condition In order for an autoregressive
process to be written in its MA(oco) form is that the autoregressive polynomial needs to be invert-
ible, the roots of ¢(L) must lie outside the unit circle such that, ¢(L) = 0 only if |L| > 1. For
example, an AR(1) of the form y; = ¢y;—1 + €; can be rewritten in terms of the lag operator L as
Yt = ¢Ly; + € and rearranged such that (1 — ¢L)y; = €, when [¢| < 1, by using the property of

geometric sequences:

y=(1—6L) e (2.21)

- (ZSL:1+¢L+¢2L2+...+¢ij+...7 VL <1 (2.22)

Y = 27/}j5t—j (2.23)
=0

Where 1; = ¢’ and 1y = 1. Equation (2.23) is called the Wold representation [15] of an infinite
order AR(1) and the stationarity condition is E;io 1?2 < 00, coefficients are square summable or,
a more stronger condition is the absolute summability of the coefficients -7 [t < oo ensuring
that |¢| < 1 holds. The invertibility condition is fundamental for an autoregressive process to
be causal, namely that the current value of the time series y; does not depend on future values

Yt+1,Yt+2, - - -, thus avoiding the look-ahead bias when fitting the model and building forecasts.

2.1.3 Random Walk

A basic example of a non-stationary autoregressive process is the random walk of the form y; =
Yi—1 + €; where the autoregressive coefficient ¢ = 1 in this case. A random walk without drift can

be obtained by iterating backward t times as in (2.11), the process can be written as:
t
j=1

where yq is an arbitrary starting point and € ~ WN(0,02). Taking expectations on both sides to

compute the moments of the process yields:

Ely] = yo (2.25)
Varly:] = v(0) =0+ Z Varlej] = to? (2.26)
Covlys, yi—n] = v (h) = E[(Z €) (i €)] = min(t,t —h)o®, VYh>0 (2.27)
j=1 i=1
vih) [t =h)o??

h
Corrlys, ye—n]* = p7(h) = =1- T Vh>0 (2.28)

~ %1(0)7-n(0)  [to?][(t — h)o?]
The expected value of the process depends completely on the initial value yo and from (2.26) the
variance of a non-stationary AR(1) increases linearly with time, therefore the value y; walks away

form its mean, confirming that it is not mean-reverting. From (2.28), the autocorrelation function
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of a random walk process depends on time t, differently from a stationary AR, and one can notice
that for t— oo the process is perfectly linearly correlated and p(h) does not fade away with time
[16]. Moreover, for |¢| > 1 the process has an explosive variance, the value y; detaches form its
mean level exponentially faster thus making the calculation of the moments more difficult than the

case where the stationary assumption holds.

2.1.4 Moving Average Process

Often, modeling a time series as an autoregressive process requires the estimation of too much
parameters in order to obtain an adequate fit, with the risk of incurring in overfitting an AR
model, that is why, to achieve a more parsimonious model, one has to fit an additional model that
accounts for the noise terms and may be beneficial for the total computational complexity, reducing
the number of parameters to be estimated. According to a moving average process MA(q), y; is
expressed as a linear combination of past values of the noise term and for € ~ WN(0,02) takes
the form:

Y — U = € + 01€t_1 + 92615_2 + -+ qut_q (229)

Where 61,05, .. .,0, are parameters. As for the autoregressive process, an MA(q) can be expressed

in term of the moving average operator, such as:

O(L)=14+60,L+6,L*+ - +0,L (2.30)

yr = 0(L)es (2.31)

Where p has been set to zero. The process can also be expressed in its infinite form seen in (2.23)
with ¢; = 0; for j = 1,...,¢, Yo = 1 and ¥; = 0V j > ¢. A moving average process is always
stationary, regardless of the values of the parameters theta, this can be shown by considering,
for example, the moments of an MA(1) in the form y;, = €; + f¢;—1, with p = 0 and assuming

e ~WN(0,0?), the moments are:

Ely] =0 (2.32)
7(0) = o2(1 +6°) (2.33)
Y(1) = E[(er + 0ei—1) (€t41 + Oe)] = 007 (2.34)
Yy(h) =0, ifh>1 (2.35)
p(1) = fgz (2.36)
p(h) =0, ifh>1 (2.37)

The autocovariance of MA(1) drops to zero when the lag between observations y; and y;, is greater
than 1, that is the order of the process, because when taking the expectation while computing an
higher order autocovariance, for example v(2), there are no noise terms with a common time index.

Consequently, the autocorrelation (2.36) summarize the behaviour of a moving average process of
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order 1 and will be useful for identifying which model and which order best fits the Bitcoin time
series. Moreover, this behaviour is distinctive of all MA(q) processes and the autocorrelation cuts
off V|h| > g¢.

Moreover, from equation (2.36) the same value of p can be obtained with two different values of
0, for example 6§ = 2 and its reciprocal % yield the same results and there is a problem of uniqueness
and identification. To avoid this, in order to ensure uniqueness, the moving average process needs
to be invertible, that is, [#] < 1 such that it admits and AR(oco) representation. Rewriting a MA(1)
process in order to isolate the noise term at time t, ¢; = y; —fe;_1, using the backward recursion as
in (2.13) and substituting €;_1 = y;_1 — fe;_o iteratively, one can obtain the infinite autoregressive
representation e; = Z;’;O(—Q)jyt_j, where the term (—6)7¢;_; decays to zero V || < 1 for j — oo
and is omitted. Considering the moving average polynomial representation of an MA(1) process

yr = O(L)ey, if the invertibility condition is respected and one can write:

O(L) =1+06L

(L) =07(L) =+ +19L =Y (-0YL), iflol<1 (2.38)
j=0

m(L)ye = € (2.39)

where (2.39) is the AR(o0) MA(1) representation.

2.1.5 ARMA process

An autoregressive moving average process, ARMA(p,q), is obtained by combining both AR(p) and

MA (q) models and can be written as:

(yr— 1) = o1 (ye—1—p) +d2(Yr—2—p) ++ -+ p(yr—p — p) €t +01€1—1 + 02624+ - - +0ge1—g (2.40)
or, in terms of polynomial operators:

(1= L—¢1 L%~ = LP)(ys — ) = (1 + O L+ 60, L% + -+ + 0,L%)e (2.41)

O(L)(ye — p) = O(L)es (2.42)

with € ~ WN(0,02). From equation (2.41), when both the autoregressive and the moving average
process share a common parameter, that is, when in both sides of the equation an autoregressive
parameter ¢ is equal or extremely similar to a moving average paramenter 6 it is a signal of over
parametrization of the fitted model. In this case, paramenter redundancy can lead to a misin-
terpretation of the behaviour of the time series which observations are assumed to be correlated
and fitted with an ARMA (p,q) model, when in reality if one cancels out the common terms from
both sides of the equation, the underlying process behaves more like a random walk and additional
explanatory variables coefficients would not be statistically significant. To avoid this, in order to
have a well-defined ARMA process, there are two conditions, one for the AR part and one for the

MA part, that must hold for the ARMA (p,q) model to be causal and invertible.
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First, the causality condition depends on the AR part and, given an ARMA(p,q) process, the

latter is said to be causal if it admits an infinite moving average representation:
o0
v =Y Ve ;=U(L)g (2.43)
j=0

Where ¥y = 1, Z;io“l’ﬂ < oo and the autoregressive part respects the condition for AR(p)
process to be causal and the associated autoregressive polynomial to be invertible as defined earlier.
Equation (2.43) follow the approach proposed by Box and Jenkins [13] for time series modeling
i 6L
and W(L) = 3232 ;L7 = 54 for |L| < 1.
The invertibility condition depends on the moving average part of the process, that is:

I(L)y, = anyt—j =& (2.44)
§=0

Where Iy = 1, 3°7°[T;| < oo and TI(L) = 377 ;L7 = % for |L|< 1. As before, an

ARMA(p,q) is invertible if and only if the roots of the MA(q) polynomial #(L) all lie outside the
unit circle, |L| > 1.
As regards the moments of an ARMA (p,q) process, studying a simpler ARMA(1,1) of the form

Yt = OYi—1 + € + Be;_q, assuming p = 0 and € ~ WN(0, 0'52), one can observe its behaviour:
Ely] = > W,E[e;] =0 (2.45)
j=0
by multiplying both sides of y: = ¢yr—1 + € + Oe:—1 by €; and taking expectations [17] :

COU(yt, Gt) = E[ytﬁt] - E[yt] E[Et] = E[sttflﬁt + €t2 + 96t716t] = 0'62 (246)

given (2.45) and E[e;] = 0. The autocovariance function is defined as:

(14 6% +2¢0)02

= E = 2.4
7(0) (Y] 1— ¢2 (2.47)
and the autocovariance for lag |h|=1 is:
v(1) = Elyye—1] (2.48)
= E[(¢ye—1 + € + Oer—1) (9ys—2 + €11 + Oer—2)] (2.49)
(1+09)(0 + ¢)o?
= 2.
s (2.50)
hence, the autocorralation function is given by:
14+6¢)(0+ ¢
p(1) = SO0+ 9) (2.51)

(1462 +2¢0)
which for |h|> 2 follows an autoregressive process and behaves in the same way as in AR(1) as the

effect of the MA(1) part on the correlation of the process cuts off after a time lag greater than 1:
p(h) = ¢p(h—1),  for |h|>2 (2.52)
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As regards the autocovariance and autocorrelation functions of the general ARMA(p,q) process,
they reflects the behaviour of both (k) and p(h) of AR(p) and MA(q) processes combined together.
Considering the general MA(q) first, in its compact form, assuming o = 1 and € ~ WN(0,02),
taking expectations on both sides [18] :

Ely] = B[0(L)e;)] = Y _60;E[e;_;] =0 (2.53)
j=0

then, with the same considerations made in section 2.1.4 for the calculation of the autocovaricance

function of an MA(1), the autocovariance of the general MA(q) is computed as:

y(h) = E[(Z Oj€1n—j) (Z Oicr—;)] (2.54)
=0 i=0

q—h
o2 0i0,n, HO<h<gqg
- = (2.55)
0, if h>gq

dividing by v(0), the autocorrelation function is:

200,60,
Z];O Jj-i-h27 f1<h<g
p(h) = 1+071+---+07 (2.56)
0, if h>gq

The autocovariance and the ACF of an AR(p) are easier to obtain because they follow an autore-

gressive process of order p:

y(h) =p1y(h—1)+---+dpy(h—p), h >p (2.57)

and dividing both sides by v(0):

p(h) = g1p(h = 1) +---+dpp(h —p), h>p (2.58)

Finally, considering both the compact form of an ARMA(p,q) in terms of the infinite polynomial
U(L), y = Z;}o:o V;e;—; and the ordinary form, where p is assumed to be zero and the errors are
white noise as usual, y; = ¢1ys—1 + Pays—2 + -+ GpYs—p + & + 01641 + 0263 + - + 046ty the

autocovariance and ACF of an ARMA((p,q) process are obtained from:

p q
() =Bl biyern—s+ Y Oierin—j) vi] (2.59)
=1 =0
D ’ ’ q
= Z ¢iv(h —j)+o? Z 0;%;—n,  for0<h<max(p,q+1) (2.60)
Jj=1 j=h
=¢1y(h=1)+ -+ ¢py(h—p),  forh =max(p,q+1) (2.61)

where in (2.60) the covariance between € p,—; and Z;o:o W€k starts taking values when k = j—h

as the first covariate can be expressed equivalently as €,_(j_;). The ACF can be obtained by
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dividing both sides of (2.60) and (2.61) with p(h). From the equations above, the autocovariance,
and consequently the ACF, of an ARMA(p,q) depends on both AR(p) and MA(q) terms if the lag
h is less than the order of the moving average process, when h becomes greater than ¢, y(h) and
p(h) are completely dominated by the autoregressive part of the model and behave like a AR(p)
only process, as expected.

The partial autocorrelation function, abbreviated PACF, is useful for estimating the order of
dependence for a stochastic process, that is, estimating the correlation between two observations
spaced by a certain time lag h, partialling out the linear effect of the values observed between them
from the estimate. As seen before, in the case of the MA(q) model, the fact that its ACF cuts
off after the lag h > ¢, and is defined when h = ¢ as 6y # 0, the order of dependence is readily
obtained, but for an AR(p) process the autocovariance and ACF do not cut off after A > p but
decays as h grows in magnitude. Therefore, the idea is to regress both observations against the
intermediate variables between them that affect their linear correlation, and removing these effects

when computing the correlation. Hence, the PACF of a stationary process y; is defined as:

Snn = Corr(Yisn — Jeths Y¢ — Ut) » h>1 (2.62)
where ¢11 = p(1), r+n and g; are respectively the regression of Y415 O0 Yy h—1, Yt4h—2,- - -, Yrr1 and
Yt ON Y i1, Y42, - - -, Yt+h—1, Such that the effect of the terms {ys11,..., Yt 4rn—1} are removed when

computing the PACF. For a stationary AR(p) process, ys+n = Z?:l OiYrth—j + €xn and Goyp =
Z?Zl ®jYt+h—j, such that when h > p the PACF is, Corr(yi+n — Ge+h, Yt — Gt) = Corr(epsn, yr —
g:) = 0. Thus, the PACF of an autoregressive process behaves in the opposite way of its ACF,
that is, it cuts off at a certain lag, depending on the order of the process, and can be used for
estimating the order of dependence between the values of the time series. On the other hand, an
MA(q) process does not admit a finite AR representation but an infinite one when it is invertible,
this makes impossible to remove the intermediary values dependent on y,; and y;4, because they
are infinitely many, hence the PACF of a moving average process never cuts off after a lag equal
to ¢ but decays in the same way the ACF of an AR(p) does, thus tailing off in contrary to the
MA(q) ACF. As regards a causal and invertible ARMA(p,q), it always admits an infinite AR
representation such that its PACF always tails off like in the moving average case as discussed

above.

2.1.6 ARIMA model

Financial time series are notoriously non-stationary, that is, they rarely show a mean-reverting
behaviour around the same fixed mean level, sometimes their evolution show momentum in some
periods, or instead they follow a non-stationary trend that has a time-varying mean and depart,
linearly or non-linearly, from the initial mean level. In these cases, the ARIMA, autoregressive

integrated moving average, are employed to model non-stationary time series by applying the so
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called differencing operator ‘A’ to the whole series, that is taking the difference of the observations
sequentally, as many time as it is required to transform the series in a stationary one. For example,
if the time series is composed by log prices, fitting an ARIMA(p,1,q) will results in fitting and
ARMA(p,q) on the log returns of the series. In order to show how much differencing a process can
transform it, take as an example the simple random walk process with zero mean and stationary
noise term defined as y; = y;—1 + €, the first order difference transforms the random walk in
a stationary process, that is, y; — 4,1 = Ay, = €;. A process that presents a non-stationary
trend component, for example y; = pu; + €;, where ¢; is a zero mean stationary process and
tr = Po + it is a deterministic linear trend such as y; is non-stationary because the mean of
the process varies with time, Ely:] = 5o + f1t, applying a first order difference leads to Ay, =
Yt —Yyi—1 = Po+P1t—Bo—B1(t—1)+e —ei—1 = 1+ Aey which is a stationary process. Differencing
can be applied repetitively, for example a second order difference of the process above is defined
as A2 = A(Ay;). The inverse process of differencing is integrating and a stochastic process I(d) is
called integrated of order d, therefore it needs to be differenced d times in order to be stationary

and a stationary process, for example a white noise, is defined as 1(0).

An ARIMA(p,d,q) is defined as:
S(L)AYy, = (L)1 — L)y = 0(L)e, (2.63)

the intercept is missing because often differencing a series has a de-meaning effect, still, if E[A%y,] =

w # 0 the process becomes:
S(L)A%y, = ¢(L)(1 — L)"ye = ¢ + 0(L)e; (2.64)

where ¢ = pu(l — @1 — o — -+ — &p).

2.2 Conditional Heteroscedasticity Modeling

The models considered so far are all built on the assumption of constant conditional variance,
indeed the innovation term has always been assumed to follow a white noise process with mean
zero and fixed volatility o?. The assumption of homoscedasticity, that is, the conditional variance
of a stochastic process depends on the noise term which follows a constant variance distribution,
falls short when modeling financial time series that often are characterized by periods of consis-
tently increasing, or decreasing volatility, showing clear signs of time-varying volatility. Indeed,
when fitting an ARMA(p,q) model to a time series, the residuals of the model can exhibit an
heteroscedastic behaviour making necessary to fit a model that can explain the effect of a time
varying volatility on the conditional mean of the underlying process.

Additionally, in financial markets, there are periods of very high volatility of asset returns,
for example due to a new piece of information dissipating through participants, that are usually

followed by other periods of high volatility before the new information is incorporated in the price of
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the asset or when the temporary inefficiency is arbitraged out. This phenomenon is called volatility
clustering, spikes in volatility that are grouped together and exhibit temporal dependency between
each other, and can be detected from the residuals of the fit of a constant conditional variance

model.

2.2.1 ARCH Process

The first attempt to model a time-varying conditional variance was performed by Engle [19] who
presented the Autoregressive Conditional Heteroscedasticity, ARCH model. The general form of
an ARCH(p), where p indicates the order of the process, is:

At — €¢0¢ (265)
p

o =ap+ Z aa?_, (2.66)
i=1

Consider the simple ARCH(1), defined as:

Ay = €40¢ (267)

o? =g +ajal_, (2.68)

with the constraints cg > 0 and a; > 0 because the variance cannot be negative, the error term e;

is assumed to be i.i.d. Gaussian white noise with mean zero and unit variance:

Ele; | Fy_1] =0 (2.69)

VG/I"[Et ‘ thl} =1 (270)

where F;_; is the information set available at time ¢ — 1, that is F;_1 = {€;—1,... }. From (2.67),
the ARCH(1) model is based on the assumption that, if the returns of an asset can be modeled
as ry = iy + a; with the conditional mean component p; that for example follows an ARMA (p,q)
process, the shock term a; = 1 — ¢ is modeled as an ARCH(1) with conditional mean equal to
zero as E[a; | F;—1] = 0 so that a; is uncorrelated with r; but has non-constant conditional variance
(2.68) that is dependent on past values of the shocks. This characteristic of the ARCH(1) makes the
latter possible to be used for modeling a time-varying variance and account for volatility clustering
when modeling r;. Moreover, the main difference between an ARCH(1) process and an AR(1) can
be noticed by taking the square on both sides of (2.65), obtaining a? = ¢;(ag + a1a?_;), a? follows
a similar evolution to an AR(1) but now the shocks terms are assumed to be multiplicative and
not additive.
By the law of iterated expectations, taking the expectation of the conditional mean of an

ARCH(1) process, the unconditional mean of a; is still zero as E[a:] = E[E(a; | F;—1)] = E[E(e;0¢)] =

0 because the noise term is independent of a;. Recalling that E[e?] = 1, the conditional variance
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of a; can be obtained as:

Varla; | Fy_1] = E[a? | F;_4] (2.71)
= Ele; (a0 + ara;_y) | Fi 1] (2.72)
= lao + arai_y E(ef | Fi-1)] (2.73)
=ag +aa;_, (2.74)

Again, by the law of iterated expectations, the unconditional variance of an ARCH(1) process can

be computed by taking the expectation of (2.74):

7a(0) = E[E(¢] | Fi1)] = Elag + a1af_4] (2.75)
= [ao + o1 E(ai )] (2.76)
- (1?7(’&1) (2.77)

The last result shows that the necessary condition for an ARCH(1) process to have a finite uncon-
ditional variance is 0 < a; < 1, such that the process is stationary and E(a?_;) = Var|a;_1] =
Var[a:] = 7,(0) so that one can rearrange the terms in (2.76) to get (2.77). Given that the condi-
tional mean of a; is zero, the best expectation of a; given its past its zero, the correlation for any
lag greater than zero will be zero, so p,(h) = 0 and an ARCH(1) process is the perfect example of
an uncorrelated but dependent process and the dependency stems from its conditional variance.
Indeed, as can be seen from (2.74), the conditional variance is built in a way such that it functions
as a proxy between present and past values of the shocks, a sudden increase, or decrease, of a;_1 is
propagated to a; through o7 such that it helps explaining the dependence of shocks in a volatility
clustering environment and keeps reacting to the magnitude of past shocks as their values changes,
even if, by definition, the value of the conditional variance converge to the unconditional variance

in the long-run.

By computing the the fourth moment of an ARCH(1) process, one can derive the formula for

the kurtosis of its distribution in terms of a;:

_Eal) _1-o
-~ [Var(a))2 T1-3a2

with the constraint that 0 < ay < % From this results, it can be noticed that the kurtosis of the
ARCH(1) distribution is higher than 3, which is value of the kurtosis of a Normal distribution, that
is why the ARCH(1) model is useful for modeling series that exhibit fatter tails than the Normal
and are more outliers-prone.

Finally, for a stationary ARCH(1), the ACF expressed in terms of a? behaves like the ACF of
an AR(1) process, that is, p,2(h) = al?!,| V h which decays geometrically as in the autoregressive

case.
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2.2.2 GARCH Process

The ARCH(p) model has some limitations, it treats positive and negative shocks as equally im-
pacting the conditional volatility as the value of past shock in the conditional volatility formula is
squared, when in reality, for financial time series, usually the returns of an asset react differently
from bad news than from positive news and often there is a clear distinction of the magnitude of
fluctuations caused by different factors. Additionally, the constraints imposed for the parameters
in order for the process to have a finite fourth moment make calculations cumbersome when an
higher order ARCH model is chosen, making difficult to account for returns’ fat tails. Due to the
way it is designed, ARCH will tend to overpredict the volatility when an higher than average and
isolated value of a7 occurs because it is directly fed into o7 and the value of the volatility will
quickly stack up and converge to the long-run level rather quickly as well.

To overcome some of these shortcomings, bollerslev [20] presented the Generalized Autoregres-
sive Conditional Heteroscedasticity model, abbreviated GARCH with the main aim to make the

conditional volatility more persistent and reactive with respect to sudden shocks. The general

GARCH(p,q) form is:
At — €0 (278)
p q
0_t2 =g+ Z aiafﬂ- + Zﬂjo—?*j (279)
i=1 j=1

where € ~ i.4.d. N(0,1), oy > 0, a; > 0, 8; > 0 and in order for the process to have a finite
unconditional variance 7% 9 (q; 4 ;) < 1 under the condition that the alpha terms are zero
when 4 is greater then the order of the ARCH part of the model, that is p, and beta terms are
zero when i > g. The stationarity condition of a GARCH(p,q) process looks very similar to the
one related to an ARMA(p,q) process, indeed it is possible to obtain an ARMA representation of
GARCH by defining 1, = a? — 07 to be an uncorrelated white noise process with mean zero such
that it is uncorrelated with a; but it is not i.i.d. in order to ensure conditional heteroscedasticity
for the a; process. Then, by using this relation, the ARMA representation of a GARCH(p,q) model

is given by: -
max(p,q

a? = ap + Z (i + Bi)ai_; +me — Zm] (2.80)

j=1

and the unconditional mean of an ARMA process is defined as:

ao
1— P (a; + ;)

which is the unconditional variance of a GARCH(p,q) process and it is the long run level to which

Ela}] = (2.81)

the conditional variance will converge to, provided that 3 7% 9 (q; + 8;) < 1.
From (2.79) it can be noticed that, differently from an ARCH only process, the lagged values of
both the shocks and the conditional variance influence the present value of the conditional volatility

such that a GARCH(p,q) model can better represent volatility clusters as the iterative effects of
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both a? ; and 0? | on 0 make the effect of sudden shocks more persistent and the model reacts
faster to volatility spikes. Finally, a GARCH(p,q) has a kurtosis greater than 3 as well, so it can

be used to model a process with heavy tails.

2.3 Parameter Estimation & Forecasting

In order to fit the models to the Bitcoin time series and estimate the parameter of the distribution I
have used the rugarch ® package in R and amongst the available approaches to parameter estimation
I have chosen the Maximum Likelihood method. The latter is based on the assumption that, given a
sequence of i.i.d. random variables y1, ..., yn, they are drawn from a known parametric distribution
that can be described by a vector of parameters wg € €2, and since that they are i.i.d., their joint
probability density can be written as the product of the marginal densities f(y1,...,yn;wo) =
HiV: 1 f(yr;wo). In reality, the true values of the parameters are unknown and rewriting the joint
density as f(y1,...,yn;w), the latter describe how likely the yx are realizations of the known
probability distribution given a fixed set of parameters values w. If one keeps the yy fixed and let
the parameter values vary, the likelihood function describes the likelihood that the distribution of
the given sequence of observations is actually described by the parameter vector w and the goal is
to maximize this probability by finding a set of parameters that best approximate the population

parameters wg. The likelihood is defined as:

N
Lwiyn) =[] flysw (2.82)
t=1

and the population parameters maximize (2.82) such that:

wo = argmaz E[L(w; yn)] (2.83)
wo€eN

Often, it is better to work with sums instead of products when maximizing a function so by taking

the logarithm of (2.82) one obtains the log-likelihood function:

U(w;yn) = log[L(w;yn)] Zlogf Yi; w (2.84)

The maximum likelihood estimates, abbreviated MLE, of the parameter vector are the values that
maximize the sample average of the log-likelihood:

WMLE = argn})ax En[l(w;yn)] (2.85)
we

where Ey [((w;yn)] = + Ztlil l(w;y:). When fitting an ARIMA with GARCH innovations to a
time series, the assumption is that the the observations are correlated with their own lagged values

and the model is fitted to try to explain this serial correlation. In this case, the variables yy are

Shttps://cran.r-project.org/web/packages/rugarch/rugarch.pdf
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not i.i.d. anymore so their joint correlation cannot be written as the product of their marginal

densities but it involves the product of conditional densities, indeed:

f(yla"'ayN) :f(yN|yN—la'"7y1)f(yN—1a"'7y1) (286)

and by repeated substitutions, the joint density of dependent variables can be written as:

N N
Flyns-un) = Fo) [T F e v v = F) [T £ | Fioy) (2.87)

t=2 t=2
Hence, in the case of dependent variables, in order to make calculations easier, usually the term
f(y1) in (2.86) is dropped form the joint density and parameter estimation is be carried by maxi-
mizing the conditional likelihood, that is, conditioning on the first observations.

In the case of ARIMA (P,d,Q)-GARCH(p,q), where I have used uppercase letters for the orders
of the ARIMA model to distinguish them from the GARCH ones, recall that:

S(L)AY(y: — p) = (L)ay (2.88)
ay = €10y (2.89)
P q
o} = ag + Z aiay_; + Z Biot; (2.90)
i=1 j=1

where, € ~ 4.i.d. (0,1) and from (2.88) now the innovation terms are modeled as a GARCH process
with a time-warying conditional variance oZ. The first equation concerning the conditional mean of
the process can also be written in the extended form as g; = Zf:l Gils—i+ar+ 2?21 0;a;—j, where
J: = A%(y; — p), such that the distribution of the observations is ; | Fi_1 ~ N(Zil Oift—i +
Z?Zl 0;a;—j, o) because, conditional on the information set, only the expected value of a; is zero
as at time t — 1 the shocks are unobservable whereas the values of a;_1,... are in F;_;. To ease of
notation I will use p; when referring to the conditional mean of y;, such that y; | Fr—1 ~ N (s, O't2)

and the process has the equivalent form:
Y = it + Oy (2.91)

To estimate the parameter vector w = ((ft, ¢1,...,0p,01,...,00), (0,1, .., aq,B1,...,B)") 2
the likelihood function of the data is needed and it will depend on the assumption of the distribution
of €. In general, define ¢; = g—; to be the standardized innovations of the process with a probability
density function f(e;; w, n), where ) are additional parameters like the shape in case the innovations
are assumed to follow a different distribution than the standard normal, since ¢; are unobservable,
the conditional pdf of the data can be obtained by applying the rule of the change of variable, that

is, when f(e;) is known [21] :

1
oo | Fror) = £l i) |2 22 (292)
= f(etﬂ-‘)an)% (2.93)

4Whereao>0,a17...,aq20, B1,...,B84 >0
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where y; = h(e;, w) = py(w)+op(w) and €, = b= (y;, w) = w=1el®) Phe conditional log-likelihood

ot (w

for y; is then obtained by taking the logs of (2.93), that is:

1
Ci(w,mye | Fr—1) = log f(er;w,m) — 5109‘7?(‘*’,77) (2.94)

When the standardized innovations are assumed to follow a normal distribution, ¢, ~ N(0,1),

their pdf is f(e;w) = Lemp(—%) and the conditional log-likelihood of the entire sample is:

NoZS
N N 200
i | Fy-1) =~ log(2m) — 3 3 log(a?w) - 5 Y- 5 (2.95)

Which is maximized through an iterative approach in order to find the MLE @. In order to start
the recursion and initialize the conditional likelihood, the rugarch package sets the conditional
least squares estimates as the initial values of a?. Similarly, rugarch offers different methods to
compute the initial values of the conditional variance o7 since the latter is unobservable at the
start of the recursion, and following the indications of Fiorentini et al. [22], I have opted to set
their initial values equal to the sample average of the squared residuals a? obtained as least squares
estimates through a preliminary regression of y; on its lagged values as regressors. The vector of
maximum likelihood estimates w is then found with a numerical constrained optimization approach
by solving the first order conditions for the score vector S(w;yy) containing the gradients of the

conditional log-likelihood with respect to the parameters wg,ws, ..., namely, setting the partial

derivatives of ¢(w,n;yn | Fiy—1) with respect to the parameters w equal to zero:

M(w;yn | Fy-1)
ow

S(w;yn) = En =0 (2.96)

w=

provided that the conditional log-likelihood is differentiable in w, Yw € . From probabil-
ity theory, the MLE & is an unbiased estimator of the population parameter vector wg and it
has been proven that when N — oo by the central limit theorem and the law of large num-
ber, the maximum likelihood estimator is consistent and asymptotically normally distributed as

V(@ — wo) 5 N(0,I(we)™L), where I(wg)~! is the inverse of the Fisher information matrix

520 (woiyn)

. which is the negative hessian matrix
dw dw

computed as I(wg) = Var[S(wo;yn)] = —E [ }
containing the second order partial derivatives of the logflgl:e(iihood with respect to the population
parameters. Since the latter is unobservable in practice as wg is unknown, for a sample large
enough, @ is an efficient estimator of the real parameters and by the LLN the observed version of
the inverse information matrix relative to the sample conditional log-likelihood and computed with
respect to the MLEs converges asymptotically to I(wq) ™! which is called the Cramer-Rao [23] [24]
lower bound for the asymptotic variance-covariance matrix of the maximum likelihood estimator.
The observed information matrix is essential to evaluate the accuracy of the maximum likelihood
estimators and is used to construct the confidence intervals for the estimated parameters using as
standard errors the inverse of the diagonal terms of I(w).

Usually, the assumption that the standardized innovations e; are normally distributed is very

restrictive and limited when modeling financial returns as they often exhibit thicker tails and pro-
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nounced skenweness that those allowed by the normal distribution. To account for this fact, it
is possible to choose a different distribution for the ¢, such as Student’s t-distribution or GED?
distribution that are heavy-tailed and offer more flexibility than the normal when fitting the condi-
tional variance of the time series, this flexibility however, comes at the cost of estimating additional
parameters 17 with maximum likelihood, for example the shape or skewness parameters, therefore
requiring more computational complexity and resulting in more degrees of freedom. Moreover,
each known distribution has a different PDF function so the form of the likelihood function will

vary depending on the distribution one has opted to model the innovations with.

2.3.1 Forecasting

After the parameters of the model have been estimated with the maximum likelihood approach,
they are used to forecast the next values of the time series from the last available observation into
the future, h-steps ahead, exploiting the structure of the model and the linear dependence of y;
on the lagged values of the process. The principle underlying time series forecasting is to reduce
the expected deviation between the predicted and the actual value of the observations and this is
accomplished by minimizing a function of both the predicted and observed values, for example the
mean squared deviation, with respect to a vector of parameters to which the foretasted observations
depend on. In the maximum likelihood context, recalling (2.95), the negative log-likelihood is
minimized by founding the optimal parameters that minimize the conditional squared innovations
that represent the squared deviation of y; from its expected value ;. Once the optimal parameters
w are obtained, the best linear prediction h-steps ahead is obtained by computing the expected
value of y;yp by conditioning on the information set F; available at the forecast origin. For a

stationary ARMA(P,Q)-GARCH(p,q) of the form:
ye=c+ o1+ ++opy—pt+a+ a1+ +0ga—q (2.97)
the 1 step ahead observation is given by:
Yit1 = C+ Prye + -+ quyt—P-&-l + a1 + Ora;+ - + éQat—Q-H (2.98)
By taking the expectation of (2.98), the 1 step ahead forecast is:
U1t = Byl = ¢+ brye+ -+ QgPyt—P—O—l +61ai4 -+ éQat—Q+1 (2.99)

where E[as11 | {] = 0, by continuing iterating forward, the 2 < @Q steps ahead forecast is:

P Q
oo = e+ Grdert + Y diy—iva+ Y0012 (2.100)

i=2 j=2

In general, the h-steps ahead forecast is given by:

P Q
Yttnjt = C+ Z Gilt—ivn + Z Oiat—j1n (2.101)

i=1 j=1

5Generalized Error Distribution
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where §y—;4n = Ye—itr = when (—i+h) < 0and a;—;1p = 0if (—j+h) > 0. Moreover, because for
an ARMA process the correlation between the shock terms will die out as soon as the lag |h| > Q,

the forecasts will depend only on the autoregressive part such that:
P
Yttnit = C+ Z Pilt—i+h (2.102)
i=1

for h={Q+1,Q+2,...} and for h — oo, given that the process is stationary such that |¢| < 1,
by recursive substitution of §;_; 4 in (2.102) the coefficient of the forecasts in the summation will
become gﬁf and will decay geometrically to zero demonstrating that the forecasts for a number of
steps forward in time will converge to the unconditional mean of the process.

As regards the forecast error, e(h) = ysyn —Ji4n|t, it will increase with h. Indeed, by expressing

the process in its MA(co) form:

ye=pn+ Y Via (2.103)
j=0
Qt+h|t = ﬂ + Z ‘ifjatqu,h (2104)
j=h

the error and the variance of the error are:

h—1
e(h) = Yirn — Yegn)t = Z Vias jin (2.105)
=0
h—1
Varle(h)] = Y W3 o7 ;. (2.106)
j=0

such that, the variance increases when h increases and as h — oo it converges to the variance of

the infinite process (2.103):

Varle(h)] = o2 i o2 (2.107)

is the unconditional variance of the conditional het-

2 — 2 _
where V5 = 1 and o] = 1_2?;11115?@(%4_@)
eroscedastic part and this demonstrates that the convergence to the long-run level is true for

GARCH(p,q) too, provided that the parameters respect the positivity constraints.

2.4 Data Analysis

Before fitting the models, a sound approach would be to check if the time series needs a preliminary
transformation in order to coherently meet the hypothesis of the theoretical models. Bitcoin is
traded every day of the week for every month of the year, its market is highly speculative so
the price evolution is highly volatile and like most financial speculative assets, exhibits periods of
mean reversion alternated with period of very persistent momentum characterized by a positive,

or negative, large returns for multiple trading days in a row, so it hardly can be classified as a
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stationary process and a proper transformation of the series should be performed. Throughout
the entire sections I will perform all the calculations with R as it is a very practical and powerful
software providing plenty of packages to carry out statistical data analysis, time series modeling
and parameters estimation. The data set in analysis comprises the historical 4 hour close prices
of BTC/USDT® from 2017-08-17 to 2020-11-30 resulting in 7194 observations. To have a glance
of the probability density of the sample in question, in figure 2.1(a) below, I have plotted an
histogram of the close prices of BTC/USDT along with the fitted density of a normal distribution,
represented by the dashed red line, with mean equal to the sample median and with standard
deviation equal to the MAD of the sample. I have chosen the median and mean absolute deviation
from the median because the MAD is more robust with respect to outliers and provides a less
biased approximation for the dispersion of the sample. The plot shows a substantial difference
between the two densities and BTC/USDT exhibits a pronunced right skewness, the outliers make
the data more dispersed from the center of the distribution and the thicker tails are all symptoms
of departure from a normal distribution. The non-normality of the sample is purported by the
Quantile-Quantile plot in figure 2.1(b), where the red line interpolates the theoretical first and third
quartiles of a normal distribution, showing a clear non-linear relationship between the sample, with
its quartiles plotted on the x-axis, and the normal distribution. The concave shape in the bottom
left of the plot confirms the precence of positive skewness in the data, and around the third quartile
the plot becomes even more complex hinting that the data is showing a multi-modal behaviour

and a simple normal distribution is far from a good fit.

(a) Histogram of BTC/USDT Raw Prices (b) Normal Q-Q Plot
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Figure 2.1: Analysis of BTC/USDT 4h close

6USDT is the stablecoin TheterUSD which is pegged against the US dollar. I am using this pair because on the
Binance exchange there is no possibility to purchase BTC directly with USD, or other fiat currencies, and one has

to first convert fiat to a stablecoin or an other cryptocurrency in order to start trading BTC.
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To scale down and standardize the data, I have computed the returns of BTC/USDT and made
the same plots as before, the results are appreciable in figure 2.2. Now the returns seems more
evenly distributed around the center of the data but the convex-concave shape of the Q-Q plot
indicates heavier tails than the theoretical normal distribution and corroborating the assumption of
non-normality of returns, the Jarque-Bera test [25], which jointly tests the departure of the sample
skweness and kurtosis from the corresponding 0 and 3 for a normal distribution, and the Shapiro-
Wilk [26] test, based on the correlation between the expected order statistics of the standard
normal distribution and the sample ones, both yielded a p-value of 2.2e-16 going against the null

hypothesis of normality.
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Figure 2.2: Analysis of BTC/USDT returns

In order to stabilize the variance and induce some symmetry in the data I have applied a log
transformation to the time series. Moreover, the asset pricing theory [27] supports working with
log-returns which have better statistical properties and are arithmetically easier to handle compared
to raw returns. Indeed, if P, and P;_; are the price of an asset at time t an t-1 respectively, by

taking the logarithm of prices such that p; = log(P;) the return is simpler to compute because of

Py
Py

the properties of logarithms, as a matter of fact, if the gross return is computed as 1 + R; =
the 1 period log return is given by r, = log(1 + R;) = p; — pt—1 and for moderately small values
of Ry, log(1 4+ R:) ~ R;. Thanks to this property, the calculation of multi-period compounded
return is more practical with log-prices because it involves the sum of the log-returns and not the
product of gross returns anymore. Additionally, the theory states that if the log-returns are i.i.d.

normal, the log prices follow a lognormal geometric random walk, so to explore this hypothesis I
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have reported the Q-Q plots for log prices and log returns. In practice, the assumption of i.i.d. log
returns is too restrictive and as can be noticed from figure 2.3, the non-normality of the logged
time-series still persists, the log-returns exhibit heavier tails than a normal distribution, so the
hypothesis of the lognormal geometric random walk does not hold in this case, even though the log
transformation actually reduced the asymmetry of the data as the skweness of the sample lowered,

in absolute value, from 0.43 for the returns to -0.23 for the log-returns.

(a) @-Q Plot of Log Prices (b) Q-Q Plot of Log Returns
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Figure 2.3: Log transformation

By retaining the log transformed series, applying the difference operator to the log-prices makes
more sense than differencing raw prices as, for example, if the logged series is found to be an
integrated process of order one, I(1), the first difference will result in log-returns and one can
exploit the properties of logarithms. In order to identify the nature of the logged time series
and test if it is a stationary process, I plotted the log-prices against the time index and from
figure 2.4(a) the process seems like wiggling around in some time intervals and wondering without
reverting to a single, specific level, exhibiting a behaviour similar to a random-walk, so it might
be considered as an I(1) and, by taking a first order difference, I obtained the figure 2.4(b) which
shows mean-reversion around zero and supports the hypothesis that the log-price is a random walk
whose difference has a demeaning effect and deleted a possible linear deterministic trend. Hence,
the log returns might possibly be considered as a stationary process and to check the stationairty
assumption I run three different test for stationarity, the augmented Dickey-Fuller [28] test and the
Phillips-Perron [29] test, which both check the presence of unit root test by fitting an AR(p) model
to the argument with the null hypothesis being unit root, and the KPSS [30] test which instead
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checks if the null hypothesis of stationarity holds for the selected sample. The output of the tests
are below and all support the hypothesis of stationarity for the log-returns with a very satisfactory
p-value so the transformed series should not have explosive moments and could probably be fitted

by stationary models.
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Figure 2.4: Integrated process and first difference

Augmented Dickey-Fuller Test
data: log.ret
Dickey-Fuller = -18.646, Lag order = 19, p-value = 0.01
alternative hypothesis: stationary

p-value smaller than printed p-value

Phillips-Perron Unit Root Test
data: log.ret
Dickey-Fuller Z(alpha) = -7798.5, Truncation lag parameter = 11, p-value = 0.01
alternative hypothesis: stationary

p-value smaller than printed p-value

KPSS Test for Level Stationarity
data: log.ret
KPSS Level = 0.11884, Truncation lag parameter = 11, p-value = 0.1

p-value greater than printed p-value
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The assumption of stationarity is purported by the ACF plots too, indeed, in figure 2.5 one
can see from the plot on the left a strong, lasting autocorrelation of the log-prices over time,
even at further lags, symptom of non-finite moments and of non-stationarity. After taking the
difference of the series, now the ACF is less pronounced and while for distant lags, from the 10th
and beyond, the ACF spikes fall within the test bound, which by default are at 0.05 level, or at
least they are well contained around that level, the ACF at short term lags indicates some type of
minor, less strong dependence that might be explained by a time series model and might recall the
behavior of one of the process explored in the previous sections. Therefore, the ACF plots provide
a substantial basis for model and order identification and I will rely on them, although not blindly,
but accompanying them with other indicators and statistics that will help me decide which model

is the most appropriate and fits the best.
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Figure 2.5: Autocorrelation function of the transformed series

2.4.1 Model Selection Criteria

Selecting a good model encompasses optimizing the so called bias-variance trade off, that is, choos-
ing with parsimony a model that helps explaining the behaviour and the dependencies between
the data in the sample while still providing a good performance out-of-sample when forecasting.
The risk of employing a model with too much parameters is overfitting the data, namely, while
it might provide an adequate performance when inferencing about the distribution of the sample,
thus reducing the bias, it might lead to a rather complex, thus difficult to interpret, estimator

degrading the out-of-sample performance, increasing the variance, and consequently leading to an
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inaccurate forecast of the time series. On the other side, choosing a model with too few parameters,
in order to reduce the variance of the estimator, might lead in underfitting the in-sample data and
increase the bias due to a low explanatory power. To asses the goodness of fit while still account-
ing for model complexity, I will rely on two information criteria widely used in practice, namely
the Akaike’s [31] and Bayesian information criterion [32], abbreviated AIC and BIC respectively,
defined as:

AIC = —24(&;yN) + 2p (2.108)

BIC = —20(G;yn) + log(N)p (2.109)

Both of them are functions of the log-likelihood such that, when choosing which model to retain
among the candidates, the ones with the highest log-likelihood, therefore with the lowest AIC
and BIC values, provide the best approximation of the underlying process and achieve an optimal
bias-variance trade off. The advantage of using AIC and BIC when comparing different models
is that they account for model complexity, indeed the rightmost factors in (2.108) and (2.109)
penalize the models involving too much parameters,p, to obtain a satisfactory log-likelihood value.
Between the two, the BIC is the most restrictive one because it factors in the penalty term the size
of the sample, rewarding the simpler models and sometimes might lead to a different conclusion
than AIC, nonetheless both are minimized by the most parsimonious models and they are excellent

model selection criteria.

2.4.2 Model Identification

After checking that logging and differencing the series provides a satisfactory transformation and
the log returns appears stationary, now the plot of the sample ACF and PACF can help identifying
if the series can be fitted by an AR or MA process and what should be their order in case they
are employed. Form figure 2.6(a) the ACF at lag one rapidly decreases almost to zero showing
the typical behaviour of a moving average process, and after that, from lag 3 the autocorrelation
alternates signs and slowly decays to zero at lag 8, this could probably the effect of an autoregressive
part with coefficients high in magnitude and with opposite signs. Coherently with these findings,
the PACF in figure 2.6(b) shows even more clearly the characteristic of the PACF of an AR process
which abruptly decreases after the first lag, dropping to more than half and on subsequent lags,
the PACF of the process exhibits a gradual decay that supports the hypothesis of the presence of
an additional MA part.

To fit an initial ARIMA(P,d,Q) to the log prices, I have used the R function arima() which
estimates the parameters via maximum likelihood using conditional least-squares estimates as
starting values for the recursion. I run a loop to jointly estimate the parameters of the model over
a grid of five values per order, P = {0,...,4} and Q = {0,...,4} with d fixed to 1, resulting in 25
iterations, with the AIC and BIC relative to each model. I also tested separately if an higher order
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(a) ACF of Log Returns (b) PACF of Log Returns
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Figure 2.6: Autocorrelation and partial autocorrelation functions of log returns

of differencing was needed but the outcomes always reported that d = 1 was enough and higher
values introduced a bad overdifferecing that reduced both AIC and BIC and inflated the standard
errors of the parameters. Additionally, I opted to remove the mean from the set of parameters to
estimate because from the time plot of log returns they seemed to oscillate around a mean level
equal to zero and when including p in the model, its estimate was always statistically not different

from zero and was never beneficial in terms of AIC and BIC.

The plot in figure 2.7 reports the absolute values of AIC and BIC for each iteration, showing
that both criteria reached a local maximum on iteration 14 and 13 respectively, and after that, the
AIC started diverging while the BIC remained stable, due to its higher penalty, without further
improvements, signaling that an optimal set of parameters that minimized the criteria was already

found at an earlier iteration.

Table 2.1 reports the effective values of AIC and BIC for some of the iterations, along with
the relative orders of the model. The values in bold indicate that the best values for AIC and
BIC were achieved, respectively, by an ARIMA(2,1,3) and ARIMA(2,1,2) with mean zero and the
results are coherent with the analysis of the ACF and PACF made before. Even if BIC choose the
P =2,Q = 2, its value is very similar in the following iteration and coherent with the AIC obtained
on the same iteration, moreover, when looking at the estimated parameters of ARIMA(2,1,2), the
first moving average parameter was over one in magnitude, so to avoid any instability problems, I

was more inclined to lean towards the other model.

The output of the ARIMA(2,1,3) parameter estimation is found below and the high magni-
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Figure 2.7: Absolute values of AIC and BIC for every iteration

P Q AIC BIC

2 1 -37615.09  -37587.57
2 2 -37781.03 -37746.63
2 3 -37785.30 -37744.02

2 4 -37783.31  -37735.14

3 0 -37625.20  -37597.68

3 1 -37642.31  -37607.91

3 2 -37785.23  -37743.95

3 3 -37782.02  -37733.86

3 4 -3778247  -37727.43

Table 2.1: AIC and BIC Values for Iterations 12 to 20

tude of the autoregressive parameters, expecially of the qgl, might raise some concerns about the
stationarity of the process, therefore I checked the root of the AR polynomial using the polyroot()
function and found that the absolute values of the root were safely outside the unit circle’. Besides
that, the first four parameters are well above their standard errors and statistically significant,

whereas 03 has a low value and is about 2.5 times over its s.e., resulting in a p-value ~ 0.01094

"The polynomial 1 — 0.9153z 4 0.705122 = 0 has complex roots and their absolute value measures the distance

between the origin of the complex plane and z.
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which is still significant but only at 0.05 level.

Call:

arima(x = log.prices, order = c(2, 1, 3), include.mean = FALSE)

Coefficients:
arl ar2 mal ma2 ma3
0.9153 -0.7051 -0.9881 0.7732 0.0389
s.e. 0.0370 0.0306 0.0385 0.0362 0.0153

sigma”2 estimated as 0.0003058: log likelihood = 18898.65, aic = -37785.3

2.4.3 Model Diagnostic

If ARIMA(2,1,3) fits the series well, the residuals should look like white noise and show no auto-
correlation, hence to check if this assumptions holds, I plotted the residuals of the model against
time, their ACF and a normal Q-Q plot. While on figure 2.8(a) the residuals look like oscillating
around zero, they exhibit a consistent volatility clustering and heavy tails when compared to a
normal distribution, so employing a conditional variance model like GARCH might explain this
behaviour more appropriately. The short-term ACF is well inside the confidence intervals but there
is a small spike at lag 6 that raises some concerns about the validity of the white noise assumption
for the residuals.

Running the Ljung-Box [33] test, which tests if the autocorrelations up to H lags are simulta-
neously equal to zero, the p-value with H=12 was 0.0001399 for the ARIMA(2,1,3) and even lower
for ARIMA(2,1,2), rejecting the null hypothesis that p(1) = p(2) = -+ = p(H) in favour of the
alternative that at least one is non zero, suggesting that the hypothesis of white noise is violated.
This result indicates that the log returns have a persistent long-memory and might be better mod-
eled by long-memory processes by employing fractional differencing. However, even if the ACF is
statistically different from zero, the spike at lag six is not very large and far from the bounds so
in terms of practical significance the results form the previous test might not totally undermine
the usefulness of the model when forecasting. Lastly, the residual autocorrelation could be due to
random variation, so I performed the Durbin-Watson [34] test which checks if the null hypothesis
of no residual correlation holds by running N simulations, and the results with N=10,000 and
lag=10 were all corroborating Hy as the value of the statistic, whose range goes from 0 (positive
autocorrelation) through 2 (no autocorrelation) to 4 (negative autocorrelation), was around 2 at

all lags and 2.1 at lag six.

2.4.4 Modeling Time-Varying Volatility

An analysis of the autocorrelation of squared residuals of the fitted model can be useful to test if

there are ARCH effects in the squared residuals and asses if the assumption of constant volatility
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Figure 2.8: Analysis of residuals

in the conditional mean model can affect forecasts. Indeed, the behaviour of p,2(h) in Figure 2.9
indicates the presence of conditional heteroscedasticity, as the squared log-returns would do, which
correlates to the volatility clustering seen during the most bustling trading days, as the ACF in
this case is decaying rather slowly, persisting across all displayed lags, and hardly respects the
confidence intervals.

By allowing the constant innovation process to follow an autoregressive process instead, I tested
if an ARCH(p) or GARCH(p,q) model would fit the conditional standard deviation of the series.
For this purpose, with the same approach used before, I searched over a grid of orders p and
q which combination would yield the best performance in terms of AIC and BIC, and checked
which theoretical distribution is better suited to approximate the empirical distribution of the

standardized residuals ¢; = Employing the rugarch package, I started by fixing ¢ = 0 and

o
p =1,2,... in order to see if only ARCH(p) was enough to explain the autocorrelation in the
squared residuals and, assuming i.i.d. normally distributed €;, the model that minimized both
information criteria was ARIMA(2,1,3)-ARCH(12) with AIC=-34712 and BIC=-34617 resulting
in unsatisfactory results in terms of statistic significance of its parameters over the fifth lag, the
over-parametrization led to an high variance out-of-sample dampening the root mean squared

error between the actual and forecasted values of log returns, purporting the addition in the

conditional variance formula of its lagged values to obtain a more parsimonious model and better
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(a) ACF of Squared ARIMA(2,1,3) Residuals
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Figure 2.9: ARCH effects

0.0.s. forecasts of both conditional mean and variance.

When allowing ¢ to vary over the grid along with p to introduce GARCH effects in the model,
and considering both ARIMA (2,1,3) and ARIMA(2,1,2) for the conditional mean, with the same
assumption on standardized residuals as before, the optimal model was found to be ARIMA(2,1,3)-
GARCH(1,5) according to AIC, with a value of -34841, and ARIMA(2,1,3)-GARCH(1,4) for BIC,
which attained a local minimum at -34774. Both specifications show that accounting for the
lagged values of o7 can be beneficial for the goodness of fit and the GARCH(p,q) can be used to
approximate the persistence of the conditional variance better than ARCH(p) alone, even though,
by looking at the results® for the BIC selected model, the parameters of the autoregressive moving
average part are very similar, signaling a possible parameter redundancy. The GARCH parameters
are all significant and while the weighted Ljung-Box test on standardized residuals is still indicating
residual autocorrelation after the first lag, the same test on standardized squared residuals are more
in favour of the the null hypothesis of absence of serial correlation along with the Weighted ARCH
LM Tests.

GARCH Model : sGARCH(1,4)
Mean Model : ARFIMA(2,0,3)
Distribution : norm

Optimal Parameters

8rugarch normalizes the values of AIC and BIC in the output of the fitting routine so their values have to be

multiplied by 6146 to get the effective ones.
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Estimate Std. Error t value Pr(>|t])

arl 0.933222 0.036697 25.4307 0.000000
ar2 -0.774713 0.037449 -20.6869 0.000000
mal -0.951680 0.039314 -24.2072 0.000000
ma2 0.793323 0.041784 18.9865 0.000000
ma3 0.048532 0.016870 2.8768 0.004018
omega 0.000009 0.000001 13.7320 0.000000
alphal 0.216805 0.007416 29.2338 0.000000
betal 0.181206 0.039720 4.5621 0.000005
beta2 0.185659 0.042377 4.3811 0.000012
beta3 0.211441 0.046735 4.5243 0.000006
betad 0.195984 0.034195 5.7314 0.000000

LogLikelihood : 20398

Information Criteria

Akaike -5.6686
Bayes -5.6580

Weighted Ljung-Box Test on Standardized Residuals

statistic p-value

Lag[1] 2.896 0.088779
Lag[2*(p+q)+(p+q)-1]1[14] 156.809 0.000000
Lag [4*x(p+q)+(p+q) -1][24] 23.895 0.000238
d.o.f=5

HO : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

statistic p-value

Lag[1] 0.7089 0.3998
Lag[2*(p+q)+(p+q) -1][14] 3.9268 0.8871
Lag[4*(p+q)+(p+q) -1]1[24] 6.5761 0.9498
d.o.f=5

Weighted ARCH LM Tests

Statistic Shape Scale P-Value

ARCH Lagl[6] 0.2287 0.500 2.000 0.6325
ARCH Lag([8] 1.4674 1.480 1.774 0.6397
ARCH Lag([10] 3.5760 2.424 1.650 0.4815

Adjusted Pearson Goodness-of-Fit Test:

group statistic p-value(g-1)
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1 20 1347 3.144e-274
2 30 1435 3.442e-284
3 40 1456 2.380e-280
4 50 1501 4.104e-282

The adjusted Pearson [35] test, however, reports a very low p-value leading to reject the null
hypothesis that €, follows a Gaussian distribution due to a low goodness of fit. The same concern
stems up from the Q-Q plot below which shows that the distribution of the standardized residuals
is heavier on the tails than a normal. Moreover, the empirical density in the left plot of figure 2.10
has heavy peaks around the sample median, corroborating the fact that a normal distribution is
too strict of an assumption, leading me to try different distributions for the standardized residuals,

namely, the Student’s t-distribution and GED. I fitted both t- and GED distributions to ¢; to assess
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Figure 2.10: Analysis of residuals of ARIMA(2,1,3)-GARCH(1,4)

how much they can improve the goodness of fit and approximate the heavy tails of the standardized
residuals. The maximum likelihood estimates for the shape parameter of the fitted t- was n = 2.38,
and while confirming the pronounced tail thickness of the residuals, this results rises some doubts
about employing the t- because for n < 4 its kurtosis is not defined, whereas, the mle’s for the
fitted GED were n = 0.84 for the shape and 0.95 for the standard deviation. Considering that
GED is very flexible when fitting an unknown distribution as it generalizes different distributions
depending on the parameter values, the latter results makes sense because when n = 1 the GED is
equal to a Laplace distribution which is characterized by a sharp and elongated shape around the
mean, recalling the shape of the empirical distribution seen before.

The Q-Q plots make even more clear that either t- or GED can improve the goodness of fit and
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Figure 2.11: Q-Q plots of the residuals against theoretical quantiles

be a better alternative than the Gaussian distribution when fitting the conditional heteroscedas-
ticity. By an iterative approach, I tested for each of the two conditional mean models specified
earlier the various combinations of the orders p, ¢ of the GARCH part and the results confirmed
that the polynomial tails of t- or the double-exponential ones of GED are better suited in this
case and improved by a consistent margin the goodness of fit when compared to the model under
Gaussian ¢; assumption. Both AIC and BIC decreased and consistently chose parsimonious models
with fewer parameters than before, signaling that the two heavy tailed distributions approximate
better the behaviour of the series. This time though, I did not pick a model based solely on the
information criteria but also by looking at the performance of each model out of sample, the values
and statistical significance of the parameters and the results of the test statistics. Table 2.2 is a
summary of the model specifications that minimized the information criteria and performed the
best during each iteration, and as one can see, BIC tended to pick models with half the order of
q compared to AIC, thus resulting in more parsimonious choices. Even if the models with t- dis-
tributed residuals seem to perform the best in terms of both criteria when compared to the GED
counterpart, for all of them the parameters of the GARCH part were statistically not different
from zero, the AR and MA terms were higher than one in magnitude, which could be due to the
non-definiteness of the t’s kurtosis as the estimated 1 was pretty consistent with the one obtained
before, and both the out of sample performance metrics are worse then the other specifications.
Ohterwise, when imposing a GED distribution to the standardized residuals, the performance in

therms of RMSE and MAE was found to be better when forecasting returns out of sample and
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I was lead to choose the ARIMA(2,1,2)-GARCH(1,2) because its BIC and AIC are very close to
the other’s and, among the specifications in this series of iterations, was the model with the most
consistent and significant parameters and with an acceptable RMSE and MAE. This results shows
that in this case, employing GED helps improving the g-o-f to the extent that now the parameters
of ARIMA(2,1,2) part, which presented some problems before, are now more stable in terms of
magnitude and now is preferred over ARIMA(2,1,3) for modeling the conditional mean, and with

the GARCH extension offers the best bias-variance trade-off.

P Q p q AIC BIC RMSE MAE
t 2 2 1 2 -37070 -37017 0.0097403 0.0077427
2 2 1 4 -37074 -37010 0.0097396 0.0077423
2 3 1 2 -37070 -37011 0.0097266 0.0077369
2 3 1 4 -37074 -37004 0.0097223  0.007734
GED || 2 2 1 2 -37040 -36987 0.0096966 0.0076803
2 2 1 4 -37045 -36980 0.0096963 0.0076795
2 3 1 2 -37048 -36989 0.0097256 0.0077387
2 3 1 4 -37053 -36983 0.0097235 0.007738

Table 2.2: Summary of the models

The results of ARIMA(2,1,2)-GARCH(1,2) fitting routine is reported below, the ACF of the
squared residuals (firgure 2.12) is inside the confidence bounds for all short-term lags and both
the Q-Q and the density plots show that GED is far better that the Gaussian distribution for the
series, and even if the Pearson test has a low p-value, this could be driven by the high frequency
of the data and the fact that outliers are accounted to be more statistically significant by the tests

in large samples like this one.

GARCH Model : sGARCH(1,2)
Mean Model : ARFIMA(2,0,2)
Distribution : ged

Optimal Parameters

Estimate Std. Error t value Pr(>|tl)
aril 0.782106 0.006153 127.10832 0.000000
ar2 -0.673898 0.021833 -30.86605 0.000000
mal -0.850040 0.005986 -141.99803 0.000000
ma2 0.717206 0.019242 37.27370 0.000000
omega 0.000002 0.000003 0.53369 0.593556
alphal 0.100313 0.036647 2.73732 0.006194
betal 0.377777 0.127994 2.95152 0.003162
beta2 0.520909 0.100434 5.18657 0.000000
shape 0.823067 0.020471 40.20671 0.000000
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Weighted Ljung-Box Test on Standardized Residuals

statistic p-value
Lag[1] 35.05 3.208e-09
Lag[2*(p+q)+(p+q)-11[11] 55.14 0.000e+00
Lag[4*(p+q)+(p+q)-1][19] 66.05 0.000e+00
d.o.f=4
HO : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

statistic p-value

Lag[1] 0.2802 0.5966
Lag[2*(p+q)+(p+q) -1]1[8] 0.6930 0.9905
Lag [4*(p+q)+(p+q)-1][14] 1.9158 0.9927
d.o.f=3

Weighted ARCH LM Tests

Statistic Shape Scale P-Value
ARCH Lagl[4] 0.04911 0.500 2.000 0.8246
ARCH Lagl[6] 0.39916 1.461 1.711 0.9196
ARCH Lagl[8] 0.93660 2.368 1.583 0.9334

Adjusted Pearson Goodness-of-Fit Test:

group statistic p-value(g-1)

1 20 98.22 1.121e-12
2 30 126.12 4.456e-14
3 40 123.31 1.113e-10
4 50 147.45 8.576e-12

Figure 2.13 shows the actual log-returns of BTC/USDT over the sample period with the fitted
conditional standard deviation superimposed, computed as ¢; + 1.96;, and the grey line is repre-
senting the fitted conditional mean of the time series. The latter is driven by the ARIMA part so it
is expected to be equal to the unconditional long-run mean of the series, whereas the GARCH part
does an great job at fitting the conditional heteroscedasticity and provides a satisfying approxima-
tion of the wide scope of oscillations in periods of high volatility. At last, when fitting the model, I
left 40 observations out of sample in order to assess the performance of the model when forecasting
the close price of BTC/USDT. For this purpose, given that the model forecasts log returns, in
order to get everything in terms of the actual price, I have used the formula P, = Py exp(ZfZl Tt)
where 7; are the log returns, and plotted the 7 days rolling period one step ahead point forecasts,
along with the actual price of the asset and the prediction intervals, calculated using the forecasted

conditional standard deviation for each out of sample period, the result can be be appreciated in
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figure 2.14. The RMSE and MAE for out of sample price forecasts are, respectively, 184.86 and
146.77. The prediction intervals can be used as a proxy of the next 4 hours volatility of BTC/USDT
at each closes and can be useful for a short-term buy-sell strategy where one could buy when the

price closes under the lower bound and sell when it reaches the higher bound.

2.4.5 Final Takeaways

As seen previously, augmenting a simple ARIMA model with a conditional heteroscedastic GARCH
part has its benefits because it provides a useful approximation of the conditional variance that
for financial assets tends to persist in some periods, and additionally, the confidence intervals can
be used as trading indicators for when to enter and exit the market. However, the model has its
own limitations for h-steps ahead forecasts, as both the ARIMA and the GARCH would forecast
the constant unconditional mean and variance of the time series due to their assumptions, also, to
obtain satisfactory predictions over the long term and to account for unforeseen price behaviours,
one has to perform rolling forecasts and refit the model as new observations become available.
Moreover, the model would not catch the possible non-linear relations between the most recent
observation and the lagged value of the series, so in order to allow for non-linearity, in the next
chapter I explored how neural networks can help in this case and to asses their performance when

forecasting the price of a financial asset.
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Figure 2.14: Forecasts for the next 7 days out-of-sample
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Chapter 3

Sequential Learning With

Recurrent Neural Networks

Recurrent neural networks are a class of artificial neural networks which belong to the broader
discipline of machine learning, the science of programming algorithms to dig into large sets of
data with the goal of finding complex and hidden patterns that could be crucial for decision
making, problem solving or performing a specific task. Thanks to the technology innovations
of the last decade and the ever increasing computational power at our disposal, computers are
now capable of handling highly complex algorithms and demanding tasks with such an efficiency
and an unprecedented hastiness that could have not been achieved before. The advances in the
computer hardware sector, its exponential growth driven by an unparalleled demand, and the
availability of huge amounts of data relative to almost every field, have made possible to exploit
techniques that never found an actual implementation due to how unpractical and daunting their
application would have been, to the extent that, now, new approaches and new disciplines centered
around big data are now flourishing and improving at a staggering rate. Moreover, the diffusion
of computer software and platforms as open source have stirred the interest and commitments
of a huge community of developers to contribute in their development and progress, an example
being the Silicon valley giant Google that made available to the public, powerful tools, such as
Tensorflow! and Keras?, which I have used throughout this chapter, to accomplish a wide variety

of machine and deep learning tasks.

3.0.1 Supervised Learning

To forecast Bitcoin price, I relied on a supervised sequential learning approach, namely, by parti-

tioning the data set in a training and a testing subsets, the model learns the complex, non-linear

Lgithub.com /tensorflow /tensorflow
2keras.io/
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patterns between the observations by example, and in each training instance predicts the value of
the response variable y; given a sequence of its lagged values, called features or predictors, and re-
cursively adjusts the prediction until it finds the best parameters that minimize the target function
which represent the deviation between the output and the actual value of the series, and finally
one can assess its forecasting performance in the out of sample test set. The main difference from
the other types of machine learning approaches is that, with supervised learning, the variables are
already labeled, in this case by the time index, and the human supervision is required to tweak
the so called hyperparamters that affect how the learning is performed. Basically, the prediction
is based on approximating the non-linear map F(X; | 8) from an high dimensional matrix of input
features to the response variable, where the parameters 6, which are different from the algorithm’s
hyperparameters, are the degrees of freedom that the model has when approximating the relation-
ship during training. Even if, in this case, the model is parametric, differently from the classical
statistical forecasting approach that is based on fitting a theoretical model to the series, neural
networks handle model selection and inference in an algorithmic fashion without any assumption
on the data generating process, being very flexible when generalizing the structure of a large data
set. The main difference from the maximum-likelihood approach seen in the previous chapter, is
that now the function that is being minimized is not based on the theoretical distribution of the
innovations but on an out-of-sample performance indicator, like the mean squared error or the
mean absolute error, specified by the user. Moreover, given the lack of statistical tests to asses
the significance of the estimated parameters, in order to optimize the bias-variance trade-off with
neural networks, one can rely on many different approaches to avoid overfitting, for example im-
posing constraints on the parameters with the so called regularization, whose degree is specified

by tuning the related hyperparameter at the begging of the training phase.

3.0.2 Artificial Neural Networks

The artificial neuron, introduced by Warren McCulloch and Pitts [36], was inspired by the structure
of biological neurons and by the hypothesis that an algorithm could emulate their functions and
mimic the mechanism through which their components are connected together. In its first instance,
the artificial neuron performed simple logical operations with binary output, getting activated if
the number of its binary inputs exceeded a specific threshold.

The first artificial neural network, abbreviated ANN; called Perceptron, was invented by Rosen-
blatt [37], its basic component, the threshold logic unit or TLU, computes a weighted sum of the
inputs and applies a step function to the result, like the Heaviside function that takes value 1 if its
input is positive and zero otherwise. The Perceptron is made of a layer of TLUs, each of them fully
connected to the first layer of input neurons such as the network output is Fyy,(X) = o(XW 4 b)
where o is the activation function, Heaviside in this case, X is the matrix of inputs NxK and W is

the matrix KxH where H is equal to the number of TLUs in the layer, representing the connections
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of the network, and b is the vector of biases with H columns and takes always value 1 in this case.
The perceptron was employed primarily for classification tasks, namely, the network is trained to
find the right weights that would make the weighted sum of the inputs positive such that, after
applying the activation, the output is 1 if the inputs belong to the target class A, or zero if the
inputs do not belong to A.

To overcome the limitations of employing only a single layer of neurons and introduce non-
linearity in the decision boundary of the network, a Multilayer Perceptron stacks multiple layers
of fully connected neurons such that, between the first pass-trough input layer and the last out-
put layer of neurons there are L hidden layers fully connected to the rest of the network. This
architecture, called Deep Neural Network, DNN, is characterized by having L layers of abstrac-
tion through which the inputs flow, increasing the computational complexity required to find the
complex relationships between the features and the target variables. A deep feedforward neural
network, were the inputs X travel sequentially all the layers in the network from the first to the

last, can be represented as a composition of functions, namely:

Y(X) = Fwa(X) = (fit, 0, © -0 fivy 5,) (X) (3.1)

where f/(X) is the predicted value of the target variable Y, vaVL,bL = o (XWr, +br) is the output
on the L' layer and the weights and biases represents, as before, the connections between each
layer of the network, such that there are KxH + H parameters for each layer, and oy is the
activation function that introduces non-linearity between the inputs and the outputs. There is a
wide range where activation functions can be chosen from to activate each layer, like for example the
hyperbolic tangent, the logistic function or ReLu, each of them fitting particular needs and specific
tasks, depending on what the user wants to achieve or which shortcomings of other functions to
overcome. It can be easily shown that, if there is only one layer and the activation is the identity
function, equation (3.1) is the simple linear regression, demonstrating that a deep feedforward
neural network is a non-linear high-dimensional generalization of the classic regression function.
The network learns according to the Backpropagation algorithm, introduced in 1986 by Rumel-
hart, Hinton, and Williams [38], such that it adjusts the paremeters of each layer iteratively to find
the best set that makes the forecasted value closest to the target. Supposing that the generaliza-
tion error is measured by the mean squared error function, given the set of time-indexed features
represented as the NxK matrix X with K columns as the number of features, the Backpropagation
algorithm handles the features in batches, 3-dimensional matrices MxnxK where M is the number
of sub-matrices, called instances, in the batch and n C N are the time steps contained in each
instance, the length M can be chosen by the user depending on the amount of RAM available, as
the higher the size of the batch the more free space is required in the memory. The algorithm is
designed such that, on the first forward pass a batch of instances is sent to the input layer which
passes it to the first hidden layer that by computing the weighted sum of the instances and apply-

ing the activation function to the result, outputs a matrix, whose entries are in a certain range of
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Figure 3.1: Visual representation of a Multilayer Perceptron *

values depending on the activation function, which will be the input for the second hidden layer,
that repeats the process and sends its output to the next hidden layer and so on, until arriving at
the last layer of the network. The latter, called the output layer, in the case of a regression neural
network, still calculates the dot product between the matrix of inputs from the preceding layer
and the matrix of weights, adding the vector of biases, but does not apply any activation function
allowing the results to vary freely without any bounds because the output, which is the predicted

value }7, needs to have the same scale as Y to compute the MSE.

The parameters of the network, the weights and biases, are of fundamental importance because
not only they determine the importance given to each feature when predicting Y, but directly
influence the connection between the layers’ neurons and whether they are turned on or off, for
example, if the activation function is the sigmoid function o(X) = Hc%, which is bounded
between zero and one, a negative value of the the weighted sum computed by a single neuron
in the layer, once passed through the activation function, makes the relative entry of the output
matrix equal to zero such that when the latter will be sent as the input for the next layer, its

neurons will not connect to it.

In the backward pass, the algorithm starts computing the gradient vector of partial derivatives
of the loss function, the MSE in this case, with respect to the parameters of the last layer in order
to asses of much each of its parameters contributed to the generalization error and, by the chain
rule, does this for every other layers before the last, in retrospection, by propagating backward
the gradient vector until arriving at the first hidden layer. To penalize the connections between
the neurons that contributed the most to the error, the algorithm tweaks the weights and biases
in order to minimize the loss function, by performing the so called Gradient Descent optimization

[39] [40].

3Source: “Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Tech-

niques to Build Intelligent Systems”, Aurélien Géron (O’Reilly)
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Given the MSE function MSE(0) = %Z?Zl(f/(X | 0) — Y)? for the whole batch, were @ is
the vector of parameters of the network, the Gradient Descent algorithm searches for the set of
parameters that minimize the loss function, namely, the combination of parameter values such that
the gradient vector 7o MSE(0) is equal to zero. Once the gradient for the first set of parameters
is found after the final step of backpropagation, Gradient Descent adjusts the parameters in the
direction where their partial derivatives, with respect to the loss function, are negative, in other
words, along the path were the loss has the steepest slope, with the goal of reaching its minimum. If
the parameters are not optimal, Gradient Descent performs an additional search over the parameter

space, triggering another forward-backward pass through the training set, called epoch, and tweaks

the parameters according to their gradient:
Hnea:t step — 0 — n\e MSE(G) (32)

such that, at every step, if the gradient of a parameter is positive, the algorithm will go in the
opposite direction, doing this for a specified number of epochs. The parameter 7 in (3.2) is called the
learning rate and its an hyperparameter that dictates the size of the step the gradient descent takes
when percurring the loss function, and its fundamental because if set too high, the algorithm will
takes too big steps along the loss, bouncing around the minimum and converging to a sub-optimal
solution, whereas if set too low, the training process will be more time-consuming. Typically the
number of epochs is set to be high enough to let the algorithm find the minimum and the user
can employ an early stopping criteria through the callback function that stops the iteration when
the value of the loss does not improve after n steps, without worrying about wasting time and
resources.

To reduce the risk of overfitting the test set, a common approach is to add to the loss function
a penalty term accounting for the number of parameters of the model, such that, the ones with too
much degrees of freedom would perform worse than more parsimonious specifications at optimizing
the bias-variance trade-off. I have chosen to add the ¢; norm, to not penalize the outliers in the

data set too much, to the MSE, such that the loss function takes the form:
Loss(0) = MSE(0) + « Z A (3.3)
i=1

where « is an hyperparameter that influences the degree of the penalty.

When employing a very deep neural network with an high number of neurons for each layer,
one can incur in the problem of unstable gradients, a symptom that the model is overfitting the
data. This is correlated with the activation function chosen for the layers, indeed, taking as an
example the sigmoid function again, which has been the most common choice by practitioners, it
saturates when the its input is too large or too small and the derivative at its boundary become
zero so when there is a large number of neurons in the layers of the network there is the risk that
the backpropagation algorithm, which computes the gradients at every step of the training session

and propagates them according to the Gradient Descent, would tweak the parameters of the upper
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layers with an already small value and as it reaches the lower layers, the gradients have already
been diluted, so the parameters of the first layers would not receive any change at all. Amongst
many approaches and solutions to the unstable gradients, I have chosen to employ the Glorot and
Bengio [41] parameters initialization, both because of its efficiency and its compatibility with the
activation function of my choice. Indeed, it is essential to initialize the weights and biases in a
consistent way and avoid setting their initial values to zero or the same constant value, because
that would lead the Backpropagation algorithm to tweak the parameters in the same way for every
layer and the result would be like having a neural network with just one neuron.

Glorot and Bengio pointed out that to alleviate the instability of the gradients, the signal in the
forward and back passes do not need to be dispersed or grow exponentially large and theoretically,
to ensure that, both the inputs and the outputs of the network must have equal variance and at the
same way, the gradients flowing in either direction need to have the same variance too, in practice

however, this is not feasible, so the authors proposed and efficient compromise, namely, initializing

the parameters randomly according to a uniform distribution between -r and r, with r = , / fm‘?w ,

W is the average between between the number of inputs and neurons

where fangyg =
of the layers in the network.

Additionally, over the years, the Gradient Descent algorithm has inspired the development
of new and faster optimizers, each one of them accommodating various needs depending on the
particular use-case or aiming to overcome the limitations of the other optimizers available for
training neural networks. The one I chose the network to be trained with is Adam, which stands for
adaptive moment estimation, introduced by Kingma and Ba [42], which gathers the functionalities

and intuitions of other two optimizers under a single, powerful tool. Specifically, the steps that

the algorithm takes for tweaking the parameters are:

m = fim — (1~ p1) Vo Loss(0) (3.4)
s = Bas — (1 — By) Vo Loss(0) ® veLoss(0) (3.5)
M= 1_77”5{ (3.6)
3= 1%/35 (3.7)
Ops =0 +nM V5 + e (3.8)

where ¢ is the number of the iteration and 7 is the learning rate hyperparameter. When updating
the weights and biases, Adam takes into account the geometric average of both the past gradients
and the square of past gradients. The equation (3.4) defines the momentum [43] of the parameter
updates, increasing the acceleration by which the optimizer converges to the minimum of the loss,
indeed, thanks to this approach, the hyperparameter 5; can be tweaked in such a way that, when
the gradients are very small or remain almost constant, while Gradient Descent would start going
very slow, the momentum kicks in and let the algorithm escape the plateaus of the loss function

faster than the former. Whilst, equation (3.5) lets the learning rate be adaptive [44], indeed, if
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past gradients are very high in magnitude, scaling down the learning rate by the term 5 makes the
optimizer take more short and precise steps when moving along the steepest dimension, fostering
the convergence toward the minimum of the loss. To avoid the learning rate decaying too much and
too abruptly, the parameter (5 controls the speed by which the square of past gradients decays,
such that, setting an higher S makes sure that only the most recent gradients will affect n and

the parameter updates.

3.0.3 Recurrent Neural Networks

Recurrent neural networks [45] [46], RNN, have become increasingly popular in the financial sector,
mainly due to their peculiar architecture that makes them well suited for processing long series
of data, such that, there has been a rise in adoption for many different purposes, especially for
forecasting time series and building speculative trading strategies.

The econometric models presented before do not learn from the data and given their linear
specification, often tend to misrepresent the actual relationship between the observations, whereas
neural networks, mining through the data iteratively, try to catch as many patterns as possible,
and can be considered as an extension of time series models, but with less theoretical assumptions.

Moreover, the strength of RNNs when applied to time series forecasting is that there is recur-
rence that builds memory in the network. Indeed, as opposed to feed forward neural networks seen
before where the input flows in one direction until it reaches the last output layer, in a RNN at
each time step, every single neuron after receiving the input, produces its output as before, but
now, it also sends the output back to itself, thus a recurrent term is included in the calculation
performed by the neurons. In other words, take for example a recurrent neural network with a sin-
gle recurrent neuron, it is said that the network can be unrolled through time [47], such that, given
the matrix {X,;}Y; of features, if the first instance of the batch contains five lagged observations
of the features in each column represented as the sequence of vectors (xy, ¢—1, Ti—2, Ti—3, T1—4a),
when the recurrent neuron processes the instance, at the first time step it takes x;_4 and produces
Y;_4, at the second time step, takes as input both ;_3 and y,_, to output y,_5 and so on for as
many time steps in the instance , until arriving at the last time step t whose output will depend
on the outcomes of the preceding time steps due to the recurrent memory of the neuron.*

The RNN still learns according to the backpropagation algorithm but now the gradients will
flow backward through the unrolled network, this is why for RNNs it is called BPTT [48], back-
propagation through time, and the algorithm will add up the parameters of each single time step.
Multiple recurrent neurons can be arranged in layers and the network will behave in the same
way as described above, feeding the output of each layer back to them, in order to account for
recurrence and create memory of the past of the series. A RNN whose last layer outputs a vector

of predicted variables for each time step is called a sequence-to-sequence network and the loss

4 At the start of the recursion, the recurrent term is zero because there is no previous output yet.
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Figure 3.2: Visual representation of a Recurrent Neural Network °

function will be calculated taking into consideration the output of every time step, whereas, the
network I will employ, called sequence-to-vector, follows a many to one approach, meaning that the
layer still unrolls through time and uses the recurrent term at each time step but will effectively
output only the vector of predictions of the last time steps such that, the loss function will be
computed only for the latter, that is, the vector g,.

In the case of univariate time series sequential learning, given the autocorrelated series {y;}¥ ;
and the vector of lagged observations {xt}f;—lh, where h is the forecast horizon, the approach is
to construct a vectorized sequence of lagged values of y; such that each instance in the batch
contains a specified number of lags. Explicitly, each instance is a vector of the form {x;_;} where
j=1,---,T are the time steps and T is the look-back period determining the number of lags in
the instance. In this context, given that ¢t = 1,--- | N and h=1, the batch is built with a sliding
window approach, such that, taking as an example T=3, the first instance will contain {x,zs, 23}
to forecast g4, the next instance is made by {x2,x3, 24} and the last time step forecast is g5, and
SO on.

Thus, considering a deep sequence-to-vector RNN with L-1 recurrent layers, the output for a

whole batch, in the case of univariate time-series, can be computed as:

9t = [0, (Ze) = 0L(ZWr +by) (3.9)
Zij=f o (@) (3.10)
= UL—l(Zt—j—lVVéz_)l + fL‘t-ij”_)l +br-1), jed{l,---,T} (3.11)

where (3.9) is the output of the last layer, which in this case is a non-recurrent dense layer with

5Source: “Machine Learning in Finance: From Theory to Practice”, Dixon, Halperin, Bilokon (Springer)
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one neuron such that, ¢, is the Mx1 vector with M rows equal to the number of instances in the
batch, containing the predictions of the last time step for all the instances, and Wy, is a vector
of size Hx1. Z; is the hidden state, also called memory cell, of the network, the recurrent term
that preserves the memory in the RNN, such that the output of the last time step is a function
of all the inputs of the previous time steps, it is an MxH matrix with H equal to the number of
neurons in the recurrent layer. by, is the vector of biases 1xH and oy, is the activation function of
the L layer. In (3.11), the term W () is the HxH matrix containing the connections between the
current input and the output of the last time step, whereas W) is the KxH matrix of connections
between the input and the layer’s neurons, where K=1 in this case, and x;_; is the vector Mx1 of
inputs of the current time step. The fist hidden state will depend only on the inputs as, for J=T,
the term Z;_p_1 is zero. In general, for a layer of this form, there are (K+H)xH+H paramters in
total, depending on the number of features, the number of recurrent neurons and biases.
Equation 3.11 shows that the memory of the network depends on the parameter T, the look-
back period, and an RNN of this form can be considered as a generalization of an AR(p) process
when T is taken to be equal to the autoregressive order p, at each time step the network applies
an autoregressive function fy,(2:—;) such that the output will depend on the number of lags in
each instance. Indeed, if there layer has only one neuron, the activation function is the identity
function, W) = 2, W@ = ¢z, b1 =0, W, =1 and by, = u, an RNN can be represented as
an AR(p) of the form §; = z;_1 + u, where z;_1 = ¢, 212 + ¢ 2:—1 and so on, until the first time
step where the hidden state depends only on the input z;—, = ¢,x¢—p, such that the general form

is:

G = p+ oL+ L+ ...+ P~ Pz, (3.12)
p

=u+ Z DT (313)
j=1

with geometrically decaying autoregressive weights ¢; = ¢~ when |¢.| < 1. Therefore, the
number of time steps over which the network unrolls can be determined by looking at the PACF
of the series and choosing T to be equal to the last significant lag. Indeed, the PACF of an
RNN has the same behaviour of an autoregressive process and cuts off when h > p, for example,
given an RNN(1) of the form g, = o(¢y:—1), the autocovariance function with h=1 is v(1) =
Ely: — p, y1—1 — p], given that y, = §; + €, by substitution, v(1) = E[o(dy;—1) yt—1], with u = 0, if
the activation is the identity then the autocovariance has a form similar to the autocovariance of an
AR(1) process, that is, v(1) = pV AR[y:—1]. When h=2, the autocovariance of an RNN(1) process
can be computed as v(2) = E[y; — ¥, y1—2 — 12|, where the hat terms are again the regressions of y;
and y;_o the term in the middle y;_1, by approximating §;—s as §t—2 = 0(dyr—1) = o(P(Jr—1+€t-1),
one can see that the latter does not depend on ¢, thus by substitution, the autocovariance at lag
2 becomes v(2) = Elet, yt—2 — 0(d(Gr—1 + €:—1)] = 0, it follows that, like an autoregressive process,

the autocovariance, and the PACF, of an RNN(1) cuts off when the lag order is greater then the
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look-back period and can be useful when specifying the value of the latter.
Additionally, the stationarity condition of an AR(p) process can be generalized in terms of
RNNS, such that, with the same assumption as above, the general form of the infinite representation

of an RNN(1) is:

v = (L) e (3.14)
1
T1-o(WEL+b) (3:.15)

= Z A (WEL +b) e (3.16)
j=0

From (3.16), the stability condition for an RNN(p), similarly the autoregressive counterpart, re-

quires that |o| < 1, such that, to ensure that the sum is stable, the common choice is to employ the

|

hyperbolic tangent as the activation function for the layers in the network, defined as tanh = S,

which is S-shaped and bounded between -1 and 1. Equation 3.16 shows that the effect of distant

lags and of the recurrent terms on the layer output decays geometrically with time.

3.0.4 o-RNN

The plain RNN has a short memory, which length depends on the parameter T, so in order to allow
for a longer memory, the a-RNN [49] model adds a smoothing parameter to the hidden states, such

that:

Jey1 = 2W +b (3.17)

Zt = a(it,1W£Z) + xtWéz) + bL) (318)

where ;11 is the predicted value of a single instance, W is the vector Hx1 of connections of the
output layer, z is the vector 1xH of hidden states, the size of Wéz) WIEE) are respectively HxH
1xH and 2,1 = azi—1 + (1 — @)Z;—2, where at the start of each instance, z;—741 = ¢Tr—741.
Differently from an RNN, the « in this case provides an infinite memory to the model. Indeed, by
considering all the biases equal to zero, W=0, W) = W®) = ¢, ¢ = I'd and T=2, (3.18) becomes
2zt = Ppladzi—1 + (1 — a)Zi—o + x1) and (3.17) can be re-written as:

Z/JtJrl = ¢$t + a¢2$t,1 + ¢(1 - Ct)gt,Q (319)

such that when o = 1 the model is a plain RNN, otherwise, the model has infinite memory, and

Zt—o depends on the starting point of the series x;.

3.0.5 Data Transformation & Model Identification

First, I split the data set into a training and test set according to a ratio of 90/10. Afterwards,
given that the sample covers roughly two years of trading, the close prices of two distant periods

of time can be very different in magnitude, so in order to avoid the risk of unstable gradients, I
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scaled all the observations in both the training and test set by subtracting the mean and dividing

by the standard deviation computed over the training set, in order to avoid a look-ahead bias.

In order to fix the look-back parameter T, I have checked the PACF of the the training set, and
as can be seen from the figure below, there is a spike at lag 6 out of the confidence bounds, thus
I set T=6, namely, the batch will contain vectorized sequences of 6 lags each and is constructed

with a sliding window approach, as discussed before, with a forecast horizon h=1.

(b) PACF of BTC/USD
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Figure 3.3: PACF of the training set

By using Scikit-learn, Keras and Tensorflow libraries in Python, I choose to employ an a-RNN
with one hidden layer, to avoid both exploding/vanishing gradients and overfit the sample, a dense,
single neuron, layer as the output layer, activation function tanh, Glorot and Bengio parameters
initializers, Adam optimizer and specified the mean squared error as the loss function for the

training instance.

In order to find how many neurons to include in the layer and which parameter for the ¢;
penalty to use, I performed a grid search over the hyperparameter space with GridSearchCV,
which evaluates the performance of the model on the test set for every combination of the target
hyperparameters. The results are then cross-validated using a 5-fold cross-validation, namely,
by splitting the training set into 5 pairs of training and test subsets with the TimeSeriesSplit
function, where the test set is always ahead in time, the algorithm returned the pair of parameters

that performed the best on average, which was H=110 for the number of neurons and ay, = 0.
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3.0.6 Training and Results

Using the pair just found, I let the model train for 2000 epochs and fixed an early stopping criteria.
From the summary of the model, the number of estimated parameters in the first layer are equal
to (14110)x110+110+1, taking into account also the o hyperparameter, estimated to be equal to
0.17.

Model: "sequential 7"

Layer (type) Output Shape Param #
alpha_rnn_7 (AlphaRNN) (None, 110) 12321
dense_7 (Dense) (None, 1) 111

Total params: 12,432
Trainable params: 12,432

Non-trainable params: O
The mean squared error is lower in the training set than in the test set, as expected, and after
transforming the data back to its original scale, I have plotted the fitted values of the model against

the training set to grasp its performance during training.

Qbserved vs Fitted
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Figure 3.4: Performance of the model in the training set

However, the performance in the out-of-sample set, which is the same used in the previous
chapter, is completely different, as showed in figure 3.5, and exposes the limitations of the model
in approximating the highly volatile behaviour of the series. The rolling forecasts of y; based on its
6 previous values, are clearly lagging by one period, reducing the actual suitability of constructing
a speculative trading strategy around the model, the out-of-sample RMSE is 188.11 and the MAE
is equal to 137.38.
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Observed vs Forecast
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Figure 3.5: Out-of-sample rolling, one period ahead forecasts

These findings are coherent with the characteristics of the model employed, in fact, the weights
Wéz) and Wéz) in an RNN are time-invariant and do not change between the time-steps when a
layer unfolds, so the performance of the model degrades when used to approximate the non-linear
behaviour of an autocorrolated non-stationary time series like the one in this case. Moreover,
given that an RNN generalizes an AR(p) model, it expects the innovations to be i.i.d. white noise,
thus it performs better in case of homoscedastic errors. In order to overcome this shortcoming,
an alternative approach would be to extend the simple RNN with a Generalized Recurrent Neural
Network, GRNN, that similarly to the GARCH extension of an autoregressive model, is better
suited to model the hetetoscedasticity that often financial time series exhibit.

The low value of the fitted o parameter shows that, in order to optimize the loss function, the
model needs to account for long-term relationships and distant past lagged values of the target, so in
order to obtain a better forecasting performance, one could employ a recurrent neural network with
a differently structured memory cell, like LSTMs and GRUs, to enhance both the memory in the
network and the method by which it handles past observations, and obtain a better approximation
of the price dynamic while also accounting for more complex patterns occurred in past trading

days.
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Conclusions

In the first chapter of this thesis I have outlined the main technical characteristics of the Bitcoin
technology and the innovative features that stirred the interest of a large community of tech
enthusiasts, programmers and cypherpunks, while driving many retail and institutional investors
to increase their stake in the cryptocurrency. A comparative analysis of returns with respect to
other traditional financial assets revealed the highly speculative and volatile nature of the market
for Bitcoin, so in the second chapter, I have fitted an econometric model to its time series to asses
if the forecasts obtained thereby can be effectively used for a speculative trading strategy. At
first, the log price of BTC/USDT seemed like an integrated process of order one, so I assumed
that a first order difference was needed to meet the stationarity assumption of the theoretical
models. Moreover, the residuals of a plain ARIMA model fit, and the ACF of squared residuals,
revealed the presence of a persistent conditional heteroscedasticity, so I decided to extend the
model with GARCH, and by maximum-likelihood estimation, I found that an ARIMA(2,1,2)-
GARCH(1,2), along with the assumption of GED distributed standardized innovations, provided
the best compromise in terms of bias-variance compared to the other candidate specifications.

The rolling out-of-sample forecasts revealed that the prediction intervals computed with the
standard deviation forecasts of the GARCH part could actually provide an adequate approximation
of the volatility of the series and opened to the possibility of back-testing the performance of a
buy-sell strategy to asses the long-run viability of using the intervals as a trading indicator.

In the final chapter I have explored recurrent neural networks in order to see if an a-RNN model
could be able to recognize the complex patterns in the training set and predict an autocorrelated
time series by fitting the non-linear relationships between the target, the current value of the
series, and the features, six lagged observations. The out-of-sample forecasts were mostly lagging
by one period and the model did not perform much better than the econometric linear counterpart,
signaling that the theoretical assumptions of the RNN are too strict for a non-stationary series.
The results purport that there are ample margins of improvement and further testing is needed
to asses if different standardization approaches, adding more layers and neurons to the model,
employing measures to reduce the possibility of overfitting the test set, or using other kinds of
neural networks, can provide more consistent predictions.

In conclusion, the main difference that emerged from my study is that, while an ARIMA-
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GARCH model can be limited by its linear structure and by the paradigms of the classic statistical
inference and the related theoretical assumptions, it is precisely from the latter that one can obtain
a more interpretable and parsimonious model, whereas, even if recurrent neural networks can take
advantage of non-linear functions and the flexibility of cutting-edge architectures, often, to obtain
a satisfactory result one has to add more layers of abstraction and increase the parameters to be
estimated, thus the overall complexity of the model. In this case, training the model would become
increasingly demanding both in terms of time and computer power and one would need to have
access to powerful machines in order to deploy a profitable trading strategy in the long run, given
that retraining the model frequently is almost necessary to account for new price patterns in the

market.
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Summary

In late 2008, an unknown person, or perhaps a group of people, under the pseudonym of Satoshi
Nakamoto posted on the website bitcoin.org a white paper called “Bitcoin: a Peer-to-Peer electronic
Cash System” [1], proposing a decentralized network that would allow its participants to send and
receive digital currency directly, without the need of an intermediary. The role of the trusted third
party is replaced by a cryptographic algorithm that builds confidence between the participants of
the network, acting as a proof that the transactions are genuine and the funds transferred exists,
avoiding Bitcoins counterfeiting, a problem called double-spending. All the transactions between
the peers are immutably recorded in blocks, and every new transaction is uniquely linked to the
previous ones contained in earlier blocks by an ‘hash’ ID, thus forming a chain of blocks. This
chain, called the blockchain, is the ledger where the information about the entire history of all the
transactions that ever happened in the network is recorded on. The peculiarity of this electronic
ledger lies in its distributed nature as anyone can become a ‘node’ of the network by downloading
the open-source bitcoin client and start participating in the network.

Bitcoin circulating supply is capped at 21 million and geometrically decays with time as designed
by its protocol. Its innovative characteristics propagate confidence and trust between its users,
bolstering its effective utility. Additionally, the pre-programmed supply limit has deflationary
effects, thus helping to maintain the value of Bitcoin in the long-run due to its inevitable scarcity
as long as demand for it stay constant or increases. However, citing Robert Sams, “the downside
of a known, predictable, and completely inelastic supply unrelated to a fluctuating demand results
in perpetual price volatility” [8].

Bitcoin can be traded on exchanges with the ticker BTC and additionally to BTC-fiat currency
pairs, it can be traded against stablecoins, digital tokens that are programmed to be pegged to a
specific fiat currency, like TetherUSD (USDT).

I have applied ARIMA and GARCH econometric models to perform a univariate time series
analysis and prediction of Bitcoin price series. The data set in analysis comprises the historical 4
hour close prices of BTC/USDT from 2017-08-17 to 2020-11-30, downloaded with Python, through
the API of Binance exchange.

In order to stabilize the variance and induce some symmetry in the data I have applied a log

transformation to the time series. The log-prices exhibit a behaviour similar to a random-walk, so
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it might be considered as an I(1) and, by taking a first order difference, the process shows mean-
reversion around zero. To check if log returns are stationary, I run the augmented Dickey-Fuller
[28], Phillips-Perron [29] and KPSS [30] tests. The output support the hypothesis of stationarity
with satisfactory p-values. To asses the goodness of fit while still accounting for model complexity,

I relied on the Akaike’s [31] and Bayesian information criteria [32]
The best candidate models were ARIMA(2,1,2) and ARIMA(2,1,3). The residuals exhibit

a consistent volatility clustering and heavy tails when compared to a normal distribution, so
employing a GARCH model might explain this behaviour more appropriately. The ACF of squared
residuals is decaying rather slowly, persisting across all lags, and hardly respects the confidence

intervals, signaling the presence of conditional heteroscedasticity.

By allowing the constant innovations to follow an autoregressive process instead, I tested if
a GARCH(p,q) model would fit the conditional standard deviation of the series. Employing the
rugarch package in R and considering both models for the conditional mean found before, the op-
timal specification was ARIMA(2,1,2)-GARCH(1,2) with GED distributed standardized residuals.
The latter was the model with the most statistically significant parameters and offered the best
bias-variance trade-off. The ACF of the squared residuals is inside the confidence bounds for all
short-term lags and both the Q-Q and the density plots show that the assumption of GED on

stadardized residuals provides a better fit than the Gaussian distribution.

I plotted the actual log-returns of BTC/USDT with the fitted conditional standard deviation
superimposed and the fitted conditional mean of the time series. The GARCH part performs well
at fitting the conditional heteroscedasticity and provides a satisfying approximation of the wide

scope of oscillations in periods of high volatility.

Figure 3.6 reports the out of sample rolling, one step ahead, point forecasts, along with the
actual price of the asset and the prediction intervals, calculated using the forecasted conditional
standard deviation. The RMSE and MAE for out of sample price forecasts are, respectively,
184.86 and 146.77. The prediction intervals can be used as a proxy of the next 4 hours volatility
of BTC/USDT at each closes and can be useful for a short-term buy-sell strategy where one could

buy when the price closes under the lower bound and sell when it reaches the higher bound.

However, the model has some limitations for h-steps ahead forecasts, as both the ARIMA and
the GARCH would forecast the constant unconditional mean and variance of the time series due
to their assumptions, also, to obtain satisfactory predictions over the long term and to account for
unforeseen price behaviours, one has to perform rolling forecasts and refit the model as new obser-
vations become available. Moreover, the model would not catch the possible non-linear relations
between the most recent observation and the lagged values of the series, so in order to allow for

non-linearity, I explored if neural networks can help in forecasting the price of a financial asset.

To forecast Bitcoin price, I relied on a supervised sequential learning approach, namely, by

partitioning the data set into training and testing subsets, the model learns the non-linear patterns
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Figure 3.6: Forecasts for the next 7 days out-of-sample

between the observations by example. In each training instance the model predicts the value
of the response variable y; given a sequence of its lagged values, called features or predictors,
and recursively adjusts its parameters in order to minimize the loss function representing the

deviation between the output and the actual value of the series, and finally assesses the forecasting

performance in the out of sample test set.

The network learns according to the Backpropagation algorithm [38]. The algorithm handles
the features in batches, 3-dimensional matrices MxnxK where M is the number of sub-sequences
in the batch, called instances, n are the time steps contained in each instance and K is the number
of features. On the first forward pass a batch is sent through the layers of the network until
arriving at the last output layer where the algorithm computes loss function. In the backward
pass, the algorithm starts computing the gradient vector of partial derivatives of the loss function
with respect to the parameters, the weights and biases of the last layer and, by the chain rule, does
this for every other layers before the last, in retrospection, by propagating backward the gradient
vector until arriving at the first hidden layer. The algorithm tweaks the weights and biases by

performing a Gradient Descent optimization [39] [40]. The latter adjusts the parameters along the

path were the loss has the steepest slope.

In Recurrent neural networks [45] [46], differently from feed forward neural networks, at each
time step, every layer sends its output back to itself, it is said that the network can be unrolled
through time [47]. Thus a recurrent term, called hidden state, is included in the calculations
performed by the neurons to create memory in the RNN, such that the output of the last time
step is a function of all the inputs of the previous time steps. The RNN still learns according

to the backpropagation algorithm but now the gradients will flow backward through the unrolled
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network, this is why for RNNs it is called BPTT [48], backpropagation through time, and the

algorithm will add up the parameters of each single time step.

In the case of univariate time series sequential learning, the batch is built with a sliding window
approach, such that, each instance in the batch contains lagged values of the target variable. The
memory length of the network depends on the look-back parameter which specifies the number of

lags in the instances.

A simple RNN can be considered as a generalization of an AR(p) process when the look-back
is equal to the autoregressive order p. Therefore, the PACF of an RNN has the same behaviour of
an autoregressive process and can be useful when specifying the value of the look-back parameter.
Additionally, the stationarity condition of an AR(p) process can be generalized in terms of RNNs;
such that, the stability condition for an RNN(p) is |o| < 1, where o is the activation function of
the network’s layers and induces non-linearity. To respect this condition, the common choice is to

employ the hyperbolic tangent as the activation function.

In order to allow for a longer memory, the a-RNN [49] model adds a smoothing parameter
to the hidden states. When o = 1 the model is a plain RNN, otherwise, the model has infinite

memory, and the hidden states depend on the starting point of the whole series.

After splitting the data set, I scaled all the observations in both the training and test sets by
subtracting the mean and dividing by the standard deviation computed over the training set, in
order to avoid a look-ahead bias. The PACF of the training set exhibited a significant spike at lag
six, hence I set the look-back to be equal to 6 such that the batch will contain vectorized sequences of
6 lags each. By using Scikit-learn, Keras and Tensorflow libraries in Python, I choose to employ an
a-RNN with one hidden layer, to avoid both exploding/vanishing gradients and overfit the sample,
a dense, single neuron, layer as the output layer, activation function tanh, Glorot and Bengio
parameters initializers [41], Adam optimizer, which is a modified version of Gradient Descent, and
specified the mean squared error as the loss function for the training instance. In order to find how
many neurons to include in the layer, I performed a grid search with GridSearchCV. The number
of neurons that performed the best on average was 110. Afterward, I let the model train, the total

number of estimated parameters was 2,432 and « was estimated to be equal to 0.17.

The Out-of-sample rolling, one step ahead, forecasts (Fig. 3.7) of y; based on its 6 previous
values are mostly lagging by one period, signaling that there are ample margins of improvement and
further testing is needed to asses if different standardization approaches, adding more layers and
neurons to the model, employing measures to reduce the possibility of overfitting the test set, or
using other kinds of neural networks, can provide more consistent predictions. The out-of-sample

RMSE is 188.11 and the MAE is equal to 137.38.

The results are coherent with the characteristics of the model employed, in fact, the weights
in an RNN are time-invariant and do not change between the time-steps when a layer unfolds,

so the performance of the model degrades when used for a non-stationary time series. Moreover,
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Figure 3.7: Out-of-sample rolling, one period ahead forecasts

given that an RNN generalizes an AR(p) model, it expects the innovations to be i.i.d. white noise,
thus it performs better in case of homoscedastic errors. In order to overcome this shortcoming,
an alternative approach would be to extend the simple RNN with a Generalized Recurrent Neural
Network, GRNN, that similarly to the GARCH extension of an autoregressive model, is better
suited to model hetetoscedasticity.

The low value of the fitted o parameter shows that, in order to optimize the loss function, the
model needs to account for long-term relationships and distant past lagged values of the target, so in
order to obtain a better forecasting performance, one could employ a recurrent neural network with
a differently structured memory cell, like LSTMs and GRUs, to enhance both the memory in the
network and the method by which it handles past observations, and obtain a better approximation
of the price dynamic while also accounting for more complex patterns occurred in past trading
days.

In conclusion, the main difference that emerged from my study is that, while an ARIMA-
GARCH model can be limited by its linear structure and by the paradigms of the classic statistical
inference and the related theoretical assumptions, it is precisely from the latter that one can obtain
a more interpretable and parsimonious model, whereas, even if recurrent neural networks can take
advantage of non-linear functions and the flexibility of cutting-edge architectures, often, to obtain
a satisfactory result one has to add more layers of abstraction and increase the parameters to be
estimated, thus the overall complexity of the model. In this case, training the model would become
increasingly demanding both in terms of time and computer power and one would need to have
access to powerful machines in order to deploy a profitable trading strategy in the long run, given
that retraining the model frequently is almost necessary to account for new price patterns in the

market.
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