

Index

1 Introduction 3

2 Literature Review 4

3 Model 7

3.1 General Problem . 7

3.2 Analytical Tools . 8

3.2.1 Continuous-Time Markov Chain 8

3.2.2 Fluid Approximation . 8

3.3 Analytical Problem . 9

3.3.1 Fluid System . 11

3.4 Results . 12

3.4.1 Theorem 1 . 14

3.4.2 Theorem 2 . 14

3.4.3 Solving Procedure . 15

3.5 Experimental Results . 16

4 Simulation on Chicago Transportation Network Data 18

4.1 Overview . 18

4.2 The Dataset . 18

4.3 Data Cleaning & Preparation . 19

4.4 Parameters Estimation . 24

4.5 Optimization Problem . 29

4.6 Simulation . 31

Bibliography 35

2

1 Introduction

The Ride-hailing & Taxi market segment includes all online and offline book-

ing channels that connect passengers and drivers. This includes traditional

taxi services that can be booked by phone, Transportation Network Companies

(TNCs) that offer rides in private vehicles, as well as Ride Pooling services.

Ride-hailing marketplaces match millions of riders and drivers every day. Ac-

cording to statista.com (2021), The global ride-sharing market is expected to

grow to by more than 50 percent between 2020 and 2021. The market value

is expected to amount to around 117 billion U.S. dollars in 2021. DiDi, Uber,

and Lyft are among the key companies in this industry. They definitely repre-

sent disruptive players in the transportation industry by matching the supply of

drivers with the demand for rides more efficiently than traditional taxi services.

Yet, they do not employ any drivers, but rather they operate as two-sided mar-

kets between riders and independent users of the platform who serve as drivers.

In this characteristic of the industry lie two of the hardest challenges for such

platforms, namely handling the decentralized nature of the system and the dis-

parity between the flow of passengers requesting a ride in some region of the

city and the available drivers willing to accept them. A crucial objective for

ride-sharing platform is to create incentive for drivers to relocate to areas of the

city where new passengers arrive more frequently.

In this project, we focus on the study by Braverman et al. (2019), who

approach this task by considering a specific centralized control mechanism, the

“Empty-car routing”, whose aim is to maximize the availability of empty cars

in an area when a passenger arrives. In order to mitigate the aforementioned

demand-supply imbalances that arise in such systems, the authors consider a

controller which is able to move empty cars to regions where they are most

needed so as to minimize unfulfilled requests by riders, who are impatient and

choose a different transportation mean if they are not served in a short time.

It is important to notice that, being this a centralized mechanism, in which

drivers are supposed to obey the directions given by the controller, it is not

directly applicable as it is by companies like Uber, Lyft and others, as they deal

instead with decentralized systems, where drivers act independently and all the

platform can do is to create effective incentive for them to relocate where most

needed. However, Braverman et al. (2019) state that their study can be a best-

3

case performance benchmark against which to compare how well decentralized

mechanisms perform. Moreover, it might be insightful to compute the difference

in revenues for drivers between the case when they are free to relocate on their

own and the “Empty-car routing” system, so that the platform could use part

of that difference to create further incentive for drivers to behave as expected.

Moreover, they experiment their theoretical findings on real-world data by Didi

Chuxing (2019) Chuxing from a Chinese city and evaluate the performance of

the resulting policy.

In this project we first illustrate the work by Braverman et al. (2019), pro-

viding explanation of the analytical problem they solved and the required tools.

Our main purpose is to reproduce their analysis on a different dataset, namely

“Chicago Transportation Network Providers”, reporting the full code for the

data manipulation and solving procedure of the problem, and thus, provide the

results of our analyses and explanation for the differences with those of Braver-

man et al. (2019).

2 Literature Review

Academic activity on ride-sharing systems has increased significantly in the re-

cent years due to the exceptional growth of the related industry. The complex-

ity of the optimization algorithms for such systems offers a variety of different

potential approaches and many papers examine the operations of ride-hailing

platforms from diverse perspectives: some studies focus on the matching strate-

gies, which involve finding and assigning the most suitable driver to a rider’s

request; for instance, Curry et al. (2019) model the matching process of raid-

sharing systems as a Markov Chain encapsulating the geographic mobility of

supply and demand over time. They account for the previous work on the prob-

lem, which considered the matching policies in the limit of such Markov chains,

and analyze under what conditions this limit is valid. Özkan and Ward (2020)

consider the two-sided dynamic matching problem (where multiple items arrive

at both sides randomly with potentially time-varying rates) which encapsulates

the framework of ride-sharing systems, proposing matching policies based on a

continuous linear program (CLP) and proving their optimal performance under

some conditions. Housni et al. (2021) address the impact of the matching policy

on the future demand/supply composition by studying a two-stages matching

4

problem that aims at minimizing the cost of the first-stage matching (intended

as the proportion on requests that remain unmatched) and of the worst-case

scenario for the second-stage matching, given a set of predefined possibilities.

The motivation comes from the sub-optimal performance of an approach which

matches the current requests ignoring future uncertainty.

A second viewpoint of the problem relates to the optimization of the pricing

strategies to mitigate the structural demand/supply imbalances in the geospa-

tial network that the problem at stake presents. Such approach is undertaken

by Banerjee, Freund, et al. (2017), who deal with the complex network exter-

nalities of shared vehicle systems optimization proposing a number of pricing

and other control policies under a convex approximation, which they call “el-

evated flow relaxation”, of the dynamic maximization of the long-run average

performance, taking into account throughput (proportion of matched requests),

social welfare and platform’s revenue. Bimpikis et al. (2019) study the impact of

demand pattern’s spatial structure on platforms’ profits and the resulting con-

sumer surplus, focusing on the adequate pricing strategies to adopt depending

on where the rides originate. Garg et al. (2021) consider the driver-side payment

mechanisms for Ride-hailing platforms, investigating how dynamic (surge) pric-

ing affects drivers’ revenues and their strategies of repositioning to maximize

such revenues. They focus on the theoretical grounds supporting the so-called

additive surge (applied by Uber) and its advantages in terms of incentive com-

patibility with respect to the multiplicative surge. Besbes et al. (2021) consider

the surge pricing technique and its implications on the reaction of strategic sup-

ply drivers (supply units) and price-sensitive riders (demand). They show how

a platform may optimally set prices across the space in reaction to a localized

demand shock to encourage drivers to relocate. Also Ong et al. (2021) study a

recent shift in the way a ride sharing company creates incentives for drivers to

relocate; in particular, they explain how Lyft has brought a significant change

in their operation by introducing the “Personal Power Zone” (PPZ), a product

which helps drivers discern the most profitable areas of the city in real time

and suggests them the strategy to maximize their revenue. The authors give

the mathematical explanation on how the new additive surge pricing creates

a significantly higher incentive to relocate for drivers than the previously used

multiplicative pricing (which Lyft used to call “Prime Time”). Their work also

focuses on the paradigm shift in business model that Lyft underwent, depict-

5

ing a more centralized environment based on optimizing driver experience and

revenues, so as to bring beneficial effects for the business in general (increased

bookings) and under the drivers’ and riders’ experience viewpoint (e.g. reduc-

tion in pick-up times and dropped requests).

Similar to the approach of Banerjee, Freund, et al. (2017), other works con-

centrate upon different platform control mechanisms that can optimize various

objective variables, such as consumer surplus, platform’s or drivers’ revenue.

This is the case for Afeche et al. (2018), who face the problem of matching

service supply (drivers) with demand (riders) over two-location spatial network,

focusing on the impact of two platform control capabilities, namely “demand-

side admission control” and “supply-side capacity repositioning”. The former is

the possibility for the platform to accept or reject requests based on some param-

eters, the latter involves redirecting drivers in different areas of the city to deal

with demand/supply imbalances. Their findings show that it may be optimal

for the platform to reject rider demand even in over-supplied areas, to encourage

driver movement. Banerjee, Kanoria, et al. (2020) deal with the demand-supply

asymmetry of ride-sharing systems (and other applications) through dynamic

assignment control of a closed queueing network, namely with a fixed number of

circulating supply units. They propose a class of state-dependent control poli-

cies which are proven to achieve optimal performance under some conditions.

They incorporate travel delays as well and consider other potential applications

of their model.

It might be important to specify that the aforementioned approaches are by

no means to be considered disconnected from each other, because, ultimately,

they all need to be implemented by ride sharing platforms in a multidimensional

strategy aimed at maximizing their earnings, drivers’ revenue and the amount

of rides provided. In a rather theoretical fashion, this last point is addressed by

Özkan (2020) by answering the following question: “Is matching optimization

necessary?”. Motivated by the wide presence of previous work where pricing

policies are optimized under fixed matching policies, this paper shows that op-

timizing one decision (either pricing or matching) keeping the other fixed is not

optimal, while a joint pricing and matching optimization strategy can lead to

significant performance improvements.

6

3 Model

The objectives of this capstone project consist in understanding, reporting ana-

lyzing and replicating the content of the paper “Empty-car Routing in Rideshar-

ing Systems” by Braverman et al. (2019). In this section we focus on the model

employed by the authors, the tools needed to have a proper understanding of

their research, and their main results.

3.1 General Problem

The setting involves a city divided in r > 0 different regions, where a fixed

number of cars (N > 0) circulate waiting to serve riders and take them to their

destination. Riders enter the system by requesting a ride from region i to region

j or from a specific part of region i to another place in the same region. In this

dynamic scenario, the main difficulty in matching as many requests as possible is

the potential demand-supply spatial imbalances that might arise in cities where

some areas are more populated or congested than others. In order to mitigate

this issue, the solution proposed by the paper entails a centralized mechanism

which moves empty cars to areas where more rides are requested so as to ensure

the availability of service in regions where the demand is higher. Even though in

most real-world ride sharing systems, such as Uber, Ride or Didi, the decision to

relocate in another region is made independently and strategically by the drivers,

this solution can be considered a good benchmark for decentralized systems

where platforms create incentives for drivers to relocate to regions where they

are most needed (through surge pricing or other strategies), namely it would be

possible to analyze the efficiency of those strategies against the performance of

a routing policy with which the platform decides where drivers should relocate

and they have to abide by those instructions. The objective of Braverman et

al. (2019) is to find an static empty-car routing policy that maximizes the revenue

generation of the system (this is of course connected to the maximization of

matched requests), to prove its asymptotic optimality against any other state

dependent routing policy and to compare it with other widely known policies

through a simulation with real-world data.

7

3.2 Analytical Tools

In this section, we introduce the mathematical concepts needed to get a thorough

understanding of the model.

3.2.1 Continuous-Time Markov Chain

As it is described in Ross (1996), a continuous-time Markov chain is a stochastic

process having the Markovian property that the conditional distribution of the

future state, given the present state and all the past states, depends only on the

present state and is independent of the past.

Consider a system where a server station provides a certain kind of service,

and clients arrive at this station forming a queue. Passengers arrival rate is

modelled as a Poisson process with rate λ. The service is provided with rate

µ which is also exponentially distributed. Interarrival and service time are

assumed to be i.i.d. (independent and identically distributed). A prerequisite

for the system to be stable is λ < µ, so that newcomers find the station free and

are served in time; while in the case in which λ ≥ µ, the system would become

unstable and queues will go to infinity. At each state in time, if k clients are in

the system, two possible transition are involved:

k ⇒ k + 1 at rate λ

when a new client arrives, or

k ⇒ k − 1 at rate µ

when a client is served. Moreover, the system addressed so far only entailed one

single server station where clients show up to and get served, but also systems

with multiple server stations can be anaylized; in fact, ride hailing systems deal

with such kind of settings, since riders can request a ride from any part of the

city.

3.2.2 Fluid Approximation

Analyzing Continuous-time Markov Chains can be extremely complex. To that

aim, it is useful to resort to approximations of stochastic models through deter-

ministic equations. One potential solution is the so-called Fluid Approximation,

which considers the deterministic model as the limit of the stochastic process

8

for large populations/system size. What this concretely implies is the following:

the clients arrival rate is sped up from λ to Nλ; at the same time, though, the

“weight” of one individual is scaled from 1 to 1
N . The approximation considers

the resulting scenario as N →∞. This model is fluid, no randomness is involved

and it is possible to replace random variables with their expected values and

the resulting system to analyze is a deterministic one composed by differential

equations.

As will be shown later in the project, this technique is crucial to solve the

optimization problem studied by Braverman et al. (2019).

3.3 Analytical Problem

In this section we describe in detail the specifications of the problem and ana-

lytical characteristics that help understand the results obtained by Braverman

et al. (2019).

Let us remind that in this model N cars provide the service in r different

regions. Passengers’ arrivals at region i are modelled as a Poisson process with

rate Nλi, in order to ensure stability in the demand and supply levels in every

region. The average time needed to travel from region i to region j is 1/µij

and, as the Markov Chain setting suggests, travel times are assumed to be i.i.d.

random variables. It is now important to understand what happens when a

passenger shows up at a server station and, subsequently to the deployment of

the service, what are the options for the drivers.

When a client arrives to region i, if at least one empty car is available, then

the passenger is served and the full car travels from i to j with probability Pij .

A fact worth noticing is that trips within regions are allowed and happen with

probability Pii. In the case in which no empty car is available at a passenger’s

arrival, the client quits the system and uses another mean of transport. When

a full car gets to destination j, drops the passenger, becomes empty and, at

this point, can either stay at region j and wait for a new ride request with

probability Qjj , or redirect to region k with probability Qjk. Notice that travel

times for empty cars are modelled as equal to those with a passenger.

At any time t, E
(N)
ij (t) is the amount of empty cars redirecting from region i

to region j, while E
(N)
ii (t) represents the number of empty cars waiting in region

i for a passenger to request a ride. It is important to notice that, in this model,

“empty routing from region i to region i” is considered the same as “waiting still

9

at the server station”, which, in this case, is the whole region i. Furthermore,

F
(N)
ij (t) is the number of full cars, meaning the cars serving a customer at time

t, driving from region i to region j, whereas F
(N)
ii (t) involves those rides where

the origin and destination regions of the service are the same.

We define

EN = {EN (t) ∈ Zr×r+ , t ≥ 0}

FN = {FN (t) ∈ Zr×r+ , t ≥ 0}

ĒN =

{
1

N
EN (t) ∈ Rr×r+ , t ≥ 0

}
F̄N =

{
1

N
FN (t) ∈ Rr×r+ , t ≥ 0

}
where EN (t) and FN (t) are the r×r matrices whose (i, j)th elements are E

(N)
ij (t)

and F
(N)
ij (t). Also, Braverman et al. (2019) define

T =
{

(e, f) ∈ [0, 1]r×r × [0, 1]r×r :

r∑
i=1

r∑
j=1

(eij + fij) = 1
}

where eij and fij are placeholders for Ē
(N)
ij (t) and F̄

(N)
ij (t), respectively. The

condition (e, f) ∈ T is called “unit mass” condition, as the entries for those

matrices sum up to 1.

The empty car routing matrix Q(N)(t), whose entries are Qij
(
ĒN (t), F̄N (t)

)
,

is our decision variable, meaning that our aim is to build that matrix based on

the result of the optimization problem. This implies that the process
(
EN (t), FN (t)

)
is our Continuous Time Markov Chain and its transition rates, which are much

more complex than those used to give the general idea of the mathematical

concept in Section 3.2.1, are described in Table 1.

The first line of Table 1 shows the rate at which passengers arrive at region

i, request a ride to region j and a driver picks her up to region j, thus the

number of empty cars idling in region i decreases by 1 and the number of full

cars driving from i to j increases by 1. This transition is conditional on the

availability of empty cars in region i, otherwise the passenger simply abandons

the system and ENii and FNij do not change. The second transition involves a

passenger being dropped off at destination (region j), in this case, the number

of full cars driving from i to j decreases by 1 and either the number of empty

cars waiting at region j increases or, if the driver is relocated, the number of

10

Rate Transition

NλiPij if ENii (t) > 0

0 otherwise

ENii (t)− 1 ; FNij (t) + 1

µijF
N
ij (t)Qjk

(
ĒN (t), F̄N (t)

)
FNij (t)− 1 ; ENjk(t) + 1

µijE
N
ij (t) if j 6= i

0 otherwise

ENij (t)− 1 ; ENjj(t) + 1

Table 1: transition rates and subsequent changes in the network

empty cars driving from region j to region k increases by 1. Lastly, in the third

line an empty car reaches the destination of its relocation, thus the number of

empty cars driving from i to j decreases and the number of empty cars waiting

in region j increases.

The availability at region i is defined as the amount of time that at least

one empty car is available at region i, which is considered to be equal to the

probability that a ride request from region i will be served. The scenario that

Braverman et al. (2019) consider is defined Large Market Regime, namely they

investigate the asymptotic behaviour when the number of cars N goes to ∞.

Because of how the model is specified, this implies that, under that condi-

tion, the passenger arrival rate Nλ also goes to ∞. They define the long-term

(asymptotic) availability at region i as ANi = P
(
ĒNii (∞) > 0

)
.

The analytical framework is now depicted, what is still missing is an expla-

nation of the fluid model that Braverman et al. (2019) used to obtain ther main

results.

3.3.1 Fluid System

In this section we describe the process that leads to the formulation of the final

system of equations used by Braverman et al. (2019) to solve the Empty-cat

Routing optimization problem.

In their work, the authors specify the set of equations representing the fluid

11

model, whose variables are the deterministic fluid analogs of our previously

defined ĒN and F̄N . The resulting new system of equations constitutes exactly

the constraints of the optimization problem which will be specified later on.

The theorems proved in this part of their work are the bases, the build-

ing blocks of their results, because they allow us to replace random variables,

stochastic metrics, with deterministic expected values through which a static

empty-car routing policy can be defined. The next step is to make the final

system of equations of the optimization problem explicit, describing the steps

needed to solve it and report the theorems constituting the main results of the

work by Braverman et al. (2019)

3.4 Results

In this section we describe the most critical results of Braverman et al. (2019)

and their implications.

To specify the fluid-based optimization problem, it is necessary to define

some new variables, which are as follows: firstly, cij is the rewards for ride

completion from region i to region j; secondly, q =
(
qij
)

is the r × r matrix

representing the static empty-car routing policy Q; lastly, ē, f̄ and ā can be

interpreted as substitutes for E
(
ĒN (∞)

)
, E
(
F̄N (∞)

)
and ĀN (∞) and they are

the variables we seek to find out to maximize platform’s revenue. Here is the

system to solve to get our policy:

max
q,ē,f̄ ,ā

r∑
i=1

r∑
j=1

āiλiPijcij (1)

12

subject to

āλiPij = f̄ijµij 1 ≤ i, j ≤ r (2)

qij

r∑
k=1

(
µkif̄ki

)
= ēijµij 1 ≤ i, j ≤ r, j 6= i (3)

λiāi =

r∑
k=1;k 6=i

(
µkiēki

)
+ qii

r∑
k=1

(
µkif̄ki

)
1 ≤ i ≤ r (4)

(
1 − āi

)
ēii = 0 1 ≤ i ≤ r (5)(
ē, f̄
)
∈ T (6)

qij ≥ 0
r∑
j=1

qij = 1 0 ≤ āi ≤ 1 1 ≤ i, j ≤ r (7)

To give some intuitive interpretation of the set of equations reported above, the

quantity to maximize is composed by two components, namely cij , the reward

for successful rides, and āiλiPij , which can be seen as the initialization rate

for rides from region i to j; meaning that what we are maximizing here is a

metric for revenue generation. The first constraint, equation (2), states that the

aforementioned initialization rate from i to j must be equal to f̄ij
(
1/µij

)
, the

fluid mass of full cars driving from i to j over the average travel time between the

two regions at stake. Likewise, equation (3) implies that, qij

r∑
k=1

(
µkif̄ki

)
, which

can be considered the rate at which empty cars are off, must be equal to ēijµij ,

namely the mass of empty cars going from i to j over the related travel time.

Equation (4) is called “car flow balance” by Braverman et al. (2019), as it states

that the total rate of outflow from region i, namely λiāi, is required to be equal

to the total inflow into the same region, which is computed as

r∑
k=1

(
µkiēki

)
+

qii

r∑
k=1

(
µkif̄ki

)
. Equation (5) establishes an important condition to be respected

in order for the system to be stable, which is as follows: undersupply at region

i, namely having 1 − āi > 0, only occurs when there is no empty car waiting

in that server station (ēii = 0). On the other hand, if that proved wrong and

ēii > 0, it would ensure that ride requests are picked up and served in that

region, thus āi = 1.

13

3.4.1 Theorem 1

This first theorem links the random variables representing the number of full

and empty cars driving across regions, and also the empty cars waiting still

in one region, with the a feasible solution of the system of equations (1) − (7)

representing the fluid-based optimization problem. More specifically, Theorem

1 by Braverman et al. (2019) states that, given a solution of equations (1)− (7)(
q, ē, f̄ , ā

)
, as N →∞ we have that

FNij (∞)⇒ f̄ (8)

ENij (∞)⇒ ēij 1 ≤ i 6= j ≤ r (9)

ENii (∞)⇒ 0 for any i such that āi < 1 (10)∑
i

ENii (∞)⇒
∑
i

ēii for any i such that āi = 1 (11)

P
(
ĒNii (∞) > 0

)
→ āi 1 ≤ i ≤ r (12)

This theorem states that, by setting our decision variable to q (the routing

policy stemming from the fluid-based optimization problem), random variables

representing the distributions of full and empty cars idling around the city will

asymptotically converge to the expected values of such quantities, which are

obtained by solving the aforementioned optimization problem.

3.4.2 Theorem 2

Theorem 2 by Braverman et al. (2019) is divided in two parts (a) and (b).

Part (a) states the following: Let
(
q∗, a∗, e∗, f∗

)
be an optimal solution for the

optimization problem defined by equations (1)− (7). Then,

r∑
i=1

r∑
j=1

ANt (∞)λiPijcij <

r∑
i=1

r∑
j=1

ā∗i λiPijcij with N > 0

Part (b) affirms that, letting
(
Ē(N)∗(t), F̄ (N)∗(t)

)
be the CTMC under the static

routing policy q∗, if

Pij > 0 1 ≤ i, j ≤ r

q∗ii > 0 1 ≤ i ≤ r

then,

lim
N→∞

r∑
i=1

r∑
j=1

A
(N)∗
t (∞)λiPijcij =

r∑
i=1

r∑
j=1

ā∗i λiPijcij

14

The second theorem by Braverman et al. (2019) gives two main contributions to

their work. The first part states that, given an optimal solution of the fluid-based

optimization problem, the resulting utility is proved to be an “upper bound on

the expected system utility of the system with N cars under any state-dependent

routing policy”(Braverman et al. (2019)). Moreover, the second part states that

it is actually possible to attain such result as N →∞ by enforcing the resulting

optimal static empty-car routing policy q∗.

3.4.3 Solving Procedure

In order to solve the system of equations (1)-(7), it is necessary to handle the

bilinear constraint they exhibit. There are many methods available to transform

such systems into optimization problems with linear constraints only and in the

next lines we are going to see the reasoning adopted by Braverman et al. (2019)

in this respect.

Here is the transformed set of constraints:

āλiPij = f̄ijµij 1 ≤ i, j ≤ r (13)

µij ēij ≤
r∑

k=1

µkif̄ki 1 ≤ i, j ≤ r, j 6= i (14)

r∑
k=1;k 6=i

(
µkiēki

)
≤ λiāi ≤

r∑
k=1;k 6=i

(
µkiēki

)
+

r∑
k=1

(
µkif̄ki

)
1 ≤ i ≤ r (15)

λiāi +

r∑
j=1;j 6=i

(
µjiēji

)
=

r∑
k=1;k 6=i

(
µkiēki

)
+

r∑
k=1

(
µkif̄ki

)
1 ≤ i ≤ r (16)

(
ē, f̄
)
∈ T (17)

0 ≤ āi ≤ 1 1 ≤ i ≤ r (18)(
1− āi

)
ēii = 0 1 ≤ i (19)

Braverman et al. (2019) prove that if the solution
(
ē, f̄ , ā

)
and q satisfy the

equations (1)-(7), then it will be a solution of (13)− (19) as well. On the other

hand, if this solution holds for (13)− (19), then it will satisfy (1)-(7), provided

that the decision matrix Q is defined as follows:

qij =
µij ēij∑r

k=1(µkif̄ki)
1 ≤ i, j ≤ r, j 6= i

qii =
λiāi −

∑r
k=1(µkiēki)∑r

k=1(µkif̄ki)
1 ≤ i ≤ r

(20)

15

It can be noticed that in the new system (13) − (19), one bilinear constraint

is still present, namely equation (19). Braverman et al. (2019) deal with the

bilinearity of this equation proving that it can be easily overlooked, since any

optimal solution of the system (13)− (18) will satisfy this constraint.

Hence, the new target optimization problem is determined by (13) − (18),

which can be easily solved with the aid of a standard software. After that, all is

needed is to plug the resulting variables into equation (20) and find the optimal

empty-car routing policy we have been looking for.

3.5 Experimental Results

This section will be devoted to the description of the real-world data study

carried out by Braverman et al. (2019) to test the optimal routing policy they

obtained from their model. The dataset they relied on is from Didi Chuxing

(2019) (“Didi”), one of the largest transportation platforms operating in Asia

and Latin America.

Their tests were aimed at building on the theoretical results from Theorem

2 and verify how the static empty-car optimal policy would perform in a finite-

cars setting against two widely used state-dependent policies. Based on revenue

generation function (equation 1) maximized by the fluid-based system, they

started off by defining a Utility function as follows:

U(ē, f̄ , ā) = U(ā) =

∑r
i=1 āiλi∑r
i=1 λi

(21)

with the reward function for completing a ride equal to cij = 1∑r
i=1 λi

. This

formula is to be interpreted as the ratio between the rate of fulfilled requests,

given by the numerator
∑r
i=1 āiλi, and the total rate of requests, given by the

denominator
∑r
i=1 λi. This was used as a metric of policy performance on the

given dataset.

Let us understand how those two state-dependent policies work. The first

one is named Join-the-Least-Congested-Region with Threshold η (JLCR-η) and

works exactly as its name suggests, meaning a driver, after completing a ride,

relocates empty in a different region if and only if the difference in congestion

(mass of empty cars both waiting and driving towards region i) between the two

regions exceeds η times a measure of congestion, otherwise the driver waits still

in the region she currently is. The other policy used in the test is called Shortest

16

Wait and, as also in this case the name suggests, it is aimed at minimizing the

time that drivers have to wait to get their next passenger. Indeed, a driver will

wait in region i if the expected time to get the next ride request is the minimum

across all the regions, also taking into account the time it would take to get to

each destination and the number of cars that are expected to leave the region

in the meanwhile.

Their main result is shown by Figure 1, which compares the performance

of all the policies, plotting the Availability against the number of cars in the

system. Among the lines in the plot, U∗ is the optimal utility attained in the

fluid limit with the estimated parameters, while, concerning U(N), they run

a simulation increasing the number of cars in the system keeping the lambdas

constant. Let us remember that the process (E(N), F (N)) is the CTMC, and,

moreover,the availability in each region is ANi = P
(
ĒNii (∞) > 0

)
Thus, what

Braverman et al. (2019) did is the following: they simulated the Markov Chain,

let it run until it achieved a stationary distribution, then they replaced the

availability in the limit with the fraction of times in which ENii > 0. This

Figure 1: Plot extracted by Braverman et al.(2019)

provided an estimate for āi, which was plugged in equation 21. This procedure

was then repeated for many values of N to obtain the blue curve in Figure 1.

The plot exhibits great performance by the optimal static policy Q∗ resulting

from the fluid-based optimization model, as it outperforms both JLCR-η and the

Shortest Wait policy. Nonetheless, it is important to specify that the amount of

parameters needed to compute Q∗ is far higher than those required by JLCR-η,

17

as the latter only needs knowledge of λ, whereas the former make use of λ, µ

and the matrix P .

4 Simulation on Chicago Transportation Net-

work Data

4.1 Overview

In this section we describe the practical implementation of the approach by

Braverman et al. (2019) on a different real-world dataset and aim to depict the

differences in performance of the model. Specifically, we estimated the param-

eters λ,µ and Pij from the data, solved the fluid-based optimization problem

specified by equations (1) and (13) − (18) and computed the achieved Utility

given by equation (21) so as to make a comparison of the results across datasets.

4.2 The Dataset

The dataset we employed for our analysis contains the records of trips from the

“Transportation Network Providers”, namely ridehailing systems, of Chicago

(US) and is available on the Chicago Data Portal (2021). On this platform,

developers can find any sort of Open Data recorded in the city and use them to

carry out analyses and simulation. The available dataset contains approximately

195 millions observations, where each observation is one trip, and all the orderd

recorded were fulfilled. The dataset is updated once every three months and

includes records starting from November 2018. The city is partitioned in a

number of distinct regions.

We started off connecting to an API to get the data from the portal and

retrieving observations from April 2021 (roughly 200000 rides). This process

required a large amount of time and computational power and that is why we

restricted the scraping to such limited data.

client = Socrata("data.cityofchicago.org",

app_token= "my_app_token",

username="my_username",

password="my_password",

18

timeout=10000)

results = client.get("wrvz-psew", limit=200000)

results_df = pd.DataFrame.from_records(results)

Next, we see how the dataset was manipulated in order to perform the needed

estimations.

4.3 Data Cleaning & Preparation

The raw data needed to be preprocessed before we could dive into the estimation

of the parameters. In this section, we describe all the steps of the preprocessing

phase that eventually lead to the polished dataset used in the simulations.

The dataset originally had 21 columns, which are showed here below:

Input:

chicago_raw.columns

Output:

Index(['Unnamed: 0', 'trip_id', 'taxi_id',

'trip_start_timestamp',↪→

'trip_end_timestamp', 'trip_seconds', 'trip_miles',

'pickup_community_area', 'dropoff_community_area',

'fare', 'tips',↪→

'tolls', 'extras', 'trip_total', 'payment_type',

'company',↪→

'pickup_centroid_latitude', 'pickup_centroid_longitude',

'pickup_centroid_location', 'dropoff_centroid_latitude',

'dropoff_centroid_longitude',

'dropoff_centroid_location',↪→

':@computed_region_vrxf_vc4k', 'pickup_census_tract',

'dropoff_census_tract'],

dtype='object')

Not all this information was needed to carry out our analysis, thus we immedi-

ately removed the unnecessary columns.

19

#drop not needed columns

chicago_raw.drop('Unnamed: 0', axis=1, inplace=True)

chicago_raw.drop('fare', axis=1, inplace=True)

chicago_raw.drop('tips', axis=1, inplace=True)

chicago_raw.drop('tolls', axis=1, inplace=True)

chicago_raw.drop('extras', axis=1, inplace=True)

chicago_raw.drop('payment_type', axis=1, inplace=True)

chicago_raw.drop('company', axis=1, inplace=True)

chicago_raw.drop('pickup_centroid_latitude', axis=1,

inplace=True)↪→

chicago_raw.drop('pickup_centroid_longitude', axis=1,

inplace=True)↪→

chicago_raw.drop('pickup_centroid_location', axis=1,

inplace=True)↪→

chicago_raw.drop('dropoff_centroid_latitude', axis=1,

inplace=True)↪→

chicago_raw.drop('dropoff_centroid_longitude', axis=1,

inplace=True)↪→

chicago_raw.drop('dropoff_centroid_location', axis=1,

inplace=True)↪→

chicago_raw.drop(':@computed_region_vrxf_vc4k', axis=1,

inplace=True)↪→

chicago_raw.drop('pickup_census_tract', axis=1, inplace=True)

chicago_raw.drop('dropoff_census_tract', axis=1, inplace=True)

The resulting dataset only constained 8 columns and Table 2 reports the de-

scription of each variable that made it to the final version of the dataset.

20

Table 2: Variable name and description in the final version of the dataset

Variable Name Description

trip id Unique id of the ride

taxi id Unique id of the car

trip start timestamp Timestamp (format yy-mm-dd H-M-S)

of the moment the ride started

trip end timestamp Timestamp (format yy-mm-dd H-M-S)

of the moment the ride ended

trip seconds Total duration of the ride (in seconds)

trip miles Total length of the ride (in miles)

pickup community area Region of the city where the passenger

was picked up (from 1 to 77)

dropoff community area Region of the city where the passenger

was dropped off (from 1 to 77)

trip total Total fare for the trip

We proceeded by dropping the rows that contained Null Values, since the

dataset only contained records for completed rides, which means that those

could be classified as misrecorded observations.

#Check number of null values in each column

chicago_raw.isnull().sum()

#drop all observations with NaN values

chicago_raw = chicago_raw.dropna(how='any',axis=0)

zero_values = chicago_raw[chicago_raw.eq(0).any(1)]

chicago_raw = chicago_raw.drop(zero_values.index)

21

Discrepancies in the data may come in many forms. In the next lines, we

describe how we handled the various types of badly recorded data.

We first checked the maximum values for “trip miles” and “trip total”, so

as to verify whether any unexpectedly high value occurred in those columns.

Input:

chicago_raw[['trip_miles','trip_total']].max()

Output:

trip_miles 994.50

trip_total 8260.56

dtype: float64

We then investigated on the other columns’ values of those observation.

Input A:

chicago_raw.loc[chicago_raw['trip_miles'].idxmax()]

Input B:

chicago_raw.loc[chicago_raw['trip_total'].idxmax()]

Output A:

trip_id

bdedfa0e22bb43b26988e9c77bafce825a9dc0d4↪→

taxi_id

279e6ef4129260b19e953938f5ca14fba369cbd6db1f06...↪→

trip_start_timestamp 2021-04-11

18:30:00.000↪→

trip_end_timestamp 2021-04-11

18:45:00.000↪→

trip_seconds

1200↪→

trip_miles

994.5↪→

pickup_community_area

56↪→

dropoff_community_area

8↪→

22

trip_total

30.25↪→

Name: 150665, dtype: object

Output B:

trip_id

41a6bd4d878d8b54aaa4cd1526252e978f54051c↪→

taxi_id

10b2fc771259a5d8a802c85b6a1d0f5efe023f55bbd504...↪→

trip_start_timestamp 2021-04-17

13:45:00.000↪→

trip_end_timestamp 2021-04-17

13:45:00.000↪→

trip_seconds

180↪→

trip_miles

0.6↪→

pickup_community_area

39↪→

dropoff_community_area

39↪→

trip_total

8260.56↪→

Name: 105119, dtype: object

It was clear that those were discrepancies in the data, since, for instance, 994.5

miles is inconsistent with the total fare and the duration of the ride. Therefore,

we deleted all the observation exhibiting such characteristics.

discrepancies = chicago_raw[(chicago_raw['trip_miles'] >

chicago_raw['trip_total']) & (chicago_raw['trip_miles'] >

100)]

↪→

↪→

chicago_raw = chicago_raw.drop(discrepancies.index)

At this point, the dataset was almost suitable for the extrapolation of the param-

23

eters. As we aimed at following the same procedure as Braverman et al. (2019),

we selected the same time window of the day and filtered the data in order to

obtain only rides occurred between 5 pm and 6 pm.

chicago_raw['trip_start_timestamp']

=chicago_raw['trip_start_timestamp'].str.slice(0, 18)↪→

chicago_raw['trip_end_timestamp']

=chicago_raw['trip_end_timestamp'].str.slice(0, 18)↪→

chicago_raw['trip_start_timestamp'] =

pd.to_datetime(chicago_raw['trip_start_timestamp'],

format='%Y-%m-%dT%H:%M:%S')

↪→

↪→

chicago_raw['trip_end_timestamp'] =

pd.to_datetime(chicago_raw['trip_end_timestamp'],

format='%Y-%m-%dT%H:%M:%S')

↪→

↪→

chicago_raw.index = chicago_raw['trip_start_timestamp']

chicago_raw = chicago_raw.drop('trip_start_timestamp', axis=1)

chicago_raw=chicago_raw.between_time('17:00:00', '18:00:00')

In the next section, we present the procedure we followed to estimates the

parameters of our 5-regions Network which were subsequently used in the opti-

mization problem.

4.4 Parameters Estimation

In this section, we illustrate how we extrapolated the parameters λ,µ and Pij

from our data following the same procedure Braverman et al. (2019) also used.

One last passage before estimating our variables was to define our network

of regions, namely we selected the 5 regions among which the highest number

of rides occurred. Instead of opting for 9 regions, as in Braverman et al. (2019),

we selected a more restricted network and this decision was due to the limited

number of observations (and thus rides occurred) at our disposal.

trips_per_region=

chicago.groupby("pickup_community_area")["trip_id"].count()↪→

trips_per_region = trips_per_region.sort_values()

24

most_requested_regions=[]

for i in trips_per_region.index[-5:]:

most_requested_regions.append(i)

most_requested_regions.sort()

mrr=most_requested_regions

chicago=chicago[chicago['pickup_community_area'].isin(mrr)]

chicago=chicago[chicago['dropoff_community_area'].isin(mrr)]

The final version of our dataset contained 5182 rides originating and ending in

the following regions:

Input A:

chicago.shape

Output A:

(5182, 8)

Input B:

most_requested_regions

Output B:

[6.0, 8.0, 28.0, 32.0, 76.0]

At this point, we were ready to estimate the parameters of the network.

Similarly to the rest of the simulation, we carried out the same procedure as

Braverman et al. (2019), we computed the matrix µ, namely the service rate,

using the average travel time among the regions in the network. In order to do

that, we first built a multi-index series with lists of all the records for travel

times among regions.

Input:

chicago_restricted =

chicago[['pickup_community_area','dropoff_community_area',↪→

'trip_seconds']]

25

#create a multi-index series

#with the list of all travel times among regions i and j

new=chicago_restricted.groupby(['pickup_community_area',

'dropoff_community_area']).trip_seconds.apply(list)

#example of the output for region 8

new[8.0]

Output:

dropoff

6.0 [1380.0, 1080.0, 1080.0, 1260.0, 1270.0, 979.0...

8.0 [180.0, 326.0, 360.0, 42.0, 384.0, 180.0, 720....

28.0 [720.0, 1042.0, 720.0, 720.0, 978.0, 540.0, 48...

32.0 [480.0, 245.0, 300.0, 720.0, 531.0, 1380.0, 41...

76.0 [3780.0, 2358.0, 3980.0, 2880.0, 3600.0, 2040....

Name: trip_seconds, dtype: object

Only then we were able to compute the average travel time per region and insert

the values into a matrix.

mrr = most_requested_regions

mu =[[0 for x in range(len(mrr))] for x in range(len(mrr))]

for row in range(len(mrr)):

for col in range(len(mrr)):

mu[row][col] = 1/(statistics.mean(new[mrr[row]][mrr[col]]))

The resulting matrix µ is

µ =

0.00201 0.00115 0.00062 0.00079 0.00041

0.00097 0.00227 0.00138 0.00184 0.00034

0.00069 0.00142 0.00152 0.00177 0.00036

0.00099 0.00196 0.00257 0.00298 0.00016

0.00039 0.00040 0.00040 0.00037 0.00058

26

As in Braverman et al. (2019), to compute Pij , namely the probability of picking

up a passenger and driving her from region i to j, we consider the number of rides

from region i to region j, and divide by the total number of orders originating

at i.

P_ij=[[0 for x in range(len(mrr))] for x in range(len(mrr))]

for row in range(len(mrr)):

from_i=0

for i in range(len(mrr)):

from_i += len(new[mrr[row]][mrr[i]])

for col in range(len(mrr)):

P_ij[row][col] = len(new[mrr[row]][mrr[col]])/from_i

The output is the following matrix:

Pij =

0.4900 0.3346 0.0796 0.0876 0.0079

0.1021 0.4762 0.1806 0.2248 0.0161

0.0563 0.3848 0.3140 0.2254 0.0193

0.0566 0.4457 0.2524 0.2330 0.0121

0.1618 0.4422 0.1051 0.1567 0.1340

To determine the arrival rate at region i, we computed the average number of

orders originating at region i per time slot. Now, differently from Braverman

et al. (2019), our dataset did not divide time in slots, thus we further processed

the data to achieve that outcome manually.

timeslot= [0 for x in range(7)]

#creating timeslots through dictionary

dct= {}

dct['17:00']= 1

dct['17:15']= 2

dct['17:30']= 4

27

dct['17:45']= 5

dct['18:00']= 7

lambdas=[]

for i in range(len(chicago.index)):

a = str(chicago.index[i])[-8:-3]

timeslot[dct[a]-1]+=1

for j in mrr:

region_timeslot = [0 for x in range(7)]

for i in range(len(chicago.index)):

a = str(chicago.index[i])[-8:-3]

row = chicago.values[i]

if row[5]==j:

region_timeslot[dct[a]-1]+=1

sum=0

for i in range(len(timeslot)):

if timeslot[i] != 0: sum+=region_timeslot[i]/timeslot[i]

lambdas.append(sum)

The output is our estimate for Nλ. Given that our dataset provided the unique

IDs for the taxis that completed each ride (“taxi id” column), we estimated the

number of cars N in the system simply by counting the number of distinct IDs

in our dataset.

Input:

N = len(set(chicago['taxi_id']))

N

Output:

673

Thus, the vector λ resulting from our estimation is

λi =

(
0.00036 0.00301 0.00089 0.00177 0.00139

)
The whole set of parameters is now ready, it is time to see how we set up and

28

solved the optimization problem.

4.5 Optimization Problem

In this section we describe the main tools used to solve the optimization problem

and the main results. Let us remind that the system we solved is specified by

max
q,ē,f̄ ,ā

r∑
i=1

r∑
j=1

āiλiPijcij

subject to Equations (13)-(18)

In order to find the solution to the linear program we used the “PuLP library,

an open source package that allows mathematical programs to be described in

the Python computer programming language.”(Mitchell et al. (2011)). The

natural language supported by this library makes the code easy to write and

understand.

#Creating problem object

prob = LpProblem("FLUID_LIMIT", LpMaximize)

#Defining optimizers

e= LpVariable.dicts("e", [(i, j) for i in range(5) for j in

range(5)], 0, 1)↪→

f= LpVariable.dicts("f", [(i, j) for i in range(5) for j in

range(5)], 0, 1)↪→

a= LpVariable.dicts("a", [i for i in range(5)], 0, 1)

#Objective Function

obj=0

for j in range(5):

obj += lpSum(a[i]*lambda_i[i]*P_ij[i][j]*payoff for i in

range(5))↪→

prob+=obj

#Constraints

#Equation (13)

for i in range(5):

for j in range(5):

prob+=lambda_i[i]*a[i]*P_ij[i][j]==mu[i][j]*f[(i,j)]

#Equation (14)

29

for i in range(5):

for j in range(5):

if j==i:continue

prob+= mu[i][j]*e[(i,j)] <= lpSum(mu[k][i]*f[(k,i)] for k in

range(5))↪→

#Equation (15)

for i in range(5):

right_sum_ki=lpSum(mu[k][i]*f[(k,i)] for k in range(5))

for k in range(5):

if k==i:continue

mid_sum_ki=lpSum(mu[k][i]*e[(k,i)])

left_sum_ki=lpSum(mu[k][i]*e[(k,i)])

prob+= left_sum_ki <= lambda_i[i]*a[i]

prob+= lambda_i[i]*a[i] <= mid_sum_ki + right_sum_ki

#Equation (16)

for i in range(5):

for j in range(5):

if i==j: continue

left_sum_ij=lpSum(mu[i][j]*e[(i,j)])

for k in range(5):

if k==i:continue

mid_sum_ki=lpSum(mu[k][i]*e[(k,i)])

prob+= lambda_i[i]*a[i] + left_sum_ij == mid_sum_ki +

lpSum(mu[k][i]*f[(k,i)] for k in range(5))↪→

#Equation (17)

for i in range(5):

prob+=lpSum(e[(i,j)] for j in range(5))+lpSum(f[(i,j)] for j

in range(5))==1↪→

#Solving System

prob.solve()

We proceeded by computing the achieved utility U , given by Equation (21).

30

Input:

U=0

for i in range(5):

l_i=lambda_i[i]

a_i=a[i].varValue

U+=a_i*l_i*payoff

U

Output:

0.4995716209914585

4.6 Simulation

In this section we illustrate the methodology followed for our simulation, provide

explanation for the differences with the one by Braverman et al. (2019) and

analyze the attained results.

As we previously specified in Section 3.5, Braverman et al. (2019) simulated

a Markov Chain for multiple values of N in order to plot U (N). This was not

possible for us as the computational power needed far exceeded ours, thus we

decided to opt for another tactic. Instead of keeping the lambdas constant, we

iteratively computed the matrix λ for different values of N (let us remember

that, as in Braverman et al. (2019), what we directly estimated from the data

is Nλ, thus each entry of the matrix had to be divided by N), consequently

changing also the payoff cij = 1/
∑r
i=1 λi. After that, we solved the optimization

problem many times utilizing different matrices λ and payoffs cij .

a_solution=[]

payoff_solution=[]

lambda_solution=[]

for n in range(1,5000):

N=n

lambda_i =[lambdas[i]/N for i in range(len(lambdas))]

lambda_i_arr = np.array(lambda_i)

payoff=1/(np.sum(lambda_i_arr))

prob = LpProblem("my_data", LpMaximize)

31

e= LpVariable.dicts("e", [(i, j) for i in range(5) for j in

range(5)], 0, 1)↪→

f= LpVariable.dicts("f", [(i, j) for i in range(5) for j in

range(5)], 0, 1)↪→

a= LpVariable.dicts("a", [i for i in range(5)], 0, 1)

#objective function

obj=0

for j in range(5):

obj += lpSum(a[i]*lambda_i[i]*P_ij[i][j]*payoff for i in

range(5))↪→

prob+=obj

#constraints

for i in range(5):

for j in range(5):

prob+=lambda_i[i]*a[i]*P_ij[i][j]==mu[i][j]*f[(i,j)]

for i in range(5):

for j in range(5):

if j==i:continue

prob+= mu[i][j]*e[(i,j)] <= lpSum(mu[k][i]*f[(k,i)] for k

in range(5))↪→

for i in range(5):

right_sum_ki=lpSum(mu[k][i]*f[(k,i)] for k in range(5))

for k in range(5):

if k==i:continue

mid_sum_ki=lpSum(mu[k][i]*e[(k,i)])

left_sum_ki=lpSum(mu[k][i]*e[(k,i)])

prob+= left_sum_ki <= lambda_i[i]*a[i]

prob+= lambda_i[i]*a[i] <= mid_sum_ki + right_sum_ki

for i in range(5):

for j in range(5):

if i==j: continue

32

left_sum_ij=lpSum(mu[i][j]*e[(i,j)])

for k in range(5):

if k==i:continue

mid_sum_ki=lpSum(mu[k][i]*e[(k,i)])

prob+= lambda_i[i]*a[i] + left_sum_ij == mid_sum_ki +

lpSum(mu[k][i]*f[(k,i)] for k in range(5))↪→

for i in range(5):

prob+=lpSum(e[(i,j)] for j in range(5))+lpSum(f[(i,j)] for j

in range(5))==1↪→

#solving problem

prob.solve()

#creating lists with results

temp=[]

for key, value in a.items():

temp.append(value.varValue)

a_solution.append(temp)

lambda_solution.append(lambda_i)

payoff_solution.append(payoff)

Moreover, we stored multiple values of the resulting utility as N changed.

U=[]

for N in range(1,4999):

sum=0

payoff_solution_i=payoff_solution[N]

for i in range(5):

l_solution_i=lambda_solution[N][i]

a_solution_i=a_solution[N][i]

sum+=(l_solution_i*a_solution_i)

U.append(sum*payoff_solution_i)

Lastly, we plotted it against the number of cars in the system.

33

figure(figsize=(10, 8), dpi=80)

plt.plot(x_points, y_points)

plt.xlabel('Number of cars (N)')

plt.ylabel('Avalability (U)')

plt.xticks(np.arange(0, 5000, step=300))

plt.yticks(np.arange(0, 1.05, step=0.05))

ax = plt.axes()

ax.set(xlim=(0, 5000), ylim=(0, 1))

plt.axes(ax)

plt.show()

Figure 2 shows the resulting plot. Firstly, it is important to notice that the

graph plotted does not correspond specifically to U (N) which Braverman et

al. (2019) obtained. The main differences are that, not only we did not keep the

Figure 2: Availability

against the number of

cars in the system

parameters constant, but also did we use the availability a resulting from the

optimization problem in the fluid limit, instead of simulating an estimate based

on the stationary distribution of a Markov Chain. Indeed, what we plotted is

the Optimal Utility in the limit, against the number of cars in the system, thus

the corresponding value for U (N) would have most likely been lower. Also, this

explains the steep increase in availability on the left-hand side of the graph. Sec-

ondly, the attained result is suboptimal with respect to the one on the analysis

by Braverman et al. (2019), as our availability peaks at around 0.61, while theirs

34

is around 0.85. In this case, it can be quite confidently stated that this disparity

is due to the structural and qualitative differences in the datasets used, as the

methodology followed to manipulate the data and extrapolate the parameters is

the same. Moreover, the accuracy of the code for the optimization problem and

the absence of bugs in it is confirmed by the fact that, testing it with the param-

eters provided by Braverman et al. (2019) in their “Supplementary Material”,

we obtained the optimal utility equal to the one plotted in Figure 1.

Bibliography

Afeche, Philipp, Liu Zhe, and Costis Maglaras (2018). “Ride-Hailing Networks

with Strategic Drivers: The Impact of Platform Control Capabilities on Per-

formance”. In: doi: http://dx.doi.org/10.2139/ssrn.3120544.

Banerjee, Siddhartha, Daniel Freund, and Thodoris Lykouris (2017). Pricing

and Optimization in Shared Vehicle Systems: An Approximation Framework.

arXiv: 1608.06819 [cs.GT].

Banerjee, Siddhartha, Yash Kanoria, and Pengyu Qian (2020). Dynamic As-

signment Control of a Closed Queueing Network under Complete Resource

Pooling. arXiv: 1803.04959 [math.PR].

Besbes, Omar, Francisco Castro, and Ilan Lobel (2021). “Surge Pricing and Its

Spatial Supply Response”. In: Management Science 67(3), pp. 1350–1367.

doi: 10.1287/mnsc.2020.3622.

Bimpikis, Kostas, Ozan Candogan, and Daniela Saban (2019). “Spatial Pricing

in Ride-Sharing Networks”. In: Operations Research 67(3), pp. 744–769. doi:

10.1287/opre.2018.1800.

Braverman, Anton, J. G. Dai, Xin Liu, and Lei Ying (2019). “Empty-Car Rout-

ing in Ridesharing Systems”. In: Operations Research 67(5), pp. 1437–1452.

doi: 10.1287/opre.2018.1822.

Chicago Data Portal (2021). url: https://data.cityofchicago.org/Transportation/

Transportation-Network-Providers-Trips/m6dm-c72p (visited on 05/24/2021).

Curry, Michael J., John P. Dickerson, Karthik Abinav Sankararaman, Aravind

Srinivasan, Yuhao Wan, and Pan Xu (2019). Mix and Match: Markov Chains

and Mixing Times for Matching in Rideshare. arXiv: 1912.00225 [cs.DS].

Didi Chuxing (2019). url: https://www.didiglobal.com/about- didi/

about-us (visited on 05/19/2021).

35

https://doi.org/http://dx.doi.org/10.2139/ssrn.3120544
https://arxiv.org/abs/1608.06819
https://arxiv.org/abs/1803.04959
https://doi.org/10.1287/mnsc.2020.3622
https://doi.org/10.1287/opre.2018.1800
https://doi.org/10.1287/opre.2018.1822
https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p
https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p
https://arxiv.org/abs/1912.00225
https://www.didiglobal.com/about-didi/about-us
https://www.didiglobal.com/about-didi/about-us

Garg, Nikhil and Hamid Nazerzadeh (2021). Driver Surge Pricing. arXiv: 1905.

07544 [cs.GT].

Housni, Omar El, Vineet Goyal, Oussama Hanguir, and Clifford Stein (2021).

Matching Drivers to Riders: A Two-stage Robust Approach. arXiv: 2011.

03624 [math.OC].

Mitchell, Stuart, Michael OSullivan, and Iain Dunning (2011). “PuLP: a linear

programming toolkit for python”. In: The University of Auckland, Auckland,

New Zealand, p. 65.

Ong, Hao Yi, Daniel Freund, and Davide Crapis (2021). Driver Positioning and

Incentive Budgeting with an Escrow Mechanism for Ridesharing Platforms.

arXiv: 2104.14740 [cs.GT].

Özkan, Erhun (2020). “Joint pricing and matching in ride-sharing systems”.

In: European Journal of Operational Research 287(3), pp. 1149–1160. doi:

https://doi.org/10.1016/j.ejor.2020.05.028.

Özkan, Erhun and Amy R. Ward (2020). “Dynamic Matching for Real-Time

Ride Sharing”. In: Stochastic Systems 10(1), pp. 29–70. doi: 10.1287/stsy.

2019.0037.

Ross, S.M. (1996). Stochastic processes. Wiley. isbn: 9780471120629.

statista.com (2021). url: https://www.statista.com/statistics/1155981/

ride-sharing-market-size-worldwide/ (visited on 06/08/2021).

36

https://arxiv.org/abs/1905.07544
https://arxiv.org/abs/1905.07544
https://arxiv.org/abs/2011.03624
https://arxiv.org/abs/2011.03624
https://arxiv.org/abs/2104.14740
https://doi.org/https://doi.org/10.1016/j.ejor.2020.05.028
https://doi.org/10.1287/stsy.2019.0037
https://doi.org/10.1287/stsy.2019.0037
https://www.statista.com/statistics/1155981/ride-sharing-market-size-worldwide/
https://www.statista.com/statistics/1155981/ride-sharing-market-size-worldwide/

	Introduction
	Literature Review
	Model
	General Problem
	Analytical Tools
	Continuous-Time Markov Chain
	Fluid Approximation

	Analytical Problem
	Fluid System

	Results
	Theorem 1
	Theorem 2
	Solving Procedure

	Experimental Results

	Simulation on Chicago Transportation Network Data
	Overview
	The Dataset
	Data Cleaning & Preparation
	Parameters Estimation
	Optimization Problem
	Simulation

	Bibliography

