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Abstract

Knowledge about stochastic processes is the foundation needed in order to explore

the market. These are used to model asset dynamics and their properties allow us

to build model serving several purposes. One of these is pricing.

In this thesis we will explore some types of stochastic processes, the theory on

which they are based on and some application related to finance. More precisely,

we will see diffusion and jump diffusion processes, what makes them palatable for

us and how we can play with them to perform different tasks. The focus will be on

the theory and the steps needed in order to obtain a valid system to price options.

After some introductory, but necessary, topics we will see how pricing of barrier

options can be carried out having the process at hand, and the legitimacy of this

procedure.

Keywords: Stochastic Processes, Option Pricing, Financial Application, Barrier

Options
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Chapter 1

Introduction

Asset prices are quantities which are governed by uncertainty. Models to try to

predict and forecast prices have been developed with more or less success, but the

bottom line is that there is no possibility to do such thing. A reasonable starting

point, tough, is to try to study the behaviour of such quantities in the most general

form possible, backing up the treatment with solid mathematical ratiocination. This

is the purpose of the theory of stochastic process in relation to finance. The need

to identify and shape the quantities we are interested in, goes beyond the mere

prediction aim, but rather an exploratory rationale. The idea of using stochastic

processes to model asset price is an old one, even if the big leaps forward achieved on

this matter are rather recent. The theory that permits the treatment is rather fresh,

as well as the whole formalization of probability, but the efforts and development in

this field have been growing continuously throughout the years. I wanted to explore

this subject in more detail and its applicability in the finance field. The central

idea of stochastic processes in finance is to use them as representation of the price

evolution and try to study those to infer useful details that might be used for several

purposes. The treatment of stochastic process does not fall under the umbrella of

classic calculus, but one must use different calculus theories in order to handle these

quantities. The reason why is quite straightforward: stochastic processes describe

the evolution, over time in our case, of a random quantity, which, in turn, give rise

to aleatory dynamics. Once the theory for the treatment is established, we can start

1



1.1 Structure 2

to operate on them, within the limits of it. We will mainly make use of the theory

in order to arrive to a fair price for a derivative instrument, which is dependent

from a stochastic process itself. The argument could be of different nature too. For

example, how to perfectly hedge a position in an option or with an option might be

the logical next step.

The theory stemmed within a framework which assumed asset prices to be properly

represented by continuous stochastic processes. Later different types of those were

investigated, also allowing for discontinuous versions of them to be considered as a

reasonable modeling choice, sometimes even being more faithful to the actual state

of things. We will see both of these cases for some type of processes and we will

try to develop a general understanding aimed at moving from the theory to the

applicability.

1.1 Structure

The structure of the thesis is as follows.

In Chapter 2 we provide a general introduction to stochastic processes and the

theory on which the treatment is based on. We will introduce some new concepts in

order to understand this theory and, later on, an example using the results obtained.

This will be the first introductory step to derive everything that comes next.

In Chapter 3 we will explore the basics, introducing some useful and elegant

results which will lead to the famous Black-Scholes pricing formula. We will illustrate

the seminal work done toward this end and the alternative way to obtain the same

result. Some concepts about probability measures will be introduced and we will

see how to tackle the problems that arise when pricing a derivative instrument,

complying with the idea of being in a market model.

In Chapter 4 we will see a more sophisticated type of stochastic processes,

obtained just tinkering what we introduced in the previous chapters. These new

models will allow for more flexibility and a more faithful depiction of certain real
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life phenomena. We will again face some problems and see which are the viable

solutions in this new framework. We will see an application and derive a specific

stochastic process which will be used also in the experimental part of the thesis.

In Chapter 5 we will set up everything we need to perform the experiment,

defining a barrier option and illustrating the method we will use to price such option.

We will see the benefits and the drawbacks of such method and discuss a bit on what

we can make of it

In Chapter 6 we will briefly review what we did and the effects and ideas that

were provoked conducting this study

Appendix A contains all the matlab codes used to make this thesis.



Chapter 2

Stochastic Processes

Stochastic processes are an important topic in several fields of study, and finance is

one of those. In finance, stochastic processes are used to model the assets’ dynamics,

which lend themselves perfectly for this purpose, due to the uncertainty that governs

them. A stochastic process is a collection of random variables, indexed over some

set, which live on the usual probability space (Ω,F ,P). We will index over T = R+,

intended as the set of times. More precisely, we will mainly operate in a filtered

probability space, i.e. a probability space endowed with a filtration {Ft}t≥0. A

filtration is an increasing sequence of ordered σ-algebras. More formally, if s, t ∈ T

with s ≤ t, we have Fs ⊆ Ft ⊆ F . A filtration can be the general one or the one

generated by the stochastic process itself, the so called natural filtration. In our

framework, we may intend the natural filtration of the stochastic process we chose

to model the evolution of an asset, as the historical prices of the asset considered

up to time t.

We want to model the random evolution of assets and try to study those to see what

might be inferred from them, in order to take decision in the market. So we will

assume that the asset dynamic will be driven by a certain stochastic process and

model its behaviour with a stochastic differential equation.

In order to show which is the form of a stochastic differential equation we need to

introduce one of the buiding blocks of this theory, the Brownian motion, or Wiener

process

4
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Definition 2.1. A stochastic process W is called Wiener process if the following

hold:

• W0 = 0

• the process W has independent increments, namely if r < s ≤ t < u then

(Wu −Wt) ⊥ (Ws −Wr)

• for s < t, (Wt −Ws) ∼ N (0, t− s)

• W has continuous trajectories

So a Wiener process is a fascinating entity with some interesting features: the

second property is called independency of increments, which allows us to make a

nice use of the process when studying it, since we can always factorize the process

partitioning it into increments; the third property is called stationarity of the incre-

ments, which tells us that the increments follows the same law as the original Wiener

process and the difference depends only on the time interval considered. Another

astounding feature is the continuity of trajectories: a Wiener process is nowhere

differentiable, having kinks at every point, but, still, it is continuous. The first three

properties(and continuity in probability) makes the Wiener process a Lévy process.

Moreover it is the only proper Lévy process with continuous paths.

Now consider a stochastic process Xt. A stochastic differential equation is an equa-

tion of the form

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (2.1)

usually coupled with

X0 = x0, (2.2)

where µ, σ are given functions called, respectively, drift and diffusion term, Wt

is the freshly introduced Wiener process, and 2.2 is an initial condition.

So we want to find a process X which satisfy the integral equation

Xt = x0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, ∀t ≥ 0 (2.3)
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What stands out in this equation is the fact that we have a dWt term. That term

should quantify the instantaneous change with respect to the quantityWt, butWt is

a random quantity. This is the main problem with stochastic differential equation.

Without the dWt term we are up and running using calculus theory, but in this case

classic calculus machinery cannot help us. So how do we proceed? Luckily for us

an elegant and extensive theory have been devised. A theory which allow us to play

with this quantity. It goes under the name of Itō calculus.

2.1 Itō Calculus

The theory was devised by Kiyoshi Itō in the ’40s, and was later adopted in the

financial field, becoming a turning point for the subject. I will limit myself to

introducing the conditions needed and the ideas behind the construction, without

showing the actual derivation of it, before presenting the important result. I believe

that is something that must be done, due to the importance of the theory.

We said that we want to solve the stochastic integral 2.3, while facing the problem

of a random differential term. So we study the more general integral given by∫ t

0

g(s)dWs (2.4)

The idea is to try to define the stochastic integral for a simple but large class of

processes, and then by a limiting rationale, generalize this results. The complete

construction of the stochastic integral can be found in any stochastic calculus in

continuous time book, e.g. Shreve (2004) or Björk (2004). Let us see which are the

conditions needed, starting from the ones on g.

In this study, we will work with the L2 class.

Definition 2.2. We say that the process g belongs to the L2 class if the following

conditions are satisfied

•
∫ t

0
E[g2(s)]ds <∞

• The process g is adapted to the FWt -filtration
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The first property is an integrability condition, which is needed to reach a well

defined solution. The second one, for g being adapted to a filtration {Ft}t≥0, or,

equivalently, g being Ft-measurable, or again that g(t) ∈ Ft, ∀t ≥ 0, it simply means

that at time t, we know the exact value of g(t). This property is also called non-

anticipating property. For FWt we intend the filtration generated by the stochastic

process Wt.

The fact that we impose onto g to be in the L2 class bring us very close to the

solution of our problem. What we need first is an important concept, which is

crucial in developing everything that comes after: the concept of martingale.

Definition 2.3. A stochastic process X is called an Ft-martingale if the following

hold

• X is adapted to the filtration Ft, ∀t ≥ 0;

• for all t

E[|Xt|] <∞;

• for all s, t with s ≤ t

E[Xt|Fs] = Xs.

The third condition is the most interesting one: it says, in words, that the best

guess we can take with the information available up to time s, about the value of

Xt in the future, is simply Xs. In our framework this translates into the fact that

the process has no systematic drift. The concept of martingale will reveal itself

as crucial both from a mathematical and a logical standpoint. It is easy to show

that the Wiener process and the integral defined in 2.4 is indeed a martingale Björk

(2004).

We are almost there, the other thing we need to know is a result which pertains the

quadratic variation of the Wiener process. Informally we can say that the quadratic

variation is the squared variation of a process, calculated over a partition for which

the mesh tend to zero. The key result we want to make use of, is the fact that in the

Brownian motion, the quadratic variation is finite and is equal to t, meaning that
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the "Brownian motion accumulates quadratic variation at rate one per unit time"

Shreve (2004). This property allow us some useful simplification when solving the, by

now, infamous stochastic integral. For what interest us, this feature of the quadratic

variation allow us to write the exceptional dWtdWt = dt.

We have everything we needed in order to arrive at the key result of this section, in

which we dropped the unwieldy complete notation, but this creates no ambiguity.

Theorem 2.1. Suppose we have a stochastic process Xt having a stochastic differ-

ential 2.1, where µ, σ - we will use a less cumbersome notation - are in the L2. Let

f be a C1,2 function. Define Z by Zt = f(t,Xt).Then Z has a stochastic differential

given by

df(t,Xt) =
{∂f
∂t

+ µ
∂f

∂x
+

1

2
σ2∂

2f

∂x2

}
dt+ σ

∂f

∂x
dWt (2.5)

Proof. We give an heuristic sketch of the proof.

We have df . If we make a second order Taylor expansion what we get would be

df =
∂f

∂t
dt+

∂f

∂x
dX +

1

2

∂2f

∂x2
(dX)2 +

1

2

∂2f

∂t2
(dt)2 +

1

2

∂2f

∂t∂x
(dtdX)

By definition we have that

dXt = µdt+ σdWt

So squaring we would get

(dX)2 = µ2(dt)2 + 2µσ(dtdW ) + σ2(dW )2

The idea is that the terms (dt)2, (dtdW ) are negligible and tend to 0. Moreover we

just said that (dW )2 = dt so pluggin everything in we get the result.

This is clearly not the full proof and we should show also that all the remainder

terms from the Taylor expansion go to 0, but this sketch of proof gives an intuitive

idea about how we get such a powerful result. Anyway, the complete proof is outside

the scope of this dissertation and is rather cumbersome.

What is exceptional about this result is the fact that we have no restriction on f

except for it to be in the C1,2 space, meaning that this result is preserved under any

transformation which satisfies the conditions, something which is not at all trivial.
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We finally have a way to operate in such environment, thus is time to link the

theory to our financial framework. We started by saying that we wanted to use

the stochastic differential equation to model the behaviour of an asset. Now the

Itō’s formula gives us the tool in order to solve such problem for a certain type of

stochastic processes.



Chapter 3

A First Financial Example:

Black-Scholes Model

We want to finally start to see what everything we said means in the financial field.

From now on we will assume to be in a market which has some standard properties:

• transactions take place in continuous time;

• positions can be fractional, positive or negative

• there are no transaction costs (frictionless);

• there are no dividends;

• there is a constant risk-free rate, r, both for borrowing and lending purposes;

• we need the market to be arbitrage free.

The last property is something we must impose and we will see how it is done.

Moreover the stochastic processes considered will have constant drift and diffusion

terms, namely µ, σ ∈ R.

3.1 Basic Framework

I will introduce briefly the basic framework from which we start without going too

deeply into it. It serves as starting point for the actual topic of the thesis and

10
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is something which must be enunciated for its importance. The model represents

a market with derivative instruments, for which we want to determine the prices.

Luckily for us this work was done by Black and Scholes (1973). Recall the adapted

process g we used to build our stochastic integral above. That process might repre-

sents several things in finance, such as a portfolio position in one or more assets, or

the value of an option, which is related to the price of the asset.

We assume that we have an asset S which is modeled as a geometric Brownian

motion. This means that the process St representing the asset considered will be of

the form

dSt = µStdt+ σStdWt

S0 = s0

(3.1)

Where µ, σ ∈ R and Wt, with t ∈ [0, T ] for a fixed T, is a Wiener Process.

The solution to this equation is easily obtained using Itō’s formula - finally - on

Zt := lnSt which yields

dZ =
1

S
dS +

1

2

{
− 1

S2

}(
dS)2

=
1

S
{µSdt+ σSdW}+

1

2

{
− 1

S2

}
σ2S2dt

= {µdt+ σdW} − 1

2
σ2dt

So that

dSt = exp
[
(µ− σ2

2
)dt+ dWt

]
(3.2)
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Figure 3.1: Simulations of trajectories of 3.2 with µ = 0.09, σ = 0.12, S0 = 120

Now, we want to evaluate the price of an option following the approach pursued

by Black and Scholes in their famous paper. Reasonably, the option price would

be a function of the discounted value of the payoff at maturity, something we can

write, in case of a call option, as

e−r(T−t)(ST −K)+

By a no arbitrage rationale, they started from the fact that the value of the option

and the the value of an hedging portfolio, must be the same during the lifetime of

the option. So the discounted values of these two quantity should be equal at any

time t. In order to ensure this condition, having an equation which represents the

option price according to the value of the underlying, we must match the evolutions

of these two quantities. So they arrived to a partial differential equation, for which

we will not see the derivation, of which the solution would be the value of the option.

So, calling V the value of the option, the Black Scholes equation is

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

The financial idea behind it is that one can perfectly hedge the option by buying

and selling the underlying asset.
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Solving this equation, they arrived to a theoretical closed form, the Black-Scholes

formula, for the price of the option.

There is another very elegant way to arrive to the price of an option, which does not

involve the use of partial differential equation. The idea is to always start from a no

arbitrage principle, but involves changing the way at which we look at the process.

The condition we need for this to happen can be stated as the first fundamental

theorem of asset pricing. But first, we need some important concepts regarding the

probability measure.

3.2 Change of measure

In our framework, a "measure" is a probability measure, which serves us the purpose

of quantifying some uncertain quantities with which we have to deal with. The prob-

ability measure equipped in the probability space defined in chapter 1 is P, which is

also called physical measure, or, in our case, market measure. Following the thread

as above, what we would like to do is to change the probability measure, so that,

by evaluating the process under this new "point of view", we would satisfy the no

arbitrage principle.

Reasonably, we must start from the idea that, the new measure must be consistent

with the old one, that is what is impossible under the market measure, cannot be

possible under the new one. This intention is represented by the notion of equiva-

lence measure.

Definition 3.1. Two probability measures, on the same space, are equivalent if

they agree on the sets in F which have probability zero.

Starting from here we now need the concept of risk-neutral measure, or mar-

tingale measure.

Definition 3.2. For Q to be a risk neutral measure, we need that every bounded

self-financing portfolio, has, under Q, expectation of any discounted future value

equal to the value as of today.
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It is called martingale measure because we are imposing for the process consid-

ered, to be a Q-martingale. Since we do not want arbitrage opportunities to exist,

the possibility of building a costless portfolio which have a positive probability to

be greater than 0 for some t and a zero probability of being negative, must be ex-

cluded. So we want a measure Q which is equivalent to P, and for which the process

considered is a martingale. Knowing these definitions, we can enunciate the result

we need.

Theorem 3.1. (First Fundamental Theorem of Asset Pricing)

A market is arbitrage-free if and only if exists a risk-neutral probability measure,

equivalent to the physical one.

We have now the definition of what we need, but we do not know how to obtain

the desired equivalent risk-neutral measure. To do this we start an important result,

which will lead to the so called Radon-Nikodym derivative.

Definition 3.3. Let (Ω,F ,P) be a probability space, Q a measure which is equivalent

to P, and Z an almost surely positive random variable, with EZ = 1. For A define

Q(A) =
∫
A
ZdP. Then Z is called the Radon-Nikodym derivative of Q with respect

to P and we write Z = dQ
dP

In words, it consist in defining a positive random variable Z with expected value

under P equal to 1, and that for any A ∈ F , Q(A) =
∫
A
Z(ω)dP(ω). Then the

Radon-Nykodim derivative is simply Z = dQ
dP . The existence of this quantity is given

by the Radon-Nikodym theorem.

Theorem 3.2. Let P,Q be equivalent probability measures. Then there exists an

almost surely positive random variable Z such tat EZ = 1 and

Q(A) =

∫
A

ZdP, ∀A ∈ F .

The measures defined as above are equivalent, and this can be shown in the

following way. The result we obtained draws up a relation for the expectations

under the two measure. This can be easily seen by applying the definition we just
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provided above with A = Ω

EQ[X] =

∫
Ω

XdQ =

∫
Ω

X
dQ
dP

dP =

∫
Ω

XZdP = EP[XZ]

Using this result is easy to see that the two measures are equivalent. We now have

a way to go from one measure to the other just multiplying, or dividing, by Z.

This is the first step we needed towards the change to the risk-neutral measure. We

need the martingale measure part. We have our process St with drift µ. We want

to change the drift of this process in a way that its discounted value is equal to 0,

or equivalently, to obtain a process which has mean return equal to r. In order to

do that without changing the process itself, we want to evaluate it with respect to

the new measure. If we find the measure Q such that Wt is, under Q, a Brownian

motion, and the process has µ = r, we then would have what we need.

In order to do that, we need the concept of exponential martingale, or, in the more

general case, the so called Doléans-Dade exponential.

Definition 3.4. Let Wt be a Wiener process. The exponential martingale of Wt is

defined to be

Zt(θ) = exp[θWt −
1

2
θ2t] (3.3)

Proposition 3.1. For every θ ∈ R the process Zt(θ) defined as above is a positive

martingale with respect to {Ft}t≥0

With this result in our hand we can go on. The exponential martingale defined

above is the process that we will use in order to change the measure, using it as the

Radon-Nikodym derivative. Indeed it is easy to see that we have EP[Zt(θ)] = 1, and

that Zt > 0. Hence we can define Q using theorem 3.2.

The result we would get is that under Q, the process WQ
t has the same law as Wt

with drift θ. Now we want to go the other way round, that is we want to obtain,

upon a change of measure, a WQ
t with drift equal to r. This trick is done thanks to

a remarkable result which goes under the name of Girsanov theorem, which I will

enunciate just for the one-dimensional case.
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Theorem 3.3. Let Wt be a Brownian motion, on (Ω,FWt ,P), with positive drift.

Let g(t) ∈ L2. Define

Zt(g) = exp
[
−
∫ t

0

g(s)dWs −
1

2

∫ t

0

g2(s)ds
]

WQ
t = Wt +

∫ t

0

g(s)ds

(3.4)

Set Z = ZT .

Then E[Z] = EP[Z] = 1 and, under Q , WQ
t is a Brownian motion.

The Zt process is the Doléans-Dade exponential cited above. Obviously we have

that Zt(g(0)) = 1, or g(0) = 0. The fact that WQ
t is a Brownian motion under Q,

implies that it is a martingale. This can be easily proved Shreve (2004).

Let us see how this work. We have our process which we can write as

St = s0 exp
[ ∫ t

0

(µ− σ2

2
)ds+

∫ t

0

σdWs

]
or

dSt = µStdt+ σStdWt (3.5)

In turn, the discounted price process would be

S̃t = e−rtSt = s0 exp
[ ∫ t

0

(µ− r − σ2

2
)ds+

∫ t

0

σdWs

]
now we set g = θ = µ−r

σ
, so that our new process WQ

t = Wt +
∫ t

0
µ−r
σ
ds.

This allow us to rewrite - easily seen by differentiating and substituting -

dS̃t = e−rtσStdW
Q
t

Which would give us

S̃t = s0 +

∫ t

0

e−rsσSsdW
Q
s

which is a martingale under Q. Now returning to the undiscounted price process of

3.5, if we use dWt = dWQ
t − θdt, we get

dSt = rStdt+ σStdW
Q
t (3.6)

Finally reaching the desired result, since we obtained a process with drift equal to

r.
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This result give us a way to move the drift of the process, leaving only the dif-

fusion part unchanged. Indeed the diffusion tells us which paths are possible and

under an equivalent measure, it is not possible to change this thing. So we just

tilted our process recalibrating the existent paths. We can go on to the pricing for

a European call option.

3.3 The Pricing

Let us go back to the basic framework above and let us apply the results just shown.

We said that we need the discounted asset process to be a martingale under the

risk-neutral measure. So we define the discounted price process S̃t := e−rtSt where

r is the constant risk-free rate and St is the same as 3.1. Then

S̃t = s0 exp
[∫ t

0

(
µ− r − 1

2
σ2
)
ds+

∫ t

0

σdWs

]
We define the quantity θ := µ−r

σ
, which is called the market price of risk. Consider

now the g of theorem 3.3, we set θ = g obtaining

St = s0 exp
[ ∫ t

0

(
r − 1

2
σ2
)
ds+

∫ t

0

σdWQ
s

]
(3.7)

So we changed the mean return but not the diffusion part, which remains as source

of volatility. Indeed is easy to see that the discounted value of such price process

is given only by the diffusion part. We just rebalanced the paths we had before,

shifting the probability of occurrence.

Our initial purpose was to price a vanilla option on such asset. Consider a European

call option. The payoff of such option is P (S) = (ST −K)+. The price of the option

at any time t < T must be a function of the discounted payoff. Given the information

we have up to time t, we then have

EQ[e−r(T−t)(ST −K)+
∣∣Ft]. (3.8)

We also know that

St = s0 exp
[
σWQ

t +
(
r − 1

2
σ2
)
t
]
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So we can write

ST = St exp
[
σ(WQ

T −W
Q
t ) +

(
r − 1

2
σ2
)
(T − t)

]
Now we define the function of the option price c(t, St) as 3.8. Thus if we work on it,

using all the nice properties we have seen so far we finally arrive to the Black-Scholes

formula for pricing an European call option which in syntethic form is

cBS(τ, x;K, r, σ) = xN(d+(τ, x))− e−rτKN(d−(τ, x)) (3.9)

where τ = T − t, N denotes the cumulative normal distribution, and d+, d− are the

parameters for which it must be calculated.

3.4 Moving forward

So we started from the asset price process for which we wanted to extrapolate the

value of a European call option. We saw that we needed to change the measurement

for the possible paths and change it in a way that made us work with a martingale

process. Once we did that we finally found the price of the option. As we saw,

there was no ambiguity with respect to the change we had to make. Indeed Q was

univocally determined during the derivation. This lead us to the second fundamental

theorem of asset pricing.

Theorem 3.4. The market model is complete, i.e. every risk position can be hedged

and security exchanged, if and only if the risk-neutral measure is unique.

This theorem can be reformulated in an equivalent way, that is the market is

complete if there is only one source of randomness in each asset dynamic. When

we changed measure, we obtained that the discounted price process was driven only

by the diffusion part. That part is perfectly replicable in the market since it is the

driver of the asset price itself. Moreover when we changed measure we solved the

market price of risk equation by the unknown parameter θ, i.e. θσ = µ − r. This

is an equation with one unknown, hence it has a unique solution (given that σ is

different of zero, something that does not bother us).
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This would be the ideal framework: every position can be hedged, every instru-

ment can be properly priced, everything is Gaussian (well, this remains), and every

person would be happy. Actually, this is not the case, since reality is much more

tricky than that, so now we move on to try to shed some light on a more represen-

tative type of processes.



Chapter 4

Jump Diffusion Processes

Sometimes asset prices jump due to -positive or negative- shocks which affect the

market. This in normal market conditions. In case of crashes, crises or bubbles,

these jumps are even more severe, wrecking, at first glance, everything we said so

far. So what we want to do now, is to allow for those jumps to happen, without

losing all the nice properties and results we obtained until now. Luckily for us this

is possible, and it is where we are going now.

But let us proceed step by step. We first need a way to introduce jumps in our

model, and this purpose is served by the Poisson process.

4.1 Poisson Process and Surroundings

The Poisson process is a discrete time process which is constructed as a sequence

of i.i.d. exponential random variables. We briefly recall the density of such random

variable.

Definition 4.1. Let τ be a random variable with density

f(t) = λe−λt1{t≥0}

where λ > 0. Then we say that τ is an exponential random variable. In notation

τ ∼ ε(λ).

The expectation is given by

E[τ ] =
1

λ

20



4.1 Poisson Process and Surroundings 21

And the CDF

F (t) = 1− e−λt

A most important feature of the exponential random variable is the memoryless-

ness, i.e.

P{τ > t+ s|τ > s} = e−λt = P{τ > t} (4.1)

This means that the probability of observing τ greater than t + s given that τ is

already greater than s, is the same as observing τ greater than t. It is called memo-

ryless property because what already happened is not relevant for the computation

of probability.

This concludes what we need to know about exponential random variables in order

to move to the definition of the Poisson process.

Proposition 4.1. Let {τi}i≥1 be a sequence of i.i.d. exponentially distributed ran-

dom variable with parameter λ > 0.

We call the Poisson Process with intensity λ the process

Nt =
∑
n≥1

111{τn≤t} =
∑
n≥1

n1{τn≤t<τn+1} (4.2)

The random variable Nt follows a Poisson law with parameter λt:

P(Nt = n) = e−λt
(λt)n

n!
, n ∈ N (4.3)

In particular

E(Nt) = λt = V ar(Nt)

Moreover, for s>0

E(sNt) = exp{λt(s− 1)} (4.4)

So a Poisson process represents the sum of the arrival times of a sequence of

events, for which the inter-arrival times are modeled as i.i.d. exponential random

variables. Namely, for every t, the density tells us which is the probability that the

event occurred n times before time t.

The Poisson process has some nice intrinsic features which allow us to use it to

model an asset dynamic, giving rise to tractable solutions and analyses:
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• At jump times the process Nt is defined to be right-continuous. In words,

we know the jump time exactly at that moment. Just before the jump, the

process takes the previous value.

• As the Brownian motion, the Poisson process has independent and station-

ary increments, the latter somewhat inherited thanks to the memorylessness

property of the exponential distribution. These features will be crucial for the

construction of the jump diffusion process and its tractability.

Remark. Notice that, while the (standard) Brownian Motion is a martingale, the

Poisson Process itself is not.

Theorem 4.1. Let Nt be a Poisson Process with intensity λ > 0. We define the

Compensated Poisson Process

Mt := Nt − λt.

Then Mt is a martingale.

Proof. We want to show

E[Mt|Fs] = Ms

Then,

E[Mt|Fs] = E[Nt − λt|Fs]

= E[Nt −Ns +Ns − λt|Fs]

= E[Nt −Ns|Fs] +Ns − λt

= E[Nt−s] +Ns − λt

= λ(t− s) +Ns − λt

= Ns − λs

.

We are almost there. The Poisson process and the compensated Poisson process

seem to have all the properties we need in order to start to build our model, but we
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still have to face one constraint. Indeed the mentioned process allows only for jump

of unitary size, something we do not like. We want to allow our process to have

different jump sizes at each jump. That is where the compound Poisson process

comes to assist us.

We build the compound Poisson process as the sum of jump sizes, which occur at

Poisson distributed times.

Definition 4.2. Let Nt be a Poisson process with intensity λ, and U1, U2, ... be a

sequence of i.i.d. random variables, each one independent of Nt.

We define the compound Poisson process as

Qt =
Nt∑
j=1

Uj, t ≥ 0 (4.5)

So in the compound Poisson process, the jumps will occur at the same time of

the process Nt, but they will be of random size. Moreover, the fine properties of the

Poisson process are still there, for us to work with it. In turn, this means that the

compound Poisson process is not a martingale, so we establish the same result we

had earlier on with the Poisson process.

Theorem 4.2. Let Qt be the same as 4.5, and E(Uj) = β.

Then the compensated compound Poisson process

Qt − βλt (4.6)

is a martingale.

We finally defined a process which has all the features we needed. From now on

we will assume that there are no jumps at time 0, namely N0 = 0. Let us see how

can we play with the new type of stochastic process we are going to build, in general

terms.

4.2 Jump processes

Along the lines of chapter 2, we want to define a stochastic integral of the form∫ t

0

g(s)dXs, (4.7)
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with Xt of the form

Xt = x0 + It + Lt + Jt, (4.8)

where x0 is the initial condition; It is and Itō integral, i.e.

It =

∫ t

0

h(s)dWs,

with h and adapted process - as all the others we are introducing -; Lt is a Lebesgue

integral

Lt =

∫ t

0

l(s)ds;

and, finally Jt is a pure jump process.

Now we can split the process 4.8 in continuous part,namely

Xc
t = x0 + It + Lt,

and pure jump part Jt.

The continuous part is the general form of what we saw so far and we know that

dXc
t dX

c
t = g2(t)dt.

Let us focus on the new quantity, the pure jump part. Jt is a right-continuous pure

jump process with J0 = 0. By right continuous we formally mean that

lim
s ↓ t

Js = Jt.

We define the left continuous type of this process as Jt−. This tells us that the Jt−

is the value just before the jump.

Definition 4.3. Let Xt be a jump process as 4.8. The stochastic integral 4.7 can be

written as ∫ t

0

g(s)dXs =

∫ t

0

g(s)h(s)dWs +

∫ t

0

g(s)l(s)ds+
∑
s∈(0,t]

g(s)∆Js (4.9)

where ∆Js = Js − Js−.

In differential form

g(t)dXt = g(t)(dXc
t + dJt) = g(t)dIt + g(t)dLt + g(t)dJt (4.10)

We finally have a definition of a jump process. Let us see how the Itō formula

applies on this quantity.
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4.2.1 Itō formula for jump processes

Before seeing the Itō formula for this type of processes we must see how the quadratic

variation behave. starting from 4.8, we said we could divide the process in two parts.

having this in mind we can write the following result

Theorem 4.3. Let Xt as 4.8. Then, with notation for the quadratic variation up

to T as [X,X](T ), we have

[X,X](T ) = [Xc, Xc](T ) + [J, J ](T ) =

∫ T

0

h2(s)ds+
∑
s∈(0,T ]

(∆Js)
2

We will not see the proof for this theorem.

Now suppose we have a C1,2 function f . Then, in the same framework as above, we

know that

df(Xc
s) = f ′(Xc

s)dX
c
s+

1

2
f ′′(Xc

s)(dX
s
c )

2 = f ′(Xc
s)h(s)dWs+f

′(Xc
s)l(s)ds+

1

2
f ′′(Xc

s)h
2(s)ds

in which we used the Itō formula as in chapter 2. Now we want to add the jump

part. We know that jump occurs discretely in the interval (0, T ]. So, in between

jumps, we would have the formula above since the process behave like a continuous

stochastic process. The only attention that we must have is at jump time. Indeed

we can say that when there is a jump in X, from Xs− to Xs, there must be a jump

also in f(X), precisely from f(Xs−) to f(Xs). Hence, when we integrate, we should

add the jumps that occured.

Theorem 4.4. Let Xt as 4.8 and f ∈ C1,2. Then

f(Xt) = f(x0) +

∫ t

0

f ′(Xs)dX
c
s +

1

2
+

∫ t

0

f ′′(Xs)(dX
c
s)

2 +
∑
s∈(0,T ]

[f(Xs)− f(Xs−)]

(4.11)

This is the Itō formula for jump processes. We can see that the result is the same

that we saw in chapter 2 with the difference that we sum the jump parts when they

occur. This result is the for the most general version of jump processes, indeed we

just assume for the processes to be adapted and to have a stochastic integral similar

to the one already introduced. Now we will go more into detail and see the jump

diffusion processes, by always using as a starting point the stochastic process we use

earlier, i.e. the geometric Brownian motion.
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4.3 A second Financial Application

We want to incorporate this new process into the old one. We said that the com-

pound Poisson is a discrete process, which at random times t will tell us if there is

a jump. So the idea is to have a process which behave as the diffusion we saw in

the previous chapter characterized by jumps here and there. We assume to have a

Brownian motion Wt, a Poisson process Nt with intensity λ and a sequence of i.i.d.

random variables Uj on the usual probability space (Ω,F ,P). We assume for these

quantities to be independent of each other. Thanks to the properties of the processes

chosen, everything we said is retained with respect to the σ − algebra considered,

which is the one generated by the two processes. So we still have independence and

stationarity of increments, adaptivity and measurability, these last two holding true

for the random variables Uj too, meaning that the amplitude of the jumps before of

or at time t are known.

A simple and intuitive idea about the construction Lamberton and Lapeyre (2008),

is to assemble the process step by step. So we know that in the intervals between

jumps, the process behave as in 3.1, namely

• for t ∈ [τj, τj+1),

dSt = µStdt+ σStdWt (4.12)

• At jump time τj, the jump part of Sτj

Sτj − Sτj− = Sτj−Uj (4.13)

which yields Sτj = Sτj− (1 + Uj)

So if now consider the first interval before the jump - we assume no jumps at time

0, i.e. N0 = 0 - that is t ∈ [0, τ1), and calculate it at the left limit of τ1, we have

Sτ1− = s0 exp

[
(µ− 1

2
σ2)τ1 + σWτ1

]
(4.14)

And at time τ1

Sτ1 = s0 exp

[
(µ− 1

2
σ2)τ1 + σWτ1

](
1 + U1

)
.
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Iterating,

St = s0 exp

[
(µ− 1

2
σ2)t+ σWt

]( Nt∏
j=1

1 + Uj

)
(4.15)

Where we set
∏0

j=1 = 1.

We must clarify some aspects of this derivation:

• We did not assume anything about the distribution of the jump sizes Uj except

for them to be i.i.d., measurable, hence adapted, with respect to the filtration

generated by the other two processes and to be right continuous. This leave us

with some flexibility for the upcoming developments, and, reasonably, makes

us ignorant to future jumps amplitude even just right before the jump’s oc-

currence.

• The geometric Brownian motion is a continuous process. This allow us to

evaluate the continuous part at the left hand limit or at the point, without

making a difference. This justifies the right-hand side of 4.14.

Equation 4.15 tells us that the new process we introduced is simply the same St we

discussed in the previous chapters - look at the first part of the right and side of 4.15

- that, at jump times, is increased by the jump size, e.g. SJt = SBt + SBt UT (where

J and B indicated the new and the old processes). So when there is no jump, U is

equal to 0, and we have the usual geometric Brownian motion process, and when

there is a jump we have the increase we just described.

St can be also rewritten in integral form

St = s0 +

∫ t

0

Su(µdu+ σdWu) +
Nt∑
j=1

Sτj−Uj, (4.16)

and in differential form

dSt
St−

= µdt+ σdWt + dZt,

where Zt =
∑Nt

j=1 Uj is the compound Poisson process.

So we finally built our jump diffusion process. We want now move to the pricing

of options on an asset which follows a jump diffusion. Let us see the seminal work

done on the subject matter.
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4.3.1 Merton Model

The first one to propose the idea was Robert Merton in his paper Merton (1976).

Merton proposed a stochastic differential equation of the form

St = s0 exp
[
µt+ σWt +

Nt∑
j=1

Uj
]

(4.17)

Where Uj are i.i.d normal random variables, namely Uj ∼ N (µJ , σ
2
J), and everything

else is the same as above. The form of this equation is slightly different from the one

we showed but, in the end, the results are the same, so we stick with our derivation.

When faced with the problem of choosing the risk-neutral measure, Merton proposed

a change of measure analogous of the one used in the Black-Scholes model, hence

just changing the drift and leave everything else as it is. This is one way to obtain

a risk-neutral measure, which we recall is the only path to follow in order to price

a derivative instrument. The rationale behind this choice was that jump risk is an

idiosyncratic risk, pertaining just the assets chosen, and in a well diversified portfolio

this would be diversified away. This hypotesis is far from true both in normal and in

severe market conditions. As a counter-example just consider the market indexes:

according to this idea, they should not exhibit jumps in their value, but we know

this occurs in normal market conditions too. Let us see which is the measure he

proposed

Proposition 4.2. Under QM the process become

St = s0 exp
[
µM t+ σWM

t +
Nt∑
j=1

Uj
]

(4.18)

Where WM
t is a Brownian motion, Nt, Uj are unchanged, and µM is chosen in a

way such that S̃t is a QM -martingale.

µM = r − σ2

2
− λE[eUj − 1] = r − σ2

2
− λ[eµJ+

σ2J
2 − 1] (4.19)

We will do something similar but the rationale behind it will not be the same.

Along the lines of the previous chapter, in order to move to the pricing, we must

define a change of measure, as Merton did. Here we face our first problem.
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4.4 Change of measure

If we recall, in the previous chapter we enunciated the second fundamental theorem

of asset pricing, and said that an analogous way to express it was that completeness

is achieved if each asset has only one source of randomness. This makes us face a new

issue in the framework just introduced, since the jump diffusion process has more

than one random processes as drivers of the price. Indeed we could change the drift,

as we did before, but we could also change the intensity of the jumps. This would

lead to a market price of risk equation which has more than one unknowns Shreve

(2004), giving rise to an infinite set of solutions. So we must find a way to tackle

that. Ascertained the fact that we cannot satisfy the second fundamental theorem,

we must comply with the first one. thus, we must find an equivalent measure which

is risk-neutral. Recall the measure change chosen by Merton

µM = r − σ2

2
− λE[eUj − 1] = r − σ2

2
− λ[eµJ+

σ2J
2 − 1]. (4.20)

This is the Girsanov transform, indeed Merton changed only the drift in order to

work with a risk neutral measure, as in the previous chapter.

In this dissertation we will follow a different approach which will lead to the same

result and start from this important result.

Theorem 4.5. Suppose E|U1| < ∞. The process X̃t = e−rtXt is a martingale if

and only if

µ = r − λE(U1) (4.21)

Proof. We must show that E[X̃t|Fs] = X̃s

We know that

X̃t = x0 exp

[
(µ− r − σ2

2
)t+ σWt

]( Nt∏
j=1

1 + Uj

)

= X̃s exp

[
(µ− r − σ2

2
)(t− s) + σ(Wt −Ws)

]( Nt∏
j=Ns+1

1 + Uj

)
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So

E[X̃t|Fs] = X̃sE
[

exp

[
(µ− r − σ2

2
)(t− s) + σ(Wt −Ws)

]( Nt∏
j=Ns+1

1 + Uj

)∣∣∣∣Fs]

= X̃sE
[

exp

[
(µ− r − σ2

2
)(t− s) + σ(Wt −Ws)

](Nt−Ns∏
j=1

1 + Uj

)∣∣∣∣Fs]

= X̃sE
[

exp

[
(µ− r − σ2

2
)(t− s) + σ(Wt−s)

](Nt−s∏
j=1

1 + Uj

)∣∣∣∣Fs]

= X̃sE
[

exp

[
(µ− r − σ2

2
)(t− s) + σ(Wt−s)

](Nt−s∏
j=1

1 + Uj

)]
The last equality is given by the fact that the two processesWt, Nt have independent

σ − algebras Lamberton and Lapeyre (2008). We can take out the expectations of

(µ− r − σ2

2
)(t− s) since it is deterministic. Moreover we know that the remaining

terms are independent, so we can take the individual expectations.

Now we must introduce a concept that is called moment generating function which

is an alternative specification for the distribution of a random variable. It is defined

as

φX(u) = E[euX ]

which in the case of a Brownian motion, being it a normal random variable with

mean zero, it is equal to

φWt(u) = E[euWt ] = exp[
u2

2
t]

With this result, we can write

E[σWt−s] =
σ2

2
(t− s)

Hence,

E[X̃t|Fs] = X̃sE
[

exp

[
(µ− r − σ2

2
)(t− s) + σ(Wt−s)

](Nt−s∏
j=1

1 + Uj

)]

= X̃se
(µ−r)(t−s)E

[Nt−s∏
j=1

1 + Uj

]
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Set u = t− s So we are left to solve

E
[Nt−s∏
j=1

(1 + Uj)

]
= E

[ Nu∏
j=1

(1 + Uj)

]
=

=
∑
m≥1

E
[ Nu∏
j=1

(1 + Uj)

]
P(Nu = m) =

∑
m≥1

(1 + E[Uj])
mP(Nu = m)

=
∑
m≥1

(1 + E[U1])m
(λu)me−λu

m!
= e−λu

∑
m≥1

(λu(1 + E[U1]))m

m!

= e−λueλu(1+E[U1]) = eλu(1+E[U1]−1)

= eλ(t−s)E[U1]

Where we used the law of iterated expectation, the fact that we assume P(Nt = 0 =

0, and ∑
i≥0

(αx)i

i!
= eαx

Hence, we finally reach

E[X̃t|Fs] = X̃se
(µ−r)(t−s)eλ(t−s)E[U1],

and it is easy to see that X̃t is a martingale if and only if µ = r − λE[U1]

We obtained the transformation desired. So far, we always assumed that the two

process are independent, but since we introduced the concept of moment generating

function we will show an use we can make of it, in conjuction with the new Itō

formula, in order to prove independence of Brownian motion and Poisson process

with respect to a general filtration.

Corollary 4.1. Let Wt be a Brownian motion and Nt a Poisson process with inten-

sity λ > 0, on the same probability space and relative to the same filtration. Then

Wt ⊥ Nt.

Proof. Notice that the moment generating function of a Poisson process is given by

φN(u) = E[euN ] = exp[λt(eu − 1)] (4.22)
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Now define

Yt = exp[u1Wt + u2Nt −
1

2
u2

1t− λt(eu2 − 1)] (4.23)

Let us call the argument of the exponential Xt and apply the Itō formula. First let

us divide in continuous part and jump part and see what we can extrapolate

dXc
s = u1dWs −

1

2
u2

1ds− λds(eu2 − 1) (4.24)

Then notice that if there is a jump at time s

Ys = exp[u1Ws + u2(Ns− + 1)− 1

2
u2

1t− λt(eu2 − 1)] = Ys−e
u2 , (4.25)

so that

Ys − Ys− = (eu2 − 1)Ys−∆Ns.

Now setting f(x) = ex and applying the Itō formula we can write

Yt = f(Xt) = f(x0) +

∫ t

0

f ′(Xs)dX
c
s +

1

2

∫ t

0

f ′′(Xs)(dX
c
s)

2 +
∑
s∈(0,t]

[f(Xs)− f(Xs−)]

= 1 + u1

∫ t

0

YsdWs −
1

2
u2

1

∫ t

0

Ysds− λ(eu2 − 1)

∫ t

0

Ysds+
1

2
u2

1

∫ t

0

Ysds

+
∑
s∈(0,t]

[Ys − Ys−]

= 1 + u1

∫ t

0

YsdWs − λ(eu2 − 1)

∫ t

0

Ys−ds+ eu2 − 1)

∫ t

0

Ys−dNs

= 1 + u1

∫ t

0

YsdWs − λ(eu2 − 1)

∫ t

0

Ys−dMs

(4.26)

where Ms = Ns − λs. The integral in the last line of 4.26 is a martingale, hence Y

is a martingale. Now, since EY0 = 1 and we just shown that Y is a martingale, then

EYt = 1 for every t, or equivalently

E[exp[u1Wt + u2Nt −
1

2
u2

1t− λt(eu2 − 1)] = 1.

Now we can write

E[exp[u1Wt + u2Nt]] = exp[
1

2
u2

1t] exp[λt(eu2 − 1)]. (4.27)
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This is the product of the moment generating functions of a Brownian motion and

a Poisson process, and since they factorize, this mean that the two process are

independent. We can complete the proof by showing that the vectors of random

variable (Wt1 , ...,Wtn)is independent of (Nt1 , ..., Ntn) for any finite set of times 0 ≤

t1 < ... < tn

To link it to the construction we had in the previous chapter, consider a European

option. We see that under the new probability Q defined as

dQ
dP

= eθWt− θ
2

2
t (4.28)

with θ = r−µ−λE[U1]
σ

, the discounted price process is a martingale.

Indeed WQ
t = Wt− θt is a standard Brownian motion under Q. Notice that we have

a minus sign, differently from the plus sign in the previous chapter, since θ is set

differently. Thus under Q, the process become

St = s0 exp
[
(µQ − σ2

2
)t+ σWQ

t

]( Nt∏
j=1

1 + Uj
)

(4.29)

where µQ = µ+ σθ, and, consequently, µQ = r − λE[U1].

From now on we will assume to be under this new risk neutral probability. Before

going onto the pricing, we will introduce some new concepts, to explain why we must

choose this type of measure, in line with what is done in Lamberton and Lapeyre

(2008)

For technical reasons we assume that the Uj are square integrable. We note that

E[S2
t ] = s2

0E
[

exp
(
(µ− σ2

2
)t+ σWt

) Nt∏
j=1

1 + Uj

]
Hence, using the reasoning of the proof above,

S2
t = s2

0 exp((σ2 + 2r)t) exp(λtE[U2
1 ])

Thus the process S̃t is a square integrable martingale. Now consider a European

option defined by a random variable c which is measurable and square integrable. In

order to hedge the option, the agent, let us assume she is the writer of the option, will
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follow a strategy Vt which is based on the amount of the risky asset in the portfolio.

Assume the strategy Vt is a square-integrable martingale. Its discounted value is a

martingale too, namely EṼt = V0. A way to measure the risk of hedging mismatch

between the value of the option and the strategy undergone, is to introduce the

notion of quadratic risk. Quadratic risk is simply a loss function calculated on the

square of the expected loss. Calling Rt this risk process, at any t, the value of this

quantity will be the discounted expected value of the hedging mismatch squared.

So at time 0, considering the perspective of the writer of an option, we would have,

RT
0 = E[(e−rT (c− VT ))2] (4.30)

We want to check the value, at any time t, which minimizes this risk, namely the

quantity

RT
t = E

[
(e−r(T−t)(h− VT ))2|Ft

]
. (4.31)

The value we find would be the premium asked by an agent selling the option. We

can write

RT
t = (E[e−r(T−t)c|Ft]− Vt)2 + E

[
e−r(T−t)c− E[e−r(T−t)c|Ft]− e−r(T−t)VT + Vt|Ft]2

It is clear that an agent who wants to minimize this quantity will ask for a premium

Vt = E[e−r(T−t)c|Ft].

If we consider this, the result tells us that on average the chosen strategy hedges the

option, where we calculated the expectation under the risk neutral measure. It can

be shown, due to the strict convexity of the option price function, that the delta

hedging strategy outperforms the option between jumps, where the process behave

like in the Black-Scholes framework, but at jump times, the option outperforms

the strategy Shreve (2004). This is reasonable since we could only perfectly hedge

the volatility of the model, adjusting for the average of "jump risk". Before moving

onto the pricing we will make a small excursus trying to understand something more

about the idea of change of measure.
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4.4.1 Esscher Transform

The method we just saw, is not the only one that can be used in order to obtain an

equivalent martingale measure.

Definition 4.4. Let Xt be a jump diffusion process as we defined it. We change the

probability measure from P to Q by means of the Esscher transform, defined as

dQ
dP

=
eθX

E[eθX ]
(4.32)

We already notice that the denominator is the moment generating function for

the process Xt. Now defining Zt as 4.32, we must prove that this is actually a change

of measure, namely that EZt = 1 and that it is a martingale. In order to do that

we notice that

φX(θ) = E[eθXt ] = E[exp(θ(Xt +Xs −Xs)]

= E[eθXt−s ]E[eθXs ].
(4.33)

Zt is integrable by thanks to the assumption we have on the process Xt and once

we integrate is easy to see that EZt = 1.

About the P-martingality,

E[Zt|Fs] = E
[
eθXt

E[eθXt

∣∣∣∣Fs]
=

1

E[eθXt ]
E[θ(Xt+Xs−Xs)|Fs]

= eθXs
eθXt−s

E[eθXt ]

= eθXs
eθXt−s

E[eθ(Xt+Xs−Xs)]

= eθXs
eθXt−s

E[eθXt−s ]E[eθXs ]

=
eθXs

E[eθXs ]

= Zs

(4.34)

Thus, we showed that it is a change of measure. We still have the problem of how to

choose θ. A necessary and sufficient condition on θ to obtain a risk-neutral measure

Q is that

φX(θ) = φX(θ + 1) (4.35)
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which admits a unique solution.

Let us see now, how we can use it in the Black Scholes framework.

We know that

S̃t = s0 exp[(µ− r − σ2

2
)t+ σWt] (4.36)

So calling Xt the diffusion process, which is the argument of the exponential, we get

E[eθXt ] = E[exp(θ(µ− r − σ2

2
)t+ σWt)]

= e(µ−r−σ
2

2
)tE[eθσWt ]

= exp[θ(µ− r − σ2

2
)t+

σ2θ2

2
t]

(4.37)

Now, in order to find θ∗ such that 4.35 holds, we must solve the expression for θ.

Hence, we would get

exp[θ(µ− r − σ2

2
)t+

σ2θ2

2
t] = exp[(θ + 1)(µ− r − σ2

2
)t+

σ2(θ + 1)2

2
t]

θ(µ− r − σ2

2
) +

σ2θ2

2
= (θ + 1)(µ− r − σ2

2
) +

σ2(θ + 1)2

2

(θ2 − (θ + 1)2)
σ2

2
= (θ + 1− θ)(µ− r − σ2

2
)

θ∗ = −µ− r
σ2

.

(4.38)

Now, evaluating Zt we get

Zt =
eθXt

E[eθXt ]

=

exp

(
(−µ−r

σ2 )(µ− r − σ2

2
)t+ (−µ−r

σ2 σWt)

)
E
[
exp

(
(−µ−r

σ2 )(µ− r − σ2

2
)t+ (−µ−r

σ2 σWt)

)]
=

e−(µ−r
σ

)Wt

E[e−(µ−r
σ

)Wt ]

= exp

(
−µ− r

σ
Wt −

t

2

(
µ− r
σ

)2)
(4.39)

As we can see the expression obtained is the same defined by the Girsanov transform

(3.4) with the only difference given by the sign of the market price of risk. This is

something we would expect since we know that the measure in the Black Scholes

framework is unique and the market is complete, so consistency between the two
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approach was expected.

After this excursus we can go on to pricing.

4.5 The Pricing

We finally have all the ingredient we need in order to proceed onto the pricing of an

option. Consider the usual European call option with payoff P (S) = (ST −K)+. As

saw in the previous chapter, at any time t, the price of the option is E[e−r(T−t)(ST −

K)+|Ft]. In this new framework, this translates into

E[e−r(T−t)(ST −K)+|Ft] =

E
[
e−r(T−t)

(
St exp

[
(µ− σ2

2
)(T − t) + σ(WT −Wt)

]( NT∏
j=Nt+1

1 + Uj

)
−K

)+∣∣∣∣Ft] =

E
[
e−r(T−t)

(
St exp

[
(µ− σ2

2
)(T − t) + σWT−t

](NT−t∏
j=1

1 + Uj

)
−K

)+∣∣∣∣Ft]
Which under our choice for the risk neutral measure become

E
[
e−r(T−t)

(
St exp

[
(r − λE[U1]− σ2

2
)(T − t) + σWT−t

](NT−t∏
j=1

1 + Uj

)
−K

)+∣∣∣∣Ft]
(4.40)

Now, using dummy variables and calling again cBS the Black-Scholes option price

function of the form

cBS(t, s) = E
[
e−r(T−t)

(
se(r−σ2/2)(T−t)+σWT−t −K

)+
]

We have that, setting cJD(t, s) = as 4.40, we can write

cJD(t, s) = E
[
cBS
(
t, se−λE[U1](T−t)(NT−t∏

j=1

1 + Uj
))]

(4.41)

Moreover, having that NT−t ⊥ Uj, for every j, and knowing NT−t ∼ Pois(λ(T − t))

we can write

cJD =
∑
n≥0

E
[
cBS
(
t, se−λE[U1](T−t)( n∏

j=1

1 + Uj
))]e−λ(T−t)(λ(T − t))n

n!
(4.42)

Where we disintegrated the function according to the Poisson law of the number of

jumps. This formula allow us to have closed form for some distribution of the jump

amplitudes Uj, something we will show now.
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4.6 An Illustration

Consider the usual jump diffusion process we have discussed so far. As we said

already, we derived our result without assuming the distribution of the jump am-

plitudes. We just showed the model proposed by Merton, with the log-normal

(considering our construction) jump sizes.

Now assume that our Uj are i.i.d. as a binomial with support{a, b}. Formally

Uj =

a with probability p

b q = 1− p
(4.43)

Using the reasoning of the previous section, we want to reach a closed form for the

price of an option. Assume we are under the risk-neutral probability and we want to

find the price of the option at time t, which we denote as c(t, St) = E[e−r(T−t)(ST −

K)+|Ft] and call P (ST ) the payoff inside the round brackets. We can write

e−r(T−t)E[P (er(T−t)St
(ST
St
e−r(T−t)

)
|Ft]

in which we can isolate the ratio Z := ST
St
e−r(T−t) = S̃T

S̃t
which is independent of the

σ − algebra. Moreover, the remaining part er(T−t)St = y is Ft-measurable, thus is

known at time t. We can write

e−r(T−t)E[P (yS̃T−t)|Ft].

Let us call the time increment (T − t) = τ . Now, thanks to the Lévy property of

our process, namely independence and stationarity of the increments, developing

the expectation, and noting that Z0 = S0

S0
= 1, we would get

E[P (yZ)] =
∑
n≥0

E[P
(
ye(µ−r−σ2/2)τ+σWτ

n∏
j=1

(1 + Uj)
)
]
(λτ)n

n!
e−λτ (4.44)

We can now disintegrate the Uj according to their distribution. Then 4.44 becomes

∑
n≥0

n∑
k=0

E
[
P

(
ye(µ−r−σ2/2)τ+σWτ (1 + a)k(1 + b)n−k

)](
n

k

)
pk(1− p)n−k (λτ)n

n!
e−λτ

(4.45)
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We developed the expectation. Now discounting back and calling n − k = h we

would get

e−rτ
∑
n≥0

n∑
k=0

E
[
P

(
ye(µ−r−σ2/2)τ+σWτ (1+a)k(1+b)h

)]
(λpτ)k

k!
e−λpτ

(λ(1− p)τ)h

h!
e−λ(1−p)τ

(4.46)

Notice that, If we move to the risk neutral measure µ = r − λE[U ] and we take

the discount factor inside the expectation we would get the price of an option with

maturity τ with asset price y(1 + a)k(1 + b)h. Expanding things more it would

become

e−rτ
∑
n≥0

n∑
k=0

E
[
P

(
Ste

(µ−σ2/2)τ+σWτ (1+a)k(1+b)h
)]

(λpτ)k

k!
e−λpτ

(λ(1− p)τ)h

h!
e−λ(1−p)τ

(4.47)

And now evaluating everything under the risk neutral measure

∑
n≥0

n∑
k=0

E
[
P

(
Ste

(−λE[U ]−σ2/2)τ+σWτ (1+a)k(1+b)h
)]

(λpτ)k

k!
e−λpτ

(λ(1− p)τ)h

h!
e−λ(1−p)τ

(4.48)

Which is the closed formula we wanted after 4.42. Indeed, we may also rewrite the

last expression as

cJD(t, s) =
∑
n≥0

n∑
k=0

E
[
cBS
(
t, se−λE[U ]τ (1+a)k(1+b)h

)]
(λpτ)k

k!
e−λpτ

(λ(1− p)τ)h

h!
e−λ(1−p)τ

(4.49)

This formula tells us that in this jump diffusion setup what we would get in terms

of the price of the option is a weighted average of the Black-Scholes price calculated

according to the distributions of jumps’ times and amplitudes. This result allow us

to compute this term numerically if we have a way to generate the laws involved.

This is where we are heading.
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The experiment

It is time to see how we can use everything we learned so far, having now all the in-

gredients needed to set up a simulation. I decided to apply the concept we discussed

about on the pricing of a barrier option. The underlying asset, obviously, will follow

a jump diffusion process. The pricing will be done under two scenarios: the Merton

model and the process we showed in the previous section. There are several ways to

price barrier options. We will use Monte Carlo methods, which I will explain below.

First things first let us see what is a barrier option.

5.1 Barrier Options

A barrier option is an option which has a payoff similar to the plain vanilla counter-

party, except for the presence a "barrier" which affect the value of the option. This

additional condition, makes the pricing to be path-dependent, since it does not rely

only on the maturity, but also on the probability of hitting the barrier before T . As

usual there are call and put barrier options but we need another specification:

• A knock-in barrier option represent the situation in which the option, upon

hitting the barrier, comes into life. This means that before this event, the

option represent a worthless claim, even if its plain vanilla analogue has a

positive payoff. For example consider a call option with maturity T with a

barrier H > K > S0 where K is the strike price and S0 is the value of the

40
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underlying as of today. This is called up-and-in call option. So during the

lifetime of the option we, holders of the option, have a worthless claim until

the price St = H. After this event we have a plain vanilla call. This holds

true also in the interval St ∈ (H,K).

• A knock-out barrier options represent the opposite scenario, that is the option

gives right to a claim, as long as the price of the underlying does not hit the

barrier. So a call as above would be call an up-and-out call option

• Of course we can consider all the possible permutations of such scenarios:

considering a put, a different level for the barrier and the strike price, and the

different type (in or out) of the option.

As we can see, other than being interested to the value of the underlying at maturity,

in order to evaluate our payoff, we also want to know if the event - hitting the barrier

- occurs. One thing must be noted: the time of recording of the asset price option

is relevant for the price of the option. Suppose we only look at the closing value, so

once a day. The underlying might have been at or over the barrier during the day. So

computing the trajectories at a more and more granular time grid, will increase the

probability for the asset to breach the barrier, at a given time of the day, making the

price of the option higher or lower, according to the type considered. Indeed there

are different methods and prices for continuously monitored barrier with respect to

discretely monitored ones.

The payoff of a barrier option can be written in the following way. Consider a up-

and-out call option. Let us call P (ST ) the payoff of a European call option, H the

barrier level and K as usual the strike price. Then, for t ∈ [0, T ],

BCUO =

 P (ST ) = (ST −K)+ if St < H,

0 St ≥ H

(5.1)

As we can see we must consider the possibility for the price to hitting the barrier

before maturity when considering the pricing. So the idea would be to include the

probability of the underlying reaching the barrier into the computation of the price.
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Remark. We might rewrite the payoff BCUO as

BCUO = (ST −K)+1(M(ST )<H) (5.2)

Where M(St) represent the maximum value the underlying reached upt to time t.

Equivalently we can write the payoff of a up-and-in call option as

BCUI = (ST −K)+1(M(ST )≥H) (5.3)

Now consider the prices of such option on the same underlying, with the same

barrier, same strike price and same maturity. Then, under the risk-neutral measure,

calling c the price function,

cCUO + cCUI = e−rTE[(ST −K)+1(M(ST )<H)] + e−rTE[(ST −K)+1(M(ST )≥H)]

= e−rTE[(ST −K)+(1(M(ST )<H) + 1(M(ST )≥H))]

= e−rTE[(ST −K)+]

(5.4)

Thus, by the usual no arbitrage principle, the sum of two identical up-and-in and

up-and-out options must be equal to the price of an European call option with same

strike price and maturity.

Something that must be noted is that there is the possibility to obtain closed

forms for the price of the barrier options using different method, but as we said

already, in this dissertation we will see how the pricing works using Monte Carlo

methods. In this study I considered a discretely monitored up-and-out call option,

but the reasoning used to reach the price is the same for whatever option we would

choose.

5.2 Methodology

Monte Carlo methods are a widespread practice in finance. Also called Monte Carlo

experiments, they are a broad class of computational algorithms that rely on re-

peated random sampling to obtain numerical results. Starting from the late ’90s

they have been started to be used in order to price options. The idea is to generate
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a large numbers of realizations of a stochastic process, then calculate the payoff value

for each simulation, and taking the average. They rely on the risk-neutral valuation

of the payoff, since we said is the only way to properly price. To make use of such

methodology we must introduce a well-known concept on which the legitimacy of

this practice is based on.

Theorem 5.1. Kolmogorov’s strong law

Let Xn be a collection of i.i.d. random variables with E[|Xn|] <∞ for every n. Then,

the sample average converges almost surely to the expected value. More formally,

X̄n
a.s.−−→ µ as n→∞ (5.5)

With this result in mind we can explain better what we are going to do. First we

generate the stochastic process with the random quantities generated, according to

their distribution, by the software. Once we have enough realizations, we can start

to compute the payoff described above for each of the realization. The realizations

are i.i.d random variables at any time t, so calculating the payoff and averaging them

at a fixed time point will reveal the true mean, or the proper price of the barrier

option. One disadvantage of Monte Carlo methods is that sometimes the process

can be quite time-demanding since we must generate a large number of simulations.

On the other hand, they give the possibility to obtain results for questions which

might not have a closed form solution, thus the need for the analytical answer might

be overlooked.

5.3 The simulations

We will analyze two scenarios with different jump size distributions. Everything else

would be the same. We start by simulating the jump times which follows a Poisson

distribution. In order to build such process we start by simulating n Poisson random

variables with parameter λT , with n being the number of simulations we want to

perform. The output of this, which we call N i
T for i = 1, .., n, will be the number

of total jumps spanning the lifetime of the option for each simulation. In order to
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simulate the exact moment of occurrence of the jumps, we exploit the fact that,

conditionally on NT , the jump times have the same distribution as NT independent

random numbers, uniformly distributed on this interval Cont and Tankov (2004).

So we generate a matrix that for each simulation gives us a time series of exact

jump times, for the different values of N i
T and we sort it in ascending order. This

procedure allows us to witness the occurrence of more than one jump at a given

time, something we do not want to restrict. Once we have that, we can move onto

the simulation of the stochastic price process itself. The two scenarios considered

will be:

• Merton scenario: we are assuming that the price is driven by a jump diffusion

process as in the Merton model,i.e.

St = s0 exp
[
µt+ σWt +

Nt∑
j=1

Uj
]

(5.6)

with Uj ∼ N (µJ , σ
2
J). So in our simulation, when one or more jump occur,

the amplitude of those will be generated as normal random variables.

• Binomial scenario: we assume a price stochastic process which behave as a

jump diffusion where the jump sizes follows a binomial distribution with prob-

ability p and support {a, b}, as we already saw in section 4.6.

The jump times will be the same for the two scenarios. Regarding the parameters

used in the simulation, assuming a starting price is s0 = 120

• Merton jump diffusion: we assumed that µ = 0.9, σ = 0.12, λ = 16, and

that Uj ∼ N [0.0116, 0.06], where, using this notation, the second parameter

represent the standard deviation and not the variance.

• Binomial jump diffusion: µ, σ, λ are as above. About the binomial we have

a = 0.08, b = −0.04 and p = 0.43.

Here we can see simulations of the two processes.



5.3 The simulations 45

Figure 5.1: Simulations of trajectories of the two jump diffusion processes. Top:

Merton. Bottom: Binomial

As we can see comparing these two with 3.1 it is clear the presence of jumps, or

discontinuities, that occur over the time interval considered. We now move to the

pricing.
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5.4 Pricing

To do the pricing we must evaluate the realizations according to the risk-neutral

measure chosen. We then build a payoff matrix and see for each time t what would

be the discounted payoff of the option. In order to build the payoff matrix for a

out-and-up option we proceed in the following way. The payoff, given the fact that

the underlying has never hit the barrier, is the same as a plain vanilla call, i.e.

(ST − K)+. so we evaluate the discounted value of the payoff for each time t for

each realization, given that the stock does not hit the barrier. Whenever the asset

price reach the barrier, we set the payoff to 0, from that time tH onward. The more

realizations reach the barrier the slimmer becomes the payoff, since the averages are

calculated on a smaller pool of values. In this simulation the time interval is one

year recorded twice a day. This is purely explanatory since it could be 6 months

monitored 4 times a day or whichever is the granularity preferred. Of course if we

want to increase or decrease the time interval, the parameter of the Poisson process

must change accordingly, since we said that the jump occurrence’s time is distributed

as a Poisson with parameter λT . We will perform 2000 simulations, which is more

than enough to get an accurate estimate for the price of the option. All the codes

written to perform this experiment will be at the end of this dissertation. Here we

can see the price of an option at each time t under the two scenarios
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Figure 5.2: Option price obtained through MC methods under the two scenarios.

Top: Merton. Bottom: Binomial



Chapter 6

Conclusion

We started from the idea of trying to analyze and study stochastic processes in or-

der to model the behaviour of asset in the market. The joint action of randomness

and evolution over time posed us a challenging task. We explored the instruments

needed to tackle this problem and the inception of the theory, to then move gradu-

ally to shaping the random dynamics in a way that we could work with and observe

the implication of the choices made. Of course at a tangible level, the goodness of

our ideas are as good as the goodness of our intuitions, and, paraphrasing a great

probabilist, models do work as long as they do not work anymore. We proceeded

step by step, starting from the more classic process for modeling asset behaviour and

then allowing for a more varied type of evolution. The jump diffusion model seem

to depict a little bit better the reality of thing, rather than the classic Black-Scholes

framework. Several comparative studies on the goodness of fit of the former type

of processes have been done, and they allow for a more accurate representation of

what is going on. A widespread example is the ability of jump diffusion models

to recognize and exhibit the so called "volatility smile", something that the Black-

Scholes model fails to do. Moreover, the increased volatility stemming from the

jump part, translates into a bigger kurtosis, or "heavier tails", in words, it allows

for more extreme events to happen.

The approach I wanted to undergo was a probabilistic one. Starting to study and

exploring the power of such subject is something really fascinating. I believe that

48



49

probability is the foundation needed to dive in a world governed by uncertainty,

not for the presumption to understand it but for the charm of losing oneself in it.

In that fashion, I decide to not explore a predictional point of view, which would

have involved estimates of fitness and reliability of the model chosen, but only to

investigate the legitimacy and the derivation of the results shown. Obviously I just

saw the "pin" of the iceberg, and further deepening of the subject requires much

more than this. Nevertheless it was very informative and educational.

Following this thread, I really appreciated learning Monte Carlo methods, in a more

and more data-filled environment, the possibility to experiment the replication of

such unfathomable systems with just having the access to a notebook and to look

at the realizations,"in flesh and blood", of something unknown is something that

really enthused me.

About the experiment, the simulations are intended to be purely illustrative. We

decided everything about the distributions involved and the parameters, something

that cannot be done in real life analysis where the model must be calibrated, which

is not so trivial to do. This kind of analysis might belong to the decision making

process of an analysis department, in order to search for profitable situations in the

market. A problem we face with this method of pricing is the numerical instability

of calculation of hedging strategy, since errors compound, giving rise to unreliable

responses. Nonetheless, all the results presented still hold true.

What might be difficult to model are the jump amplitudes: we might consider the

discontinuities as being shocks caused by some external information or some other

exogenous factors. The magnitudes of the impact caused by those events can be

highly irregular and assuming certain distributions might be far off the reality most

of the times. Nonetheless, I believe that the case for the inclusion is stronger than

the drawbacks which may arise.

Following this thread, is quite clear that the second model has mainly an explana-

tory purpose: we cannot expect jumps of the same sizes all the time, even if it might

happen that a test of fitness would give good result. On the other hand, one thing

which was desirable, that is achieved in this study, is the possibility to allow several
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jumps for each time increment and not limit ourselves to just one. Moreover it is an

intuitive example which show how we can allow for different behaviors rather than

the classic geometric Brownian motion just tinkering a bit the process.

Other studies with different jump size distribution are available, most notably the

one by Kou and Wang (2004) which assumes a double exponential distribution for

the jumps, leading to a more sophisticated but still closed form for the price of an

option.

I really enjoyed myself exploring and learning this topics. I believe stochastic pro-

cesses are crucial in finance, since they allow us to get closer to the state of the things

and give us a way to improve our decision-making and knowledge of the market and

the dynamics which govern it, and that this is something that must be in every

finance enthusiast toolkit. However, one must not fall for the belief of confusing the

"map from the actual territory": market are still an unforeseeable environment, and

the goodness of models must not distract ourselves from the intangible forces which

are present. Nevertheless, this analyises give us valuable insights and are food for

thought if we are able to read trough it.



Appendix A

Matlab Codes

%Black Scho l e s model func t i on

func t i on [ BSsim , dt ] = BSfun (mu, sigma , x0 , t0 ,T, nsim )

rng (5 ) ;% f i x the seed f o r the s imu la t i on

N=252∗2∗T;

dt = (T−t0 ) /N;% d i s c r e t i z e

NP = N + 1 ;

sq r td t = sq r t ( dt ) ;

muddt = (mu − sigma^2/2)∗dt ;% dt part o f the equat ion

BSsim = ze ro s (NP, nsim ) ;% i n i t i a l i z e matrix

dW = sqr td t ∗randn (N, nsim ) ; %dWt part o f the equat ion

f o r k=1:nsim

BSsim (1 , k ) = x0 ; %s e t va lue at time 0

f o r i = 1 :N

BSsim( i +1,k ) = BSsim( i , k ) + muddt+sigma∗dW( i , k ) ; %

generate the t r a j e c t o r i e s .

end

end

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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%Figure o f the s imu la t i on o f t r a j e c t o r i e s o f a Geometric

Brownian motion

%Code f o r f i g u r e 1

mu=0.09; sigma=0.12; x0=120; t0=0; T=2; nsim=5;

rng (5 ) ;

[ BSsim , dt ]=BSfun (mu, sigma , x0 , t0 ,T, nsim ) ;

t imegr id=t0 : dt :T;

p l o t ( t imegr id , BSsim)

t i t l e ( ’GBM Stock p r i c e s imulat ion ’ )

x l ab e l ( ’Time ’ )

y l ab e l ( ’ Stock pr i c e s ’ )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Merton jump d i f f u s i o n func t i on

func t i on [XS, Nt ,N] = JDMerton (mu, sigma , lambda ,muj , sigmaj , x0 ,

t0 ,T, nsim )

rng (5 ) ; %f i x the seed f o r the s imu la t i on

N=252∗2∗T;

dt = (T−t0 ) /N; %d i s c r e t i z e

sq r td t = sq r t ( dt ) ;

muddt = (mu − sigma^2/2)∗dt ; % dt part o f the equat ion

P=po i s s rnd ( lambda∗T, 1 , nsim ) ; %generate nsim Poisson rv ’ s

with i n t e n s i t y lambdaT

jt ime=ze ro s (max(P) , nsim ) ; %i n i t i a l i z e jump time matrix

f o r i =1:nsim

jt ime ( 1 : end , i )=[ randi (N,P( i ) , 1 ) ; z e r o s (max(P)−P( i ) , 1 ) ] ;%

generate uni formly d i s t r i b u t e d jump time over 0 ,T

end

Jt imesorted=so r t ( j t ime ) ; %so r t the r e s u l t

Nt=ze ro s (N, nsim ) ; %i n i t i a l i z e matrix o f po i s son p r o c e s s e s
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f o r t=1:N

f o r i =1:nsim

f o r k=1:max(P)

i f J t imesorted (k , i )==t

Nt( t , i )=sum( Jt imesorted ( : , i )==Jt imesorted (k ,

i ) ) ; %c r ea t e a matrix that have f o r each

time between 0 ,T

%the exact moment o f the jump

end

end

end

end

XS = ze ro s (N, nsim ) ; %i n i t i a l i z e matrix f o r s imu la t i on s

DW = sqr td t ∗randn (N, nsim ) ; %dWt part o f the equat ion

YS=ze ro s (N, nsim ) ; %i n i t i a l i z e matrix f o r the exponent i a l

f o r k=1:nsim

XS(1 , k ) = x0 ; %s e t va lue o f p r o c e s s e s at time 0

f o r i = 1 :N−1

YS( i +1,k ) = YS( i , k ) + muddt+sigma∗DW( i , k ) ;

i f Nt( i , k ) >0

YS( i +1,k ) = YS( i +1,k )+(Nt( i , k ) ∗sum(normrnd (

muj , sigmaj , Nt( i , k ) , 1 ) ) ) ; %i f the re i s one

or more jumps

% generate the normal random va r i ab l e ( s ) and

add i t ( them) to

% the exponent i a l

end

XS( i +1,k ) = x0∗exp (YS( i +1,k ) ) ; %put th ing s toge the r
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end

end

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Binomial jump d i f f u s i o n func t i on

func t i on [XS, Nt ,N] = JDbinomial (mu, sigma , lambda , a , b , p , x0 , t0 ,

T, nsim )

rng (5 ) ;

N=252∗2∗T;

dt = (T−t0 ) /N;

sq r td t = sq r t ( dt ) ;

muddt = (mu − sigma^2/2)∗dt ;% dt part o f the equat ion

P=po i s s rnd ( lambda∗T, 1 , nsim ) ;%generate nsim Poisson rv ’ s with

i n t e n s i t y lambdaT

jt ime=ze ro s (max(P) , nsim ) ;% i n i t i a l i z e jump time matrix

f o r i =1:nsim

jt ime ( 1 : end , i )=[ randi (N,P( i ) , 1 ) ; z e r o s (max(P)−P( i ) , 1 ) ] ;%

generate uni formly d i s t r i b u t e d jump time over 0 ,T

end

Jt imesorted=so r t ( j t ime ) ;

Nt=ze ro s (N, nsim ) ; %i n i t i a l i z e matrix o f Poisson p r o c e s s e s

f o r i =1:nsim

f o r t=1:N

f o r k=1:max(P)

i f J t imesorted (k , i )==t

Nt( t , i )=sum( Jt imesorted ( : , i )==Jt imesorted (k ,

i ) ) ; %c r ea t e a matrix that have f o r each

time between 0 ,T
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%the exact moment o f the jump

end

end

end

end

XS = ze ro s (N, nsim ) ; %i n i t i a l i z e matrix f o r s imu la t i on s

DW = sqr td t ∗randn (N, nsim ) ; %dWt part o f the equat ion

YS=ze ro s (N, nsim ) ;% i n i t i a l i z e matrix f o r the exponent i a l

f o r k=1:nsim

XS(1 , k ) = x0;% s e t va lue o f p r o c e s s e s at time 0

f o r i = 1 :N−1

YS( i +1,k ) = YS( i , k ) + muddt+sigma∗DW( i , k ) ;

i f Nt( i , k ) >0

YS( i +1,k ) = YS( i +1,k ) ∗ l og (1+(Nt( i , k ) ∗b+(a−b) ∗

binornd (Nt( i , k ) ,p ) ) ) ;% i f the re i s one or

more jumps

% generate the binomial random va r i ab l e ( s )

and add i t ( them) to

% the exponent i a l

end

XS( i +1,k ) = x0∗exp (YS( i +1,k ) ) ;%put th ing s toge the r

end

end

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Code f o r f i g u r e 2 .1 − Simulat ion o f Merton jump d i f f u s i o n

mu=0.09; sigma=0.12; lambda=16; muj=0.0116; s igmaj =0.06; x0

=120; t0=0; T=1; nsim=5;
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rng (5 ) ;%Def ine parameters we chose muj as the mean o f the Uj

o f the binomial s c ena r i o

[ LNSim ,AH]=JDMerton (mu, sigma , lambda ,muj , sigmaj , x0 , t0 ,T, nsim )

;%generate r e a l i z a t i o n s

N=252∗2∗T;%de f i n e N f o r time g r id

dt=(T−t0 ) /N;

t imegr id=t0 : dt :T;

p l o t ( t imegr id , LNSim)

t i t l e ( ’Jump d i f f u s i o n Merton stock p r i c e s imulat ion ’ )

x l ab e l ( ’Time ’ )

y l ab e l ( ’ Stock pr i c e s ’ )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Code f o r f i g u r e 2 .2 − Simulat ion o f b inomial jump d i f f u s i o n

mu=0.09; sigma=0.12; lambda=16; a=0.08; b=−0.04; p=0.43; x0

=120; t0=0; T=1; nsim=5;

rng (5 ) ;%Def ine parameters , same as the other s imu la t i on s

[ BinSim ,AH]=JDbinomial (mu, sigma , lambda , a , b , p , x0 , t0 ,T, nsim ) ;%

generate r e a l i z a t i o n s

N=252∗2∗T;%de f i n e N f o r time g r id

dt=(T−t0 ) /N;

t imegr id=t0 : dt :T;

p l o t ( t imegr id , BinSim )

t i t l e ( ’Jump d i f f u s i o n binomial s tock p r i c e s imulat ion ’ )

x l ab e l ( ’Time ’ )

y l ab e l ( ’ Stock pr i c e s ’ )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Code f o r p r i c i n g o f Merton jump d i f f u s i o n
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mu=0.09; sigma=0.12; lambda=16; muj=0.0116; s igmaj =0.06; x0

=120; t0=0; T=1; nsim=2000;

rng (5 )

r =0.02; s t r i k e =115; b a r r i e r= 125 ; %s e t the parameters f o r

the s imu la t i on s

muti lda=r−lambda∗muj ; %prepare the change to the r i s k−

neut ra l measure

[ Xsim ,Nt ,N]=JDMerton (mu, sigma , lambda ,muj , sigmaj , x0 , t0 ,T, nsim

) ; %generate the r e a l i z a t i o n s

XsimRN=JDMerton ( mutilda , sigma , lambda ,muj , s igmaj , x0 , t0 ,T, nsim

) ; %generate the r e a l i z a t i o n s under the RN measure

dt=(T−t0 ) /N;

tv=[ t0 : dt :T] . ’ ;% a l l o c a t e vec to r f o r d i s count ing

payoffsRN=ze ro s (N, nsim ) ;% i n i t i a t e payo f f matrix

f o r k=1:nsim

f o r t=1:N

i f XsimRN( t , k )<ba r r i e r %I f the p r i c e i s below the

b a r r i e r compute the d i scounted payo f f

payoffsRN ( t , k )=exp(−r ∗(T−tv ( t ) ) ) ∗max( ( x0∗XsimRN(

end , k ) ) /XsimRN( t , k ) − s t r i k e , 0) ;

e l s e i f k<nsim %i f the p r i c e has h i t the b a r r i e r go

to the next i t e r a t i o n

k=k+1;

e l s e i f k==nsim

break %break the s imu la t i on at the l a s t

i t e r a t i o n

end

end

end

CpRN=ze ro s (N, 1 ) ;% i n i t i a t e opt ion p r i c e matrix
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f o r t=1:N

CpRN( t , 1 )=mean( payoffsRN ( t , : ) ) ; %c a l c u l a t e averages over

r e a l i z a t i o n s f o r each time t

end

%Code f o r f i g u r e 3 .1 − Bar r i e r Option p r i c e Merton

t imegr id=t0 : dt :T−dt ;

p l o t ( t imegr id ,CpRN)

t i t l e ( ’Up−and−out Ca l l p r i c e Merton Jump d i f f u s i o n ’ )

x l ab e l ( ’Time ’ )

y l ab e l ( ’ Option Price ’ )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%Code f o r p r i c i n g o f b inomia l jump d i f f u s i o n

mu=0.09; sigma=0.12; lambda=16; a=0.08; b=−0.04; p=0.43; x0

=120; t0=0; T=1; nsim=2000;

rng (5 )

umean = a∗p+b∗(1−p) ;

r =0.02; s t r i k e =115; b a r r i e r= 125;% s e t the parameters f o r the

s imu la t i on s

muti lda=r−lambda∗umean;%prepare the change to the r i s k−

neut ra l measure

[ Xsim ,Nt ,N]=JDbinomial (mu, sigma , lambda , a , b , p , x0 , t0 ,T, nsim ) ;%

generate the r e a l i z a t i o n s

XsimRN=JDbinomial ( mutilda , sigma , lambda , a , b , p , x0 , t0 ,T, nsim ) ;%

generate the r e a l i z a t i o n s under the RN measure

dt=(T−t0 ) /N;

tv=[ t0 : dt :T] . ’ ;% a l l o c a t e vec to r f o r d i s count ing

payoffsRN=ze ro s (N, nsim ) ;% i n i t i a t e payo f f matrix

f o r k=1:nsim
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f o r t=1:N

i f XsimRN( t , k )<ba r r i e r %I f the p r i c e i s below the

b a r r i e r compute the d i scounted payo f f

payoffsRN ( t , k )=exp(−r ∗(T−tv ( t ) ) ) ∗max( ( x0∗XsimRN(

end , k ) ) /XsimRN( t , k ) − s t r i k e , 0) ;

e l s e i f k<nsim %i f the p r i c e has h i t the b a r r i e r go

to the next i t e r a t i o n

k=k+1;

e l s e i f k==nsim

break %break the s imu la t i on at the l a s t

i t e r a t i o n

end

end

end

CpRN=ze ro s (N, 1 ) ;% i n i t i a t e opt ion p r i c e matrix

f o r t=1:N

CpRN( t , 1 )=mean( payoffsRN ( t , : ) ) ;% c a l c u l a t e averages over

r e a l i z a t i o n s f o r each time t

end

%Code f o r f i g u r e 3 .1 − Bar r i e r opt ion p r i c e binomia l

t imegr id=t0 : dt :T−dt ;

p l o t ( t imegr id ,CpRN)

t i t l e ( ’Up−and−out Ca l l p r i c e binomial Jump d i f f u s i o n ’ )

x l ab e l ( ’Time ’ )

y l ab e l ( ’ Option Price ’ )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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