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Introduction

"Can machines think?" was what the well-known computer scientist Alan M.

Turing wondered in the middle of the last century, paving the way for the

exploration of the field of study that goes today under the name of Artifi-

cial Intelligence (AI), which can be briefly defined as intelligence exhibited by

machines or software. AI has undoubtedly been among the main drivers of

theoretical and technological advancement during the last decades, with a

wide range of applications across heterogeneous fields, and it promises to be

of the utmost importance in the near future as well.

Nowadays, after more than 70 years of research in the field and innova-

tion, it is safe to state that the focal question should not be whether machines

are actually able to formulate thoughts or take decisions, but rather how well

they can do it. Machines have already proved capable of achieving human-

like performance in several tasks. However, the concept of mimicking in

itself embeds, in fact, an intrinsic limit. From this perspective, the "artificial"

adjective would assume a negative connotation, in opposition to the "natu-

ral" one, identifying human intelligence. Anyway, the idea that AI represents

just a mere simulation of human thinking seems to be outdated, since AI

has proved itself able to play a crucial role in addressing tasks that even hu-

mans fail to attain flawless results in. The Machine Learning (ML) technique

known as Reinforcement Learning (RL) enabled the achievement of super-

human performance in many application fields, with the AlphaGo computer

program defeating a Go world champion being only one of several signifi-

cant examples.
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As a response to the pandemic of SARS-CoV-2, a vaccination campaign

has been carried out in Italy starting in January 2021. During the last months,

the level of efficiency of the adopted strategic plan, which had to take into

account both the limited amount of available vaccine doses and the max-

imum achievable daily rate of administration, has been questioned exten-

sively. Computational models of infection spread have been largely em-

ployed in the past in order to forecast outbreak severity and test different

intervention strategies on a huge number of stochastic simulations. The plan

of action finally selected was usually the one providing the best expected

performance, averaged over all the scenarios. However, when dealing with

a real outbreak, only one of the possible situations occurs in the end, with the

set of final outcomes shrinking constantly according to the observed realiza-

tion at each time step; there is no guarantee for the intervention strategy that

performed best on average to be also the optimal one for the final realized

scenario (Probert et al., 2019).

The present work suggests an approach to optimize vaccine distribution,

under supply constraints. The project has been developed starting from the

implementation of a model of infectious disease spreading over a graph,

which reproduces interconnections among people, labelled by age.

At first, the social network graphs and the epidemic model have been

built accordingly to publicly available Italian social contact data and COVID-

19 statistics. In an effort to reproduce such a complex environment, simplify-

ing assumptions had to be adopted.

In the second phase, an RL algorithm has been used. The RL agent in-

teracted with the simulated environment through a process of trial-and-error

learning, with the final goal of minimizing the expected cumulative number

of deaths.

When the agent is allowed to vaccinate only people in a target age group,
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the RL model, trained on graphs of different sizes - 100 and 500 nodes - ex-

hibits superior performance with respect to a naive implementation of the

same policy. Furthermore, if the constraint is relaxed and the agent is free

to choose among all the nodes, the obtained outcomes suggest an additional

improvement in terms of number of prevented deaths. The aforementioned

results could indicate a real chance for humans to actually adopt an efficient

AI-designed intervention strategy; from a general perspective, this seems to

represent a new opportunity for human beings of tackling social issues.

A possible practical implementation of the discussed approach for the op-

timization of vaccine distribution, together with some open questions, suit-

able for future analysis, is proposed at the end.
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Chapter 1

The Epidemic Model

1.1 The Social Network

1.1.1 Introduction to Graphs

A social network refers to a defined set of social actors – which may include

individuals, organizations, or other entities – and the social relationships that

connect them to each other in a larger structure (Cornwell and Schafer, 2016).

Social networks are naturally modelled as graphs.

A graph (N; g) consists of a set of nodes N = {1, . . . , n} and a real-valued

n× n matrix, g, where gij represents the relation between i and j. This matrix

is often referred to as the adjacency matrix, as it lists which nodes are linked

to each other, or in other words which nodes are adjacent to one another

(Jackson, 2008).

A network is directed if it is possible that gij 6= gji, i.e. the graph can be

defined in terms of ordered pairs of vertices in N, while it is undirected if it

is required that gij = gji for all nodes i and j, and the matrix g is therefore

symmetric.

The graph is referred to as a weighted graph if the entries of g assume more

than 2 values, in order to represent the relevance of the link; otherwise, it is

said to be unweighted, and gij can be either 0 or 1, indicating disconnection or

connection respectively.
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Graphs without any self-link (connecting a node to itself), and without

multiple links between two nodes, take the name of simple graphs. If self-

links and multiple links are permitted, the resulting structure is called a

multigraph. FIGURE 1.1 shows a wheel graph as an example of a simple, undi-

rected, unweighted graph, and the corresponding adjacency matrix.



0 1 1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0 0 1
1 1 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0
1 0 0 0 1 0 1 0 0 0
1 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0 1 0



FIGURE 1.1: An example of a wheel graph (top) and its adjacency
matrix (bottom)



Chapter 1. The Epidemic Model 6

1.1.2 Social Contact Rates (SOCRATES) Data Tool

The statistical data required to build the social network model has been col-

lected with the help of the Social Contact Rates (SOCRATES) Data Tool, an

online interactive tool allowing to retrieve social contacts matrices from open-

source data, with the aim of informing COVID-19 mitigation modelling (Willem

et al., 2020).

Through the user interface, data can be filtered by country, according to:

• Age Breaks (Age groups)

• Type of day

• Contact Duration

• Contact Intensity

• Gender

1.1.3 Statistical characteristics of the Italian population

The present analysis is based on the POLYMOD dataset (Mossong et al.,

2008). POLYMOD information on social contacts has been obtained using

cross-sectional surveys conducted by different commercial companies or pub-

lic health institutes. Survey participants have been recruited so as to be

broadly representative of the whole population. Italian data was collected

in May 2006.

In order to account for different habits, lifestyles and risk levels for severe

illness when contracting COVID-19, while still preserving model simplicity,

the population has been modelled into 3 age groups (TABLE 1.1).
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Age Age Group

[0,35) Youth

[35,65) Adult

65+ Senior

TABLE 1.1: Categorization of the population by age

POLYMOD data has been filtered, via the SOCRATES tool, according to

the following parameters:

• Age Breaks: 0, 35, 65

• Type of day: All contacts

• Contact Duration: More than 15 minutes

• Contact Intensity: Physical contacts

• Gender: All

TABLE 1.2 and FIGURE 1.2 show the population distribution by age group.

Age Group Population Proportion

[0,35) 22571554 0.3872870

[35,65) 24251709 0.4161154

65+ 11457946 0.1965976

TABLE 1.2: Population by age group
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FIGURE 1.2: Bar Chart - Population by age group

In an effort to model the social behaviours strongly affecting the spread

of COVID-19, social contacts have been considered. In FIGURE 1.3, each en-

try cmij of the Contacts Matrix, CM, represents the average number of daily

contacts of every individual of the age group j with the members of the age

group i.

FIGURE 1.3: POLYMOD Contacts Matrix for the Italian population
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1.1.4 A representative random graph

POLYMOD data has been used to develop a system for the generation of so-

cial random graphs: each node is assigned to an age group, and each pair of

nodes develops a link, independently of the others, with probabilities evalu-

ated from data, so as to reproduce Italian characteristics in terms of popula-

tion distribution by age group and contacts among them.

The social network model has been implemented in the Python program-

ming language using the NetworkX library (Hagberg, Schult, and Swart,

2008). For visualization purposes, the Matplotlib library has been used (Hunter,

2007).

Taking as input the total number of nodes N, the system generates a sim-

ple, undirected, unweighted graph, which represents one of the possible proba-

bilistic realizations.

FIGURE 1.4 shows an example of an output with N = 100.
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FIGURE 1.4: A representative random graph with N = 100. Light
Blue, Yellow and Violet colors represent respectively

the Youth, Adult and Senior age group
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1.2 The Model for Epidemic Spreading

A probabilistic model of infectious disease spreading on networks has been

developed and implemented. It is a low complexity model that inherits the

classical Susceptible-Infected-Removed (SIR) framework. In an effort to re-

produce such a complex environment, simplifying assumptions had to be

adopted. The main characteristics of the model are listed below.

• The model considers only 4 statuses of infection: Susceptible, Infected,

Recovered/Vaccinated, Dead. No distinction is made between diagnosed

and non-diagnosed Infected people (i.e. no control strategy is adopted

in case of infection) and between Recovered and Vaccinated individuals,

both assumed not to be infectable.

• The temporal resolution of the model is a day, i.e. the status of the

nodes is updated daily, simultaneously.

• There is no incubation period for the disease.

• Each Infected node infects every Susceptible neighbor (i.e. node it is di-

rectly linked with), independently of the other infections, with proba-

bility pSI .

According to this assumption, at each time step every Susceptible node

will become Infected with probability ih, which is a function of the num-

ber h of its Infected neighbors. It is enough that one single node manages

to successfully infect the Susceptible target for it to change its status.

The number of nodes infecting the target individual, X, is a binomial

random variable; its probability mass function with parameters n and

p is given by (Ross, 2004):

P(X = k) =
(

n
k

)
pk(1− p)n−k k = 0, 1, . . . , n
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Hence:

ih = P(X > 0) = 1− P(X = 0) = 1−
(

h
0

)
p0

SI(1− pSI)
h−0 = 1− (1− pSI)

h

where pSI has been set equal to 0.1, the value corresponding to the es-

timated probability of contagion for a physical interaction at a distance

of about 1m, according to (Agrawal and Bhardwaj, 2021).

• Each Infected node dies with probability da. For every age group a, ac-

cording to the data from (Stewart, 2021) (FIGURE 1.5), a mean death

probability has been calculated as a weighted average of the death rates,

with weights given by the percentage of population in each age bracket.

FIGURE 1.5: COVID-19 death rate in Italy, by age bracket
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Furthermore, a mean recovery probability has been computed as (1 -

{mean death probability}). To obtain da and ra, these probabilities have

been divided by the number of days for which COVID-19 symptoms

last on average, supposed to be 15 days. In this way, at each time step,

an Infected node is assumed to die or recover with the same probability,

da and ra respectively (TABLE 1.3).

Youth Adult Senior

da 0% 0.004% 0.72%

ra 6.7% 6.6% 6%

TABLE 1.3: Death & Recovery probability distributions by age group

• At each time step, the status of a node is updated according to the prob-

ability values shown in TABLE 1.4.

Susceptible Infected Recovered Dead

Susceptible 1-ih ih 0 0

Infected 0 1-ra-da ra da

Recovered 0 0 1 0

Dead 0 0 0 1

TABLE 1.4: The probability distributions for status update. Each
entry pij represents the probability that a node having

status i at time t, will have status j at time t + 1.

The settings of the epidemic model are thought to generate a disease spread-

ing consistent with a "worst-case scenario".
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1.3 Infection Spreading Example

The model for infectious disease spreading has been implemented using the

NDlib library (Rossetti et al., 2018). FIGURE 1.6 and FIGURE 1.7 show an

example of the spreading caused by 1 initially Infected node during a week.

FIGURE 1.6: Simulation of infection spreading (Day 0 - 3)
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FIGURE 1.7: Simulation of infection spreading (Day 4 - 7)
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Chapter 2

The Reinforcement Learning

Model

2.1 Introduction to Reinforcement Learning

Reinforcement Learning is defined as the science of learning to make deci-

sions from interaction. In a nutshell, RL refers to a trial-and-error learning

process, during which the agent should discover a good policy that maximizes

a reward by interacting with the environment (Madani, 2020). It is therefore an

active ML type of learning, that allows the agent to improve his performance

without examples of optimal behaviour. Some of the fundamental concepts

of RL are described below.

• Agent: the agent is a goal-directed actor who interacts with the envi-

ronment for a fixed number of time steps, taking actions picked from a

given action space. Interactions are usually sequential; previous choices

can therefore affect future ones.

• Environment: the environment encompasses everything the agent can

interact with. At each time step t, the environment characteristics are

defined by its internal state St. Depending on the specific problem

framework, the agent may or may not be aware of the whole St. When
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it cannot determine the state of the system at every time, the environ-

ment is said to be partially observable. Instead, if the agent is able to see

the full state, the environment is referred to as fully observable.

• Reward: the reward Rt is a scalar feedback signal informing the agent

about the quality of his actions; a value greater/smaller than 0 indi-

cates a positive/negative feedback respectively. The goal of the agent

is to maximize the (cumulative) reward ∑ Rt, which takes the name of

return. Reward signals could be either dense, meaning that they are pro-

vided at almost every time step, or sparse, if only certain events cause

the signal to be sent to the agent.

When the agent is able to observe to whole environment state (i.e. in a

fully observable environment), it is in a Markov decision process (MDP), defined

as follows:

the process Y = {Yt; t ≥ 0} with finite state space E is a Markov process if

the following holds for all j ∈ E and t, s ≥ 0

Pr{Yt+s = j|Yu; u ≤ t} = Pr{Yt+s = j|Yt}

In other words, the probability of the next state, conditioned on the cur-

rent state, is equal to the probability of the next state, conditioned on all the

previous states. The key Markov property can therefore be described with

the sentence "The future is independent of the past given the present" (Feldman

and Valdez-Flores, 2010).

A Markov state contains all useful information from the history. In RL

settings, this means that once the current environment state is know, the history

(made up of all the previous states) can be ignored. When the environment is

fully observable, the present state completely characterizes the process.
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During the interaction between the agent and the environment, at each

time step t:

• the agent receives an observation Ot (and possibly a reward Rt), and gen-

erates an action At

• the environment receives the action At and produces an observation Ot+1

(and possibly a reward Rt+1)

Combining an exploitation approach (taking advantage of the best known

option) and an exploration one (running the risk of collecting information

about unknown options), the agent should discover an efficient mapping

from states to actions, called policy, allowing it to maximize the final return.

2.2 A model-free approach

2.2.1 Q-Learning & Deep Q Network algorithms

The Q-Learning algorithm is a form of model-free RL: it addresses the RL task

by directly mapping environment states to actions, without attempting to

construct an exact model of the environment. It can be viewed as a method

of asynchronous dynamic programming (DP). Q-Learning is shown to con-

verge with probability one under reasonable conditions on the learning rates

and the Markovian environment (Christopher, 1992).

For the present analysis, the Deep Q Network (DQN) RL algorithm (Mnih

et al., 2013) has been used. DQN is a variant of the Q-Learning algorithm

which makes use of deep neural networks, with Stochastic Gradient Descent

(SGD) approach for weights update, in order to efficiently process training

data.
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2.2.2 The Agent-Environment interaction

The assumptions described in SECTION 1.2 enable the status of the nodes

to be a Markovian environment state. No information regarding the social

network graph or the epidemic model is provided to the RL model. The RL

agent is trained over a sequence of iterations, or episodes; every episode is

initialized with the same starting settings, in terms of social network graph

and nodes originally infected.

At each time step t, the agent receives the ordered list of statuses (obser-

vation Ot), and proceeds to select k different nodes (action At). The environ-

ment is then updated according to its choice: the Susceptible nodes among

the selected ones become Vaccinated. Since the agent is not aware of the envi-

ronment functioning, it might end up picking nodes that are either Infected,

already Recovered or Dead. In this case, the action does not affect the status

of those nodes. Every episode lasts seven days; at the end of each one, the

agent receives a scalar value R (the Reward), providing information about the

final environment state.

The Reward is calculated at the end of each episode as the sum of death

probability of every Infected or Dead node, multiplied by −1.

In formulas, for the i-th episode:

Ri = ∑
In f ected, Dead

− da

where da is the death probability for a node in age group a.

The RL model has been implemented by means of the Stable Baselines

library (Hill et al., 2018). A Multilayer Perceptron (MLP) neural network has

been used as the DQN policy. A Grid Search approach has been followed for

the optimization of the learning rate hyperparameter.
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Chapter 3

Model application & Results

3.1 Simulation settings

The initial number of Infected nodes h has been chosen according to the inci-

dence rate of 250 COVID-19 cases per 100 000 people, set by the Italian gov-

ernment as the "red zone" threshold in March 2021. Therefore:

h =

⌈
N · 250

100 000

⌉
=

⌈
N

400

⌉

where N is the total number of nodes in the graph.

The h nodes are selected at random at the beginning of the model training

phase and remain the same for all the episodes.

The number of daily vaccination k has been set in line with the average

administration rate, recorded in March 2021, of 250 000 vaccines every day. In

order to achieve a similar vaccines-to-population ratio, k has been calculated

as:

k =

⌈
N · 500 000

60 000 000

⌉
=

⌈
N

120

⌉

All the graphs have been plotted following the Kamada-Kawai algorithm,

that allows for symmetric drawings, while keeping the number of edge cross-

ing relatively small (Kamada, Kawai, et al., 1989).
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3.2 Simulations with 100 Nodes

Four simulations have been performed on a social network graph with N =

100 (k = 1, h = 1). In a first phase, only Senior nodes were entitled to receive

vaccines; this constraint was then relaxed in a second phase, and vaccination

was extended to all the nodes. The two cases have been studied both before

and after the application of the RL algorithm. TABLE 3.1 summarizes the four

scenarios.

Without RL Model With RL Model

Vaccination by age group "Senior - No RL" "Senior - RL"

No Vaccination strategy "All - No RL" "All - RL"

TABLE 3.1: Summary of the 4 simulations with 100 nodes

Every simulation has been run for 1000 seven-day episodes; in each case,

the RL model has been trained for a variable amount of time until the Reward

values stabilized on a low level (e.g. FIGURE 3.1). When the RL model has

not been applied ("No RL" cases), the action performed at every time step

has been picked randomly from the action space.
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FIGURE 3.1: Time evolution of the absolute value of the Reward (*1e-
2) during training. Each value is averaged over 100 episodes

("Senior - RL" simulation)

• "Senior - No RL" vs "Senior - RL"

In accordance with the main intervention strategy adopted during the

first phase of the vaccination campaign in Italy, in these simulations

only Senior nodes have been vaccinated.

FIGURE 3.2 and FIGURE 3.3 show the results in terms of Reward distri-

bution. The comparison evidences a shift of the distribution towards

higher values, with an increase in the mean and a reduction in the stan-

dard deviation, as underlined by the Gaussian fitting the data.
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FIGURE 3.2: Reward probability density (1000 episodes) in "Senior
- No RL" simulation

FIGURE 3.3: Same as FIGURE 3.2, but for "Senior - RL" simulation
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The comparison of FIGURE 3.4 and FIGURE 3.5 highlights strong differ-

ences in vaccine distribution. The RL agent strategy seems to outper-

form the simple homogeneous vaccination by age group: the aforemen-

tioned improvement in the average Reward appears to be achieved by

treating some nodes preferentially and ignoring some others. These re-

sults might suggest the existence of some graph nodes playing a major

role on the epidemic impact, evaluated in terms of total death probabil-

ity.

FIGURE 3.4: "Senior - No RL" Simulation. The colors indicate the
total number of vaccine doses received by each node over 1000 episodes
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FIGURE 3.5: Same as FIGURE 3.4, but for "Senior - RL" simulation

In an attempt to study the correlation between the total number of vac-

cine doses received by each node and its centrality value, based on

the main centrality measures used for Social Network Analysis (SNA)

(Jackson, 2008), their relationship has been investigated (FIGURE 3.6).

The scatterplots show a moderate degree of correlation between the

two variables, suggesting that the relative importance of a node, in

terms of maximizing the efficacy of the vaccination campaign, can hardly

be inferred a-priori from graph characteristics only. It is reasonable to
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deem the final RL strategy to be resulting from a multifactorial envi-

ronment, where the node status, together with the initial epidemic sce-

nario, contributes to defining the actions of the agent.

FIGURE 3.6: Scatterplots showing the relationship between the to-
tal number of vaccine doses received (x-axis) and different centrality

measures values (y-axis)



Chapter 3. Model application & Results 27

• "All - No RL" vs "All - RL"

In the second set of simulations, the vaccination has been extended

to every node indiscriminately, in an attempt to investigate the effec-

tiveness of a similar action plan. Similarly to the "Senior" case, results

shown in FIGURE 3.7 and FIGURE 3.8 highlight that the RL agent se-

lects preferential nodes for the vaccination. The graphs seem to con-

firm the validity of a strategy aimed at vaccinating primarily Senior

nodes. However, surprisingly enough, both Youth and Adult nodes can

be found among the selected ones.

FIGURE 3.7: Same as FIGURE 3.4, but for "All - No RL" simulation
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FIGURE 3.8: Same as FIGURE 3.4, but for "All - RL" simulation
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On average, on a seven-day episode, about 5 Senior, 1 Youth and 1 Adult

nodes are vaccinated (FIGURE 3.9).

FIGURE 3.9: Number of vaccinated nodes per age group, averaged
over 1000 episodes

FIGURE 3.10 and FIGURE 3.11 show again an improvement in the mean

Reward per episode in the "RL" with respect to the "No RL" simulation. The

stronger percentage increase, compared with the "Senior" case, leads in the

"All - RL" simulation to an average Reward even lower than the one achieved

in the "Senior - RL" (−1.31 · 10−2 vs −1.39 · 10−2). This result seems to in-

dicate that, in a supply-constrained scenario, Senior-only vaccination might

not represent the optimal strategy, since choosing not to vaccinate some Se-

nior nodes in favour of Youth and Adult ones could constitute a better action

plan.
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FIGURE 3.10: Reward probability density (1000 episodes) in "All -
No RL" simulation

FIGURE 3.11: Same as FIGURE 3.10, but for "All - RL" simulation
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As in the Senior case, no strong relationship between a great number of

vaccinations and a high values of centrality emerges from FIGURE 3.12.

FIGURE 3.12: Same as FIGURE 3.6, but for "All - RL" simulation
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3.3 Simulations with 500 Nodes

Two simulations have been performed on a social network graph with N =

500 (k = 2, h = 3), in an effort to assess the RL model performance on a

bigger network. TABLE 3.2 summarizes the two scenarios.

Without RL Model With RL Model

Vaccination by age group "Senior - No RL - 500" "Senior - RL - 500"

TABLE 3.2: Summary of the 2 simulations with 500 nodes

The outcomes seems to reproduce the ones obtained for the 100 node

graph, both in terms of Reward distributions (FIGURE 3.13 and FIGURE 3.14)

and nodes vaccination rate (FIGURE 3.15 and FIGURE 3.16), indicating the

possibility of generalising the results to even wider social networks.

Unfortunately, computing power represented a technical barrier to fur-

ther analyses.
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FIGURE 3.13: Reward probability density (1000 episodes) in "Senior
- No RL - 500" simulation

FIGURE 3.14: Same as FIGURE 3.13, but for "Senior - RL - 500"
simulation
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FIGURE 3.15: "Senior - No RL - 500" Simulation. The colors indi-
cate the total number of vaccine doses received by each node over 1000

episodes
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FIGURE 3.16: Same as FIGURE 3.15, but for "Senior - RL - 500"
simulation
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Conclusion

The present work is aimed at addressing the performance of an AI-driven

strategy for the optimization of vaccine distribution, under supply constraints.

The results show that the RL agent, trained using the DQN model-free algo-

rithm, is able to identify a policy that might outperform the widely adopted

strategy of vaccination by age group.

The proposed approach represents just a preliminary idea, which could

nonetheless open new scenarios in the management of future pandemic emer-

gencies. A lot of open issues still need to be addressed, from both the techni-

cal and the theoretical perspective.

The whole analysis has been performed employing a Reward function

which only aims at minimizing the total number of deaths at the end of every

7-day episode. More complex multifactorial functions, taking into account

additional economic and/or social factors (e.g. the social cost linked with

high hospitalization), could be implemented.

On the technical side, the chance of providing the Reward signal on a more

frequent basis, as well as the opportunity of modifying the temporal window

of each episode, has to be investigated.

The obtained outcome is anyway quite promising, suggesting that AI-

based decision making systems may find themselves playing a crucial role in

addressing future social issues.
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Appendix A

About the possibility of a practical

implementation

The vaccine distribution strategy has been a major social issue during the

early stage of COVID-19 vaccination campaign. FIGURE A.1 shows how the

U.S. Department of Health and Human Services identified three different

phases within the planned COVID-19 vaccination program on the basis of

the amount of doses available.

FIGURE A.1: Illustrative scenario for
COVID-19 vaccination planning

(HHS.gov, 2020)
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During the first phase, supply constraints bring the need for a highly tar-

geted administration. The approach discussed in this work could position

itself as a possible alternative to the vaccination by age strategy, applied ex-

tensively during the last months. The analysis shown in CHAPTER 3 might

suggest that an even more tightly focused administration could produce bet-

ter outcomes on a small network, with promising results on a larger scale.

The proposed application of the RL model might represent a smart preven-

tive approach.

However, while data reproducing the average characteristics of the Ital-

ian population has been used as input in this analysis, information about

a specific area or community would be needed in case of a more focused

employment. A practical implementation would certainly require an ade-

quate contact tracing system and high computing resources. Geolocation

data could help build an accurate social graph, reproducing a target com-

munity, modelled as an isolated network. Up-to-date backward tracing of

the contacts of infected individuals would contribute to defining the initial

epidemic situation.

Clearly, due to the adopted simplifying assumptions about both the social

network and the epidemic spreading, the present work provides only a pre-

liminary evidence of the effectiveness of an RL-driven control strategy, that

would need for extensive further validation.
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