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Abstract

Deepfakes are a new threat in online media information. Easy access to
audio-visual content on social media, combined with the availability of
modern tools and the rapid evolution of deep-learning methods, are crafting
more common and convincing fake videos. This paper analyzes the prob-
lem of deepfake generation at scale, pointing out where the current state-
of-the-art is. After a brief introduction on the two most common generative
methods, VAEs and GANs. Most famous projects are based on complex
architectures that are complicated for me to test as they require huge com-
putational resources. Moreover, these architectures are quite bounded and
do not permit clear exploitation and understanding of the specification.
Thus, I propose a simplified version of the FaceSwap architecture and de-
scribe the improvements that StyleGAN has brought. Additionally, we also
discuss open challenges and enumerate future directions to guide future re-
searchers on issues that need to be considered to improve the domains of
deepfake generation.
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1 Introduction

Deepfakes are a new type of synthetic video, in which a subject’s face is
modified into a target face in order to mimic the target subject in a certain
context and create authentic proofs of events that never occurred. They
have the potential to significantly impact on how people determine the
legitimacy of information presented online.
The quality of public discourse and the safeguarding of human rights may
be influenced by such content generation and modification technologies.
This is of particular importance, since deepfakes may be used by a malicious
as a source of misinformation, manipulation, harassment, and persuasion.
Generating and identifying manipulated media is a technically demanding
and rapidly evolving challenge that requires collaborations across the entire
tech industry and beyond.

This paper presents the problem of deepfakes at scale. Section 2 reviews
the current literature analyzing the steps towards the current state-of-the-
art. Then, section 3 describes the deepfakes trying to give them a clear
and intuitive definition. In section 4, I review different methods for gen-
erating deepfakes as well as their advantages and disadvantages. I discuss
challenges, research trends and directions on deepfake generation as well
as multimedia problems in Section 5.

Note that in this paper I’ll refer just to video-crafted deepfakes, leaving
the audio sector for further researches.
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Figure 1: Deepfake generated images using a Generative Adversarial Net-
work

2 Literature Review

In recent years, fake news has become an issue that is changing significantly
the human society. In particular, deep fakes are an artificial intelligence
synthetized content able to deceive the public making hard to know what
to trust or not.
Academic literature started to focus on how to generate reliable contents
which could have mimicked the daily contents to which we are constantly
subjected. Then, thanks to the excellent result obtained in crafting new
contents, a new track of existing studies concentrates on developing ma-
chine learning-based classifiers to automatically demonstrate whether a
content spreading in a social media is fake or not.

2.1 Deepfake Generation

The two main schools of thoughts when referring to multimedia content
creation are based on deep learning architectures such as Variational Au-
toencoder (VAEs) [25] or GANs [4]
The idea of using a Variational Autoencoder, initially proposed by Kingma
and Welling in 2013 [12], reached a large consensus since it mitigated the
regularization problem by adding a stochastic lower-dimensional space. For
example RSGAN [17] stacked two different VAEs to handle separately hair
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and face in the latent spaces, and then, face swapping is achieved by replac-
ing the latent-space representations of the faces, and reconstruct the entire
face image with them. LumièreNet [11] in 2019 proposed a framework based
on VAEs to synthesize full pose video to learn mapping functions from the
audio to video through estimated pose-based compact and abstract latent
codes. The most famous VAEs’ based architecture is the FaceSwap project
[2]. The developers created this model based on the encoder-decoder archi-
tecture: the encoder is used to extract latent features of a face and then the
decoder reconstruct them. In the period when faceswapping was invented
it was considered something at the forefront. People outside the academic
world where afraid of approaching to code and here the FaceSwap’s intu-
ition arises. It became the first code that everyone, also non in the academic
sector, could download and run on their own. It’s true that the final scopes
of many developers using these architectures was not always ethical and it
has sometimes been abused.
Over the time, new generative methods appeared and GANs have begun
to carve out a large part of the developement patterns. Introduced in 2014
by Goodfellow et al.[4] , they have been described by Yann LeCun as "the
most interesting idea in the last 10 years in Machine Learning". They keep
many points in common with VAEs but enables the generation of fairly
realistic synthetic images by forcing the generated images to be statisti-
cally almost indistinguishable from real ones. A GAN is composed by a
generator and a discriminator: the former is continuously trained to fool
the discriminator network. At the beginning the model will provide very
bad results but its accuracy increases up to create an indistinguishable ar-
tificial image. Famous architecture like FaceSwap have been adapted also
with a GAN version [2] and the current state-of-the-art is mainly focused
on developing models GAN-centered. This model for example proposed an
improved deepfake using GANs which adds to the autoencoder architecture
adversarial and perpetual losses to VGGFace . The VGGFace refers to a
series of models developed for face recognition which earned many atten-
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tions from the academic panorama.
Vougioukas et al. [26] proposed a temporal GAN approach with 2 discrim-
inators and to synthesize videos frame-by-frame, they used a RNN-based
generator. The video generated included facial expressions like frowns and
blinks. Moreover it included precise lips movement and natural expres-
sions.
The path to the glory for GANs was not so easy as expected. The first
models generated low-resolution images and so, not so convincing by the
final users. DCGAN [22] was the first architecture to replace a dense layer
with a deconvolution layer in the generator. This provided a better image
quality and mostly implemented new tweaks on which one could base fu-
ture improvements. Another issue was related to memory constraints, and
it was partially mitigated by Karras et al. with the ProGAN [10] architec-
ture. There are some similarities with DCGAN but the latter used trans-
pose convolutions to change the representation size. In constrast, ProGAN
uses nearest neighbors for upscaling and average pooling for downscaling.
ProGAN proposed an adaptive mini-batch size approach that constantly
increased the resolution increasing the model complexity with new layers.
The State-of-the-art was finally found with StyleGAN [8] : a new method
proposed by NVIDIA’s engineers and Karras team. It rethinks GANs gen-
erator architecture in a way that proposed novel ways to manipulate the
image synthesis process, leaving unchanged the discriminator. It easily sep-
arates the high-level attributes of an image, such as the pose and identity,
stochastic variations in generated images such as the face color, frickles,
hair, and beards. The network is so allowed to perform scale-specific mix-
ing and interpolation operations. The advantage is that the intermediate
latent is free from any certain distribution restriction, and this reduces the
correlation among features. StyleGAN 2 [9] improved the parent model by
removing undesired parts of the generated image, such as changes in gaze
direction and teeth alignment.
In the last period, new architectures tried to propose methods for editing
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facial attributes, like skin color or gender, by simply adding or removing
facial expressions or everyday objects (glasses) from the source image. Per-
arnau et al. [20] introduced an Invertible Conditional GAN (IcGAN) which
matches an encoder to a cGAN. The encoder works as usual by mapping
the source image into latent representation, and the cGAN reconstructs
the image by using attribute vectors previously defined.
Other approaches exist but they do not enjoy the same reputation as the
above described generative methods. For example, Korshunova et al. [14]
implemented a convolution neural network (CNN) to extract semantic con-
tents and use them to create the same style in another image. The loss
function they proposed was a mix of the different environmental aspects
(lights and style). The main problems addressed by Nirkin et al. [19] with
a full convolution network (FCN) and a 3D morphable model (3DMM),
were related to the fact that CNN were able to transform only one image
at a time and the large dataset required for the training phase.

2.2 Deepfake Detection

As previously explained, thanks to the excellent result obtained in crafting
new contents, new detection algorithms come to the rescue. Algorithms
are based either on handcrafted feature extractions or deep learning-based
methods. A wide choice of literature covers both these techniques. Start-
ing with the first category, Zhang et al. [24] proposed a raw method called
SURF to detect swapped faces. Further updates were performed in order to
solve the two main problems: the impossibility of keeping facial expressions
and the issues in video detection. Agarwal et al. [1] initiated to worry about
the harm that deep fakes could bring to politics. They proposed a method
for tracking facial and head movements and then extracting the presence
and strength of specific action units. This idea come to mind following
an hypothesis that people while speaking, have distinct (but probably not
unique) facial expressions and movements. These differences then, have
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been used to train the binary SVM to classify between an original and a
fake face of former US President Obama. Guera et al. [6] defined an use-
ful detection technique based on handcrafted feature to classify fake faces
from video. As the previous model, they used a SVM followed by a ran-
dom forest classifier to differentiate the two products. Deep fakes detection
algorithms based on deep learning mitigate two important problems: they
can grasp frame-to-frame temporal variations in video. Moreover, they can
adapt better to the loss of information made by compression techniques.
In the sector of Face Swap and Face Reenactment, the first algorithms were
proposed by Li et al. [16]. After some libraries extracted facial landmarks,
several Convolution Neural Network (CNN) based models were trained
to discover forged contents. Problems arises with multi-time compressed
videos. To overcome these difficulties, new solutions based on the combina-
tion of Convolution Neural Network (CNN) and Recurrent Neural Network
(RNN) arise. For example, Guera et al. [5] proposed a solution of a CNN
to extract relevant features and the RNN to detect deep fakes. Problems
with this solution occurred with videos of medium/long duration. Also the
approach by Li et al. [15] has some limitations since it was based on a
clue on eye blinking. In particular, what happen if there are no aberra-
tions with the eye blinking or even they just don’t exist? In the following
years, several tens of academic papers tried to address this problem in a
very elegant way, each making their own contribution and trying to fix the
limitations of the previous model.
Final steps toward the current state-of-the-art have been made by Nguyen
et al. [18] which proposed a multi-task CNN network to concurrently de-
tect and localize fake video contents. The architecture was composed by
an autoencoder for the first part and by a y-shaped decoder for the second
one. Here a long chain of teoretical problems occurred: they noticed that
the accuracy degrades over unseen scenarios. To fix this concept, a Forensic
Transfer (FT) technique was introduced, in turns leading to an excessive
computation power since large latent spaces required.
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To standardize the detection process new datasets for fake visual contents
have been prepared. The widely accepted are the following: UADFV [27],
FaceForensic++ [23] and DeepFakeTIMIT [13].
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3 Deepfakes and Disinformation

Deepfakes are synthesized,AI-generated,videos and audio through which a
face can be swapped with someone else’s using neural networks. It is pos-
sible to produce deepfakes in a significantly more efficient and economical
manner thanks to machine learning. They are so-named because they use
deep learning technology, a branch of machine learning that applies neural
net simulation to massive data sets, to create a fake. Despite in the past
years deepfakes were visibly doctored, advances in technology have made
it harder to tell what is real and what is fake. As with many technologies,
deepfakes have endured a maturity curve on the way to realizing their full
potential. As algorithms improve, less source data is needed to train a
more accurate deepfake.

In the present day, it is uncommon to visit social media and not stum-
ble upon some form of edited content, be it a simple selfie with a filter, a
highly embellished meme or a video edited to add a soundtrack or enhance
certain elements. According to a survey the largest share of deepfake con-
tents are in the Entertainment sector. Further studies concluded that the
politics sector suffers this plague.
Deepfakes require a large amount of data to craft new contents and since
public figures such as celebrities and politicians may have a large number
of videos and images available online, this makes them the initial targets
of deepfakes.
The first case of a traditional deepfake occurred in 1860 when the face of
southern politician John Calhoun was capably modified and replaced with
the head of US President Abraham Lincoln. There is evidence of deepfakes
being generated from the first years of 2000 where they’ve been used to
swap faces of celebrities or politicians to bodies in porn images and videos.
There are also cases where the deepfakes can be used for positive scenar-
ios like creating voices of those who have lost theirs or update multimedia
contents without the need of reconstruct them.
Different kind of deepfakes exists: i) face-swap, ii) lip-synching iii) puppet
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Figure 2: Distribution of deepfake targets as of June 2020 from a total of
49,081 detected videos

master and iv) face synthesis.
In face-swaps ,the face of the source person is interchanged with the one of
a target person to generate a fake video, trying to portray actions which
in reality have been done by the source person. This kind of deepfakes are
usually generated to hit the popularity or reputation of famous personali-
ties by showing them in a fake scheme in which they never appeared.
Lip-sync deepfakes refer to videos that are modified to make the mouth
movements combining with an audio recording. Instead, Puppet-master
deepfakes include videos of a target person (puppet) who is animated fol-
lowing the facial expressions, eye and head movements of another person
(master) sitting in front of a camera. Puppet-master aim to hijack the
source person’s full-body in a video, and to animate it according to the
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own’s desire. The final type of deepfake is Face synthesis and involves the
generation of photo-realistic face images and facial attribute editing. In
comparison with face-swapping, facial reenactment has received more at-
tention in the academic research literature. For instance, the Face2Face
system enables real-time facial puppeteering by taking an input video of
an actor’s face and transferring the mouth shape and expressions onto a
synthesized target face. Despite not including a voice track, output videos
drew attention and triggered initial concerns over the misuse of the technol-
ogy by demonstrating examples of an actor controlling the faces of Donald
Trump and Vladimir Putin.

Description
Face Swap Source and target person interchange their faces

Lip Synching Mouth movements combining with audio recording
Puppet Master Video animated following facial expressions
Face Synthesis Generation of photo-realistic face images
Voice Cloning Generation of target speaker’s voice

Table 1: Definition of the different types of deepfakes

3.1 Social Impact

Over the last years, only a few studies have examined the social impact of
deepfakes. There have been dozens of studies looking at social influence
from altered still images but the psychological processes and consequences
of viewing deepfakes-modified video remain largely unstudied.
The core of deepfake is related to lying, which involves intentionally, know-
ingly, and/or purposely misleading another person.

The untruth detection research suggests that people are not surprisingly
good at detecting deception and can relatively easily acquire false beliefs.
In general false information spreads at higher velocity than truth.

Importantly, this level of spread is not affected by the medium in which
the message is conveyed. It’s the same whether the message is distributed
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through text, an audio recording, or a video. Although this may seem
surprising this happens because there are no reliable signals to human
deception and we tend to trust what others say.
Most of the academic researches focus on how a person speak versus its
body movements. Deepfakes make a shift in this sector since they not only
make the verbal content change, but they also modify the visual properties
of how the message was conveyed, whether this includes the movement of
a person’s mouth saying something that he or she actually did not, or the
behavior of a person doing something that in reality has not been done.
People are growing with the awareness that these video cannot be modified
or altered in any way. But, what happens when people realizes that this
belief is no more valid?
The philosopher Don Fallis analyzed this problem and tried to address this
issue in a theoretical and psychological way. He called it the epistemic
threat of deepfakes [3]. Because of the dominance of the visual system,
videos have high information carrying potential: we tend to believe what
we see in a video, making the video as a “gold standard” of truth. But
as deepfakes proliferate and awareness that videos can be faked spread
through the population, the amount of information that videos carry to
viewers is diminished.
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4 Deepfake Generation

With the new availability in data and machine learning algorithms, new
ways of generating deepfakes are arising. These application are mostly
developed used deep learning techniques, in order to exploit their ability
to handle high dimensional data.
The two main approaches rely on Variational Autoencoders (VAE) and
Generative Adversarial Networks (GAN). In this section we are going to
describe both the methods and one example for both.

4.1 Variational Autoencoders

Before describing VAE, a brief introduction on autoencoders and dimen-
sionality reduction is required. For several reasons there is the the need to
reduce the number of features of a specific dataset. It is more complicated
to visualize the training set and then work on it if the number of features is
large. Often, the majority of these features may proved to be tied together,
and therefore superfluous. It is at this point that dimensionality reduction
algorithm become relevant.
Autoencoders are a solution to address this problem. They are an unsu-
pervised learning technique for the task of representation learning.1

It’s composed by an encoder which is the process of recreating new fea-
tures representation from the old features, and a decoder which works in
the opposite direction. Autoencoders can help to mitigate the problem of
dimensionality reduction since the encoder compress the relevant data from
the latent space, and the decoder reconstruct them trying to avoid loss of
information. The goal is to find the best encoder/decoder pair among a
given family.

In particular, given two functions φ (e(x) - encoder) and ψ (d(e(x)) -
1It’s a method of finding a representation of the data – the features, the distance function, the

similarity function– that dictates how the predictive model will perform.
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Figure 3: Autoencoders and dimensionality reduction. Source: Medium

decoder), φ : χ 7→ F and ψ : F 7→ χ

φ, ψ = argmin
φ,ψ

ε ‖χ, ψ‖ (1)

The encoder function, denoted by φ, maps the original data χ ∈ Rn,
to a latent space F ∈ Rm, which is present at the bottleneck. The decoder
function, denoted by ψ, maps the latent space F at the bottleneck to the
output which in this case, is the same as the input function. Therefore, we
are simply attempting to recreate the original image following some gener-
alized non-linear compression.
The argument between the argmin function defines the reconstruction error
measure between the input data χ and the encoded-decoded data ψ.
Autoencoders are then implemented using neural networks and consist in
delineate an encoder and a decoder and to learn the best encoding-decoding
scheme using an iterative optimisation process. Each iteration takes as
input some data, it process them and then compare the autoencoder gen-
erated data with the initial and backpropagate the error through the ar-
chitecture to update the weights of the networks: this twerk that minimise
the reconstruction error is done by gradient descent over the parameters of
these networks. Some problems can arise when dealing with autoencoders:
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in general an autoencoder learns to capture as much information as possible
rather than as much relevant information as possible. Moreover, to train
an autoencoder there is need of lots of data, processing time, hyperparam-
eter tuning, and model validation before even start building the real model
with the high risk of information loss during the reconstruction phase.
Going back to our generation problem, once the autoencoder has been
trained, we have an architecture but still no real way to craft any new con-
tent. One approach could be the one of sampling a point from the latent
space and decode it in order to obtain a new instance. This can be done
only if the latent space is enough regularized and it depends on several
factors like the distribution of the data itself. Also if there will be no in-
formation loss, the high degree of freedom of an autoencoder would lead
to a model overfitting, implying that some points of the latent space will
give meaningless content once decoded.
To be sure that autoencoder could help us in generation of new contents
we must make sure that the latent space is regular enough, and we can do
this by encoding an input as a distribution over the latent space. Here the
idea of variational autoencoders. By sampling from the latent space, we
can use the decoder network to form a generative model capable of creating
new data similar to what was observed during training.

Figure 4: Variational Autoencoders. Source: Medium

Thus, the loss function that is minimised when training a VAE is com-
posed of a term which penalizes reconstruction error, that iterates over
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and over to make the encoding-decoding scheme as performant as possi-
ble, and a “regularisation term”, that tends to regularise the organisation
of the latent space by making the distributions returned by the encoder
close to a standard normal distribution. The general regularisation term
is the Kulback-Leibler 2 divergence between the returned distribution and
a standard Gaussian and can be directly expressed in terms of the means
and the covariance matrices of the the two distributions.

4.2 Application

Many existing real world solutions help to generate a deepfake in a fashion
and reliable way. For example, tools like Faceswap [2] or DeepFaceLab [21]
combines powerful architectures with easy GUIs, making the generation
process available to everyone.
Problems arise since the required computational power for training exceed
the common standard of developers and most of them are oblished to rely
on expensive external GPUs. Moreover, the presence of a GUI makes the
whole training process bounded to some fixed constraints thus leading to
a bad in-depth analysis.
I’m going to propose a simplified version of FaceSwap, tested on a Google
Colab Pro environment with the following characteristics.

After an initial preprocessing phase where I focus mainly on making all
the facial regions of the same size, I defined the model architecture.

1 def Encoder(self):

2 input_ = Input(shape=IMAGE_SHAPE)

3 x = input_

4 x = self.conv (128)(x)

5 x = self.conv (256)(x)

6 x = self.conv (512)(x)

7 x = self.conv (1024)(x)

8 x = Dense (1024)(Flatten ()(x))

2Kullback-Leibler divergence is an information-based measure of disparity among probability dis-
tributions.
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Figure 5: Google Colab Pro

9 x = Dense (4 * 4 * 1024)(x)

10 x = Reshape ((4, 4, 1024))(x)

11 x = self.upscale (512)(x)

12 return KerasModel(input_ , x)

Listing 1: Model Encoder

1 def Decoder(self):

2 input_ = Input(shape =(8, 8, 512))

3 x = input_

4 x = self.upscale (256)(x)

5 x = self.upscale (128)(x)

6 x = self.upscale (64)(x)

7 x = Conv2D(3, kernel_size =5, padding=’same’, activation=’

sigmoid ’)(x)

8 return KerasModel(input_ , x)

Listing 2: Model Decoder

A pair of autoencoders is trained on the faces of the training actors
dataset. Since my computational resources were quite limited, I decided
to load the weights directly from the official FaceSwap repo. This would
make my model able to converge faster.
As a loss function, I opted for mean absolute error, which covers pixel-to-
pixel differences between the original inputs and generated outputs.
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Please notice that both the encoder and decoder contains a conv and a
upscale function, as defined:

1 def conv(self , filters):

2 x = Conv2D(filters , kernel_size =5, strides=2, padding=’

same’)(x)

3 x = LeakyReLU (0.1)(x)

4 return x

5

6 def upscale(self , filters):

7 x = Conv2D(filters * 4, kernel_size =3, padding=’same’)(x)

8 x = LeakyReLU (0.1)(x)

9 x = PixelShuffler ()(x)

10 return x

Listing 3: Upscale and Convolution

Upscale need to double the dimensions of the input (thanks to Pix-
elShuffler) and the Conv function performs an inverse convolution oper-
ation. These are commonly used techniques by the state-of-the-art algo-
rithms.

The encoder is composed by a series of convolutional layers + LeakyRelu
activation layers. Note that each layer doubles in parameters, generating
smaller activation maps, with a stride value of 2 reducing the map size by
half after each layer. Following in the architecture, a dense layer gets a
flattened vector composed by the reshaped activation map of the convolu-
tion layers. Reshape and upscale conclude the whole network.
The decoder’s role is more simple, since mock the encoder’s behaviour in
the opposite direction. It upscales the representation of an encoded input
back into an acceptable 64 x 64 output through the use of convolutional
layers.

Finally, I use the trained weights of the autoencoder and facial transfer
to generate a deepfake, by connecting the encoded representation of source
A with the decoder of target B, resulting in the generation of an image of
target B but with the facial characteristics of A.
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Figure 6: Accuracy

Despite the standard weaknesses related to the computing power, this
architecture obtained an overall good level of performance. Some improve-
ments include the introduction of a discriminative component as happen
for the GANs. Moreover, a large number of data and better resources can
lead to more test and thus to better results.

4.3 Generative Adversarial Networks

Generative adversarial networks are composed by an overall structure of
two neural networks, the generator and the discriminator.

Generated samples resembling real data are supplied by the generator,
which estimates the probability distribution of the real samples in order
to do so. On the other hand, the discriminator estimates that the real
samples is not being provided by the generator, but rather comes from the
real data.

At the base of GANs lies the concept that a data generator’s high
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quality cannot be determined if we cannot tell fake data apart from real
data

In statistics, this is called a two-sample test 3. This makes the network
able to improve the data generator until it generates something that re-
sembles the real data and in the end fooling the classifier. The same is true
if our classifier is a state-of-the-art deep neural network.

Figure 7: GAN. Source: O’Reilly

The discriminator is a binary classifier to distinguish if the input x
is real (from real data) or fake (from the generator). It returns a scalar
prediction D(x). Assume the label y for the true data is 1 and 0 for the
fake data. We train the discriminator to minimize the cross-entropy loss 4,
in particular:

min
D

[−ylogD(x)− (1− y)log(1−D(x))] (2)

For the generator, it first draws some random parameter z from a nor-
mal distribution z ≈ N(0, 1). Then the function G(z) is used to generate
x

′. The goal of the generator is to fool the discriminator to classify x′ as
3The two-sample t-test (also known as the independent samples t-test) is a method used to test

whether the unknown population means of two groups are equal or not.
4Cross-entropy is a measure of the difference between two probability distributions for a given

random variable or set of events. It measures the performance of a classification model whose output
is a probability value between 0 and 1.
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true data.
If the generator works well, then D(x

′
) ≈ 1, which results in the gradients

are too small to make a good progress for the discriminator.
In this way both the generator and discriminator play a minimax game
which has a objective this objective function:

min
D

max
G

[−Ex≈DatalogD(x
′
)− Ez≈Noiselog(1−D(G(z)))] (3)

Once both objective functions are defined, they are learned jointly by
the alternating gradient descent. The generator model’s parameters are
revised and perform a single iteration of gradient descent on the discrim-
inator using the real and the generated images. Then an exchange of the
architectures occurs. Fix the discriminator and train the generator for an-
other single iteration. This train lasts until the generator produces good
quality images.

4.4 StyleGAN

The most famous GAN’s applications are SyleGAN and CycleGAN [28] .
The latter represents a technique that involves the automatic training of
image-to-image translation models without paired examples. Its architec-
ture is different from other GANs in a way that it contains 2 mapping
function (G and F) that acts as generators and their corresponding Dis-
criminators (Dx and Dy).
I’d like to focus more on StyleGAN and how it’s applied for deepfake gener-
ation. The StyleGAN generator no longer takes a feature from the potential
range as input; instead, it uses two new references of randomness to pro-
duce a synthetic image: standalone mapping channels and noise layers.

The result is capable not only of generating photorealistic high-quality
photos of faces, but also offers control over the style of the generated image
at different levels of detail through varying the style vectors and noise.
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Figure 8: This Person Does Not Exist

The SyleGAN architecture exploit the false past belief that improvements
at the network had to be done by just improving the discriminator. As
such, the generator has been somewhat neglected and remained apart.

According to the original paper proposed by Karras et al. [9], the
StyleGAN is described as a progressive growing GAN architecture with
five modifications, each of which was added and evaluated incrementally in
an ablative study.
In particular:

• StyleGAN uses baseline progressive GAN structure, which means the
volume of the generated picture increases progressively from a shallow
resolution (4×4) to high resolution (1024 x1024).

• The progressive growing GAN uses nearest neighbor layers for up-
sampling instead of transpose convolutional layers that are common
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Figure 9: Overview of the SyleGAN generator

in other generator models.

• A standalone mapping network takes a random point from the latent
space as input and generates a style vector.

• Subsequently it modifies the generator’s model so that a point is
no longer take as input from the latent space. In order to begin
the image synthesis process, the model now has a constant 4x4x512
constant value input.

26



• Finally, a Gaussian noise is attached to each activation map before
the AdaIN [7] method. A separate sample of noise for each block is
evaluated based on the scaling factors of that layer.

The reason why traditional GANs have a problem with control of styles
or features within the same image, and thus the reason that made Style-
GAN so famous, is due to something called feature entanglement. A GAN
is not as capable of distinguishing these finer details as a human, thus
leading the features to become “entangled” with each other to some extent
within the GAN’s frame of perception.

StyleGAN is easily the most powerful GAN in existence. With the
ability to generate synthesized images from scratch in high resolution and
combining the homemade hardwares (NVIDIA), they are considered as the
state-of-the-art in Generative networks.
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5 Conclusions and Future Research

I analyzed the current state-of-the-art but it’s clear that there is still, how-
ever, room for improvement.
Future research can include working with a larger dataset and better com-
putational resources. The generative models are data-driven, and therefore
they reflect the learned features during training in the output. To gener-
ate high-quality deepfakes a large amount of data is required for training.
Moreover, I think the academic research is moving toward a specific direc-
tion, and in particular the identity leake issue. The preservation of target
identity is a problem when there is a significant mismatch between the two
subjects of the analysis. Finally, additional improvements in environental
condition can help to achieve better results: most of the current synthetic
media generation focuses on a frontal face pose. In facial reenactment,for
good results the face is swapped with a lookalike identity.However,it is not
possible to always have the best match, which ultimately results in identity
leakage.
Present deepfake generation focuses on the face region only, however the
next generation of deepfakes is expected to target full body manipula-
tions,such as a change in body pose,along with convincing expressions.
Enviromental changes like illumination or surrounding scenes can result
in strange artifacts in the final result. Moreover, the presence of wobble
between different frames makes impossible to distinguish a temporal con-
sistency over the whole generation process.
Online media are view under a new eye in these years because of their
potential positive and negative impact on our society. The trade-off be-
tween deepfake generation and detection will not end in the foreseeable
future,although impressive work has been presented for the generation and
detection of these technologies. My future work is to repeat the video gen-
eration process using a more homogeneous set of images generated by the
GAN and then to compare the quality of the generated deepfakes.
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