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Introduction

How do you hire the best employee or choose the best candidate for a job?

Are there strategies that can increase the probability that you will choose the best

one? And if these strategies exist, which is the best among them?

The main theme of this setting is the irrevocable and time-critical decision-making

under the unpredictability of the possible future outcomes. This is what character-

izes online selection problems, the spearheads of a field that combines probability

theory and computer science.

In a classical online selection problem, items arrive in sequence and reveal, each

at their turn, their value. These items must be accepted or rejected at the time

of their arrival and thus they offer partial information about their value. This

recalls the theory of optimal stopping, or early stopping, which is concerned with

the problem of choosing a time to take a particular action, in order to maximize

an expected reward or minimize an expected cost. This theory is covered precisely

in Chapter 1, with the aim of providing the readers with a theoretical background

that would allow them to fully understand the world of online selection problems.

In particular, in the first chapter, the main goal is to explain what a stopping time

is and how this is defined by a stopping rule, which at the same time is fundamen-

tal in the resolution of the problems mentioned above. A stopping rule outlines

a probability of stopping at a certain time N that maximizes the expected rev-

enue and which has been chosen based both on current and previous observations.
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Going back to the previous description of the classic online selection problem, we

define the agent as the one who observes the sequence of articles and decides when

to accept one of them, and then to stop, or when to reject it, and therefore to

continue observing, in the hope of maximizing his expected reward or minimizing

the expected cost. It follows that, a stopping rule, together with the sequence of

observations, determines the random time N at which the agent decides to stop,

for N occurring between 0 and ∞.

It is not over here, since this thesis also analyzes how the theory of optimal stop-

ping can be applied to problems with finite horizons, characterized by a situation

in which the agent, or player, is required to stop observing the sequence once a

certain stage is reached, for example XT , for T > 0. Hence, the problem would

have horizon T and the backward induction would be applied to find the maximum

return one can obtain and the optimal rule associated with it. This hypothesis is

reasonable since in real life problems the sequence is usually finite and does not

contain a huge number of elements.

In the following chapters are then analyzed the most important problems in

online selection, which are the secretary problem and the prophet inequality prob-

lem. In both problems a decision maker is presented with a sequence of numerical

values, and for each value has to make an irreversible decision to accept or reject

it. Only one value can be accepted, and a value that has been rejected is lost

forever. In the secretary problem the objective is to maximize the probability of

selecting the largest value of the entire sequence, while in the prophet problem it

is to compare, in terms of expectations, the performance of a gambler with the

one of a “prophet” that knows the entire sequence.

In Chapter 2, we deal with the secretary problem, in which a boss wants to hire the

best secretary out of n rankable applicants. In the study of this problem we relied

mainly on Ferguson [6]. As he explains, the boss can hire only one secretary among
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the ones observed sequentially, in an order which is random and unknown to the

boss himself. In this chapter, we have calculated the success probability of picking

the best candidate for some value r, for r = 1, 2, . . . , n, of rejected candidates.

More precisely, we have focused on computing the probability that the strategy Sr
picks the best candidate, where the strategy rejects the first r − 1 applicants and

then chooses the next applicant who is the best in the relative ranking of previous

observations. Then, we have outlined the optimal value of r that maximizes this

probability, obtaining as result that the optimal rule would be selecting the first

candidate that appears among applicants from stage r on. From this analysis, we

have found that, for large n, the optimal strategy would be waiting until about

37% of the applicants interviewed so far and then selecting the next best one,

relative to the previous ones, and that the probability of success is also about

37%. To confirm such a result, our thesis contains a subsection which provides

two simulations of the secretary problem, one where the secretaries sample values

from a uniform distribution in [0, 1] and the other one where secretaries sample

values from a discrete uniform distribution on the set {1, 2, . . . , n}, that show how,

the larger n, the better is the approximation of 37%. For doing this, we have con-

structed specific MATLAB codes and represented our results graphically. Then,

this chapter contains a last subsection that analyzes a natural variation of the sec-

retary problem, where the total number of candidates is divided in N groups and

the boss must decide immediately whether to select the best member of the group

just interviewed or to continue interviewing the members of the successive group,

with no recall allowed. The analysis of this variation is made with the same aim

of the one made on the classical problem, that is to find a strategy that maximizes

the probability of selecting the best applicant. The result is similar as the one for

the classical problem, except for the way the threshold r is defined, as you will see

in the relative section.
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In Chapter 3, we focus on the prophet inequality, trying to answer the following

question: what is the best performance that a gambler is able to achieve when

compared to a prophet who is capable of choosing the highest value? We base our

study on the results that come from the study of Krengel, Sucheston and Garling

[12]: the gambler can provide an expected reward at least equal to the half of the

reward of a prophet able to forecast all the realizations and to choose the largest

one. In mathematical terms, they showed that, given X1, . . . , Xn be a sequence

of independent, non-negative, real-valued random variables and E[maxiXi] < ∞,

then there exists a stopping rule T such that

E[max
i
Xi] ≤ 2E[XT ].

This is known as the first of the prophet inequalities in optimal stopping theory

and it aims at comparing the performance of online and offline algorithms involved

in the selection of one or more elements from a random sequence. During the chap-

ter, we also take care of providing evidence for this inequality. Moreover, we also

deal with a variation of the classic prophet inequality, in which, for each i.id.

real-valued variable observed, a non-negative fixed cost is charged to the gambler.

Using the theory found in [15], we provide a prophet inequality in a “difference”

form.

Chapter 4 contains a description of the economic view of the online selection prob-

lems just mentioned: it talks about the connection between pricing and prophet

inequality and also about the connection between the secretary problem, stock

prices and random walks. In particular, the first section of the chapter focuses

on the link between post-price mechanisms and prophet inequality, following an

article by Lucier [13] in which, defining Hajiaghayi [8] as the one who reintroduced

the prophet inequality into the community of economics and computations, and

the one who first took care to study the analogy between the latter and a simple

pricing problem, he continues by exposing the theory explained in [8] and then
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gives us an overview of this connection through an economic-oriented proof of the

prophet inequality. The last section presents as an argument the one of developing

and testing models for stock price behavior, particularly relying on the approach

deriving from the theory of random walks. Following the analysis by Fama [4], a

random walk market implies that successive price changes in individual securities

will be independent, meaning that it would not be possible to use past series to

predict the behavior of stock prices. The consequence from this assumption is

that a simple policy which consists of buying and holding the security is the same

as any complicated mechanism that wants to plan purchases and sales. We then

proceed with a problem that is found in a paper by Hlynka and Sheahan [9]: a

stock analyst has to predict, for a client, the day in which a particular stock will

have the highest price in a given month. If he makes the best decision on which

day to choose, he receives as reward a major portfolio to manage, otherwise he

receives nothing. In this paper is stated that all values of different stocks represent

positions of a generalized one-dimensional random walk. In this section, we show

how the secretary problem can be applied to find the best strategy that maximized

the probability of choosing the largest value in n with no recall allowed.

Thus, this thesis provides an overview of how online selection problems can be

applied to solve everyday life problems such as hiring the best candidate for a job,

choosing the best place to park, or, again, predicting the day to choose to maximize

the profits of your financial portfolio. In fact, although these problems are based

on probability theory and computer science, and focus on the performance of

online and offline algorithms, they can provide a considerable help in making the

resolution of these daily life problems as efficient as possible, thus allowing us to

maximize the reward that would result from the resolution of these or to minimize

the cost associated with them.
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Chapter 1

Stopping rule problems

A stopping time is a random variable that has a value associated with the time

when a certain behavior of interest occurs in a stochastic process. It is defined by a

stopping rule, which refers to a mechanism involving the decision of continuing the

process or stopping it, basing this decision taking on the present position in the

process and on past events. From this, the objective of optimal stopping theory is

the one of choosing the exact time to take a given action, looking at the present

position and past events, to maximize the expected revenue or to minimize the

expected cost. The field of this problem’s applications is very wide as it includes

areas such as statistics and operations research.

In this section, we are going to define, mathematically, what is a stopping rule.

Definition 1.1. Let (X1, X2, . . .) be a sequence of random variables with known

joint distribution and y0, y1(x1), . . . , y∞(x1, x2, . . .) be a sequence of real-valued re-

ward functions. A stopping rule problem is defined as to choose a time to stop

observing the sequence of random variables that maximizes the expected reward. In

particular, a stopping rule outlines a probability of stopping at a certain time n that

maximizes the expected revenue and which has been chosen based both on current

and previous observations, that is, on the value attached to X1, . . . , Xn that have
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been observed so far. This probability is expressed by φ(x1, . . . , xn). By this, it is

possible to state that a stopping rule is defined as the sequence:

φ = (φ0, φ1(x1), φ2(x1, x2), . . .).

So, if an agent decides to observe the sequence X1, X2, . . ., it would be pos-

sible for him to stop at time n, for n = 1, 2, . . ., once observed X1 = x1, X2 =

x2, . . . , Xn = xn. In that case, he would receive a reward of yn(x1, . . . , xn), which

is known. The other available option for the player is to continue observing the

sequence and to stop, for instance, at time n + 1, once the sequence is observed

up to Xn+1 = xn+1, receiving the associated reward.

The value of the probabilty of choosing a stopping time that maximizes this re-

ward is between 0 and 1 for all n and x1, . . . , xn. Then, we know that φ0 expresses

the probability that the agent decides not to take part to the observation, while

φ1 defines the probability that the agent stops after the first observation X1 = x1,

and so on for all the random variables of the sequence introduced above.

If the agent decides not to take part to the observation, his reward will be y0,

while, if he decides to observe the sequence and to not stop at any time, he will

have a reward of y∞(x1, x2, . . .) = −∞.

Definition 1.2. A stopping rule is said to be randomized if

0 ≤ φn(x1, . . . , xn) ≤ 1.

On the other hand, it is said to be non-randomized if each φn(x1, . . . , xn) is either

0 or 1.

It follows that, the stopping rule φ, together with the sequence of observations

X = (X1, X2, . . .), determines the random time N at which the agent decides to

stop. This N occurs between 0 and ∞, and in particular, if the player decides to

never stop, we would have N =∞.
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The probability mass function (a function that gives the probability that a discrete

random variable is exactly equal to some value) of N given X = x = (x1, x2, . . .)

is denoted by ψ = (ψ0, ψ1, . . . , ψ∞) where

ψn(x1, . . . , xn) = P(N = n |X = x),

ψ∞(x1, x2, . . .) = P(N =∞|X = x).

The first equation expresses the probability that the player decides to stop at a

given time N = n, for n = (0, 1, 2, . . .), given all the observations, while the second

one expresses the probability of never stopping. If we want to write the stopping

rule in terms of the random stopping time N , we will have

φn(X1, . . . , Xn) = P(N = n |N ≥ n,X = x) for all n = 0, 1, . . . .

Finally we need to define, mathematically, what is the expected reward that the

agent wants to maximize, denoted by V (φ). For 0 ≤ j ≤ ∞, it is defined as

V (φ) = E[yN(X1, . . . , XN)]

= E
∞∑
j=0

[ψj(X1, . . . , Xj)yj(X1, . . . , Xj)].

1.1 Stopping rule problems with finite horizon

In this sections we discuss a particular case for stopping rule problems. We

look at a situation in which the player is required to stop observing the sequence

X = (X1, X2, . . .) once having observed up to XT , where T > 0 is fixed. This

problem is said to have horizon T .

Definition 1.3. A stopping rule problem is said to have a finite horizon if there

is a known upper bound on the number of stages at which an agent may stop.
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This special case can be analyzed through the general problem that we have

discussed in the previous section. In particular, this special case arises when we

set yT+1 = . . . = y∞ = −∞.

Here, it is useful to apply the method of backward induction: we start from finding

the optimal rule at stage T − 1, since the highest step available to the player is T,

and then, knowing this, we continue back forward to the initial stage, which is the

stage 0. The expected reward that the agent wants to maximize is expressed by

V
(T )
T (x1, . . . , xT ) = yT (x1, . . . , xT ).

Specifically, we need to apply a backward induction that goes from j = T − 1 and

arrives at j = 0, in order to write the equation above in the following way:

V
(T )
j (x1, . . . , xj) = max{yj(x1, . . . , xj),E[V (T )

j+1(x1, . . . , xj, Xj+1) |Xi = xi ∀ i ≤ j]}.

V
(T )
j (x1, . . . , xj) is the maximum return that can be obtain starting, inductively,

from the j − th position, once X1, . . . , Xj have been observed. The two values

compared are respectively the return for stopping at stage j and the expected

return for stopping at another stage, like j + 1, after deciding continuing the

observation and using the optimal rule for stages j + 1 through T .

As we know that the maximum of these two quantities is considered as the player’s

optimal return and that the j − th step is an optimal stage to stop at if

V
(T )
j (x1, . . . , xj) = yj(x1, . . . , xj),

we state that the value of the stopping rule problem for this special case is repre-

sented by V (T )
0 .

In the following chapters, we will analyze a particular problem in this frame-

work, known as the “secretary problem”. Moreover, we will be interested in a

comparison between the optimal strategy and the perfect knowledge of a prophet

that knows the entire sequence X1, X2, . . . , XT , that is revealed by the prophet

inequality.
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Chapter 2

The secretary problem

The secretary problem appeared in the late 1950s and early 1960s and became

famous within the mathematical community for the ease with which it can be

stated and for its striking solution. This is considered one of the problems that

most characterizes the field of mathematics-probability-optimization: at the basis

of its solution, in fact, there is a knowledge of optimal stopping theories and a

close correlation with prophet inequalities.

In [6] Ferguson describes the framework in which the problem arises: suppose

that a boss wants to hire the best secretary out of n rankable applicants. The

administrator may hire only one secretary and the order the applicants follow to be

interviewed is sequential, random and unknown to the boss. It is said that a weight

is assigned to each applicant by some adversary unknown to the administrator, and

that this adversary will also choose the order to reveal secretaries. Secretaries are

revealed one at a time, the boss learns their weight (that is, their value), and he

immediately and irrevocably decides whether to hire or not the applicant. The

goal is to maximize the probability of selecting the secretary with the maximum

weight and, in particular, here we want to maximize the expected weight of what

the administrator will select.
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As in [6], the classical secretary problem has the following features:

• There is one secretarial position available;

• The number n of applicants is known to the boss;

• The applicants are interviewed sequentially in a random order. All the or-

derings are equally likely;

• All applicants can be ranked from best to worst without ties. The decision to

hire or not an applicant must be based only on current and past observations;

• Once rejected, an applicant cannot be recalled;

• The boss’ payoff function is 1 if the best of the n applicants is chosen, 0

otherwise.

First, we need to calculate the success probability of picking the best candidate

for some value r of rejected candidates. The success probability can be thought

as the sum of the probabilities of finding the best candidate in position n. You

might consider to make an arbitrary decision, such as to choose always the first

applicant. This random strategy performs poorly. You only have a probability 1/n

that the first applicant will be the best one. The same is true also when choosing

always the last applicant or always the n–th one: your odds are always 1/n for any

prearranged position. The random strategy gets worse as you increase the number

of applicants.

We now consider a class of strategies indexed by a parameter r = 1, . . . , n− 1. In

particular, given r ≥ 1, define Sr the strategy that rejects the first r−1 applicants

and then chooses the next applicant who is the best in the relative ranking of the

observed applicants. We want to compute the probability that the strategy Sr

chooses the best applicant.
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Define the events

Aj := {the j-th applicant is the best} , Bj := {Sr chooses the j-th applicant} .

We have the following proposition.

Proposition 2.0.1.

P(Aj) = 1
n
, P(Bj) = r − 1

j − 1 .

Proof. Since ∑n
j=1 P(Aj) = 1 and P(Aj) = P(Ai) for all i, j = 1, . . . , n, we have

P(Aj) = 1
n
.

Moreover, if the j-th applicant is the best one, then it is selected if and only if the

best applicant among the first j − 1 is among the first r − 1 applicants that were

rejected. Hence

P(Bj) = r − 1
j − 1 .

By Proposition 2.0.1, we get

P(Sr chooses the best applicant) =
n∑
j=r

P(Aj ∩Bj) = P(Bj |Aj)P(Aj) =

=
n∑
j=r

r − 1
j − 1 ·

1
n

= r − 1
n

n∑
j=r

1
j − 1 ,

(2.1)

where (r − 1)/(r − 1) represents 1 if r = 1. Calling Pr the above probability, we

have that the optimal r is the value that maximizes Pr. Note that

Pr+1 ≤ Pr ⇐⇒
r

n

n∑
j=r+1

1
j − 1 ≤

r − 1
n

n∑
j=r

1
j − 1 ⇐⇒

n∑
j=r+1

1
j − 1 ≤ 1

and hence the optimal rule is to select the first candidate that appears among

applicants from stage r on, where

r = min

r ≥ 1
∣∣∣∣ n∑
j=r+1

1
j − 1 ≤ 1

 .
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Note that, letting r and n go to infinity in equation (2.1) so that r/n converges

to x > 0, defining t = j/n and dt = 1/n, we get

lim
n→∞

P(Sr chooses the best applicant) = x ·
∫ 1

x

1
t
dt = −x ln(x) .

At this point, we need to find the value of x that maximizes this quantity. Note

that f ′′(x) = −1/x < 0 for x > 0 and hence f is concave in (0,+∞). Moreover

f ′(x) = −1 − ln(x) = 0 if and only if x = e−1 ≈ 0.37. Hence for large n it is

approximately optimal to wait until about 37% of the applicants that have been

interviewed and then to select the next relatively best one. The probability of

success is also about 37%.

2.0.1 Simulations of the Secretary Problem

We have used MATLAB to realize two simulations of the secretary problem,

with n = 1000 secretaries. In the first one, each secretary samples, independently

from the others, a value from a uniform distribution in [0, 1] (see Fig. 2.1), while

in the second one, each secretary samples, independently from the others, a value

from a discrete uniform distribution on the set {1, 2, . . . , n} (see Fig. 2.2). In both

figures is represented the probability that the strategy Sr picks the maximum for

r = 1, 2, . . . , n.

In the previous section, we have seen that when the number of secretaries n

is large, approximately, the optimal strategy would be waiting until about 37% of

the applicants interviewed so far and then to select the next relatively best one.

Moreover, the probability of success is also about 37%. In the above simulations,

we observe an approximation of such a result. The larger is n, the better the

approximation of 37% is represented by the graphs in Fig. 2.1 and Fig. 2.2.
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Fig. 2.1: Secretary problem with n = 1000 and each secretary assumes a value from a uniform

distribution in [0, 1], independently from the other secretaries. The x-axis reports the value of

r, for r = 1, 2, . . . , n, while the y-axis reports the value of Sr.
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Fig. 2.2: Secretary problem with n = 1000 and each secretary assumes a value from a discrete

uniform distribution on the set {1, 2, . . . , n}, independently from the other secretaries. The x-axis

reports the value of r, for r = 1, 2, . . . , n, while the y-axis reports the value of Sr.
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MATLAB code

The code below computes the probability P(ST chooses the best applicant), for

T = 1, 2, . . . , n. To compute such a probability we approximate it with the fraction

of success over the total number of samples of the same experiment (the experiment

is “the secretary problem picks the maximum applying the strategy ST ”). Note

that this approximation is justified by the Law of Large Numbers.

samples =100;

n =1000;

K=zeros (n ,1);

for T=1:n

c=0;

for i=1: samples

correct = secretary (n,T);

c=c+ correct ;

end

K(T)=c/ samples ;

end

plot (1:n,K(1:n))

The function secretary(n,T) gives 1 if the strategy ST picks the maximum over

the n secretaries, otherwise, it gives 0.

Below, we write the code of such a function for the Fig. 2.1, that is when the

secretaries samples value from the uniform distribution in [0, 1].
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v=zeros (n ,1);

for i=1:n

v(i)= rand (1);

end

M=v(1);

for i=2:n

if v(i)>M

M=v(i);

end

end

max=v(1);

for i=2:T

if v(i)>max

max=v(i);

end

end

if T<n

j=T+1;

while v(j)<max && j<n

j=j+1;

end

S=v(j);
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end

if T==n

S=v(n);

end

if S==M

correct =1;

else

correct =0;

end

Similarly, we write below the code of such a function for the Fig. 2.2, that is

when the secretaries samples value from a discrete uniform distribution on the set

{1, 2, . . . , n}.

v=zeros (n ,1);

for i=1:n

v(i)= randi (1000);

end

M=v(1);

for i=2:n

if v(i)>M

M=v(i);

end

end
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max=v(1);

for i=2:T

if v(i)>max

max=v(i);

end

end

if T<n

j=T+1;

while v(j)<max && j<n

j=j+1;

end

S=v(j);

end

if T==n

S=v(n);

end

if S==M

correct =1;

else

correct =0;

end
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2.1 A natural variation of the secretary problem

Suppose now to have N groups of people, where the i-th group contains li
people. At the i-th round a manager interviews the i-th group and then he must

decide immediately whether to select the best member in the i-th group. If so,

then the interview ends, otherwise he continues to interview the members of the

(i + 1)-th group. At each step the manager knows only the relative ranks of the

applicants who have been interviewed so far. No recall is permitted.

The aim is to find a strategy that maximizes the probability of selecting the

best applicant. It is not surprising that the optimal strategy is similar to the one

in the classical problem, that is to reject the applicants in the first r − 1 groups

(for some r) and accept the best one in the next group which contains the one

that is preferable to all the predecessors. What is new is that the threshold r is

determined by the following simple formula

r = min

n
∣∣∣∣ N∑
k=n+1

lk
bk−1

≤ 1

 , (2.2)

where

bk =
k∑
i=1

li . (2.3)

Below we prove the above result.

2.1.1 Proof of formula (2.2)

Recall the definition of bk in (2.3) for k = 1, . . . , N . Note that bk is exactly

the number of people interviewed up to step k. Denote by P1, . . . , PbN
the people

that are in the N groups and suppose that the manager has a list L0 with their

names ranked exactly in the above order, that is L0 := (P1, . . . , PbN
). Suppose

that the manager has interviewed the first k people P1, . . . , Pk. Then he is able

to construct a new list, that we denote by Lk, in which he ranks the interviewed
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candidates looking at their performance (from the best to the worst). So Lk is a

permutation of P1, . . . , Pk. Note in particular that LbN
is the list that contains all

the people ranked in terms of their performances (from the best to the worst).

We define Yk as the relative rank of Pk among the first k people, that is Yk is

the position of Pk in the list Lk. Moreover we define Ak as the absolute rank of

Pk, that is Ak is the position of Pk in the list LbN
. Let Zn be the absolute rank of

the best applicant in the n-th group, that is Zn := min{Abn−1+1, . . . , Abn}. Note

that if Zn = 1, then the best applicant of the n-th group is the best of all the

applicants.

Note that the optimal strategy is determined by the optimal stopping rule that

solves the problem in which we want to maximize E[Xn], where Xn := P(Zn =

1 |Y1, . . . , Ybn). Indeed if τ is the optimal stopping rule for such a problem, then

E[Xτ ] = P(Zτ = 1) and hence it is equivalent to maximize E[Xτ ] or P(Zτ = 1).

Below we state two lemmas that we are going to use. The proof of the first

lemma can be found in [1], while the second lemma is a consequence of the first

one.

Lemma 2.1.1. Y1, . . . , YbN
are independent random variables and for each k =

1, . . . , bN
P(Yk = j) = 1

k
, for j = 1, . . . , k .

Lemma 2.1.2. For any n = 1, . . . , N

Xn = P(Zn = 1 |Y1, . . . , Ybn) =


cn = bn

bN
, if Yk = 1 for some k ∈ [bn−1 + 1, bn] ,

0, if Yk 6= 1 for all k ∈ [bn−1 + 1, bn] ,

where we use the convention b0 = 0.

Note that by Lemma 2.1.2 Xn is a function of Ybn−1+1, . . . , Ybn . Define

γN = XN ; γn = max{Xn , E[γn+1 |Y1, . . . , Ybn ] for n = N − 1, . . . , 1 . (2.4)
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Since the Y ’s are independent (see Lemma 2.1.1) and γN = XN is a function of

YbN−1+1, . . . , YbN
, then

E[γN |Y1, . . . , YbN−1 ] = E[γN ] .

Consequently γN−1 = max{XN−1,E[γN ]} is a function of XN−1 and hence a func-

tion of YbN−2+1, . . . , YbN−1 . By a similar argument and backward induction, we

have that γn is a function of Ybn−1 , . . . , Ybn and hence

E[γn+1 |Y1, . . . , Ybn ] = E[γn+1] := Vn+1 for n = 1, . . . , N − 1 .

Then if VN+1 = 0, we have

γn = max{Xn, Vn+1} , for n = 1, . . . , N . (2.5)

Observe that E[γ1] = V1 ≥ V2 ≥ . . . ≥ VN ≥ VN+1 = 0 and 0 := c0 < c1 < c2 <

. . . < cN = bN

bN
= 1. So we can find a unique positive integer r between 1 and N

such that ci ≥ Vi+1 whenever r ≤ i ≤ N and cr−1 < Vr.

Let us consider the following stopping rule τ

τ = min{n ≥ r |Yk = 1 for some k ∈ [bn−1 + 1, bn]} .

In [10] it is shown that the stopping rule τ is the optimal stopping rule. By Lemma

2.1.2, equation (2.5) and the definition of r for each n = r, . . . , N

γn = max{Xn, Vn+1} =


bn

bN
, if Yk = 1 for some k ∈ [bn−1 + 1, bn] ,

Vn+1 , if Yk 6= 1 for all k ∈ [bn−1 + 1, bn] .

For r ≤ n ≤ N the V ’s satisfy the following recursive formula with VN+1 = 0 and

Vn = E[γn] = bn
bN

P(Yk = 1 for some bn−1 + 1 ≤ k ≤ bn)+

+ Vn+1P(Yk 6= 1 for all bn−1 ≤ k ≤ bn) =

= bn
bN
· ln
bn

+ Vn+1 ·
bn−1

bn
= ln
bN

+ bn−1

bn
· Vn+1 .

(2.6)
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Solving the above equation yields

Vn = bn−1

bN

N∑
k=n

lk
bk−1

, r ≤ n ≤ N . (2.7)

If r = 1 then, from (2.6) we have V1 = l1
bN

(though some ambiguity arises at (2.7)).

By (2.7) and the definition of r, we have

br
bN

= cr ≥ Vr+1 = br
bN

N∑
k=r+1

lk
bk−1

and br−1

bN
= cr−1 < Vr = br−1

bN

N∑
k=r

lk
bk−1

,

that is equivalent to

1 ≥
N∑

k=r+1

lk
bk−1

and 1 <
N∑
k=r

lk
bk−1

.

Hence

r = min

n
∣∣∣∣ N∑
k=n+1

lk
bk−1

≤ 1

 . (2.8)

On the other hand by (2.5) and the definition of r, for each n = 1, . . . , r − 1,

γn = max{Xn, Vn+1} = Vn+1, which implies that

V1 = V2 = . . . = Vr .

The above equation together with equation (2.7), Lemma 2.1.1 and the optimality

of the stopping rule τ , we have

P(Zτ = 1) = E[Xτ ] = E[γ1] = V1 = Vr = br−1

bN

N∑
k=r

lk
bk−1

.

This establishes the following proposition.

Proposition 2.1.3. Let r be defined as in (2.8). Then the strategy which max-

imizes the probability of selecting the best applicant is as follows: the manager

should reject the applicants in the first r− 1 groups and accept the best one in the

next group which contains the one who is preferable to all his/her predecessors.

Under this strategy, the probability of selecting the best applicant is

br−1

bN

N∑
k=r

lk
bk−1

.
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Remark 1. Note that if lk = l for all k = 1, . . . , N , then bk = ∑k
i=1 li = kl and

r = min

n
∣∣∣∣ N∑
k=n+1

1
k − 1 ≤ 1

 ,

as in the classical problem.

Moreover, in [10] it is proved that, if lk = k for 1 ≤ k ≤ N , then bk =∑k
i=1

k(k+1)
2 and

r = min

n
∣∣∣∣ N∑
k=n+1

1
k − 1 ≤

1
2

 .

Under the optimal strategy, the probability of selecting the best one is

P(Zτ = 1) = 2r(r − 1)
N(N + 1) ·

N∑
k=r

1
k − 1 ≈

1
e
,

as in the classical problem.
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Chapter 3

The prophet inequality

In the first part of this chapter we are going to analyze the classic prophet

inequality, which interest is mainly devoted to optimal stopping rules and pure

online algorithms, but also to mechanism design.

First of all, it is necessary to define the framework in which this prophet inequal-

ity is considered. The classical setting describes a gambler who is dealing with a

sequence of independent, non–negative random variables with finite expectations.

Following an indexed order, a value is drawn from each distribution, and after ev-

ery draw the gambler may choose to accept the value and end the game, or discard

the value permanently and continue the game. The gambler is free to choose any

stopping rule and she claims a reward equal to the last observation. The objective

of the gambler is to achieve the highest reward possible, maximizing the expected

value related to it. At this point, one question arises: what is the best performance

that a gambler is able to achieve when compared to a prophet who is capable of

choosing the highest value?

The performance measure, which is the comparative ratio between the perfor-

mance of the gambler and the one of the prophet, was deeply analyzed by Krengel,

Sucheston and Garling (see [12]): they stated that a gambler who finds herself in
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a framework with the same characteristics of the one described above can realize

a reward, in expectation terms, that is at least equal to the half of the reward of

a prophet who is able to see all the realizations in advance and, for this reason, to

choose the largest one.

In [12] Krengel, Sucheston and Garling show a very important result based on

online and offline algorithms in Bayesian settings. The Bayesian setting examined

is the one in which the online algorithm knows the distribution from which the

sequence will be sampled whereas the offline optimum knows the values of the

samples themselves and chooses the maximum among them. They showed that

a prophet, who can foretell the entire sequence and stop at its maximum value,

can gain at most twice as much payoff as a player who must choose the stopping

time based only on the current and past observations. In mathematical terms,

they showed that, given X1, . . . , Xn be a sequence of independent, non–negative,

real–valued random variables and E [maxiXi] < ∞, then there exists a stopping

rule τ such that

E
[
max
i
Xi

]
≤ 2E[Xτ ] .

This is known as the first of the prophet inequalities in optimal stopping theory

and it aims at comparing the performance of online and offline algorithms involved

in the selection of one or more elements from a random sequence.

To provide a proof of this prophet inequality for independent random variables,

we proceed as in [11].

Let X1, . . . , Xn be a sequence of independent, non–negative, real–valued random

variables and assume that

E
[
max
i
Xi

]
<∞ . (3.1)

Define T = E [maxiXi] /2. We will show that an algorithm that stops at the

first time τ such that Xτ ≥ T makes at least T in expectation. If Xi < T for all
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i = 1, . . . , n, we assume τ =∞ and we defineX∞ := Xn. Let p = P (maxiXi ≥ T ).

Then for any x > T we have

P(Xτ > x) =
n∑
i=1

P(Xτ > x | τ = i)P(τ = i) + P(Xτ > x | τ =∞)P(τ =∞) =

=
n∑
i=1

P(Xi > x | τ = i)P(τ = i) + 0 · P(τ =∞) =
n∑
i=1

P(Xi > x | τ = i)P(τ = i) =

=
n∑
i=1

P
(
Xi > x | ∩i−1

j=1 {Xj < T} ∩ {Xi > T}
)
P
(
∩i−1
j=1{Xj < T} ∩ {Xi > T}

)
.

(3.2)

Since the random variables {Xi}ni=1 are independent, we get

P
(
Xi > x | ∩i−1

j=1 {Xj < T} ∩ {Xi > T}
)

= P(Xi > x |Xi > T ) =

= P(Xi > x,Xi > T )
P(Xi > T ) = P(Xi > x)

P(Xi > T ) .

(3.3)

So by independence of the random variables {Xi}ni=1 and by (3.3), (3.2) becomes

P(Xτ > x) =
n∑
i=1

P(Xi > x)
P(Xi > T ) · P

(
∩i−1
j=1{Xj < T} ∩ {Xi > T}

)
=

=
n∑
i=1

P(Xi > x)
P(Xi > T ) · P(Xi > T ) · P (Xj < T for j = 1, . . . , i− 1) =

=
n∑
i=1

P(Xi > x) · P (Xj < T for j = 1, . . . , i− 1) .

(3.4)

Note that the event {maxiXi < T} implies the event {Xj < T for j = 1, . . . , i−1}.

So we have

P (Xj < T for j = 1, . . . , i− 1) ≥ P
(

max
i
Xi < T

)
= 1− p ,

by definition of p. Hence (3.4) becomes

P(Xτ > x) ≥
n∑
i=1

P(Xi > x) · (1− p) = (1− p)
n∑
i=1

P(Xi > x) . (3.5)
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Moreover

P
(

max
i
Xi > x

)
= P(∃ i such that Xi > x) = P (∪ni=1{Xi > x}) ≤

n∑
i=1

P(Xi > x) .

Then (3.5) becomes

P(Xτ > x) ≥ (1− p)P
(

max
i
Xi > x

)
.

Note that if x ≤ T , then

P(Xτ > x) =
n∑
i=1

P(Xτ > x | τ = i)P(τ = i) + P(Xτ > x | τ =∞)P(τ =∞) =

=
n∑
i=1

1 · P(τ = i) + P(Xτ > x | τ =∞)P(τ =∞)

≥
n∑
i=1

P(τ = i) + 0 = P(τ <∞) = P
(

max
i
Xi ≥ T

)
= p .

(3.6)

Moreover applying Lemma A.1

2T = E
[
max
i
Xi

]
=
∫ T

0
P
(

max
i
Xi > x

)
dx+

∫ +∞

T
P
(

max
i
Xi > x

)
dx

≤
∫ T

0
1 dx+

∫ +∞

T
P
(

max
i
Xi > x

)
dx = T +

∫ +∞

T
P
(

max
i
Xi > x

)
dx

and so

2T ≤ T +
∫ +∞

T
P
(

max
i
Xi > x

)
dx ,

that is

T ≤
∫ +∞

T
P
(

max
i
Xi > x

)
dx .

Hence, applying (3.6) and Lemma A.1, we get

E[Xτ ] =
∫ +∞

0
P(Xτ > x) dx =

∫ T

0
P(Xτ > x) dx+

∫ +∞

T
P(Xτ > x) dx

≥
∫ T

0
p dx+

∫ +∞

T
(1− p)P

(
max
i
Xi > x

)
dx ≥ pT + (1− p)T =

= T = 1
2E

[
max
i
Xi

]
.

So we have obtained the following result.
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Theorem 3.0.1 (Prophet inequality for independent random variables). Let {Xi}ni=1, T

and τ be defined as above and assume that (3.1) holds. Then

E
[
max
i
Xi

]
≤ 2E[Xτ ] .

The constant 2 that appears in Theorem 3.0.1 is the optimal constant, that is

it is not possible to find a constant C ∈ (0, 2) for which E [maxiXi] ≤ CE[Xτ ] for

any stopping rule τ . To prove it, suppose to have n = 2 (that is, we work with

two random variables X1 and X2). Given ε ∈ (0, 1), we define X1 := 1 and

X2 :=


1
ε
, with probability ε ,

0, with probability 1− ε.

Note that E[X2] = E[X1] = 1. Hence, under any stopping rule τ , we have E[Xτ ] =

1. Moreover

max{X1, X2} =


1
ε
, with probability ε ,

1 , with probability 1− ε .

Hence

E[max{X1, X2}] = 2− ε .

So when ε→ 0 we get

E[max{X1, X2}] = 2 = 2 · 1 = 2 · E[Xτ ] .

3.1 A prophet inequality with cost for observa-

tions

In the previous section, we have analyzed the ratio prophet inequality for inde-

pendent random variables {Xi}ni=1, without considering any cost of sampling. In

[15] such a cost is introduced with the additional hypothesis that all the random
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variables {Xi}ni=1 are i.i.d. and take values in [0, 1]. In this particular case, the

comparison is made between the performance of a prophet with complete foresight

and the performance of a gambler, who uses a strategy made of non–anticipating

stopping times, observing a sequence of i.i.d., real–valued random variables with

a non–negative fixed cost charged for each observation.

Given the sequence {Xi}ni=1, we define Yi := Xi − ic for i = 1, . . . , n, where

c > 0 represents the cost of each observation. As in [15] we want to prove the

difference prophet inequality, that we state in the following theorem.

Theorem 3.1.1. Let {Xi}ni=1 be a sequence of i.i.d. with 0 ≤ Xi ≤ 1. Define

Yi = Xi − ic and

V (Y1, . . . , Yn) = sup{E[Yτ ] : τ is a stopping rule} .

The following inequalities hold:

(a) fixed 0 < c ≤ 1 and a positive integer n, we have

E
[

max
1≤i≤n

Yi

]
− V (Y1, . . . , Yn) ≤

⌊1
c

⌋
c (1− c)b

1
c
c+1 , (3.7)

where for any x ∈ R we denote by bxc the largest integer smaller than x.

(b) fixed c ≥0 and a positive integer n, we have

E
[

max
1≤i≤n

Yi

]
− V (Y1, . . . , Yn) ≤

(
1− 1

n

)n+1
. (3.8)

(c) fixed c ≥ 0 and for any positive integer n (possibly n = +∞), we have

E
[

sup
1≤i≤n

Yi

]
− V (Y1, Y2, . . . , Yn) ≤ e−1. (3.9)

All bounds are the best possible.

This theorem shines the light on three different cases, which depend on the

different restrictions which can be assigned on the cost and the length of the

sequence, and states the best possible bound that can be applied to each situation.
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Remark 2. Note that in Theorem 3.1.1 it is enough to consider the case c ≤ 1

since for c > 1 the maximum and the optimal stopping value are obtained for n = 1

and the difference is 0.

3.1.1 Proof of Theorem 3.1.1

We can assume n ≥ 2, otherwise the inequalities are trivial. Chow, Robbin

and Siegmund in [2] have shown that an optimal stopping rule is given by

s = inf{i |Xi ≥ β} , (3.10)

where β is the unique value for which E [max{X1 − β, 0}] = c. Moreover they

show that E[Ys] = β.

Define sn = min{s, n}. Our first goal is to maximize E [max1≤i≤n Yi]− E [Ysn ].

We will show that this difference is always less or equal to the right-hand side

of (3.7) and (3.8). Actually it is possible to show that (3.7) and (3.8) become

identities when {Xi}ni=1 are particular Bernoulli random variables (see [15]). For

this reason we restrict to consider the case in which {Xi}ni=1 are i.i.d. Bernoulli

random variables of parameter p = c/(β − 1).

The following lemma is a crucial result that we will use many times in the proof

of Theorem 3.1.1.

Lemma 3.1.2.

E[Ysn ] = β − (1− u)n(β − E[X1 |X1 < β]) ,

where u = P(X ≥ β).

Proof. We know that E[max{X1 − β, 0}] = c. So

c = E[max{X1 − β, 0}] =

= E[X1 − β |X1 ≥ β]P(X1 ≥ β) + E[0 |X1 < β]P(X1 < β) =

= (E[X1 |X1 ≥ β]− β)P(X1 ≥ β) ,
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that is, defining u = P(X1 ≥ β)

E[X1 |X1 ≥ β]− β = c

u
.

Applying this identity, the thesis follows straightforwardly.

Define r = sup{i : 1− ic > −c}, that is r = 1 + b1/cc. For all i > r we have

Yi ≤ 1− ic < −c ≤ 0. Let

Dn = E[ max
1≤i≤n

Yi]− E[Ysn ] .

Proposition 3.1.3. Fixed c and p, for all n ≥ r we have

Dn ≤ Dr = (1− p)r(r − 1)c . (3.11)

Proof. For n ≥ r, we have

E
[

max
1≤i≤n

Yi

]
= 1− (1− p)r − c

r∑
i=1

ip(1− p)i−1 − c(1− p)r =

= β + (1− p)r(c(r − 1)− β) ,

where in the last equality we have used the definition of p and the identity
r∑
i=1

ip(1− p)i−1 = 1− (1− p)r+1

p
− (r + 1)(1− p)r .

Applying then Lemma 3.1.2 and observing that Ysn is non-decreasing in n yields

the thesis.

Proposition 3.1.4. Fixed c, for all p and all n we have

Dn ≤ Dr = b1/ccc(1− c)b1/cc+1 . (3.12)

Proof. Let c and r be fixed. For n ≥ r it follows that (3.11) is maximized when p

is minimized, that is when β = 0 and p = c. With such a choice of p the right-hand

side of (3.11) becomes the right-hand side of (3.12).
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For n < r, we have

E
[

max
1≤i≤n

Yi

]
= β + (1− p)n[c(n− 1)− β]

and hence

Dn = (1− p)nc(n− 1) .

Note that when n = 1, we have Dn = 0 and for n > 1 we have

Dn+1

Dn

> 1 ⇐⇒ n <
1
p
.

Since 1
p

= 1
c
> b1

c
c = r − 1 ≥ n, we have Dn < Dr for all n < r, that is the

thesis.

Since the case β < 0 is of no concern, (3.12) implies (3.7). Moreover (3.7) holds

also when n = d1/ce+ 1 and Xi is a Bernoulli random variable of parameter c.

The same argument can be used to prove (3.8). For p = c we can rewrite (3.11)

as

Dn ≤ Dr = (1− p)rp(r − 1) for all n . (3.13)

Since r = d1/ce + 1, we have 1/r ≤ p < 1/(r − 1). Moreover, (1 − p)rp is

increasing for p ∈ [0, 1/(r + 1)] and decreasing for p ∈ [1/(r + 1), 1]. Hence the

right-hand side of (3.13) is therefore maximal for p = 1/r and assumes value

(1 − 1/r)r+1, which is the right hand-side of (3.8) for n = r. Since (1 − 1/n)n+1

increases to e−1, E
[
supi≥1 Yi

]
= E [max1≤i≤n Yi] for n large and by Lemma 3.1.2

V (Y1, Y2, . . . , Yn) ≤ β = V (Y1, Y2, . . .), we have (3.9).

To complete the proof of the theorem it remains to consider the case β <

0. Hence by (3.10), we have s = 1 and hence E[Ysn ] = β for all n. Moreover

max{X1−β, 0} = X1−β and hence E[max{X1−β, 0}] = c implies E[X1] = β+ c.

Since X1 is a Bernoulli random varioable of parameter p, we have β+ c = p. Thus

for all n ≤ r it holds

E
[

max
1≤i≤n

Yi

]
= β/p+ (1− p)n[c(n− 1)− β/p]

27



and for n ≥ r we have

E
[
sup
i≥1

Yi

]
= E

[
max
1≤i≤n

Yi

]
= E

[
max
1≤i≤r

Yi

]
.

Thus for n ≤ r

Dn = β(1− p)/p+ (1− p)n[(p− β)(n− 1)− β/p] ,

Dn = Dr for r ≤ n and D1 = 0. Hence it is sufficient to consider n ≤ r. Fixed p

we can write Dn = βAn + Bn, where An > 0 and Bn do not involve β. Hence Dn

is increasing in β, that is, for β ≤ 0, Dn is maximal when β = 0. This completes

the proof of Theorem 3.1.1.
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Chapter 4

An economic view of the prophet

inequality and the secretary

problem

4.1 Connection between pricing and the prophet

inequality

The optimal stopping theory gives us, among many things, the evidence of a

connection between post-priced mechanisms and prophet inequality. The existence

of such connection began to receive attention only two decades ago, mainly because

of how it could be applied to make the allocation of resources as efficient as possible.

In [13] Lucier gives us an overview of this connection through an economic-oriented

proof of the prophet inequality. In fact, he goes over the mere direct applications

to pricing and mechanism design and firmly believes that an economic perspective

could be useful to make the prophet inequality a tool for stochastic optimization

and online algorithms.
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In his article, Lucier defines Hajiaghayi (see [8]) as the one who reintroduced the

prophet inequality into the community of economics and computations, and the

one who first took care to study the analogy between the latter and a simple

pricing problem. As in [8], the analogy is characterized by a setting where there

are k identical indivisible goods, or units, for sale, and there are n agents, or

bidders, each of whom wants to purchase one unit. Each agent i, for 0 ≤ i ≤ n,

is defined by three components that are called arrival time ai, departure time di
and value vi. We assume that if an agent receives one or more units during the

time interval [ai, di] with a payment pi, her utility for this allocation is vi − pi; for

all other allocations her utility is 0. The value the agent assigns to the good is

drawn from a distribution Di which is known to the seller and can vary among

bidders. The agent and the seller can negotiate using an arbitrary protocol, which

leads to the decision to sell or not and, if yes, at what price. To evaluate the

performance of an online mechanism, two measures of solution quality are used:

efficiency and revenue. The efficiency of an output is defined as the combined

welfare of all the agents, that is ∑i qivi, where qi is an allocation rule. The revenue

is the sum of the payments made by the agents, that is ∑i pi. A mechanism is

defined as ρ–competitive with respect to efficiency if the expected efficiency of

the outcome computed by the mechanism is at least 1/ρ times the expectation of

the maximum efficiency over all outcomes. On the other hand, we say that the

mechanism is ρ–competitive with respect to revenue if the expected revenue of the

outcome computed by the mechanism is at least 1/ρ times the expectation of the

maximum revenue that can be obtained by setting a single fixed price p and selling

to all agents whose value is at least p.

We need a direct-revelation mechanism which is truthful, that is strategyproof, in

dominant strategies, which means that the utility of an agent i is maximized if she

bids truthfully, regardless of what other agents report.
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In order to do that, agents are considered as treasure chests: in this way, the

prophet inequality can be applied to establish a sales protocol to guarantee at least

half of the optimal gains from trade, which is social welfare, in expectation. In

particular, the prophet inequality makes sure that each bidder’s value is completely

revealed to the seller upon arrival. The method would require to accept the first

buyer who’s value exceeds a fixed threshold (see [14]).

Now, as in [13], we want to prove that there exists a threshold policy that

gives, in expectation, at least half of the expected maximum value. First of all,

we indicate as V ∗ the random variable that has maxi vi as value and which is the

maximum of the n realized prizes. We consider a threshold policy that accepts the

first prize whose value exceeds 1
2E[V ∗], if any, where the expectation is over the

realizations of the prizes. We want to show that the expected prize generated by

this policy is at least 1
2E[V ∗]. This is a direct consequence of the Theorem 3.0.1

in Chapter 3, but, as in [13], we give below another proof of this fact in terms of

the quantities introduced up to now.

Theorem 4.1.1. The policy that accepts the first prize that is at least 1
2E[V ∗] has

expected reward 1
2E[V ∗]. This is true regardless of the decision made when a prize

is equal to 1
2E[V ∗].

Proof. The threshold policy we take into account is the one setting p = 1
2E[V ∗]

on the indivisible good that we had in [8]. Then, we adjust the setting as follows.

The expected revenue of this policy is simply equal to

1
2E[V ∗]P(item is sold) . (4.1)

The expected utility of agent i is at least

(vi − p)+ := max{vi − p, 0} (4.2)
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In the event {item is not sold before buyer i has a chance to purchase}. So the

expected agent’s surplus will be at least equal to

∑
i

E[(vi − p)+]P(i has a chance to purchase). (4.3)

Note that if the item is left unsold, then every customer has a chance to purchase

it. So

P(item is unsold) ≤ P(i has a chance to purchase) ,

and hence the summation in (4.3) is at least

(
∑
i

E[(vi − p)+])P(item is unsold) . (4.4)

Note that

∑
i

E[(vi − p)+] ≥ E[max
i

(vi − p)+] ≥ E[max
i
vi]− p ≥

1
2E[V ∗]

and hence (4.4) becomes

1
2E[V ∗] P(item is unsold) . (4.5)

This means that, summing (4.1) (that is the expected revenue) and (4.5) (that

is the expected agent’s surplus), the expected welfare which comes from this sales

mechanism is at least 1
2E[V ∗], as we wanted to prove.

The value 1
2E[V ∗] represents the equilibrium price that preserves the creation

of welfare: setting a lower price would be a disadvantage for higher-valued agents

because lower-valued agents would be more likely to purchase the good before

them, while setting a higher price increases the probability of not selling the item

at all; both cases are covered by revenue and agent surplus.

In [13] Lucier underlines the comparison of the prophet inequality with market–

clearing price. Considering the same setting as before but in a deterministic, full–

information version, the optimal price to set would be obviously maxi vi, which,
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supposing all customers are indifferent, gives the fully efficient outcome. Com-

pared to the prophet inequality price above, we know that the latter is the best

approximation to the optimal welfare but it does not completely guarantee the

complete satisfaction of each customer as it is characterized by the uncertainty of

the market.

4.2 The secretary problem for a random walk:

connection with the stock prices

In this section, we look at developing and testing models for stock price behav-

ior. There is one important approach, which is the theory of random walks, that

has disrupted the other two important theories that were significantly considered

in this research: they were the chartist or technical analysis theory and the theory

of fundamental intrinsic value analysis. Briefly, chartists generally believe that

price movements in a security are not random but can be predicted through a

study of past trends and other technical analysis, while the theory of fundamental

intrinsic value analysis believes that an individual security has an intrinsic value,

also known as equilibrium price, that basically depends on the earning potential

of the security which, in turn, depends on several factors, both tangible and intan-

gible, such as business models, management quality, governance and other market

factors. Both these theories are based on the assumption that there is a systematic

behavior in price series and that past patterns can be used to study and predict

the behavior of present and future price series.

In [4] Fama has analyzed how the competition that characterizes an efficient market

makes the full effects caused by new information of intrinsic value, to be instan-

taneously reflected on actual prices. This implies that successive price changes in

individual securities will be independent, which means that the market is, by defi-
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nition, a random walk market. The theory of random walks firmly sustains that a

series of stock price changes has no memory, which implies that past series cannot

be used to predict the behaviors of stock prices. The independence assumption

that underlies this theory is valid as long as the past series of stock price changes

cannot be used to increase profitability: in fact, as long as successive price changes

for a security are independent, a simple policy of buying and holding the security

will be as good as any complicated mechanism for timing purchases and sales.

This theory can be proved following two different approaches:

a) Relying on common statistical tools as serial correlation coefficients and anal-

ysis of runs of consecutive price changes of the same sign. If this statistical

test supports the assumption of independence, it means that there are no

mechanical trading rules or chartist techniques based on past patterns that

can make higher expected profits to investors.

b) Testing directly different mechanical trading rules to observe if they give

higher profits that the simple policy of buying and holding.

These approaches tend to confirm the theory of random walks, considering also

the fact that there is no evidence of dependence in successive price changes.

The analysis by Fama is the basis for the problem that arises in the paper by

Hlynka and Sheahan (see [9]). In this article there is a stock analyst who is asked

to pick the day in which a particular stock will be the highest during a given

month, immediately notifying his view to the client. If the analyst has taken the

best decision on which day to pick, he receives, as reward, a major portfolio to

manage, otherwise he receives nothing. If stock prices behave independently dur-

ing the month, the random walk theory comes into play.

In this paper, all values represent positions of a generalized one-dimensional ran-
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dom walk. The objective is to find a strategy that maximizes the probability of

picking the largest value in n steps with no recall allowed. In this framework, the

secretary problem can be applied to find the best strategy.

Definition 4.1. For i = 1, . . . , n, let {Xi}ni=1 be i.i.d. random variables. Take

Y0 = 0 and let Yi = Yi−1 + Xi. The process {Yi}ni=1 is called random walk and we

define Y ∗ = max{Yi : 0 ≤ i ≤ n} the maximum value that it assumes.

We will not discuss the properties of random walks and more details can be

found in [3]. Our objective is to find a strategy S that maximizes the probability

of picking Y ∗. More precisely, calling Y ] the picked value under strategy S, we

want to choose such a strategy to maximize the probability P(Y ] = Y ∗).

Definition 4.2. Let S0 be the strategy that picks Y0 = 0 as its choice for Y ∗. For

0 < k ≤ n, let Sk be the strategy which examines Y0, . . . , Yk−1 and picks the next Yi
(for i ≥ k) such that Yi > max{Y0, . . . , Yk−1}. If such Yi does not exist, the value

Yn is picked.

In the following we will assume that {Xi}ni=1 are discrete random variables with

symmetric distribution. More precisely, we make the following assumption.

Assumption 1. For i = 1, 2, . . . , n and m = 0, 1, . . . ,∞, let {Xi}ni=1 be i.i.d.

discrete random variables such that

P(Xi = m) = P(Xi = −m) = p(m) ,

that is, the distribution of Xi is symmetric about 0.

Actually in [9] is considered also the case of continuous distribution, but we

restrict here only to the discrete case for simplicity.
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Proposition 4.2.1. Let Y ] be the picked value under strategy Sk. Then P(Y ] =

Y ∗) is independent on the index k, that is P(Y ] = Y ∗) is the same for all k =

0, . . . , n.

Proof. We give here a sketch of the proof (we refer to [9] for more details). Define

Yi,k := Yi in order to underline that we use the strategy Sk on the sequence

{Yi,k}ni=0. Moreover define Y ∗k := max{Yi,k | 0 ≤ i ≤ n} and let Y ]
k be the value

picked from {Yi,k}ni=0 using the strategy Sk. It is possible to construct a bijective

function ϕ that maps the sequence {Yi,k}ni=1 into a sequence {Yi,0}ni=1 with the

following properties:

(i) {Yi,0}ni=1 is a permutation of {Yi}ni=1;

(ii) Y ∗k −Y
]
k = Y ∗0 −Y

]
0 , that is the distance between the actual maximum of the

sequence and the “guess” of the maximum of the sequence for the respective

strategies is preserved. Obviously, by item (i) above, we have Y ∗ = Y ∗k = Y ∗0 .

Property (ii) above together with Assumption 1 assure that {Yi,0}ni=1 and {Yi,k}ni=1

are equally probable and P(Y ]
k = Y ∗k ) = P(Y ]

0 = Y ∗0 ). Since the index k can vary

among 0 and n, we have that P(Y ]
k = Y ∗) = P(Y ]

0 = Y ∗) for all k = 0, . . . , n, that

is the thesis.

Proposition 4.2.2. If Assumption 1 holds, then S0 is an optimal strategy.

Proof. To prove what this proposition states, we refer to [7]. Consider the element

Y ] picked under strategy Sk from the sequence {Yi}ni=1. This problem can be

thought of as a game and the following approach can be applied:

(i) The event “Yi = Y ∗” HO SISTEMATO VIRGOLETTE, which means that

the element Yi is equal to the maximum of the sequence {Yi}ni=1, is considered

as “win with Yi”;
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(ii) The event “Y ] = Y ∗”, that states that the value picked under strategy Sk is

the maximum of the sequence {Yi}i=1, is defined as a “win”.

Then we define

g(i):=P(win with Yi |Yi ≥ Y0, Y1, . . . , Yi−1),

which refers to the conditional probability that Yi is the maximum of the sequence

given that it is greater than or equal to the values observed before.

Moreover we define

h(i):=P(win with best strategy from i+ 1 on |Yi ≥ Y0, Y1, . . . , Yi−1),

which reflects the conditional probability of winning with the best strategy waiting

for an other element of the set that comes after Yi, given that this one is grater or

equal to all the values observed. Moreover, we know that g(0) = P(win with Y0)

and that h(n) = 1, which means that the win with the best strategy is ensured

when choosing the n-th element of the sequence, knowing that Yn ≥ Y0, . . . , Yn−1.

Following this proof, we consider h(i) as a nondecreasing function (see [9]) and not

as an increasing function as in [7].

We analyze the following two cases:

• g(i) > h(i)

• g(i) = h(i)

In the first case, the best strategy would be choosing Yi as Y ]. In the second case,

as the probability of the two events are equal, the player is indifferent between

taking Yi as Y ] or just waiting for an other element of the set {Yi}ni=1, such as i′,

which satisfies g(i′) ≥ h(i′).

From this, we know that the strategy S0, which involves picking Y0 as Y ] , can

be defined as the best strategy if we are able to show that g(0) ≥ h(0). We start
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from defining for 0 ≤ r ≤ n

u(r) = P(Y0 is a maximum for the random walk sequence Y0, . . . , Yr) ,

which basically expresses the probability that S0 is the best strategy. From

the previous definitions we derive that g(n − 1) = h(n − 1), which means that,

when considering the second-last element of the sequence, the player is indifferent

between choosing Yn−1 as Y ] or waiting for the next and last element, and that

g(n) = h(n) = 1, that is, the two events are equivalent and assured when taking

the last element of the sequence Yn.

Then, we choose from {Yi}ni=1 an element Yk for 0 ≤ k ≤ n, to be the subject

of the two functions previously introduced, in order to analyze g(k) and h(k).

Furthermore, define Wi := Yk+i − Yk which represents the difference between the

i-th element of the sequence Yk, Yk+1, . . . , Yn and the element Yk. Specifically, we

are going to use a random walk sequence that goes from W0 to Wn−k, where the

first element is W0 = Yk+0 − Yk = 0 and the last one is Wn−k = Yn−Yk. Then, we

have

g(k) = P(win with Yk |Yk ≥ Y0, . . . , Yk−1)

= P(Yk is a maximum for the sequence Yk, . . . , Yn)

= P(W0 is the maximum for the sequence W0, . . . ,Wn−k)

= u(n− k) ,

h(k) = P(win with the best strategy from k + 1 on |Yk ≥ Y0, . . . , Yk−1)

= P(win with the best strategy from 1 on in the sequence W0, . . . ,Wn−k)

≥ P(win by picking the last element of the sequence W0, . . . ,Wn−k)

= P(win by picking the first element W0 of the sequence W0, . . . ,Wn−k)

= u(n− k) .
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The second last equality comes from 4.2.1.

Surely, from this derives that g(k) ≤ h(k), for 0 ≤ k ≤ n, but this does not prove

that S0 would be an optimal strategy. By the way, such an inequality implies

that it would be better to wait for the last value and choose it. Hence the above

inequality is actually an equality, that is h(k) = u(n− k) = g(k), and hence S0 is

an optimal strategy.

The following corollary is a direct consequence of Proposition 4.2.1 and Propo-

sition 4.2.2.

Corollary 4.2.3. If Assumption 1 holds, then Sk is an optimal strategy.

Remark 3. Note that the random walk {Yi}ni=1 is a martingale with respect to

the filtration {Xi}ni=1. Indeed, since {Xi}ni=1 are i.i.d. random variables and Yi is

known when conditioning to X1, . . . , Xi, we have

E[Yi+1 |X1, . . . , Xi] = E[Yi +Xi+1 |X1, . . . , Xi] = Yi + E[Xi+1] = Yi ,

where, in the last equality, we have used the symmetry of the probability distribution

of Xi+1. This implies that E[Y ∗] = E[Y0] = 0 and E[Y ]] = E[Y0] = 0.

If the distribution of X1 is such that P(X1 = 1) = P(X1 = −1) = 0.5, then we

can compute the probability of picking the maximum of the random walk Y0, . . . , Yn

for even values of n. More precisely we have the following result.

Proposition 4.2.4. Let n be an even positive integer. If Assumption 1 holds with

P(X1 = 1) = P(X1 = −1) = 0.5, then, for all k = 0, . . . , n, using strategy Sk

P(Y ] = Y ∗) =
(
n

n/2

)
1
2n ∼

n→∞

√
2
πn

.
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Proof. We know that P(Y ] = Y ∗) expresses the probability that the value picked

under strategy Sk is the maximum value of the sequence {Yi}ni=1. Moreover by

Proposition 4.2.1 we know that such a probability does not depend on k and

hence, since Y ] = Y0 = 0 when k = 0, we have

P(Y ] = Y ∗) = P(Y ∗ = 0) .

Since Y ∗ is the maximum value of the random walk, if Y ∗ = 0 we have that all

the Yi are smaller or equal to zero, that is

P(Y ∗ = 0) = P(Yi ≤ 0 for all i = 1, . . . , n) .

The thesis follows by Lemma A.2.

The maximum of a random walk sequence is more probable to occur near the

endpoints rather than near the middle (see page 94 in [5]). This means that a stock

analyst can predict that the maximum price of the month will occur on the first

day of the month itself. By Proposition 4.2.4, if P(X1 = 1) = P(X1 = −1) = 0.5,

and for the market being opened for 30 days, then the probability of the analyst

being correct is about 0.15 and there is no other strategy for him to improve

the probability of success. Moreover, this proposition tells us that, although all

strategies are equivalent, this does not mean all elements have the same probability

to be chosen.

The results discussed in this section tell us that choosing the first value of a

random walk sequence is an optimal strategy when we are trying to maximize the

probability of choosing the largest element of the sequence with no recall allowed.

This probability is greater than 1
n
(see Proposition 4.2.4) and this is due to the

considerations in [5] about the maximum of a random walk. Looking at this result,

we immediately notice that it is different from the result of the “classical” secretary

problem, in which the probability of success tends to 1
e
as n→∞.
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Appendix

In this appendix we list some technical basic results used in the previous chap-

ters.

Lemma A.1. If X is a non-negative and real-valued random variable. Then

E[X] =
∫ +∞

0
P(X > x) dx .

Lemma A.2. Let n be a positive even integer. Let {Xi}ni=0 be a sequence of i.i.d.

random variables with

P(Xi = 1) = P(Xi = −1) = 1
2 ,

and define Yi = Y0 +∑i−1
j=0 Xj for i = 0, . . . , n, with Y0 = 0. Then

P(Yi ≤ 0 for i = 0, . . . , n) =
(
n

n/2

)
1
2n ∼

n→∞

√
2
πn

.

Proof. We follow [5] for the proof. The outcomes of the Xi can be thought as

prizes associated to a sequence of tossings of a fair coin realized: at time i a fair

coin is tossed and in case of head we win 1 unit, while in case of tail we loose 1

unit. Hence Yi represents what we gain in the first i tossings.

Now we analyze the event {Yn = r}, that is at time n we have r units. Define

pn,r := P(Yn = r). We want to compute such a probability. Denoting by p and

q, respectively, the number of heads and tails obtained in the first n tossings, we
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have that

Yn = r ⇐⇒


p− q = r ,

p+ q = n .

So we get p = n+r
2 and q = n−r

2 . So the number of paths that start with Y0 and

arrive with Yn = r are given by

Nn,r :=
(
n
n+r

2

)
,

where the binomial coefficient is due to the fact that we have to count the number

of ways in which we choose the tossings that give head (and consequently the ones

that give tail). Note now that each path Y0, . . . , Yn is given obtained through the

sequence (X1, . . . , Xn) that has 2n possible outcomes (since each Xi can assume

values ±1). Hence, fixed a path for Y0, . . . , Yn, such a path has probability 1
2n to

occur. Then we have that

pn,r = Nn,r ·
1
2n =

(
n
n+r

2

)
· 1

2n .

where the binomial coefficient is zero if (n + r)/2 > n (that is r > n). So in

particular we have

pn,0 =
(
n
n
2

)
· 1

2n .

Applying equation (3.4) in [5] and noting that the distribution of Xi is symmetric

about 0, we have that such a probability corresponds also to the probability of

having a path with Y0 = 0 and Yi ≤ 0 for i = 1, . . . , n. So

P(Yi ≤ 0 for i = 0, . . . , n) = pn,0 =
(
n

n/2

)
1
2n .

By Stirling’s formula we have that

pn,0 ∼
n→∞

√
2
πn

,

and hence we get the thesis.
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