
 1

Business and Management department
Management and Computer Science

Deep Learning Methods for
Speech-to-Text Systems

Academic Year 2020/2021

CANDIDATE
Jacopo Giannetti
232431

SUPERVISOR
Prof. Marco Querini

 2

 3

Deep Learning Methods for Speech-to-Text Systems
Jacopo Giannetti
Department of Business and Management
Luiss Guido Carli

Abstract

Machine learning is one of the most interesting innovations of the twenty-first century.
Born from the neuroscience studies of the early forties and evolved over time, it has
become what most similar to an artificial intelligence humanity has been able to create.
Machine Learning is based on complex structures called neural networks, which mimic
the functioning of neurons in our brain combined with optimization algorithms to allow
a machine to learn from the observation of results. This thesis explores one of the many
uses of these structures that is the study of the voice, focusing on speech recognition
methods and analyzing their functioning in details.

 4

CONTENTS

INTRODUCTION .. 6

1.1 MOTIVATION ... 6
1.2 METHODOLOGY .. 7

STATE OF THE ART .. 8
2.1 SYSTEMS ... 8
2.2 PYTHON LIBRARIES .. 10

BACKGROUND ... 12
3.1 THE HISTORY OF ARTIFICIAL NEURAL NETWORKS ... 12
3.2 NEURAL NETWORKS ... 14

3.2.1 Backpropagation .. 17
3.3 DEEP LEARNING .. 18
3.4 CONVOLUTIONAL NEURAL NETWORK ... 18

3.4.1 Max Pooling ... 20
3.4.2 Dense layer / Fully connected layer .. 20

3.5 RECURRENT NEURAL NETWORK .. 21
3.6 LONG SHORT-TERM MEMORY NEURAL NETWORKS (LSTM) ... 22
3.7 REGULARIZATION .. 23

3.7.1 Dropout .. 24
3.7.2 Weight decay ... 24

3.8 FOURIER TRANSFORM .. 25
RESEARCH .. 28

4.1 SPEECH RECOGNITION USING RECURRENT NEURAL NETWORKS .. 28
4.2 SPEECH-TO-SPEECH TRANSLATION USING DEEP LEARNING ... 29

4.2.1 Dataset and model ... 30
4.2.2 Results and experiments .. 30
4.2.3 Conclusions on the results .. 32

KEYWORD SPOTTING SYSTEM .. 33
5.1 KEYWORD SPOTTING SYSTEM .. 33
5.2 DATASET ... 34

5.2.1 Preparing the Dataset .. 34
5.3 CREATION AND TRAINING OF THE CNN .. 35
5.4 EXPERIMENTS ... 38

5.4.1 Removing Dropout ... 38
5.4.2 Increasing the number of predictable words .. 38
5.4.3 Changing the activation function ... 39

CONCLUSIONS ... 40

 5

“Nobody phrases it this way, but I think that artificial intelligence is
almost a humanities discipline. It's really an attempt to understand human

intelligence and human cognition.”

Sebastian Thrun

 6

1

Introduction

This thesis deals with the analysis of the current status, progress and major criticalities
of a Speech-to-Text translation carried out through the use of Artificial Neural
Networks. From self-driving cars to systems capable of understanding and analyzing
brain neuronal activations, Artificial Intelligence has indeed made incredible progress
in the last decade, principally thanks to the large availability of data related to the
digitalization of our lives. Of utmost importance, in this modern society that through
digitization pushes us to break the barriers that separate individuals, is the ability to
translate the human voice into a state that can be understood and analyzed by a
computer. This could open the doors for countless possible applications that arise from
the study, analysis and understanding of human voice. In particular, through the use of
neural networks, it is possible to create systems capable of understanding and
modelling the human voice in an increasingly accurate and reliable way, making
transcription, translation and real-time analysis of human language a reality that is day
by day more concrete.

1.1 Motivation

Given the incredible implications that the application of neural networks is having on
our society and given the increasingly recurrent use of these techniques for the analysis
of the human voice, which seems to improve exponentially over time with the
technological advancement, this thesis aims to analyze and confront the current
methods used in deep learning for speech recognition, through the study, the analysis
and experimentation on different models. For this analysis, I decided to study some of
the most advanced system and works available at the moment, in order to understand
what are the weakness and the strong point of this type of voice modelling. In the end
there will be also a practical experimentation, in which I built a model able to recognize
some keyword thorough the use of a convolutional neural network.

 7

1.2 Methodology

I started my work by analyzing the current state of the art of those systems, looking at
the most advanced network aimed at speech recognition developed by some of the
biggest company on the planet. All of these systems have very complex
implementation and are trained through huge dataset, which require extreme
computational power and efficient algorithms in order to be processed. This research
on the state of the art is described in chapter 2.
Chapter 3, instead, will be a very detailed explanation of the background behind the
functioning of neural networks. In the first part of the chapter is going to be described
the history of neural networks, form the first perceptron to more advanced models. The
functioning of these models will then be analyzed in detail, with clear description of
their functioning and of all the technique used for their training and modelling. In the
final part of the chapter are also explained some of the techniques used in particular
for the study of the voice.
Chapter four will be a detailed description of two of the most interesting works that I
researched and study, involving a Speech-to-text system and a more complex model
that deals with direct Speech-to-Speech translation.
The study of these models is very useful to fully understand the possible application
and uses of neural networks for the study of the voice, and also a very interesting way
to analyze and observe important experimentation made on these models by their
creators, in order to see and understand in detail, their functioning and structure.
In chapter 5 will be described instead a practical application of a speech recognition
system that I decided to build, try and experiment on my own. The code, entirely
written using Python, inspired by the work of Valerio Velardo (1), through the use of
Convolutional Neural Network is able to recognize a spoken word out of a list of ten
possible. In chapter 5.4.2 the model will also be expanded to handle 35 different words.
The program is able to generate an extremely efficient network, which after being
trained on a dataset containing about 3,800 audio files for each of the 10 words, for a
total of 38.000 audio files (increased to 133.000 during my experimentation) is able to
predict one of these with considerable certainty and accuracy. After the creation and
description of the model I also decide the make some experiments on it, several
different models have been created by varying the hyperparameters in order to optimize
the model in the most appropriate way. This experimentation part will also be described
in chapter 5 (5.4).
The last chapter will instead contain the conclusion of this work.

 8

2
State of the Art

In this chapter we analyze related work to our problem. If the purpose of this thesis is
a practical comparison between models that use convolutional neural network and
recurrent neural network to carry out Speech to text translation tasks, in this part we
will describe the best systems on earth that deal with this problem.

2.1 Systems

In this section we introduce some of the best software systems capable of
accomplishing a Speech to text translation. Many different companies are developing
speech recognition technology today. Tech giants like Google, Microsoft and IBM are
at the forefront of bringing these technologies to their platforms and services. At the
same time, they offer the technology to use as part of other companies' solutions. Most
of today's automated transcription services are based on one of the aforementioned
technologies from the tech giants1.

Google API

Google's main interests in the development of speech recognition technology are voice
input for mobile phones, voice search on the desktop and transcription and translation
of YouTube, which are the major platforms in which the giant operates.
The impressive technological development, in particular the development of neural
networks has brought immense improvements in the Google system, which as a pioneer
of this new technology can now be considered one of the greatest exponents in the field
of speech to text, with the greatest part of the "home-made" projects that rely on its

1Bohouta, Gamal & Këpuska, Veton (2017). “Comparing Speech Recognition Systems (Microsoft API, Google API And
CMU Sphinx)”. Journal of Engineering Research and Application. 2248-9622. 20-24. .

 9

API. To get the impression of the improvement brought by google in the world of
speech to text systems, one can think that the error rate of the Google API was 8% in
2015, 23% lower than in 20132. According to Pichai, senior vice president of Android,
Chrome, and Apps at Google, “We have the best investments in machine learning over
the past many years. Indeed, Google has acquired several deep learning companies
over the years, including DeepMind, DNNresearch, and Jetpac ".

Microsoft API

Microsoft develops its voice API primarily to implement the technology in its
Windows operating system. Microsoft recently announced that its speech recognition
technology has also reached the 95% artificial transcription accuracy threshold. It is an
interesting fact about Microsoft Speech API that the development of the technology
started as early as 1993. Microsoft has focused with a growing emphasis on speech
recognition systems and has improved its Speech API (SAPI) by using a context-
dependent Deep Neural Network Hidden Markov Model (Bohouta, Gamal & Këpuska,
Veton, 2017). Just recently Microsoft announced: "Historic Achievement: Microsoft
Researchers Achieve Human Parity in Conversational Speech Recognition" (2).

CMU Sphinx

CMU Sphinx is the generic term to describe a group of speech recognition systems
developed at Carnegie Mellon University. These include a set of speech recognizers
and an acoustic model trainer. Currently "CMU Sphinx has an extensive vocabulary,
speaker independent speech recognition code base and its code is available for
download and use"3.

Silero

Silero is a pre-trained enterprise grade speech to text and text to speech model.
It provides one of the best STT models in circulation which, the company said, would
achieve similar, if not superior, performance to the models offered by Google. Since
the model is pre trained there is not much experimentation possible to be executed on
it.

2 Filippidou F, Moussiades L. (2020) “Α Benchmarking of IBM, Google and Wit Automatic Speech Recognition Systems,
Artificial Intelligence Applications and Innovations”.

3 Carnegie Mellon University (2019). “CMUSphinx Tutorial for Developers”.

 10

2.2 Python libraries

Tensorflow

TensorFlow is an end-to-end open source platform designed for machine learning. The
Tensorflow library contains functions capable of executing neural networks in the most
precise and efficient way possible. It also has excellent documentation and a good set
of examples that make it one of the best choices for this type of project. It has a
comprehensive, flexible ecosystem of tools, libraries and community resources that
lets researchers push the state-of-the-art in ML and developers easily build and deploy
ML powered applications (3). The majority of the home-made systems that execute a
simple STT task, as the project analyzed for this work, are usually built with the help
of Tensorflow 2.

Pythorch

PyTorch is a Python-based computing package that uses the power of graphics
processing units. GPUs are in fact optimized for training artificial intelligence and deep
learning models as they can process multiple computations at the same time. This is
due to the fact that they have many cores, which allows for better computation of
multiple parallel processes. PyTorch is one of the most widely used deep learning
research platforms, built to provide maximum flexibility and speed. Given its affinity
in the use of RNN, in the second project treated in this thesis PyTorch was chosen as
the reference library

Keras

With the increasing number of users entering the world of deep nerual networks, more
and more common in the functioning of programs in today's society, the complexity of
the latter has always been a barrier to new programmers. There have been many
proposals for simplified APIs for modeling neural networks, and Keras is one of them.
Keras is a leading high-level neural network API written in Python that supports
multiple back-end neural network computation engines. It has been chosen as the
official TensorFlow 2 high level API.

 11

Scikit-Learn

Scikit-learn is a Python library that provides many unsupervised and supervised
learning algorithms. It uses other very useful libraries such as NumPy, pandas and
Matplotlib.
Features provided by scikit-learn includes: Regression (such as Linear and Logistic
Regression), Classification (such as K-Nearest Neighbors), Clustering (such as K-
Means and K-Means), Model Selection and Pre-Processing (such as Normalization
Min-Max)

 12

3
Background

In this section we introduce the History, the theory and the recent advancements within
the machine learning area that make a speech to text translation system possible. We
start by describing what is are neural networks and how do they work, while towards
the end we describe with more specificity the techniques used in particular for a speech
to text (STT) system.

3.1 The history of Artificial Neural Networks

The success of artificial neural networks has undoubtedly sparked a revolution in the
world of artificial intelligence in the last ten years.
What many people don't know, however, is that the basic idea of neural networks has
been around since 1950s. In 1957, Frank Rosenblatt invented the perceptron, a type of
neural network where binary neurons units are connected via adjustable weights.
Rosenblatt was inspired by the work of neuroscience in 1940s which led him to create
a crude replication of the neurons in the brain. Although the idea was theoretically
revolutionary and despite the countless efforts to find more efficient model layouts or
better learning algorithms, the computational power of the computers of the time did
not allow Rosenblatt's perceptron to obtain convincing results. Strongly convinced of
his idea, Rosenblatt did not give up easily, and tried to build a real machine, with a
similar functioning to that of a computer, built solely for the purpose of making the
hypothesized perceptron work.
The machine was made up of adjustable resistors controlled by small motors that turned
the resistors off and on while the machine "learned". When completed, Rosenblatt's
machine was able to classify images of simple shapes or letters. The New York Times
of July 13, 1958, reported the discovery with these words (4):

 13

“The Navy last week demonstrated the embryo of an electronic computer
named the Perceptron which, when completed in about a year, is expected to be

the first non-living mechanism able to "perceive, recognize and identify its
surroundings without human training or control."

The New York Times Archives, July 13, 1958

(Section E, Page 9)

In 1969 the book “Perceptrons: an introduction to computational geometry”, by Marvin
Minsky and Seymour Papert4, was published, it was a harsh critic on Rosenblatt’s
perceptrons, demonstrating that perceptrons sometimes failed even on extremely
simple task. At the time it was already clear that the conjunction of multiple levels to
the Rosenblatt model would have allowed not only to significantly improve the
reliability of the results of the system, but also to considerably increase the complexity
of the tasks that the perceptron was able to perform. Still, at the time, there was no
algorithm capable of training such a network, and the project was abandoned for
several years. It took seventeen years until such an algorithm, now known as “back-
propagation” was deviced. The new algorithm, invented by Rumelhart, D., Hinton, G.
and Williams5, which theoretically allowed neural networks to approximate any
function, ensured that in the field of artificial intelligence, great things were about to
happen. However, despite the great revolution that seemed to have changed things,
after a short time most scholars moved back to the study of other methods, such as
Support Vector Machine (SVM) or Bayesian style methods, since neural networks, for
some unknown reasons, still did not give the expected results.
The answer arrived several years later, the problem that prevented neural networks
from functioning as expected seemed evident: the lack of data and computation power.
For reference, at the beginning of 2002 the total amount of data produced worldwide
per year was estimated to be approximately 5 Exabytes, while the data generated
annually in the year 2019 is estimated to be 10 Zetabytes, an increase with the factor
of 20006.

4 Minsky, M., Papert, S. (1969). “Perceptrons: An Introduction to Computational Geometry”. Cambridge, MA, USA:
MIT Press.

5 Rumelhart, D., Hinton, G. & Williams, R. (1986). “Learning representations by back-propagating errors”.
Nature 323, 533–536.

6 Peter Lyman and Hal R. (2003). “How much information? coordinator: Kirsten Swearingen, School of Information
Management and Systems at the University of California at Berkeley.

 14

In 2012, the annual ILSVRC-2012 competition was won for the first time using a
neural network, achieving significantly better results than the runner-up7.

“In the ILSVRC-2012 competition we achieved a winning top-5 test error rate of
15.3%, compared to 26.2% achieved by the second-best entry”

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton

Computer capability and data availability allowed deep neural networks to outperform
classical approaches in many different fields, paving the way for a future in which
artificial intelligence will increasingly become the basis in the functioning of our
society.

3.2 Neural networks

The basis of this thesis largely depends on the subfield within machine learning called
artificial neural networks, generally referred to as neural networks. In 1989, Dr. Robert
Hecht-Neilsen defined neural networks as "... an accomplished computer system
composed of a series of simple and highly interconnected processing elements, which
process information based on their dynamic state of response to external inputs"8.
Figure 1 show an example of a simple artificial neural network, and it will be used in
this section in order to give an idea of the general structure of such a network.

There are three type of layer that form a neural network as seen in Figure 3.1. The input
layer is formed by the nodes which we feed our input data into. The output layer
contains the final nodes of the network and gives the output generated by the network
based on the given input in the input layer9. For an SST system the input that the input
layer receives is an audio file while the output of the network is transcription of the
audio file. The middle layer is also called the hidden layer, and it is basically the “core”

7 Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012), “Imagenet classification with deep convolutional neural
networks, Advances in neural Information processing systems”. (p./pp. 1097--1105).

8 Maureen Caudill (1989). “Neural nets primer”. Part vi. AI Expert, 4(2):61–67.

9 Wang SC. (2003). “Artificial Neural Network. In: Interdisciplinary Computing in Java Programming”.
The Springer International Series in Engineering and Computer Science, vol 743. Springer, Boston, MA

 15

of the network, where the input is processed in order to give an output. Roughly, the
size and number of hidden layers can determine how much information the network
can distinguish between. This is how the basic structure of a neural network is built,
now we will focus on how such a network can learn and train itself.
Inside of each layer we can found a specific set of nodes. From each node in one layer
there is an edge that connects to each of the nodes in the next layer, just as shown in
Figure 3.1. Each node performs a predefined calculation based on the input from the
edges. A classic, yet simple, type of node in neural networks is the McCulloch-Pitts
node10. An illustration of this node, or neuron as McCulloch and Pitt prefer to call them,
can be seen in figure 3.2. The calculations performed in the McCulloch-Pitts node are
basically a sigmoid function. They basically add up the inputs and, if these are above
a certain threshold, they produce 1, otherwise they produce 0. Obviously, there are also
much more complex representations of these nodes, but the McCulloch-Pitts neuron is
a good start point to understand the basics of neural networks.

Together with the aforementioned nodes, a neural network is also formed by the so-
called "edges", which we refer to when we talk about network weights. What they
basically do is multiply the output of a node by their weight before passing it on to the
next neuron they are connected to. By updating these weights, depending on the
generated output of an example, we can teach the network to distinguish which input
data should generate which output data. The procedure for updating weights is called
backpropagation and will be described in the next section.

10Warren S. McCulloch and Walter Pitts. (1943). “A logical calculus of the ideas immanent in nervous activity”.
The Bulletin of Mathematical Biophysics, 5(4):115–133.
.

 16

Figure 3.1: A simple example of the structure of a neural network

Figure 3.2: The McCulloch-Pitts neuron

 17

3.2.1 Backpropagation

The name back propagation comes from the term employed by Rosenblatt (1962) for
his attempt to generalize the perceptron learning algorithm to multiple layers, even if
none of the multiple attempts to do so during the 1960s and 1970s were especially
successful11. The backpropagation algorithm is one of the most important tools of an
artificial neural network, it is specifically the part which deals with the training of the
network, i.e. where it actually learns.
During this process the network updates the weights of all the edges to make it perform
the correct output given a specific input. The inner workings of the backpropagation
algorithm are explained by Rumelhart et al.12 and we will give an overview of the
concept in this section.

In a simplified way, the backpropagation algorithm takes care of observing the network
output, comparing it with the expected output and slightly modifying the network
weights so that the output approaches the expected output. To carry out this process,
the difference between the network output and the expected output is calculated. The
function that takes care of calculating this error is called the loss function. Being it an
approximation, the loss function uses its derivative, and must therefore be
differentiable by definition in order to work with the backpropagation algorithm.
We therefore want to update the network weights so that the output is more similar to
the expected output the next time the input is given to the network. We start by
calculating the partial derivative of the loss function with respect to the edges entering
the exit node. Each derivative expresses how much the output of the loss function
depends on the weight of each input. The weights are then updated and in the same
way it is possible to update the error of the activation functions in the nodes of the
previous layer. This update is recursively calculated down to the input level to update
the entire network13.

11 Yves Chauvin, David E. Rumelhart (1995). “Backpropagation: Theory, Architectures, and Applications”.

12 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams (1985). “Learning internal representations by error
propagation”. Technical report, DTIC Document.

13 Frederik Bredmar (2017). “Speech-to-speech translation using deep learning”. Department of Computer Science and
Engineering, University of Gothenburg.
.

 18

3.3 Deep learning

Deep learning enables computational models composed of multiple levels to learn data
representations with multiple levels of abstraction. These methods have improved the
state of the art in speech recognition, visual object recognition, object detection and
many other domains such as drug discovery and genomics. Deep learning is capable of
discovering complex patterns in large datasets, using the backpropagation algorithm,
mentioned in section 3.2.1, which enables the network to modify its internal parameters
used to compute the representation in each level from the representation in the previous
level. Deep convolutional networks have led to breakthroughs in image, video, speech
and audio processing, whereas recurrent nets have shone light on sequential data such
as text and speech14.

3.4 Convolutional neural network

A convolutional neural network is a subclass of neural networks that have at least one
convolution layer. They are great for capturing local information (eg neighboring
pixels in an image or surrounding words in text) as well as reducing model complexity
(faster training, requires fewer samples, reduces the chance of overfitting). We can
think of a Convolutional Neural Network (CNN) as an Artificial Neural Network
(ANN) that has some kind of specialization for being able to pick-out or detect patterns
from the input and make sense of them. This ability to pick up patterns is what makes
CNN so useful for analyzing images or sounds, such as image classification or single
word recognition. In this section we will explain what differentiates a Convolutional
Neural Network from a simple Multi-Layer Perceptron (MLP).

First a CNN has hidden layers called convolutional layers and these layers are precisely
what enables these networks to specialize in patterns detection. Although a CNN may
also have, as often happens, other types of layers, these convolutional layers are its
backbone. Like any other type of layer, also a convolutional layer receives an input,
transform it in some way, and output the transformed input to the next layer. In a
convolutional layer this transformation is called a convolutional operation.

14 LeCun, Y., Bengio, Y. & Hinton, G. (2015). “Deep learning” Nature 521, 436–444

 19

In order to understand this proces we can imagine as if each layer utilizes some filters,
which are what allow the network to detect hidden patterns. Specifically, when we talk
about "patterns" we are referring to any characteristic of the input, such as all the edges
or geometric shapes of an image. Each filter specializes randomly, during the training
of the network, in the recognition of characteristics of the input that it learns to
recognize as recurring within the set of inputs that is provided to it during the training
and therefore learning process. A filter could therefore begin to "specialize" in the
recognition of the edges of an image while another in the recognition of angles, or
circles, etc.
This type of simple and more or less geometric filters are the those that are created at
the beginning of the network, the deeper a network becomes, the more these filters can
become sophisticated and learn to recognize increasingly complex patterns. in
subsequent layers, therefore, instead of edges or simple shapes, our filters can
specialize in recognizing more abstract and specific shapes or objects, such as the
fundamental features of a face in a facial recognition system or the tones that make up
a word in a speech recognition system.
When we create and add a convolutional layer to our network, we must therefore first
specify how many filters we want the convolutional layer to have and the size of these
filters. Each filter can be thought of as a relatively small matrix for which we decide
the number of rows and columns. The values that initially fill our matrix are initialized
randomly. When a convolutional layer receives an input, the filter will slide over it
until it has covered all the input in its dimensionality. This sliding process is referred
to as convolving. While the filter passes over each value in which the input has been
decomposed, it multiplies the internal values of the matrix that composes it with the
values on which it is convolving. The matrix of dot products made by the sliding of the
filter on the originals input values matrix will be the final output of the convolutional
layer. This final output will summarize the feature that that filter has extracted, and
that’s why we call the output of a convolutional layer a feature map.

 20

3.4.1 Max Pooling

As we said before, a CNN is not only built with convolutional layers. Instead, usually,
after each convolutional layer we find a Pooling layer. We have seen that the
convolutional layers in a convolutional neural network summarizes the presence of
features in the input. One problem with output feature maps is that they are sensitive
to the location of features in the input. One approach to address this sensitivity is to
sample feature maps. This has the effect of making the resulting subsampled feature
maps more robust to changes in the position of the feature in the image, referred to by
the technical phrase "local translation invariance". Pool layers provide an approach to
down-sampling feature maps by summarizing the presence of features in feature map
patches. Two common pooling methods are the medium pool and the maximum pool
which summarize the average presence of a feature and the most activated presence of
a feature, respectively (5).

3.4.2 Dense layer / Fully connected layer

The last type of layer that we usually found at the end of a typical CNN, before the
output layer, is the Dense layer. This layer is a simple fully connected layer, where
each neuron is connected to all the other neurons of the previous layer. Basically,
convolutional layers help extract certain features from the input, while the fully
connected layer is (better) able to generalize from these features in the output space.
Then, we move from the least flexible to the most flexible level type, reducing the
dimensionality of the output so that we are able to better converge in a result.

Figure 3.3: The structure of a Convolutional Neural Network

 21

3.5 Recurrent neural network

Humans don't start thinking from scratch every second. Instead, we are able to
understand complex information thanks to our ability to put together information
obtained at different moments in time. This is because our thoughts have persistence.
Neural networks we have analyzed so far are referred to as feedforward neural
networks, where activations flow only in one direction, from the input layer to the
output layer. A recurrent neural network has a similar functioning as a feedforward
neural network, except that it also has connections that point backwards. The simplest
possible RNN is composed of a neuron that receives input, produces an output, and
sends that output to itself. This process is described in Figure 3.4. The idea behind
RNNs is to use sequential information. In a traditional neural network, such as those
seen in the previous sections, we assume that all inputs (and outputs) are independent
of each other. But this technique performs very badly when you go to analyze inputs
that require a sequential approach, whether it is essential to consider the information
of the previous outputs to analyze the current inputs. If we want to predict the next
word in a sentence, or, as in our case, being able to operate a speech to text translation
on a continuous speech, we must also consider all the previous words in order to make
sense of the speech and improve the reliability of predictions or of the transcripts.
RNNs are called recurring because they perform the same task for each element of a
sequence, with the output depending on previous calculations. In order to do so, RNN
make use of a special memory, that captures information about what has been
calculated so far (6).

“Whenever there is a sequence of data and that temporal dynamics that connects the

data is more important than the spatial content of each individual frame.”

Lex Fridman (MIT)

 22

Figure 3.4: The structure of a recurrent neural network

3.6 Long short-term memory neural networks (LSTM)

Due to the transformations that data undergoes when passing through an RNN, some
information is lost at each time phase. After a while, in fact, the state of the RNN
practically no longer contains any trace of the first inputs. We can consider RNNs as
short memory networks. To address this problem, various types of long-term memory
cells have been introduced. Those new cells have been proved so effective that base
cells are no longer used anymore. Long Short-Term Memory (LSTM) cell was
proposed in 1997 by Sepp Hochreiter and Jürgen Schmidhuber15 and gradually
improved over the years by several researchers. The key idea here is that the network
can learn what to store in the long-term state, what to throw away, and what to read
from it.

15 Hochreiter, S. & Schmidhuber, Jü. (1997). “Long short-term memory”. Neural computation, pp 1735--1780.

 23

3.7 Regularization

When building neural networks or machine learning algorithms it is important to
consider the problem of overfitting. Overfitting is when the model begins to learn
features that are too specific to the training set. Basically, the model not only learns the
general rules that lead from the input to the output, but also more rules, that perhaps
describe the training set, but which are not necessarily valid at a general level. This
process leads to a decrease in the training error but also to an increase in the evaluation
error. As a result, our model will perform worse on unknown data due to these specific
rules that the model has learned from the training set. If overfitting occurs when our
model is too suitable for the training set, the opposite phenomenon is called
underfitting, i.e. when the model learns too general rules. We can find an illustration
of the phenomena mentioned above in Figure 3.5. In the next subsections we will
describe some techniques to overcome the problem of overfitting.

Figure 3.5: Underfitting, Optimal and Overfitting

 24

3.7.1 Dropout

Dropout is one of the most used and efficient regularization techniques to eliminate as
much as possible the overfitting effect during the training of a neural network16.
During training a certain number of layer outputs are randomly ignored or "dropped
out". This serves to reduce the number of weights in the network that focus on few
strong features of the training set, in order to generalize and prevent units from co-
adapting too much. On the basis of several benchmarks it has been shown that the
introduction of dropout can give a great improvement on complex neural networks
trained on a small training set17. When using dropout, it is necessary to decide the
dropout probability, which expresses the probability that each node will be excluded
during training.

3.7.2 Weight decay

Weight decay, or L2 regularization, is a regularization technique applied to the weights
of a neural network. We minimize a loss function that compromises both the primary
loss function and a penalty on the Weight Norm. The weight decay method, so, is
simply an addition to the loss function of the network and can be described through the
following equation:

where l is a value determining the strength of the penalty and L(w) is our chosen loss
function. If we have a very small λ value the weight decay will not help to regularize
the network. On the other hand, if λ is too large our error function will diminish, and
our network will just aim to keep the weight of the network at 0. This effect can be
seen if figure 3.6.

16 Nitish Srivastava and Geoffrey et al. Hinton. (2014). “Dropout: A simple way to prevent neural networks from
overfitting”. Journal of Machine Learning Research, 15(1):1929–1958.

17 Nitish Srivastava and Geoffrey et al. Hinton. (2014). “Dropout: A simple way to prevent neural networks from
overfitting”. Journal of Machine Learning Research, 15(1):1929–1958.

 25

Figure 3.6: Underfitting, Optimal weight decay and overfitting with different lambdas

3.8 Fourier transform

After having explained the functioning of a neural network and the main characteristics
and methods of deep learning, in this last section of the chapter we briefly discuss one
of the most important preprocessing techniques that an audio file must undergo before
being passed through a neural network, a fundamental step when creating a speech
recognition system, which is the subject of this thesis.
Indeed, what is passed to a neural network starting from an audio file in an STT system
are the so-called MFCCs18, important parameters extracted from an audio file that
accurately represent it. By learning to recognize and analyze these MFCCs, a neural
network become able to recognize specific words from an audio, based on these
parameters. In order to extract MFCCs from the audio file a Fourier transform is used.
A Fourier transform is about decomposing, or extracting, frequencies from sound. To
understand the concept, we can reference to the notes. Consider for example the note
“A”, we know that if we would measure the air pressure near the microphone or the
instrument that is emitting the sound as a function of time, the function would oscillate
up and down around its equilibrium as in the wave shown in figure 3.7, making 440
oscillation per second. A lower-pitched note, like a D, has the same structure, just fewer
beats per second, as shown in figure 3.8. When both notes are played together, the
pressure difference would be the sum of the pressures exerted on the air by the sound
of the two notes if they were played individually, as shown in figure 3.9.

18Logan, Beth (2000). "Mel frequency cepstral coefficients for music modeling." Ismir. Vol. 270.

 26

Pressure (440 oscillation per second)

Time

Figure 3.7: “A” note, A440, 440 oscillation per second (beats per second)

Pressure (294 oscillation per second)

Time

Figure 3.8: “D” note, D294, 294 oscillation per second (beats per second)

Figure 3.9: the resulting sum of note “A” plus note “D”

 27

When a microphone records sound, it is simply picking up air pressure at many
different points in time. In the case of the two notes played together he would only
"see" the final sum, indeed, de graph shown in figure 3.10. A Fourier transform is
what it is used to the decompose the signal formed by the “sum” of many different
frequencies and decompose it in the pure frequencies that make it up. The fast
Fourier transform (FFT), which is an algorithm that computes the discrete Fourier
transform of a sequence, is the common implementation of Fourier transform. In our
specific case, FFT will be used to extract MFCCs, the fundamental audio feature we
mentioned in the beginning of the paragraph, from the audio that we want to convert
into text form, in order to perform the STT translation.

 28

4

Research

4.1 Speech Recognition using Recurrent Neural
Networks

This section discusses the work by Aditya Amerkar, Gaurav Deshmukh, Parikshit
Awasarmol and Piyush Dave on "Speech Recognition using Recurrent Neural
Networks"19.
I found this paper interesting since it deals with the same task I did and described in
section 5 of this thesis, that is speech recognition, but using recurrent neural networks
instead of a CNN. Thanks to this work, we can understand the differences of the two
types of networks and their performance.
The main difference between the two models is that a convolutional neural network is
not capable of processing sequential information. This is because the network
processes every input taking into account only the present state of each neuron, which
is not modified by previous inputs. A recurrent neural network instead has this
capability. Each neuron has a sort of “memory”, that allows them to analyze and
process each input taking into account some of the information contained in the
previous processed input. This mechanism is essential for the processing of sequential
information, since in most cases these have some connection between them that must
be taken into account. If a convolutional neural network does a remarkable job for
processes such as speech recognition for single and few words, for more complex
speech recognition projects, which want to process more words or even complex
sentences, the use of recurrent neural networks is essential.

19 Aditya Amerkar, Gaurav Deshmukh, Parikshit Awasarmol and Piyush Dave (2018). "Speech Recognition using
Recurrent Neural Networks".

 29

4.2 Speech-to-Speech translation using deep learning

Here we present and discuss the work done by Fredrik Bredmar in 2017 at the
Computing Science division of the University of Gothenburg:
"Speech-to-speech translation using deep learning"20.
Although the focus of this thesis is the study of speech-to-text methods, we found
Bredmar’s work very interesting as it goes beyond just the translation from "voice" to
“text”, but deals with a complete speech-to-speech translation, capable of translating
the input voice into another language without ever going through a text form.
Most of the similar projects, indeed, which carry out a linguistic translation task, such
as Google Translate, obtain a Speech-to-speech translation through three distinct but
communicating steps. Firstly, through a speech-to-text model, the voice is translated
into a written text, secondly the written text is translated into the new language and
finally the new text is, through a speech synthesis model (speech synthesizer or text-
to-speech model), translated again into an audio format. The problem of this three steps
method is that the “language translation” part of the model is done within the text
domain. Although these three components have, in recent years, become increasingly
efficient and precise, thanks to the advances made in the field of neural networks and
deep learning, the translation from speech to text totally eliminates the voice
characteristics of the speaker, as emotion, pitch or accent, which indeed are not
reported in the subsequent text-to-speech translation. Bredmar’s work aims to carry out
a speech-to-speech translation by eliminating the intermediate step of text-to-text
translation, building an LSTM neural network capable of receiving as input an audio
file of a voice in a specific language and returning as an output another audio file
containing the translation of the input audio into a new language, maintaining all the
vocal characteristics of the latter.
“(..) we investigate the performance of a speech-to-speech translation system
that persevere voice characteristics throughout the translation. The long short-term
memory (LSTM) network will be the core of the system.”

20 Frederik Bredmar (2017). “Speech-to-speech translation using deep learning”. Department of Computer Science and
Engineering, University of Gothenburg.

 30

4.2.1 Dataset and model

A private dataset was created for model training. Bredmar proposes to build a dataset
that has many sentences of varying lengths and different tones, that simulate as much
as possible common conversations, recorded by a variety of different people. Since the
model is designed for a translation from English to French, each sentence had to be
available in both languages. Dubbed films were selected to accomplish the task, given
the thriving French dubbing. During dubbing in addition, the voice characteristics
should be preserved. The final dataset consisted of 16 movies, with each movie
generating approximately 700 sentences ranging in length from 3 to 50 seconds and
thus a total of 11000 sentences.
The long short-term memory network used is instead composed of two layers with 800
neurons each. For the construction of the latter was used the Google Tensorflow library,
described in Chapter 2.2.

4.2.2 Results and experiments

The first experiment performed by the author of the paper is on network performance,
executed by changing the size of the network by adding more neurons in both the two
layers. As a result, we get a clear improvement in performance when the dimension of
the network is increased, as can be seen in Figure 4.1, described by the loss function
that decreases significantly as the size of the network increases. However, the decrease
in the loss function is however small with respect to the increase of neurons in the
network, it is clearly evidenced how greater networks results in lower training and
evaluating error. For the second experiment the effects on the loss function due to the
increase of the training set are analyzed. The resulting plot can be seen in Figure 4.2.
From this last test it can be noticed that the increase of the training set results in a
notable decrease of the loss function, but also that the decrease of the training error is
more rapid in the early increments of the training size, suggesting that for even more
precise model an enormous dataset must be used.

 31

Figure 4.1: Graph showing how the training set loss and evaluation function change
depending on the size of the trained network.

Figure 4.2: Graph showing how the training set loss and evaluation function change
depending on the size of the training set.

 32

4.2.3 Conclusions on the results

The result of this work can be considered very interesting as it shows that LSTM
network architecture is enough complex for this kind of sequences, based on training
and test error. The problem reported by the author of the work is that the network is
still not large enough to manage well a larger or complex dataset, that is the network
is underfitting the dataset. However, the positive result of the experiment remains
interesting, demonstrating that, with the appropriate instrumentation capable of
handling a greater complexity of the network architecture, speech-to-speech
translation without the need for speech-to-text or text-to-speech models is possible
and able to partially maintain the speech characteristics of the input source.

 33

5
Keyword Spotting System

For this thesis a Speech Recognition projects is described. The project deals with the
basics of Speech to Text, resulting in the construction of a Convolutional Neural
Network capable of recognizing ten simple words and transcribing them into text
starting from an audio file. In this chapter the complete construction of the model and
the experimentation made on it is described in detail.

5.1 Keyword Spotting System

The project considered deals with the basics of Speech Recognition techniques via
CNN. While maintaining a low overall complexity, the project results in a great way
to understand how STT techniques work in broad terms. The system is able to identify
a limited number of Keyword by analyzing an input audio file and then classifying it
into one of the possible words set on which the network was trained.
In practice, such a model can be used to make certain systems capable of understanding
simple voice commands, such as "Stop", "Go", "Left" or "Right".
It consists of three different .py files, respectively:
Prepare_dataset.py, Train.py and Keyword_spotting_service.py.

 34

5.2 Dataset

First of all let’s focus on the data that will be fed to the Keyword Spotting System.
A Google-supplied dataset called "Speech Command Dataset" was used to train the
model in question. The dataset is composed by 65,000 one-second long utterances of
30 short words, by thousands of different people, contributed by members of the public
through the AIY website (7). For the first part of this project, ten of the thirty available
words where considered, in particular the words: “Down”, “Go”, “Left”, “No”, “Of”,
“On”, “Right”, “Stop”, “Up”, “Yes”.
After having built and analyzed the model trained on these ten words, the dataset will
be expanded to all the thirty words in order to study the differences that this
"expansion" implies on the effectiveness and accuracy of the model.

5.2.1 Preparing the Dataset

The first file (Prepare_dataset.py) deals with the creation of a JSON file, starting from
the available dataset, which will then be used by the network for training.
For preparing the dataset to be fed to the network, we need to extract some audio
features from each of the audio samples that we have in our dataset, and then store
those features on the JSON file.
In particular, the audio features that are going to be extracted are the so called
“MFCCs” (Mel Frequency Cepstral Co-efficents), which have been one the most
important features used for speech recognition in the last few decades [18]. Their
success relates to their ability to reproduce the speech amplitude spectrum in a compact
form (Logan, Beth 2000).
This process of “extraction” can be seen as taking different “snapshots” at each time
segment of every audio file and for each snapshot extracting a number of MFCCs
coefficients. Since sound is a wave it is not possible indeed to extract any features by
taking a single sample from it, for this reasons MFCCs are computed over a window.
In order to do so a Python library called “Librosa” is used. To compute MFCCs Librosa
uses fast Fourier transform (FFT) which require the exact length of the window in
number of samples, the length of each of the sample that compose the window, the
number of MFCCs that we want to extract from each sample and the length of the FFT.
We will set the number of samples to “22050”, since it is computed that it is the exact
number of segment that compose a one second worth of sound (which is the length of

 35

all the samples audio file that we are using for training), the “hop length”, that is how
“big” each sample should be in number of frame, to “512”, the number of MFCCs to
be extracted to 13 and the length of the windows of the Fast Fourier transform to
“2048”. Besides the length of the window in number of sample (22050), all the other
parameters are set to those value by default.
We can now create the “prepare_dataset” function, that will take as input the dataset
and the above explained parameters and generate as output the json file, containing all
the audio features from each audio samples, that will be fed to the Convolutional
Neural Network.

5.3 Creation and training of the CNN

For this section we are going to design and build the architecture of a convolutional
neural network, compile it, train it and evaluate it. All of this is done in the second file
that is the train.py.
We start by importing the dataset from the json file and by splitting it into two different
partitions, one used for training that will be the 90% of the dataset and one for testing
that will get the remaining 1% of the dataset. A third partition with validation purposes
will be also created and it will get the 10% of the training partition. Now that we have
all of our data, we can focus on the model itself. For doing so we need to use “Keras”,
an open source library built on top of TensorFlow (one of the most used python
libraries for machine learning) that provides a Python interface for Artificial Neural
Networks. The network that we are going to build will be composed by three
convolutional layers followed by a dense layer and a Softmax classifier, that is used to
output from the network the probability that the input corresponds to each one of the
ten words.
Each one of the layers is created by specifying its number of filters, its kernel (the size
of each filter), its input shape (just for the first layer), its activation function and the
kernel regularizer that is used to avoid the model to overfit the training set.
The creation of each new convolutional layer is followed by a Normalization layer,
that is basically a transformation that maintains the mean output close to 0 and the
output standard deviation close to 1, and a down-sampling layer, accomplished by the
Max Pooling process, which is a sample-based discretization process with the objective
of down-sampling an input representation through reducing its dimensionality.

 36

For each convolutional layer the activation function that is utilized is “relu”, which has
become the default activation function for many types of neural networks because a
model that uses it is easier to train and often achieves better performance (8).
As general parameters for the network, learning rate, number of epochs and batch size
were set respectively to 0.0001, 40 and 32.
The learning rate is a parameter related to the optimization algorithm of the network
which determines the step size at each iteration while moving towards a minimum of
the loss function. Smaller learning rate implies more precision of the networks at the
expenses of time to train of the model. Since here the model will train quit fast we can
use a small learning rate to increase the performance of the network.
The number of epochs tell us instead how many times the network will pass through
the whole training dataset. The batch size instead tells us the number of samples that
will be propagated through the networks. After the three convolutional layers we
need to flatten the network output from three dimension to a one dimension array in
order to it to be passed to the dense layer. A dense layer is a layer where each unit or
neuron is connected to each neuron in the next layer. After the dense layer we have
the dropout layer. Dropout is a regularization technique, which aims to reduce the
complexity of the model with the goal to prevent overfitting. Using “dropout", you
randomly deactivate certain units (neurons) in a layer with a certain probability p
from a Bernoulli distribution (typically 50%, but this yet another hyperparameter to
be tuned). So, if you set half of the activations of a layer to zero, the neural network
won’t be able to rely on particular activations in a given feed-forward pass during
training, and so, again, prevent overfitting.
As stated before, our output layer will be a Softmax classifier, which will output the
probability that our input audio contains each one of the 10 words. The word with the
higher probability will be selected and given as the output of the model.
Appendix A shows the code used to build this convolutional neural network.
The training process was executed on a 2018 Macbook Pro 13, packed with a Quad-
Core i5 2,3 GHz, 8 GB 2133 MHz DDR3 RAM and an Intel Iris Plus Graphics 655
with 1536 MB of memory.
After the model has completed its training, I got a test error (loss) equal to 0.2278 and
a test accuracy equal to 0.9514.
In Figure 5.1 and figure 5.2 it is possible to respectively see the resulting plot of
training and validation loss and accuracy over the 40 epochs training.

 37

Figure 5.1: Loss function decreasing over the 40 epochs training

Figure 5.2: Accuracy of the network increasing over the 40 epochs training

 38

5.4 Experiments

In this section the experiments carried out will be discussed. Several models have been
created by varying the hyperparameters in order to optimize the model in the most
appropriate way.

5.4.1 Removing Dropout

The first change that I decided to apply to model in order to observe its effects was
removing the dropout layer. Although this choice is obviously counterintuitive since
the dropout greatly improves the performance of the network, I found it interesting to
remove it in order to clearly measure how much this increase in performance due to its
presence was marked. I created a new training section and a new model called
“model.h6”, this time trained without the dropout layer. Removing the dropout layer
should mean increasing the overfitting of the model. What I expected to see was an
increase in the train set accuracy and a decrease in the test set accuracy, caused by the
model adapting too much on the training set. After having trained the model what I got
was a train set accuracy of 0.9732 and a test set accuracy of 0.9320. The same results
are visible form the loss function, producing a test error of 0.2547 while for the training
set I got just 0.1363. As expected, I lost 2% on accuracy and gained 3% on the error
for the test set compared with the first model, while I gained some accuracy and
decreased the error on the training set, thank to overfitting.

5.4.2 Increasing the number of predictable words

As a second experiment in order to test the performance of the network I decided to
increase the number of words that the speech recognizer was able to handle from 10 to
35. In order to do so I downloaded the updated version of the Speech Commands
Dataset from Google which contains 35 words, three times and a half more than the
previous version. From this experiment I expected my accuracy to decrease and my
test error to increase since the CNN is not very large and so shouldn’t be much capable
of working with large dataset. After having changed the dataset from which the model
was trained, I started the training process again. This time the training process took
around 36 minutes to be completed and as results I got a test accuracy of 0.9008 (90%)
and a test error of 0.3824. As expected, the accuracy of the network decreased from

 39

95% to 90% and the test error increase from 22% to 38%. This demonstrate how this
type of network is not capable of scaling well when the dataset size increase
considerably. Still, the network was capable of recognizing the majority of the word
that I tested, the old ones as well as the new ones.

5.4.3 Changing the activation function

As last experiment I decided to change the activation function. Activation functions
are used in neural network in order for them to process non-linear function and so,
more complex information. The activation function is precisely what decides if a
specific neuron should activate depending on the input. The first activation function
used was the so called “sigmoid activation function”, used in the early 1990s. This type
of activation function has mainly two problems in it. The first was that it was non-zero
centered and the second was that it causes the gradient to “vanish”. After the sigmoid
the most used function was the “Tanh activation function” which solved the problem
of zero centrality but still caused the gradient to vanish in some cases. The tanh function
was used for CNN until 2010, when it was nearly totally substituted by the “ReLu
activation function”. ReLu is still at the moment the most used activation function in
the world of convolutional neural network, it solves the problem of the zero centrality
and also the problem of the vanishing gradient. Still, one problem that ReLu could have
is that it can cause the “death” of some neurons. When a big gradient is in fact backward
propagated through a ReLu neuron a weight update could be generated in way that that
neuron will never be activated again by any input. To solve this problem an
experimental version ReLu has been developed and it’s called “Leaky ReLu”. This
modified ReLu activation function seems to stop the “dying neurons phenomena”. I
decided to implement this feature in the network in order to increase its reliability.
Leaky ReLu is not automatically included in the Keras package and must be imported
separately. After having imported it, I update the activation function of all the
convolutional layers and started a new training process. At the end of the training, I got
the same results in terms of test and training error and accuracy but the network should
now be more stable and optimized.

 40

6
Conclusions

As conclusions, it can be said that the world of neural networks in the field of voice
modeling and analysis is constantly expanding and producing new and interesting
results every year. For a STT or Speech Recognition model built using a neural
network, the ideal would be the use of a recurrent neural network, a very large dataset
and enormous computational power, three characteristics that make it a difficult goal
to pursue in academic terms. Nonetheless, however, by analyzing these complicated
models at a theoretical level, it is clear that this type of application can result in
excellent results if achieved with adequate resources. A simple Speech Recognition
program, on the other hand, which deals with the understanding of a few simple words,
can be implemented instead through a simpler network, obtaining very good results.
From the experimentation and research carried out during the drafting of this thesis it
is however clear the enormous potential of these network structures, which over time,
with new algorithms and new increasingly powerful processors, is becoming one of the
most varied and practical practices in the world of information technology. The
revolution brought about by neural networks radically changes our conception of
programming, from something that, based on pre-established rules, is able to produce
results, to something that can compose these rules autonomously by observing the
results. This type of application greatly expands the horizons of what can be achieved
through a computer, making us touch a future in which artificial intelligence could be
the master. As in the context of speech recognition, the use of neural networks can be
applied to almost all practices that somehow have an IT process behind them, greatly
enhancing all programming areas that would require extreme complexity in their
design. The study of these fascinating models has further increased my interest in this
subject, which I will certainly carry on as my studies progress.

 41

Creating an artificial being has been man's dream since the dawn of science. Not just
at the beginning of the modern era, when our ancestors stunned the world with the

first thinking machines: primitive monsters playing chess! How far we have come ...
The artificial being is a reality, a perfect simulacrum, articulated in the limbs,

articulated in the language and not lacking in human reactions.

Allen Hobby
A.I Artificial Intelligence (2001)

 42

Appendix A

Appendix A: The Python code used to build the convolutional neural network used in
the Keywords spotting system explained in chapter 5.3

 43

Bibliography

Amerkar, A., Deshmukh, G., Awasarmol, P., Dave, P. (2018).

"Speech Recognition using Recurrent Neural Networks".

Bohouta, Gamal & Këpuska, Veton (2017).

“Comparing Speech Recognition Systems (Microsoft API, Google API And
CMU Sphinx)”.
Journal of Engineering Research and Application. 2248-9622. 20-24.

Carnegie Mellon University. (2019).

“CMUSphinx Tutorial for Developers”.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams (1985).

“Learning internal representations by error propagation”.
Technical report, DTIC Document.

Filippidou F, Moussiades L. (2020)

“Α Benchmarking of IBM, Google and Wit Automatic Speech Recognition
Systems, Artificial Intelligence Applications and Innovations”.

Frederik Bredmar (2017).

“Speech-to-speech translation using deep learning”.
Department of Computer Science and Engineering, University of Gothenburg.

Hochreiter, S. & Schmidhuber, Jü. (1997).

“Long short-term memory”.
Neural computation, pp 1735--1780.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012),

“Imagenet classification with deep convolutional neural networks, Advances in
neural Information processing systems”. (p./pp. 1097--1105).

LeCun, Y., Bengio, Y. & Hinton, G. (2015).

“Deep learning” Nature 521, 436–444

 44

Logan, Beth (2000)
"Mel frequency cepstral coefficients for music modeling." Ismir. Vol. 270.

Maureen Caudill (1989).

“Neural nets primer”.
Part vi. AI Expert, 4(2):61–67, 1989.

Minsky, M., Papert, S. (1969).

“Perceptrons: An Introduction to Computational Geometry”.
Cambridge, MA, USA: MIT Press.

Nitish Srivastava and Geoffrey et al. Hinton. (2014).

“Dropout: A simple way to prevent neural networks from overfitting”.
Journal of Machine Learning Research, 15(1):1929–1958.

Peter Lyman and Hal R. (2003).

“How much information? coordinator: Kirsten Swearingen, School of
Information Management and Systems at the University of California at
Berkeley.

Rumelhart, D., Hinton, G. & Williams, R. (1986).

“Learning representations by back-propagating errors”.
Nature 323, 533–536.

Tachibana, H., Uenoyama, K. and Aihara, S. (2018).

"Efficiently Trainable Text-to-Speech System Based on Deep Convolutional
Networks with Guided Attention”.
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4784-4788.

Wang SC. (2003).

“Artificial Neural Network. In: Interdisciplinary Computing in Java
Programming”.
The Springer International Series in Engineering and Computer Science, vol
743. Springer, Boston, MA

Warren S. McCulloch and Walter Pitts. (1943).

 “A logical calculus of the ideas immanent in nervous activity”.
The Bulletin of Mathematical Biophysics, 5(4):115–133.

 45

Young, S. J., P. C. Woodland, and W. J. Byrne (1993).
"HTK: Hidden Markov Model Toolkit V1. 5".
Cambridge Univ. Eng. Dept. Speech Group and Entropic Research Lab. Inc.,
Washington DC.

Yves Chauvin, David E. Rumelhart (1995).

“Backpropagation: Theory, Architectures, and Applications”.

 46

Web References

(1) Valerio Velardo (2020).
Deep Learning Audio Application from Design to Development.

(2) Allison Linn (2016).
Historic Achievement: Microsoft researchers reach human parity in
conversational speech recognition.

(3) Tensorflow Website (2021).

An end-to-end open source machine learning platform.

(4) The New York Times Archives (1958).
 July 13 1958, (Section E, Page 9).

(5) Jason Brownlee (2019).
A Gentle Introduction to Pooling Layers for Convolutional Neural
Networks.
Deep Learning for Computer Vision.

(6) Purnasai Gudikandula (2019).
Recurrent Neural Networks and LSTM explained.

(7) Pete Warden (2017).

Google Speech Command Dataset
Software Engineer, Google Brain Team.

(8) Jason Brownlee (2019).
A Gentle Introduction to the Rectified Linear Unit (ReLU)
Deep Learning Performance.

