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Introduction

The Binomial Option Pricing Model was first proposed by William Sharpe in
1978 [11] and then formalized in its most notable version by Cox, Ross and Ruben-
stein in 1979 [2]. It provides a simple framework to model stock price dynamics and
to fairly price options and derivatives. Historically, this was not the first attempt
to option valuation, but it offers indeed the simplest framework to do so. The first
model that triggered the development of the binomial approach to option pricing
was, in fact, the diffusion model underlying the famous Black-Scholes formula,
which was published in 1973 [1]. Black and Scholes developed this formula on the
principle that if options are correctly priced in the market, then it should not be
possible to make profits by creating portfolios of long and short positions in options
and their underlying stocks. The pricing model developed by Black and Sholes was
undoubtedly seen as an innovation for the theory of finance, but it also caused a
shock amongst the economists at the time of its introduction. This was due to the
model involving a mathematical background which seemed to have appeared as
too academic for the time. In fact, although the language of finance now widely
relies on mathematics and stochastic calculus, management of risk in a quantifiable
manner being the basis of modern theory and quantitative finance, not much time
had passed since Markowitz’s 1952 Portfolio Selection [12] had laid the ground-
work for the mathematical theory of finance. This motivated various economists
to search for simpler modeling frameworks that still preserved the economically
relevant properties presented by the Black-Scholes formula. Among those models,
we find the Cox, Ross and Rubenstein Binomial Asset Pricing Model. The main
economic idea that this model preserves from Black-Scholes is that if an economy
incorporating three securities can only attain two future states, one such security
will be redundant; that is, each single security can be replicated by the other two,
a fact later referred to as market completeness. One of the semplifications of the
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Binomial Model is that it uses a discrete-time binomial tree framework to model
the dynamics of the underlying stock price. Under special conditions, the bino-
mial tree converges weakly to the Black-Scholes model in continuous time limit.
The Arbitrage Pricing Theory [7] lies at the basis of both the Binomial Model
and the Black-Scholes formula. It was developed as an alternative to the mean-
variance Capital Asset Pricing Model [4] and it led to the proof of the existence of
a risk-neutral measure, which is the other fundamental concept that underlies the
Binomial Option Pricing Model. Indeed, the concept of risk-neutral probabilities
underlies the whole area of asset pricing.

In general, the value of a derivative security is established by estimating the
probability that its price overcomes a pre-determined level (for example, its initial
price) at a future date. Most pricing models aim at calculating the fair price of
a derivative security contract at the time of its stipulation by calculating the dis-
counted expected value of its future pay-offs. The fair price of a derivative security
is defined as its theoretical value obtained through the procedure of “subordinate
pricing”, that is, through the application of the no-arbitrage principle among the
derivative security and its replicating portfolio. This theoretical price, however,
is obtained by making three stringent assumptions concerning financial markets,
which are assumed to be

1. competitive, meaning that agents in the market are assumed to be price-
takers which maximize their utility and all are assumed to have the same
information;

2. frictionless, that is, financial markets are assumed to be continuous, absent
of transaction costs, with no limit to short-selling and without any presence
of insolvency risk;

3. arbitrage free, that is, financial markets do not entail the possibility to make
transactions which involve no negative cash flow at any probabilistic or tem-
poral state and a positive cash flow in at least one state. In simple terms, it
is impossible to make riskless profits.

The fundamental idea that underlies most derivative pricing models is that, in
order to calculate the fair price of a derivative security, it is necessary to estimate
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the distribution of the future prices of the derivative, which are themselves a func-
tion of the prices of the underlying asset. By consequence, it is also necessary to
estimate a law according to which the former vary. The Binomial Asset Pricing
Model simply assumes them to increase or decrease by some u and d factors, re-
spectively. Of course, there are also models which formulate this law using more
advanced mathematical processes but, as we previously mentioned, the Binomial
Model only focuses on mantaining the economic properties of such models, with-
out engaging in complex mathematical procedures. However, it is important to
highlight that all those models, including the Binomial one, calculate the price
of the derivative security in a risk-neutral world, that is, a world in which the
no-arbitrage assumption holds and the derivative security can be replicated by
combining long and short positions in the underlying asset and in a risk-free one.
This assumption justifies the usage of risk-neutral probabilities to price derivative
securities. These risk-neutral probabilities are different from the real world ones
and in no way should they be intepreted as probabilities which can be used to pre-
dict future prices. Indeed, risk-neutral probabilities are a pricing tool which only
derives from the estimate of future possible values of the derivative security which
result to be compatible with current market data. In other words, the information
contained in the probabilistic scenarios shown by these models only constitute ex-
ante projections of future prices of the derivative security which are coherent with
market conditions and with the derivative security structure.
In order to construct probabilistic scenarios able to provide reliable information,
one should use real world probabilities. However, doing so would require mak-
ing assumptions about the risk premium that investors inevitably require to hold
risky assets. This risk premium varies across investors, as it is based on personal
preferences and risk-attitude. This means that every conclusion stemming from
probabilistic scenarios which employ real world probabilities would be deemed
as arbitrary and heavily dependent on hypotheses about investors’ risk-aversion.
Eventually, despite the stringent and nearly irrealistic assumptions on which the
risk-neutral pricing method relies, it is still conceived as the most efficient one to
price derivatives and it is still useful today, mostly when it comes to activities
which have a risk-management scope.
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This thesis presents the Binomial Asset Pricing Model and studies its properties
through probabilistic instruments. Chapter 1, The No-Arbitrage Binomial Asset
Pricing Model, introduces the concept of derivative securities and stock options to
then present the no arbitrage method of option pricing in a binomial model. It
mainly focuses on pricing European options, that is, path independent derivatives
which can only be exercised at maturity. Chapter 2, Martingales, and Chapter
3, Markov Processes, provide definitions of two processes that lie at the basis of
probability theory and that are used in the Binomial model to derive the fair
price of a derivative security. Chapter 4, General American Derivatives, is made
of four different sections. It begins with the application of the Pricing Algorithm
developed in the previous chapters to path independent American derivatives,
which are characterized by the feature of early exercise. In the last section, we
develop a method to understand which is the optimal time to exercise a general
American derivative. Before doing so, however, we need to introduce the concept
of stopping times, which will be of fundamental importance to understand the
algorithm developed in the last section. Finally, Chapter 5, MATLAB codes,
contains two algorithms which can be used, respectively, to derive the price of
both a European Call-Put Option and a Path-Independent American Put Option.
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Chapter 1

The No-Arbitrage Binomial Asset
Pricing Model

1.1 Stock Options

Stock options are contracts which give their holder the right, but not the obliga-
tion, to buy or sell a stock at a pre-determined price before a specified expiration
date. Any option is a derivative security, that is a product whose value depends on
the price movements of one or more underlying assets which can be stocks, bonds,
commodities, currencies, indices or interest rates.
Options are traded both on exchanges and on over-the-counter markets for dif-
ferent reasons. They can be used, for example, as hedging instruments against
their underlying asset. Indeed, one could set up a strategy such that a loss in one
investment can be offset by a gain in a comparable derivative. Options can also be
used to generate income, to speculate on the future price movements of an asset
and, when given to traders as part of their salary, as an incentive to maximize the
value of a particular underlying stock.

A call option gives its holder the right, but not the obligation, to buy a
share of the underlying stock at a pre-determined price (the strike price) before
the contract expires (expiration date or maturity), while a put option gives the
holder the right to sell a share of the underlying stock at the strike price, still
before the expiration date of the contract.
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As for every contract, there are two sides to every option. The investor who buys
the option is the one who takes a long position while, on the other side, the investor
who takes a short position is the one who either sells or writes the option. This
means that there are four types of option positions:

1. A long position in a call option

2. A long position in a put option

3. A short position in a call option

4. A short position in a put option

For convenience, it is useful to refer to the option payoff as to the one received
by the purchaser of the option in case of its exercise.
Define Si as the stock price at time i and K as the strike price. The payoff of a call
option will be given by max{0;Si −K}, while the payoff of a put option will be
given by max{0;K − Si}. This means that an investor will purchase a call option
if he believes that the price of the underlying stock is going to rise while, on the
other hand, he will purchase a put option if he believes it is going to fall.
Options can be either European or American. The main difference between the
two is that a European option can only be exercised on the expiration date of
the contract, while American Options can be exercised at any time up to the
expiration date.

The value of an option depends on different variables such as the current stock
price, the volatility of the stock, the strike price, the time to expiration and the
risk-free interest rate at which investors can borrow or lend. According to the
Option Pricing Theory, the primary goal of option pricing is to calculate the
probability that an option will be exercised, or be in-the-money, at expiration and
assign a monetary value to it. Variables such as the price of the stock and time to
expiration are typically employed to establish a fair value of the option through
the use of probabilistic models. Indeed, the option being European or American
is also taken into account to establish its price.
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1.2 The Multiperiod Binomial Model
The Binomial Asset-Pricing Model is a risk-neutral method for valuing path-

dependent options like, for example, American options. By path dependent, we
mean that the value of the option depends on the previous movements in the un-
derlying stock price. Such a model is a popular tool for stock options pricing and it
is used by investors to evaluate the right to buy or sell at specific prices over time.
The Multiperiod Binomial Model can be seen also as a basis to understand the
Black-Scholes Model, one of the most famous instruments used for option pricing.

The Binomial Asset-Pricing model can be represented through a diagram which
illustrates the path followed by the underlying stock price. We define the beginning
of the period as time zero and we assume that the stock will rise or fall in the
subsequent periods according, respectively, to some up factor u and to some
down factor d. We also assume that in the market there is a money market
asset with a constant risk-free interest rate r, which is the same for borrowing and
lending. This means that 1$ invested in this asset will yield (1 + r)n $ in period n
and that, for 1$ borrowed, (1 + r)n $ must be returned.

There is one fundamental assumption that must be made on these parameters,
the so called no-arbitrage condition. In general, an arbitrage opportunity
arises in a market if there is the possibility, at zero cost, to make a profit with
positive probability without incurring in any risk of a loss. A mathematical model
which admits arbitrage cannot be used for analysis as it would not be realistic. In
fact, when markets are efficient, under the assumption that there is at least one
intelligent investor, any arbitrage opportunity is soon discovered and eliminated
through trading. If some asset is over-valued due to some form of mispricing,
demand for that asset will decrease until its price decreases to reflect the fair value
of the asset. If the asset is undervalued, the demand will increase and the outcome
will be the same.

In this context the no-arbitrage condition is given by

u < 1 + r < d . (1.2.1)

In fact, in any other case, there would be an arbitrage opportunity in the mar-
ket. To show it, assume 1 + r < d < u. This implies that in both possible states
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of the world, the return offered by the stock would be greater than the one offered
by the money market asset. In this case, an investor could set up a portfolio in
which he shorts the money market asset to buy a position in the stock. After
one period, his portfolio would have positive value, regardless of the state of the
world, without having to incur in any cost at time zero. A similar strategy can
be employed in the case in which d < u < 1 + r which would still result in the
making of riskless profit. Thus, the only way to exclude arbitrage in the model
is to construct it so that equation (1.2.1) holds. It is important to highlight that
the inequalities are strict. Otherwise, there would still be arbitrage opportunities.
Indeed, at the end of the period the portfolio would end up having zero value in
one state of the world and positive value in the other.

Since there are only two possible states of the world, the stock price at any
time can be seen as dependent on the outcome of a coin toss. The outcome will
not be known in advance and, for this reason, it is regarded as random, as it is the
result of a random experiment.
We denote by S0 the stock price at time zero. At any time i > 0, we denote by
Si(ω1, . . . , ωi) the stock price at time i, where ωj ∈ {H,T} for j = 1, . . . , i with H
and T standing for ‘head’ and ‘tail’, respectively.
Denote by p ∈ (0, 1) the probability of head and by q = 1 − p ∈ (0, 1) the
probability of tail. The model in case of two periods is illustrated in Figure 1.1
through a binomial tree, which is a graphical representation of the possible values
that the stock may take at different nodes, which represent different time periods.

The fundamental aim of option pricing is to find how much the option is worth
at time zero before knowing whether the coin toss results in a head or a tail. In
general, for any period n, 2n outcomes are possible, even if not all of them result
in different stock prices. At time 3, for example, the stock price would be one of
the eight following outcomes:

S3(HHH) = u3S0 ,

S3(HHT ) = S3(HTH) = S3(THH) = u2dS0 ,

S3(HTT ) = S3(THT ) = S3(TTH) = ud2S0 ,

S3(TTT ) = d3S0 .
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Fig. 1.1: General Binomial Model for two periods.

One of the main approaches to option pricing is the Arbitrage Pricing Theory,
which consists in replicating the option by trading in the stock and money markets.
This approach is actually based on the Law of One Price: if two investments
yield the same return, then they must be priced the same, otherwise arbitrage
opportunities would exist and the market would not be efficient.

As previously highlighted, an option is a particular type of a derivative se-
curity, which is a security that pays some amount Vi(ω1, . . . , ωi) at time i if the
first i coin tosses are ω1, . . . , ωi with ωj ∈ {H,T} for j = 1, . . . , i. For example,
the payoff of a European Call Option which expires at time t = 1 is given by
V1 = (S1 −K)+ and its result depends on the evolution of the price of the under-
lying stock.

The replicating portfolio technique is a procedure used to determine the price
V0 at time zero of a derivative security in order to replicate the derivative security
at future periods by trading in the stock and the money market. We will now
show how this technique works.

Let us use the replicating portfolio technique to determine the price V0 at time
zero of a derivative security.
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Suppose that an investor begins with wealth X0 and buys ∆0 shares of stock at
time zero, leaving him with a position of X0 −∆0.
The value of his portfolio of stock and money market account at time one will be

X1 = ∆0S1 + (1 + r)(X0 −∆0S0) = (1 + r)X0 + ∆0(S1 − (1 + r)S0) . (1.2.2)

In fact, at time one, the portion ∆0 of stock bought will be worth S1 while the
remaining wealth invested in the money market will yield (1 + r)(X0 −∆0S0).
A portfolio which perfectly agrees with the option value at time one for every
possible state of the world has to satisfy X1(H) = V1(H) and X1(T ) = V1(T ). So
X0 and ∆0 must be chosen accordingly to these conditions. This yields to

X0 + ∆0

( 1
1 + r

S1 − S0

)
= 1

1 + r
V1 , (1.2.3)

which is equivalent to (1.2.2) discounted back to time zero. This equation is
actually a system of two different equations since V1 and S1 depend on the first
coin toss and thus differ according to the two possible states of the world, that is


X0 + ∆0

(
1

1+rS1(H)− S0
)

= 1
1+rV1(H) ,

X0 + ∆0
(

1
1+rS1(T )− S0

)
= 1

1+rV1(T ) .

It can be proved that the solution of this system is

X0 = 1
1 + r

[p̃S1(H) + q̃S1(T )] , (1.2.4)

where
p̃ = 1 + r − d

u− d
, q̃ = u− 1− r

u− d
= 1− p̃ . (1.2.5)

The values p̃ and q̃ are called the risk neutral probabilities (of H and T ,
respectively). Hence the previous equation can be rewritten as X0 = 1

1+r Ẽ[S1],
that is the expected value of S1 under the risk-neutral probabilities discounted
back to time zero.

If the system is solved for ∆0, the result is the delta hedging formula

∆0 = V1(H)− V1(T )
S1(H)− S1(T ) , (1.2.6)
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that is, the portion of shares to buy at time zero to perfectly replicate (i.e. hedge)
the option at time one.

In conclusion, if an agent begins with wealth given by (1.2.4) and at time zero
buys ∆0 shares of stock, given by (1.2.6), then at time one, if the coin results in
head, the agent portfolio will be worth V1(H), while if the coin results in tail, it
will be worth V1(T ). In this way, the agent has hedged a position in the
derivative security, meaning that his portfolio at time one has the same value
of the option. Consequently, according to the Law of One Price, it will also have
the same price at any time, so that no arbitrage is introduced when the derivative
security is added to the market comprising the stock and money market account.
Indeed, the derivative security that pays V1 at time one should be priced at

V0 = 1
1 + r

[p̃S1(H) + q̃S1(T )] = 1
1 + r

Ẽ[S1] . (1.2.7)

As described before, p̃ and q̃ given by (1.2.5) are the risk neutral probabilities
but they do not coincide with the actual probabilities, p and q introduced at
the beginning. Under the risk neutral probabilities, the average growth rate of
the stock is equal to the rate of an investment in the money market, meaning
that any investor would be indifferent bewteen investing in the stock market or in
the money market. However, this is typically not the case since, under the actual
probabilities, the average rate of growth of the stock is strictly greater than the
rate of an investment in the money market (that is, r). Specifically, while under p̃
and q̃

S0 = 1
1 + r

Ẽ[S1] = 1
1 + r

[p̃S1(H) + q̃S1(T )] , (1.2.8)

under p and q we have

S0 <
1

1 + r
E[S1] = 1

1 + r
[p̃S1(H) + q̃S1(T )] . (1.2.9)

If p̃ and q̃ were equal to the actual probabilities, investors would be neutral
about risk, meaning that they would not require any compensation for assuming
it, nor would they be willing to pay an extra for it. Since this is not the case, p̃
and q̃ cannot be the actual probabilities. The risk-neutral probabilities are values
which naturally stem from solving the system of equations implied by (1.2.3) and
can be regarded as a pricing tool needed to construct a portfolio whose value at
time one is V1. Indeed by choosing X0 as in (1.2.4) and ∆0 as in (1.2.6), we get the
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identity (1.2.7) for the value of the portfolio V1 also known as the risk-neutral
pricing formula. A direct consequence of this formula is that the mean rate of
growth of the value of the portfolio is the rate of growth of the money-market
investment. This can only be true under the risk-neutral probabilities. Note also
that, since S1(H) = uS0, S1(T ) = dS0 and q̃ = 1 − p̃, there exists a unique value
p̃ (and hence a unique q̃) for which equation (1.2.8) holds. This tells us that the
risk-neutral probabilities in the Multiperiod Binomial Model are unique.

The process of replication, which has now been applied only to one period,
can be generalized to multiple ones. Let us use the same replication process as
before to find the no-arbitrage price of this portfolio. Suppose an investor starts
by selling the option at time zero for V0 dollars, which will be his beginning wealth
used to set up the hedging portfolio. He wants to buy ∆0 shares of stock at time
zero. To finance it, he borrows ∆0S0 − V0 from the money market.
At time one, the value of his portfolio of stock and money market account will be

X1 = ∆0S1 + (1 + r)(V0 −∆0S0) . (1.2.10)

As with equation (1.2.3), since X1 depends on the first coin toss, this equation
actually implies X1(H) = ∆0S1(H) + (1 + r)(V0 −∆0S0) ,

X1(T ) = ∆0S1(T ) + (1 + r)(V0 −∆0S0) .
(1.2.11)

At time one, the first coin toss has already happened and the investor knows
its result. Suppose that, with this information, he decides to readjust his hedge by
holding ∆1 shares of stock. He then invests the remainder in the money market.
At time two, his portfolio will be valued

X2 = ∆1S2 + (1 + r)(X1 −∆1S1) (1.2.12)

which will have to be equal to V2 to hedge the option. This equation now implies a
system of four equations since V2 and S2 depend on the first two toin tosses which
can result in 22 = 4 different outcomes. Indeed we have

V2(H,H) = ∆1(H)S2(H,H) + (1 + r)(X1(H)−∆1(H)S1(H)) (1.2.13)

V2(H,T ) = ∆1(H)S2(H,T ) + (1 + r)(X1(H)−∆1(H)S1(H)) (1.2.14)
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V2(T,H) = ∆1(T )S2(T,H) + (1 + r)(X1(T )−∆1(T )S1(T )) (1.2.15)

V2(T, T ) = ∆1(T )S2(T, T ) + (1 + r)(X1(T )−∆1(T )S1(T )) (1.2.16)

Solving this four equations for ∆1(T ) or for ∆1(H) with the two implied by
equation (1.2.10) will give rise to two different delta-hedging formulas which indi-
cate the portion of shares to buy at time one. The two equations correspond to
the two possible outcomes of the first coin toss.

∆1(T ) = V1(T,H)− V1(T, T )
S1(T,H)− S1(T, T ) , (1.2.17)

∆1(H) = V1(H,H)− V1(H,T )
S1(H,H)− S1(H,T ) , (1.2.18)

Substituting (1.2.17) into either (1.2.13) or (1.2.14) and (1.2.18) into either
(1.2.15) or (1.2.16) will result in equations

X1(H) = 1
1 + r

[p̃V2(H,H) + q̃V2(H,T )] = 1
1 + r

Ẽ[V2 |ω1 = H] (1.2.19)

and

X1(T ) = 1
1 + r

[p̃V2(T,H) + q̃V2(T, T )] = 1
1 + r

Ẽ[V2 |ω1 = T ] . (1.2.20)

These two equations give, respectively, the value that the replicating portfolio
should have if the stock goes up or down between time zero and time one. Since
these values have to be equal to the price of the option at time one, X1(H), given
in equation (1.2.19) has to be the price of the option at time one if the first coin
results in head. The same applies for X1(T ) in equation (1.2.20) that is the price
of the option at time one if the first coin results in tail.
If we plug the values X1(H) = V1(H) and X1(T ) = V1(T ) into the two equations
in (1.2.11) and then solve for ∆0 and V0, the resulting equation will be the same
as (1.2.6) and (1.2.7).

To summarize, if an agent begins with any initial wealth X0 and specifies values
for ∆0, ∆1(H) and ∆1(T ), then he can compute the value of the portfolio that
holds such number of shares of stock and, if necessary, finance these by borrowing
or investing in the money market.
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The value of this portfolio is defined recursively, beginning with X0, through the
wealth equation

Xn+1 = ∆nSn+1 + (1 + r)(Xn −∆nSn), (1.2.21)

This equation defines random variables whose values are not known until the
outcomes of the coin tossing are revealed. However, already at time zero, equation
(1.2.21) allows to compute the value of the portfolio at every subsequent time
under every coin-toss scenario.
The process for a multiperiod binomial model is given in the following theorem.

Theorem 1.2.1. (Replication in the multiperiod binomial model) Con-
sider an N-period binomial asset pricing model with 0 < d < 1 + r < u and
with

p̃ = 1 + r − d
u− d

, q̃ = 1− p̃ = u− 1− r
u− d

. (1.2.22)

Let VN be a random variable (a derivative security paying off at time N) depending
on the first N coin tosses ω1, ω2 . . . , ωN . Define recursively backward in time the
sequence of random variables VN−1, VN−2 . . . , V0 by

Vn(ω1, ω2, . . . , ωn) = 1
1 + r

[p̃Vn+1(ω1, ω2, . . . , ωn, H) + q̃Vn+1(ω1, ω2, . . . , ωn, T )] ,
(1.2.23)

so that Vn depends on the first n coin tosses ω1, ω2, . . . , ωn where n ranges between
N − 1 and 0. Next define

∆n(ω1, ω2, . . . , ωn) = Vn+1(ω1, ω2, . . . , ωn, H)− Vn+1(ω1, ω2, . . . , ωn, T )
Sn+1(ω1, ω2, . . . , ωn, H)− Sn+1(ω1, ω2, . . . , ωn, T ) , (1.2.24)

where again n ranges between 0 and N − 1. Set X0 = V0 and define recursively
forward in time the portfolio values X1, X2, . . . , XN by (1.2.21). Then

XN(ω1, ω2, . . . , ωN) = VN(ω1, ω2, . . . , ωN) ∀ω1, ω2, . . . , ωN . (1.2.25)

Definition 1.2.1. For n = 1, 2, . . . , N , the random variable Vn(ω1, . . . , ωn) in
Theorem 1.1 is defined as the price of the derivative security at time n if the
outcome of the first n tosses are ω1, . . . , ωn. The price of the derivative security at
time zero is defined to be V0
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Proof of Theorem 1.2.1. The aim is to prove by forward induction on n that

XN(ω1, ω2, . . . , ωN) = VN(ω1, ω2, . . . , ωN) ∀ω1, ω2, . . . , ωN ,

where n ranges between 0 and N . When n = 0, X0 = V0 is true by definition. We
have to prove it for n = N .
Assume that (1.2.25) holds for some value n < N , we want to show that it also
holds for n+ 1.
Let ω1, ω2, . . . , ωn be fixed and assume that (1.2.25) holds for ω1, ω2, . . . , ωn. For
the rest of the proof, when it is not misleading, we will omit the dependence of all
the quantities on ω1, ω2, . . . , ωn. First, we consider the case where ωn+1 = H and
we use (1.2.21) to compute Xn+1(H). Since Sn+1 = uSn when ωn+1 = H, we get

Xn+1(H) = ∆nuSn + (1 + r)(Xn −∆nSn) . (1.2.26)

Moreover, from (1.2.24), we get

∆n = Vn+1(H)− Vn+1(T )
(u− d)Sn

. (1.2.27)

Note that equation (1.2.26) can be restated as

Xn+1(H) = (1 + r)Xn + ∆nSn(u− (1 + r))

and hence, by (1.2.27) and by the identity Xn = Vn, we get

Xn+1(H) = (1 + r)Vn + (Vn+1(H)− Vn+1(T ))(u− (1 + r))
u− d

. (1.2.28)

Recalling that q̃ = u−1−r
u−d and by (1.2.23), (1.2.28) becomes

Xn+1(H) = p̃Vn+1(H) + q̃Vn+1(T ) + q̃Vn+1(H)− q̃Vn+1(T ) = Vn+1(H) , (1.2.29)

which, for completeness, can be restated as

Xn+1(H) = Vn+1(H).

A similar argument shows that

Xn+1(T ) = Vn+1(T ) .

Consequently, regardless of whether ωn+1 = H or ωn+1 = T , we have proved

Xn+1(ω1, ω2, . . . , ωn, ωn+1) = Vn+1(ω1, ω2, . . . , ωn, ωn+1)

Since ω1, ω2, . . . , ωn, ωn+1 is arbitrary, the induction step is complete.
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Theorem 1.2.1 applies both to options whose payoff depends on the final stock
price and to path-dependent options, whose price depends on the previous price
movements.

The multiperiod model of this section is said to be complete since every deriva-
tive security can be replicated by trading in the underlying stock and the money
market. The completeness of the model stems from the First and the Second Fun-
damental Theorem of Asset Pricing. Indeed the First Fundamental Theorem
of Asset Pricing ensures that in an arbitrage free market model there exists a
risk neutral probability, while the Second Fundamental Theorem of Asset
Pricing states that if a market model is arbitrage free, then it is complete if and
only if the risk neutral probability p̃ is unique. We have already discussed the
uniqueness of p̃. In the next chapter we will see that, if d < 1 + r < u, the multi-
period binomial model is a martingale model.

Example 1. To practically illustrate how this process works, let us try to find the
price at time zero of a European Call Option with strike price K = 8. Let S0 = 10
with u = 1.2 and d = 0.8, so that the price of the stock will either rise or fall by
20%. Moreover, assume that r = 0.1.

Fig. 1.2: Example of a two-period model.
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Fig. 1.3: Call option payoff.

First, we find the risk-neutral probabilities p̃ and q̃ :

p̃ = 1 + r − d
u− d

= 1.1− 0.8
1.2− 0.8 = 0.75 , q̃ = (1− p̃) = 1− 0.75 = 0.25 .

The values that V2 = max{0;S2 −K} can assume are computed in Figure 1.3,
while the possible values of S2 and S1 are computed in Figure 1.2. We calculate
the option value at time one according to the risk-neutral pricing formula. Notice
that, since the model is for two periods, this step will imply an equation for each
state of the world

V1(T ) = 1
1 + r

[p̃V2(T,H) + q̃V2(T, T )] = 1
1.1[0.75 · 1.6 + 0.25 · 0] = 1.09,

V1(H) = 1
1 + r

[p̃V2(H,H) + q̃V2(H,T )] = 1
1.1[0.75 · 0.64 + 0.25 · 1.6] = 4.73.

Finally, compute the value of the option at time zero:

V0 = 1
1 + r

[p̃V1(H) + q̃V1(T )] = 1
1.1[0.75 · 4.73 + 0.25 · 1.09] = 3.47.
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Chapter 2

Martingales

In the previous chapter we have introduced the binomial model in which the
randomness is given by the outcomes of n independent and identically distributed
coin tosses in which p and q = 1 − p are respectively the probabilities of getting
head (H for short) and tail (T for short). In this chapter we will speak about
martingales and related properties in this framework. To this aim, we define the
probability space (Ω,P), where Ω is the set of all the possible outcomes for the
sequence of the n coin tosses and P is the probability measure that, at each coin
toss, gives probability p to the outcome H and q to the outcome T . More precisely,
denoting by ωi the outcome of the i-th coin toss, we define

Ω = {ω = (ω1, . . . , ωn) |ωi ∈ {H,T} for i = 1, . . . , n} ,

P(ωi = H) = p , P(ωi = T ) = 1− p = q .

We will refer to P as the actual probability measure.
In the same space Ω we will also work with another probability measure P̃,

that we call risk neutral probability measure, defined as

P̃(ωi = H) = p̃ , P̃(ωi = T ) = q̃ ,

where q̃ = 1 − p̃ and p̃ are defined as in (1.2.5). Such probability measures have
been already introduced in the previous chapter, but now we will give a more de-
tailed analysis.
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The risk neutral probabilities are those for which, at every time n and for every
coin toss sequence ω1, . . . , ωn, the following equation holds

Sn(ω1, . . . , ωn) = 1
1 + r

[p̃Sn+1 (ω1, . . . , ωnH) + q̃Sn+1 (ω1, . . . , ωnT )] , (2.0.1)

that is, the stock price at time n is the discounted weighted average of the two
possible stock prices at time n+1, where p̃ and q̃ are the weights used in averaging.
To simplify notation, equation (2.0.1) can be restated as

Sn = 1
1 + r

Ẽn [Sn+1] . (2.0.2)

Ẽn [Sn+1] is defined as the conditional expectation of Sn+1 based on the information
at time n, which can be regarded as an estimate of the value of Sn+1 based on the
knowledge of the first n coin tosses.
By dividing both sides of (2.0.2) by (1 + r)n, we get the equation1

Sn
(1 + r)n = Ẽn

[
Sn+1

(1 + r)n+1

]
. (2.0.3)

Equation (2.0.3) tells us that, under the risk-neutral measure P̃, based on the
information at time n, the average value of the discounted stock price at time n+1
is the discounted stock price at time n. In other words, if we are at time n and
we only know how the stock price has moved up to today’s time, the value of the
stock price that we will observe tomorrow (i.e., time n + 1) will be on average
equal to the price of today. This is true because the average of the two possible
future stock prices, Sn+1 (ω1, . . . , ωn, H) and Sn+1 (ω1, . . . , ωn, T ) , is weighted by
the risk-neutral probabilities, which are indeed chosen to enforce this fact.

Processes satisfying this property are called martingales and their formal
definition in this context is given below.

Definition 2.0.1. Consider the binomial asset-pricing model. Let M0 be a con-
stant and ,M1, . . . ,Mn be a sequence of random variables, with each Mn depending
only on the first n coin tosses. Such a sequence of random variables is called an
adapted stochastic process.

1For the purpose of this model, the term (1 + r)n+1 could be included either outside or inside
of the conditional expectation since interest rates are constant by assumption.
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(i) If
Mn = En[Mn+1] , n = 0, 1 . . . N − 1 , (2.0.4)

we say this process is a martingale.

(ii) If
Mn ≤ En[Mn+1] , n = 0, 1 . . . N − 1 ,

we say this process is a submartingale

(iii) If
Mn ≥ En[Mn+1] , n = 0, 1 . . . N − 1 ,

we say this process is a supermartingale.

Proposition 2.0.1. The expectation of a martingale is constant over time, that
is, if M0,M1, . . . ,Mn is a martingale, then

E[Mn] = M0 , n = 0, 1 . . . N − 1 . (2.0.5)

Proof. IfM0,M1, . . . ,Mn is a martingale, by taking the expectations on both sides
of (2.0.4) and by using property (iii) in Proposition A.0.1, we obtain

E[Mn] = E[Mn+1]

for every n. By iterating this identity, we get

E[M0] = E[M1] = E[M2] = . . . = E[MN−1] = E[MN ] .

Since M0 is a constant, we have M0 = E[M0] and hence the thesis.

In order to have a martingale, (2.0.4) must hold for all possible coin toss se-
quences. This means that at every node the binomial tree, the stock price shown
is the average of the two possible subsequent stock prices. This shows how a mar-
tingale has no tendency to rise or fall since the average of its next period values is
always its value at the current time. However, in real markets stock prices have
a tendency to rise and, on average, they rise faster than the money market in
order to compensate investors for their inherent risk. This tells us that under the
actual probabilities the discounted stock price is a submartingale while, on the
other hand, the risk-neutral probabilities are chosen to make it a martingale.
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Theorem 2.0.1. Under the risk-neutral measure, the discounted stock price is a
martingale, i.e., (2.0.4) holds at every time n and for every sequence of coin tosses.

Proof. The proof relies on Proposition A.0.1 in Appendix. Note that

Ẽn
[

Sn+1

(1 + r)n+1

]
= Ẽn

[
Sn

(1 + r)n+1 ·
Sn+1

Sn

]
.

Since Sn
(1+r)n is known at time n, it can be taken out from the conditional expecta-

tion, hence

Ẽn
[

Sn
(1 + r)n+1 ·

Sn+1

Sn

]
= Sn

(1 + r)n Ẽn
[ 1
1 + r

· Sn+1

Sn

]
.

We have assumed that interest rates are constant, hence

Sn
(1 + r)n Ẽn

[ 1
1 + r

· Sn+1

Sn

]
= Sn

(1 + r)n ·
1

1 + r
Ẽ
[
Sn+1

Sn

]
.

Since Sn+1
Sn

equals u and d with probabilities p and q, respectively, we have

Sn
(1 + r)n ·

1
1 + r

Ẽ
[
Sn+1

Sn

]
= Sn

(1 + r)n ·
p̃u+ q̃d

1 + r
= Sn

(1 + r)n ,

where in the last equality we have used the definition of p̃ and q̃.

The replicating portfolio technique illustrated in the previous chapter requires
that an investor takes a position of ∆n shares of stock at each time n and holds
this position until time n+ 1, when he takes a new position of ∆n+1 shares. This
portfolio rebalancing is financed by investing or borrowing from the money market.
The portfolio process ∆0,∆1, . . . ,∆N−1 is adapted, meaning that each variable ∆i

depends on the first i coin tosses, with i ∈ [0, N − 1]. If the investor begins with
initial wealth X0 and Xn denotes his wealth at each time n, then the evolution
of his wealth is governed by the wealth equation (1.2.21) introduced in Chapter 1,
which we repeat here

Xn+1 = ∆nSn+1 + (1 + r)(Xn −∆nSn). (2.0.6)

It is important to highlight that Xn depends only on the first n coin tosses, that
is, the wealth process is adapted.
The average rate of growth of the investor’s wealth depends on the probabilities
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under which this average is computed. Under the actual probabilities, such rate
of growth depends on the portfolio used (that is, the chosen combination of the
positions in the stock and in the money market account). Since a stock generally
has a higher average rate of growth than the money market, the investor can
achieve a higher rate of growth for his wealth by taking long positions in the
stock, which he can finance by borrowing from the money market. Of course, such
leveraged positions can be extremely risky.
Under the risk neutral probabilities, the rate of growth of the investor’s wealth
does not depend on the portfolio used. Indeed, under p̃ and q̃, the average rate
of growth of the stock is equal to the interest rate. How the investor decides to
divide his wealth between the stock and the money market account is not relevant
since, on average, he will achieve a rate of growth equal to the interest rate. We
state this result as the following theorem.

Theorem 2.0.2. Consider the binomial model with N periods. Let ∆0,∆1, . . . ,∆N−1

be an adapted portfolio process, let X0 be a real number and let the wealth process
X1, . . . , XN be generated recursively by (2.0.6). Then the discounted wealth process
Xn

(1+r)n , n = 0, 1, . . . , N is a martingale under the risk-neutral probability measure,
that is

Xn

(1 + r)n = Ẽn
[

Xn+1

(1 + r)n+1

]
, n = 0, 1, . . . , N − 1. (2.0.7)

Proof. By (2.0.6), we have

Ẽn
[

Xn+1

(1 + r)n+1

]
= Ẽn

[
∆nSn+1

(1 + r)n+1 + Xn −∆nSn
(1 + r)n

]
=

= Ẽn
[

∆nSn+1

(1 + r)n+1

]
+ Ẽn

[
Xn −∆nSn

(1 + r)n

]
=

= ∆nẼn
[

Sn+1

(1 + r)n+1

]
+ Xn −∆nSn

(1 + r)n =

= ∆n
Sn

(1 + r)n + Xn −∆nSn
(1 + r)n =

= Xn

(1 + r)n ,

where we have used Proposition A.0.1 and Theorem 2.0.1.
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Corollary 2.0.1. Under the conditions of Theorem 2.0.2, we have

Ẽ
[

Xn

(1 + r)n

]
= X0 , n = 0, 1, . . . , N. (2.0.8)

Corollary 2.0.1 stems from Proposition 2.0.1 (see also Remark 2.0.1).

Theorem 2.0.2 and its corollary have two important consequences. The first is
that there cannot be an arbitrage opportunity in the binomial model. If this were
the case, an investor could begin with wealth X0 = 0 and find a portfolio process
whose corresponding wealth processX1, X2, . . . , XN satisfiesXN(ω) ≥ 0 for all coin
toss sequences ω and XN(ω̄) > 0 for at least one coin toss sequence ω̄. But then
he would have Ẽ[X0] = 0 and Ẽ

[
XN

(1+r)N
]
> 0, which violates Corollary 2.0.1. The

First Fundamental Theorem of Asset Pricing, that we mentioned in the previous
chapter, stems from this fact. Indeed, in general, there cannot be arbitrage in a
model in which we can find a risk-neutral measure, that is, a measure that agrees
with the actual proability measure about which price paths have zero probability
and under which the discounted prices of all primary assets are martingales.
The other consequence of Theorem 2.0.2 is the following version of the risk-neutral
pricing formula. Let Vn be a random variable (a derivative security payoff at
time N) depending on the first N coin tosses. We know from Theorem 1.2.1 of
Chapter 1 that there is an initial wealth X0 and a replicating portfolio process
∆0, . . . ,∆N−1 that generates a wealth process X1, . . . , XN satisfying XN = VN , no
matter how the coin tossing turns out. Because

{
Xn

(1+r)n
}N
n=0

is a martingale, then,
by Proposition A.0.2 in Appendix, we have

Xn

(1 + r)n = Ẽn
[

XN

(1 + r)N

]
= Ẽn

[
VN

(1 + r)N

]
. (2.0.9)

According to Definition 1.2.1 in Chapter 1, the price of the derivative security at
time n is defined as Xn and denoted by Vn. Thus, (2.0.9) can be rewritten as

Vn
(1 + r)n = Ẽn

[
VN

(1 + r)N

]
(2.0.10)

or, equivalently,

Vn = Ẽn
[

VN
(1 + r)N−n

]
. (2.0.11)

We summarize this relation in the following theorem.
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Theorem 2.0.3 (Risk-neutral pricing formula). Consider an N-period bino-
mial asset pricing model with 0 < d < 1 + r < u and with risk-neutral probability
measure P̃. Let Vn be a random variable (a derivative security payoff at time N)
depending on the coin tosses. Then, for n = 0, . . . , N , the price of the derivative
security at time n is given by the risk-neutral pricing formula (2.0.11). Further-
more, the discounted price of the derivative security is a martingale under P̃; that
is,

Vn
(1 + r)n = Ẽn

[
Vn+1

(1 + r)n+1

]
, n = 0, 1, . . . , N − 1. (2.0.12)
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Chapter 3

Markov Processes

In Chapter 1, we have made the distinction between European Options, which
can only be exercised at the maturity date of the option, and American Options,
which can be exercised at any date up to maturity. We have developed a pricing
algorithm for the former and, in the following chapter, we will do the same also
for the latter. However, to better understant how to price American Options, we
will first need to introduce Markov processes and their relation to martingales.

Definition 3.0.1. Consider the binomial asset-pricing model. Let X0, X1, . . . , XN

be an adapted process. If, for every n between 0 and N − 1 and for every function
f(x), there is another function g(x) (depending on n and f) such that

En [f(Xn+1)] = g(Xn) , (3.0.1)

then X0, X1, . . . , XN is a Markov process.

Equation (3.0.1) is known asMarkov property and it states that a stochastic
process is Markov if the conditional expectation of future states of the process
(conditional on both past and present values) depends only upon the present state;
that is, given the present, the future does not depend on the past.

By definition, En [f(Xn+1)] is random: it depends on the first n coin tosses. The
Markov property says that this dependence on the coin tossess occurs through Xn,
that is, the information about the coin tossess one needs to evaluate En [f(Xn+1)]
is summarized by Xn. The existence of the function g tells us that if the payoff
of a derivative security is random only through its dependence on XN , then there
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is a version of the derivative security pricing algorithm in which we do not need
to store path information, which will be given below in Theorem 3.0.1. In the
following example, we will develop a method to find the function g for the stock
price process.

Example 2. In the binomial model, the stock price at time n+ 1 in terms of the
stock price at time n is given by the formula

Sn+1(ω1, . . . , ωn, ωn+1) =

uSn(ω1, . . . , ωn), if ωn+1 = H

dSn(ω1, . . . , ωn), if ωn+1 = T

Therefore,

En [f(Sn+1)] (ω1, . . . , ωn) = pf(uSn(ω1, . . . , ωn)) + qf(dSn(ω1, . . . , ωn)) .

where the right-hand side depends on ω1, . . . , ωn only through the value of Sn(ω1, . . . , ωn).
This equation can be rewritten as

En [f(Sn+1)] = g(Sn) ,

where the function g(x) is defined by

g(x) = pf(ux) + qf(dx) .

This shows that the stock price process is Markov. Indeed, it is Markov under
either the actual or the risk-neutral probability measure.
To determine the price Vn at time n of derivative security whose payoff at time
N is a function vN of the stock price SN (that is, VN = vN(SN)), we use the
risk-neutral pricing formula (2.0.12), which reduces to

Vn = 1
1 + r

Ẽn[Vn+1], n = 0, 1, . . . , N − 1 .

But the stock price process is Markov and VN = vN(SN), so

VN−1 = 1
1 + r

ẼN−1[vN(SN)] = vN−1(SN−1)

for some function vN−1. In general, Vn = vn(Sn) for some function vn.
Morevover, we can compute these functions recursively by the algorithm

vn(s) = 1
1 + r

[p̃vn+1(us) + q̃vn+1(ds)]. n = N − 1, N − 2, . . . , 0 . (3.0.2)
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This algorithm works in the binomial model for every derivative security whose
payoff at time N is a function only of the stock price at time N . It is the same
for puts and calls, the only difference is in the formula of vN(s) which is equal to
(s−K)+ for calls and to (K − s)+ for puts.

In order for a process to be Markov, it is necessary that for every function
f there is a corresponding function g such that (3.0.1) holds. The martingale
property is the special case of (3.0.1) with f(x) = g(x) = x, so if a process is a
martingale, the corresponding g function to f(x) = x is g(x) = x. However, if we
take f to be some other function, the definition of martingale does not guarantee
that we can find any corresponding function g. This means that not every martin-
gale is Markov. On the other hand, even when considering the function f(x) = x,
the Markov property requires only that En[Mn+1] = g(Mn) for some function g,
but it does not require g to be given by g(x) = x. This means that not every
Markov process is a martingale. Indeed, Example 2 shows that the stock price
is Markov under both the actual and the risk-neutral probability measures, but
it will be both a martingale and a Markov process under the actual probability
measure only if pu+ qd = 1.

In the binomial pricing model, suppose we have a Markov processX0, X1, . . . , XN

under the risk-neutral probability measure P̃, and we have a derivative security
whose payoff VN at time N is a function vN of XN , that is, VN = vN(XN) . The
following theorem can be proved.

Theorem 3.0.1. Let X0, X1, . . . , XN be a Markov process under the risk-neutral
probability measure P̃ in the binomial model. Let vN(x) be a function of the dummy
variable x, and consider a derivative security whose payoff at time N is vN(XN).
Then, for each 0 < n < N , the price Vn of this derivative security is some function
vn of Xn, that is

Vn = vn(Xn) . n = 0, 1, . . . , N − 1 . (3.0.3)

There is a recursive algorithm for computing vn whose exact formula depends on
the underlying Markov process X0, X1, . . . , XN .
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Chapter 4

American Derivative Securities

4.1 Introduction

As we already mentioned in the previous chapters, American options differ
from European ones because of their so called early exercise feature, that is, the
fact that they can be exercised at any time up to and including their expiration
date. Because of this feature, any American option is always at least as valuable
as its European counterpart. Indeed, since an American option can be exercised
at any time prior to its expiration, it can never be worth less than the payoff
associated with immediate exercise. This is defined as the intrinsic value of the
option. We shall see in this chapter that the discounted price of an American
option is a supermartingale under the risk-neutral measure, in contrast to the
case for a European option, for which we have seen that, under this measure, the
discounted price process is a martingale. However, we will se that if the holder
of an American option fails to exercise at the optimal exercise date, the option
has a tendency to lose value, hence, the supermartingale property. Indeed, the
discounted stock price of an American option behaves as a martingale during any
period of time in which it is not optimal to exercise.

To price an American option, we shall imagine selling the option in exchange
for some initial capital and then consider how this capital can be used to hedge the
short position in the option. In this case, we need to be ready to pay off the option
at all times prior to expiration date, since we don’t know when it will be exercised.
We determine, from our point of view (that is, the one of the seller of the option)
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which is the worst time for the owner to exercise the option. From the owner’s
point of view, this will be the optimal exercise time. We then compute the initial
capital we need in order to be hedged against exercise at the optimal exercise time.
Finally, we show how to invest this capital so that we are hedged even if the owner
exercises at a time which is not optimal. We conclude that the initial price of the
option is the capital required to be hedged against optimal excercise.

4.2 Path-Independent American Derivatives
In this section, we will develop a pricing algorithm for American derivative

securities when the payoff is not path dependent. We first summarize the pricing
algorithm for European derivative securities with a non-path dependent payoff. In
an N -period model binomial model with up factor u, down factor d and interest
rate r satisfying the no-arbitrage condition 0 < d < 1+r < u, consider a derivative
security that pays off g(SN) at time N for some function g. Since the stock price
is a Markov process, the value Vn of this derivative security can be written at each
time n as a function vn of the stock price at that time, that is Vn = vn(Sn), n =
0, 1 . . . , N (Theorem 3.0.1 of Chapter 3). The risk-neutral pricing formula (2.0.9)
of Chapter 2 implies that for 0 ≤ n ≤ N , the function vn is defined by the European
algorithm, that is

vN(s) = max{g(s), 0} , (4.2.1)

vn(s) = 1
1 + r

[
p̃vn+1(us) + q̃vn+1(ds)

]
, n = N − 1, N − 2 . . . , 0 . (4.2.2)

where p̃ and q̃ are the risk-neutral probabilities that the stock moves up and down,
respectively. The replicating portfolio which hedges a short position in the option
is given by (see (1.2.24) of Chapter 1)

∆n = vn+1(uSn)− vn+1(dSn)
(u− d)Sn

, n = 0, 1, . . . , N . (4.2.3)

Now consider an American derivative security. In any period n ≤ N the holder of
the security can exercise and receive payment g(Sn). Consequently, the portfolio
that hedges a short position should always have value Xn satisfying

Xn ≥ g(Sn) , n = 0, 1, . . . , N . (4.2.4)
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This means that the value of the derivative security at each time n is at least as
much as the intrinsic value g(Sn). Moreover, the value of the replicating portfolio
at that time must equal the value of the derivative security.

This suggests that to price an American security, we should replace the Euro-
pean algorithm (4.2.1) by the American algorithm

vN(s) = max{g(s), 0} , (4.2.5)

vn(s) = max
{
g(s), 1

1 + r

[
p̃vn+1(us) + q̃vn+1(ds)

]}
, n = N − 1, N − 2 . . . , 0 .

(4.2.6)

Then Vn = vn(Sn) would be the price of the derivative security at time n.

In the following example we will se how to use the American algorithm (4.2.5)
to price a path-independent American put option.

Fig. 4.1: A two-period model.

Example 3. Consider the two-period model in Figure 4.1 with S0 = 4, u = 2 and
d = 1

2 and let the interest rate be r = 1
4 , so that the risk-neutral probabilities are

p̃ = q̃ = 1
2 . Consider an American put option, expiring at time two, with strike
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price 5. Since the security is a put, if the owner exercises at time n, he receives
5− Sn, so we take g(s) = 5− s. By consequence, the American algorithm (4.2.5)
becomes

v2(s) = max{5− s, 0} ,

vn(s) = max
{

5− s, 2
5
[
vn+1(2s) + vn+1

(
s

2

) ]}
, n = 1, 0 .

In particular, with reference to the values of Sn in Figure 4.1,

v2(16) = max{5− S2(H,H), 0} = max{5− 16, 0} = 0 ,
v2(4) = max{5− S2(H,T ), 0} = max{5− 4, 0} = 1 ,
v2(1) = max{5− S2(T, T ), 0} = max{5− 1, 0} = 4 ,

v1(8) = max
{

(5− S1(H)), 2
5(v2(16) + v2(4))

}
= max

{
(5− 8), 2

5(0 + 1)
}

=

= max{−3, 0.40} = 0.40 ,

v1(2) = max
{

(5− S1(T )), 2
5(v2(4) + v2(1))

}
= max

{
(5− 2), 2

5(1 + 4)
}

=

= max{3, 2} = 3 ,

v0(4) = max
{

(5− S0), 2
5(v2(8) + v2(2))

}
= max

{
(5− 4), 2

5(0.40 + 3)
}

=

= max{1, 1.36} = 1.36 ,

The American put prices we have just computed are represented in Figure 4.2.
The American algorithm gives a different result than the European algorithm in the
computation of v1(2), where the discounted expectation of the option price, 2

5(1+4),
is strictry smaller than the intrinsic value. Since v1(2) is strictly greater than the
price of a comparable European put, the initial price v0(4) for the American put is
also strictly greater than the initial price of a comparable European put.

Let us now construct the replicating portfolio. We begin with initial capital
X0 = 1.36 and compute ∆0 so that the value of the portfolio at time one is equal
to the option value. By substituting into (4.2.3), we find that

∆0 = v1(8)− v1(2)
8− 2 = −0.43 .

This means that, in any case, if we begin with initial capital X0 = 1.36 and take a
position of ∆0 = −0.43 shares of stock at time zero, then at time one we will have
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Fig. 4.2: American put prices.

X1 = V1 = v1(S1). We continue by first analyzing the case in which the first coin
toss results in a tail and that the owner of the option has decided to not exercise
at time one. We note that the following period the option will be worth v2(4) = 1
if the second toss results in head and v2(1) = 4 otherwise. According to the risk-
neutral pricing formula, to construct a hedge against these two possibilities, our
portfolio at time one should be valued at

2
5(v2(4) + v2(1)) = 2

5(1 + 4) = 2

but we have a hedging portfolio valued at v1(2) = 3. Thus, we may consume $1 and
continue the hedge with the remaining $2 value in our portfolio. As this suggests,
the option holder has let an optimal exercise time go by. More specifically, after
consuming $1 we change our position to ∆1(T ) shares of stock, where

∆1(T ) = v2(4)− v2(1)
4− 1 = 1− 4

4− 1 = −1 .

We now analyze the case in which the first coin toss results in head. At time one,
our portfolio is valued at X1(H) = 0.40. We choose

∆1(H) = v2(16)− v2(4)
16− 4 = 0− 1

16− 4 = − 1
12 ,
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so that if the second toss results in head, at time two our hedging portfolio will be
valued at X2(H,H) = 0 = v2(16), while if the toss results in tail, our portfolio will
be valued at X2(H,T ) = 1 = v2(4)

Fig. 4.3: Discounted American put prices.

Finally, we consider the discounted American put prices in Figure 4.3. These
constitute a supermartingale under the risk-neutral probabilities p̃ = q̃ = 1

2 . At each
node, the discounted American put price is greater than or equal to the average of
the discounted prices at the two subsequent nodes. This price is not a martingale
because the inequality is strict at the time-one node corresponding to a tail on the
first toss.

The following theorem formalizes what we have seen in Example 3 and justifies
the American algorithm (4.2.5).

Theorem 4.2.1 (Replication of path-independent American derivatives).
Consider an N-period binomial asset pricing model with 0 < d < 1 + r < u and
with

p̃ = 1 + r − d
u− d

q̃ = u− 1− r
u− d

,

Let a payoff function g(s) be given and define recursively backward in time the
sequence of functions vN(s), vN−1(s), . . . , v0(s) by (4.2.5). Next define

∆n = vn+1(uSn)− vn+1(dSn)
(u− d)Sn

, n = 0, 1, . . . , N . (4.2.7)
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Cn = vn(s)− 1
1 + r

[p̃vn+1(uSn) + q̃vn+1(dSn)] , (4.2.8)

where 0 ≤ n ≤ N − 1. We have Cn ≥ 0 for all n. If we set X0 = v0(S0) and define
recursively forward in time the portfolio values X1, X2, . . . , XN by

Xn+1 = ∆nSn+1 + (1 + r)(Xn − Cn −∆nSn) (4.2.9)

then we will have
Xn(ω1, . . . , ωn) = vn(Sn(ω1, . . . , ωn)) (4.2.10)

for all n and all ω1, . . . , ωn. In particular, Xn is a supermartingale and Xn ≥ g(Sn)
for all n.

4.3 Stopping Times

Before introducing the pricing algorithm for general American derivatives, in-
cluding also path-dependent ones, we need to briefly analyse the concept of stop-
ping times. We will begin doing so by referring to Example 3. In general, the time
at which an American derivative should be exercised is random since it depends
on the price movements of the underlying asset. In Example 3, we claimed that if
the first coin toss results in tail, then the owner should exercise at time one. On
the other hand, if the first toss results in head, then the owner of the put should
not exercise at time one but rather wait for the outcome of the second toss. Indeed
if the first toss results in head, then S1(H) = 8 and the put is out of the money.
If the second toss results in head, then S2(H,H) = 16 and the put is still out of
the money, so the owner should let it expire without exercising it. If instead the
first is a head and the second is a tail, then S2(H,T ) = 4, the put is in the money
and the owner should exercise. We can describe this exercise rule by the following
random variable τ , which represents the time of exercise

τ(H,H) =∞ , τ(H,T ) = 2 , τ(T,H) = 1 , τ(T, T ) = 1 . (4.3.1)

This exercise rule is displayed in Figure 4.4.
The random variable τ defined on Ω = {(H,H), (H,T ), (T,H), (T, T )} takes

values in the set {0, 1, 2,∞}. The owner of the put in this example will regret
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Fig. 4.4: Exercise rule τ .

not exercising the put at time zero if the first coin toss results in a head 1. In
particular, if he already knew the outcome of the coin tosses, he would prefer
using the following exercise rule α, which is displayed in Figure 4.5

α(H,H) = 0 , α(H,T ) = 0 , α(T,H) = 1 , α(T, T ) = 2 . (4.3.2)

If he could use this exercise rule, then regardless of the coin tossing, he would
exercise the put in the money. However, the problem with the exercise rule α is
that it cannot be implemented without “insider information”, indeed the decision
whether or not to exercise at time n is always based on the outcome of the coin
toss at time n+ 1. This means that α is not a stopping time, whose definition in
this context is given below

Definition 4.3.1. In an N-period binomial model, a stopping time is a random
variable τ that takes values 0, 1, . . . , N or ∞ and satisfies the condition that if
τ(ω1, ω2, . . . , ωn, ωn+1, . . . , ωN) = n, then τ(ω1, ω2, . . . , ωn, ω

′
n+1, . . . , ω

′
N) = n for

all ω′n+1, . . . , ω
′
N .

This definition ensures that stopping is based only on available information.
If stopping occurs at time n, then this decision is based only on the first n coin
tosses and not on the outcome of any subsequent toss.

1Even if S2(H,T ) = S0 = 4, the owner would rather exercise today than in two periods due
to the time value of money.
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Fig. 4.5: Exercise rule α.

Whenever we have a stochastic process and a stopping time, we can define a
stopped process. For example, let Yn be the process of discounted American put
prices in Figure 4.3, that is

Y0 = 1.36 , Y1(H) = 0.32 , Y1(T ) = 2.40 ,
Y2(H,H) = 0 , Y2(H,T ) = Y2(T,H) = 0.64 , Y2(T, T ) = 2.56 .

Let τ be the stopping time defined in (4.3.1). We define the stopped process Yn∧τ ,
where the notation n ∧ τ denotes the minimum between n and τ , by the formulas
below.
We set

Y0∧τ = Y0 = 1.36

because 0 ∧ τ = 0 regardless of the coint tossing. Similarly,

Y1∧τ = Y1

because 1 ∧ τ = 1 regardless of the coin tossing. However, 2 ∧ τ depends on the
coin tossing. If the coin tossing results in (H,H) or (H,T ), then 2 ∧ τ = 2, but if
we get (T,H) or (T, T ), we have 2∧ τ = 1. Therefore there are four possible cases

Y2∧τ (H,H) = Y2(H,H) = 0 , Y2∧τ (H,T ) = Y2(H,T ) = 0.64 ,
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Y2∧τ (T,H) = Y1(T ) = 2.40 , Y2∧τ (T, T ) = Y1(T ) = 2.40 .

Notice how the value of the process is stopped at time τ , even if in this construction
the process continues on past time one.

We have seen that the discounted American put price process in Figure 4.3
is a supermartingale but not a martingake under the risk-neutral probabilities
p̃ = q̃ = 1

2 since

2.40 = Y1(T ) > 1
2Y2(T,H) + 1

2Y2(T, T ) = 1
2 · 0.64 + 1

2 · 2.56 = 1.60 .

However, the stopped process Yn∧τ is a martingale. In particular

2.40 = Y1∧τ (T ) = 1
2Y2∧τ (T,H) + 1

2Y2∧τ (T, T ) = 1
2 · 2.40 + 1

2 · 2.40 = 2.40 .

This observation is true in general. Indeed, under the risk-neutral probabilities, a
discounted American derivative security price process is a supermartingale. How-
ever, if this process is stopped at the optimal exercise time, it becomes a martin-
gale. If the owner of the security permits a time to pass in which the supermartin-
gale inequality is strict, he has failed to exercise optimally.

4.4 General American Derivatives
In this section, we introduce path-dependent American derivative securities.

We define the price process for such a security and develop its properties. We
also show how to hedge a short position in the derivative security and study the
optimal exercise time. We define Bn to be the set of all stopping times τ that
take values in the set {n, n+1, . . . , N,∞}. For example, the set B0 contains every
stopping time, while a stopping time in BN can take the value N on some paths,
the value ∞ on others, and can take no other value.

Definition 4.4.1. For each 0 ≤ n ≤ N , let Gn be a random variable depending on
the first n coin tosses. An american derivative security with intrinsic value process
Gn is a contract that can be exercised at any time prior to and including time N
and, if exercised at time n, pays off Gn. We define the price process Vn for this
contract by the American risk-neutral pricing formula

Vn = max
t∈Sn

Ẽn
[
I{τ≤N}

1
(1 + r)τ−nGτ

]
, n = 0, 1, . . . , N . (4.4.1)
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where

I{τ≤N} =

1 if τ ≤ N ,

0 otherwise .

The idea behind (4.4.1) is the following. Suppose the American derivative
security is not exercised at times 0, 1, . . . , n − 1 and we want to determine its
value at time n. At time n, the owner can decide to exercise immediatly or to
postpone exercise to some later date. The date at which he exercises, if he does,
can depend on the path of the stock price up to the exercise time but not beyond
it, so the exercise date will be a stopping time τ which has to be in Bn, since
exercise was not done before Sn. Of course the owner might also not exercise
(τ =∞) and let the security expire. The term I{τ≤N} appears in (4.4.1) to tell us
that I{τ≤N} 1

(1+r)τ−nGτ should be replaced by zero on those paths for which τ =∞.
When the owner exercises according to a stopping time τ ∈ Bn, the value of the
derivative to him at time n is the risk-neutral dicounted expectation of its payoff.
The maxt∈Sn term tells us that he should choose τ to make this as large as possible.
One of the immediate consequences of this definition is that

VN = max{GN , 0} , (4.4.2)

which simply means that the owner of the security is going to exercise at time N
only if the payoff is greater than zero, otherwise he will let the security expire.

We will now develop the properties of the American derivative security price
process of Definition 4.4.1. These properties justify calling Vn in Definition 4.4.1
the price of the security.

Theorem 4.4.1. The American derivative security price process given by Defini-
tion 4.4.1 has the following properties:

(i) Vn ≥ max{Gn, 0} for all n;

(ii) the discounted price process 1
(1+r)nVn is a supermartingale;

(iii) if Yn is another process satisfying Yn ≥ max{Gn, 0} for all n and for which
1

(1+r)nYn is a supermartingale, then Yn ≥ Vn for all n.

We summarize property (iii) by saying that Vn is the smallest process satisfying (i)
and (ii).
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Property (ii) in Theorem 4.4.1 guarantees that an agent beginning with initial
capital V0 can construct a hedging portfolio whose value at each time n is Vn.
Property (i) guarantees that if an agent does this, he has hedged a short position in
the derivative security; no matter when he exercises it, the agent’s hedging portfolio
value is sufficient to pay off the derivative security. Thus, properties (i) and (ii)
guarantee that the derivative security price is acceptable to the seller. Condition
(iii) says that the price is no higher than necessary in order to be acceptable to the
seller, meaning that the price is fair for the buyer. Items (i) and (ii) of Theorem
4.4.1 can be proved using only the definition of Vn and the properties of conditional
expectation, while item (iii) is based on the Optional Stopping Theorem [3] which
assures that a stopped supermartingale is a supermartingale. For details on the
proof see [13].

We can now generalize the American pricing algorithm given by (4.2.5) to
path-dependent securities.

Theorem 4.4.2. We have the following American pricing algortihm for the path-
dependent derivative security price process given by Definition 4.4.1

VN(ω1, . . . , ωN) = max{GN(ω1, . . . , ωN), 0} , (4.4.3)

Vn(ω1, . . . , ωN) = max{Gn(ω1, . . . , ωn) ,
1

1 + r
[p̃Vn+1(ω1, . . . , ωn, H) + q̃Vn+1(ω1, . . . , ωn, T )]}

n = N − 1, . . . , 0.

(4.4.4)

This result is a direct consequence of Theorem 4.4.1 (see [13]).
In order to justify Definition 4.4.1 for American derivative security prices, we

must show that a short position can be hedged using these prices. This requires a
generalization of Theorem 4.4.2 to the path-dependent case.

The proof of the following result is a consequence of Theorem 4.4.1 and can be
proved through induction (see [13]).

Theorem 4.4.3 (Replication of path-dependent American derivatives).
Consider an N-period binomial asset-pricing model with 0 < d < 1 + r < u and
with

p̃ = 1 + r − d
u− d

q̃ = u− 1− r
u− d

,
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For each 0 ≤ n ≤ N , given by Definition 4.4.1 we define

∆n(ω1, . . . , ωn) = Vn+1(ω1, . . . , ωnH)− Vn+1(ω1, . . . , ωnT )
Sn+1(ω1, . . . , ωnH)− Sn+1(ω1, . . . , ωnT ) , (4.4.5)

Cn(ω1, . . . , ωn) = Vn(ω1, . . . , ωn)− 1
1 + r

[p̃Vn+1(ω1, . . . , ωnH)

+ q̃Vn+1(ω1, . . . , ωnT )] , (4.4.6)

where 0 ≤ n ≤ N − 1. We have Cn ≥ 0 for all n. If we set X0 = V0 and define
recursively forward in time the portfolio values X1, X2, . . . , XN by

Xn+1 = ∆nSn+1 + (1 + r)(Xn − Cn −∆nSn) , (4.4.7)

then we have
Xn(ω1, . . . , ωn) = Vn(ω1, . . . , ωn) (4.4.8)

for all n and all ω1, . . . , ωn. In particular, Xn ≥ Gn for all n.

Theorem 4.4.3 shows that the American derivative security price given by
(4.4.1) is acceptable to the seller because he can construct a hedge for the short
position. We next argue that it is also acceptable to the buyer. We fix n and
imagine we have got to time n without the derivative security being exercised. We
denote τ ∗ ∈ Sn the stopping time that attains the maximum in (4.4.1), so that

Vn = Ẽn[I{τ∗≤N}
1

(1 + r)τ∗−nGτ ] . (4.4.9)

For k = n, n+ 1 . . . , N , we define

Ck = I{τ∗=k}Gk .

If the owner of the security exercises it according to the stopping time τ ∗, then she
will receive the cash flows Cn, Cn+1, . . . , CN at times n, n + 1, . . . , N respectively.
Actually, at most one of these Ck values is non-zero. If the option is exercised at
or before the expiration time N , then the Ck at such an exercise time is the only
nonzero payment among them. However, this payment will come at different times
on different paths.
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In any case, (4.4.9) becomes

Vn = Ẽn
[
N∑
k=n

I{τ∗≤N}
1

(1 + r)τ∗−nGτ

]
= Ẽn

[
N∑
k=n

1
(1 + r)k−nCk

]
.

which is the value at time n of the cash flows Cn, Cn+1, . . . , CN , received at times
n, n+ 1, . . . , N , respectively. Once the option holder decides on the exercise strat-
egy τ ∗, this is exactly the contract he holds, thus the American derivative security
price Vn is acceptable to him.
Now we need to provide a method for the American derivative security owner to
choose an optimal exercise time. We consider this problem by seeking a stopping
time τ ∗ ∈ B0 that achieves the maximum in (4.4.1) when n = 0.

Theorem 4.4.4 (Optimal exercise). The stopping time

τ ∗ = min{n : Vn = Gn} , (4.4.10)

maximizes the right-hand side of (4.4.1) when n = 0, that is

V0 = Ẽ
[
I{τ∗≤N}

1
(1 + r)τ∗Gτ∗

]
. (4.4.11)

We know that the value of an American derivative security is always greater
than or equal to its intrinsic value. The stopping time τ ∗ of (4.4.10) is the first
time these two are equal. However, it can happen that they are never equal.
For example, the value of an American put is always greater than or equal to
zero, but the put can always be out of money (that is, with negative intrinsic
value). In this case, the minimum in (4.4.10) is over the empty set, and we follow
the matematical convention that the minimum over the empty set is ∞. For us,
τ ∗ =∞ is synonymous with the derivative security expiring unexercised. We now
prove Theorem 4.4.4.

Proof. We first observe that the stopped process

1
(1 + r)n∧τ∗ Vn∧τ

∗ (4.4.12)

is a martingale under the risk-neutral probability measure. This is a consequence
of (4.4.1). Indeed, if the first n coin tosses result in ω1, . . . , ωn and along this path
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τ ∗ ≥ n+1, then we know that Vn(ω1, . . . , ωn) > Gn(ω1, . . . , ωn) and (4.4.1) implies

Vn∧τ∗(ω1, . . . , ωn) = Vn(ω1, . . . , ωn) =

= 1
1 + r

[p̃Vn+1(ω1, . . . , ωnH) + q̃Vn+1(ω1, . . . , ωnT )] =

= 1
1 + r

[p̃V(n+1)∧τ∗(ω1, . . . , ωnH) + q̃V(n+1)∧τ∗(ω1, . . . , ωnT )] .

This is the martingale property for the process (4.4.12). On the other hand, if
along path ω1, . . . , ωn we have τ ∗ ≤ n, then

Vn∧τ∗(ω1, . . . , ωn) = Vτ∗(ω1, . . . , ωτ∗) =
= p̃Vτ∗(ω1, . . . , ωτ∗) + q̃Vτ∗(ω1, . . . , ωτ∗) =
= p̃V(n+1)∧τ∗(ω1, . . . , ωnH) + q̃V(n+1)∧τ∗(ω1, . . . , ωnT ) .

Again we have the martingale property. Since the stopped process (4.4.12) is a
martingale, we have

V0 = Ẽ
[

1
(1 + r)N∧τ∗ VN∧τ

∗

]
=

= Ẽ
[
I{τ∗≤N}

1
(1 + r)τ∗Gτ∗

]
+ Ẽ

[
I{τ∗=∞}

1
(1 + r)N VN

]
.

(4.4.13)

But on those paths for which τ ∗ = ∞, we must have Vn > Gn for all n and, in
particular, Vn > GN . In light of (4.4.3), this can be simplified to

V0 = Ẽ
[
I{τ∗≤N}

1
(1 + r)τ∗Gτ∗

]
. (4.4.14)

This is (4.4.11).

As it can be noted, we have only used the American Algorithm (4.2.5) to make
examples about American put options. This is because it can be proved that
the early exercise of an American call contributes nothing to its value, making an
American call exactly as valuable as its European counterpart. This is because the
discounted intrinsic value of the call is a submartingale (that is, it has a tendency to
rise) under the risk-neutral probabilities. Moreover, for a call option whose payoff
is g+(s) = (K − s)+), the owner pays K and prefers the value of this payment to
be discounted away before exercise, making early exercise optimal.
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Chapter 5

MATLAB codes

5.1 Path Independent European Put-Call Op-
tions

The following MATLAB code is used to compute an European Option price as
described in Theorem 1.2.1 in Chapter 1. Fixed the up and down factors u and d,
the interest rate r, the price of the underlying stock at time zero S0, the option’s
strike price K and the number of periods n, the algorithm gives

• V0: the price of the option at time zero;

• Delta0: the portion of shares to buy in the replicating portfolio at time zero
in order to hedge a short positiion in the option.

The variable type can assume two values: type=1 in the case of a call option,
type=0 in the case of a put option.

u=1.2;
d=0.8;
r=0.1;
S0 =10;
K=8;
n=20;
p=(1+r-d)/(u-d);
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q=1-p;
type =1; %if call , type =1, otherwise type =0

S=zeros (2^(n+1) -1 ,1);
S(1)= S0;

for i=1:2^n -1
S(2*i)=d*S(i);
S(2*i+1)=u*S(i);

end

V=zeros (2^(n+1) -1 ,1);

for i=2^n:2^(n+1) -1
if type ==1

V(i)= max ([0 ,S(i)-K]);
else

V(i)= max ([0 ,K-S(i)]);
end

end

for i=2^n -1: -1:1
V(i )=1/(1+ r)*(p*V(2*i+1)+q*V(2*i));

end

Delta=zeros (2^n -1 ,1);

for i=2^n -1: -1:1
Delta(i)=(V(2*i+1)-V(2*i))/(S(2*i+1)-S(2*i));

end

V0=V(1)
Delta0 = Delta (1)
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The output of the algortihm with the above inputs is

V0 =

8.8152

Delta0 =

0.9982

Note that the results are coherent with those given in Example 1 in Chapter 1.
Actually, the algorithm computes the price of the derivative security and the por-
tion of shares to buy at any period and for any outcome. However, the algorithm
only returns the relevant values V0 and Delta0 for short.

5.2 Path Independent American Put Options
The following MATLAB code is used to compute an American Option price as

described in Theorem 4.2.1 in Chapter 4. Fixed the up and down factors u and d,
the interest rate r, the price of the underlying stock at time zero S0, the option’s
strike price K and the number of periods n, the algorithm gives

• V0: the price of the option at time zero;

• Delta0: the portion of shares to buy in the replicating portfolio at time zero
in order to hedge a short positiion in the option;

• tau: the stopping time in which it is optimal to exercise the option (according
to Theorem 4.4.4 in Chapter 4).

The variable type can assume two values: type=1 in the case of a call option,
type=0 in the case of a put option.
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u=2;
d=0.5;
r =0.25;
S0 =4;
K=5;
n=2;
p=(1+r-d)/(u-d);
q=1-p;
type =0; %if call , type =1, otherwise type =0

S=zeros (2^(n+1) -1 ,1);
S(1)= S0;

for i=1:2^n -1
S(2*i)=d*S(i);
S(2*i+1)=u*S(i);

end

G=zeros (2^(n+1) -1 ,1);
if type ==1

for i =1:2^( n+1) -1
G(i)=S(i)-K;

end
else

for i =1:2^( n+1) -1
G(i)=K-S(i);

end
end

V=zeros (2^(n+1) -1 ,1);

for i=2^n:2^(n+1) -1
V(i)= max ([0,G(i)]);
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end

for i=2^n -1: -1:1
V(i)= max ([1/(1+ r)*(p*V(2*i+1)+q*V(2*i)),G(i)]);

end

Delta= zeros (2^n -1 ,1);

for i=2^n -1: -1:1
Delta (i)=(V(2*i+1) -V(2*i))/(S(2*i+1)-S(2*i));

end

t=0;
i=1;
while t==0 && i <=2^( n+1) -1

if G(i)==V(i)
t=i;

end
i=i+1;

end

V0=V(1)
Delta0 = Delta (1)
tau=t

The output of the algorithm with the above inputs is

V0 =

1.3600

Delta0 =

-0.4333
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tau =

2

Note that the results are coherent with those given in Example 3 in Chapter 4.
Actually, the algorithm computes the price of the derivative security and the por-
tion of shares to buy at any period and for any outcome. However, the algorithm
only returns the relevant values V0 and Delta0 for short.
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Appendix

Proposition A.0.1. (Fundamental Properties of Conditional Expecta-
tions) Let N be a positive integer, and let X and Y be random variables depending
on the first N coin tosses. Let 0 ≤ n ≤ N be given. The following properties hold.

(i) Linearity of conditional expectations. For all constants c1 and c2, we
have

En[c1X + c2Y ] = c1En[X] + c2En[Y ] .

(ii) Taking out what is known. If X actually depends only on the first n
coin tosses, then

En[XY ] = X · En[Y ] .

(iii) Iterated conditioning . If 0 ≤ n ≤ m ≤ N , then

En [Em[X]] = En[X] .

(iv) Independence. If X depends only on tosses n+ 1 through N , then

En[X] = E[X] .

(v) Conditional Jensen’s Inequality. If ϕ(x) is a convex function of the
dummy variable x then

En[ϕ(x)] ≥ ϕEn[X] .

The proof of Theorem A.0.1 is provided by [13]
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The martingale property in (2.0.1) discussed in Chapter 2 is a “one-step-
ahead”condition. However, it can be generalized for any number of steps.

Proposition A.0.2 (Martingale “Multistep-Ahead” Property). IfM0,M1, . . . ,MN

is a martingale and m is a positive integer such that 0 ≤ n ≤ m ≤ N , then

Mn = En[Mm] .

Proof. We first show the “two-step ahead” property, that is

Mn = En[Mn+2] .

By the martingale property (2.0.1) we know that

Mn+1 = En+1 [Mn+2] .

Hence by property (iii) of Theorem A.0.1, we have

Mn = En[Mn+1] = En [En+1 [Mn+2]] = En [Mn+2] .

By iterating this argument, we can prove the “multi-step ahead” property, that is,
for any m such that 0 ≤ n ≤ m ≤ N ,, we have

Mn = En [Mm] ,
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