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INTRODUCTION 

Nowadays the cryptocurrency are starting to gain a place among all other asset classes, they 

can be seen as an instrument which can be used in order to increase portfolio diversification 

since they are relatively new and offer fundamental characteristics which are different from 

any other asset class. 

The typical strategy suggested when we try to approach this new market Is the classical “buy 

and hold” strategy, which merely consists into keep accumulating pieces of currencies 

exploiting their increasing value due to the initial expansion of the market.  

Due to the relatively newness of the instruments there are few papers which try to treat this 

asset in a way which is more speculative than the classic buy-and-hold one, Borri & Shakhnov 

in their paper “The Cross-Section of Cryptocurrency Returns” try to present a more 

speculative approach presenting a decomposition of the asset movement into factor, which 

can be used to spot mispricing and to speculate on them. 

This paper wants to propose a long/short strategy based on the assumption that a cointegrating 

relationship exists among a pair of cryptocurrency, in the first chapter I’ll present the 

methodological background which is used in order to estimate the model, in the second one is 

presented the strategy and it’s measured it’s performance on the in-sample period and in the 

third chapter the performance on the out-of-sample period is presented, with a deep dive on 

the impact of COVID-19 and an attempt to get rid of this event. 
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1. Methodological Background 

The central piece of the work is the cointegrating relation that is (or could be) present among a 

set of couples of cryptocurrencies. The idea would be to pairwise test a bunch of 

cryptocurrencies in order to spot a pair which is nonstationary and cointegrated. 

1.1 Introduction to cointegration 

The cointegrating relation refer to a particular characteristic of 2 (or more) stochastic processes: 

n  non stationary random processes are said cointegrated with cointegrating vector 𝛽 if there is 

at least one linear combination for which the quantity 𝛽ᇱ𝑦௧ is stationary. It could be thought as 

if under the surface of the considered nonstationary time series the random walk process 

underlying all the series is the same.  

Totally uncorrelated time series may appear to be related by using conventional testing 

procedure, suppose that we have the two following stochastic processes: 

𝑦௧ = 𝜌𝑦௧ିଵ + 𝜖௧
ଵ  ;   𝜖௧

ଵ~𝑁(0, 𝜎ఢ೟
భ

ଶ ) 

And 

𝑥௧ = 𝜌𝑥௧ିଵ + 𝜖௧
ଶ  ;   𝜖௧

ଶ~𝑁(0, 𝜎
ఢ೟

మ
ଶ ) 

With the additional assumption that 𝜖௧
ଵ and 𝜖௧

ଶ are independent so:  

1) 𝐸(𝜖௧
ଵ𝜖௧

ଶ) = 0  

2) 𝐸(𝜖௧
ଵ𝜖௦

ଶ) = 0 ∀ (𝑡, 𝑠) 

When 𝜌 = 1 , 𝑥௧  and 𝑦௧ are random walks: 

𝑦௧ = 𝑦௧ିଵ + 𝜖௧
ଵ  

𝑥௧ = 𝑥௧ିଵ + 𝜖௧
ଶ 

Now, since they are totally independent one from the other it is reasonable to think that running 

the following regression will not give us any kind of statistically significant result: 

𝑦௧ = 𝛼 + 𝛽𝑥௧ + 𝜖௧
ଷ 

But, despite the lack of causal relationship, running a t-test on the beta will give us a rejection 

of the null hypothesis; now recall that the hypothesis are formed as  
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൜
𝐻௢ ∶  𝛽 = 0 
𝐻ଵ ∶ 𝛽 ≠ 0

 

And rejecting the null means that the movements of the dependent variable 𝑦௧ are somehow 

explained from the movements of the independent variable 𝑥௧, but we know from the 

assumptions that the two processes are uncorrelated. 

To go to the root of this fake relation we have to give a look to the construction of t-test statistic 

and his asymptotical distribution, the t-stat is: 

𝑡 =
𝛽መ

𝑆𝐸൫𝛽መ൯
~Τ௡ିଶ 

But this theory doesn’t hold when we have 𝛽 = 1, in this case we can’t rely on the classic 

asymptotic distribution of the test and so we can’t rely on the results of t-test. 

In such cases we say that we have a spurious regression, another interesting element of spurious 

regression, which will be useful when we’ll talk about Engle and Granger procedure, is a 

property of the residual, running the usual OLS setup we will have: 

𝑦௧~𝐼(1)     𝑥௧~𝐼(1) 

𝑦௧ = 𝛼 + 𝛽𝑥௧ + 𝜖௧
ଷ     𝜖௧

ଷ~𝐼(1) 

Usually we would expect that the residuals of the OLS setup will be distributed as I (0) , but in 

case of spurious regression they are distributed as a random walk. 

Generally speaking the linear combination of I (1) processes are themselves an I (1) process, 

but sometimes there is the possibility that a particular linear combination of two or more I(1) 

processes gives as result an I(0) process. This happens when the two I (1) processes taken into 

consideration shares a common stochastic trend. In this case we say that the processes are 

cointegrated CI (1,1). That is: y୲ = ൫yଵ,୲ , …  , y୩,୲൯
ᇱ
 , y୨,୲~ I(1), j = 1,2, … , K then y୲ is 

cointegrated and it’s indicated with C (1,1) if βᇱy୲ = βଵyଵ,୲ + ⋯ + β୩y୩,୲~I(0). 

If we apply the Beveridge Nelson decomposition to the generic series 𝑥௧ and 𝑦௧ we can get to: 

𝑦௧ = 𝑦଴ + 𝜓(1) ෍ 𝜖௦
௬

௧

௦ୀଵ

+ 𝜓∗(𝐿) ෍ Δ 𝜖௦
௬

௧

௦ୀଵ
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𝑥௧ = 𝑥଴ + 𝜓(1) ෍ 𝜖௦
௫

௧

௦ୀଵ

+ 𝜓∗(𝐿) ෍ Δ 𝜖௦
௫

௧

௦ୀଵ

 

𝑊ℎ𝑒𝑟𝑒 [𝜓∗(𝐿) ∑ Δ 𝜖௦
௫௧

௦ୀଵ  ; 𝜓∗(𝐿) ∑ Δ 𝜖௦
௬௧

௦ୀଵ ] are the 2 stationary parts of the processes and 

[𝜓(1) ∑ 𝜖௦
௫௧

௦ୀଵ  ;  𝜓(1) ∑ 𝜖௦
௬௧

௦ୀଵ ] are the 2 nonstationary parts of the processes. 

Now if we have that the 2 series are cointegrated at the end we are saying that the 2 

nonstationary parts are the same one. Then if we spot some deviation from this common 

stochastic trend we could bet on the convergence of the series. 

 

1.1.1 Non-stationarity and cointegration 

 Let’s introduce 2 time series 𝑥௧ and 𝑦௧ which represent the prices of a pair of cryptocurrencies. 

First of all I want to test the non-stationarity of the series, it’s possible to test through various 

way, here I chose the Dickey-Fuller test, which is constructed as follows: taken into 

consideration the series 𝑥௧, we can rewrite it as the following AR (1) process: 

𝑥௧ = 𝜌𝑥௧ିଵ + 𝜖௧ 

𝜖௧~𝑁(0, 𝜎ఢ
ଶ) 

The hypothesis of the test are: 

൜
𝐻଴ ∶  𝜌 = 1 
𝐻ଵ ∶ 𝜌 < 1

 

The test statistic is the following: 

𝑡் =
𝜌ො் − 1

𝜎ොఘෝ೟

 

Which converges to the following stochastic distribution: 

𝑡்

ௗ
→

ቀ
1
2

ቁ [𝑊(1)ଶ − 1]

∫ 𝑊(𝑟)𝑑𝑟
ଵ

଴

 

Where W(r) is the standard Brownian motion at time r. 

This distribution has been tabulated by Dickey and Fuller (1979)1  
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Once we found that the processes contain a unit root we can proceed to the test for the 

cointegrating relation. 

1.1.2. Vector Error Correction Model (VECM)  

Let’s start from the simplest case, where the system admits a VAR (1)  representation  

y୲ = Ay୲ିଵ + ϵ୲ 

Subtracting y୲ିଵ from both size we get 

Δy୲ = Πy୲ିଵ + ϵ୲ 

Where Π = (A − I) 

In the univariate the matrix Π could be only 0 or different from 0, in the multivariate it’s possible 

to have intermediate cases, which is precisely the one we want to study. Calling r the rank of 

the matrix Π we could have 3 scenarios: 

1) r=0: in this case Π = 0 and so 𝑦௧ is a multivariate random walk, there are no 

cointegrating relationship  

2) r=n: 𝑦௧ is not an I (1), but I (0) since Π is invertible  

3) 0 < r < n: 𝑦௧ is a cointegrating system 

We want to focus on the last case: as we will see r is the cointegrating rank, furthermore Π 

could be rewritten as 𝛼𝛽ᇱ where 𝛼 and 𝛽 are two (n x r) matrices; we call 𝛽 the cointegrating 

matrix. 

Put all these properties together we can rewrite the equation at the beginning of the paragraph 

as follows: 

Δ𝑦௧ = 𝛼𝑧௧ିଵ + 𝜖௧ 

Where 𝑧் = 𝛽ᇱ𝑦௧ is an (r x 1) vector. Since 𝛽 is the cointegrating matrix, we have that 𝑧௧~𝐼(0). 

The variable 𝑧௧ wants to capture the historical series of deviation from cointegrating 

relationship. Under these considerations it’s easy to figure out that a cointegrating system is 

represented by 2 factors: one is a white noise (𝜖௧) while the other one (𝛼𝑧௧ିଵ) is determined by 

the magnitude of the deviations from the cointegrating relation, captured at time t-1. 
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The matrix 𝛼 is called loadings’ matrix, his ij’ s element tells us thich is the effect of i-th variable 

of the j-th element of 𝑧௧ିଵ. 

Example 1. Let’s take an example from quantity theory of money. Let’s suppose that, in a time 

t, there is an excess of money supply with respect to the quantity given by the equilibrium 

relation. In this case we say that the circulation velocity is under his target value. Then, the 

variation between t and t+1 of the GDP and of the real money (in log) will be given by 

൜
Δ𝑦௧ାଵ = 𝛼ଵ(𝑦௧ − 𝑚௧) + 𝜖ଵ௧

Δ𝑚௧ାଵ = 𝛼ଶ(𝑦௧ − 𝑚௧) + 𝜖ଶ௧
 

Where (𝑚௧ − 𝑦௧) can be seen as the log of the velocity of circulation; a lover value of the 

velocity ends up, in the successive period, in an adjustment of both the GDP and the real money 

supply. 

If, let’s say, 𝛼ଶ is positive, this would mean that if we have an excess of money, Δ𝑚 has to be 

negative, so 𝑚௧ will be lower. This mechanism could happen, for example, for an increase of 

the prices. 

This mechanism, where in the present time there is a relation to the difference from the same 

(lagged) variable and another (lagged) variable, is called Error Correction Mechanism; a VAR 

which is written in ECM form is called Vector Error Correction Model (VECM). 

If a cointegrated system has cointegration rank r we can say that there exist r long run relations, 

so r stationary processes which are able to describe the path of the disequilibria from that 

relations over time. In case these disequilibria (which we called 𝑧௧) are different from zero there 

will be a movement of the vector 𝑦௧ାଵ such that the disequilibrium will be reabsorbed. 

We have to consider that the decomposition of the Π matrix is not unique, indeed for every non 

singular (r x r) matrix Ψ we can define 𝛼∗ = 𝛼Ψᇱ and 𝛽∗ = 𝛽Ψିଵ and get Π = 𝛼∗𝛽∗; from this 

peculiarity we can deduce that the cointegrating relations are not unique. 

For this reason it is common to operate a normalization of the beta; typically a simple 

normalization is the following: 

𝛽∗ = ൤
𝐼௥

𝛽௄ି௥ ௫ ௥
൨ 
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In this way we are forcing the decomposition of the matrix Π to be unique and we will end up 

having  𝛽ᇱ𝑦௧ = 𝑦ଵ,௧ − 𝛽ଶ𝑦ଶ,௧ − ⋯ − 𝛽௞𝑦௞,௧ = 𝑢௧~𝐼(0). 𝑢௧is called cointegrating residual. 

Generally speaking if 𝑦௧ is a k-cointegrated element vector, there could be 0<r<k (linearly 

dependent) cointegrating relations, r, the number of cointegrating relations, is called 

cointegrating rank. 

Taking as example K=3 and r=2, there will be a (k x r) matrix Β  such that: 

Βᇱ𝑦௧ = ൤
𝛽ଵ,ଵ 𝛽ଵ,ଶ 𝛽ଵ,ଷ

𝛽ଶ,ଵ 𝛽ଶ,ଶ 𝛽ଶ,ଷ
൨ ൥

𝑦ଵ,௧

𝑦ଶ,௧

𝑦ଷ,௧

൩  ~  ൤
𝐼(0)

𝐼(0)
൨ 

B is called cointegrating matrix. 

1.1.3. Engle and Granger methodology 

If we assume that the cointegrating matrix is feasible we can follow the Engle and Granger 

approach proposed in 1987 to estimate the cointegrating vector and an Error Correction Model 

to underline the long run relation and short-term dynamics. 

The Engle and Granger approach contemplates an OLS estimation in the first step; then the 

second step consist into a unit-root testing in the residuals of the OLS estimation; if the residuals 

are I (1) then we have no cointegration in the series. In the case we reject the null of unit root 

the two series are C (1,1) and so the residuals are I(0). In this case the estimated coefficient 

previously obtained will form the cointegrating vector. If we apply this kind of procedure with 

ADF test we have to consider that we can’t rely on usual critical values since the estimator is 

super-consistent, we have to rely to asymptotic distribution tabulated by Philips-Ouilaris 

(1990). 

The OLS estimator for the cointegrating vector is super-consistent but we can obtain more 

accurate estimates with the Dynamic-OLS estimator (DOLS) proposed by Stock and Watson 

(1993) which is (asymptotically) efficient. 

Once we obtained the cointegrating coefficient estimates we can proceed with the estimation 

of the following ECM: 

Δy୧,୲ = α୧,଴ + α୧,ଵ(u୲ෝ ) +  ෍ a୧,୨Δyଵ,୲ି୨ + ⋯ +
୨

෍ b୧,୨Δy୩,୲ି୨
୨

+ ϵ୲ 
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With i=1,2,…,k and u୲ෝ  ~ I(0) estimated cointegrating residual. the parameters α୧,ଵ are called 

adjustment parameters and want to capture the adjustment speed with respect to the long-run 

equilibrium. 

We have to consider that the Engle and Granger method, despite his simple and practice 

approach, presents a bunch of limitations: 

- First of all we have to specify a variable as dependent and another one as independent, 

and so, as consequences, the results will depend on the normalization of the 

cointegrating vector, which is arbitrary 

- This procedure could be used only in univariate case with 2 variables. This happen 

because we can estimate only 1 cointegrating vector, and so it’s not possible to capture 

multiple cointegrating relations between more than 2 variables. If, for example, we 

would have 3 variables, X, Y and Z, it couldn’t be possible to capture pairwise 

cointegrating relationship. Furthermore the cointegrating relationship could be present 

only in n<N variables of the system, this aspect is not captured properly from the Engle 

and Granger methodology since it wants to estimate a unique cointegrating vector, and 

if we insert in this unique cointegrating vector a parameter for a variable which is not 

cointegrated we are going to erase the consistency of the estimator. As we saw 

previously with N variable we could have r<N cointegrating relations, and so, r 

cointegrating vectors, which in the Engle and Granger methodology are not captured.  

 

1.1.4 Granger Representation Theorem 

When we switch from the univariate to the multivariate case then a new series of intermediate 

scenarios are opened: in the bivariate the rank of the cointegrating matrix could be only full or 

zero, while in the multivariate we could have rank=r<N. This dynamic open up a series of cases 

which are not present in the univariate. To start to talk about multivariate representation of non-

stationary and cointegrated processes we have to introduce the Granger representation theorem. 

To explore the properties of a cointegrated system 𝑦௧ there are at least 2 possibilities: one linked 

to the fact that the system can be wrote as a n-order VAR (also infinite) 

𝐴(𝐿)𝑦௧ = 𝜖௧ 
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With the associate ECM representation, and linked to the fact that if 𝑦௧ is an I (1), than Δ𝑦௧ is 

an I(0), and so has to have a Wold representation of the type 

Δ𝑦௧ = 𝐶(𝐿)𝜖௧ 

To establish which kind of relations links these two representations we have to exploit the 

Granger representation theorem. 

Granger Representation Theorem: if a system of non-stationary processes can be written in 

ECM form than it has to be cointegrated, and if a system of non-stationary processes is 

cointegrated, then it has an ECM representation. 

Proof: Assume, for simplicity, that Γ = 𝐼ே, given an ECM of the form  

𝑦௧ = Ψ ෍ 𝜖௜

௧

௜ୀ଴

+ 𝑥௧ 

 Where Ψ = 𝛽ୄ(𝛼ᇱ
ୄ𝛽ୄ)ିଵ𝛼ୄ

ᇱ . It must hold that  

𝛽ୄ(𝛼ᇱ
ୄ𝛽ୄ)ିଵ𝛼ୄ

ᇱ + 𝛼(𝛽ᇱ𝛼)ିଵ𝛽ᇱ = 𝐼ே 

 And so  

𝑦௧ =  [𝛽ୄ(𝛼ᇱ
ୄ𝛽ୄ)ିଵ𝛼ୄ

ᇱ + 𝛼(𝛽ᇱ𝛼)ିଵ𝛽ᇱ]𝑦௧ 

𝑦௧ = Ψ𝑦଴ + Ψ ෍ 𝜖௜

௧

௜ୀ଴

+ 𝛼(𝛽ᇱ𝛼)ିଵ ෍(𝐼ே + 𝛽ᇱ𝛼)ିଵ𝛽ᇱ𝜖௧ି௜

ஶ

௜ୀ଴

 

 The condition |𝛼ୄ
ᇱ 𝛽ୄ| ≠ 0 ensures that 𝑦௧~𝐼(1) and that 𝛽ᇱ𝑦௧~𝐼(0) 

The point of the theorem is that a cointegrated system can be expressed in a VAR form and in 

a MA form. 

To derive the VAR form we start from the following VAR model for the variable y 

Φ(𝐿)𝑦௧ = 𝜖௧ 

With L that is the usual Lag operator with the following characteristics: 

𝐿௞  (𝑋௧) = 𝑋௧ି௞ 

𝐿(ି௞)(𝑋௧) = 𝐸[𝑋௧ା௞] 
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The VAR can be rewritten as follows: 

𝑦௧ = Φ∗(𝐿)𝑦௧ିଵ + 𝜖௧  

Where 

Φ∗(𝑎) = ൫𝐼ே − Φ(𝑎)൯𝑎ିଵ 

By applying the Beveridge-Nelson decomposition to Φ∗(𝐿) we get 

𝑦௧ = [Φ∗(1) +  Φ∗∗(𝐿)(1 − 𝐿)]𝑦௧ିଵ + 𝜖௧ 

If we subtract 𝑦௧ିଵ from both members we get  

Δ𝑦௧ = (Φ∗(1) − 𝐼ே)𝑦௧ିଵ +  ෍ Γ௝Δ𝑦௧ି௝ 

௣ିଵ

௝ୀଵ

+ 𝜖௧ 

Where  

Γ(𝐿) =  𝐼ே − [൫Φଶ + ⋯ + Φ௣൯𝐿 + ⋯ + Φ௣𝐿௣ିଵ] 

Now denote that Φ∗(1) = 𝐼ே − Φ(1) to rewrite 

Δ𝑦௧ = −Φ(1)𝑦௧ିଵ + ෍ Γ௝Δ𝑦௧ି௝  

௣ିଵ

௝ୀଵ

+ 𝜖௧ 

Which is the VECM form for the representation of a cointegrating system. 

The Moving Average representation could be intended as a sort of Beveridge Nelson 

decomposition extension to the multivariate case, which appears as we previous saw: 

𝑦௧ = [𝛽ୄ 𝛼ୄ
ᇱ ]𝜇௧ + Ψ∗(𝐿)𝜖௧ 

Where  𝜇௧ is defined by the property Δ𝜇௧ = 𝜖௧ and so, since 𝜖௧ is a vectorial white noise, 𝜇௧ will 

be a vectorial random walk by definition.  

൜
[𝛽ୄ 𝛼ୄ

ᇱ ]𝜇௧  → 𝑛𝑜𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

Ψ∗(𝐿)𝜖௧ → 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
 

It’s important to denote that the matrix [𝛽ୄ 𝛼ୄ
ᇱ ] has the property that it’s killed if we multiply 

it for 𝛽′, for the properties of orthogonal operator. In other words, the matrix [𝛽ୄ 𝛼ୄ
ᇱ ] is nothing 

else than Ψ(1), which is singular with rank (n – r).  
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 Now we want to try to give a representation of a cointegrated system in order to spot his 

stationary and non-stationary part, let’s start from the following series: 

𝜂௧ = 𝛼ᇱ𝜇௧ 

 𝜂௧ is a random walk with dimension (n – r) since the matrix 𝛼ୄ is an n x (n-r) matrix. So it’s 

possible to rewrite the process 𝑦௧ introduced before as  

𝑦௧ = 𝐹𝜂௧ + 𝜇௧ 

Where 𝐹 = 𝛽ୄ𝐻 is a n x (n-r) matrix and 𝜇௧ = 𝐶∗(𝐿)𝜖௧ is, by assumption, a stationary process. 

Writing 𝑦௧ in this way allow us to clearly see that every cointegrated system can be seen as a 

system where there exists a certain number (n-r) of unobservable stochastic trends which are 

revealed through the matrix F, so the series observed through 𝑦௧ contain an I(1) part, given by 

the linear combination of these common stochastic trends, and an I(0) part, given by 𝜇௧. The 

cointegration relation exists because n - r < r, so the linear combination 𝛽ᇱ𝑦௧ is a stationary 

because, for the construction and the properties of orthogonal operator, 𝛽′𝐹 = 0. Practically, by 

multiplying 𝛽ᇱ by 𝑦௧ we are killing the stochastic common trends. 

Example 2: let’s assume that we have 2 cointegrated series 𝑦௧ and 𝑥௧, with 𝛽 = (1, −1)′ ; 

consequently, we will have that 𝑧௧ = 𝑥௧ − 𝑦௧ is an I (0).  In this case H is a scalar, and 𝐹 =

𝛽ୄ𝐻 is proportional to the vector (1,1)’. 

The two series, so, can be described as a sum of I (1), which is common in both processes, plus 

a stationary part. It’s clear that the cointegration derives from the fact that taking the difference 

from the two series we are going to kill the common stochastic trend. 

 What we have just seen needs an integration where we are treating with VAR or VECM which 

present a drift or a deterministic linear trend. Usually, in the univariate, a drift in the difference 

series generates a polynomial of order greater than 2 in the series in levels, in practice, having 

a deterministic linear trend in the first differences would mean to have a quadratic deterministic 

trend in levels. However this is not always true if we switch from univariate to multivariate for 

the representation in levels of VAR and in difference for VECM when we have to deal with a 

cointegrated system. 
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Let’s imagine having a VAR with drift 𝑑௧ 

𝑦௧ = 𝑑௧ + 𝛽𝑦௧ିଵ + 𝜖௧ 

Δ𝑦௧ = Π𝑦௧ିଵ + 𝑑௧ +  𝜖௧ , 𝑤𝑖𝑡ℎ 𝑢௧ ≡ 𝑑௧ +  𝜖௧ 

Δ𝑦௧ = Π𝑦௧ିଵ + 𝑢௧  is a VECM with the deterministic component linked with the error 

Now recall the Beveridge Nelson decomposition of the Granger representation: 

𝑦௧ = [𝛽ୄ 𝛼ୄ
ᇱ ]𝜇௧ + Ψ∗(𝐿)𝜖௧ 

For simplicity put [𝛽ୄ 𝛼ୄ
ᇱ ] = Ψ(1) in order to get  

𝑦௧ = Ψ(1)𝜇௧ + Ψ∗(𝐿)𝜖௧ 

Now we can rewrite the previous as 

𝑦௧ = Ψ(1)𝜇௧ෝ + Ψ∗(𝐿)𝜖௧ 

Where 𝑢௧ = Δ𝜇௧ෝ = 𝑑௧ + 𝜖௧. The process 𝜇௧ෝ  is then composed by a multivariate random walk 

plus a deterministic component which should be of order equal to the one in difference plus 1.  

To understand why this is not always true let’s recall the original Granger form of the process 

𝑦௧ = [𝛽ୄ 𝛼ୄ
ᇱ ]𝜇௧ෝ + Ψ∗(𝐿)𝜖௧ 

If Δ𝑢௧ෞ = 𝑑௧ + 𝜖௧, the polynomial in 𝑢௧ෞ will be of the typt 𝑑௧𝑡. But now we have to take into 

account that in the cointegration this last polynomial, in levels, will be multiplied by 𝛼′ୄ. In the 

case where 𝑢௧ෞ is a linear combination of the columns of 𝛼ୄ the product 𝛼′ୄ𝑢௧ = 0, so it will 

kill the polynomial 𝑑௧𝑡. 

In other words we will have a VECM with the intercept but that intercept doesn’t impact on the 

levels like a deterministic trend. The process so will not present a linear trend in the time but 

will always move around a value different from zero, this implies that the deviations from 

cointegrating relations will have a non-zero mean and so the intercept will be present anyways 

in the cointegrating relation. 

We could have the following cases: 

1) 𝑑௧ = 0. Here we have no problem, no linear trend. 
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2) 𝑑௧ ≠ 0 𝑎𝑛𝑑 𝛼ᇱ
ୄ𝑢௧ = 0. Here we are facing an intercept in the differences, but that 

intercept will not generates a deterministic trend in levels. 

3) 𝑑௧ ≠ 0 𝑎𝑛𝑑 𝛼ᇱ
ୄ𝑢௧ ≠ 0. Presence of intercept in the VECM and of deterministic trend 

in the VAR. 

4) 𝑑௧ = 𝑑଴ + 𝑑ଵ𝑡 𝑎𝑛𝑑 𝛼ᇱ
ୄ𝑢௧ ≠ 0. Deterministic trend in the VECM which will generate 

a quadratic deterministic trend in the VAR. So the common trend observed in the series, 

already stochastic by themselves, will also show a quadratic trend over time. 

5) 𝑑௧ = 𝑑଴ + 𝑑ଵ𝑡 𝑎𝑛𝑑 𝛼ᇱ
ୄ𝑢௧ = 0. Here the deterministic trend in the VECM will not 

generate a quadratic trend in levels as we saw for point 4. 

1.1.5 Johansen cointegration procedure 

The Johansen estimation procedures is built on the assumption that the cointegrating system 

can be represented as a VAR(N) with 𝑁 < ∞ with gaussian error. 

The starting point is to rewrite the system as a VECM: 

Δ𝑦௧ = 𝑑௧ + Π𝑦௧ିଵ +  ෍ Γ௜Δ𝑦௧ି௜

௣

௜ୀଵ 

+ 𝜖௧ 

Here we are implicitly assuming that the P order is known; to find the optimal p one can freely 

use the usual hypothesis tests and information criteria to come up with an optimal number of 

lags. 

Now, once is assumed that the optimal P is known, we can go through the estimation of VECM 

under a maximum likelihood context. Usually the maximum likelihood estimator under a linear 

regression setup with gaussian error is the classic OLS, but in this case we have to consider all 

the problems linked to the presence of the cointegrating relation: first of all the rank of the 

matrix Π is equal to the cointegrating rank r, so we want our estimator to come up with an 

estimation of Π with reduced rank, which the OLS is not able to give us. 

The first problem to arise is to quantify the cointegrating rank r. The Johansen procedure 

establish 2 tests of the cointegrating rank of the matrix Π. The test are linked to the fact that in 

a positive semidefinite matrix the number of positive eigenvalues is equal to the rank of the 

matrix, the other eigenvalues are zeros. 

The tests work as follows:  
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1) It’s defined a positive definite matrix M which has the same rank as Π. We define a new 

matrix instead of working directly with Π in order to have all his eigenvalues real and 

non-negative. 

2) It’s built a consistent estimator of M, 𝑀෡ , with the consequences that all eigenvalues of 

𝑀෡, let’s call them 𝜆መ, are consistent estimators of the n eigenvalues of  M. 

3) All eigenvalues of the matrix are sorted from the largest 𝜆መଵ, to the smallest 𝜆መ௡, and we 

test the positiveness of all of them. 

If we reject the null, so we found that 𝜆መ௡ is positive, than we have that all eigenvalues are 

positive and the matrix Π has full rank and the system is stationary. Otherwise we consider 

𝜆መ௡ିଵ, and now we proceed by the following configuration: 

1) We can build a test with the following hypothesis configuration: 

ቊ
𝐻଴ ∶  𝜆መ௡ିଵ = 0

𝐻ଵ ∶  𝜆መ௡ିଵ ≠ 0
 

 Here we are implicitly assuming that r < n and so we are testing the hypothesis that r < 

n-1; this  is called 𝜆-max test. 

2) Alternatively we can go through the following hypothesis testing: 

ቊ
𝐻଴ ∶  𝜆መ௡ିଵ = 𝜆መ௡ = 0

𝐻ଵ ∶  𝜆መ௡ ≠ 0 𝑜𝑟 𝜆መ௡ିଵ ≠ 0
 

This is called trace-test. 

If the null is not rejected we keep moving on to test 𝜆መ௡ିଶ = 0, and so on until we reject the null 

hypothesis 𝜆መ௡ି௞ = 0; once we reject the null we found the rank of the matrix Π. If we don’t 

reject the null in any case the rank of the matrix is null and so the system is not cointegrated. 

 

To better capture the dynamics we are dealing with it’s important to compare the equation of 

the VECM with the one of the dickey fuller test saw at the beginning of the chapter: 

The VECM equation is: Δ𝑦௧ = 𝑑௧ + Π𝑦௧ିଵ +  ෍ Γ௜Δ𝑦௧ି௜

௣

௜ୀଵ 

+ 𝜖௧ 
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The ADF − test equation is: Δ𝑦௧ = 𝑑௧ + ρ𝑦௧ିଵ + ෍ γ௜Δ𝑦௧ି௜

௣

௜ୀଵ 

+ 𝜖௧ 

As on can easily see the VECM equation represents nothing else than the extension of the ADF-

test equation to the multivariate world. The only difference is that the 𝜌 coefficient is a scalar 

in the ADF and so it is null or invertible, in the multivariate we have the intermediate case 

where the matrix Π is singular without being null, we are interested in this one. 

The analogy with the dickey-fuller test is captured also by the asymptotic distribution of the 

trace-test, which, at his core, is nothing else than a likelihood-ratio test which is built as follows: 

൜
𝐻଴ ∶  𝑟𝑎𝑛𝑘(Π) ≤ 𝑟

𝐻ଵ ∶  𝑟𝑎𝑛𝑘(Π) ≤ 𝑁
 

Where the test statistic takes the form 

𝐿𝑅(𝐻଴|𝐻ଵ) = 2൫ℒ୲(𝐻ே) −  ℒ୲(𝐻௥)൯ 

Is distributed asymptotically as 

𝐿𝑅(𝐻଴|𝐻ଵ)
ௗ
→ 𝑡𝑟 ൭න (𝑑𝑊)𝑊′

ଵ

଴

ቆන 𝑊𝑊ᇱ𝑑𝑢
ଵ

଴

ቇ

ିଵ

න 𝑤(𝑑𝑊)′
ଵ

଴

൱ 

Which is nothing else than a generalization of the ADF distribution to the multivariate (N-r) 

case. 

Wanting to rewrite the ADF hypothesis under a multivariate look we will end up having the 

following situation: 

൜
𝐻଴ ∶  𝑟𝑎𝑛𝑘(Π) = 0

𝐻ଵ ∶  𝑟𝑎𝑛𝑘(Π) = 𝑁
 

Recall that in the univariate N = 1, so the null is associated with I(1) process and the alternative 

with a stationary process. 

In the Johansen test these distribution are not indifferent to the deterministic part of the VECM, 

which as we saw before is messy itself. Here it plays an important role the degree of the 

polynomial we are going to insert in the deterministic part. Usually the choice is between a 

plain constant or a constant plus a trend. 

Once we found the optimal cointegrating rank we can proceed to the estimation of the 𝛽. 
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Johansen proposed a method called reduced rank regression (RRR) which is developed as 

follows: 

Start from the multivariate generic regression: 

𝑦௧ = 𝐵𝑥௧ + 𝐶𝑧௧ + 𝑒௧ 

Where B is a square matrix with reduced rank and C has full rank, in the VECM setup we have 

Δ𝑦௧ = αβ′𝑦௧ିଵ +  ෍ Γ௜Δ𝑦௧ି௜

௣

௜ୀଵ 

+ 𝜖௧ 

The analogy is clear: 

𝛼𝛽ᇱ = 𝐵 

Γ௜ = 𝐶 

The RRR method, denoted as RRR(𝑦, 𝑥|𝑧) relies on the following product matrices 

𝑆௬௫ = 𝑇ିଵ ෍ 𝑦௧𝑥௧
ᇱ

்

௧ୀଵ

 

𝑆௬௫,௭ = 𝑆௬௫ − 𝑆௬௭𝑆௭௭
ିଵ𝑆௭௫ 

The method is performed by applying the following steps: 

1) Regress y and x on z with OLS, to obtain the following residuals 

(𝑦|𝑧) = 𝑦௧ − 𝑆௬௭ 𝑆௭௭
ିଵ 𝑧௧ 

(𝑥|𝑧) = 𝑥௧ −  𝑆௫௭ 𝑆௭௭
ିଵ 𝑧௧ 

 And the product moments 

𝑆௬௫,௭ = 𝑇ିଵ ෍(𝑦|𝑧)௧(𝑥|𝑧)௧
ᇱ

்

௧ୀଵ

= 𝑆௬௫ − 𝑆௬௭𝑆௭௭
ିଵ𝑆௭௫ 

2) Solve the following eigenvalue problem 

ห𝜆𝑆௫௫,௭ − 𝑆௫௬,௭ 𝑆௬௬,௭
ିଵ  𝑆௬௫,௭ห = 0 
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And sort the eigenvalues from largest to smallest in order to have Λ = 𝑑𝑖𝑎𝑔(𝜆ଵ , … , 𝜆ே) 

and the associated eigenvectors are 𝑉 = (𝑣ଵ, … , 𝑣ே), where the eigenvectors are 

normalized so that 𝑉ᇱ𝑆௫௫,௭𝑉 = 𝐼௣ and 𝑉ᇱ𝑆௬௫,௭𝑆௫௫,௭
ିଵ 𝑆௫௬,௭𝑉 = Λ 

3) Finally, the estimator of 𝛽 is 

𝛽መ = (𝑣ଵ, … , 𝑣௥) 

With 𝛼ො = 𝑆௬௫,௭𝛽መ  and Ω෡ = 𝑆௬௬,௭ − 𝑆௬௫,௭𝛽መ൫𝛽መ ᇱ𝑆௫௫,௭𝛽መ ᇱ൯
ିଵ

𝛽መ ᇱ𝑆௫௬,௭ which are given by 

simple regression given 𝛽መ . 

An important thing to note is the difference between Π෡ை௅ௌ and Π෡ோோோ: 

Π෡ை௅ௌ = 𝑆௬௫,௭𝑆௫௫,௭
ିଵ  

Π෡ோோோ = 𝑆௬௫,௭𝛽መ൫𝛽መ ᇱ𝑆௫௫,௭𝛽መ ᇱ൯
ିଵ

𝛽መ ᇱ𝑆௫௬,௭ 

The principal problem here is, as we saw in paragraph 1.1.2 the matrix 𝛽 is not identified, in 

fact, if a generic matrix 𝛽 is a cointegrating matrix, also the matrix 𝑏 = 𝛽𝐾 is a cointegrating 

matrix, with K which is a generic (r x r) non-singular matrix. So there will be an infinite number 

of 𝑛 𝑥 𝑟 matrices which are all equivalently cointegrating matrix.  

This problem can be represented as follows: 

Suppose we known Π; now we can represent the matrix as 

Π =  𝛼𝛽′ 

Or, equivalently, as 

Π = 𝛼𝐾ିଵ𝐾𝛽ᇱ = 𝑎𝑏′ 

Both versions of Π are valid candidates to describe the cointegrating relations of the system, so 

we are under a classic problem of under-identification. 

How does this problem can be solved? 

In the original procedure proposed by Johansen the identification is obtained by imposing 

restriction on a quadratic of 𝛽. An alternative approach, already presented at the beginning of 

the chapter, is the so called triangular representation, which makes the constraint on the first r 

rows of the matrix 𝛽 imposing them to be an identity matrix. So the matrix beta becomes: 
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𝛽መ = ൤
𝐼

−𝛽መଶ
൨ 

Where 𝛽෨ଶ is the parameter found by estimation procedure. 

If we are under the assumption of i.i.d. gaussian error, then the conditional log-likelihood is 

ℒ்(𝑦௧|𝐹௧ିଵ) = −
𝑇

2
log|Ω|

−
1

2
෍ ൭y୲ − αβᇱ𝑦௧ିଵ +  ෍ Γ௜Δ𝑦௧ି௜

௣

௜ୀଵ 

൱

்

௧ୀଵ

ᇱ

Ωିଵ ൭y୲ − αβᇱ𝑦௧ିଵ +  ෍ Γ௜Δ𝑦௧ି௜

௣

௜ୀଵ 

൱ 

Johansen (1995) showed that in case of RRR the log-likelihood function reduces to 

ℒ்(𝑦௧|𝐹௧ିଵ) = −
𝑇

2
൭logห𝑆௬௬,௭ห + ෍ log(1 − 𝜆௜)

௥

௜ୀଵ 

൱ 

The 𝛽 estimator has some unusual asymptotic properties: it is super-consistent. Usually when 

an estimator 𝜃෠ is consistent we have that, as T increases, 𝜃෠
௣
→ 𝜃଴, and so 𝜃෠ − 𝜃଴

௣
→ 0. 

Multiplying this quantity by √𝑇 we obtain that √𝑇( 𝜃෠ −  𝜃଴)
ௗ
→ 𝑁(0, 𝜎ఏ

ଶ). When we have this 

situation we say that the speed of convergence is √𝑇. In our case, instead, in order to obtain a 

normal distribution the difference ൫𝛽መ − 𝛽൯ has to be multiplied by T, instead that by √𝑇. So we 

say that the speed at which the estimator 𝛽መ  collapses to 𝛽 is T, and so the dispersion of the 

estimator is proportional to 𝑇ିଵ and not to 𝑇ି
భ

మ anymore. This property doesn’t touch the finite 

sample estimates, but has some important consequences on the long run properties of the 

estimator. 

Johansen (1995) showed that 𝛼ො௜, Γ෠௜ and Ω෡ are consistent and asymptotically Gaussian, once we 

found the 𝛽መ  and inserted in the VECM, all the other parameters can be found wit OLS. 

1.2. Long/short strategy based on cointegration 

Now that the concept of cointegration and VECM have been clarified I can go through the 

creation of a trading strategy starting from the idea of cointegration. 

The basic concept on which all the model is built up is that if 2 prices are cointegrated than they 

share a sort of equilibrium between them and so, it is possible to spot that equilibrium and to 

exploit the deviations from that trend. 
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1.2.1. Introduction to pair trading 

The idea of this strategy is originally applied to stock market, since the cryptocurrency market 

is a relatively new environment,    

Long/Short trading is a relatively straightforward investment strategy. The logic behind such a 

strategy is simple: some stocks have very similar fundamentals and their prices should move 

together in lock steps. When they move apart an opportunity for speculative profits exists as 

eventually such prices will move back to their equilibrium values. A sophisticated investor 

should then:  

i) identify stocks which move closely together;  

ii) take long/short positions in such assets when their prices diverge by a sufficiently 

wide margin; 

iii) close their position when either the prices cross back or a stop-loss limit is reached. 

Clearly the difficulties in implementing pair trading lie in identifying the pairs of stocks that do 

move closely together.  

When pair trading was first introduced the main keys indicators which were used to identify 

these pairs was company fundamentals such as ratio metrics which was derived by accounting 

and financial statements. With advent of modern technologies and more advanced econometric 

techniques, such as the one saw in the last paragraph, it’ s relatively easy and more accurate to 

spot pairs of stocks which moves together. 

In his simplest formulation the pair trading wants to measure the tracking variance between 2 

normalized prices, defined as follows: 

𝑄௧
஺ =

𝑃௧
஺

𝑃ଵ
஺ 

So the normalized price of the security A at time t is the price of the security divided the price 

at the beginning of the observation period. 

The tracking variance of the prices is defied as: 

𝑇𝑉 =
1

𝑇
෍( 𝑄௧

஺ − 𝑄௧
஻)ଶ

்

௧ୀଵ
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 On his basis, the pair trading strategies wanted to bet on the deviation from the mean of this 

value in order to gain from his mean-reversal behaviour.  

Gatev et al. (2006) proposed a model based on the tracking variance stat: whenever the spread 

of a pair exceed a given threshold a pair trading position is open, where the most expensive 

stock is sold and the least expensive one is bought; the position is closed when the normalized 

prices cross back. 

The threshold value is usually defined in terms of standard deviation of tracking variance of 

average price distance. Thus, if TV is the tracking variance between the normalized prices of 

stocks A and B as defined before, the standard deviation of such estimated distance is: 

𝑆𝐷 = ൭
1

𝑇 − 1
෍[𝑄௧

஺ − 𝑄௧
஻ − (𝑄ത ஺ − 𝑄ത஻) ]ଶ

்

௧ୀଵ

൱

ଵ
ଶ

 

Usually the threshold value will be twice the standard deviation. Defined Δ௧ = 𝑄௧
஺ − 𝑄௧

஻, then 

the pair trading position is triggered when |Δ௧| is larger than 2 times the standard deviation. The 

pair trading position will be closed when either the spread moves back to zero or it widens so 

much as to exceed some stop-loss maximum value. 

1.2.2. Cointegrated prices and pair trading 

Now that there are the basis for the understanding of what is the core of the pair trading strategy 

it’s possible to expand the idea exploiting the long run relationship introduced by the 

cointegration. 

The core concept is the following: one we spot a pair of stocks (or, in our cases, 

cryptocurrencies), defined the following relationships: 

⎩
⎪
⎨

⎪
⎧𝑃௧

௑ = 𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝑆𝑡𝑜𝑐𝑘 𝑋 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑃௧
௬

= 𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝑆𝑡𝑜𝑐𝑘 𝑌 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑝௧
௑ = log௘(𝑃௧

௑)

𝑝௧
௒ = log௘(𝑃௧

௒)

 

We know that there will be a matrix 𝛽 with the form 𝛽 = [1 ;  −𝛽ଶ]′ such that the quantity 𝑝௧
஺ −

𝛽ଶ𝑝௧
஻ will be stationary. On this assumption it’s possible to built up a strategy which, whenever 

the quantity 𝛿௧ = 𝑝௧
஺ −  𝛽ଶ𝑝௧

஻ exceed a certain limit, it’s triggered to bet on his tendency to 
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come back around it’s middle value. Now suppose the return on the strategy is calculated over 

the interval [t,t+1]. Using log returns it is straightforward to find that 

𝑟௧ାଵ
௣

= [𝑝௧ାଵ
஺ − 𝑝௧

஺] − 𝛽[𝑝௧ାଵ
஻ − 𝑝௧

஻] 

Which can be rearranged as 

𝑟௧ାଵ
௣

= [𝑝௧ାଵ
஺ − 𝛽𝑝௧ାଵ

஻ ] − [𝑝௧
஺ − 𝛽𝑝௧

஻] = 𝛿௧ାଵ − 𝛿௧ 

As long as the log-prices are cointegrated and [𝑝௧
஺ − 𝛽𝑝௧

஻] is stationary, the spread 𝛿௧ will have 

an expected value 𝜇 which can be estimated from data. A statistical arbitrage strategy is 

triggered when |𝛿௧ − 𝜇| is larger than some threshold 𝜉௢௣௘௡ and closed when the quantity |𝛿௧ −

𝜇| is smaller than another threshold 𝜉௖௟௢௦௘.  

A crucial point here is how to construct the threshold 𝜉: the simplest possibility is to set it as a 

multiple of standard deviation of 𝛿. I started with this one as benchmark and tested it against a 

moving average of the variance and the result was less efficient. So the construction of the 

threshold has been made by picking multiples of standard deviation of 𝛿. 

In order to construct this strategy, whenever there is a deviation from the mean, once defined 

𝜉௢௣௘௡ 𝑎𝑛𝑑 𝜉௖௟௢௦௘ it’s necessary to operate as follows: 

⎩
⎪
⎨

⎪
⎧𝛿௧ > 𝜉௢௣௘௡ => 𝑜𝑝𝑒𝑛 𝑠ℎ𝑜𝑟𝑡 𝛿: ൜

𝑠𝑒𝑙𝑙 𝑝௧
஺

𝑏𝑢𝑦 𝛽ଶ𝑝௧
஻

𝛿௧ < 𝜉௖௟௢௦௘ => 𝑐𝑙𝑜𝑠𝑒 𝑠ℎ𝑜𝑟𝑡 𝛿: ൜
𝑏𝑢𝑦 𝑝௧

஺

𝑠𝑒𝑙𝑙 𝛽ଶ𝑝௧
஻

 

And inversely:  

⎩
⎪
⎨

⎪
⎧ 𝛿௧ < −𝜉௢௣௘௡ => 𝑜𝑝𝑒𝑛 𝑙𝑜𝑛𝑔 𝛿: ൜

𝑏𝑢𝑦  𝑝௧
஺

𝑠𝑒𝑙𝑙 𝛽ଶ𝑝௧
஻

𝛿௧ > −𝜉௖௟௢௦௘ => 𝑐𝑙𝑜𝑠𝑒 𝑙𝑜𝑛𝑔 𝛿: ൜
𝑠𝑒𝑙𝑙 𝑝௧

஺

𝑏𝑢𝑦 𝛽ଶ𝑝௧
஻
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2. Empirical Analysis 

In this chapter I am going to exploit the reasons why I choose the cryptocurrency as asset for 

the test of the strategy and the methodology applied for the empirical study. 

First of all the crypto market is a very young market and so it could be possible that for this 

market there is a common trend moving at least a bunch of cryptocurrencies. 

Since the principal cryptocurrency is the Bitcoin it is reasonable to think that it’s this one a good 

candidate to be the common mover to the other currencies, the common trend, so I decided to 

take the prices of the currencies with respect to the Bitcoin for the analysis. 

2.1. Data 

In this work the dataset is composed by daily price which go from 30-09-2017 to 18-01-2020 

for the building of the trading strategy and from 19-01-2020 to 23-10-2020 for the test of the 

model, the test sample size is approximately the 30% of the train sample size.  

The training and trading sets are strictly non-overlapping to ensure that no look-ahead bias is 

introduced. 

The source of the overall dataset is yahoo finance, but for the couple selected to construct the 

model I wanted to include also the liquidity of the cryptos so the test size (out of sample) is 

performed on the bid/ask price downloaded from binance. 

 For each day the only parameter took into consideration is the adjusted price since the other 

parameters ( volume, daily high, daily low, open price, close price) are not useful for the 

development of the model. 

2.2. Software 

The code for this study is written in Python 3.5 (Python Software Foundation 2016). It involves 

the pre-processing and formatting of the data, the training of the models and the back testing 

engine, as well as the evaluation of the performance, i.e., the calculation of risk and return 

metrics.  

Data preparation mostly relies on the packages and pandas, which are powerful tools for 

handling large amounts of data. Furthermore, the packages SciPy and Empyrical are deployed 
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for the calculation of the statistical properties and performance analysis of the results (Fisher 

& Krauss, 2019). 

2.3. Methodology 

The methodology consists in the following steps:  

1) Splitting of the data in train and test part. 

2) Spotting of the cointegrated pairs. 

3) Building the triggers for opening and close position. 

4) Back test the strategy on the in-sample period. 

5) Test the strategy on the out-of-sample period. 

6) Evaluation of the results 

Some consideration: this kind of trading strategy doesn’t takes into account all the fundamental 

characteristics that are properly of every cryptos, and so it’s not possible for the model to 

capture if there is a shift or a modification in that fundamentals. For this reason I choose to 

consider only the last part of 2017, in order to don’t let a one-time situation to influence all the 

study. 

2.3.1. Spotting Cointegrated Pairs 

The pairs from which the data frame is formed are taken from the most 50 

capitalized cryptocurrencies, and the prices are taken, as we mentioned, with 

respect to bitcoin. The overall data frame appears as following:  
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Also from a qualitative analysis it’s easy to spot that there is a common mover in these series, 

especially in the first part of the series there is a common increase in the prices, which 

correspond to the bubble of December 2017 and that it’s common to the all series included in 

the data frame. 

In order to spot the cointegrated pairs I run the Engle-Granger cointegration test saw in the 

previous chapter simplified for the bivariate case, so with the following hypothesis setting: 

൜
𝐻଴ ∶ 𝑦ଵ 𝑎𝑛𝑑 𝑦ଶ 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑐𝑜𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑

𝐻ଵ ∶  𝑦ଵ 𝑎𝑛𝑑 𝑦ଶ 𝑎𝑟𝑒 𝑐𝑜𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑
 

The p-values of the tests are resumed in the following table 

 

 

 



29 
 
 

eth xrp ltc bch xmr waves neo cardano etc zec eos trx 
eth 0,00 0,42 0,37 0,07 0,13 0,40 0,02 0,16 0,47 0,13 0,08 0,32 
xrp 0,37 0,00 0,12 0,30 0,30 0,10 0,19 0,04 0,11 0,17 0,03 0,01 
ltc 0,34 0,12 0,00 0,26 0,16 0,15 0,15 0,01 0,16 0,23 0,03 0,12 
bch 0,06 0,32 0,27 0,00 0,13 0,24 0,05 0,18 0,21 0,02 0,23 0,32 
xmr 0,12 0,33 0,17 0,13 0,00 0,22 0,02 0,06 0,03 0,10 0,05 0,29 
waves 0,39 0,12 0,16 0,25 0,23 0,00 0,48 0,07 0,37 0,32 0,02 0,14 
neo 0,02 0,23 0,16 0,05 0,02 0,48 0,00 0,05 0,19 0,26 0,02 0,15 
cardano 0,13 0,04 0,01 0,16 0,06 0,06 0,04 0,00 0,02 0,06 0,04 0,13 
etc 0,44 0,12 0,16 0,21 0,02 0,36 0,18 0,02 0,00 0,38 0,01 0,12 
zec 0,14 0,26 0,30 0,03 0,12 0,35 0,28 0,11 0,45 0,00 0,04 0,12 
eos 0,05 0,02 0,02 0,18 0,04 0,01 0,01 0,04 0,01 0,01 0,00 0,01 
trx 0,24 0,01 0,10 0,28 0,24 0,10 0,10 0,13 0,10 0,05 0,01 0,00 

 

In order to don’t have some border-line results I chose to pick the couples for which the 

statistical significance threshold is 4% instead of the canonical 5%. 

Despite the more stringent threshold there are 17 pairs of cointegrated cryptocurrencies with 

the cointegrating relation which is statistically significant at 4%. 

Among all the possible pairs I chose to take the couple ETH/NEO to build up the model and 

the strategy, but it could be followed as the same exact procedure using another couple, from 

now on I will imply that the couple used is that one. 

2.3.2. Building the open and close triggers 

Once selected the couple which will be used for the development of the trading strategy I want 

to operate a series of test in order to check whether this couple is appropriate to the application 

of the cointegration theory: the first step is to verify the non-stationarity. 
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Also from a qualitative point of view it’s easy to spot that the two series can’t have the same 

variance in all the observed periods: at the beginning of the series there is a huge spike in the 

prices which after becomes more smooth, so this is a great signal for the assessing of non-

stationarity. 

If we want to formalize the assessment of non-stationarity we have to operate a statistical test, 

the principal tests used to asses the non-stationarity of the series are the augmented Dickey-

Fuller, the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and the Philips-Perron test: the DF 

test and the PP test assess the unit root under the null hypothesis while the KPSS test put the 

null as the stationarity. 

The results of the tests are reported in the following table: 

  Neo Eth 
PP Test-Stat -1.347 -1.185 
 P-Value 0.608 0.68 
KPSS Test-Stat 3.766 3.594 
 P-Value 0 0 
ADF Test-Stat -1.141 -1.327 
 P-Value 0.699 0.617 
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As we can denote all the p-values allows us to strongly assess the non-stationarity of the series, 

so we can proceed with the step 2 of the preliminary analysis for the construction of the model. 

The second step is to check whether there is cointegration between the 2 series, since we picked 

them up from the results of Engle-Granger test, we know that there is a cointegrating relation 

among them so in theory it is possible to skip this step, anyway I wanted to test the presence of 

cointegration relation also with Johannsen trace-test and max eigenvalue test. 

Since these test have a non-standard asymptotically distribution I will report only the test 

statistic and the critical values, recall the hypothesis distribution for this test: 

൜
𝐻଴ ∶  𝑟𝑎𝑛𝑘(Π) = 0

𝐻ଵ ∶  𝑟𝑎𝑛𝑘(Π) = 𝑁
 

 

  R=0 R=1 
Trace-Test Test-Stat 13.11 2.08 
 Critical Value (5%) 10.47 2.97 
Max-Eig Test-Stat 11.03 2.08 
 Critical Value (5%) 9.47 2.97 

 

Also in this case the results are not in contrast with what showed from the preliminary analysis, 

we can strongly asses that there is a cointegrating relationship between the two variables taken 

into consideration. 

Once assessed that two variables are cointegrated the next step is to estimate the cointegrating 

coefficient and for that I exploited the Johansen procedure saw in the previous chapter, the 

model I want to estimate is the following VECM 

ቊ
𝑦௧

௘௧௛ − 𝑦௧ିଵ
௘௧௛ = αୣ୲୦൫𝑦௧ିଵ

௘௧௛ − 𝛽𝑦௧ିଵ
௡௘௢൯ + 𝜖௧

௘௧௛

𝑦௧
௡௘௢ − 𝑦௧ିଵ

௡௘௢ = 𝛼௡௘௢൫𝑦௧ିଵ
௡௘௢ − 𝛽𝑦௧ିଵ

௘௧ ൯ + 𝜖௧
௡௘௢

 

Even if the model is bivariate for simplicity I will take in consideration only the first equation 

for the analysis and the performing of the strategy. 

Now we have to make a consideration about the robustness of the analysis: since in our sample 

T=838 one can be worried about the efficiency of the parameter estimate; to analyse the 

variability of the estimate in this specific situation I performed an estimate on a simulated model 

which I will provide to explain in the following paragraph.  
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Once I estimated the cointegrating 𝛽 it’s possible to run an analysis on 𝛿௧ = 𝑦௧
௘௧௛ − 𝛽𝑦௧

௡௘௢ in 

order to check whether itself satisfies some property which allows us to continue with our 

analysis.  

First of all I want to check if the quantity is stationary, and for this I can use the same test used 

for the assessing of non-stationarity of the time series taken into consideration, for which the 

results, together with a visualization of the 𝛿 quantity, are reported below 

 

  𝜹 = 𝒚𝒆𝒕𝒉 − 𝜷෡𝒚𝒏𝒆𝒐 
PP Test-Stat -3.349 
 P-Value 0.013 
KPSS Test-Stat 0.323 
 P-Value 0.117 
ADF Test-Stat -3.272 
 P-Value 0.016 

 

Both from a qualitative point ov view and from a quantitative analysis the variable taken into 

consideration seems to be stationary enough to allows us to build the trading model, the pvalues 

of the statistical test allows us to strongly accept the hypothesys of the stationarity (recall that 

for the KPSS test the null hypothesis is the stationarity, which is strongly accepted). 

Once we ensured that the quantity we are working on presents the adequate characteristics it’s 

possible to proceed with the next steps for the construction of the trigger buy and sell signals. 
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Once found that the series is stationary it’s possible to build up the triggers for the buy and sell 

signal: the main assumption here, which is confirmed by the datas, Is that the 𝛿 quantity will be 

fluctuate always around it’s middle value and so, in the case there is an excessive increase or 

decrease of the quantity, it will be possible to exploit this deviation from it’s middle value 

buying or selling the 𝛿, which will mean go long/short on the cryptos following the scheme 

below 

⎩
⎪
⎨

⎪
⎧𝛿௧ > 𝜉௢௣௘௡ => 𝑜𝑝𝑒𝑛 𝑠ℎ𝑜𝑟𝑡 𝛿: ൜

𝑠𝑒𝑙𝑙 𝑝௧
௘௧௛

𝑏𝑢𝑦 𝛽ଶ𝑝௧
௡௘௢

𝛿௧ < 𝜉௖௟௢௦௘ => 𝑐𝑙𝑜𝑠𝑒 𝑠ℎ𝑜𝑟𝑡 𝛿: ൜
𝑏𝑢𝑦 𝑝௧

௘௧௛

𝑠𝑒𝑙𝑙 𝛽ଶ𝑝௧
௡௘௢

 

And inversely:  

⎩
⎪
⎨

⎪
⎧ 𝛿௧ < −𝜉௢௣௘௡ => 𝑜𝑝𝑒𝑛 𝑙𝑜𝑛𝑔 𝛿: ൜

𝑏𝑢𝑦  𝑝௧
௘௧௛

𝑠𝑒𝑙𝑙 𝛽ଶ𝑝௧
௡௘௢

𝛿௧ > −𝜉௖௟௢௦௘ => 𝑐𝑙𝑜𝑠𝑒 𝑙𝑜𝑛𝑔 𝛿: ൜
𝑠𝑒𝑙𝑙 𝑝௧

௘௧௛

𝑏𝑢𝑦 𝛽ଶ𝑝௧
௡௘௢

 

Now it’s easy to imagine that a crucial point in the strategy will be played by the quantification 

of the triggers 𝜉. 

After some trials I chosed the ones which maximize the sharpe ratio of the train period (in-

sample), I deliberately chose to do not watch the sharpe ratio of the out-of-sample period in 

order to put myself in a situation which is as similar as possible to the real one, where you are 

at the end of the train period and don’t observe the out-of-sample period. 

In order to pick up the opening and the closing threshold I defined a vector of possible open 

and a vector of possible closes as following: 

𝜉௢௣௘௡ = ൥
1
⋮
2

൩ 𝑠𝑡𝑑(𝛿) 𝑤𝑖𝑡ℎ 𝑠𝑡𝑒𝑝 = 0.05 

𝜉௖௟௢௦௘ = ൥
0.05

⋮
1

൩ 𝑠𝑡𝑑(𝛿) 𝑤𝑖𝑡ℎ 𝑠𝑡𝑒𝑝 = 0.05 

After the run of this optimization algorithm the results are resumed in the following table: 
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The results show that the combination of triggers which maximizes the sharpe ratio in the in-

sample period Is the following: 

𝝃𝒐𝒑𝒆𝒏 1.7 * std(𝜹) 

𝝃𝒄𝒍𝒐𝒔𝒆 0.15 * std(𝛿) 

𝜷෡ 0.561 

 

So the strategy will operate in the following way: if the value of 𝛿௧ will be greater than 1.75 

times it’s standard deviation on the overall in-sample period, than there will be a buy for 𝛽መ  units 

of neo with respect to bitcoin and the selling of 1 unit of ethereum with respect to bitcoin, when 

the value of 𝛿௧ will be smaller than 0.15 times it’s standard deviation on the overall in-sample 

period there will be the selling of the previously bought 𝛽መ  units of neo with respect to bitcoin 

and the buy of the previously sold unit of ethereum with respect to bitcoin. The previous scheme 

becomes the following: 

൞
𝛿௧ > 1.7 => 𝑜𝑝𝑒𝑛 𝑠ℎ𝑜𝑟𝑡 𝛿: ൜

𝑠𝑒𝑙𝑙 𝑒𝑡ℎ/𝑏𝑡𝑐
𝑏𝑢𝑦 0.561 𝑛𝑒𝑜/𝑏𝑡𝑐

𝛿௧ < 0.15 => 𝑐𝑙𝑜𝑠𝑒 𝑠ℎ𝑜𝑟𝑡 𝛿: ൜
𝑏𝑢𝑦 𝑒𝑡ℎ/𝑏𝑡𝑐

𝑠𝑒𝑙𝑙 0.561 𝑛𝑒𝑜/𝑏𝑡𝑐

 

And inversely:  

൞
𝛿௧ < −1.7 => 𝑜𝑝𝑒𝑛 𝑙𝑜𝑛𝑔 𝛿: ൜

𝑏𝑢𝑦  𝑒𝑡ℎ/𝑏𝑡𝑐
𝑠𝑒𝑙𝑙 0.561 𝑛𝑒𝑜/𝑏𝑡𝑐

𝛿௧ > −0.15 => 𝑐𝑙𝑜𝑠𝑒 𝑙𝑜𝑛𝑔 𝛿: ൜
𝑠𝑒𝑙𝑙 𝑒𝑡ℎ/𝑏𝑡𝑐

𝑏𝑢𝑦 0.561 𝑛𝑒𝑜/𝑏𝑡𝑐

 

Graphically we will end up with the following configuration: 
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2.3.2.1. Deep Dive on the Robustness of the Beta 

A possible point of weakness of the model could be in the robustness of an estimation with only 

838 observation. In order to try to verify if the length of historical series represents a problem I 

run a simulated model with T=838 for 2500 times. 

This allowed me to provide a quantification for the variance of the estimator in order to better 

quantify the uncertainty around the estimate. 

The setup of the simulated model is the following: the true model is 

𝑦௧
ଵ − 𝑦௧ିଵ

ଵ = 0.7(𝑦௧ିଵ
ଵ − 2.0106 𝑦௧ିଵ

ଶ ) + 𝜖௧
ଵ 

So the true value are: 

ቐ

𝛼 = 0.7

𝛽 = ቂ
1

−2.0106
ቃ

𝜖௧~𝑁(0,1)

 

A couple of simulated series appears as the following 
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Once I got the true data I run the same estimation that I want to run on the real data in order to 

come with an estimate of the true parameter, which is called 𝛽መ . 

This process is repeated for a number of times large enough to exploit the consistency of the 

cointegrating estimator and to get a numerical value for the variance. In my case the simulation 

is run 2500 times and the results are presented in the following table. 

True 𝜷 2.01063 
Mean (𝜷෡) 2.01048 

Std (𝜷෡) 0.0073 
 

From the result the variance doesn’t seem to create too much problems. 
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As we can see also from the compare with the standard normal curve, the distribution of the 

estimates it’s more concentrated around his central value. 

 

2.3.3. Back test of the strategy in the train period 

Now that the thresholds are defined, and consequently the triggers for the opening and the close 

position the next step is to test the strategy on the in-sample period. In order to do that I 

generated a dummy variable which assumed 0 if the position is closed, than if there has to be a 

buy 𝛿 the variable assume 1, and if there has to be a sell of 𝛿 the variable will assume -1. 

This procedure allows a clear visualization of the period in which the strategy is triggered, and 

so in which it’s operates.  
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In this way it’s possible to clearly visualize the moments in which the strategy is open, which 

are represented in the picture by the upper red lines, and the moment in which it’s close, which 

are represented by the lower red lines.  

Also graphically it’s possible to see that when the discrepancy between the prices of the 

cryptocurrency becomes too large the trigger is open, for being closed if the difference between 

the 2 normalized log-prices comes back near to it’s mean value. 

Another issue to be solved for the tracking of a long/short strategy is how to track the evolving 

of a short-selling position, for this purpose I chose to simply invert the formulation for the 

classic return, so the tracking of the strategy will have the following setup: 

൞

𝑟௟௢௡௚ =
𝑝௧ାଵ

𝑝௧

𝑟௦௛௢௥௧ = −
𝑝௧ାଵ

𝑝௧
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There are some moments when the strategy will be close due to the fact that the spread between 

the two log-prices is too strict, another thing to take into account is that the triggers are build 

up on the log-prices but the buy and sell are operated on the standard prices without log. 
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As it can be denoted both from the histogram and from the table the strategy is very rewarding 

but also very risky both in terms of absolute volatility and in terms of tail risk, as can be denoted 

from the kurtosis. 

  

Mean 43,30% 

Volatility 32,01% 
Skewness 3,16 

Kurtosis 25.39 
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3. Analysis and performances in the out-of-sample period 

In this chapter there will be presented the performances for the out-of-sample period of the 

strategy, recall that there will be some differences for the out-of-sample strategy with respect 

to the in-sample data: 

First of all here, in order to have more reliable results, the liquidity is taken into consideration, 

so every time there will be a buy the ask price will be used and vice versa every time there will 

be a sell the bid price will be used. The bid-ask prices are downloaded from quandl, which takes 

the data from binance.  

 

The plot shows clearly that both the Ethereum and Neo spread are very tiny (they are expressed 

as percentage of prices), this is an indication that we are dealing with very liquid securities. 

The data used into this sample are not used into the estimation of the parameter, they are 

“unknown” to the model. 

The data go from 19-01-2020 to 23-10-2020 and cover approximately 1/4 of the overall length 

size 
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Even if it was possible to download data from other 2 months of 2020 I deliberately decided to 

stop at the end of October 2020 since in may the bitcoin had it’s 3rd halving and this is a kind 

of event which could undermine the robustness of the model since it implies a disruption in the 

fundamentals of bitcoin, and consequently, of all cryptocurrencies market. 

The halving of the bitcoin is, at it’s core, a decrease of the supply of the currency: for it’s nature 

the bitcoin is created whenever a block of the blockchain is created, approximately every 10 

minutes, and an amount of currency is given as reward to the address that created the block. 

In order to keep scarcity the creator of the currency decided to halve the amount of rewards for 

the creation of new blocks every 210.000 blocks, this event is called halving. 

The halving is a functionality of the bitcoin protocol which represents the core of it’s economic 

model since it influences the emission rate and the quantity of circulating currency, decreasing 

the supplied quantity, keeping into consideration that a new block is created approximately 

every 10 minutes we know that 210.000 blocks are created about every 4 years, which is the 

approximate distance between one halving and one other. 
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The last halving happened in July 2016 and, starting from the following year, there was a 

decrease of the supply and a consequent increase of the price of the currency, which ended up 

in the bubble at the end of 2017. 

Given the previous facts I deliberately decided to stop the collection of the data to October 

2020. 

3.1. Performances on out-of-sample period 

In the out-of-sample period the strategy has been triggered 2 times, one of them which derives 

from the opening which was present at the end of the in-sample period. 

 

The graph above reports the log prices of the currencies normalized to the starting date of the 

train period. 

Also from a qualitative point of view it’s possible to see that there is a huge discrepancy between 

the values only in 2 occasions, the thick red line below the graph indicates the period when the 

strategy is trading: when it’s high it means that the trading is open and when it’s low it represent 

the closing periods of the strategy. 
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Another way to visualize the matter is to look at the 𝛿௧ =
௘௧௛

௕௧௖
 − 𝛽መ

௡௘௢

௕௧௖
 together with the open 

and closing triggers, recall that the open and closing triggers are the ones defined on the train 

period. 

 

 

As we can denote the 𝛿 quantity presents only one spike in the out-of-sample observation 

window. 

Investing an hypothetical euro in this strategy, taking into account the bid/ask spread, we would 

end up having the following trajectory: 
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It’s possible to denote a huge drawdown in the second open period, indicating that, as we saw 

from descriptive statistics in the previous chapter, this strategy is very rewarding but also very 

risky. 

The investment in the out-of-sample period would have produced an overall return of 26,95%, 

which, in my humble opinion, is fairly rewarding for the amount of risk carried out in the period. 

The representative statistics for the daily excess annualized returns of the out-of-sample period 

are the following: 

Mean 42,97% 

Std 0,3152 

Skew -0,76 

Kur 8,44 

 

As we saw in the in-sample period the overall performance is very rewarding but also very risky 

both for the volatility and for the tail risk. 

 3.2. Choice of the Benchmark and comparison 

A legit question to be asked here is which benchmark is more appropriate when evaluating the 

performances of this strategy. 
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In my opinion the choice is between 2 candidates, one is the S&P 500, which is the usual 

benchmark on which evaluate investment strategies, and another is the price of the Bitcoin with 

respect to the euro. 

This alternative could be useful since we are going to compare an active strategy in the market 

of cryptocurrencies with a more traditional passive one, which merely consists in a simple buy-

and-hold strategy in the same market. 

Instead the reasons for the comparisons with the S&P 500 it’s to evaluate the strategy on an 

amplified point of view, and so to compare it with a passive strategy which merely replicates 

the evolution of the market, which is the canonical approach used in the evaluation of 

investment strategies. 

I choose to compare the portfolio with both the price of the Bitcoin with respect to euro and the 

S&P 500 index in order to have a more complete point of view. 

 

 

It’s possible to see that the strategy presents an evolution which is totally detached from the 

ones of both it’s comparisons, which could be a useful characteristic if we want to insert it in a 

portfolio of asset in order to increase the diversification. 
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The overall returns is in favour of the buy-and-hold Bitcoin strategy but it’s possible to see, 

also from a visual check to the graph, which the buy-and-hold Bitcoin strategy is more volatile 

than the long/short portfolio. 

 

 S&P500 Bitcoin Portfolio 

Mean 14% 182,57% 43,34% 

Std 0,3857 0,8559 0,3152 

Skewness -0,4702 -2,4 -0,76 

Kurtosis 6,159 26,99 8,44 

 

As we can see the S&P 500 has been the lowest annualized yielding but even the lowest risky 

option, both in terms of volatility and in terms of tail risk, than we can see a particular thing, 

the long/short portfolio, even if is more risky in term of tail’s thickness, as told by the kurtosis, 

it’s less volatile even than the S&P 500 bringing nearly the double of it’s annual return. 

The bitcoin has been, in the period taken into consideration, the higher yielding asset, with a 

daily return doubled with respect to the long/short portfolio, but also the riskier, with the 

quadruple of volatility with respect to the long/short and the double of kurtosis. 

Even if the absolute daily return seem nice it’s good to have a look also to the risk-adjusted 

performances, first of all it’s good to have a look to the alpha and beta of the strategy, since I 

choose to pick up both the Bitcoin price in euro and the S&P500 as benchmarks I took the 

values of alpha and betas regressed versus both the variables. 

 S&P 500 
Bitcoin / 
Euro 

Alpha 0,495 0,4891 

Beta -0,0104 0.0038 
 

The beta for both the Bitcoin and the S&P500 is very close to zero, meaning that the evolution 

of the market and of the principal cryptocurrency doesn’t affect the evolution of the long/short 

portfolio. 
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Another way to capture the fact that the evolution of the strategy isn’t affected by the trends 

which are present in the market and in the Bitcoin is to watch to the correlation matrix between 

the 3 variables: 

 
L/S 
Portfolio 

Bitcoin S&P 500 

L/S 
Portfolio 

1 -0,083912 -0,097327 

Bitcoin  1 0,860979 

S&P 500   1 

 

The correlation between the long/short portfolio is negative, almost zero, with both it’s 

benchmarks, a particular thing to denote is the high correlation between the S&P500 and the 

price of Bitcoin with respect to euro, this could be due to the large drawdown at the begin of 

the year, due to explosion of the covid-19 pandemic, which affected commonly the American 

stock market and the price of the Bitcoin. 

Now that it’s established that the comparison has to happen between S&P500 and Bitcoin price 

with respect to euro let’s have a look to the risk-adjusted performances of the 3 elements, I will 

go trough the following statistics for each of the elements: 

- 𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜:
௥௘௧೛೚ೝ೟ି௥௙

ఙ(௥௘௧೛೚ೝ೟)
 ; it allows us to quantify the amount of excess return we are 

gaining for an extra unit of volatility. 

- 𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑅𝑎𝑡𝑖𝑜 ∶  
௥௘௧೛೚ೝ೟ି௥

஽ௌோ
 ; where DSR is defined as  

𝐷𝑆𝑅 = ඨන (𝑇 − 𝑥)ଶ𝑓(𝑥)𝑑𝑥
்

ିஶ

 

And it wants to quantify the “bad” part of volatility, the downside one, with respect to 

the classical standard deviation the Downside Risk measures the negative deviations 

with respect to the minimum return acceptable, usually defined as the risk free rate. 

The Sortino ratio so wants to capture the amount of extra return we are gaining for the 

exposure to an extra amount of downside risk. 

- Maximum Drawdown: it is simply the max amount of negative return that the historical 

series taken into consideration had for a single point in time. It wants to capture how 

badly the investment had performed in his worst period. 
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 L/S Portfolio Bitcoin S&P 500 

Sharpe Ratio 1,1692 1,0137 0,3389 

Sortino Ratio 1,6303 1,3238 0,4342 

Max Drawdown -22,61% -53,23% -33,925% 
 

What these results tell us is that the portfolio presents an higher amount of reward for every 

source of risk we are exposing ourselves compared both with bitcoin and S&P 500, moreover, 

in the period taken into consideration both the assets we are comparing it to presented an higher 

drawdown. 

Once assessed the risk-adjusted performances of the portfolio the next step could be to try to 

get a distribution for the returns of this strategy. 

Since we have only approximately 280 observation for the returns it could be a little hard to try 

to assign a distribution with these few observation. 

One way to bypass this issue could be, as like performed for the assessment of the consistency 

of the beta in the previous chapter, to perform a bootstrap analysis in order to come up with a 

distribution of the returns: the workflow I want to follow is splitted in the following steps: 

i. I take the historical series of the returns of the portfolio, comprehensive of the period 

in which the strategy is closed, which appears as following 
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ii. In the second step I perform a bootstrap analysis randomly taking observation, with 

re-entry, in order to create a simulated historical series for the out-of-sample period. 

iii. I register the performance of the portfolio at the end of simulated out-of-sample 

period. 

iv. I repeat the previous 2 step for a number of times large enough to get the shape of 

the distribution of overall out-of-sample returns. 

Set n, the number of simulations to be performed, equal to 5000, the simulation appears as 

following: 

 

While the histogram of the distributions for the overall returns at the end of the out-of-sample 

period appears as  
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As we can see the realized portfolio overall return is collocated below both the median and the 

mean of the simulated returns. The descriptive statistics of the distribution of simulated 

annualized returns are reported below, I decided to report both the mean and the median because 

the distribution Is not symmetric and so the mean could not correspond with the more frequent 

value. 

Realized Return 36,79% 
Median 46,63% 
Mean 50,30% 
Standard Deviation 5,4487 
Skewness 0,5896 
Kurtosis 0,5419 

 

3.2.1. How did the covid-19 affected the analysis? 

A consideration which is good to make is that the overall return of the S&P 500 and of the 

Bitcoin had been affected by the explosion of the covid-19 pandemic, which provoked the big 

downturn at the beginning of the 2020 year. 
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A possible stress test to better asses the performances of the long/short strategy could be to try 

to get rid of the covid-19 impact on the performances of the S&P500 and of the Bitcoin. 

In order to try to compare the performances of the strategy to a more “normal” times I exploited 

the same bootstrap approach used for the estimation of the distribution of portfolio out-of-

sample returns. 

The historical series of S&P500 I starts from the 01/01/2000 and the historical series of the 

Bitcoin/Euro starts from the first available date of 09/16/2014. 

 

 

From both of historical series I took the returns and bootstrapped n=5000 historical simulated 

series for the dates of out-of-sample period, which recall goes from 19/01/2020 to 23/10/2020, 

following this approach allowed me to took returns from a more true-to-real series. 

Once simulated the series I took the simulated overall annualized returns for the out-of-sample 

period and compared them with the observed evolution of the long/short strategy. 
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The descriptive statistics for both the bootstrap simulations are reported in the following table: 

 BTC/EUR Sims S&P500 Sims 
Mean 85,58% 9,82% 
Median 73,89% 6,815% 
Standard Dev 1,3499 0,2296 
Skewness 4,533 0,6201 
Kurtosis 71,81 0,6384 

 

I choose to report both mean and median since we are dealing with non symmetric distributions 

and the mean could not always correspond to the more frequent value. 

Also in the simulation the Bitcoin/Euro is the asset which gave more returns but It carries a 

huge amount of risk in terms of volatility and tail risk. 

Comparing the realized annualized returns with the simulated annualized ones allows us to 

better quantify the impact of the covid-19 on the markets. 

 Realized Simulated Delta 

Bitcoin 55,63% 85,58% 29,95% 

S&P 500 5,72% 9,82% 4,1% 

 

Even if in the Bitcoin case it seems that the covid-19 brought a biggest loss we have to consider 

the uncertainty around the simulated value which for the BTC is very high compared to the one 

on the market. 

The next step is to compare the observed returns of the trading strategy with the simulated one 

in order to get a more reliable result, to do that I start plotting the histograms of the simulations 

and comparing them with the realized returns: 
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The overall return of the long/short trading strategy, compared with the simulated Bitcoins 

trajectories seems to fall in the middle of it’s more frequent. 

From the histogram of simulated trajectories it’s possible to also observe the consideration 

about the riskiness of the asset, the histogram shows a really skewed distribution with the left 

tail, the loosing one, which is very thick, this factor is captured by the huge kurtosis showed in 

the descriptive statistics. 

Plotting the same elements with the simulation of S&P500 allows us to observe a radically 

different story: 



55 
 
 

 

As we can see the distribution is totally different compared to the one of the bitcoin, less skewed 

and with less thick tails, here the returns obtained by the strategy seems to clearly overperform 

both the mean and the median of the simulated series. 

The final step could be to compare the performances of the simulated series with the one 

realized by the portfolio also in terms of standard deviation of simulated series and risk adjusted 

performance (Sharpe ratio). 

The data about comparison are summarized below, recall that here each statistic is referred to 

the simulated historical series, so for example the standard deviation will be the mean of the 

standard deviations of the simulated series: 
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 BTC/EUR 
Sims 

S&P500 
Sims 

Long/Short 
Portfolio 

Mean 85.58% 9,88% 36,79% 
Mean(std) 0,7384 0,0841 0,3525 
Mean(Sharpe Ratio) 0,94 1,043 1,16 

 

Also for the simulated results the long/short portfolio seems to bring a nicer amount of returns 

for each unit of additional exposure to risk. 
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CONCLUSION 

As we saw this kind of long/short strategy could bring a nice amount of return and also a 

decent amount of risk-adjusted return, anyway it has to be considered that it’ s a very risky 

strategy as we saw in the work.  

A possible point of improvement for the strategy could be to insert time varying parameters of 

to build a portfolio of long/short crypto. 

Another issue to take into account is the fact that the statistical relationship could have some 

weaknesses during periods of high market turmoil like the bubble of end 2017, in these kind 

of period the best possible strategy is proved to be the classical buy-and-hold one, of course 

one has to be able to sell before the pop of the bubble. 
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