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Introduction 

 

An option is a possibility, power of choice, or the freedom of alternatives. An option is a right, 

however not an obligation, as an example, to follow through on a business decision. In financial 

markets, it is the freedom of choice after revelation of additional information that increases or 

decreases the value of the asset. A “real” option is an option “relating to things”, fixed or 

permanent, as opposed to abstract things. A financial call option gives the owner the right, but 

not the obligation, to purchase the underlying stock in the future for a price fixed today. A 

financial put option gives the owner the right, but not the obligation, to sell the stock in the 

future for a price fixed today. The managerial operating flexibility is likened to financial 

options. As new information arrives and uncertainty about market conditions is gradually 

resolved, management may have valuable flexibility to alter the initial operating strategy. They 

may be able to defer, expand, abandon, or otherwise change the project during its operating life 

in order to capitalize on favourable future opportunities or to react in order to mitigate losses. 

Managerial decisions create call and put options on real assets that give management the right, 

but not the obligation, to employ those assets to achieve strategic goals and in the long run 

maximize the value of the firm. The key advantage and value of real option analysis is to 

integrate managerial flexibility into the valuation process and thereby assist in making the best 

decisions.1 The actual marketplace, characterized by change, uncertainty and competitive 

interactions, the realization of cash flows will probably differ from what management expected. 

Nowadays, in the face of omnipresent real options, most theorists and practitioners believe that 

real options should be considered when analysing corporate decisions. In this thesis I will 

employ the real option approach to study firms’ optimal strategic decisions in the event of 

pandemics. In details, I will use a MATLAB implementation to determine the optimal 

suspension-reactivation triggers, where reactivation decision is viewed as a call option and the 

suspension as a put option, using a dynamic programming method to obtain optimal switching 

thresholds applied to a real firm.  

Operational risk is defined by the Basel II regulations as "the risk of a change in value caused 

by the fact that actual losses, incurred for inadequate or failed internal processes, people and 

systems, or from external events differ from the expected losses"2. An influenza pandemic is 

one of those examples. In the event of pandemics, businesses play a special role in protecting 

 
1 Brach, M. 2003. Real options in practice 
2 Basel Committee on Banking Supervision. 2004. International convergence of capital measurement and 

capital standards 
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employees’ health and, at the same time, minimizing economic losses. The Department of 

Health and Human Services (HHS) and the Centers for Disease Control and Prevention (CDC) 

have developed a checklist in order to assist businesses to plan in case of outbreak of a 

pandemic. This checklist identifies the necessary activities for large businesses to establish 

policies for implementations during a pandemic. In particular, it requires firms to establish 

procedures for activating and temporarily shutting business operations. 

 

This work is motivated by the concern of a new pandemic now that the problems it can give 

rise to are real and tangible. 

 

In the course of Chapter I, I will analyse the importance of developing epidemiological models 

in the context of corporate finance and I will describe the different models that have been 

developed so far. Finally, the importance of adding stochasticity to the models and their 

connection with the world of real options will be examined through a theoretical example. 

 

In Chapter II, I will provide a rough calibration to Covid-19 using a modified SIR model 

allowing for deaths, which will be useful to obtain parameters which come close to reality. 

Those parameters will be used in the second part of Chapter II. 

Then I will propose a two-stage model to address the following research questions:  

• In the event of an epidemic, should the firm keep operating considering the loss of 

productivity of its employees or temporarily suspend operations to circumvent 

contagion? 

• Is the company’s objective to maximize value in conflict with its desire to control the 

disease? 

• What are the optimal triggers for businesses to implement the suspension-reactivation 

strategy? 

Within the first stage, I will adapt an epidemic model to explain the stochastic dynamics of an 

ailment that spreads in a given organization, taking into consideration external contagion and 

deaths from the virus.  

This work assumes that the productiveness of a worker decreases when he gets the disease. 

With the spread of the ailment, the proportion of infective workers tends to increase day by day, 

thus harming the firm’s productivity and, by consequence, its revenues. 

The “mothballing threshold” is the percentage of infected employees over which it is better to 

temporarily shut down the business and dismiss employees whether they are infected or not. 
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On the other side, when the percentage of infected employees drops below a certain low 

threshold (“reactivation threshold” thereafter), the business can be resumed, and employees can 

be called back to work3.  

In the second stage, I will use a regime-switching model with MATLAB to find these optimal 

thresholds, based on the theory of real option valuation. This model will be applied to a real-

world company operating in the silk fabric sector, the Ratti S.p.A. I will describe how this 

particular sector reacted to Covid-19 and the reasons that led me to choose this company.  

 

In Chapter III, analysis of results and graphs will be provided.  

 

Final results showed that it is optimal for the active regime to suspend operations when the 

fraction of infected employees reaches the threshold of 51%, while when the company is 

already in the inactive regime, it is optimal to reactivate operations when the fraction of 

infectives drops below 4%, thus leading to a Mothballing Threshold equal to 51% and a 

Reactivation Threshold equal to 4%. 

 

Since the parameters were somewhat approximate and not entirely certain, it was necessary to 

“play” with data and analyse the results as those parameters changed. Results showed 

interesting features. 

 

Firstly, I analysed the results changing the model from stochastic to deterministic, thus giving 

the volatility coefficient a value equal to 0. Mothballing Threshold remained unchanged to 51% 

but the Reactivation Threshold increased to 5%. This shows that when there is no uncertainty 

regarding the dynamics of the virus, firms are less conservative in making the suspension-

reactivation strategy, because businesses will be put back in operation with a slightly higher 

fraction of infectives. 

 

Then, I analysed the behaviour of thresholds by changing switching costs and some basic 

parameters: the external infection rate, the internal infection rate, and the recovery rate in the 

active regime. 

 

Concerning the changing switching costs, results showed that by increasing one of the two costs 

at a time, the Reactivation Threshold decreases, and the Mothballing Threshold increases, 

 
3 Chen, H. and S.H. Cox. 2010. An Option-Based Operational Risk Management Model for Pandemics 
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meaning that managers will be more reluctant in the decision of temporarily shut down the 

business when the Mothballing Cost increases, and will be less willing to reopen when the 

Reactivation Cost increases. This conclusion is quite straight and in line with my expectations. 

 

For what concerns the effect of diseases control strategies, results showed that with increasing 

both internal and external infection rates at a time, both thresholds were decreasing, meaning 

that firms will are more prudent and wait for less workers to get infected before both temporarily 

suspending and reopening operations. 

 

The opposite effect was given by changing the recovery rate in the active regime, because both 

thresholds increased with the recovery rate. This is quite intuitive, because as the internal 

recovery rate increases, managers will be less prudent and wait for more workers to get infected 

before suspending the business and will reopen with more infected workers. 

 

Results show that managers have actually a great responsibility over their businesses because 

they can control the main contagion parameters within their firm. It is on them that the decision-

making power regarding the optimal suspension-reactivation triggers resides. And it is upon 

them that these thresholds change depending on how they keep internal contagion under control. 

Their aim should be that of increasing the value of their firm, which is guaranteed by keeping 

operations open but at the same time take care of workers’ health, especially because their 

productivity is damaged when they are infected. This is not possible when security-measures 

are weak, and the safety of employees takes second place.  
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Chapter I 

An overview of epidemiological models and real options 

1.1  The importance of developing epidemiological models applied to 

businesses 

 

In the realm of infectious diseases, a pandemic is the worst-case scenario. An epidemic becomes 

pandemic when it spreads beyond a country’s borders. The spread global epidemics has gone 

hand in hand with the globalisation of mankind. in this modern era, outbreaks are nearly 

constant, though not every outbreak reaches pandemic level as Covid-194 has, which we are 

currently fighting against. To date, 32 pandemics have occurred in the past 500 years and three 

in the past century. Historic data reveals that influenza pandemics occur with frightening 

regularity every 30 to 50 years3. 

Given this pattern, it is reasonable to develop economic models in order to be better prepared 

in the event of other outbreaks. Impacts on almost all kind of business organizations are 

staggering: businesses would have to shut down for quarantine, firm’s earnings would plunge 

and leading to default on corporate debts. Furthermore, consumers’ confidence might crash, 

thus deteriorating financial distress even more. Without any improvement in our techniques for 

fighting this invisible war, sacrifices by households and businesses will be startling5.  

According to searches carried out by Area Studi Legacoop6, Italian economy due to the 

pandemic has lost €150 billion in 2020, with a collapse of 8,9%, a percentage twice that of the 

average world GDP (-4,4%). The loss can be divided into 108 billion in consumption, 16 billion 

in investments and 78 billion in exports. Concerning employment, the report indicates that at 

the end of 2020 those employed in Italy were 435,000 fewer than the previous year. The greatest 

losses were concentrated among fixed-term employees (-412.000), self-employed workers (-

141.000). The crisis has also widened the differences in economic dynamics between 

households and businesses. For Italian households, it has been estimated that disposable income 

is down by a total of 30 billion against savings that have grown (131 billion, they had been 71 

in 2019) and an average propensity to save that has almost doubled (from 8,2% in 2019 to 

15,6% in 2020). A similar difference was also recorded among businesses. In fact, the report 

 
4 Visual Capitalist. 2020. Visualizing the History of Pandemics 
5 Mulligan, C. 2020. Economic Activity and the Value of Medical Innovation during a Pandemic 
6 Legacoop. 2020. Covid-19: Prometeia-Area Studi Legacoop; nel 2020 persi 150 miliardi di PIL, 108 di 

consumi, 78 di esportazioni 



11 

 

pointed to the phenomenon that - for precautionary reasons and linked to the uncertainty of the 

outlook - companies have increased their recourse to loans, while keeping the funds acquired 

on current accounts. 

The lost surplus from market activity, while massive, understates the true costs of sacrifices 

that households and businesses are making. This is why better techniques for fighting the war 

are highly beneficial. 

 

1.2  Basic Epidemiological Concepts 

 

Mathematical models can provide precious tools to public health authorities for the 

management of epidemics, potentially contributing to limiting the portion of infected people 

and victims. These models can be used to reap long and short-term forecasts, which allow 

decision-makers to optimize accessible control policies, such as lockdowns and vaccination 

campaigns. Models are also very beneficial in other duties which include the estimation of 

transmission parameters, analysing the contagion mechanisms and simulation of different 

epidemic scenarios. 

History of epidemiological models can be traced back to pioneers such as Kermack and 

McKendrick (1927). Since the publication of Bailey in 1957, mathematical epidemiology has 

become a meticulous discipline. The wide diversity of models developed to date can be 

categorized into two major streams: deterministic models and stochastic models. Within the 

real world, the unfold of viruses through a population is a stochastic process but deterministic 

models are used to obtain satisfactory approximations for relatively vast populations. New 

researchers have used epidemic modelling to design most effective control policies which 

include immunization, quarantines, and worker furloughs. However, these models only 

evaluate effectiveness of epidemic control strategies based on country-wide desires and lead 

cost-benefit analysis from the macroeconomic standpoint. They do not deliver directives for 

large corporations to prepare for pandemics nor provide instructions about the implementation 

of optimal control policies. 

All epidemic models have a common feature, which dividing the modelled population into two 

different health states: susceptibles (𝑆) and infectives (𝐼) and studying the disease transmission 
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among these classes. Beside the simple 𝑆𝐼 model, other elaborated models incorporate other 

groups, of which the most used is the recovered (𝑅). 

The group 𝑆 represents the group of people who are healthy but vulnerable to the disease. The 

class 𝐼 denotes the individuals who have been infected and can contaminate others. The class 

𝑅 represents people who have recovered from the infection and have acquired immunity3.  

Scientists use a basic measure to track the infectiousness of a disease called the basic 

reproduction number (o reproduction ratio) — also known as 𝑅0, that indicates how contagious 

an infectious disease is. It tells the average number of people who will contract a contagious 

disease from one person with that disease. It applies to a group of people who was previously 

free of infection and have not been immunized through vaccination7. For example, if a disease 

has an 𝑅0 equal to 3, a person who has the disease will transmit it to an average of 3 other 

people. That repetition will go on if no one is vaccinated against the disease or is already 

immune to it. 

Three possibilities exist for the potential transmission or decline of a disease, depending on its 

𝑅0 value: 

• If 𝑅0 < 1, every existing infected individual causes less than one new contamination. 

In this case, the ailment will decline and ultimately die out. The purpose of 

policymakers is actually to maintain this term below 1. 

• If 𝑅0 = 1, each existing infection causes one new infection. The disease will stay alive 

and stable, but there will not be an epidemic outbreak. 

• If 𝑅0 > 1, each existing infected individual causes more than one new infection. The 

disease will be transmitted between people quickly, and there it is probable that there 

will be an outbreak. 

 

1.3  Three simple deterministic epidemiological models: 𝑺𝑰, 𝑺𝑰𝑹 and 𝑺𝑬𝑰𝑹 

models 

 

1.3.1 The 𝑺𝑰 Model 

The Susceptible-Infective model considers a moderate epidemic in a closed population, which 

means that there is no entrance nor leaving from the population. In this sense, the demographic 

 
7 Healthline. 2020. What is R 
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turnover, so births and deaths, is not contemplated. Furthermore, the 𝑆𝐼 model assumes that the 

contamination does not guarantee immunity, meaning that recovered individuals may get 

infected again. In Figure 1 the transition dynamics of the ailment in the 𝑆𝐼 model is provided.  

The dashed line shows how infection does not confer immunity. Individuals have reoccurring 

infections, and infected individuals return to the susceptible state. The transition rate 𝛽 between 

the states 𝑆 and 𝐼 represents the infection rate within the population, which is the average 

effective contacts with other persons per unit time3.  

 

 

Figure 1: Transition dynamics of the 𝑆𝐼 model 

 

 

Individuals in this model cannot get immunity, so once recovered they become susceptible 

again. This model matches the behaviour of diseases like herpes or cytomegalovirus (CMV). 

Let 𝑆𝑡 and 𝐼𝑡 be the proportions of population that reside in the states 𝑆 and 𝐼 respectively, as a 

function of time 𝑡, measured in days. The following ordinary differential equation (ODE) 

represents the 𝑆𝐼 model: 

 

 

{
𝑑𝐼𝑡 =  ( 𝛽𝐼𝑡𝑆𝑡 –  𝛾𝐼𝑡)𝑑𝑡

𝑆𝑡 =  1 −  𝐼𝑡
 

 

 𝑑𝐼𝑡 =  [𝛽𝐼𝑡(1 –  𝐼𝑡)–  𝛾𝐼𝑡]𝑑𝑡 

                         

  

As described above, 𝛽 represents the conversion rate between classes 𝑆 and 𝐼 per unit time. 

Therefore, the prompt increase in the fraction of infectives 𝐼𝑡 should be equal to 𝛽𝐼𝑡𝑆𝑡, due to 

the interaction between infectives and susceptibles. The transition rate 𝛾 represents the recovery 



14 

 

rate, which is the proportion of infectives leaving the state 𝐼 per unit time. Hence, the 

instantaneous decrease in the proportion of infectives 𝐼 is equal to 𝛾𝐼𝑡3. 

This model is the simplest form of all epidemiological models.         

    

1.3.2 The 𝑺𝑰𝑹 model 

This model adds the class 𝑅 (“recovered”) to the simple 𝑆𝐼 model analysed before. This model 

again ignores deaths but assumes that everyone removed from the pool of susceptible pool 

recovers.  

Again, the variables 𝑆𝑡, 𝐼𝑡 and 𝑅𝑡 represent the portion of population in each compartment as 

a function of time. The model is dynamic because the rates in each class can fluctuate over time, 

as the variable function 𝑡 implies. 

Each member of the population typically progresses from susceptible to infectious to recovered. 

This can be shown as a flow diagram, as in Figure 2, in which the boxes represent the different 

compartments and the arrows the transition among them. 

 

 

Figure 2: Transition dynamics of the 𝑆𝐼𝑅 model 

 

The dynamics of a mild epidemic, such as the flu, is often much faster than the dynamics of 

birth and death, that is why the so-called vital dynamics (the demographic turnover) is 

sometimes emitted. In Chapter II, I will use this simple SIR model augmented to include 

deaths (𝐷) to calibrate its effect to Covid-19.  

The 𝑆𝐼𝑅 model can be expressed by the following set of ODEs: 

 

𝑑𝑆

𝑑𝑡
 =  − 

𝛽𝐼𝑆

𝑁
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𝑑𝐼

𝑑𝑡
=  

𝛽𝐼𝑆

𝑁
 –  𝛾𝐼 

 

𝑑𝑅

𝑑𝑡
=  𝛾𝐼𝑡 

 

Where 𝑆 is the stock of susceptibles, 𝐼 is the stock of infectives, 𝑅 is the stock of recovered 

and 𝑁 is the sum of these three. This model was first proposed by William Ogilvy 

Kermack and Anderson Gray McKendrick as a special case of what we now call Kermack–

McKendrick theory. 

We note that from: 

 

𝑑𝑆

𝑑𝑡
+  

𝑑𝐼

𝑑𝑡
+  

𝑑𝑅

𝑑𝑡
= 0 

 

 

it follows that: 

 

𝑆𝑡 + 𝐼𝑡 + 𝑅𝑡 = 𝑁 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

 

Furthermore, the following ratio depicts the dynamics of the infected population: 

 

𝑅0 =  
𝛽

𝛾
 

 

Which depends on the reproduction ratio, as already discussed. 

 

1.3.3 The 𝑺𝑬𝑰𝑹 model 

The Susceptible-Exposed-Infective-Recovered is widely used to analyse infection data during 

the different stages of an epidemic outbreak. This model adds the category 𝐸 (exposed), which 

https://en.wikipedia.org/wiki/William_Ogilvy_Kermack
https://en.wikipedia.org/wiki/William_Ogilvy_Kermack
https://en.wikipedia.org/wiki/Anderson_Gray_McKendrick
https://en.wikipedia.org/wiki/Kermack%E2%80%93McKendrick_theory
https://en.wikipedia.org/wiki/Kermack%E2%80%93McKendrick_theory
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includes all those individuals who have been infected but are not yet infectious themselves. It 

is one of the most updated mathematical models to represent the epidemic dynamics and to 

forecast feasible contagion scenarios. It can be useful to assess the effectiveness of government 

measures, like lockdowns or quarantines since the outbreak of the infectious disease8.  

It is based on a series of dynamic ODEs that consider the trend of individuals who recover or 

unfortunately die over time. 

The basic SEIR model (Allen 2017) is described in Figure 3. As in the previous models, time 

is denoted by 𝑡 and is measured in days. An initial total population of 𝑁0 individuals is divided 

into the first infectious individuals (𝐼0  = 1) and 𝑆0  = 𝑁0  − 1  vulnerable individuals. In each 

successive day, some susceptibles become exposed. The daily amount of new exposed that 

become new infectious after an incubation period is determined by the net reproduction number 

times the number of existing infectious. The net reproduction number varies with time and 

depends on three elements: the basic reproduction number 𝑅0 , the average number of days in 

which a subject is infectious 𝑇𝑖𝑛𝑓 and the fraction of susceptibles to the total population 
𝑆𝑡−1

𝑁𝑡−1
, 

so in each period we have: 

 

𝑁𝑒𝑤𝐸𝑡 =  
𝑅𝑡

𝑇𝑖𝑛𝑓
𝐼𝑡 − 1   ; 

 

𝑅𝑡 = 𝑅0

𝑆𝑡 − 1

𝑁𝑡 − 1
 

 

The exposed, after an incubation period of 𝑇𝑖𝑛𝑐 days, become infectious. The outflow of 

susceptibles becomes the inflow of exposed in each period while the outflow from the exposed 

is the inflow into the infectious, who will fall into the category of those who recover or those 

who die9.  

The allotment to these classes is headed respectively by two probabilities: 1 − 𝑝𝑓𝑎𝑡 and 𝑝𝑓𝑎𝑡, 

which are fixed exogenously. 

 
8 Godio, A., F. Pace, and A. Vergnano. 2020.  SEIR Modelling of the Italian Epidemic of SARS-CoV-2 Using 

Computational Swarm Intelligence 
9 Favero, C., A. Ichino and A. Rustichini. 2020. Restarting the economy while saving lives under Covid-19 
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Survivors to the disease are then removed and become recovered (𝑅𝐸𝑀_𝑅𝐸𝐶𝑡) after a period 

of 𝑇𝑠𝑟𝑒𝑐 days from the first illness manifestations to recovery. Instead, those who unfortunately 

pass away are removed as fatalities, 𝑅𝐸𝑀_𝐹𝐴𝑇𝑡 after a period of 𝑇𝑠𝑑 days from first symptoms 

to death. In this model, the lethality of the virus is measured by: 

 

𝜆𝑠𝑒𝑖𝑟  = 
𝑅𝐸𝑀_𝐹𝐴𝑇𝑡

𝐸𝑡+ 𝑅𝐸𝑀_𝑅𝐸𝐶𝑡+𝑅𝐸𝑀_𝐹𝐴𝑇𝑡 
 

 

This parameter will converge to two values: if 𝑅0 > 1, 𝜆𝑠𝑒𝑖𝑟 converges to 𝑝𝑓𝑎𝑡 .  

Instead, if 𝑅0 ≤ 1 , the virus diffusion is inhibited, and the lethality parameter goes to 0.  

We notice that, in the first case, the total number of deaths will be the same independently of 

the size of the reproduction number, because it only dictates the speed at which the number of 

victims is reached. Secondly, the net reproduction number of the disease changes only as a 

function of the ratio of the susceptibles to the total population. It is instead affordable to assume 

that the variable will be dependent on policies and by the behavioural response of people to the 

unfold of contamination8.  

 

 

Figure 3: The SEIR Model 
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1.4 Real options  

In the financial markets, an option is the freedom of choice after revelation of additional 

information that increases or decreases the value of the asset. A “real” option is an option 

“relating to things”, fixed or permanent, as opposed to abstract things. A financial call option 

gives the owner the right, but not the obligation, to purchase the underlying stock in the future 

for a price fixed today. A financial put option gives the owner the right, but not the obligation, 

to sell the stock in the future for a price fixed today.10 The managerial operating flexibility is 

analogized  to financial options. As new information arrives and uncertainty about market 

conditions is gradually resolved, management may have valuable flexibility to alter the initial 

operating strategy.11 They may be able to defer, expand, abandon, or otherwise change the 

project during its operating life in order to capitalize on favourable future opportunities or to 

react in order to mitigate losses. Managerial selections create call and put options on real assets 

that provide management the right, but not the obligation, to utilize those assets to achieve 

strategic goals and eventually maximize the value of the company. The key advantage and value 

of real option analysis is to integrate managerial flexibility into the valuation process and 

thereby assist in making the best decisions.10 The real marketplace, pervaded by change, 

uncertainty and aggressive interactions, the realization of cash flows will likely be different 

from what management was expecting. That is why an increasing number of academics have 

been dissatisfied with the existing methods of resource allocation. It is now widely recognized 

that traditional Discounted-Cash-Flow (DCF) approaches such as standard Net-Present-Value 

rule (NPV), cannot capture management’s flexibility to adapt decisions in response to changing 

and developing market conditions. Traditional DCF approaches make implicit assumptions 

concerning an expected scenario and presume management’s passive commitment to a certain 

static operating strategy. Instead, real option methods examine at each step in the decision-

making technique the freedom of preference to embark on the next step in the climb, or to pick 

towards doing so primarily based on the examination of additional data. This freedom of choice 

is embedded in most, if not all, funding decisions, because they are hardly ever now-or-never 

choices and infrequently, once a decision has been taken, cannot be abandoned, or modified for 

the duration of the entire project. In most cases, the choice can be postponed or extended, and 

frequently it results in consecutive steps with various decision points. All of these picks are 

actual managerial options and impact on the value of the investment opportunity. 

 
10 Brach, M. 2003. Real options in practice 
11 Trigeorgis, L. 1996. Real Options: Managerial Flexibility and Strategy in Resource Allocation 
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Imagine that you are going to build a new house and you have many options about how to heat 

it. One option involves the use of a heating oil or natural gas furnace. Another involves the use 

of an electric or natural gas range in your kitchen for cooking. You do not know how prices for 

either energy will develop in the future. You may look up historic prices of gas, oil and 

electricity or the past decade, that may give you some indication on volatility of prices, or which 

one tended to be cheaper. However, this study cannot ensure you that prices will follow the 

same price movements. For this reason, it may be of value for you to install a furnace that allows 

you to switch between energy sources without any problem. It is likely that this additional 

flexibility will come at a price because a furnace that is able to switch energy source will cost 

more than a simple one that is able to use one only energy form. However, depending on your 

annual energy demand and your expectations about future volatilities of each energy source and 

how they may correlate with each other, this option may well be in the money for you. 

While this example may be intuitive and may invite to consider real option to value managerial 

options, there are different opinions about the topic, some of them are summarized here: 

 

“To be sure, this much-vaunted alternative to the conventional method of evaluating 

capital-spending decisions using net present value (NPV) is catching on with more and 

more senior finance executives.” 

 R. Fink. CFO.com, September 2001. 

“In ten years, real options will replace NPV as the central paradigm for investment 

decisions.”  

Tom Copeland & Vladimir Antikarov. Real Options, A Practitioner’s Guide, 2001. 

“Information for evaluating real options is costly or unavailable, and asking for more 

money later is difficult and may be interpreted as a lack of foresight. Projects are selected 

by financial managers, who do not trust operational managers to exercise options properly.”  

Fred Phillips, Professor, Oregon Graduate Institute of Science & Technology, Portland. 

Business Week Online, 1999. 

“The myth of Option Pricing—Fine for the stock market and oil exploration, option pricing 

models don’t work in valuing life sciences research.”  

Vimal Bahuguna, Bogart Delafield Ferrier. In vivo—The Business and Medicine Report, 

2000. 

Table 1: Opinions on Real Options 

Source: Real options in practice, Brach M. 
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However, real option evaluation does not by definition preclude or substitute traditional DCF 

and NPV evaluation. Real options theory actually develops these tools and the underlying 

hypotheses, integrates them into a new valuation pattern, and finally takes them to the next level 

of strategic analysis1. The use of real option evaluation does not defend against funding 

selections leading to the acquisition of options which might be worthless and, as a result, have 

a certain probability of expiring valueless. Like any other financial and strategic evaluation 

device, real option analysis is by no means better than the assumptions that move into the 

analysis. However, it provides an alternatively secure option area any investment decision to 

be made. As time goes on and extra information arrives, the thresholds of uncertainty become 

better defined and the option space safer and less limited. “The key issue is not avoiding failure 

but managing the cost of failure by limiting exposure to the downside”12. Real option analysis 

is a strategic tool. It involves a cross-organizational workout mapped out to put out the options, 

find out the risks, and dictate the variety of managerial flexibilities. It provides the framework 

and shape for real option pricing, and it is the benchmark against which to degree the real 

alternative execution. 

In finance the net present value (NPV) method is used as the basis for most analysis, such as 

investment decisions, valuation of firms and capital structure decisions. However, as 

recognized by most practitioners, this method fails to consider real options embedded in 

business strategic decisions, thus underestimating the firm value. Implicitly, the NPV method 

assumes that either the “investment is reversible” or “if the investment is irreversible, it is a 

now or never proposition”13. This last statement means that if the firm does not undertake the 

investment now, it will not be able to implement it in the future. However, in the real world, 

investment opportunities do not always meet these conditions since most investments are 

partially or completely irreversible. This is because most investment become sunk costs once 

the firms make the move and firms cannot recover the costs in full later. Most importantly, in 

the real-world firms can analyse the desirability of the investment project using newly acquired 

information. Therefore, firms have the managerial flexibility to defer the investment until new 

information arrive. The possibility to delay investment can affect the decision to invest and 

thus, undermines the simplistic NPV approach13. 

A firm’s investment opportunity can be seen as a call option. It can either exercise the option 

and, so make the investment, or hold the option and wait for new information to arrive. The 

decision of investing now makes the firm immediately lose the option value of waiting until the 

 
12 McGrath, R. 1999. Falling Forward: Real Options Reasoning and Entrepreneurial Failure 
13 Dixit, A. K., and R. S. Pindyck. 1994. Investment under uncertainty 
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arrival of new information. This lost value is analogous to an opportunity cost that should be 

included in the calculation of the NPV of the project.  

Real options are inherently present in any strategic decision where firms have the managerial 

flexibility to alter its course, namely though expansion, contraction, delay or abandonment.14  

In the next paragraphs, I will explain the connection between the world of real options and 

epidemiological models. 

 

1.4.1 Real options and Lockdown Strategies for Covid-19 

Real options models have been used in the realm of business economics to investigate the 

impact of various policies on businesses and individuals. Giving the huge amount of uncertainty 

involved in the event of a pandemic, striking the balance between economic costs and lives 

saved is a challenging task15. For example, decision-makers can decide to impose the lockdown 

to specific regions or business sectors, or reverse their decision depending on the transmission 

of the virus (here, the decision can be plainly seen as a call option).  

Many strategies are available, but which how do we select the best one? Clearly, by acting 

gradually authorities can learn more about the spread of the disease and adjust future actions, 

because learning has value15. Real options analysis provides a useful framework to structure an 

optimal policy, because it allows to dismantle the course of action into sub-steps and to assess 

value and costs of such decisions along a decision path. 

For many different motives, the utilization of real options did not gain popularity within the 

business community, although it dispenses useful intuitions to firms and governments who 

constantly face trade-offs and make decisions in highly volatile circumstances.  

Currently, our governments are designing strategies to deal with the Covid-19 outbreak. Given 

the amount of uncertainty and the irreversibility of many decisions, creating optimal 

alternatives is key. Creating options means investing today to be ready to act when conditions 

become unsustainable, for example hospital supplies and having personnel ready to be 

employed. 

There are three features that define the circumstances for applying real options: uncertainty, 

irreversibility, and flexibility15. 

 
14 Brealey, R., Myers, S. and Marcus, A. 2001. Fundamentals of Corporate Finance 
15 Boyer M. and E. Gravel. 2020. Looking at the Management of the COVID-19 Lockdown strategies Through 

the Lens of Real Options Analysis 
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• Uncertainty stands for the unpredictability about the future situation. For example, the 

outcome of a clinical trial or the evolving of the basic reproduction number of an 

infectious disease. 

• Irreversibility of a project means that committed assets cannot be recovered when things 

do not go as predicted.  

• Flexibility is the most crucial characteristic of real options. It represents the option to 

delay, to restart or stop an action, to invest in stages, to abandon or to switch.  

Flexibility is valuable if we have time and do not need to act straight away. Managing Covid-

19 is all about real options. Decision-makers face the following sources of uncertainty: 

• Degree of contagion of the disease, likelihood of future waves, fatality rate and 

healthcare costs. 

• Future economic effects linked to lockdowns and social distancing. 

Irreversibility in this context can be determined as follows: 

• Direct and indirect losses, both economic and emotional, resulting from prolonging the 

lockdown. 

Finally, decisions of policymakers are characterised by flexibility because they can choose: 

• When and where to impose a total or partial lockdown. 

• When and where to lift s total or partial lockdown. 

Modelling uncertainty is a crucial mission, which can be fulfilled through suitable stochastic 

techniques whose development relies upon parameters to be calibrated in conformity with 

scientific expertise, which is evolving.  

Managing Covid is similar to managing a series of options. In the course of last and present 

year, many options have been exercised by governments. The first was employed when the first 

lockdown was imposed. The second option exercised was the lockdown lift for daycare centers, 

schools and part of the economy that was considered of “primary” importance. In the last 

months, the Italian government has been exercising the option of targeted lockdowns across the 

regions of Italy. 

For lockdown alternatives, thresholds would be conditioned on the number of positive 

individuals or victims. As mentioned above, real option analysis would help decision makers 

to achieve an optimal equilibrium between the costs and benefits of lockdowns considering the 

evolution of the disease as well as the behavioural response of individuals.  
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1.4.2 Regime-switching models 

The history of these models can be traced back to Mossin in 1968, who studied optimal portfolio 

policies extended to multiperiod by means of dynamic programming.  

Regime-switching models arise from real options valuation. The simplest form of these models 

are optimal stopping problems, and American options are a perfect example of it because 

holders can exercise their right at any time before the expiration, allowing them to capture profit 

as soon as the stock price moves favourably.  

In the realm of corporate finance, Brennan and Schwarz in 1985 applied this approach to 

evaluate the value of active and inactive firms through the use of the Black-Scholes formula. 

They argued that the inactive firm holds the opportunity to invest, whose value is equivalent to 

that of a call option with a strike price equal to the entry cost. Similarly, the active firm holds 

the option to abandon because it can exit the market when conditions reveal it is convenient. In 

this context, the value of the firm should include the value of option to entry and abandon, 

respectively.   

Later in 1994, Dixit and Pindyck extended the model considering that a firm has the option to 

suspend or scrap a project, and considered four price thresholds for investment, suspending, 

reactivation and scrapping. 

In the next Chapter, I will analyse the world of regime-switching models more deeply and a 

practical example will be provided. 

 

1.5 Real options and epidemiological models: what a difference a stochastic 

process makes 

Real options have been used to analyse the effect of uncertainty on the timing of policies 

implementation for disease outbreaks. Viewing the ailment management as an option that may 

be exercised to reduce harm cause by the disease, the real options approach can be a beneficial 

advice to determine the best timing of control, that is answering to the questions: when is it 

optimal to use the option to control the virus and how long should we wait to implement control 

measures in order to learn more? 
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To incorporate uncertainty in the decision-making process, the spread of the infection can be 

described more realistically by a stochastic process16. Traditionally, real options framework 

assumes the change in the level of infected population follows a Geometric Brownian Motion 

(GBM), (Saphores 2000; Sims & Finnoff 2012)  which is well understood and allows for closed-

form solutions. However, it works properly for the initial part of the epidemic because it 

assumes that the mean level of infection grows exponentially, but it is not the case in the long 

term. In particular, GBM ignores the effect of the size of susceptible population in the epidemic 

outbreak, which is unrealistic because the transmission rate also depends on the current 

proportion of susceptible individuals. In fact, the rate of infection fastens when the proportion 

of susceptible population is high and slows down when the proportion is low. 

As we have seen, the evolution in the level of infection over time is described by a logistic-type 

term in the deterministic formulations of epidemiological models. These models can be 

extended to include uncertainty by adding a drift term representing the random fluctuations 

caused by variability in the level of infection spread (Keeling & Rohani 2008).  

 

1.5.1 Set up of epidemiological models of uncertainty in the disease spread 

To include uncertainty in the decision-making process, let us assume that the level of infection 

𝐼 follows a stochastic process16. Traditionally, the increase in the level of infection can be 

assumed to follow a GBM, so the dynamics in the level of infection can be described by the 

following stochastic differential equation (Saphores 2000; Sims & Finnoff 2012): 

 

𝑑𝐼 =  𝛽𝐼𝑑𝑡 +  𝜎𝐼𝑑𝑊 

 

Where 𝛽 is the transmission rate of infection, 𝜎 is the volatility coefficient, 𝐼 is the current level 

of infected individuals and 𝑑𝑊 is a Wiener increment.  

As the limit of 𝜎 → 0, the above equation is equivalent to assuming a deterministic exponential 

growth in the infected area, but this is plausibly true only in the early stages of an epidemic. 

In the simple 𝑆𝐼 model, the increase in the number of infected individuals is given by the rate 

at which a susceptible individual contracts the infection multiplied by number of vulnerable 

 
16 Dangerfield, C.E., A.E. Whalley and C.A. Gilligan. 2018. What a Difference a Stochastic Process Makes: 

Epidemiological-Based Real Options Models of Optimal Treatment of Disease 
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individuals. The rate at which a susceptible individual is contaminated is given by the 

transmission rate 𝛽 times 𝐼/𝐼𝑚𝑎𝑥 which is the probability of contact with an infectious 

individual, where  𝐼𝑚𝑎𝑥 is the maximum number of potential infected individuals.  

Assuming that the population is constant, 𝐼𝑚𝑎𝑥 is equivalent to the total population size, so  

𝑆 = 𝐼𝑚𝑎𝑥 − 𝐼. Ignoring the uncertainty in the spread of infection, the evolution of its level is 

given by the following ODE16: 

 

𝑑𝐼

𝑑𝑡
=  𝛽𝐼 (1 −

𝐼

𝐼𝑚𝑎𝑥
) 

 

Uncertainty in the epidemic spread is integrated by assuming there is variability within the 

transmission rate driven by external forces, such as temperature and climate (Sturrock et al. 

2011).  These fluctuations can be deemed to be stationary. 

We can assume that the ‘corrected apparent infection rate’ is disturbed, leading to 

𝛽 (1 −
𝐼

𝐼𝑚𝑎𝑥
) →  𝛽 (1 −

𝐼

𝐼𝑚𝑎𝑥
) +  𝜎𝜉 (Marcus 1991), where 𝜉 is white noise and 𝜎 is a constant 

that controls the extent of that noise. The uncertain evolution of the disease can be described 

by the following ‘mean-reverting SDE’: 

 

𝑑𝐼 = 𝛽 (1 −
𝐼

𝐼𝑚𝑎𝑥
) 𝑑𝑡 +  𝜎𝐼𝑑𝑊 

 

This equation has been used in the real options framework for example by Ndeffo Mbah et al. 

in 2010 to describe the increase in the infected area and by Marten & Moore in 2011 to study 

the growth in pest populations16.  

When the level of infection outreaches 𝐼𝑚𝑎𝑥, the extent of the diffusion term in non-zero and 

so the infection level might exceed 𝐼𝑚𝑎𝑥 , which is unrealistic in a fixed population.  

On the other hand, we can assume that the transmission rate is itself perturbed, leading to 𝛽 →

𝛽 + 𝜎𝜉 so the evolution in the level of infection is given by the following ‘logistic SDE’: 
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𝑑𝐼 = 𝛽𝐼 (1 −
𝐼

𝐼𝑚𝑎𝑥
) 𝑑𝑡 +  𝜎𝐼 (1 −

𝐼

𝐼𝑚𝑎𝑥
) 𝑑𝑊 

 

As the level of infected individuals reaches 𝐼𝑚𝑎𝑥, both the diffusion term and the drift approach 

0, so the SDE remains in within the interval [0, 𝐼𝑚𝑎𝑥], thus preserving the natural upper 

boundary of the total population size16.  

The logistic SDE offers an approach of relating in future levels of contamination to the 

randomness of transmission evolution due to environmental elements, therefore delivering an 

epidemiological-based approach to incorporating randomness into the decision problem. 

 

1.5.2 The Decision Problem 

Since this problem cannot be easily applied to Coronavirus for the reasons I will explain later, 

I assume that the infection is referred to a forest disease outbreak in a particular tree species. I 

will assume that the number of trees (the population) is constant and that the control policies 

can be implemented at any time for an on-the-spot fixed cost 𝐶 and that this treatment is 

irreversible. A decision-making authority is faced with the following choice: should the cure be 

dispensed straight away, or should the decision-maker wait to learn more about the evolution 

of the disease? Waiting allows the authority to check whether the level of infection degenerates 

or improves over time. 

Classical NPV approach would suggest undertaking the remedy if it provides a value greater 

than the cost 𝐶. However, the uncertainty in the ailment dynamics combined with the 

irreversibility of treatment, it is worthy to delay the treatment.  

I assume that the most effective impact of treatment is to eliminate infection and I assume that 

it is implemented straight away. If we just consider the economic benefit thanks to timber or 

crop saved, the value of applying the treatment is: 

 

𝑉𝑡 = 𝑝𝐼𝑡 

 

Where 𝑝 is the gain yield per unit of infected area cured, which is assumed to be fixed and that 

the extent of infection 𝐼𝑡 varies stochastically according to GBM, mean-reverting SDE or 

logistic SDE described above.  
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Viewing the treatment application as a funding with value 𝑉𝑡, the problem can be seen as a real 

option as it gives the right but not the obligation to make an investment for a predetermined 

price in the future13. The payoff from applying the treatment at time 𝑡 is 𝑉𝑡 − 𝐶, so we need to 

maximize the expected present value: 

 

𝐹 = max 𝐸[(𝑉𝑡 − 𝐶)𝑒−𝑟𝑡] 

 

Where 𝑡 is the time in the future at which the decision is made, 𝑟 is the discount rate and 𝐸 is 

the expectation, which must be considered due to the stochasticity of 𝐼𝑡 and 𝑉𝑡. This is an 

optimal stopping problem, where the threshold at which the value from applying the treatment 

immediately is at its maximum must be found.  

Using standard methods from dynamic programming, the value of option to apply the treatment 

F(V) must satisfy the following Bellman equation13: 

 

1

2
𝑏(𝑉)2

𝑑2𝐹

𝑑𝑉2
+ 𝑎(𝑉)

𝑑𝐹

𝑑𝑉
− 𝑟𝐹 = 0 

 

In Table 2, the functions 𝑎(𝑉) and 𝑏(𝑉) are described according to each stochastic process seen 

so far. 

 

Stochastic process 𝒂(𝑽) 𝒃(𝑽) 

Geometric Brownian Motion 𝛽𝑉 𝜎𝑉 

Mean-reverting SDE 
𝛽𝑉 (1 −

𝑉

𝑝𝐼𝑚𝑎𝑥
) 

𝜎𝑉 

Logistic SDE 
𝛽𝑉 (1 −

𝑉

𝑝𝐼𝑚𝑎𝑥
) 𝜎𝑉 (1 −

𝑉

𝑝𝐼𝑚𝑎𝑥
) 

Table 2: For of the functions in the Bellman equation for each stochastic evolution of infection 

 

𝐹(𝑉) must also satisfy the following boundary conditions16: 
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𝐹(0) = 0 

 

𝐹(𝑉∗) = 𝑉∗ − 𝐶 

 

𝑑

𝑑𝑉
𝐹(𝑉∗) = 1 

 

 

Where 𝑉∗ is the value at which the treatment should be applied immediately.  

The fact that the infection cannot be reintroduced from an outside source gives rise to the first 

condition. 

The second condition is called the ‘value matching condition’13 stating that when the investment 

is undertaken straight away the net gain is 𝑉∗ − 𝐶. 

The last called ‘smooth pasting condition’ ensures optimality of the choice of 𝑉∗, since if 𝐹 

were not continuous at 𝑉∗, then one could do better by investing at a different point16.  

This is a ‘free-boundary problem’ because the boundary region needs to be determined as part 

of the problem.  

 

1.5.3 Results 

The solution to the ‘free boundary problem’ associated with each SDE provides the value of 

the option to treat as a function of the treatment value (𝑉).  

If the value of the option to treat 𝐹(𝑉) is greater than the NPV of immediate treatment, 𝐹(𝑉) >

𝑉 − 𝐶 , there is value in the option to wait.  

When 𝐹(𝑉) = 𝑉 − 𝐶 there is no additional gain in waiting, so the treatment should be applied 

as soon as possible. The threshold 𝑉∗ represents the frontier between the delaying and the 

immediate investment areas.  

The threshold value of treatment for each SDE corresponds to the threshold level of infection 

𝐼∗, (𝑉∗ = 𝑝𝐼∗) at which the treatment should be applied immediately16.  

Using an epidemiologically based SDE to describe uncertainty in the ailment unfold, such as 

mean-reverting or logistic SDE, decreases the edge value compared with the traditional 

Geometric Brownian Motion, so using the first two strategies might result in the treatment 

deployment when a lower fraction of region is contaminated. 
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The difference in the most beneficial time to treat among the three procedures increases when 

volatility is large. 

Comparing the three models, we can find the following differences16: 

• In case uncertainty is very high or the disease is unfolding quickly, the boundaries for 

GBM and mean-reverting model are unachievable implying treatment should never be 

implemented. 

• The crucial distinction among the logistic SDE, the GBM and the mean reverting SDE 

is that the former allows for a natural upper boundary to be included endogenously into 

the problem. This appears in the forms of drift and diffusion coefficients 𝑎(𝑉) and 𝑏(𝑉) 

to make sure that the level of infection will not exceed the maximum host population. 

GBM and mean-reverting SDE allow for the level of contamination to rise above the 

natural upper threshold, hence overestimating the value that can be obtained from the 

treatment when the level of infection is high.  

• Implementing cure at an inaccurate threshold (derived from GBM or mean-reverting 

SDE), leads to a loss in value, which arises because treatment boundaries are higher 

under mean-reversion or GBM than under the logistic method, because ignoring 

asymptotic boundaries for infection may result in treatment being deployed too late.  

• The differences in the thresholds at which to treat between the three models increases 

with increasing volatility and transmission rate. 

• There is value to be obtained from waiting to implement treatment. Nonetheless, the 

critical difference is that the logistic SDE implies the treatment to be applied in advance 

and that it is always valuable to implement the cure before the whole region turns into 

infected, even if the uncertainty is very substantial. 

 

In conclusion, if the model used does not adequately incorporate uncertainty in the disease 

spread, the imprudent delay before treatment also implies that the full value of option to apply 

the treatment is not realised16. 

 

As previously mentioned, this problem cannot fit Covid-19 well, because the context in which 

it is developed is really different. First of all, the model presented shows a situation in which 

the cure already exists and the only question to answer is the optimal treatment timing.  

 

In the context of Coronavirus (and human epidemics in general), when a new vaccine is 

developed, it means that there is already urgency of using it. 
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At least in the early stages of the epidemics, when the consequences of the infection on society 

were ignored, the initial choice of developing or not the vaccine could be seen as a real option. 

Later, after having waited to see how the infection was spreading fast, pharmaceutical 

companies have begun the race to find a new vaccine, since there was no uncertainty that a cure 

was needed as early as possible.  

 

Having considered that, once a cure is developed and tested, there is no reason in waiting further 

to its administration to the population. Actually, we can say that real options of waiting in this 

context has completely lost value. 

Other real options still exist in this context, such as the optimal level of population to be 

vaccinated, but this has already been analysed by many academics. 

 

In the next Chapter, I will develop a real option model in the context of Coronavirus, 

considering the optimal regime switching thresholds within a real-world firm.  
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Chapter II 

Regime-Switching Models and Calibration to Covid-19 

2.1 Stage I: The Regime-Dependent Stochastic Epidemic Model 

In this section, I will adapt a 𝑆𝐼 model to simulate the spread of the virus, which depends on the 

regime the firm is currently in. Later, I will modify the model to allow for external contagions 

and deaths, providing both the deterministic and the stochastic equations. Finally, I will provide 

a regime-dependent stochastic 𝑆𝐼 model allowing for external contagions and deaths. 

 

2.1.1 The Modified 𝑺𝑰 model allowing for external contagions and deaths 

Note that I am not considering a whole population, I am focusing only on a large firm with 

many employees. The spread of the epidemic within the company is influenced by the 

interaction between vulnerable and infective workers and by outside sources. In fact, 

susceptible employees are in touch with the external world, thus they are inevitably exposed to 

infection. The infection rate from external sources will be denoted by 𝛽. 

Considering an epidemic such as Covid-19, the classical 𝑆𝐼 model has to be modified to include 

for deaths caused by the infection, because the original model assumes the disease is not fatal. 

Assume the group of susceptibles 𝑆 is composed of the existing susceptible workers and the 

new employees hired in order to maintain a constant workforce.  The constant rate of fatality 

among the class of infectious 𝐼 is denoted by 𝛿. The modified 𝑆𝐼 model that includes external 

contagions and deaths will be expressed as follows:  

 

𝑑𝐼𝑡 = [𝛼𝐼𝑡(1 − 𝐼𝑡) − 𝛾𝐼𝑡 + 𝛽(1 − 𝐼𝑡) − 𝛿𝐼𝑡]𝑑𝑡 
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In Figure 4 the 𝑆𝐼 model allowing for external contagions and deaths is shown. 

 

 

Figure 4: SI model allowing for external contagions and deaths 

 

2.1.2 The Modified Stochastic 𝑺𝑰 model allowing for external contagions and deaths 

The model now should be converted into a stochastic model to include uncertainty. To do so, a 

diffusion term needs to be introduced and some assumptions should be made. According to 

Cobb (1998), the most reasonable assumption to make is that the random variable is greater in 

the centre region than in extreme cases, suggesting that this variation is proportional to 𝐼𝑡(1 −

𝐼𝑡). Therefore, the equation will include the variation in 𝐼𝑡 in the following way16: 

 

𝑑𝐼𝑡 = [𝛼𝐼𝑡(1 − 𝐼𝑡) − 𝛾𝐼𝑡 + 𝛽(1 − 𝐼𝑡) − 𝛿𝐼𝑡]𝑑𝑡 +  √𝑐𝐼𝑡 (1 −  𝐼𝑡) 𝑑𝑊𝑡 

 

Where 𝑐 is a small positive constant and 𝑊𝑡 is a standard Brownian motion. 
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2.1.3 The Regime-Dependent Stochastic 𝑺𝑰 model allowing for external contagions and 

deaths 

The above equations are valid if the firm is active and does not implement any disease control 

policy. Nevertheless, strategic decisions that managers make have an impact on the evolution 

of the disease. Such decisions might be used to reduce the spread of the contagion, thus altering 

the parameters 𝛼 and 𝛾.  

The company may adopt disease control programs to lower the infection rate between infectives 

and susceptibles, for example screening the suspected infectives and ordering a full paid leave 

or testing for the disease all employees every week or month.  

In particular, if the number of infectives rises above a certain threshold, the firm can temporarily 

shut-down operations and send all employees home16. 

In this thesis, I will analyse the optimal suspension-reactivation strategy, therefore adapting the 

model to further accommodate the active and inactive regimes. 

I will denote 𝑟 as the regime of the firm, thus 𝑟 = 1 if the firm is active and 𝑟 = 2 if the firm is 

inactive. 𝛾1 represents the recovery rate when the firm is active. The corresponding epidemic 

model will be: 

 

𝑑𝐼𝑡 = [𝛼𝐼𝑡(1 − 𝐼𝑡) − 𝛾1𝐼𝑡 + 𝛽(1 − 𝐼𝑡) − 𝛿𝐼𝑡]𝑑𝑡 +  √𝑐𝐼𝑡  (1 − 𝐼𝑡) 𝑑𝑊𝑡                            if r = 1 

 

In the inactive regime, the internal transmission of the disease is cut off, thus 𝛼 = 0. Infectives 

will recover at a greater recovery rate 𝛾2 > 𝛾1 and the contagion will be kept under control. 

Assuming that the external infection rate 𝛽 and the death rate 𝛿 remain unaltered, the dynamics 

of the disease when the company is inactive will be: 

 

𝑑𝐼𝑡 = [−𝛾2𝐼𝑡 + 𝛽(1 − 𝐼𝑡) − 𝛿𝐼𝑡]𝑑𝑡 +  √𝑐𝐼𝑡 (1 − 𝐼𝑡) 𝑑𝑊𝑡                                                if r = 2     

 

 

Finally, the epidemic model can be expressed in the following manner: 
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𝑑𝐼𝑡 =  𝜇(𝐼𝑡, 𝑟) 𝑑𝑡 +  𝜎(𝐼𝑡, 𝑟) 𝑑𝑊𝑡 

 

In which, 

 

𝜇(𝐼𝑡, 𝑟)  =  {
𝛼𝐼𝑡(1 − 𝐼𝑡) − 𝛾1𝐼𝑡 + 𝛽(1 − 𝐼𝑡) − 𝛿𝐼𝑡          𝑖𝑓 𝑟 =  1 

−𝛾2𝐼𝑡 + 𝛽(1 − 𝐼𝑡) − 𝛿𝐼𝑡                                 𝑖𝑓 𝑟 =  2
 

     

And  

 

𝜎(𝐼𝑡, 𝑟)  =  √𝑐𝐼𝑡  (1 − 𝐼𝑡)   

 

2.2 Stage II: Real Options and Regime-Switching Models 

2.2.1 Practical examples of Real Options 

The theory of real options has been deeply analysed in the former Chapter, now some practical 

examples will be provided. 

There are several types of real options and each of them is applicable in a different situation 

and has a different function. Real options can be classified as with and without strategic value. 

Strategic value is value locked inside a company, that cannot yet be converted into cash, but 

can possibly be converted into cash at some time in the future. They are related to possible 

future projects that do not derive their value primarily by cash inflows. However, real options 

literature is mostly concerned with real options without strategic value. These are closer related 

to financial option theory and concerned with the current business. They are also described as 

cash-generating options (Trigeorgis, 1988) or flexibility options (Triantis, 1999). Options 

without strategic value mostly have a clear payoff and are typically related to operating 

decisions. The classification of real options by Trigeorgis (1988) is depicted in Figure 5. This 

classification uses similarities between real and financial options. Trigeorgis concluded that 



35 

 

real options without strategic value (cash-generating) are usually structured as simple options, 

while options with strategic value (not cash-generating) are structured as compound options.  

 

 

Figure 5: Classification for real options 

Source: A conceptual framework for capital budgeting, Trigeorgis L. 

 

In the second layer, both simple and compound options are again divided into proprietary or 

shared real options. Shared real options are opportunities jointly held by a number of competing 

firms or industries and can be exercised by any of the collective owners, as opposed to 

proprietary ones. 

Examples of real options in each category are: 

▪ Simple proprietary real option: potential expansion of capacity for a product 

protected by patents. 

▪ Simple shared real option: expansion decisions in competitive industries. 

▪ Compound proprietary real options: exploration investments protected by 

government licenses. 

▪ Compound shared real options: pilot project proving the market and creating 

customer acceptance. 

The insights from Triantis and Trigeorgis are similar and here defined: 

1. Flexibility real options, i.e., without strategic value. They are related to a company’s 

current assets in place. They are more generally simple options with a clear payoff. Over 

time, as uncertainty resolves, it becomes clearer whether they should be executed or not. 
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2. Strategic real options, i.e., with strategic value. They can either be related to projects 

already undertaken or may be strategic opportunities not related to any project in place. 

These are growth options, where firms position themselves favourably to potentially 

exercise profitable growth options in the future, for example by investing in R&D or IT 

expertise. The potential payoff of these real options is often unclear at the time of 

execution and they are more technically referred as compound options. 

In Table 3 there are examples of growth and flexibility options for different types of industries. 

 

Industry Growth option Flexibility option 

Airline Aircraft delivery option Contingency rights 

Computer hardware New model under brand 

name 

Assembly configuration 

Financial services IT infrastructure Abandon service or divest 

Internet Marketing investments Outsource services 

Oil and gas Lease blocks Delay production 

Pharmaceuticals Research and development Outsource production or 

sales 

Power Global expansion Peak generating plants 

Real estate Undeveloped lands Redevelop with adjusted 

mix 

Telecommunications Merger and acquisitions Re-deploy assets 

Table 3: Growth and Flexibility Options in different industries 

Source: A real options approach to company valuation, Aarle R. 

 

 

Dixit and Pindyck (1994) classify real options primarily by their type of flexibility. They 

indicate five types or real options: 

1. Option to defer: the right to delay the start of a project. 

2. Option to stop: the option to sell or close down a project before completion. 

3. Option to abandon: the option to sell or close down a project after completion. 

4. Option to temporarily stop producing: the option to close down for a certain period of 

time. 

In the next paragraphs, some practical simple examples of real options will be provided. 
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a. Example 1: NPV with simple Option 

Suppose that a firm has the opportunity to invest in a project whose commercial success is not 

clear yet. There are two main phases in the project: 

- Phase 1 (Pilot production and test marketing): costs €125.000 and takes one year. 

- Phase 2 (Implementation): this phase is carried through only if Phase 1 turns out to be 

a success. Build €1 million plant which generates after-tax cash flows of €250.000 per 

year forever. 

In the standard approach, NPV would be used with a discount rate of ca. 25% if the project is 

considered to be risky. Thus, the value of the project calculated with the NPV method will be: 

 

 

𝑁𝑃𝑉 =  −125 −  
500

1.25
+ ∑

125

(1,25)𝑡
= − 125 

∞

𝑡=2

 

 

 

The project seems unprofitable but consider that we are faced with options – contingent 

decisions – which increase the value of the project. 

 

The different phases of the project entail different risks which should not be combined. In 

particular, consider that Phase 1 will settle most of the risk, because in case it fails, risk will be 

eliminated, and the project is certain to be worthless. Assume there is 50% of probability that 

Phase 1 will turn out a success, thus we will have: 

 

  Success: 𝑁𝑃𝑉 =  − 1000 +  ∑
250

(1,1)𝑡 =  1500∞
𝑡=1  

1

2
        

Failure: 𝑁𝑃𝑉 =  0 

 

The project has a forecasted payoff of 0,5(1500) + 0,5(0) = €750 after one year and an 

investment of €125. Using a 30% discount rate: 
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𝑁𝑃𝑉 =  − 125 +  
750

1,3
= 452 

 

Now the project seems advantageous. 

 

b. Example 2: The Value of Waiting 

Assume now building a widget factory that will produce one widget per year forever. The 

widget now costs €100, but from next year the price will increase or decrease by 50% and then 

remain fixed forever: 

 

t=0 t=1 t=2 … 

0,5 𝑃1 = €150 𝑃2 = €150  

𝑃0 = €100    

0,5 𝑃1 = €50 𝑃2 = €50  

 

 

The factory could be built in just one week for €800. Is it better to invest now or see if in one 

year the price will increase or decrease? 

Suppose the investment is made now: 

 

𝑁𝑃𝑉 =  − 800 +  ∑
100

(1,1)𝑡

∞

𝑡=0

=  − 800 +  1.100 =  €300 

 

The NPV tells we should invest now.  

Now suppose we wait one year and then invest only in case the price inflates. The value of the 

project turns out to be: 
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𝑁𝑃𝑉 =  0,5 [ −
800

1,1
 +  ∑

150

(1,1)𝑡
 ] =

425

1,1
= €386

∞

𝑡=1

 

 

Showing clearly that it is better waiting than investing immediately. 

The value of the option to wait is €386 − €300 = €86. 

 

2.2.2 Regime-Switching Models: A Guide to Literature 

As already discussed in the previous Chapter, regime-switching models often emerge in real 

option valuation. The pioneering article on the joint decisions to invest and abandon was written 

by Brennan and Schwarz in 1985. They construct a general model of the decision to open, close 

and mothball a mine producing a natural resource whose price fluctuates over time. They obtain 

a system of equations characterizing the price thresholds for investment and abandonment and 

provide the entry and exit threshold prices.  

In 1968 Mossin worked on optimal mothballing decisions. He developed a model in which 

operating revenue follows a trendless random walk with upper and lower reflecting barriers and 

in which there is no possibility of scrapping. He calculated the optimal revenue levels at which 

it is optimal to mothball and reactivate the project.  

The regime-switching models analysed by Dixit and Pindyck solve general problems of optimal 

switching among a series of alternatives in response to changing economic conditions. Each 

switch is an exercise of an option, and each switch yields an asset that combines a payoff flow 

with the option of switching again. Thus, they obtain a set of compound options and price them 

simultaneously. There is a large body of literature analysing such compound options. Geske 

(1979) is an early example of this kind in financial economics, followed by Geske and Johnson 

(1984) and Carr (1988). 

Turning to real investment decision, Kutilaka and Marcus (1988) develop a model of switches 

between two modes with three time periods and they indicate how the model can be extended 

to many modes and switches.  

Fine and Freund (1990) analyse a two-period model in which the firm must choose its capacity 

before uncertainty is resolved and it can choose either specific capital or flexible capital. 

Triantis and Hodder (1990) have an alike model in continuous time. In these models, option 
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value is fundamental, because by waiting the firm preserves the opportunity of making a better 

investment later, and not just that of not investing at all. 

 

2.2.3 Regime Switching models: Practical examples 

 

a. Combined Entry and Exit Strategies 

In the following examples, I will confine the discussion to the case of demand uncertainty, 

assuming a Geometric Brownian Motion price process. 

Assume that investment and abandonment decisions are made by a firm that takes the prices as 

given, as I assume that the price follows a GBM: 

 

𝑑𝑃 =  𝛼𝑃𝑑𝑡 +  𝜎𝑃𝑑𝑧 

 

If the firm enters the market (i.e., invests), it obtains a project that produces one unit of output 

per period and lasts forever until abandoned. The variable costs of operations 𝐶 are known and 

fixed. The risk-free rate of interest is exogenously fixed at 𝑟𝑓. The risk-adjusted discount rate 

for the corporate revenues is: 

 

𝑟 = 𝑟𝑓 + 𝜃𝜌𝑀𝜎 

 

where 𝜃 is the market price of risk and 𝜌𝑀 is the coefficient correlation between the price 𝑃 and 

the entire market portfolio. Let 𝛿 = 𝑟 –  𝛼 denote the rate of return shortfall on price, and 𝛿 be 

greater than 0. 

The firm incurs a lump-sum cost 𝐿 to invest in the project and a lump-sum cost to abandon it. 

For example, this latter could include the termination payments to workers. It might be the case 

that the investment cost 𝐿 is not sunk, so that 𝐸 is negative, reflecting the portion of investment 
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that can be recouped on exit. Of course, 𝐿 + 𝐸 must be > 0 to rule out a “money machine” of 

rapid cycles of investment and abandonment17.  

If the firm is active and exercises the option to abandon, it goes back to the inactive state, thus 

acquiring another asset: the option to invest. When this option is exercised in turn, it leads back 

to a live project. Thus, the values of a live firm and an idle firm are interlinked and must be 

determined simultaneously.  

Intuition suggests that an idle firm will invest when demand conditions become sufficiently 

favourable, and an active firm will abandon when they become sufficiently adverse17. The 

optimal strategy for investment and abandonment (or holding or exercising the two options) 

will take the form of two threshold prices, say 𝑃𝐻 and 𝑃𝐿 with 𝑃𝐻  > 𝑃𝐿. An idle firm will remain 

idle as long as 𝑃 remains below 𝑃𝐻 and it will invest as soon as P reaches the threshold 𝑃𝐻. An 

active firm will remain active as long as P remains above 𝑃𝐿 and will abandon when 𝑃 will fall 

to 𝑃𝐿.  

a.1 Valuing Two Options 

The value of the firm is now a function of the exogeneous state variable 𝑃, and of the discrete 

state variable that indicated whether the firm is currently inactive (2) or active (1). I will let 

𝑉2(𝑃) denote the value of the option to invest (that is, the value of an idle firm) and letting 

𝑉1(𝑃) denote the value of an active firm. Note that 𝑉1(𝑃) is the sum of two components, the 

entitlement to the profit from operation, and the option to abandon should the price fall too far. 

Over the range of prices (0, 𝑃𝐻), an inactive firm holds its option to invest. 𝑉2(𝑃) needs to 

satisfy a differential equation over this interval. The boundary conditions link values and 

derivatives of 𝑉2(𝑃) to those of 𝑉1(𝑃) at 𝑃𝐻. Likewise, over the span of prices (𝑃𝐿 , ∞), an active 

firm remains active, holding its option to abandon. 𝑉1(𝑃) satisfies a corresponding differential 

equation, and the boundary conditions link the values and the derivatives of 𝑉1(𝑃) to those of 

𝑉2(𝑃) at 𝑃𝐿.  

I begin from the inactive firm. To obtain a differential equation for 𝑉2(𝑃), we need to construct 

a portfolio with one unit of the option to invest, and a short position of 𝑉2′(𝑃) units of output.  

The resulting equation is: 

 
17 Dixit, A. K. 1989. Entry and exit decisions under uncertainty 
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1

2
𝜎2𝑃2𝑉2

′′(𝑃) + (𝑟 − 𝛿)𝑃𝑉2
′(𝑃) − 𝑟𝑉2(𝑃) = 0 

 

That has the general solution 

 

𝑉2(𝑃) = 𝐴1𝑃𝛽1 + 𝐴2𝑃𝛽2 

 

Where 𝐴1 and 𝐴2 are constants to be determined, and 𝛽1 and 𝛽2 are the roots of the quadratic 

equation17: 

 

𝛽1 =
1

2
−

𝜌 − 𝛿

𝜎2
+ √[

𝜌 − 𝛿

𝜎2
−

1

2
]

2

+
2𝜌

𝜎2
 > 1 

 

𝛽2 =
1

2
−

𝜌 − 𝛿

𝜎2
− √[

𝜌 − 𝛿

𝜎2
−

1

2
]

2

+
2𝜌

𝜎2
< 0 

 

The option to invest gets greatly far out of the money and therefore becomes nearly worthless 

as 𝑃 goes to 0, thus the coefficient 𝐴2 corresponding to the negative root 𝛽2 must be zero. That 

leaves: 

 

𝑉2(𝑃) = 𝐴1𝑃𝛽1 

 

Which is valid over the interval (0, 𝑃𝐻) of prices. 

Next consider the value of an active firm. The calculation is similar, except that the live project 

part of the portfolio pays a net cash flow (𝑃 − 𝐶)𝑑𝑡. Then we get 
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1

2
𝜎2𝑃2𝑉1

′′(𝑃) + (𝑟 − 𝛿)𝑃𝑉1
′(𝑃) − 𝑟𝑉1(𝑃) + 𝑃 − 𝐶 = 0 

 

The general solution to this equation is 

 

𝑉1(𝑃) = 𝐵1𝑃𝛽1 + 𝐵2𝑃𝛽2 +
𝑃

𝛿
−

𝐶

𝑟
 

 

The last two terms can be viewed as the value of the live project when the firm is required to 

keep it operating forever despite any losses, and the first two terms as the value of the option to 

abandon. The likelihood of abandonment in the not-too-distant future becomes extremely small 

as 𝑃 goes to ∞, so the value of abandonment option should go to zero as 𝑃 becomes very large. 

Hence the coefficient 𝐵1 corresponding to the positive root 𝛽1 should be zero, thus leaving17: 

 

𝑉1(𝑃) = 𝐵2𝑃𝛽2 +
𝑃

𝛿
−

𝐶

𝑟
 

 

Which is valid for 𝑃 in the range (𝑃𝐿 , ∞). 

At the investment threshold 𝑃𝐻, the firm pays the lump-sum cost 𝐿 to exercise its funding 

option, giving up the asset of value 𝑉2(𝑃𝐻) to get the live project which has value 𝑉1(𝑃𝐻). For 

this we have the conditions of value-matching and smooth-pasting: 

 

𝑉2(𝑃𝐻) = 𝑉1(𝑃𝐻) − 𝐿 

 

𝑉2′(𝑃𝐻) = 𝑉1′(𝑃𝐻) 
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Similarly, at the abandonment threshold 𝑃𝐿, the value-matching and smooth-pasting conditions 

are: 

 

𝑉1(𝑃𝐿) = 𝑉2(𝑃𝐿) − 𝐸 

 

𝑉1′(𝑃𝐿) = 𝑉2′(𝑃𝐿) 

 

Using the above equations, these conditions can be written as 

 

−𝐴1𝑃𝐻
𝛽1

+ 𝐵2𝑃𝐻
𝛽2

+
𝑃𝐻

𝛿
−

𝐶

𝑟
= 𝐿 

 

−𝛽1𝐴1𝑃𝐻
𝛽1−1

+ 𝛽2𝐵2𝑃𝐻
𝛽2−1

+
1

𝛿
= 0 

 

−𝐴1𝑃𝐿
𝛽1

+ 𝐵2𝑃𝐿
𝛽2

+
𝑃𝐿

𝛿
−

𝐶

𝑟
= −𝐸 

 

−𝛽1𝐴1𝑃𝐿
𝛽1−1

+ 𝛽2𝐵2𝑃𝐿
𝛽2−1

+
1

𝛿
= 0 

 

These four equations determine the four unknowns – the thresholds 𝑃𝐿, 𝑃𝐻 and the coefficients 

𝐴1 and 𝐵2 in the option values. 

These equations are very nonlinear in the thresholds, so that the analytic solution in closed form 

is impossible. However, it can be proved that a solution exists, is unique, and has economically 

intuitive basic properties. The thresholds satisfy 0 < 𝑃𝐿 < 𝑃𝐻 < ∞ and the coefficients of the 

option value terms, 𝐴1 and 𝐵2 are positive. Some other important general economic insights 

can be inferred by analytic methods, but further results require numerical solution.  
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2.3 Regime-Switching in My Example 

As we have seen, the essence of regime-switching models is to determine the optimal switching 

thresholds across different regimes to maximize a certain value function3.  

Suppose the manager can use some methods to estimate the fraction of infectives 𝐼𝑡, because it 

is too costly to tell if an individual employee is actually infected or not. For instance, he could 

use public daily released data of disease cases or the hospitalization levels in his region. His 

goal is to determine two optimal thresholds: the mothballing 𝐼𝐻 and the reactivation 𝐼𝐿. The 

mothballing threshold tells the manager which is the percentage of 𝐼𝑡 above which it is better 

to suspend operations temporarily and offer full paid leave to all workers, independently if they 

are infected or not, as suggested by the HHS and the CDC in the Business Pandemic Influenza 

Planning Checklist. If, on the other hand, the fraction of infectives 𝐼𝑡 is lower than the 

reactivation threshold 𝐼𝐿, the manager can call back all workers and resume operations. The full 

paid leave avoids adverse selection and moral hazard issues, because infectives could pretend 

to behave normally if they could not get paid during the suspended period3. 

I assume that the productivity of a worker drops to a certain level ξ (0 < ξ < 1) once he gets the 

disease, normalizing the productivity of a healthy worker to unity. The total number of 

employees in the firm is denoted by 𝑁. The variable and fixed costs are denoted by 𝑉𝐶 and 𝐹𝐶, 

respectively. Among the fixed costs, employees’ wages are included because I assume a full 

paid leave. Additionally, there is a penalty cost 𝐸 for every infected worker when the firm is 

active. This cost may include the firm’s reputational damage or employees’ unwillingness to 

work. 

Hence, the cash flow function can be defined as: 

 

𝜋(𝐼𝑡, 𝑟) = [𝜉 ∗ 𝐼𝑡 ∗ 𝑁 +  (1 −  𝐼𝑡) ∗ 𝑁] ∗ (𝑃 − 𝑉𝐶) − 𝐹𝐶 − 𝐸 ∗ 𝐼𝑡 ∗ 𝑁                           if r = 1 

And   𝜋(𝐼𝑡, 𝑟) =  −𝐹𝐶                                                                                                       if r = 2 

 

The above equations tell us that the cash flow to the firm 𝜋(𝐼𝑡, 𝑟) depends both on the fraction 

of infectives and the regime variable. Clearly, if the company is inactive, the cash flows are 
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only represented by an outflow due to fixed costs (wages, insurance etc.). When switching 

regime, the firm inevitably faces some costs, otherwise there would be the possibility of an 

“infinite money machine”. The mothballing cost when switching from active to idle is denoted 

by 𝑀 and the reactivation cost when switching from idle to active is denoted by 𝐴 and there is 

no cost in remaining in the current regime. Given the above assumption, 𝑀 + 𝐴 > 0.  Let 𝐶𝑖𝑗 be 

the lump-sum cost of switching from state 𝑖 to 𝑗. The cost matrix is defined as 𝐶 = (
0 𝑀
𝐴 0

). 

The discount rate is 𝜌 and it is given. Based on these assumptions, the manager wants to 

optimize its cash-ins less outflows, including any switching costs, by choosing the optimal 

regime at each period, which is: 

 

𝑚𝑎𝑥𝑟𝑉(𝐼, 𝑟) = 𝐸 [∫ 𝑒−𝜌𝑡𝜋(𝐼𝑡 , 𝑟)𝑑𝑡 − ∑ ∑ ∑ 𝑒−𝜌𝑡𝑘
𝑖𝑗

𝐶𝑖𝑗]     

2

𝑗=1

2

𝑖=1𝑘

∞

0

 

 

Where 𝑡𝑘
𝑖𝑗

 is the time of the kth change from regime 𝑖 to 𝑗.  

 

2.3.1 The Methodology: Dynamic Programming 

This approach allows us to derive optimal decision by beginning from the last period and going 

backwards, if the planning horizon is finite, since it can be broken up into a series of choices 

over a single-period horizon3. On the other hand, if the planning period is infinite, a recursive 

formula for every period can be developed, but using an exogenous discount rate 𝜌, which is 

assumed to be constant. Suppose that there are 𝑚 regimes (i.e.,  𝑟 = ∈  {1,2, . . . , 𝑚}). A manager 

obtains cash flow streams 𝜋(𝑥, 𝑟) per unit time, which depends both on the regime 𝑟, which is 

a discrete variable, and on a continuous state variable 𝑥, which can also be a vector of state 

variables. 

The dynamics of the continuous state variable 𝑥 is described by3: 

 

𝑑𝑥𝑡 = 𝜇(𝑥, 𝑟)𝑑𝑡 +  𝜎(𝑥, 𝑟)𝑑𝑊𝑡 
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The agent can switch from regime 𝑖 to 𝑗 at a lump-sum cost 𝐶𝑖𝑗, but there is no cost to remain 

in the current regime (𝐶𝑖𝑖 = 0). As explained in the former paragraph, to avoid the probability 

of infinite profits, I assume 𝐶𝑖𝑗 + 𝐶𝑗𝑖 > 0. The discount rate is 𝜌.  

As Bellman says, “An optimal policy has the property that, whatever the initial state and 

decision are, the remaining decisions must constitute an optimal policy with regard to the state 

resulting from the first decision”18. Dynamic programming is indeed based on the principle of 

optimality and can conventionally be expressed on the form of Bellman equation. 

Let us consider a short time period ∆𝑡. 𝑉(𝑥, 𝑟) is the maximum achievable sum of current and 

forecasted future cash flows of time 𝑡, given that the firm is in regime 𝑟. Within the non-switch 

regions, the Bellman equation in discrete time can be written as: 

 

𝑉(𝑥, 𝑟) =  𝜋(𝑥, 𝑟)∆𝑡 + 
1

1 + 𝜌∆𝑡
𝐸𝑡[𝑉(𝑥𝑡+∆𝑡, 𝑟)] 

 

Multiplying both sides of the equation by (1+ρ∆𝑡)/ ∆𝑡 and through rearrangement, we get: 

 

𝜌𝑉(𝑥, 𝑟) = 𝜋(𝑥, 𝑟)(1 + 𝜌∆𝑡) +
𝐸𝑡[𝑉(𝑥𝑡+∆𝑡, 𝑟) − 𝑉(𝑥, 𝑟)

∆𝑡
 

 

Taking the limits of this equation at ∆𝑡 → 0 provides the continuous time version of the Bellman 

equation: 

 

𝜌𝑉(𝑥, 𝑟) = 𝜋(𝑥, 𝑟) +
𝐸𝑡𝑑𝑉(𝑥, 𝑟)

𝑑𝑡
 

 

𝑉 can be seen as the value of an asset on a dynamic project. The Bellman equation predicts that 

𝜌𝑉, which is the rate of return on the asset on the dynamic project in regime 𝑟 is equal to the 

 
18 R. Bellman. 1957. Dynamic programming 
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sum of current cash flow on the project 𝜋(𝑥, 𝑟) and the expected capital rate gain, 

𝐸𝑡𝑑𝑉(𝑥, 𝑟)/𝑑𝑡.3 

Let 𝑉𝑥 and 𝑉𝑥𝑥 represent the first and the second derivative of V, respectively. By Itȏ’s Lemma, 

𝑑𝑉(𝑥, 𝑟) = 𝑉𝑥(𝑥, 𝑟)𝑑𝑥𝑡 + 0,5 𝑉𝑥𝑥(𝑥, 𝑟)𝑑𝑥𝑡𝑑𝑥𝑡 

=  𝑉𝑥(𝑥, 𝑟)[𝜇(𝑥, 𝑟)𝑑𝑡 + 𝜎(𝑥, 𝑟)𝑑𝑊𝑡] + 0,5 𝑉𝑥𝑥(𝑥, 𝑟)𝜎2(𝑥, 𝑟)𝑑𝑡 

= [𝜇(𝑥, 𝑟)𝑉𝑥(𝑥, 𝑟) + 0,5 𝜎2(𝑥, 𝑟)𝑉𝑥𝑥(𝑥, 𝑟)]𝑑𝑡 +  𝜎(𝑥, 𝑟)𝑉𝑥(𝑥, 𝑟)𝑑𝑊𝑡 

 

Taking expectations on both sides of the equation and dividing them by 𝑑𝑡, leaves us with: 

 

𝐸𝑡𝑑𝑉(𝑥, 𝑟)

𝑑𝑡
= 𝜇(𝑥, 𝑟)𝑉𝑥(𝑥, 𝑟) + 0,5𝜎2(𝑥, 𝑟)𝑉𝑥𝑥(𝑥, 𝑟) 

 

Substituting this last equation into the continuous time version of the Bellman equation, results 

in the following form of the Feynman-Kac equation19: 

 

𝜌𝑉(𝑥, 𝑟) − 𝜇(𝑥, 𝑟)𝑉𝑥(𝑥, 𝑟) − 0,5𝜎2(𝑥, 𝑟)𝑉𝑥𝑥(𝑥, 𝑟) = 𝜋(𝑥, 𝑟) 

 

Suppose that at the boundary point 𝑥∗ it is optimal to switch from regime 𝑖 to regime 𝑗. At that 

point, the value function must satisfy two conditions: the value-matching condition and the 

smooth-pasting condition. The former is a condition which holds independently on the 

optimality of switching points. This means that the value before switching must be equal to the 

value after switching less the switching cost: 

 

𝑉(𝑥∗, 𝑖) = (𝑉𝑥(𝑥∗, 𝑗) − 𝐶𝑖𝑗(𝑥∗) 

 

 
19 The Feynman-Kac equation, named after R. Feynman and M. Kac, establishes the relationship between the 

solution to certain partial differential equations (PDEs) and stochastic processes. 
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The latter condition is satisfied at the optimal switching points, meaning that the marginal value 

before switching equals the marginal value after switching less the marginal cost of switching. 

Let 𝐶′ denote the marginal cost function. The smooth pasting condition will be expressed as 

follows3: 

 

𝑉𝑥(𝑥∗, 𝑗) − 𝐶𝑖𝑗
′ (𝑥∗) 

 

 

2.4 Theoretical Parameter Calibration 

 

The purpose of this thesis is to construct a theoretical structure and develop a quantitative 

approach for business managers to prepare in the event of pandemics. The precise calibration 

of the model is important, thus I will try to adapt the model to the current Covid-19, although 

it is difficult to assess consistent pandemic data from a real firm. I will use current 

epidemiological parameters about the spread of the virus in Italy. Although, those parameters 

have been fluctuating much and additionally they are not the same for every pandemic. The 

beauty of the model though, is that parameters can be changed very easily, so I will start from 

a set of parameters but then I will analyse the effect of implementing control strategies, thus 

decreasing the internal infection rate 𝛼, increasing the recovery rate 𝛾 and decreasing the 

external infection rate 𝛽. 

 

2.4.1 Disease Dynamics in the 𝑺𝑰𝑹𝑫 model 

In the recently published study by researchers at the La Jolla Institute for Immunology, the 

scientists analysed the individual components of the immune system of 188 people with Covid-

19, including 44 who had been infected for more than six months20. Specifically, the study 

quantified over time the concentration of antibodies to the Spike protein and the concentration 

of both B and T lymphocyte memory cells. The analysis showed that the concentration of IgG 

antibodies remained constant at 6 months after contact with Sars-Cov-2. On the other hand, B 

 
20 Fondazione Umberto Veronesi. 2020. Covid-19: quanto dura l’immunità? 
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lymphocyte memory cells increased after the first month and then settled at 6 months. 

Regarding the cellular response, memory T lymphocytes had an average half-life of 3-5 months. 

Based on the findings, the scientists stated that in 95% of the cases analysed, the natural 

infection generates a robust immunological memory that persists 8 months after infection. 

Based on these findings and in order to simplify the calibration, I will assume that recovering 

from Covid guarantees immunity. 

I take the simple 𝑆𝐼𝑅 model and add one equation to include deaths. Setting the starting 

population to 𝑁0 = 1, so that the class variables are measured as fractions of the population, 

the model can be written as21:  

 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝑡𝐼𝑡 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝑡𝐼𝑡 − (𝛾𝑟+𝛾𝑑)𝐼𝑡 

𝑑𝑅

𝑑𝑡
= 𝛾𝑟𝐼𝑡 

𝑑𝐷

𝑑𝑡
= 𝛾𝑑𝐼𝑡 

 

Where 𝑆𝑡 is the fraction of population that is susceptible, 𝐼𝑡 is the fraction of infected, 𝑅𝑡 the 

fraction of those who have recovered and 𝐷𝑡 the proportion of the deceased. Note that at 𝑡 = 0, 

𝑅𝑡 = 𝐷𝑡 = 0, so  𝑆0 + 𝐼0 = 𝑁0 = 1. However, for the epidemic to begin, 𝐼0 needs to be greater 

than 0, so I will assume 𝐼0 is very small at the beginning. As already mentioned, an important 

assumption here is that a person who recovers becomes immune, so he is no longer susceptible. 

The other parameters can be interpreted as follows. The contact rate or the degree of contagion 

is denoted by 𝛽,22 which measures how the interaction between susceptibles and infectives 

causes a reduction in 𝑆𝑡 and an increase in 𝐼𝑡, namely how many susceptibles become infected. 

Next, the removal rate is denoted by 𝛾 ≡ 𝛾𝑟 + 𝛾𝑑, which represents the rate at which people 

leave the pool of infectives either by recovering (𝛾𝑟𝐼𝑡) or dying (𝛾𝑑𝐼𝑡). The ratio 𝜌 = 𝛾/𝛽 is 

 
21 Pindyck, R.S. 2020. Covid-19 and the Welfare effects of reducing contagion 
22 Note that here I am not distinguishing between internal and external transmission rates 
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the relative removal rate and 1/𝜌 is the reproduction rate and is denoted by 𝑅0. This last 

parameter is treated as the key policy variable, so the parameter that social distancing and 

related policies seek to control together with 𝛽, because with 𝛾 constant, changing 𝑅0 changes 

𝛽.21 If 𝑅0 ≤ 1, removals from the class of infectives (as infectives recover or die) exceeds entry 

into the pool, so that the pandemic cannot take off. This was roughly the case of Ebola 

pandemic, since infectives were contagious only when very sick or dead, and the fatality was 

very high, so 𝛽 was low and 𝛾 high, making 𝑅0 < 1. 
𝑑𝐼0

𝑑𝑡
> 0 needs the initial fraction of 

vulnerable indivuduals 𝑆0 to exceed 1/𝑅0. So, if not everyone is susceptible (𝑆0 < 1) a greater 

degree of contagion is needed (𝑅0 > 1/𝑆0) for the epidemic to take off21. 

The 𝑆𝐼𝑅𝐷 model is simplistic and ignores many aspects of Covid-19. Firstly, it ignores the 

design of policies to control it and most importantly, it treats the epidemic as occurring within 

one large mass of homogeneous individuals, while actually outbreaks are regional with each 

region consisting of heterogeneous individuals. Nevertheless, this model provides rough 

answers to several interesting questions and helps clarifying the dynamics of Covid-19. 

 

2.4.2 Some Basic Analytics 

Assume starting with a fraction of infectives 𝐼0 very close to zero and thus a fraction of 

susceptible 𝑆0 close to 1. The speed, duration and intensity of the epidemic depend on the 

parameters 𝛽 and 𝛾. I will address the following question: What is the maximum number 

fraction of population that will be infected 𝐼𝑚𝑎𝑥 and how does it depend on the degree of 

contagion 𝛽, taking 𝛾𝑟 and 𝛾𝑑 as fixed?  

 

a. The Pool of Infectives 

The following equation denotes the behaviour of 𝐼𝑡 and 𝐼𝑚𝑎𝑥: 

 

𝑑𝐼

𝑑𝑆
= −1 + 𝜌/𝑆𝑡 

 

which is obtained by dividing 
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝑡𝐼𝑡 − (𝛾𝑟+𝛾𝑑)𝐼𝑡 by  

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝑡𝐼𝑡.  
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So, 

 

𝐼𝑡 = ∫ [−1 +
𝜌

𝑆
] 𝑑𝑆 = 

𝑡

0

𝑆0 + 𝐼0 − 𝑆𝑡 + 𝜌 log (
𝑆𝑡

𝑆0
) = 1 − 𝑆𝑡 + 𝜌 log (

𝑆𝑡

𝑆0
) 

 

𝐼𝑡 will reach a maximum when 
𝑑𝐼

𝑑𝑆
= 0, so at the point where 𝑆∗ = 𝜌. Then 

𝑑𝐼

𝑑𝑡 
> (<)0 when 

𝑆𝑡 > (<)𝜌. The maximum number of infectives is:  

 

𝐼𝑚𝑎𝑥 = 1 − 𝜌 + 𝜌 log (
𝜌

𝑆0
) ≈ 1 − 𝜌 + 𝜌𝑙𝑜𝑔𝜌 

 

Recall that 𝜌 = 𝛾/𝛽 and note that 
𝜕𝐼𝑚𝑎𝑥

𝜕𝜌
= 𝑙𝑜𝑔𝜌. So as long as 𝜌 < 1 (so 𝑅0 =

1

𝜌
> 1) a 

decrease in the contact rate 𝛽 will reduce the maximum number of infectives. Note that if 

𝑅0 = 1, 𝐼𝑚𝑎𝑥 = 0, the epidemic cannot take off21. 

 

b. The Dead and the Susceptibles 

At the end of the epidemic, the total number of victims, denoted by 𝐷∞, depends on the number 

of infectives at each period of time and on the rate at which infected people recover or die, i.e., 

the variables 𝛾𝑟 and 𝛾𝑑. The total number of deaths is a function of the remaining number of 

susceptibles 𝑆∞. Dividing equation 
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝑡𝐼𝑡 by 

𝑑𝑅

𝑑𝑡
= 𝛾𝑟𝐼𝑡 , we obtain 

𝑑𝑙𝑜𝑔𝑆𝑡

𝑑𝑅𝑡
= −𝛽/𝛾𝑟, so 

log (
𝑆∞

𝑆0
) = (−

𝛽

𝛾𝑟
) 𝑅∞.  

But 𝑅∞ = 𝑁0 − 𝐷∞ − 𝑆∞ = 1 − 𝐷∞ − 𝑆∞, so: 

 

log (
𝑆∞

𝑆0
) = − (

𝛽

𝛾𝑟
) 𝑆∞ −

𝛽

𝛾𝑟
− (

𝛽

𝛾𝑟
) 𝐷∞ 
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Note that 
𝑑𝑙𝑜𝑔𝑆𝑡

𝑑𝐷𝑡
= −𝛽/𝛾𝑑 so that 𝐷∞ = − (

𝛾𝑑

𝛽
) log (

𝑆∞

𝑆0
). Substituting above for 𝐷∞ gives the 

fundamental equation for the final number of susceptibles 𝑆∞: 

 

(
𝛾

𝛽
) log (

𝑆∞

𝑆0
) − 𝑆∞ + 1 = 0 

 

This equation lets us determine the fraction of population still vulnerable when the epidemic 

ends. Note that reducing 𝑅0 = 𝛽/𝛾 raises 𝑆∞, and 𝑆∞ → 𝑆0 as 𝑅0 → 1. Since 𝑆0 is close to 1 

and using the last equation, the total number of victims can be written as: 

 

𝐷∞ = (
𝛾𝑑

𝛾
) (1 − 𝑆∞) 

 

How does the final number of susceptibles and deaths depend on the transmission rate 𝛽? From 

the last equation, 
𝑑𝐷∞

𝑑𝛽
= (−

𝛾𝑑

𝛾
) 𝑆∞/𝑑𝛽. Taking the total differential of equation (

𝛾

𝛽
) log (

𝑆∞

𝑆0
) −

𝑆∞ + 1 = 0 , with respect to 𝑆∞ and 𝛽, 

 

𝑑𝑆∞

𝑑𝛽
=

𝑆∞𝑙𝑜𝑔𝑆∞

𝛽(1 − 𝑆∞ )
≤ 0 

 

A higher 𝛽 means that a higher number of people get infected during the epidemic, thus 

lowering the final number of susceptibles 𝑆∞. 

Government policies aim at reducing the contact rate and are expressed, as already mentioned, 

in terms of reproduction rate 𝑅0 = 𝛽/𝛾. Considering that 
𝑑𝐷∞

𝑑𝑅0
=

𝛾𝑑𝐷∞

𝑑𝛽
, we obtain: 

 

𝑑𝐷∞

𝑑𝑅0
= −

𝛾𝑑𝑆∞𝑙𝑜𝑔𝑆∞

𝛾𝑅0(1 − 𝑆∞)
≥ 0 
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Which can be used to determine how many deaths are avoided if 𝑅0 is reduced, once solved for 

𝑆∞. 

 

2.5 Rough Calibration to Covid-19 

The calibration of the 𝑆𝐼𝑅𝐷 model involves only three parameters: 𝛽, 𝛾𝑑 and 𝛾𝑟. The drawback 

of this method applied to Covid-19 is that the exact number of infectives is not known, because 

many infected people show mild or no symptoms. At the same time, we do not know the exact 

number of deaths from the disease, due to limited testing and no autopsies. This might cause an 

increase in the recorded number of actual deaths since many of the deceased people already had 

some other diseases or were very old, and Covid-19 unfortunately caused their early death. On 

the other hand, the cause of death for many Covid-19 might have been recorded as something 

else, at least in the early phases of the outbreak, thus causing an underestimation of the actual 

deaths due to the virus. With this premise, the calibration is inevitably rough but provides some 

interesting insights. 

To start, I will select values for 𝛽, 𝛾𝑑 and 𝛾𝑟 based on the limited information we have for Italy. 

I will select data as of November 2020, because much more information was available 

compared to the very beginning of the virus outbreak. 

Firstly, I will take the population to be 𝑁0 = 1 and assume that the initial number of infectives 

is 𝐼0 = 2 ∗ 10−6 . Given an Italian population of about 60 million people23, this corresponds to 

121 infected individuals at the outset.24 The initial number of susceptibles is 𝑆0 = 1 − 𝐼0.  

The time interval ∆𝑡 is one day. I will set the removal rate 𝛾 at 0,07, based on the assumption 

that the average duration of the virus is 14 days. Assuming that the average illness duration is 

the same whether the patient recovers or dies, 𝛾𝑑 depends only on the fraction of patients that 

die. Based on data from Italian Ministry of Health25, on November 9, 2020, 41.394 people had 

died since the beginning of the virus outbreak. The recovered were 335.074 and the infected 

were 558.636. Thus, the total number of cases at that date was 935.104 people, given by the 

 
23 According to Istat data, the Italian population on 1st January 2020 was 60.317.000 people 
24 This shows that the simple SIRD model is unrealistic since the spread took off at specific points in Italy and 

not from a pool of people spread out evenly across the country. 
25 opendatadpc.maps.arcgis.com 
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sum of total removed, infected and deaths. Based on these numbers, the estimated fraction of 

deaths was 4,43%.  

Now, there are some factors to be considered. First, this fraction probably overestimates the 

true death rate, because the denominator is an underestimation of the actual number of cases, 

reasonably assuming a high level of asymptomatic infected. The other consideration regards 

hospital congestion. It is a well-known fact that Italian hospital were highly congested and 

overwhelmed due to the sudden surge of cases. Congestion should be taken into account as part 

of the death rate, so for example if the death rate is estimated to be 1% with no congestion, it is 

significantly higher with congestion. Considering concurrently these facts, I will assume a death 

rate 𝛿 lower than the estimated fraction, but only slightly, and I will set it to be 4%.  

Since 𝛾𝑑 = 𝛿𝛾, we get 𝛾𝑑 = 0,04 ∗ 0,07 = 0,29%. 

Thus, 𝛾𝑟 will be equal to 6,86%26.  

Given 𝛾 and its components, we are left with the contact rate 𝛽 or equivalently, with the 

reproduction number 𝑅0 = 𝛽/𝛾 which is a function of the social distancing policy 

implemented. Clearly, at the outset the reproduction number is high because there is still no 

distancing policy applied. Atkenson estimated from 8 studies based on data from China, Italy 

and US that 𝑅0 at the outset oscillated between 2,2 and 3,3. Since my study is based on 

November data, I assume that in that period the reproduction number was around 1,5, 

considering that the social distancing policies were strongly applied all over Italy. But to start, 

I will take the base value of 𝑅0 with no social distancing policy to be 3.0 and then explore what 

happens when 𝑅0 is reduced, assuming that the death rate and the removal rate do not change 

with social distancing policies.   

Figure 6 shows solutions to the SIRD model with 𝛾𝑑 = 0,29%, 𝛾𝑟 = 6,86%, 𝑅0 = 3, 2,5, 2 and 

1,5, corresponding to 𝛽 = 𝛾𝑅0 = 0,214, 0,179, 0,143, 0,107 and with starting number of 

infectives 𝐼0 = 2 ∗ 10−6.  

 

 
26 Remind that 𝛾 = 𝛾𝑟 + 𝛾𝑑 
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Figure 6: Solution of SIRD Model 

Source: own calculations 

 

The middle and bottom panels show the fraction of people that is susceptible and the fraction 

that has died.  The figure suggests that new infections and deaths begin and end at specific 

points in time, but in fact new infections begin on day 1 and drop to zero only asymptotically27.  

To measure the time span of the disease spread, I will take its beginning (end) to be date at 

which 𝐼𝑡 first reaches (falls back to) 1% of its maximum value. So, for 𝑅0 = 3 the epidemic 

runs from day 59 to day 182, for a duration of 124 days. For 𝑅0 = 2,5, 2 and 1,5 the durations 

are 146, 189 and 307 days respectively.  

Figure 6 shows some important characteristics of the model and their implications for social 

distancing policies. When 𝑅0 and thus 𝛽 are lowered, the epidemic spreads later, evolves more 

slowly and lasts longer21.  

 

2.5.1 Parameter calibration to the Model 

Since public data on the 𝛽 parameter was not provided, I could get this value starting from data 

about the 𝑅0 in Italy as of November 2020. To start, I will assume a 𝑅0 equal to 1,528 and then 

 
27 Suppose 𝑅0 = 3, so 𝛽 = 0,214 (the dark blue line in each panel). Then for the Italian population of about 60 

million people, on Day 1 there will be about 17 new infections. On day 250 there are about 5.000 infected and on 

day 350 about 10 infected.  
28 Ministero della Salute, Weekly Monitoring Covid-19 
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I will analyse results with changing parameters. Remind that 𝑅0 =
𝛽

𝛾
. Assuming that the average 

life of the virus is 14 days, I assume the removal rate 𝛾 to be equal to 1/14 (≈ 0,07). This leads 

to a 𝛽 equal to 0,107, which represents the external infection rate. As regarding the recovery 

rate 𝛾𝑟, from calculations made above I will assume it to be equal to 0,07 in the inactive regime 

(𝛾𝑟2) and equal to 0,01 in the active regime (𝛾𝑟1), to reflect the fact that the recovery rate should 

be higher when workers are separated from each other. The value of internal transmission rate 

𝛼 is set to be equal to 1 and the volatility coefficient 𝑐 is set at 0,1, as suggested by Cobb (1998). 

The fatality rate 𝛿, as previously calculated, is set at 4%. The values of other parameters are set 

as follows29: 

 

• Discount rate:30 𝜌 = 0,05 

• Productivity of an infective: ξ = 0,5 

• Total number of employees: 𝑁 = 547 

• Price of product: 𝑃 = 10,95 

• Variable costs: 𝑉𝐶 = 4,98 

• Fixed costs: 𝐹𝐶 = 48181 

• Penalty cost: 𝐸 = 10 

• Mothballing cost: 𝐶12 = 1500 

• Reactivation cost: 𝐶21 = 1500 

 

 

2.6 Covid crisis: most and least affected sectors 

The outbreak of Covid-19 pandemic transformed the pattern of the world economy. Once the 

spring lockdown had passed, economic production and the labour market began a delicate 

process of adaptation to the new conditions. In this situation, the various sectors have been 

affected in a heterogeneous manner: it may therefore be useful to analyse the differences in an 

attempt to define their development prospects. 

 
29 Data about Fixed, Variable Costs and Number of Employees will be shown in the next Paragraphs 
30 Dynamic programming assumes a constant discount rate, given exogenously. Miranda and Fackler (2002) 

assume a discount rate equal to 0,05. The same assumption is made here. 
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At the European level, medical, pharmaceutical, and cosmetic goods sold on average the same 

in 2020 as they did in 2019, but with major dissimilarities across countries. Comparison of the 

March 2020 and 2019 retail purchase index shows negative changes for Italy (-12) and the 

United Kingdom (-1) while Germany and France showed positive values (+5 and +16, 

respectively).31 

The pandemic also severely affected tourism, which experienced a uniform slowdown in 

Europe across all member states. Compared to the same period in 2019, arrivals at tourist 

facilities fell by 44% year-over-year, averaged over the month. April, May, November, and 

December all had reductions of more than 70% in tourist arrivals compared to the previous 

year. In Italy, tourism declined 98,8% in April compared to the same month in 2019, and the 

only positive figure in 2020 was a 0,2% increase in August. This slump has negatively impacted 

workers in the tourism sector: in fact, provisional data from Istat shows that there has been a 

decrease of more than 300,000 employees in the first six months of 2020. 

Retail has been one of the sectors that has struggled most, albeit with important differences 

between the various sectors. For example, the Eurostat index measuring food and beverage 

retail sales decreased by just one point in 2020 compared to the 2019 average, despite the fact 

that restaurants and bars were subject to restrictions and closures. In contrast, the overall retail 

spending index that excludes food and fuel consumption shows a sharp decline in turnover in 

many countries: in Italy, the difference between 2020 and 2019 is 13 points, in France 6, and 

in the United Kingdom 4. 

The clothing and textile industry has been penalized even more: the index calculating its 

average turnover at the European level has decreased by 26 points between 2019 and 2020. This 

large difference is due both to the many months in which stores in the sector were forced to 

work at a reduced pace and to the changes in lifestyle and needs that the pandemic introduced. 

 

2.7 The impact of Covid-19 on the Textile Sector 

 

2.7.1 The international scenario 

 
31 https://www.lavoce.info/  

https://www.lavoce.info/
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Covid-19 has had a great impact on all social and economic sectors, as we have seen before the 

textiles, clothing, leather and footwear industries have been struggling. Quarantine measures, 

closure of retail stores, illness, and salary reductions have suppressed consumer demand.32 This 

sector is also struggling due to sever supply-side disruption, since supply chains grind to a halt 

and factories close. The economic impact on industries has affected the livelihoods of 

employees, in addition to health risks posed by the virus, because factors and retail closures led 

to the dismissal of workers. 

 

a. Sales 

More and more shops were forced to closure, and consumers were instructed to stay home, due 

to government restrictions, which caused a substantial drop in sales worldwide. Major brands 

have been forced to close stores in several countries, let us look at some examples: 

• Ralph Lauren warned that global sales could drop by as much as US$ 70 million33; 

• Gap expects to experience a first quarter global sales hit of around US$ 100 million34;  

• Inditex has closed 3.785 stores in 39 markets – over 50 per cent of its stores – with 

combined store and online sales falling by 24,1% in the first half of March 2020.35 

Retailers have employed some tactics to compensate the drop in sales, such as free shipping 

and heavily discounted products to encourage consumers to buy online. Nevertheless, rising 

unemployment and growing uncertainty led clothing no longer being a priority to several 

consumers.  

 

b. Production 

At the height of the epidemic in China, shortages of raw materials were the primary concern to 

apparel manufacturers, causing production disruptions, especially in the T&C industries in 

Asia. Later, as the epidemic shifted to Europe and then Unite States and rest of the world, many 

factories were forced to close. In Mexico, for example, maquila industries, which include textile 

manufacturing and whose industry employs more than 2.1 million workers36, have halted 

 
32 Just-Style. “Timeline: Timeline – How coronavirus is impacting the global apparel industry”. 
33 Economic Times. “Ralph Lauren: 4Q sales hit of up to $70M from coronavirus”. 
34 Just-Style. “Gap expects coronavirus to hurt Q1 sales by $100m”, 13 March 2020. 
35Financial Times. “Zara owner to write off nearly €300m of inventory”, 18 March 2020. 
36 Mexico 2020 Population Census. 
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production following a government order to close all dispensable economic activities for no 

less than 30 days. Companies in China are facing challenges to increase production, such as 

higher costs and continued shortages of raw materials. The Bangladesh Garment Manufacturers 

and Exporters Association (BGMEA) has reported a series of order cancellations, even for 

garments already in production or completed, which has caused most affected factories to 

close.37 According to the BGMEA, this equates to lost revenue of approximately $3 billion and 

affects about 2.17 million workers.38 These effects were felt throughout the supply chain. 

Cotton prices plunged and hit their lowest since the 2008 financial crisis. 

 

c. Trade 

Falling demand from major economies has been the main limiting factor for trade. In Central 

America, Nicaragua has forecasted a full year of declining exports, and Guatemala has 

announced that its shipments will be delayed. The medium-term impact of the pandemic will 

see the major importing countries in key market emerge from the wort of the crisis. However , 

in the long run, the pandemic ought to affect the composition of global textile, apparel, leather, 

and trade, and fasten the offshoring of production. 

 

d. Employment and working conditions 

The decline in production and sales has had a knock-on effect on workers, both in terms of 

employment and working conditions:  

• An estimated 200 factories in Cambodia have suspended or reduced production and at 

least 5,000 workers have lost their jobs. 

• In Myanmar, the lack of raw materials from China has led to the closure of at least 20 

factories and the loss of 10,000 jobs and at the same time, the number of orders has 

plummeted.39 

 
37 Anner, M. 2020. “Abandoned? The impact of Covid-19 on workers and businesses at the bottom of global 

garment supply chains”, (Penn State Center for Global Workers’ Rights). 
38 Bangladesh Garment Manufacturers and Exporters Association. Impact of COVID-19. 
39 Myanmar Times. “More woes for Myanmar garment industry as EU cancels orders”. 
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• In Bangladesh, as many as 2.17 million workers have been affected by the crisis, and 

many are facing unemployment, as orders are cancelled and production declines 

dramatically.  

Non-payment of wages and the closure of factories is especially hard for employees in countries 

with very vulnerable social protection structures. 

 

2.7.2 The European scenario 

The European textile and clothing sector comprehends about 170.000 companies, of which 

99,8% are microenterprises and SMEs. Collectively, they generate an annual turnover of 

approximately 180 billion euros, employing 1,7 million people40.  The sector has been 

transforming recently, since the production of mass consumption items has been reduced in 

order to integrate the industry towards higher value-added products, like technical and industrial 

textiles41. The EU Textile Strategy is under development, the goal is to achieve a green, digital 

and resilient economy, additionally to the latest emerging needs triggered by the pandemic. 

Figure 7 shows data in the textile and clothing industry up to December 2020 in the European 

context. The dramatic contraction in demand and production of textile and clothing items, 

caused by the Covid-19 pandemic can be clearly observed. 

 

 
40 EURATEX. 2020: https://EURATEX.eu/wp-content/uploads/Post-Corona-Strategy-Final.pdf. 
41 European Commission. 2020. Textiles, Fashion and Creative Industries 
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Figure 7: Textile and Clothing Turnover in Europe 

Source: EURATEX 

 

In the early 2020s, global health crisis caused a drop in production and disruption to the textile 

supply chains. With China being a critical global supplier of textile inputs, the trade impact on 

production consequently extended to the entire global market, including the EU. Production in 

Europe fell by more than 10% in Q1 compared to 2019, which a 38% and 57% difference in 

textiles and apparel subsectors respectively in April 2020. Regarding employment, the labour 

market for T&C suffered a relatively small setback in the first few months of the crisis, with a 

decline of 1,5% in textiles and 4,9% in apparel across the EU compared to 2019, in part due to 

short-term measures taken at the national level to support employment.  

Demand has declined significantly, with retail sales dropping by 18,8% in Europe during Q1. 

60% of European textile companies interviewed in a survey conducted between March and 

April 2020 expected sales to fall by more than half; 7 in 10 faced serious financial difficulties 

and 8 in 10 said they had reduced, at least temporarily their workforce42.  

Sales though online channels reached historic highs in some European countries, showing a 

shift in consumer behaviour towards e-commerce that has continued through the entire 2020. 

However, this shift toward online shopping failed to offset the overall decline in sales for the 

entire sector. 

 
42 EURATEX, CORONAVIRUS survey 2020 
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The industry began to recover in the third quarter of 2020, albeit at a small pace. Production 

experienced a rebound from Q2 of 25% in textiles and 33% in the apparel sub-sectors. Sales 

figures also improved, with overall retail sales recovering 62% from Q2.  

Despite this rebound, the full-year figures are negative compared to 2019. Production and retail 

sales declined 15% and 9,4% for apparel and 7% and 9,7% for textiles, due to lower interest in 

purchasing clothing. Employment faced declines by 2,9% and 7,5% for the respective 

subsectors in Q3 2020. 

Despite this series of not reassuring information, the overall industry sales are expected to 

rebound by approximately 15% in 2021 (with a potential recovery in consumer spending) but 

is not expected to return to pre-recession levels until Q3 2023, assuming a gradual easing of the 

health emergency and substantial measures to support the economy. Estimates for total industry 

employment in the T&C labour market could decline by approximately 8% (about 158,000 

jobs) by the end of 202142. The number of businesses, moreover, is expected to decline by 6% 

(about 13,000 firms) in the same year. Based on these forecasts, the recovery scenario for the 

industry is likely to be U-shaped, as shown in Figure 843. 

 

 

 

Figure 8: Monthly output index of EU T&C sectors 

 
43 De Vet J.M. et al. 2021. Impacts of the Covid-19 pandemic on EU industries 
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Source: EURATEX 

 

2.7.3 The Italian Scenario 

The textile and clothing industry represents one of the most important sectors of the 

manufacturing industry in Italy. It is a sector that boasts an ancient tradition in our country. 

With over 500.000 employees, this sector employs 12% of all workers in the manufacturing 

sector. Its turnover represents 9% of the turnover of the manufacturing sector. Moreover, the 

Italian textile industry exports represent 77,8% of total European exports44. 

Being the textile sector so fundamental in Italy, I considered it would be interesting to focus on 

it on my thesis. 

As we have seen, the T&C sector is among the most exposed to the effects of the Covid-19 

crisis, second only to the hospitality and tourism sectors. The production of textiles, clothing, 

leather and accessories collapsed by 81% year-on-year in April 202045. The almost total closure 

of commercial channels, with the exception of online, has led to a contraction in retail sales of 

clothing and leather goods in April were down by more than 83%46 compared to the same month 

of the previous year.  

The lockdown period has led to the blocking of all commercial activities of clothing and 

accessories stores, affecting around 300 thousand employees. E-commerce, by guaranteeing the 

existence of a minimum turnover for companies active in online sales, has been one of the main 

factors of resilience in the sector, but, at the same time, is one of the main risk factors for retail 

employment.  

The Italian clothing and accessories sector bases its solid foundations on historical experience 

and success. To recover the lost ground and return to record the positive trends of the last few 

years the sector needs an articulated plan to restart, which includes the definition of policies to 

create long-term value and innovation in business models47.  

 

 
44 Sistema moda Confindustria. 2019. Lo stato della moda 2019 
45 ISTAT. 2020. Produzione industriale, 11th June 2020 
46 ISTAT. 2020. Commercio al dettaglio, 5th June 2020  
47 Cassa Depositi e Prestiti, Ernst&Young and Luiss Business School. 2020. Settore Moda e Covid-19 
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2.8 Ratti S.p.A.  

 

“Living silk is an art, today as yesterday" Antonio Ratti 

 

Ratti S.p.A. was founded in 1945 by Antonio Ratti, who opened in Como his “Tessitura Serica 

Antonio Ratti”, for the creation and marketing of silk fabrics and accessories. 

In 1958 the Guanzate plant for the integrated cycle production process of silk was inaugurated, 

from yarn to finished product through the phases of weaving, dyeing, photoengraving, printing 

and finishing. Guanzate is still the main production plant in Italy. 

Few years after opening new offices in Wall Street, the Company became listed on the Milan 

Stock Exchange in 1989. With the contribution of the Antonio Ratti Foundation, in 1995 the 

Metropolitan Museum of New York opened the Antonio Ratti Textile Centre, one of the largest 

and most technologically advanced facilities for the study and conservation of textiles. In the 

early 2000s, the Company opened new plants several countries, among which Tunisia and 

Romania. In 2010 Marzotto Textile Group and Faber Five Srl entered into the shareholding of 

Ratti S.p.A., holding its control. Donatella Ratti, daughter of the founder, is currently President 

of the Ratti Group.  

The harmonious growth of the Group has led Ratti over the years to become a member of 

Associations, networks and bodies involved in the promotion and development of the textile 

industry. The Group adheres to Confindustria (Unindustria Como and Sistema Moda Italia) and 

Centro Tessile Serico; moreover, it participates in the activities of the European Technological 

Platform of Textile Clothing and is a contributor to the ZDHC program. The Company also 

adheres to the BCI (Better Cotton Initiative), an association formed by producers, 

intermediaries and non-profit groups to promote environmentally friendly cotton cultivation in 

respect of the environment.48 

The Ratti Group consists of the parent company Ratti S.p.A. (Italy), the subsidiaries Textrom 

Srl (Romania), Creomoda Sarl (Tunisia), La Maison des Accessoires Sarl (Tunisia), Ratti 

International Trading Co Ltd (China), Ratti USA Inc. (United States), Second Life Fibers Srl 

(Italy) and a stake in Marielle Srl (Italy). Marielle Srl (Italy).  

 
48 Gruppo Ratti, Sustainability Financial Statements 2020 
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The Group is today one of the major players in the production of printed, plain, yarn-dyed, and 

jacquard fabrics for clothing, ties, shirts, beachwear, and furnishings. It also creates men's and 

women's accessories such as ties, scarves, and foulards. 

The structures, machinery and equipment are the most modern and specialized in the field of 

printing, managed by highly qualified personnel. Ratti preserves its tradition of craftsmanship, 

aimed at the continuous search for excellence expressed in all its forms.  

Ratti manages and controls the entire production cycle: from the creative idea that develops 

around a design, to the design of the fabric up to the finishing phase. A production that tells all 

the quality and luxury of an all-Italian excellence, to define, through each single step, a fabric 

appreciated and requested by the luxury and pret-à-porter maisons of the world.  

I will focus in my thesis on the Parent Company Ratti S.p.A., in order to make the data 

smoother, necessary to obtain more truthful results.  

 

2.8.1 Ratti S.p.A. and Covid-19 

To handle the inevitable impact caused by the spread of the Covid-19 virus, Ratti has 

implemented a form of resilience as a strategy to adapt and transform to the changed 

marketplace. This system has allowed the company to react in the face of the difficulties of the 

period, proposing new business models and transforming external stimuli into concrete action 

and new forms of innovation. Despite the strong reaction of the Company to the crisis, the drop 

in demand and the lockdown measures have inevitably impacted on performance.  

Some data from Ratti’s Individual Financial Statements as of 31st December 2020 are here 

presented.  

The Parent Company closed the 2020 financial year with revenues from the sales of goods and 

services of €71,1 million (-€45,0 million compared to 2019) and a gross margin (EBITDA) of 

€5,2 million (-€14,1 million compared to 2019). Profit before taxes and profit for the year 

amounted to €0,8 million.  

Revenues from the sale of goods and services are broken down as follows: 

 

a. by product type: 
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€/000 2020 2019 Delta 

Ratti Luxe 34.526 55.067 -20.541 

Collection 15.926 30.601 -14.675 

Carnet 6.985 10.493 -3.508 

Fast fashion 2.129 4.636 -2.507 

Ratti Studio 7.563 10.299 -2.736 

Furnishing 3.264 4.779 -1.515 

Other 756 313 443 

Total 71.149 116.188 -45.039 

    
Table 4: Revenues by product type 

Source: Ratti’s Individual Financial Statements 2020 

 

b. by Geographical area: 

 

€/000 2020 2019 Delta 

Italy  30.319 49.917 -19.598 

Europe EU 24.589 37.458 -12.869 

USA 3.075 6.698 -3.623 

Japan 2.075 2.805 -730 

Other  11.091 19.310 -8.219 

Total 71.149 116.188 -45.039 

    
Table 5: Revenues by Geographical area 

Source: Ratti’s Individual Financial Statements 2020 

 

Following the significant restrictions on the market, the fall in sales affected all areas of 

business. With reference to the larger hubs, the Luxe Hub reported a drop in sales of €20,5 

million (down 37,3%), whilst the Collections Hub reported a decrease of €14,7 million (down 

48,0%).  

Sales by geographical area showed a widespread reduction in all the main outlet markets. In 

particular, sales on the US market fell by €3,6 million (-54,1%) and revenues on the domestic 

market by 19,6 million euros (-39,3%).  
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Costs also have been deeply affected by the pandemic: the cost of raw materials, ancillary 

materials, consumables, and goods for resale decreased overall compared to FY 2019 by €17 

million. The decrease is directly related to the decline in sales volumes49. 

 

2.8.2 Ratti S.p.A: Cost analysis 

The analysis of costs, in particular the allocation of fixed and variable costs, is fundamental for 

the subsequent MATLAB implementation.  

 

a. Cost of raw materials, ancillary materials, consumables, and goods for resale: this 

Financial Statement Line Item (FSLI) amounts to €18,9 million as of December 2020 

and to €35,9 million as of December 2019. As already seen, the sharp decrease in costs 

is mainly due to the decline in sales volumes. I classified this FSLI in the variable costs 

group. 

 

b. Cost of services: the total FSLI amounts to €16,5 million and €27,4 million in 2020 and 

2019, respectively. I underlined the costs classified as variable costs, while the others 

are fixed. This item is broken down as follows: 

 

€/000 2020 2019 Delta 

 Outsourcing to third parties  3.783 8.319 -4.536 

 Outsourcing of subsidiary undertakings  1.690 2.348 -658 

 Utilities 1.693 2.549 -856 

 Commissions’ payable  1.256 2.455 -1.199 

 Maintenance  1.205 1.834 -629 

 Transport  1.178 1.629 -451 

 Consultancy  1.090 1.509 -419 

 Cleaning, waste disposal/cleaning, 

surveillance  1.005 1.115 -110 

 Sampling and creation expenses  722 1.123 -401 

 Advertising and promotion  534 935 -401 

 Insurance  382 475 -93 

 Services in outsourcing  276 282 -6 

 Customs charges on purchases   258 585 -327 

 Travel and accommodation expenses 247 920 -673 

 
49 Ratti S.p.A. Financial Statements 2020 
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 Charges for services from related parties  192 250 -58 

 Bank charges  62 81 -19 

 Fees for supervisory bodies   36 36 0 

 Other costs 927 939 -12 

Total Cost of Services 16.536 27.384 -10.848 

 

Table 6: Cost of services 

Source: Ratti’s Individual Financial Statements 2020 

 

Costs of services decreased by €10,8 million compared to the previous year, primarily due to 

the decrease in the cost of external processing, commissions and travel and accommodation 

expenses.  It should be noted that operating costs include in total extraordinary costs for the 

management of the Covid-19 emergency amounting to €0,5 million, including costs for 

protective equipment, compliance with protocols and donations made to local associations and 

bodies involved in the health emergency management49. 

 

c. Costs for use of third-party assets: in 2020, it was equal to €868 million and in 2019 

to €979 million. I classified the entire FSLI, which includes royalties, rentals, and leases 

among the fixed costs. 

 

d. Personnel costs: these expenses amount to €24,5 million and €31,6 million in 2020 and 

2019 respectively and they have been classified among the fixed costs. The decrease in 

payroll costs, amounting to €7,1 million, is primarily due to use of the redundancy fund 

and use of vacation days accrued during 202049. 

Changes in the number of staff during the year, broken down by category, are shown 

below: 

 

 

 2020 2019 Delta 

Managers 9 12 -3 

Executives 42 44 -2 

Employees 264 277 -13 

Intermediaries 55 57 -2 

Workmen 143 157 -14 

Total  513 547 -34 
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Table 7: Staff Numbers 

Source: Ratti’s Individual Financial Statements 2020 

 

As of December 31, 2020, there were 34 fewer employees than of December 31, 2019. The 

social and economic emergency situation created by the Covid-19 pandemic has obliged the 

Company to use the forms of wage supplementation adopted by the government. In this context 

of a contraction in orders and volumes and, consequently, the need to reduce personnel costs, 

the Company has decided not to replace staff leaving due to retirement or resignation and not 

to confirm certain apprenticeship contracts49. 

 

e. Other operating expenses: these expenses amount to €1,8 million and €1,7 million in 

2020 and 2019 respectively. As per Cost of Services, the underlined expenses have been 

classified as variable, while the others as fixed. The breakdown of this FSLI is the 

following:  

 

 

€/000 2020 2019 Delta 

Consumables, stationery, fuels 634 655 -21 

Liberal donations 255 0 255 

IMU 303 302 1 

Purchase of paintings and samples 131 233 -102 

Contingencies and non-existent liabilities 100 108 -8 

Membership fees 92 92 0 

Purchase of drawings 11 53 -42 

Deductible taxes 31 41 -10 

Waste tax 36 40 -4 

Representation expenses 9 28 -19 

Capital losses on disposals 132 21 111 

Other expenses 51 95 -44 

Total Other Expenses 1.785 1.668 117 

 

Table 8: Other Expenses 

Source: Ratti’s Individual Financial Statements 2020 
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f. Amortization, depreciation, provisions and write-downs: the total of these items 

amounts to €4,9 in 2020 and €4,3 in 2019. These expenses have been classified among 

the fixed costs. 

 

On the basis of the classification made in the preceding paragraphs, total fixed costs amount to 

€38,8 million as of December 2020 and to €48,2 million as of December 2019, determining a 

decrease of €9,4 million, mainly attributable to personnel reduction. 

Concerning variable expenses, in 2020 they are equal to €28,8 million, while in 2019 they 

amounted to €53,6 million. This deep difference is due to the decline in sales volume 

attributable to the sharp drop in demand, as previously analysed. 

Table 9 shows a recap of fixed costs (FC) and variable costs (VC) breakdown in 2019 and 2020: 

 

FC 

2020 2019 Delta 

38.750 48.181 -9.431 

   

VC 

2020 2019 Delta 

28.738 53.620 -24.882 

Table 9: Fixed and variable costs breakdown 

Source: Own calculations 

 

In order to get the variable cost needed for one meter of produced fabric, I made the following 

calculations50: 

• I took from Amazon the price of fabric per meter: on average, fabrics are sold at €59,99 

for 6 yards (5,48 mt), thus €10,95 per meter. 

• The value of production resulted to be equal to €118 million as of 201949.  

• From simple calculations, it resulted that in 2019, 10,8 million meters of fabric were 

produced. 

 
50 I consider the values of a company in normal conditions, so I will take the values from the Balance Sheet at 

2019, because they are not compromised by the current crisis. 
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• Dividing the total variable costs of 2019 by the meters of fabric produced, the variable 

cost to produce one single meter of fabric resulted being equal to €4,98. 

It should be noted that I considered financial statement data as of 2019, because the Company 

was not too significantly affected by the pandemic yet. Taking data from 2020 could have led 

to compromised results.  

 

2.9 The Stationary Probability Distribution of the Epidemic Process 

People are concerned what might be the threshold above which the epidemic is likely to spread. 

To answer this question, it is necessary to examine the distribution of 𝐼𝑡. Generally, suppose we 

are working with the variable 𝑥, which evolves according to a stochastic differential equation3: 

 

𝑑𝑥𝑡 = 𝜇(𝑥)𝑑𝑡 + 𝜎(𝑥)𝑑𝑊𝑡. 

 

The probability density function of the random variable 𝑓(𝑥, 𝑡) depends on the random variable 

itself and on time 𝑡. The evolution of the density function is shown here in form of the 

Kolmogorov equation51: 

 

𝜕𝑓

𝜕𝑡
=

𝜕

𝜕𝑥
(𝜇(𝑥)𝑓(𝑥, 𝑡)) +

𝜕2

𝜕𝑥2
(𝜎2(𝑥)𝑓(𝑥, 𝑡)). 

 

I will consider the equation when the process reaches the equilibrium (i.e., 
𝜕𝑓

𝜕𝑡
= 0). The 

solution to the stationary probability function 𝑓(𝑥) has been developed by Wright: 

 

𝑓(𝑥) =
𝜓

62(𝑥)
exp {∫

𝜇(𝑦)

62(𝑦)

∞

−∞

𝑑𝑦} 

 
51 Cobb (1998). 
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In which 𝜓 is a constant so that ∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
. Here, we need the stationary distribution of 𝐼𝑡, 

in which 𝜇(𝐼) = 𝛽𝐼(1 − 𝐼) − 𝛾𝐼 + 𝛼(1 − 𝐼) − 𝛿𝐼 and 𝜎2(𝐼) = 𝑐𝐼(1 − 𝐼). By Wright’s 

formula, we get: 

 

 

𝑓(𝐼) =
𝜓

𝐼(1 − 𝐼)
𝑒𝑥𝑝 {∫

𝛽𝛾(1 − 𝑦) − 𝑦𝛾 + 𝛼(1 − 𝑦) − 𝛿𝑦

𝑐𝑦(1 − 𝑦)
𝑑𝑦

𝐼

0

} 

   = 𝜓𝐼
−1+

𝛼

𝑐 (1 − 𝐼)−1+(𝛾+𝛿)/𝑐𝑒𝛽𝐼/𝑐. 

 

The antimode of the equation represents the boundary beyond which the disease has higher 

probability to spread. Given the parameter values, we get an antimode equal to 𝐼1 = 45,3%. 

This means that the ailment is unlikely to proliferate unless more than 45,3% of employees get 

contaminated.52 

Now that all parameters have been calculated, in the next Chapter I will show the solutions to 

the regime-switching model, based on MATLAB implementation using the Optimal Switching 

Solver in the CompEcon Toolbox proposed by Fackler in 2004.  

  

 

52 By solving the equation 𝑓′(𝐼) = 0, we get the antimode 𝐼1 = 𝑑 − √𝑑2 −
𝑐−𝛼

𝛽
 where 𝑑 =

𝛽−𝛾−𝛿−𝛼+2𝑐

2𝛽
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Chapter III 

MATLAB implementation of the Regime-Switching Model on 

Ratti S.p.A 

 

3.1 Parameters Recap 

According to what mentioned at the end of Chapter II, I will start by assuming that 𝑅0 in 

November was approximately equal 1,5. The 𝛽 will result to be equal to 0,10753, assuming that 

the average life of the virus is 14 days54. 

Let us recap the parameters set in the previous Chapter: 

• Discount rate: 𝜌 = 0,05 

• Productivity of an infective: ξ = 0,5 

• Total number of employees: 𝑁 = 547 

• Price of product: 𝑃 = 10,95 

• Variable costs: 𝑉𝐶 = 4,98 

• Fixed costs: 𝐹𝐶 = 48181 

• Penalty cost: 𝐸 = 10 

• Mothballing cost: 𝐶12 = 1500 

• Reactivation cost: 𝐶21 = 1500 

• Recovery rate in the active regime: 𝛾𝑟1 = 0,01 

• Recovery rate in the inactive regime: 𝛾𝑟2 = 0,07 

• Internal transmission rate: 𝛼 = 1 

• Volatility coefficient: 𝑐 = 0,1 

• Fatality rate: 𝛿 = 0,04 

I will solve the regime-switching problem by dynamic programming, through the Optimal 

Switching Solver through the CompEcon Toolbox proposed by Fackler in 2004. 

 

 
53 Remind that 𝑅0 =

𝛽

𝛾
 

54 Leading to a removal rate equal to 1/14 (≈ 0,07) 
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3.2 Numerical Results on Optimal Regime-Switching Thresholds 

3.2.1 Stochastic vs deterministic results 

Based on the above parameters, it is optimal for the company the active regime to temporarily 

shut down operations when the fraction of infected workers reaches the threshold of 51%. On 

the other hand, when the company is already in the idle regime, it is optimal to resume 

operations when the fraction of infectives falls below 4%. The visual result from MATLAB is 

shown in Figure 9. The highlighted numbers (4% and 51%) are the only ones we are interested 

in and represent the reactivation and suspension thresholds, respectively.  

 

 

Figure 9: MATLAB results of the regime-switching problem: the Stochastic Case 

Source: Own calculations 

 

In case uncertainty regarding the behaviour of the virus is removed (i.e., the volatility 

coefficient 𝑐 is equal to 0), the model becomes deterministic, and the verges become 5% and 

51% for reactivation and suspension, respectively, as shown the Figure 10. 

 

 

Figure 10: MATLAB results of the regime-switching problem: the Deterministic Case 

Source: Own calculations 

 

 

This examination suggests that companies are a little more cautious in settling the suspension-

reactivation decisions when they consider unpredictability, given that the business will not be 

resuming operations until the fraction of contagious individuals reaches one point below 5% 
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(the reactivation verge in case volatility is removed). It is the real options that make enterprises 

act differently.  

  

3.2.2 The effect of Switching Costs on Switching Thresholds 

I will now explore the effect of commuting the suspension and reactivation costs on the 

switching verges. As shown in Table 10, the mothballing verge 𝐼𝐻 rises to 52%, while the 

reactivation one 𝐼𝐿 falls to 2% when the mothballing cost 𝐶12 surges to 2000 and the reactivation 

cost is kept fixed at 1500. By definition, when the suspension cost increases, the company will 

have to pay more to suspend operations. This leads the manager to be more disinclined in the 

decision of temporarily shutting down operations, thus he will wait until the proportion of 

infected workers reach a higher level.  The intuition on the mothballing threshold is clear, but 

additional inspection should be made on the effect on the reactivation verge 𝐼𝐿. The increase in 

the suspension cost leads to a decrease in the reactivation threshold due to a similar outcome: 

the enterprise could reactivate the business with less enthusiasm if it has to pay a large amount 

of lump-sum costs. 

 

Initial parameters 

𝐶12 = 𝐶21 = 1500 

Mothballing threshold 

𝐼𝐻 = 51% 

Reactivation threshold 

𝐼𝐿 = 4% 

Conclusions 

 

𝐶12 = 2000  

𝐶21 = 1500 

52% 

 

2% ▪ 𝐼𝐿 decreases with 𝐶12 

▪ 𝐼𝐻 increases with 𝐶21 

𝐶12 = 1500  

𝐶21 = 2500 

52% 3% ▪ 𝐼𝐿 decreases with 𝐶12 

▪ 𝐼𝐻 increases with 𝐶21 

Table 10: Effect of changing switching costs 

Source: Own calculations 

 

The change in the reactivation cost 𝐶21 has similar effects to the change already analysed. The 

reactivation threshold 𝐼𝐿 slightly decreases to 3%, meaning that the firm is more grudging in 

resuming production as the reactivation cost increases. The mothballing threshold increases 

with the surge in reactivation cost to 52%, because the company suspends the business with 

some demurral to lose its option value. Considering the possibility that the fraction of infectives 

could drop soon, the firm might avoid paying the reactivation cost again by remaining 
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productive. Therefore, the higher the reactivation cost, the higher the option value, the lower 

inclined decision makers are in suspending production. 

 

 

Figure 11: Effect of changing the Mothballing Cost C12 

Source: Own calculations 

 

 

Figure 12: Effect of changing the Reactivation Cost C21 

Source: Own calculations 
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Figures 11 and 12 above help us to observe the comparative results more clearly when changing 

switching costs. We can see from Figures that the two costs have very similar outcomes on 

analysed thresholds. 

 

3.3  The effect of disease control strategies 

The main goal leading to the modelling of epidemic outbreaks is to determine a rational basis 

for regulations drawn to control the unfold of a virus3. Whenever possible and in case the 

government does not impose specific rules on management, each company can adopt different 

plans to alter the spread of the virus internally to the firm. These strategies include for instance 

the utilization of smart working, the screening of workers showing symptoms, periodical tests 

for all employees or immunization of some or part of workers through vaccination, whenever 

available. All these actions aim at: 

▪ Decreasing the internal transmission rate 𝛼 

▪ Increasing the recovery rate in the active regime 𝛾𝑟1 

▪ Decreasing the external transmission rate 𝛽 

Companies can benefit notably from preserving health of their employees through the 

administration of disease control strategies. In the next paragraphs, each parameter and the 

consequences of its changes are analysed. 

 

3.3.1 Changing the Internal Infection Rate 𝜶 

As previously described, the internal infection rate represents the rate at which the virus spreads 

among the firm when it is open. In the base case I assumed it was equal to 1 because it is 

presumable that employees work closely together, thus causing the infection rate to be very 

high, as what happens in very high-density population places. Considering that, it is reasonable 

to assume that the external infection rate 𝛽 is lower than the internal infection rate 𝛼, because 

the population density is assumed to be higher within the workplace.  

The goal of firms is to keep the internal infection rate under control, whatever the external rate 

is. The aim now is not to determine the difference between these two rates, but to study how 

the switching verges change as the internal infection rate changes. I will study the behaviour of 
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thresholds by decreasing the infection rate from 1 to 0,1. Figure 13 shows that both mothballing 

and reactivation thresholds decrease as this parameter increases, as I was expecting. 

 

Figure 13: Effect of changing the infection rate 𝛼 

Source: Own calculations 

 

Intuitively, both thresholds decrease as 𝛼 increases. As the internal transmission rate increases, 

the firm will be more prudent and wait for less workers to get infected before temporarily 

shutting down operations. The same prudent effect is shown by the reactivation threshold, it is 

clear that with increasing infection rate, the firm will prefer waiting for less infected workers 

before reopening operations.   

If the internal infection rate 𝛼 is kept at low levels, employees would work in a safer workplace 

and would run less risks of infection. Before closing, the company would be willing to wait for 

more employees to get infected. The same reasoning happens before reopening: directors will 

be less cautious and call back workers when the fraction of infectious reaches a higher threshold 

than in the base case, where 𝛼 = 1. 

 

3.3.2 Changing the Internal Recovery Rate in the Active Regime 𝜸𝒓𝟏 

The parameter 𝛾𝑟1 represents the recovery rate in the active regime. Intuitively this will be 

lower than the recovery rate in the inactive regime 𝛾𝑟2, because workers are forced to stay 

home. Obviously, if the infection is detected soon, the worker will be forced to go home and 
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rest. These two parameters are actually different only when the worker does not show symptoms 

and his disease is not detected, thus he will keep working, which will cause the protraction of 

his recovery and above all, he will be a potential risk for his co-workers. That is why firms have 

implemented strong disease detection such as a mandatory and full-paid Covid-19 tests every 

week or month. Considering that, the internal recovery rate can be kept under firms’ control 

through disease detection and other less costly safety measures, such as providing masks, 

sanitisers, and temperature measurement.  

As we can see in Figure 14, the mothballing and reactivation thresholds increase as the recovery 

rate increases. This means that as the ailment is kept under control, thus the internal recovery 

rate increases, the firm will be willing to wait for more workers to get infected before 

temporarily shutting down operations and will be restarting the business with more infected 

workers. 

 

 

Figure 14: Effect of changing the Recovery Rate in the active regime 𝛾𝑟1 

Source: Own calculations 

 

3.3.3 Changing the External Infection Rate 𝜷 

The external infection rate 𝛽 actually cannot be classified as the parameters that the firm can 

keep under control, because it depends on government strategies. In reality, what the firm can 

control is the internal infection rate. 
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But it would be interesting to see how the switching thresholds behave as the external infection 

rate 𝛽, and thus 𝑅0, change. This is actually the most important parameter to analyse because 

most of the strategies to keep infection rate low within companies depend on government 

policies regarding the mandatory shutting down of operations. Moreover, the internal infection 

rate is assumed to be positively correlated to the external one, thus a deeper analysis on this 

parameter should be done. 

Table 10 shows how the values of 𝛽 react to changes in the reproduction number 𝑅0, all other 

parameters fixed. 

 

                                                                                 𝜷               𝑹𝟎 

0 0 

0,036 0,5 

0,071 1 

0,107 1,5 

0,143 2 

0,179 2,5 

0,214 3 

0,250 3,5 

0,286 4 

0,321 4,5 

0,357 5 

0,393 5,5 

0,429 6 

0,464 6,5 

0,500 7 

0,536 7,5 

0,571 8 

0,607 8,5 

0,643 9 

0,679 9,5 

0,714 10 

Table 11: How 𝛽 changes as R0 changes 

Source: Own calculations 

 

Table 11 shows that the external infection rate increases as the reproduction number increases. 

An increase in these parameters is most of the times caused by less stringent infection measures.  
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Figure 15: The effect of changing the External Infection Rate 𝛽 

Source: Own calculations 

We can see that the regime-switching thresholds behave exactly as they did for the internal 

infection rate case. This effect shows the prudential behaviour of managers when facing greater 

risks for their workers. As the external infection rate increases, managers will be less willing to 

reactivate production when the risk of contagion is high and will be more prudent in their 

shutting down. 

 

3.4  Results on the Value Function 

3.4.1 Changing the disease control strategies 

The next three Figures (16,17 and 18) represent how the value of the firm in both the active and 

inactive regime changes as the diseases control parameters change. First of all, it is important 

to note that the value of the company decreases as the fraction of infectives increases, 

ascertaining the conclusion that the value of the firm is compromised by the presence of infected 

workers. Moreover, notice that the value of the firm in the active regime becomes lower than 

the value in the inactive regime as the fraction of infectives gets higher, showing that as the 

fraction of infectives increases, firms would be better off when closed. 
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Figure 16 below shows how the value functions behave as the internal infection rate 𝛼 changes. 

As we can clearly see, the value function has a greater value when the internal infection rate 

decreases.  

The opposite effect is verified when considering an increase in the internal recovery rate 𝛾𝑟1: 

as the internal recovery rate increases, so does the value of the firm, as shown in Figure 17. 

Finally, I assumed the external infection rate to take values equal to 0,179, 0,107 and 0,036 

which correspond to a reproduction number equal to 2,5, 1,5 and 0,5 respectively55. Not 

surprisingly, the value of the enterprise increases as the external infection rate decreases. 

Actually, this parameter cannot be directly controlled by managers, but assuming that the 

government imposes a general lockdown leaving firms open, the external infection rate would 

have an impact on the internal one. The impact will result in a decreasing value of the firm if 

the optimal policy is not implemented. 

These three effects certify that managers have actually a great responsibility over their business, 

because the value of the firm greatly depends on how they manage to keep the disease 

parameters under control and on how they correctly manage the suspension-reactivation 

strategies. It is clear that the aim of managers should be that of increasing the value of their 

firm. The only way to reach this goal is to keep the disease controlling parameters under 

constant check, to make sure the degree of infection within the firm does not reach too high 

levels, in order to guarantee the correct continuation of operations. This is not possible when 

security-measures are weak, and the safety of employees takes second place. 

 

 

 
55 Look at Table 11. 
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Figure 16: The effect of changing the Internal Infection Rate α on the Value Function 

Source: Own calculations 
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Figure 17: The effect of changing the Internal Recovery Rate in the Active Regime 𝛾𝑟1 on the Value 

Function 

Source: Own calculations 
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Figure 18: The effect of changing the External Infection Rate 𝛽 on the Value Function 

Source: Own calculations 

 

3.4.2 Changing the Volatility Coefficient 

Figure 19 represents the value functions in both the deterministic and stochastic case. The fact 

that the value of the firm in the deterministic case (𝑐 = 0) is much lower than the stochastic 

case (𝑐 = 0,1) demonstrates that future uncertainty makes real options valuable because 

management has more flexibility to change the course of the project in a more favourable 

direction. 

The finding is in line with the theory of real option valuation: a company’s value is usually 

underestimated under the conventional NPV approach. 
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Figure 19: The effect of changing the Volatility Coefficient 𝑐 on the Value Function 

Source: Own calculations 

 

3.4.3 Effect on the Value of the Firm without Optimal Regimes 

As seen so far, the ultimate goal of implementing optimal switching threshold is increasing the 

value of the firm, thus keeping the level of production at satisfactory levels but at the same time 

safeguarding employees. All of these considerations have an economic sense when comparing 

how the firm would value in case managers do not consider the possibility of shutting down 

temporarily and reopening.  

In order to do this, I propose again the value function presented in Chapter II, which represents 

how the regime choice is made.  

 

𝑚𝑎𝑥𝑟𝑉(𝐼, 𝑟) = 𝐸 [∫ 𝑒−𝜌𝑡𝜋(𝐼𝑡 , 𝑟)𝑑𝑡 − ∑ ∑ ∑ 𝑒−𝜌𝑡𝑘
𝑖𝑗

𝐶𝑖𝑗]     

2

𝑗=1

2

𝑖=1𝑘

∞

0
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The first part of the equation represents the expected discount cash inflows, while the second 

part represents the switching costs (mothballing and reactivation) incurred over an infinite time 

horizon. By removing the second part of the maximization function, we obtain the simple Net 

Present Value of the future cash inflows to the firm. 

Through a simple MATLAB integration, I found out that the value of the firm resulted to be 

equal to 11656. As we can see from the Value Functions in the Figures above, the value of the 

firm when taking into account optimal regimes, oscillates between €15 and 5 million, depending 

on the fraction of infectives. 

This finding corroborates the theory of real option valuation which states that the value of the 

firm is usually underestimated with the NPV approach, but also validates the basic idea of my 

thesis: implementing optimal switching strategies not only safeguards operativity and 

employees, but also contributes to the maximization of the firm’s value.  

 

 

 

  

 
56 Expressed in thousand euros 
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Conclusions and Discussion 

Extensive studies concerning human epidemics have been developed, but it is evident that very 

few of them scrutinize epidemic risks for private companies.  

Epidemic models have shown fundamental contribution in dispensing appreciations regarding 

the effectiveness of safety measures, such as lockdowns, immunization campaigns, or periodic 

screening. The optimal rules for the implementation of these possible strategies are given by 

modelling. 

In this work, I developed a two-stage model to examine how enterprises can deal with the 

threats associated to pandemics which can seriously harm their workforce. Within the first stage 

of the model, I showed a simple regime-dependent epidemic model allowing for external 

contagion and deaths from the virus. 

In the second stage I proposed an optimal suspension-reactivation strategy, applied to a real-

world firm.  

This two-stage model provides realistic insights for large firms to set up verges for activating 

and temporarily shutting down operations in the events of pandemics.  

Dynamic programming has been discussed in this thesis and implemented to find optimal 

switching strategies obtained by real-world parameters. The firm should mothball operations 

when the fraction of infected workers rises above the suspension threshold and reactivate 

operations when the portion of infected workers falls below the reactivation threshold. These 

triggers for mothballing and reactivation are company specific because they rely on many 

factors which characterise each specific firm, such as the number of employees, the fixed or 

variable costs.  

I decided to analyse a manufacturing company because its business cannot be simply transferred 

into smart working, as it could work for other sectors, and I thought the model could fit better 

in this sense. However, the economic rationale can be applied everywhere. 

Final results showed that it is optimal for the active regime to suspend operations when the 

fraction of contagions reaches the threshold of 51%, while when the company is already in the 

inactive regime, it is optimal to reactivate operations when the fraction of infectives drops 

below 4%, thus leading to a mothballing threshold equal to 51% and a reactivation threshold 
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equal to 4%. Further analysis was developed by observing the behaviour of regime-switching 

thresholds as certain parameters changed. 

 

Changing the model from stochastic to deterministic (thus assigning the volatility coefficient a 

value equal to 0), resulted in the mothballing threshold to remain unchanged to 51% but the 

reactivation threshold to increase from 4% to 5%. This shows that when there is no uncertainty 

regarding the dynamics of the virus, firms are less conservative in making the suspension-

reactivation strategy, because businesses will be put back in operation with a slightly higher 

fraction of infectives. 

 

Then, I analysed the behaviour of thresholds by changing switching costs and some basic 

parameters: the external infection rate, the internal infection rate, and the recovery rate in the 

active regime. 

 

Concerning the changing switching costs, results showed that by increasing one of the two costs 

at a time, the reactivation threshold decreases, and the mothballing threshold increases, meaning 

that managers will be more reluctant in the decision of temporarily shutting down the business 

when the suspension cost increases, and will be less willing to reopen when the reactivation 

cost increases. This conclusion is quite straight and in line with my expectations. 

 

For what concerns the effect of diseases control strategies, results showed that with increasing 

both internal and external infection rates at a time, both thresholds were decreasing, meaning 

that firms will are more prudent and wait for less workers to get infected before both temporarily 

suspending and reopening operations. 

 

The opposite effect was given by changing the recovery rate in the active regime, because both 

thresholds increased with the recovery rate. This is quite intuitive, because as the internal 

recovery rate increases, managers will be less prudent and wait for more workers to get infected 

before suspending the business and will reopen with more infected workers. 

 

Final analysis was made on the actual firm value maximization. Last graphs showed that the 

value of the firm is positively impacted by implementing correct disease control strategies 

aiming at reducing infection rate or increasing recovery rate.  
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Concerning the value of the firm with respect to volatility, results clearly shows that  when there 

is future uncertainty, the existence of real options makes firms more valuable. At the same time, 

firms are more conservative about the decisions of suspension and reactivation.  

These strategies aim at controlling the epidemic, but at the same time they increase the firm’s 

value. Disease control and value maximization can be obtained simultaneously following this 

model. 

Firms are motivated by the goal of profit maximization. An infected employee not only has 

lower productivity, but also transmits the virus to other people in the company. Firms need to 

implement different strategies to decrease internal infection rates and increase the recovery rate.  

Results show that managers have actually a great responsibility over their businesses because 

they can control the main contagion parameters within their firm. It is on them that the decision-

making power regarding the optimal suspension-reactivation triggers resides. And it is upon 

them that these thresholds change depending on how they keep internal contagion under control. 

Their aim should be that of increasing the value of their firm, but this is not possible when 

security-measures are weak, and the safety of employees takes second place. 
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Synthesis 

Introduction  

Nowadays, most theorists and practitioners believe that real options should be considered when 

analysing corporate decisions. Throughout my thesis I have built on this consideration by 

employing a regime-switching model, which arises from real options valuation, to study firms’ 

optimal strategic decisions in the event of pandemics. In such circumstances, businesses play a 

special role in protecting employees’ health and, at the same time, in minimizing economic 

losses. This work is motivated by the concern of a new pandemic, now that the problems it can 

give rise to are real and tangible. 

In details, I conducted a MATLAB implementation, through the CompEcon Toolbox proposed 

by Fackler in 2004, to determine the optimal suspension-reactivation triggers, where 

reactivation decision is viewed as a call option and the suspension as a put option, using a 

dynamic programming method to obtain optimal switching thresholds applied to a real-world 

firm.  

Chapter I. An Overview of Epidemiological Models and Real Options 

In the course of Chapter I, I have analysed the importance of developing epidemiological 

models in the context of corporate finance and I have described the dynamics of three basic 

models: the 𝑆𝐼, 𝑆𝐼𝑅 and 𝑆𝐸𝐼𝑅 models.  Finally, the importance of adding stochasticity to the 

models and their connection with the world of real options has been examined through a 

theoretical example. 

To date, 32 pandemics have occurred in the past 500 years of which three in the past century. 

Historic data reveals that influenza pandemics occur with frightening regularity every 30 to 50 

years. 

Given this pattern, it is reasonable to develop economic models in order to be better prepared 

in the event of other outbreaks. Impacts on almost all kind of business organizations are 

staggering: businesses would have to shut down for quarantine, firm’s earnings would plunge 

and leading to default on corporate debts. Moreover, consumers’ confidence might crash, thus 

further deteriorating financial distress. Without any improvement in our techniques for fighting 

this invisible war, sacrifices by households and businesses will be startling.  

According to searches carried out by Area Studi Legacoop, Italian economy due to the 

pandemic has lost €150 billion in 2020, with a collapse of 8,9%. The lost surplus from market 
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activity, while massive, understates the true costs of sacrifices that households and businesses 

are making. This is why better techniques for fighting the war are highly beneficial. 

Mathematical models can provide precious tools to public health authorities for the 

management of epidemics, potentially contributing to limiting the portion of infected people 

and victims. These models can be used to reap long and short-term forecasts, which allow 

decision-makers to optimize accessible control policies, such as lockdowns and vaccination 

campaigns. Models are also very beneficial in other duties which include the estimation of 

transmission parameters, analysing the contagion mechanisms and simulation of different 

epidemic scenarios. 

However, these models only evaluate effectiveness of epidemic control strategies based on 

country-wide needs and lead cost-benefit analysis from the macroeconomic standpoint. They 

do not deliver directives for large corporations to prepare for pandemics nor provide 

instructions about the implementation of optimal control policies. 

All epidemic models have a common feature, which dividing the population into two different 

health states: susceptibles (𝑆) and infectives (𝐼) and studying the disease transmission among 

these classes. Beside the simple 𝑆𝐼 model, other more elaborated models incorporate other 

groups, of which the most used is the recovered (𝑅). 

The group 𝑆 represents the group of people who are healthy but vulnerable to the disease. The 

class 𝐼 denotes the individuals who have been infected and can contaminate others. The class 

𝑅 represents people who have recovered from the infection and have acquired immunity.  

Scientists use a basic measure to track the infectiousness of a disease called the basic 

reproduction number (o reproduction ratio) — also known as 𝑅0, that indicates how contagious 

an infectious disease is. It tells the average number of people who will contract a contagious 

disease from one person with that disease. The purpose of policymakers is actually to maintain 

this term below 1, because in this case every existing infected individual causes less than one 

new contamination, thus the ailment will decline and ultimately die out. 

Chapter II. Regime-Switching Models and Calibration to Covid-19 

In Chapter II, I provided a rough calibration to Covid-19 using a modified 𝑆𝐼𝑅 model allowing 

for deaths, in order to obtain parameters that I used in the subsequent part of the Chapter. 

Then I proposed a two-stage model to address the following research questions:  
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▪ In the event of an epidemic, should the firm continue operating considering the loss of 

productivity of its employees or temporarily suspend operations to circumvent 

contagion? 

▪ Is the company’s objective to maximize value in conflict with its desire to control the 

disease? 

▪ What are the optimal triggers for businesses to implement the suspension-reactivation 

strategy? 

Stage I 

Within the first stage, I adapted an epidemic model to explain the stochastic dynamics of an 

ailment that spreads within a given organization, taking into consideration external contagion 

and deaths from the virus.  

This work assumes that the productivity of a worker decreases when he gets infected. With the 

spread of the ailment, the proportion of infective workers tends to increase progressively, thus 

harming the firm’s productivity and, by consequence, its revenues. 

I defined the “mothballing threshold” as the percentage of infected employees over which it is 

better to temporarily shut down the business and dismiss employees whether they are infected 

or not. When instead the percentage of infected employees drops below a certain low threshold 

(the “reactivation threshold”), the business can be resumed, and employees can be called back 

to work.  

Strategic decisions that managers make have an impact on the evolution of the disease. Such 

decisions might be used to reduce the spread of the contagion, thus altering the parameters 

𝛼 and 𝛾, which represent the internal infection rate and the removal rate, respectively. 

The company may adopt disease control programs to lower the infection rate between infectives 

and susceptibles, for example screening the suspected infectives and ordering a full paid leave 

or testing for the disease all employees every week or month.  

I denoted 𝑟 as the regime of the firm, thus 𝑟 = 1 if the firm is active and 𝑟 = 2 if the firm is 

inactive. 𝛾1 represents the recovery rate when the firm is active. The corresponding epidemic 

model resulted to be: 

𝑑𝐼𝑡 = [𝛼𝐼𝑡(1 − 𝐼𝑡) − 𝛾1𝐼𝑡 + 𝛽(1 − 𝐼𝑡) − 𝛿𝐼𝑡]𝑑𝑡 +  √𝑐𝐼𝑡  (1 − 𝐼𝑡) 𝑑𝑊𝑡           𝑖𝑓 𝑟 = 1                             

Where 𝛽 is defined as the external infection rate.  
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In the inactive regime, the internal transmission of the disease is cut off, thus 𝛼 = 0. Infectives 

will recover at a greater recovery rate 𝛾2 > 𝛾1 and the contagion will be kept under control. 

Assuming that the external infection rate 𝛽 and the death rate 𝛿 remain unaltered, the dynamics 

of the disease when the company is idle resulted to be: 

𝑑𝐼𝑡 = [−𝛾2𝐼𝑡 + 𝛽(1 − 𝐼𝑡) − 𝛿𝐼𝑡]𝑑𝑡 +  √𝑐𝐼𝑡 (1 − 𝐼𝑡) 𝑑𝑊𝑡                       𝑖𝑓 𝑟 = 2                                                     

Finally, the epidemic model was expressed in the following manner: 

𝑑𝐼𝑡 =  𝜇(𝐼𝑡, 𝑟) 𝑑𝑡 +  𝜎(𝐼𝑡, 𝑟) 𝑑𝑊𝑡 

In which, 

𝜇(𝐼𝑡, 𝑟)  =  {
𝛼𝐼𝑡(1 − 𝐼𝑡) − 𝛾1𝐼𝑡 + 𝛽(1 − 𝐼𝑡) − 𝛿𝐼𝑡          𝑖𝑓 𝑟 =  1 

−𝛾2𝐼𝑡 + 𝛽(1 − 𝐼𝑡) − 𝛿𝐼𝑡                                 𝑖𝑓 𝑟 =  2
 

And  

𝜎(𝐼𝑡, 𝑟)  =  √𝑐𝐼𝑡  (1 − 𝐼𝑡)   

 

Stage II 

Within Stage II, I used a regime-switching model through MATLAB to find the optimal 

thresholds, based on the theory of real option valuation. This model has been applied to a real-

world company operating in the textile sector, the Ratti S.p.A. Later in the Chapter, I described 

how this particular sector has reacted to Covid-19 and the reasons that led me to choose this 

company.  

Suppose the manager can use some methods to estimate the fraction of infectives 𝐼𝑡, because it 

is too costly to tell if an individual employee is actually infected or not. For instance, he could 

use public daily released data of disease cases or the hospitalization levels in his region. His 

goal is to determine two optimal thresholds: the mothballing 𝐼𝐻 and the reactivation 𝐼𝐿. The 

mothballing threshold tells the manager what is the percentage of 𝐼𝑡 above which it is better to 

suspend operations temporarily and offer full paid leave to all workers, independently of 

whether they are infected or not. If, on the other hand, the fraction of infectives 𝐼𝑡 is lower than 

the reactivation threshold 𝐼𝐿, the manager can call back all workers and resume operations.  

I assumed that the productivity of a worker drops to a certain level 𝜉 (0 < 𝜉 < 1) once he gets 

the disease. The total number of employees in the firm was denoted by 𝑁. The variable and 



104 

 

fixed costs were denoted by 𝑉𝐶 and 𝐹𝐶, respectively. Among the fixed costs, employees’ wages 

were included because I assumed a full paid leave. Additionally, there is a penalty cost 𝐸 for 

every infected worker when the firm is active. This cost may include the firm’s reputational 

damage or employees’ unwillingness to work. 

The cash flow function was defined as: 

𝜋(𝐼𝑡, 𝑟) = [𝜉 ∗ 𝐼𝑡 ∗ 𝑁 +  (1 −  𝐼𝑡) ∗ 𝑁] ∗ (𝑃 − 𝑉𝐶) − 𝐹𝐶 − 𝐸 ∗ 𝐼𝑡 ∗ 𝑁                           if r = 1 

And   𝜋(𝐼𝑡, 𝑟) =  −𝐹𝐶                                                                                                       if r = 2 

The above equations tell that the cash flow to the firm 𝜋(𝐼𝑡, 𝑟) depends both on the fraction of 

infectives and the regime variable. Clearly, if the company is inactive, the cash flows are only 

represented by an outflow due to fixed costs (wages, insurance etc.).  

Once the model was defined, I needed to determine the main parameters to be inserted. 

I denoted the removal rate by 𝛾 ≡ 𝛾𝑟 + 𝛾𝑑, which represents the rate at which people leave the 

pool of infectives either by recovering (𝛾𝑟𝐼𝑡) or dying (𝛾𝑑𝐼𝑡). The ratio 𝜌 = 𝛾/𝛽 is the relative 

removal rate and 1/𝜌 is the reproduction rate and is denoted by 𝑅0. 

To start, I selected values for 𝛽, 𝛾𝑑 and 𝛾𝑟 based on information provided by the Italian Ministry 

of Health, as of November 2020, because much more information was available compared to 

the very beginning of the virus outbreak.  

I assumed that the initial number of infectives was 𝐼0 = 2 ∗ 10−6. Based on ISTAT data, Italian 

population was of about 60 million people, corresponding to 121 infected individuals at the 

outset. The initial number of susceptibles was 𝑆0 = 1 − 𝐼0.  

The time interval ∆𝑡 is one day. I set the removal rate 𝛾 at 0,07, based on the assumption that 

the average duration of the virus is 14 days. Assuming that the average illness duration is the 

same whether the patient recovers or dies, 𝛾𝑑 depends only on the fraction of patients that die. 

Based on data from Italian Ministry of Health as of November 2020, I estimated fraction of 

deaths to be equal 4,43%, which I rounded to 4% assuming an underestimation of the actual 

number of cases caused by a high level of asymptomatic infected individuals.  

Since 𝛾𝑑 = 𝛿𝛾, we got 𝛾𝑑 = 0,04 ∗ 0,07 = 0,29%. 

Thus, 𝛾𝑟 resulted to be equal to 6,86% considering that 𝛾 ≡ 𝛾𝑟 + 𝛾𝑑. 
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Given 𝛾 and its components, I was left with the contact rate 𝛽 or equivalently, with the 

reproduction number 𝑅0 = 𝛽/𝛾 which is a function of the social distancing policy 

implemented.  

Since my study is based on November data, I assumed that in that period the reproduction 

number was around 1,5, considering that the social distancing policies were strongly applied 

all over Italy.  

As regarding the recovery rate 𝛾𝑟, from calculations made above I assumed it to be equal to 

0,07 in the inactive regime (𝛾𝑟2) and equal to 0,01 in the active regime (𝛾𝑟1), to reflect the fact 

that the recovery rate should be higher when workers are separated from each other. The value 

of internal transmission rate 𝛼 was set to be equal to 1 and the volatility coefficient 𝑐 was set at 

0,1. The fatality rate 𝛿, as previously calculated, was set at 4%.  

After the parameter calibration, I provided an overview of the textile sector and how it reacted 

to Covid-19, at the global, European, and Italian levels. Here, only the Italian overview has 

been summarized. 

The textile and clothing industry represents one of the most important sectors of the 

manufacturing industry in Italy. It is a sector that boasts an ancient tradition in our country. 

With over 500.000 employees, this sector employs 12% of all workers in the manufacturing 

sector. Moreover, the Italian textile industry exports represent 77,8% of total European exports. 

Being the textile sector so fundamental in Italy, I considered it could be interesting to focus on 

it on my thesis. 

The T&C sector is among the most exposed to the effects of the Covid-19 crisis, second only 

to the hospitality and tourism sectors. The production of textiles, clothing, leather, and 

accessories collapsed by 81% year-on-year in April 2020.  

The lockdown period has led to the blocking of all commercial activities of clothing and 

accessories stores, affecting around 300 thousand employees. E-commerce, by guaranteeing the 

existence of a minimum turnover for companies active in online sales, has been one of the main 

factors of resilience in the sector, but, at the same time, was one of the main risk factors for 

retail employment.  
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Then, an overview of Ratti S.p.A. was provided. Ratti S.p.A. was founded in 1945 by Antonio 

Ratti, who opened in Como his “Tessitura Serica Antonio Ratti”, for the creation and marketing 

of silk fabrics and accessories. 

In 1958 the Guanzate plant for the integrated cycle production process of silk was inaugurated, 

from yarn to finished product through the phases of weaving, dyeing, photoengraving, printing, 

and finishing. Guanzate is still the main production plant in Italy. Few years after opening new 

offices in Wall Street, the Company became listed on the Milan Stock Exchange in 1989. In the 

early 2000s, the Company opened new plants several countries, among which Tunisia and 

Romania. In 2010 Marzotto Textile Group and Faber Five Srl entered into the shareholding of 

Ratti S.p.A., holding its control.  

The harmonious growth of the Group has led Ratti over the years to become a member of 

Associations, networks and bodies involved in the promotion and development of the textile 

industry.  

The Group is today one of the major players in the production of printed, plain, yarn-dyed, and 

jacquard fabrics for clothing, ties, shirts, beachwear, and furnishings. It also creates men's and 

women's accessories such as ties, scarves, and foulards. 

I have focused on the Parent Company Ratti S.p.A., in order to make the data smoother, 

necessary to obtain more truthful results.  

To handle the inevitable impact caused by the spread of the Covid-19 virus, Ratti has 

implemented a form of resilience as a strategy to adapt and transform to the changed 

marketplace. This system has allowed the company to react in the face of the difficulties of the 

period, proposing new business models and transforming external stimuli into concrete action 

and new forms of innovation. Despite the strong reaction of the Company to the crisis, the drop 

in demand and the lockdown measures have inevitably impacted on performance.  

The Parent Company closed the 2020 financial year with revenues from the sales of goods and 

services of €71,1 million (-€45,0 million compared to 2019) and a gross margin (EBITDA) of 

€5,2 million (-€14,1 million compared to 2019). Profit before taxes and profit for the year 

amounted to €0,8 million.  

Following the significant restrictions on the market, the fall in sales affected all areas of 

business. With reference to the larger hubs, the Luxe Hub reported a drop in sales of €20,5 
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million (down 37,3%), whilst the Collections Hub reported a decrease of €14,7 million (down 

48,0%).  

Sales by geographical area showed a widespread reduction in all the main outlet markets. In 

particular, sales on the US market fell by €3,6 million (-54,1%) and revenues on the domestic 

market by 19,6 million euros (-39,3%).  

Finally, I conducted the cost analysis, in particular the allocation of fixed and variable costs, 

fundamental for the subsequent MATLAB implementation. The analysis was the following: 

▪ Cost of raw materials, ancillary materials, consumables, and goods for resale: this 

Financial Statement Line Item (FSLI) amounts to €18,9 million as of December 2020 

and to €35,9 million as of December 2019. The sharp decrease in costs is mainly due to 

the decline in sales volumes. I classified this FSLI in the variable costs group. 

▪ Cost of services: the total FSLI amounts to €16,5 million and €27,4 million in 2020 and 

2019, respectively. Costs of services decreased by €10,8 million compared to the 

previous year, primarily due to the decrease in the cost of external processing, 

commissions and travel and accommodation expenses. I classified the single items 

among the fixed or variable costs depending on their nature. 

▪ Costs for use of third-party assets: in 2020, it was equal to €868 million and in 2019 

to €979 million. I classified the entire FSLI, which includes royalties, rentals, and leases 

among the fixed costs. 

▪ Personnel costs: these expenses amount to €24,5 million and €31,6 million in 2020 and 

2019 respectively and they have been classified among the fixed costs. The decrease in 

payroll costs, amounting to €7,1 million, is primarily due to use of the redundancy fund 

and use of vacation days accrued during 2020. As of December 31, 2020, there were 34 

fewer employees than of December 31, 2019. The social and economic emergency 

situation created by the Covid-19 pandemic has obliged the Company to use the forms 

of wage supplementation adopted by the government.  

▪ Other operating expenses: these expenses amount to €1,8 million and €1,7 million in 

2020 and 2019, respectively. I classified the single items among the fixed or variable 

costs depending on their nature. 

▪ Amortization, depreciation, provisions, and write-downs: the total of these items 

amounts to €4,9 in 2020 and €4,3 in 2019. These expenses have been classified among 

the fixed costs. 
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On the basis of the classification provided, total fixed costs amounted to €38,8 million as of 

December 2020 and to €48,2 million as of December 2019, determining a decrease of €9,4 

million, mainly attributable to personnel reduction. 

Concerning variable expenses, in 2020 they were equal to €28,8 million, while in 2019 they 

amounted to €53,6 million. This deep difference is due to the decline in sales volume 

attributable to the sharp drop in demand. 

Then, I determined the variable cost needed to produce one meter of fabric in the following 

way: 

▪ I took from Amazon the price of fabric per meter: on average, fabrics are sold at €59,99 

for 6 yards (5,48 mt), thus €10,95 per meter. 

▪ The value of production resulted to be equal to €118 million as of 2019.  

▪ From simple calculations, it resulted that in 2019, 10,8 million meters of fabric were 

produced. 

▪ Dividing the total variable costs of 2019 by the meters of fabric produced, the variable 

cost to produce one single meter of fabric resulted being equal to €4,98. 

It should be noted that I considered financial statement data as of 2019, because the Company 

was not too significantly affected by the pandemic yet. Taking data from 2020 could have led 

to compromised results.  

Chapter III. MATLAB Implementation of the Regime-Switching Model on Ratti S.p.A. 

In Chapter III, analysis of results and graphs have been provided.  

Results showed that managers have actually a great responsibility over their businesses because 

they can control the main contagion parameters within their firm. It is on them that the decision-

making power regarding the optimal suspension-reactivation triggers resides. And it is upon 

them that these thresholds change depending on how they keep internal contagion under control. 

Their aim should be that of increasing the value of their firm, which is guaranteed by keeping 

operations open but at the same time by taking care of workers’ health, especially because their 

productivity is damaged when they are infected. This is not possible when security-measures 

are weak, and the safety of employees takes second place.  

After making my assumptions and considerations about the model parameters, I implemented 

the MATLAB codes that returned the regime-switching results as output. 
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I found out that it is optimal for the company the active regime to temporarily shut down 

operations when the fraction of infected workers reaches the threshold of 51%. Instead, when 

the company is already in the idle regime, it is optimal to resume operations when the fraction 

of infectives falls below 4%.  

In case uncertainty regarding the behaviour of the virus is removed (i.e., the volatility 

coefficient 𝑐 is equal to 0), the model becomes deterministic, and the verges become 5% and 

51% for reactivation and suspension, respectively. 

This examination suggests that companies are a little more cautious in settling the suspension-

reactivation decisions when they consider unpredictability, given that the business will not be 

resuming operations until the fraction of contagious individuals reaches one point below 5% 

(the reactivation verge in case volatility is removed). It is the real options that make enterprises 

act differently.  

I implemented the value function on MATLAB to get the value of the company depending on 

the regime it is currently in. Firstly, I noted that the firm’s value decreases as the fraction of 

infectives increases, ascertaining the conclusion that the value of the firm is compromised by 

the presence of infected workers. Moreover, I noticed that the value of the firm in the active 

regime becomes lower than the value in the inactive regime as the fraction of infectives gets 

higher, showing that as the fraction of infectives increases, firms would be better off when 

closed. 

Then, I analysed the behaviour of the company’s value as the internal infection rate 𝛼 changes. 

Results showed that the value function has a greater value when the internal infection rate 

decreases.  

The opposite effect was verified when considering an increase in the internal recovery rate 𝛾𝑟1: 

as the internal recovery rate increases, so does the value of the firm. 

Finally, I assumed the external infection rate 𝛽 to take values equal to 0,179, 0,107 and 0,036 

which correspond to reproduction numbers equal to 2,5, 1,5 and 0,5 respectively. Not 

surprisingly, the value of the enterprise increases as the external infection rate decreases. 

Actually, this parameter cannot be directly controlled by managers, but assuming that the 

government imposes a partial lockdown leaving firms open, the external infection rate would 

have an impact on the internal one. The impact resulted in a decreasing value of the firm if the 

optimal policy is not implemented. 
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These three effects certified that managers have actually a great responsibility over their 

business, because the value of the firm greatly depends on how they manage to keep the disease 

parameters under control and on how they correctly manage the suspension-reactivation 

strategies.  

All of these considerations have an economic sense when the firm actually values more when 

it implements optimal regimes with respect to the case it does not contemplate temporary 

shutdowns and reopening, that is, assuming the value of the firm only equals the traditional 

NPV. 

Through a simple MATLAB integration, I found out that the value of the firm resulted to be 

equal to 116 thousand euros in that case. Instead, when taking into account optimal regimes, 

the value was oscillating between €15 and 5 million, depending on the fraction of infectives. 

This finding corroborates the theory of real option valuation which states that the value of the 

firm is usually underestimated with the NPV approach, but also validates the basic idea of my 

thesis: implementing optimal switching strategies not only safeguards operativity and 

employees, but also contributes to the maximization of the firm’s value.  

Conclusions and Discussion 

Extensive studies concerning human epidemics have been developed, but it is evident that very 

few of them scrutinize epidemic risks for private companies.  

Epidemic models have shown fundamental contribution in dispensing appreciations regarding 

the effectiveness of safety measures, such as lockdowns, immunization campaigns, or periodic 

screening. The optimal rules for the implementation of these possible strategies are given by 

modelling. 

In this work, I developed a two-stage model to examine how enterprises can deal with the 

threats associated to pandemics which can seriously harm their workforce. Within the first stage 

of the model, I showed a simple regime-dependent epidemic model allowing for external 

contagion and deaths from the virus. 

In the second stage I proposed an optimal suspension-reactivation strategy, applied to a real-

world firm.  

This two-stage model provides realistic insights for large firms to set up verges for activating 

and temporarily shutting down operations in the events of pandemics.  
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Dynamic programming has been discussed in this thesis and implemented to find optimal 

switching strategies obtained by real-world parameters. The firm should mothball operations 

when the fraction of infected workers rises above the suspension threshold and reactivate 

operations when the portion of infected workers falls below the reactivation threshold. These 

triggers for mothballing and reactivation are company specific because they rely on many 

factors which characterise each specific firm, such as the number of employees, the fixed or 

variable costs.  

I decided to analyse a manufacturing company because its business cannot be simply transferred 

into smart working, as it could work for other sectors, and I thought the model could fit better 

in this sense. However, the economic rationale can be applied everywhere. 

Final results showed that it is optimal for the active regime to suspend operations when the 

fraction of contagions reaches the threshold of 51%, while when the company is already in the 

inactive regime, it is optimal to reactivate operations when the fraction of infectives drops 

below 4%, thus leading to a mothballing threshold equal to 51% and a reactivation threshold 

equal to 4%. Further analysis was developed by observing the behaviour of regime-switching 

thresholds as certain parameters changed. 

Changing the model from stochastic to deterministic (thus assigning the volatility coefficient a 

value equal to 0), resulted in the mothballing threshold to remain unchanged to 51% but the 

reactivation threshold to increase from 4% to 5%. This shows that when there is no uncertainty 

regarding the dynamics of the virus, firms are less conservative in making the suspension-

reactivation strategy, because businesses will be put back in operation with a slightly higher 

fraction of infectives. 

Then, I analysed the behaviour of thresholds by changing switching costs and some basic 

parameters: the external infection rate, the internal infection rate, and the recovery rate in the 

active regime. 

Concerning the changing switching costs, results showed that by increasing one of the two costs 

at a time, the reactivation threshold decreases, and the mothballing threshold increases, meaning 

that managers will be more reluctant in the decision of temporarily shutting down the business 

when the suspension cost increases, and will be less willing to reopen when the reactivation 

cost increases. This conclusion is quite straight and in line with my expectations. 
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For what concerns the effect of diseases control strategies, results showed that with increasing 

both internal and external infection rates at a time, both thresholds were decreasing, meaning 

that firms will are more prudent and wait for less workers to get infected before both temporarily 

suspending and reopening operations. 

The opposite effect was given by changing the recovery rate in the active regime, because both 

thresholds increased with the recovery rate. This is quite intuitive, because as the internal 

recovery rate increases, managers will be less prudent and wait for more workers to get infected 

before suspending the business and will reopen with more infected workers. 

Final analysis was made on the actual firm value maximization. Results showed that the value 

of the firm is positively impacted by implementing correct disease control strategies aiming at 

reducing infection rate or increasing recovery rate.  

 

Concerning the value of the firm with respect to volatility, results clearly showed that when 

there is future uncertainty, the existence of real options makes firms more valuable. At the same 

time, firms are more conservative about the decisions of suspension and reactivation.  

These strategies aim at controlling the epidemic, but at the same time they increase the firm’s 

value. Disease control and value maximization can be obtained simultaneously following this 

model. 

Firms are motivated by the goal of profit maximization. An infected employee not only has 

lower productivity, but also transmits the virus to other people in the company. Firms need to 

implement different strategies to decrease internal infection rates and increase the recovery rate. 

Based on above findings, I could conclude that managers have actually a great responsibility 

over their businesses because they can control the main contagion parameters within their firm. 

It is on them that the decision-making power regarding the optimal suspension-reactivation 

triggers resides. And it is upon them that these thresholds change depending on how they keep 

internal contagion under control. 

Their aim should be that of increasing the value of their firm, but this is not possible when 

security-measures are weak, and the safety of employees takes second place. 

 

 


