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INTRODUCTION 

 

Throughout the last few years, Bitcoin and cryptocurrencies in general have paved their way into 

mass media coverage and passed from being known only by a community of computer scientist to 

being acknowledged by most of the population worldwide. The rationale behind this major change 

can be found in cryptocurrencies unmatched volatility and upward price tendency. This particular 

feature, common to all cryptocurrencies and in particular to Bitcoin, provided the investors with the 

possibility to speculate and get rich (or poor) with an unprecedented velocity. Obviously, people 

who got great results from their investments in crypto have been way more active in sharing their 

outcomes through social media than the ones that saw their investments evanish before their eyes; 

following this pattern, it is easy to see why cryptocurrencies have been commonly known as an easy 

and quick way to make a fortune that bears some risk only in the short run. 

However, the perception that stems from the so-called “Crypto-millionaires” and suggests that 

Bitcoin and cryptocurrencies are a high performance asset is greatly biased and, through the hype it 

has created over time, it has led to the formation of numerous frictions and side effects. 

The first chapter is entirely dedicated to the functioning of Bitcoin, the first cryptocurrency ever 

created. We will explain what was the rationale behind its creation and, through the study of Satoshi 

Nakamoto’s white paper “Bitcoin: A peer-to-peer Electronic Cash System” (2008), we will find out 

how Bitcoin manages to resolve online payments issues and also the rules that regulate its creation 

through the so-called mining. 

The second chapter focuses on the mining process and tries to picture a situation of equilibrium in 

which all the miners maximize their utility functions. We will study the main determinants of 

miners’ strategies and see how these affect the gross resource usage. The model we study here was 

proposed in the working paper “Market structure in Bitcoin mining” of the National Bureau of 

Economics Research, by June Ma, Joshua S. Gans, Rabee Tourky. Although interesting in its 

approach to modelling the mining process and in the way its results are analyzed, the paper lacks 

mathematical precision and rigor; in particular, some claims in the paper are not true for the 

complete model, but only if some additional assumptions are made. Therefore we make some 

additions and adjustments to the model and find some first rigorous mathematical results about it. 

Since however this model we introduce requires mathematical techniques that are too advanced for 

the present work, we show how the model in the mentioned paper can be seen as a simplification of 

the rigorous one and we give rigorous proofs of some of the results discussed in the paper. This will 



4 

 

allow us to draw conclusions about the simplified model that can be argued to hold also for the 

rigorous model and that will be discussed in the following chapter 

The third and last chapter will use multiple sources to describe Bitcoin’s energetic demand and 

ecological impact. Assuming the second chapter’s mathematical model is verified we will show that 

the current state of the Bitcoin protocol, if compared with the classical banking system, is far from 

being efficient and is responsible to huge amounts of CO2 emissions. Lastly, we will propose a 

possible change in the Bitcoin protocol that could totally disrupt the present competition among 

miners and consequently decrease the aggregate demand for energy. 
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1. BITCOIN 

 

 1.1 BITCOIN’S FOUNDATION 

 

In 2008, a computer scientist named Satoshi Nakamoto, whose real identity still remains unknown, 

published a white-paper on the internet entitled “Bitcoin: A peer-to-peer Electronic Cash System”; 

in the paper, Nakamoto envisioned the creation of a new type of virtual money, the Bitcoin, which 

is a purely peer-to-peer version of electronic cash that directly connects the parties of an online 

transaction and allows them to send payments directly from one party to another, without going 

through a financial institution.  

The biggest innovation that the white paper brings to the table is embedded in a new technology 

that ensures the soundness and the fairness of online transactions. In general, online transactions’ 

integrity can be put into question by two main issues:  

1) The parties do not know each other and there is no trust between them, so, it could happen 

that one of the parties will not fulfill their contractual obligations without any sort of penalty 

2) There is the possibility that a certain agent uses the same amount of money to pay for 

multiple transactions (double-spending problem) 

The classical solution to these problems, since the beginnings of online markets, has always relied 

on the supervision and intermediation of financial institutions to serve as trusted third parties and 

process electronic payments. While this system fits well the majority of online transactions, it still 

lacks in some aspects, in fact, it suffers some weaknesses that derive from scarcity of trust between 

the parties. Since financial institutions are obliged to mediate disputes that arise from online 

payments, they are unable to ensure completely non-reversible transactions, even if non-reversible 

services are exchanged. This has some bad effects on financial institutions’ efficiency in 

intermediation because it prevents the complete elimination of the double-spending problem, and it 

also increases the cost of mediating online payments, limiting the minimum practical transaction 

size. 

So, even if the intermediation in online payments proved to be a good solution, still it has presented 

some flaws overtime, such as the possibility of fraud, that has not been eradicated yet, and some 

frictions that prevent agents from exchanging currency for services or goods without incurring in 

any transaction fee. 
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1.2 BLOCKCHAIN FUNCTIONING 

 

In his paper, Nakamoto presents a new and innovative solution to regulate online transactions, 

indeed he proposes to dismiss third parties’ intermediation and switch it in favor of an electronic 

payment system that allows economic agents to directly carry out contracts using a peer-to-peer 

network, the blockchain, that not only records the transactions in chronological order, but also 

ensures that they remain unchanged in the future since they are protected by cryptography and are 

impractical to reverse.  

We have previously defined the Bitcoin as an electronic coin. Such type of currency can be 

described as an exchangeable commodity which can be used to execute payments uniquely in the 

digital form and whose ownership can be verified through the sequence of transaction it carried out. 

Each digital payment requires the payer to digitally sign on the coin the hash1 of the coin’s previous 

transaction and also the public key that identifies the next owner; in this way the payee is able to 

prove his ownership by verifying all of the coin’s signatures. 

 

Figure 1: graphical representation of the digital signatures that prove ownership of bitcoin. From [10] 

This system provides the users with an efficient mechanism to prove the ownership of a certain 

amount of digital commodity, anyway, it does not resolve the need of the payee to verify whether 

one of the previous owners did double-spend the coin he is acquiring. The common solution to this 

issue usually involves a trusted central authority or mint and requires this entity to supervise each 

transaction and make sure there is no case of double spending. This pattern obliges users to give to 

                                                           
1 A hash is a digital code that can be computed from any type of digital data using a hash function 
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the central authority any sum of coin received in a digital transaction because later they will be 

given back from the same central authority the same amount of commodity in newly minted coin. 

The rationale behind this mechanism is that if only newly minted coins are accepted to transact, 

each transaction will be regulated and overviewed by the entity that runs the mint. This solution 

proves itself to be effective against double spending, but it strictly relies on a thrusted third party, 

just like orthodox payment systems.  

In order to change and better off the efficiency of online payments, another, more advanced way to 

eliminate double-spending has to be implemented. One possible solution expects every user of a 

certain payment system to be aware of all the concluded transactions. To arrive to this situation 

without the involvement of any trusted third party, there is the need to publicly announce each 

transaction and to make sure that each participant to the network agrees to their historical order; 

Nakamoto’s paper specifically aims at resolving this difficult task. 

First of all, the mechanism requires the use of a timestamp server2 that groups the data of 

transactions into blocks of items and singularly identify them by a hash. Then, it publishes the hash, 

proving to the network that the published data (transactions) occurred at a certain past time. Each 

hash will contain the data of the previously published one and, in this way, the timestamp server 

creates a chain of recursively connected hashes. 

 

Figure 2:  graphical repredentation of hashes connected in the blockchain. From [10] 

The application of a distributed timestamp server on a peer-to-peer basis is not free of any flow, in 

fact it is not independently safe from malicious attacks. To prevent this event from happening, the 

protocol employs a proof-of-work requirement in the process that leads to the block hash. This 

requirement makes sure that, if a malicious participant tries to alter block’s data, not only he/she 

would have to redo the Proof-of-work for the altered block, but, as blocks are recursively linked, 

he/she would have to redo it also for all the blocks that have succeeded it. 

                                                           
2 A timestamp server uses a certain algorithm to prove that an event happened at a certain time and that the data 
about it has not changed afterwards 
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The proof-of-work chosen by Nakamoto demands the participants to find out a value that, when put 

into the SHA-256 function, is transformed into a given hash. The SHA-256 is a function originally 

published by NSA in 2001 and that can be used for free. It maps any digital input into a 256 bits 

output that is usually presented as a hexadecimal string. It is considered a secure function because 

there is no known algorithm to reverse it, meaning that the only way to reverse it is by guessing the 

right input. This computational puzzle is very effective because users consume a consistent amount 

of time to find the right input and they can easily verify if one input is the solution by executing a 

single computation, which takes a negligible amount of time. The difficulty of the puzzle can be 

changed positively correlated to the number of initial zeros in the hash. This last feature is vital for 

Bitcoin protocol because it gives to the network the possibility to target an average number of 

blocks per hour by adjusting its difficulty to the ever-increasing hardware speed of computers. 

So, the network works on the proof-of-work until a user finds the solution to the SHA-256 puzzle 

and then he/she links the block of transactions to the previous one that is in the chain. This process, 

as we previously said, makes sure that data will not be changed without requiring the proof of work 

to be redone. 

Proof-of-work is then a sort of lottery that is used to decide who will be the participant that will add 

the next block of transactions to the chain. The probability for any participant to win this lottery is 

proportional to his/her computational power (CP) because, the higher the CP, the lerger the number 

of attempts to solve the SHA-256 a participant can make in a given amount of time. 

In Nakamoto’s view, the CPU based competition is also effective in regulating the majority 

acceptance of the newly added blocks and in avoiding malicious attacks to the network. Indeed, 

acquiring more CPU, means buying more computers and spending more energy to run them, and 

this ensures that the majority of network’s CPU do not belong to a malicious participant who would 

not have the needed monetary incentives to make such a big investment. 

Summarizing what we said about the Bitcoin protocol so far, the whole algorithm can be broken 

down to a sequence of steps: 

1) New transactions are carried out  

2) The timestamp transmits hashes of transactions to all the nodes of the network 

3) Each node groups data about new transactions into a block 

4) Each node attempts to solve a difficult proof-of-work puzzle (SHA-256)  

5) The first node to find the solution to the proof-of-work puzzle broadcasts its block to the 

whole network 
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6) Nodes accept the transmitted block if and only if all of its transactions are valid and there is 

no case of double-spending 

7) When the majority of the nodes accepts the block, it is added to the chain 

8) The hash of the accepted block is used to create the next block in the chain  

This process can be periodically repeated infinitely many times and it creates a decentralized 

dataset, that took the name of “Blockchain”.  

 

 1.3 BITCOIN MONETARY INCENTIVES AND AN INTRODUCTION OF 

 THE CONSEQUENCES 

 

To ensure that there will be competition in the network to solve the proof-of-work, the bitcoin 

protocol awards some prizes (monetary incentive) to the node that manages to solve the 

computational puzzle and add the new block to the chain.  

These incentives come into two forms: newly minted bitcoins and transaction fees that might be 

offered by parties of a transaction.  

We note that the proof-of-work process performed by nodes has an incidental role in issuing new 

currency in the absence of a centralized authority, so, just like gold miners expend resources to add 

gold to circulation, nodes use some scarce and costly resources, CPU and electricity, to increase the 

supply of bitcoin. Because of this parallelism, the nodes of bitcoin’s network are widely referred to 

as “miners”. 

The rate at which miners are rewarded newly minted bitcoins is not constant, indeed, the amount 

given out halves every 210,000 blocks added to the chain (every 4 years) and it will be null once the 

total supply of 21 million bitcoins will be reached.  

On the other hand, transaction fees do not follow some strict rules and totally depend on the parties 

of transactions. In fact, when economic agents want to speed up the pace at which their electronic 

payment is processed, they have the possibility to pay some fees to whoever manages to do so. 

These fees can be seen by miners, who, being profit maximizers, will obviously prefer to prioritize 

the highest fees transactions and choose them for their blocks. 

Initially, fees were rare, and not only they have become increasingly common as demand for 

transactions on the network has increased in recent times, but they are also predicted to increase 

more and more in order to balance the future rate of bitcoin issuance, that is destined to fall 

The incentives stipulated by the network make it worth it for miners to incur in computing 

technology costs, because that technology gives them the possibility to resolve the proof-of-work 



10 

 

puzzle and win the total reward in spite of other miners. Ergo, every time a block is validated and 

linked to the chain, all the miners incur in the costs associated to the technology of their choice and 

only the winning miner will be rewarded with newly minted Bitcoins plus any transaction fee. 

Even if Nakamoto seemed to envision a purely peer-to-peer payment system, in which any personal 

computer could have the possibility to perform mining, the popularity that Bitcoin gained overtime 

increased its value and created the conditions to disrupt the mining process. 

In fact the increased value of bitcoin straightforwardly increased the value of the prize won by 

whoever was able to complete the computational puzzle in the least time possible. Understanding 

this profit opportunity, miners began to invest in more sophisticated and powerful computers so that 

their computational power would increase together with their probability of validating the block and 

winning the prize. Despite miners started performing computations at a higher rate, the average time 

to validate each block has always been stable at 10 minutes due to the dynamic adjustment of 

difficulty provided by the server. 

Among the side effects of the increased difficulty of the SHA-256 puzzle, we note that mining 

became totally unprofitable for individual miners that use regular computers because their CPU 

relative power and the associated probability to win the competition rapidly fell to almost zero. 

In fact, in recent times, as the majority of mining activity took place in large warehouses equipped 

with computers strictly dedicated to mining, the competition in the bitcoin network has become a 

mere clash among the people who control the highest processing force. This led to the formation of 

mining pools: organized groups of individual miners who join their computation power together to 

increase their total probability of winning and to be awarded a piece of the total prizes that their 

mining pool is able to win.  

Now we know that high computing force is a pivotal factor in bitcoin protocol as it is clearly 

correlated with high probability of validating the block, nonetheless, it is not said that the miner 

with the best processing technology will always be the first to solve the puzzle mainly because of 2 

factors: 

1) Relative computing power is highly volatile as it depends on the number of active nodes in 

the network at a given point in time 

2) The random nature of the proof-of-work process, embedded in the non-deterministic way in 

which SHA-256 is solved, mitigates the monopolistic power of any miner 

This situation lets us define the bitcoin protocol as an all-pay auction among miners, whose 

outcome cannot be easily defined. The analysis of this competition will be our concern in the 

following chapter  
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2. BITCOIN MINING GAME 

 

We describe here a possible model of the Bitcoin mining in two versions, a complete 

one and a simplified one, the latter allowing for an easier analysis. The basics of the 

model are the same as in the working paper “Market structure in Bitcoin mining” of the 

National Bureau of Economics Research, by June Ma, Joshua S. Gans, Rabee Tourky, but we give 

here rigorous proofs of many mathematical facts, thgether with an introduction to some background 

material. 

 

 2.1COMPETITIVE ENVIRONMENT 

 

We describe here a possible model of the Bitcoin mining game. Within this model we will analyze 

competitive environment that characterizes the Bitcoin mining process and search for possible Nash 

Equilibria that governs the whole game. To reach this goal some assumption will be made in order 

to make the model more tractable. 

Assumption #1:  the network will always be regarded as consisting of N identical miners, indexed 

by i Є {1, 2, …, N}, that independently choose their computing technology and share the same cost 

function. 

As a first step in the competition to solve the mining game, each miner i, has to choose a certain 

computing technology 𝑥𝑖 ∈ 𝑅+ at time 𝑡0. The computing technology is measured in hashrate (hash 

computed / time) and has cost function 𝑐(𝑥𝑖) ≥ 0. 

Assumption #2: The cost function 𝑐: 𝑅+ → 𝑅+ is strictly convex and strictly increasing 

( lim
𝑥→0+

𝜕𝑐

𝜕𝑥
= 0) 

The miners use the technology they choose to solve a cryptographic puzzle which is given using the 

SHA-256 function; the puzzle features a difficulty level K Є 𝑅++, which is the expected number of 

computation required to solve the function itself. The SHA-256 function is said to be a one-way 

function (quasi-impossible to invert) and its difficulty level K (measured in hashes) is adjusted 

dynamically every two weeks in order to ensure that it is solved on average during a span of time δ* 

Є 𝑅+. This self-adjusting mechanism consists in increasing K if the puzzle is consistently solved in 

less than δ*. The aimed δ* amounts to 10 minutes, this period gives the nodes the required time to 

verify the transactions included in the blocks and it implies that any type of transaction brought out 

with Bitcoin as means of payment will be finalized and recorded in a maximum of 10 minutes, 
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giving to Bitcoin a great competitive advantage with respect to traditional banking system, that 

often takes days to do such things. 

We will use 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑁) as the vector that describes the time it takes for each player i = {1, 2, 

…, N} to solve the computational puzzle (for a fixed threshold K), so that the winner of the mining 

game will be the player i such that 𝑡𝑖 < 𝑡𝑗   ∀  𝑖 ≠ 𝑗. The winner of the game is rewarded with an 

amount of money P that is composed of two different parts: B, that represents an amount of newly 

minted bitcoins determined by the network, and f, that is the aggregate of the transaction fees 

offered in the associated block3: 

      P = B + f. 

The mining game can be thus defined as an all-pay game, where each miner initially chooses to pay 

for some technology 𝑥𝑖 > 0 if and only if he/she can meet the minimum effort cost required to solve 

the threshold-K puzzle, otherwise he/she would choose not to compete and thus not to incur in any 

cost.  

The outcome of the game for player i  that chooses 𝑥𝑖 > 0 will therefore be 

𝑃 − 𝑐(𝑥𝑖)  𝑖𝑓 𝑖 𝑤𝑖𝑛𝑠, 

−𝑐(𝑥𝑖)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

while any player that decides not to play will chose 𝑥𝑖 = 0, incurring in 𝑐(𝑥𝑖) = 0, meaning that 

he/she will have a monetary outcome equal to zero whatever happens in the mining game. 

At this point, the main issue that restrains us from finding the profit maximizing condition for the 

above mentioned static all-pay game is a way to measure the probability of winning attached to 

each player; to solve such issue, we assume that the technology for solving computational puzzles is 

formally equivalent to a stochastic Poisson process.  

 

 2.2 STOCHASTIC POISSON PROCESS 

 

A stochastic process is a collection of random variables indexed by a parameter, that in our case 

will be 𝑡 ∈ 𝑅+. A stochastic process indexed by a 1-dimentional parameter is often used to model 

random events that evolve in time and in our we will use it to study the behavior of certain set of 

independent events or the amount of time it takes for certain events to happen.  

                                                           
3 Each user determines their transaction fee in a first price sealed bid auction. Thus, miners, who are profit 
maximizers, assemble the blocks to maximize f summing the highest fees offered in one block, making it as profitable 
as they can. This fee f is a fixed amount of bitcoin, but varies in terms of dollars due to fluctuations in bitcoin-dollar 
exchange rate.  
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Consider a sequence of N independent identically distributed random variables {𝑋𝑖} =

{𝑋1,  𝑋2, … , 𝑋𝑁} exponentially distributed with intensity λ, that is, 

P(𝑋𝑖 ≤ 𝑥) = ∫ 𝜆𝑒−𝜆𝑧𝑑𝑧
𝑥

0

    ∀𝑖 

We interpret these variables as the waiting times of some statistically identical random events, in 

our case the time it takes for miner i to complete K difficulty level, thus the time at which the n-th 

event is concluded is represented by the random variable  

𝑆𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛.     (1) 

We denote as 𝑁𝑡 the stochastic process that counts the number of events that happened until time t: 

𝑁𝑡 = max{𝑛 ∈ 𝑁: 𝑆𝑛 ≤ 𝑡} 

For any N, we now know that the events {𝑁𝑡 ≥ 𝑛}  𝑎𝑛𝑑  {𝑆𝑛 ≤ 𝑡} are the same.  

To calculate the density fs  of a random variable S that is the sum of two independent real valued 

random variables X and Y with density  𝑓𝑥 𝑎𝑛𝑑 𝑓𝑦 we use a well known theorem that states that  

𝑓𝑠 = 𝑓𝑥 ∗ 𝑓𝑦(𝑧) = ∫ 𝑓𝑥(𝑢)𝑓𝑦(𝑧 − 𝑢)𝑑𝑢
+∞

−∞
 . 

Repeatedly applying it, we calculate the density of the random variable 𝑆𝑛, given by (1), obtaining 

the density function gn of a random variable that is Gamma distributed with shape and rate 

parameter respectively n and λ, namely 

𝑔𝑛(𝑥) = 𝜆
(𝜆𝑥)𝑛−1

(𝑛−1)!
𝑒−𝜆𝑥,    𝑥 ≥ 0  . 

We use gn to compute the probability that Sn is lower or equal to a certain Z 

𝑃(𝑆𝑛 ≤ 𝑍) = 1 − 𝑃(𝑆𝑛 ≥ 𝑍) = 1 − ∫ 𝑔𝑛(𝑥)
+∞

𝑍
𝑑𝑥  

and, integrating by parts n times the latter equation, we find the distribution function 

𝐺𝑛(𝑥) = ∑ 𝑒−𝜆𝑥
(𝜆𝑥)𝑗

𝑗!

+∞

𝑗=𝑛

,    𝑥 ≥ 0 

Therefore, we can now find the law of the random variable Nt. 

 

𝑃(𝑁𝑡 ≥ 𝑛) = 𝑃(𝑆𝑛 ≤ 𝑡) = 𝐺𝑛(𝑡) = ∑ 𝑒−𝜆𝑡
(𝜆𝑡)𝑗

𝑗!

+∞

𝑗=𝑛

,    𝑡 ≥ 0 

and  

𝑃(𝑁𝑡 = 𝑛) = 𝑃(𝑁𝑡 ≥ 𝑛) − 𝑃(𝑁𝑡 ≥ 𝑛 + 1) = 𝑒−𝜆𝑡
(𝜆𝑡)𝑛

𝑛!
 

That is exactly the density of a discrete Poisson distribution with intensity λt. 

We call a stochastic process a Poisson process with intensity λ if  

1) for every 𝑡 ≥ 0, 𝑋0 = 0 and 𝑋𝑡 ∈ 𝑁 
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2) The function 𝑡 → 𝑋𝑡 is non decreasing and right continuous with jumps of length 1 

3) It has independent increments, so for every finite collection of time-points 0 < 𝑡1 < 𝑡2 <

⋯ < 𝑡𝑚 the random variables 𝑋𝑡1
, 𝑋𝑡2

− 𝑋𝑡1
, … , 𝑋𝑡𝑚

− 𝑋𝑡𝑚−1
 are independent 

4) For every 𝑛 ∈ 𝑁 and every 0 ≤ 𝑠 < 𝑡 the increments of 𝑋𝑡   have the Poisson distribution with 

intensity λ(t-s), meaning that   

𝑃(𝑋𝑡 − 𝑋𝑠 = 𝑛) = 𝑒−𝜆(𝑡−𝑠) (𝜆(𝑡−𝑠))𝑛

𝑛!
     (2) 

The Poisson process helps us in understanding when a certain events happens and allows us to 

study the probability that a certain outcome happens n times in a predetermined time interval. It is 

said to be a stochastic, or random, process because the number of outcomes happening is not 

deterministic; in fact, the computation itself will only give us the probability attached to a certain 

event.  

From formula (2), we can infer that the probability for any number of outcome to happen is equal to 

zero if t=0, that it is directly proportional to the time span t and we can also note that there is no 

reference to any other disjoint interval of time, so the probability is independent from any other 

historical precedent.  

We will now show how the Poisson distribution can be derived from the binomial distribution. 

A random variable Y is said to have binomial distribution 𝐵𝑖(𝑡, 𝛽) with parameters t Є N, 𝛽 Є [0, 1], 

if  

𝑃(𝑌 = 𝑘) =  (
𝑡

𝑘
) (𝛽)𝑘(1 − 𝛽)𝑡−𝑘,   ∀ 𝐾 ∈ 𝑁 ; 

Y describes the number of 1’s in a 0-1 experiment, repeated t times, in which the probability of 

obtaining 1 is β.  

If we choose to use 𝛽 =
𝜆

𝑡
, we can see that taking larger t, the distribution becomes increasingly 

precise because it analyses more moments in time in which the outcome we are studying could 

happen; if we take the limit for t that goes to infinity, then we will have the most granular and 

precise probability distribution we can get. 

So, we need to compute: 

lim
𝑡→∞

𝑃(𝑌 = 𝑘) =  lim
𝑡→∞

(𝑡
𝑘

)(𝛽)𝑘(1 − 𝛽)𝑡−𝑘, 

choosing 𝛽 =
𝜆

𝑡
 and knowing that  

(𝑡
𝑘

) =  
𝑡!

(𝑡−𝑘)!𝑘!
=

(𝑡)(𝑡−1)(𝑡−2)…(𝑡−𝑘+1)

𝑘!
, 

then  
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lim
𝑡→∞

𝑃(𝑌 = 𝑘) = lim
𝑡→∞

(𝑡)(𝑡 − 1)(𝑡 − 2) … (𝑡 − 𝑘 + 1)

𝑘!
(

𝜆

𝑡
)

𝑘

(1 −
𝜆

𝑡
)

𝑡−𝑘

 

we do not know the true value of the term (𝑡)(𝑡 − 1)(𝑡 − 2) … (𝑡 − 𝑘 + 1) but we state that it is 

bounded above by 𝑡𝑘 and below by  (𝑡 − 𝑘 + 1)𝑘, so that 

𝑡𝑘 ≥ (𝑡)(𝑡 − 1)(𝑡 − 2) … (𝑡 − 𝑘 + 1) ≥ (𝑡 − 𝑘 + 1)𝑘; 

this implies that  

lim
𝑡→∞

𝑡𝑘

𝑘!
(

𝜆

𝑡
)

𝑘
(1 −

𝜆

𝑡
)

𝑡−𝑘
≥ lim

𝑡→∞
𝑃(𝑌 = 𝑘) ≥ lim

𝑡→∞

(𝑡−𝑘+1)𝑘

𝑘!
(

𝜆

𝑡
)

𝑘
(1 −

𝜆

𝑡
)

𝑡−𝑘
   (3) 

using lim
𝑛→∞

(1 +
𝑎

𝑛
)

𝑛

= 𝑒𝑎 and the fact that  

(𝑡 − 𝑘 + 1)𝑘 = 𝑡𝑘 + 𝛼1𝑡𝑘−1 + 𝛼2𝑡𝑘−2 + ⋯ + 𝛼𝑘−1𝑡 + 𝛼𝑘 

= 𝑡𝑘(1 + 𝛼1𝑡−1 + ⋯ + 𝛼𝑘−1𝑡−𝑘+1 + 𝛼𝑘𝑡−𝑘) ≈ 𝑡𝑘     𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑡, 

we are able to use the squeeze theorem in formula (2) to give a value to lim
𝑡→∞

𝑃(𝑌 = 𝑘): 

lim
𝑡→∞

𝑡𝑘

𝑘!
(

𝜆

𝑡
)

𝑘

(1 −
𝜆

𝑡
)

𝑡−𝑘

=
𝜆𝑘

𝑘!
𝑒−𝑘 ≥ lim

𝑡→∞
𝑃(𝑌 = 𝑘) ≥ lim

𝑡→∞

(𝑡 − 𝑘 + 1)𝑘

𝑘!
(

𝜆

𝑡
)

𝑘

(1 −
𝜆

𝑡
)

𝑡−𝑘

=
𝜆𝑘

𝑘!
𝑒−𝑘; 

thus 

lim
𝑡→∞

𝑃(𝑌 = 𝑘) =
𝜆𝑘

𝑘!
𝑒−𝑘. 

So we started from the binomial distribution and we arrived to a special case of formula (2) in 

which the time period of the distribution we study is equal to 1 

As stated earlier, we assume that the technology for solving the computational puzzles is formally 

equivalent to the above explained Poisson process 

𝑋𝑖  ∼  Poisson(𝑥𝑖) 

Where 𝑋𝑖(𝑇) gives the number of computations miner i will complete in the time interval [0,t] given 

its choice of technology. By standard properties of the Poisson distribution the expected number of 

made computation is 𝑥𝑖(𝑡). 

Assumption #2: Poisson processes corresponding to different miners are independent and work in 

parallel4 

From the Poisson distribution of 𝑋𝑖(𝑡) we extrapolate the random variable 𝑡𝑖 ∈ 𝑅+, that is the time 

at which K computation are completed by miner i. The random variable ti are independent and 

Gamma distributed: 

                                                           
4 If this was not the case, then miners could organize in pools and potentially coordinate their computation to increase 
their chances to win the mining competition. In any case, by assumption #1, mining pools would be of equal size, 
meaning that independence assumption would still hold 
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𝑡𝑖 ∼ Gamma(K, 𝑥𝑖). 

As for the case of stochastic Poisson process, we will need some further explanation about the 

gamma distribution and, most importantly, why it is the distribution of the time ti it takes for 

player’s technology to compute K computation. 

 

 2.3 GAMMA DISTRIBUTION 

 

The gamma distribution is a two parameter probability distribution that is used to estimate reliance, 

survival and duration models, which is the use we will make of it in this case. 

In our model we claim 𝑡𝑖 has a gamma distribution characterized by parameters K>0 and 𝑥𝑖>0 

(respectively the distribution’s scale and the shape parameters), that its probability density function 

(PDF) 𝛾𝑘,𝑥𝑖
(𝑡) is  

𝛾𝑘,𝑥𝑖
(𝑡) =  

𝑡𝐾−1

Γ(K)
𝑥𝑖

𝐾𝑒−𝑥𝑖𝑡                                                           (4) 

where Γ is the Euler gamma function  

Γ(y) =  ∫ 𝑡𝑦−1
∞

0

𝑒−𝑡𝑑𝑡,   𝑦 > 0 

Among Euler gamma function’s properties, the most important is that for every y>0, Γ(y + 1) =

𝑦Γ(y)  𝑎𝑛𝑑   Γ(1) = 1. Thus in particular Γ(k) = (𝑘 − 1)! whenever k is a positive integer; as a 

consequence we also have 

1)   
Γ(K)

𝑥𝑖
𝐾 = ∫ 𝑡𝑖

𝐾−1∞

0
𝑒−𝑥𝑖𝑡𝑖𝑑𝑡  ∀ 𝑥𝑖 > 0, ∀ 𝐾 ≥ 1 

2) As it can be easily shown, the integral from zero to infinite of 𝛾𝑘,𝑥𝑖
(𝑡𝑖) is equal to 1, so that 

𝛾𝑘,𝑥𝑖
is indeed a PDF for every 𝐾 ≥ 1 and every 𝑥𝑖 > 0: 

∫ 𝛾𝑘,𝑥𝑖
(𝑡𝑖)𝑑𝑡

∞

0

= ∫
𝑡𝑖

𝐾−1

Γ(K)
𝑥𝑖

𝐾𝑒−𝑥𝑖𝑡𝑖𝑑𝑡   =
𝑥𝑖

𝐾

Γ(K)
∫ 𝑡𝑖

𝐾−1𝑒−𝑥𝑖𝑡𝑖𝑑𝑡 =
𝑥𝑖

𝐾

Γ(K)

Γ(K)

𝑥𝑖
𝐾 = 1

∞

0

∞

0

 

One important feature of 𝑡𝑖 we can derive from the gamma distribution is its expected value, which 

depends on both the scale and the shape parameters, and that is found as follows. 

Using formula (4) for the probability density function and general formula for the expected value of 

a random variable that has a density, we get: 

𝐸[𝑡𝑖] = ∫ 𝑡𝛾𝑘,𝑥𝑖
(𝑡)

∞

0

𝑑𝑡 

= ∫
𝑡𝐾−1

Γ(K)
𝑥𝑖

𝐾𝑒−𝑥𝑖𝑡 𝑑𝑡
∞

0
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=
𝑥𝑖

𝐾

Γ(K)
∫ 𝑡𝐾𝑒−𝑥𝑖𝑡 𝑑𝑡

∞

0

 

Then we use an auxiliary variable 𝑤 = 𝑥𝑖𝑡  to obtain 

𝐸[𝑡𝑖] =
𝑥𝑖

𝐾

Γ(K)
 ∫ (

𝑤

𝑥𝑖
)

𝐾

𝑒−𝑤
∞

0

𝑑𝑤

𝑥𝑖
 

=
𝑥𝑖

𝐾

𝑥𝑖
𝑘+1Γ(K)

 ∫ 𝑤𝐾𝑒−𝑤
∞

0

𝑑𝑤 

Using firstly the definition of gamma function and successively properties 2) and 1) 

𝐸[𝑡𝑖] =
Γ(K+1)

𝑥𝑖Γ(K)
=

K Γ(K)

𝑥𝑖 Γ(K)
. 

We conclude that 

𝐸[𝑡𝑖] =
𝐾

𝑥𝑖
   .                                                                  (5) 

 

The main deduction we take from studying the gamma distribution of the random variable 𝑡𝑖, that 

represents the time it takes for miner i to complete K computations, is that its expected value is the 

ratio between K and the technology 𝑥𝑖 that miner i choose to use, thus we deduce that the 

probability of a miner to perform computations in an arbitrary amount of time in positively 

correlated to miner’s technology xi. 

Using properties of the Gamma distribution we can also measure the probability that a certain 

player is the first miner to complete K computations, meaning that he wins the mining game and 

gets the reward P.  

Player i is said to win the game if 

𝑡𝑖 < 𝑡𝑗     ∀    𝑗 ≠ 𝑖 

So, if we define 𝑊𝑖 as the set of time realizations in which player i is the winner of the game, 

𝑊𝑖 = { 𝑡 ∈  𝑅+
𝑁 ∶  𝑡𝑖 < 𝑡𝑗 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 𝑖},    𝑊𝑖  ⊆   R+

𝑁, 

and if we assume that the strategy profile (𝑥𝑖, 𝑥−𝑖) 5 represents the choices of all the miners, we can 

use the cumulative density function of the minimum order statistic of the gamma distribution to 

calculate the probability (π) that player i wins, defined as 

𝜋(𝑊𝑖; 𝐾, 𝑥𝑖 , 𝑥−𝑖) ≔ 𝑃(𝑡 ∈ 𝑊𝑖) 

                                                           
5 (𝑥𝑖, 𝑥−𝑖)  will be used from now on to describe the strategies of all the players, where 𝑥𝑖  represents the strategy of 

player i and 𝑥−𝑖  represents the strategies of all the other players 
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To compute it we use the cumulative distribution functions Fi(s) of the independent random 

variables 𝑡1, 𝑡2, … , 𝑡𝑁.         

𝐹𝑖(𝑠) = 𝑃(𝑡𝑖 < 𝑠) = ∫ 𝛾𝐾,𝑥𝑖
(𝑟)𝑑𝑟

𝑠

0

 

Let T = min(𝑡2, 𝑡3, … , 𝑡𝑁); the probability that ti is the shortest time span in the network is 

𝜋(𝑊𝑖; 𝐾, 𝑥𝑖 , 𝑥−𝑖) = 𝑃(𝑇 ≥ 𝑡𝑖) = 𝑃(𝑡𝑗 ≥ 𝑡𝑖  ∀ 𝑗 ≠ 𝑖) 

From now on, we will proceed in the analysis in two ways: firstly we will make a rigorous model to 

represent it, then we will make the second model that uses some simplificationsto state an easier 

and reliable model we will use while analyzing the mining game. 

 2.4 RIGOROUS MODEL 

The background material for this and the next parts can be found in Patrick Billingsley, Probability 

and Measure - Anniversary Edition (2012), Wiley. 

As we know that time ti follows a Gamma distribution, then the probability that time ti for a player i 

is higher that a certain value y is 

𝑃(𝑡𝑙 > 𝑦) = ∫ 𝛾𝑘,𝑥𝑙
(𝑠)𝑑𝑠

+∞

𝑦

 

With the same reasoning we calculate the probability that every player, except i, takes a computing 

time t higher than y: 

𝑃(𝑡𝑙 > 𝑦 ∀ 𝑙 ≠ 𝑖) = ∏ ∫ 𝛾𝑘,𝑥𝑙
(𝑠)𝑑𝑠

+∞

𝑦𝑙≠𝑖

= ∏
𝑥𝑙

𝐾

(𝑘 − 1)!
∫ 𝑠𝑘−1𝑒−𝑥𝑙𝑠𝑑𝑠

+∞

𝑦𝑙≠𝑖

 

where ∫ 𝑠𝑘−1𝑒−𝑥𝑙𝑠𝑑𝑠
+∞

𝑦
= 𝑒−𝑥𝑙𝑠𝑃𝑘,𝑥𝑙

(𝑦) and 𝑃𝑘,𝑥𝑙
(𝑦) is a polynomial of degree k-1 that is found 

through integration by parts, depends on K and xl and whose coefficient attached to 𝑦𝑘−1 is positive 

𝑃(𝑡𝑙 > 𝑦 ∀ 𝑙 ≠ 𝑖) =
1

[(𝑘 − 1)!]𝑁−1
∏ 𝑥𝑙

𝐾𝑒− ∑ 𝑥𝑙𝑦𝑙≠𝑖 ∏ 𝑃𝑘,𝑥𝑙
(𝑦)

𝑙≠𝑖𝑙≠𝑖

 

For simplicity, we denote 𝑃(𝑡𝑙 > 𝑦 ∀ 𝑙 ≠ 𝑖) as H(y). 
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Now we switch the generic value y with a given computing time for player i, namely ti  

𝑃(𝑡𝑙 > 𝑦 ∀ 𝑙 ≠ 𝑖 | 𝑡𝑖 = 𝑦) = 𝑃(𝑡𝑙 > 𝑡𝑖 ∀ 𝑙 ≠ 𝑖| 𝑡𝑖) = 𝐻(𝑡𝑖) 

and therefore 

𝑃(𝑡𝑙 > 𝑡𝑖  ∀𝑖) = 𝐸[𝐻(𝑡𝑖)] = ∫ 𝐻(𝑠)𝛾𝑘,𝑥𝑙
(𝑠)𝑑𝑠

+∞

0

 

Through integration by parts we calculate that 

𝑃(𝑡𝑙 > 𝑡𝑖 ∀𝑖) =
∏ 𝑥𝑙

𝑘
𝑙

[(𝑘−1)!]𝑛 ∫ 𝑒− ∑ 𝑥𝑙
𝑠

𝑙 �̃�(𝑠)𝑑𝑠
+∞

0
    𝑤ℎ𝑒𝑟𝑒    �̃�(𝑠) = 𝑠𝑘−1 ∏ 𝑃𝑘,𝑥𝑙

(𝑠)𝑙≠𝑖   (6) 

Formula (6) is the rigorous version of probability 𝜑(𝑊𝑖, 𝑥𝑖, 𝑥−𝑖, 𝐾), it is way too complicated to be 

used in our future game theory analysis of the mining game; however, from it, we deduce that for 

high xi it will be an increasing function. The latter means that if one player has a big enough 

computing capacity, a further increase in its technology will increase its probability of winning the 

mining game. 

Now we will show a simplified model and we will show analytically that the property about the 

rigorous model, mentioned in the last paragraph, will still hold. 

 2.5 SIMPLIFIED MODEL 

Assumption #3: E[ti] derived from Gamma distribution of ti is considered a good proxy for the 

computing time ti. 

Under assumption #3 player 1 completes K computations at time E[ti]. 

The probability that player 1 will win the computing race is, by independence, 

    𝜋(𝑊1; 𝐾, 𝑥1, 𝑥−1) = 𝑃(𝑇 > 𝐸[𝑡1]) = 𝑃(𝑡2 > 𝐸[𝑡1], 𝑡3 > 𝐸[𝑡1], … , 𝑡𝑁 > 𝐸[𝑡1]) 

   = 𝑃(𝑡2 > 𝐸[𝑡1]) 𝑃(𝑡3 > 𝐸[𝑡1]) … . 𝑃(𝑡𝑁 > 𝐸[𝑡1]) 

   = [1 − 𝐹2(𝐸[𝑡1])][1 − 𝐹3(𝐸[𝑡1])] … . [1 − 𝐹𝑁(𝐸[𝑡1])] 

    =  ∏ [1 − 𝐹𝑖(𝐸[𝑡1])]𝑁
𝑖=2  
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And if we assume all the miners to have a symmetric computing technology we arrive to 

 𝜋(𝑊1; 𝐾, 𝑥1, 𝑥−1) = [1 − 𝐹𝑖(𝐸[𝑡1])]𝑁−1                   (7)                                                                                                                       

The quantity 𝜋(𝑊𝑖; 𝐾, 𝑥𝑖 , 𝑥−𝑖) is pivotal in the study of the mining game that leads to find an 

internal Nash equilibrium, because it will be largely used from now on to describe the payoff 

function of each miner and, consequently, miners’ best response functions. 

Miner i payoff will be  

𝑈𝑖(𝑥𝑖) = 𝑃𝜋(𝑊𝑖; 𝐾, 𝑥𝑖 , 𝑥−𝑖) − 𝑐(𝑥𝑖) = 𝐸(𝑃) − 𝑐(𝑥𝑖);                                          (8) 

note that player i can maximize its payoff only changing its technology choice 𝑥𝑖. The next step to 

do is to understand whether there is a common pattern of behavior, namely an internal Nash 

equilibrium, that characterizes the network of miners. 

 2.6 ANALYSIS OF THE MINING GAME 

Bitcoin mining process consists in subsequent rounds, that last 10 minutes, in which N miners 

compete to be the first to solve a certain computational puzzle that has complexity K. To better 

analyze the whole process and to find a consistent Nash equilibrium, it is useful to divide the 

mining game into two parts: a stage game that represents a single round of the mining process and a 

dynamic game that takes into account the sequence of mining rounds and the adjustment that both 

the miners and the network can make to change the outcome of the game. 

 2.7 STAGE GAME 

Firstly, we analyze the stage game component of the mining process. In this context the 

computation difficulty K is fixed and miners have no impact on it; the only variable feature of these 

games is the technology choice of miners. We will show that there exists a unique Nash equilibrium 

in the technology choice in every round and that it is also symmetric for each player. 

Definition: A Nash equilibrium is a mining game’s outcome supported by a strategy  𝒙∗ =

(𝑥1
∗, 𝑥2

∗, … , 𝑥𝑁
∗ ) such that for each player 𝑖 = 1, 2, … , 𝑁 no player has incentive to deviate by 

choosing a different 𝑥𝑖 ≠ 𝑥𝑖
∗ assuming that the other players keep their strategies fixed: 

𝑈𝑖(𝑥∗) ≥ 𝑈𝑖(𝑥𝑖, 𝑥−𝑖
∗ )   
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In the mining game, the Nash equilibrium is a strategy profile  𝒙∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑁
∗ ) which, given a 

computing difficulty K, represents the technology choices of each miner 𝑖 = 1, 2, … , 𝑁 and 

guarantees that 

1) for all players  𝑖 = 1, 2, … , 𝑁    𝑈𝑖(𝑥𝑖
∗, 𝑥−1

∗ ) ≥ 𝑈𝑖(𝑥𝑖, 𝑥−1
∗ )    ∀ 𝑥𝑖 > 0 

2) The expected required time to solve the computational puzzle given x* is 𝛿𝐾 ∈ 𝑅+, where 

   𝛿𝐾 = 𝐸𝐾(min{𝑡1, 𝑡2, … , 𝑡𝑁}|𝐾) 

Definition: A symmetric equilibrium is a Nash equilibrium in which each player 𝑖 = 1, 2, … , 𝑁 has 

the same utility maximizing strategy x*. 

In the mining game, a symmetric equilibrium is a triplet (𝛿∗, 𝐾∗, 𝑥∗) such that 

1) x* is a Nash equilibrium (in the sense of the previous definition) for the difficulty threshold 

K* 

2) The expected time of completion 𝛿∗ is equal to the target solution time set by the network, 

which for Bitcoin is 10 minutes. 

To prove that there exists a interior Nash equilibrium  𝑥∗  in the mining game, there are two 

conditions to be met: 

condition 1: 

𝜕𝑈𝑖(𝑥)

𝜕𝑥𝑖
= 𝑃

𝜕𝜋(𝑊𝑖;𝐾,𝑥∗)

𝜕𝑥𝑖
−

𝜕𝑐(𝑥∗)

𝜕𝑥𝑖
= 0           ∀ 𝑖    

condition 2: 

𝜕2𝑈𝑖(𝑥∗)

𝜕𝑥𝑖
2 = 𝑃

𝜕2𝜋(𝑊𝑖;𝐾,𝑥∗)

𝜕𝑥𝑖
2 −

𝜕2𝑐(𝑥∗)

𝜕𝑥𝑖
2 < 0           ∀  𝑖  

These two conditions attest that that the Utility function of player i is maximized by the strategy  𝑥∗, 

so that no player i has an incentive to deviate from 𝑥∗. However, it is not a straight-forward 

procedure to prove that both condition 1 and 2 are satisfied, so we will introduce some theorems 

that allow us to show that the conditions are met.  

Theorem 1. Holding other players’ technologies fixed at 𝑥−𝑖, the probability that player i wins 

increases with 𝑥𝑖. 

PROOF. If all the players are able to choose the technology of they prefer, the probability that 

player i=1 wins is  
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 𝜋(𝑊1; 𝐾, 𝑥1, 𝑥−1) = ∏ (1 −𝑗≠1 𝐹𝑗(𝑥)) 

Therefore, differentiating it with respect to x1 we get 

 
𝜕𝜋

𝜕𝑥1
=

𝜕𝜋

𝜕𝑥

𝜕𝑥

𝜕𝑥1
= −

𝐾

𝑥1
2

𝜕 ∏ (1−𝐹𝑗(𝑥))𝑗≠1

𝜕𝑥
, 

where  

𝜕 ∏ (1 − 𝐹𝑗(𝑥))𝑗≠1

𝜕𝑥

= (
𝜕

𝜕𝑥
(1 − 𝐹2(𝑥))) ∏ (1 −

𝑗≠1,2
𝐹𝑗(𝑥)) + (1 − 𝐹2(𝑥))

𝜕

𝜕𝑥
∏ (1 −

𝑗≠1,2
𝐹𝑗(𝑥)) 

  = −𝑓2(𝑥) ∏ (1 −𝑗≠1,2 𝐹𝑗(𝑥)) + (1 − 𝐹2(𝑥))
𝜕

𝜕𝑥
∏ (1 −𝑗≠1,2 𝐹𝑗(𝑥)) 

The first term of the sum is clearly negative, and by repeating the same scheme we can easily 

understand that all terms of this last derivative are negative (possibly arguing rigorously by 

induction). Since this negative term has is multiplied by −
𝐾

𝑥1
2, the derivative of π with respect to x1 

is positive. 

Instead, assuming that all the players choose a symmetric strategy, if we differentiate the probability 

of winning with respect to 𝑥𝑖 and, by formulas (5) and (6), we find 

𝜕𝜋(𝑊𝑖; 𝐾, 𝑥𝑖 , 𝑥−𝑖)

𝜕𝑥𝑖
=  

𝜕𝜋(𝑊𝑖; 𝐾, 𝑥𝑖, 𝑥−𝑖)

𝜕𝐸(𝑡𝑖)

𝜕𝐸(𝑡𝑖)

𝜕𝑥𝑖
 

=
𝜕([1−𝐹(𝐸[𝑡𝑖])]𝑁−1)

𝜕𝐸(𝑡𝑖)
 (−

𝑘

𝑥𝑖
2) 

 
𝜕𝜋

𝜕𝐸(𝑡𝑖)
= −(𝑁 − 1)𝑓(𝐸[𝑡𝑖])[1 − 𝐹(𝐸[𝑡𝑖])]𝑁−2 (

𝑘

𝑥𝑖
2) 

Noting that the factors in the last line of are all positive, we can assess that the first derivative of π 

with respect to 𝑥𝑖 will surely be strictly positive and validate hypothesis 1. 

However, when N≥2, the probability of player i winning will never reach 1 (no technology will 

guarantee winning the race). This is due to the fact that proof-of-work seen as a random process, so, 
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even though greater computing technology will decrease expected ti, there is no certainty that the 

player with the best technology will win, no matter how much computing power he uses. 

𝜋(𝑊𝑖; 𝐾, 𝑥𝑖 , 𝑥−𝑖) < 1   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝑖, 𝑖𝑓 𝑁 ≥ 2 

Theorem 2. Holding other players’ technologies fixed at 𝑥−𝑖, the probability that player i wins 

increases with 𝑥𝑖 at a decreasing rate if 𝑥𝑖 is large enough. 

PROOF. Again we choose i=1 for simplicity. Differentiating 2 times the probability π with respect 

to x1 we get 

 
𝜕2𝜋

𝜕𝑥1
2 = −

𝜕

𝜕𝑥1
(

𝐾

𝑥1
2

𝜕

𝜕𝑥
∏ (1 − 𝐹𝑗(𝑥))𝑗≠1 ) 

 =
2𝐾

𝑥1
3

𝜕

𝜕𝑥
∏ (1 − 𝐹𝑗(𝑥))𝑗≠1 −

𝐾

𝑥1
2

𝜕

𝜕𝑥1

𝜕

𝜕𝑥
∏ (1 − 𝐹𝑗(𝑥))𝑗≠1  

The sign of 
𝜕2𝜋

𝜕𝑥1
2 is ambiguous and depends on the relative magnitude of the two summands in the 

last line. However the function can change sign only finitely many times (because its derivative is 

continuous and has finitely any zeroes, that are determined by the derivatives of the gamma density 

functions, which are all monotone for large x and are finitely many), so it must have definitively a 

constant sign. As π is a probability, it cannot be definitively convex, thus it must be concave, 

meaning that 
𝜕2𝜋

𝜕𝑥1
2 < 0 for x large enough 

Having proved that the probability that player i wins increases with his/her technology choice 𝑥𝑖  at a 

decreasing rate for large enough 𝑥𝑖, we can now discuss whether there exists a Nash equilibrium 

solution  𝑥∗ > 0 that maximizes the payoff function  𝑈𝑖(𝑥𝑖) = 𝑃𝜋(𝑊𝑖; 𝐾, 𝑥𝑖 , 𝑥−𝑖) − 𝑐(𝑥𝑖) =

𝐸(𝑃) − 𝑐(𝑥𝑖) , being   𝑈𝑖(𝑥) ≥ 0 for some 𝑥 > 0. 

As we said at the beginning of the stage game study, to have an interior Nash equilibrium at  𝑥∗ 

there are two conditions to be met: 

𝜕𝑈𝑖(𝑥∗)

𝜕𝑥𝑖
= 𝑃

𝜕𝜋(𝑊𝑖;𝐾,𝑥∗)

𝜕𝑥𝑖
−

𝜕𝑐(𝑥∗)

𝜕𝑥𝑖
= 0           ∀ 𝑖       condition 1 

We now know that this equation in feasible because the first term is positive by Hypothesis 1 while 

the second term is positive and strictly convex in 𝑥𝑖 by assumption of the cost function. 

Consequently there exists at least one point x* in which 
𝜕𝑈𝑖(𝑥∗)

𝜕𝑥𝑖
= 0 

The second condition to be satisfied is 
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𝜕2𝑈𝑖(𝑥∗)

𝜕𝑥𝑖
2 = 𝑃

𝜕2𝜋(𝑊𝑖;𝐾,𝑥∗)

𝜕𝑥𝑖
2 −

𝜕2𝑐(𝑥∗)

𝜕𝑥𝑖
2 < 0           ∀  𝑖      condition 2 

This inequality holds by theorem 2 if 𝑥𝑖 is large enough; some calculations in easy cases suggest 

that 𝑥𝑖 should be larger than √𝐾, and that there exists points larger than √𝐾 that satisfy condition 1. 

Therefore we will assume that both conditions are satisfied by at least one point. 

Conditions 1 & 2 together prove that there exists an interior Nash equilibrium solution x*, which is 

unique and maximize each players’ payoff function.  

We can now generalize and say that, keeping the number of miners fixed, in each stage of the 

Bitcoin mining game there is a unique interior Nash equilibrium  𝒙∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑁
∗ ), associated 

with Payoff 𝑈𝑖(𝑥∗) = 0 and cost 𝑐(𝑥∗) > 0,  for every level of computational difficulty K and that 

each Nash equilibrium (K, x*) gives a unique expected time for completion of the computational 

puzzle that we will note as 𝛿𝐾, whose value, according to the Gamma distribution of t, is  𝛿𝐾 =

𝐾

𝑀𝑎𝑥(𝒙∗)
. 

 

 2.8 DYNAMIC GAME 

 

Taking into account a sequence of stage games, it seems obvious that, in the long run, players could 

be incentivized to invest and improve their computing technology to increase their chances to win 

future mining races. This would lead to the decrease of the computing time below the target time 𝛿∗ 

that the network wants to achieve on average. The network, on the other hand, has the possibility to 

adjusts the difficulty level K once every 2016 rounds to make sure that the puzzle is computed in 

the target time, meaning that the network increases K if, during the previous period, the puzzle has 

been solved in a time that is less than 𝛿∗, while it may reduce K if the opposite happens. 

The fact that the network affects the duration of the rounds through adjustments of the difficulty 

level of computing is pretty intuitive; in fact, as 𝐸[𝑡𝑖] =
𝐾

𝑥𝑖
  (see (3)), the more computations are 

needed to resolve the puzzle, the more time miners will need on average to solve it, however, the 

positive correlation between 𝛿𝐾 and K can be also proved more formally through the cumulative 

density function of the Gamma distribution. 

Theorem 3: other things being equal, the expected time 𝛿𝐾 to complete the proof-of-work  is strictly 

monotonically increasing with respect to the difficulty level K 

Proof. The statement for the real-world mining procedure follows heuristically from how the 

procedure works, as commented on in Nakamoto (2008). 
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To show that this is true also in our model we compute  

𝛿𝐾 = 𝐸(min{𝑡1, 𝑡2, … , 𝑡𝑛} |𝐾)  

Let FT(s) be the cumulative distribution function of the random variable 𝑇 = min{𝑡1, 𝑡2, … , 𝑡𝑛}. 

Suppose that all players choose the same technology x; we have 

𝐹 𝑇(𝑠) = 𝑃(𝑇 ≤ 𝑠) = 1 − 𝑃(𝑇 > 𝑠) 

= 1 − 𝑃(𝑡1 > 𝑠, … , 𝑡𝑁 > 𝑠) 

= 1 − 𝑃(𝑡1 > 𝑠) … 𝑃(𝑡𝑁 > 𝑠) 

= 1 − 𝑃(𝑡1 > 𝑠)𝑁 

= 1 − [1 − 𝐹(𝑠)]𝑁 

because the random variables ti  are independent and identically distributed with distribution 

Gamma(K, x). 

Differentiating with respect to s we obtain the density function of T: 

𝑓𝑇(𝑠) =
𝜕

𝜕𝑠
𝐹 𝑇(𝑠) = 𝑁([1 − 𝐹(𝑠)]𝑁−1𝛾𝑘,𝑥𝑖

(𝑠) 

Therefore 

𝛿𝐾 = ∫ 𝑠𝑓𝑇(𝑠)𝑑𝑠
∞

0

= 𝑁 ∫ [1 − 𝐹(𝑠)]𝑁−1𝑠𝛾𝑘,𝑥𝑖
(𝑠)𝑑𝑠

∞

0

 

= 𝑁
𝑥𝑁𝐾

Γ(K)𝑁
∫ [∫ 𝑟𝐾−1𝑒−𝑥𝑟𝑑𝑟

∞

0

]

𝑁−1

𝑠𝐾𝑒−𝑥𝑠𝑑𝑠
∞

0

 

It is possible to verify that the derivative of 𝛿𝐾 with respect to K is strictly positive. 

If the random variable ti are not identically distributed but ti ~ Gamma (K, xi), we can easily show 

that  

𝑓𝑇(𝑠) = ∑ 𝑓𝑗(𝑠)
𝑁

𝑗=1
∏ (1 − 𝐹𝑙(𝑠))

𝑙≠𝑗
,   

Thus the sign of the derivative of 𝛿𝐾 can be studied and will be positive. 

By this study we can infer that, whenever the network increases the computation difficulty K to 

maintain the target puzzle solution time, assuming a fixed number N of miners, there is a deviation 

from the Nash equilibrium. This deviation gives to individual miners the possibility to increase their 

chances to win the mining race by improving the technology they use. 

Now, having proved that a there exists at least one Nash equilibrium in the mining game and having 

characterized how both the players and the server behave after a change in the puzzle difficulty, we 

will make some further inferences about the mining game. 

First of all we state that Nash equilibrium technology choices increase as the difficulty level K 

increases. 
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Assuming that the game features a symmetric Nash equilibrium  𝒙∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑁
∗ ) and a constant 

K degree of difficulty, then expected solution time is 𝛿∗ and the probability of winning the mining 

race is homogeneously distributed among N miners . 

If this static equilibrium situation is changed by the network that increases the difficulty level from 

K to K+ε, where ε>0, in the short run the miners will not be able to change their technology choice, 

that remains constant at 𝑥∗ for a certain span of time, meaning that, until they change their strategy, 

the expected solution time will be lower than 𝛿∗
 and the probability to win will be constant for each 

miner even if the difficulty level has been increased.  

However, as miners have the possibility to increase their winning probability without incurring in 

further increase in difficulty, they will logically increase their technology choice as soon as they can 

and they will do so until the equilibrium time solution 𝛿∗
 for the puzzle is reached. 

Secondly we state that for a given number N of miners and a fixed target solution time 𝛿∗, there 

exists a unique symmetric Nash equilibrium (𝐾∗, 𝑥∗). 

Indeed, from formula (5) we know that 𝐸𝑘(𝑡) is strictly increasing over K, thus there is a unique K, 

namely 𝐾∗, for which 𝐸𝐾∗(𝑡) = 𝛿∗. We know from the study about the stage game that, for each 

computational difficulty K and fixed number N of player, there exists a unique interior Nash 

equilibrium 𝑥∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑁
∗ ), so if we fix 𝐾 = 𝐾∗ we can infer that the couple (𝐾∗, 𝑥∗) 

represents the equilibrium situation of the dynamic game that has a given target solution time of 𝛿∗. 

Both the server and miners are satisfied by the triplet (𝛿∗, 𝐾∗, 𝑥∗) because the former is sure to have 

𝐸𝐾∗(𝑡) = 𝛿∗
 and the latter have their utilities 𝑈𝑖(𝑥𝑖) = 𝐸𝑖(𝑃) − 𝑐(𝑥𝑖)  maximized (see condition 1 

of stage game N. E.). 

Assuming that the prize P and the number of miners N are fixed, then 𝐸𝑖(𝑃) =
𝑃

𝑁
. Therefore miners 

will earn positive profits if their technology’s cost does not exceed the expected payoff:   

𝐸𝑖(𝑃) > 𝑐(𝑥∗); 

since the cost function is strictly increasing over K, we can say that miners will have positive profit 

(utility function) for N low or P high 

𝑥∗ < 𝑐−1 (
𝑃

𝑁
) 

 

 2.9 FREE ENTRY 

 

As stated by the previous paragraph, the number of participants in the mining game is a key 

determinant for the choice of mining technology. This feature is very important in our study 
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because in the Bitcoin mining protocol there are no boundaries that restrain individuals from 

becoming miners (free entry), thus anyone could start to take part of mining races and affect the 

choices of all the incumbent players. 

We analyze heuristically some consequences of free the entry. We will start by examining the long-

run outcomes of the game when N in endogenous. In this case, all the miners choose the same 

technology 𝑥∗ and consequently all the miners have the same probability to win the prize 

𝜋(𝑊𝑖; 𝐾, 𝑥∗) =
1

𝑁
           ∀ 𝑖 

Allowing free entry in the game, players will enter the competition as long as their expected profits 

are positive and exit the competition whenever their expected profits are negative: 

Player i will enter if  𝑈𝑖(𝑥∗) =
𝑃

𝑁
− 𝑐(𝑥∗) > 0 

Player i will exit if  𝑈𝑖(𝑥∗) =
𝑃

𝑁
− 𝑐(𝑥∗) < 0 

These strategies will succeed one another and, assuming no entry or exit cost, in the long run they 

will balance themselves, leading to an equilibrium similar to the one we can observe in perfect 

competitive markets. In this equilibrium the players are indifferent between entering and exiting the 

competition because no profit is expected to be made by incumbent miners and consequently no 

possible new entrant will have the incentives to start competing in the game: 

 𝑈𝑖(𝑥∗) =
𝑃

𝑁
− 𝑐(𝑥∗) = 0                  (9) 

where 𝑥∗ is the solution for all i to the maximization problem presented in condition 1 of the stage 

game Nash equilibrium. 

Theorem 4: assuming the game is in an equilibrium, assuming P is fixed and allowing free entry, 

the fierce competition will drive up the social cost of mining until it equalizes the prize: 

𝑃 = 𝑐(𝑥∗)𝑁 

PROOF: Miners will enter the game if and only if 𝑃 > 𝑁𝑐(𝑥) and they will use the same optimal 

technology that incumbent miners chose in the previous period: 𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡
∗ ; this will lead to an 

increase in social cost: 𝑁𝑡+1𝑐(𝑥𝑡
∗) > 𝑁𝑡𝑐(𝑥𝑡

∗). Since aggregate technology has increased in t+1, the 

average computing time will decrease leading to 𝛿𝑡+1 < 𝛿∗ . The average computing time will 

continue to decrease as long as miners keep entering the game, but at this point the network will 

adjust the computing difficulty K to regulate the game back to an average computing time 𝛿∗ . This 

increase of K will lead the miners to increase their technology, subsequently raising the aggregate 

cost of technology. This process continues until the aggregate cost of technology equals the 

outcome P, meaning that free entry number of miners is reached.  
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Social cost is then solely dependent on the prize and independent from market structure, while the 

technology choice of each miner also depends on the competition: it decreases with an increase in N 

(which is a proxy for competition) and vice versa. To prove this we find that equilibrium 

technology is 𝑥∗ = 𝑐−1 (
𝑃

𝑁
) and then we differentiate it with respect to N, having in mind that 

𝑐′(. ) > 0 by assumption, so that (𝑐−1)′(. ) > 0, we find  

𝜕𝑥∗

𝜕𝑁
=

𝛿𝑐−1(
𝑃

𝑁
)

𝛿
𝑃

𝑁

𝜕
𝑃

𝑁

𝜕𝑁
=

𝜕𝑐−1(
𝑃

𝑁
)

𝜕
𝑃

𝑁

(−
𝑃

𝑁2) < 0    (10) 

The previous result shows that the incentives to use better technology decrease with increased 

competition in the network. In fact, if more miners enter the game, the possibility for each one of 

them to win diminishes, causing a decrease in individual expected value of winning, leading to a 

decrease in investments for mining technology. 

Interestingly, we notice that global resource usage is not affected by the computational difficulty, 

that is a mere tool that the network uses to maintain the computational time as close to 𝛿∗ as 

possible, but these costs are only driven by P. Indeed, if the targeted block time was reduced to 𝛿∗∗< 

𝛿∗  by the network, K would be increased but the resources used to compete in the mining game 

would be constant and their costs would be equal to P as long as P remains unchanged. In this case 

the miners would choose technology 𝑥∗ = 𝑐−1 (
𝑃

𝑁
) for each round, leading to an increased resource 

use per unit of time.  

We can now infer that once the network reaches a dynamic game equilibrium (𝐾∗, 𝑥∗), there are 

zero expected profits and miners are indifferent between entering and exiting the mining race; 

Theorem 5: it is logical now to think that any deviation from  (𝐾∗, 𝑥∗) will depend on a change in 

P. 

Proof. We differentiate the previous result 𝑥∗ = 𝑐−1 (
𝑃

𝑁
) with respect to P, having in mind that N is 

constant and (𝑐−1)′(. ) > 0 

𝜕𝑥∗

𝜕𝑃
=

𝛿𝑐−1 (
𝑃
𝑁)

𝛿
𝑃
𝑁

𝜕
𝑃
𝑁

𝜕𝑃
=

𝜕𝑐−1 (
𝑃
𝑁)

𝜕
𝑃
𝑁

(
1

𝑁
) > 0 

From this inequality we understand that 𝑥∗is strictly increasing in P. From formula (5) we also 

come to the conclusion that equilibrium K and x are connected by the equation 𝐾 = 𝐸[𝑡𝑖]𝑥𝑖, so we 

can affirm that K is increasing in P through x. 



29 

 

Now that it is clear that the social cost of mining depends on the expected value of the prize, it is 

worth specifying some features about the prize and how those will affect the total investments in 

computational power. 

1) The amount of newly minted bitcoins that is given out as prize halves every 210,000 verified 

blocks, until it becomes null when the threshold supply of all 21 million bitcoins is reached. 

When the prize halves, if the difference isn’t compensated by higher fees or exchange rate, 

the short run profits go below zero, giving the miners no other choice than decreasing their 

computing technology or exiting the game. Other things being equal, the network becomes 

less resource consuming as amount of bitcoin given out decreases. 

2) Absent any other change in P, whenever the bitcoin exchange rate appreciates, the prize 

increases because the amount of newly minted bitcoin given out increases in value. When 

such an appreciation happens, miners cannot increase their technology immediately, and 

there are positive profits in the short run, while they will adjust in the long run and 

equilibrium technology and cost will increase. In this case the puzzle completion time 

decreases until the moment in which the network can increase the difficulty to maintain time 

𝛿∗ . The difficulty level of the puzzle is logically positively correlated with bitcoin exchange 

rate as it appears from historical data; in fact bitcoin’s exchange rate has had some huge 

blasts and, simultaneously, the difficulty level increased significantly. 

3) Even if Bitcoin do not appreciate with respect to the dollar in the short run, if in the future it 

will be used as a common payment system, its exchange rate would increase by a huge 

proportion. This possibility gives incentives to miners to invest more in the present even if 

temporarily it is not a profitable strategy. Thus, speculation about Bitcoin’s future value 

creates the presupposition for miners to invest more than they logically would and increases 

social costs. 

 

 2.10 WELFARE ANALYSIS 

 

The bitcoin protocol was designed by Nakamoto (2008) to be a decentralized ledger for transaction 

in which anybody could become a node and/or a miner. The openness of the system has some 

benefits and some negative aspects: it is seen as a virtue because it increases the security and the 

robustness of the network, but it also contributes to the social cost of the network. 

To prove the latter we study how the behavior of both aggregate equilibrium technology, 𝑁𝑥∗, and 

aggregate equilibrium cost, 𝑁𝑐(𝑥∗), changes as the number of miners increases. 
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Since 𝑥∗ = 𝑐−1 (
𝑃

𝑁
), the aggregate level of technology is 𝑁𝑥∗ = 𝑁𝑐−1 (

𝑃

𝑁
). 

We differentiate with respect to N 

𝜕𝑁𝑥∗

𝜕𝑁
=

𝜕𝑁𝑐−1 (
𝑃
𝑁)

𝜕𝑁
= 𝑐−1 (

𝑃

𝑁
) − 𝑁

𝑃

𝑁2

𝜕𝑐−1 (
𝑃
𝑁)

𝜕𝑁
= 𝑐−1 (

𝑃

𝑁
) −

𝑃

𝑁

𝜕𝑐−1 (
𝑃
𝑁)

𝜕𝑁
 

and we notice that aggregate level of technology is positively correlated with the number of miners 

because: 

1) 𝑐−1 (
𝑃

𝑁
) is always positive by assumption 

2) 
𝜕𝑐−1(

𝑃

𝑁
)

𝜕𝑁
=

𝜕𝑥∗

𝜕𝑁
< 0 because of increased competition (see (10)) 

Starting from an equilibrium situation (𝐾∗, 𝑥∗) with N miners, if at any stage of the game there is a 

set of miners that enters, then the network finds a new equilibrium at (𝐾′∗, 𝑥′∗) for the number of 

miners 𝑁′, and this equilibrium implies an increase6 in aggregate level of technology, 𝑁′𝑥′∗ > 𝑁𝑥∗, 

which cannot be prevented by an adjustment of K because the latter is only a tool used to determine 

the round length δ. 

Instead, if a set of miners exits the game, then the aggregate level of technology decreases as well. 

Knowing that the bitcoin protocol needs at least one miner to be carried on, we infer that the most 

cost and resource efficient bitcoin protocol features a single miner trying to solve the computational 

puzzle. In fact, in this case the single miner is free of any competition and he is certain to win the 

mining race. In this context we will regard the single miner as monopolist and he will have a 

guaranteed payoff  

𝑈𝑚(𝑥𝑚) = 𝑃 − 𝑐(𝑥𝑚), 

since the difficulty adjustments made by the network depend only on his choices, not only he will 

choose the minimum amount of technology required to solve the puzzle, but he will also influence 

the dynamic difficulty of the puzzle until it adjusts the minimum difficulty is reached, namely K=1. 

If K=1 and target time is 𝛿∗ , then we find the equilibrium strategy for the monopolist from 

𝛿1
∗ = 𝐸1(𝑡) =

1

𝑥𝑚
  →    𝑥𝑚

∗ =
1

𝛿1
∗ 

Here, assuming a monopolist controls the whole mining network, 𝑥𝑚
∗  and its associated cost 𝑐(𝑥𝑚

∗ ) 

represent respectively the aggregate technology and the aggregate cost. 

The outcome we have just presented could realistically just need a laptop to operate, just as 

Nakamoto envisioned while writing its white paper, and it would avoid global costs and expenses in 

                                                           
6 Because c(.) is convex and increasing in x 
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the order of billions of dollars annually, saving enormous quantities of electricity. However, free 

entry prevents this outcome because a monopolistic miner wouldn’t ensure the security and 

soundness the Bitcoin needs to carry out transactions. 

It is now worth noting that a monopolistic miner would have few if any interests to undermine the 

network he/she governs: first of all, he would not be able to expropriate others of their own 

currency and/or wealth, secondly even if he could double or multi-spend7 the currency he already 

owns, he/she would do it at its own network’s expenses: as multi-spending would be publicly 

visible in the blockchain, economic agents would stop demanding transaction validation to the 

network and in this case the monopolist would see its future returns vanish because of the low value 

of the currency and the low amount of transaction fees. 

From this perspective, if a trusted third party, i.e. ECB, governments, had monopolistic power over 

the bitcoin protocol, it would have few if any incentive to misconduct in its own network and would 

run it with a very low requirement for technology and energy. However, such a situation has never 

happened, and the real benefits and disadvantages are all yet to be studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
7 Use the same money to pay for multiple transactions 
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3. IMPLICATIONS OF MINING GAME NASH EQUILIBRIUM 

 

Now, having studied the Bitcoin mining game from an analytical point of view, we will make some 

considerations regarding the real world implications that stem from mining activity. 

We will focus on hardware and energetic needs of the cryptocurrency’s network following 

“Renewable Energy Will Not Solve Bitcoin’s Sustainability Problem” by Alex de Vries,”A critical 

assessment of the Bitcoin mining industry, gold production industry, the legacy banking system, 

and the production of physical currency” by Hass McCook, and we will take data from Cambridge 

Bitcoin Electricity Consumption Index (https://cbeci.org/) and blockchair.com. 

 

 3.1 OVERVIEW 

 

So far, we have analyzed many features of the Bitcoin mining game using both a rigorous model 

and a simplified one. Assuming that the results of the simplified model hold for the rigorous model 

as well, we proved that miners, incentivized by monetary prizes and free entry of Bitcoin protocol, 

have interests in investing great amounts of capital to run computing technology that enables them 

to validate Bitcoin transactions in the blockchain. The same aforementioned investments take place 

in three main ways: 

1) Acquisition of specialized pieces of hardware that are used to mine (Application-Specific 

Integrated Circuits (ASICs)) 

2) Payments for energy used to run the mining hardware  

3) Additional payments made in order to maintain and sustain mining activity, i.e. rent for a 

physical place where hardware can be placed, cooling system that helps ASICs running and 

prevent them from wearing out 

Even if those investments are extremely fruitful for whoever intends to make profit out of the 

mining activity, they do not come without any downside effect and, among those, we will focus on 

the two most important issues that originate environment concern: electronic waste and energy 

consumption. 

 

 3.2 ELECTRONIC WASTE 

 

At the beginnings of Bitcoin, mining could be carried out by simple personal computers that used 

their central processing units (CPUs) to solve the SHA-256 function because the competition on the 

https://cbeci.org/
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network was very low; as the monetary prize of Bitcoin mining increased, competition increased as 

well following the rationale that the more computational efficient a node is the more profitable it 

will be, thus, miners started changing periodically their Proof-of-Work solving hardware firstly 

passing to graphic processing units (GPUs), then to field programmable gate arrays (FPGAs) and 

finally, around 2013, they started using application-specific integrated circuits (ASICs). 

All of these subsequent mining technology changes led every rational agent to shut down their least 

efficient machines once the associated expected profit (expected payoff minus running costs) fell 

below zero; nowadays all the CPUs, GPUs and FPGAs previously used for mining have been 

dismissed or reused for different purposes. 

On the other hand, ASICs are pieces of hardware that, unlike their mining hardware predecessors, 

are engineered to perform only one type of calculation (solving the SHA-256 function) and do it in 

the most efficient way. This means that they were created with no purpose other than Bitcoin 

mining, so, if they stop being profitable for this specific usage, they immediately become electronic 

waste (e-waste). 

There is no way to determine the exact amount of e-waste generated by Bitcoin network, but, since 

we can estimate its total computational power, we are able to model the quantity of mining 

equipment in the network and also the rate at which this equipment becomes obsolete.  

At its peak, during October 2018, the Bitcoin network computing capacity was estimated at 54.7 

exahashes per second (data from bitcoinenergyconsumption.com), an amount that would require at 

least 3.91 million Antminer S9 machines (the most efficient ASIC of that time) to be computed, all 

of that hardware can be translated into a combined weight whose lower bound8 is 16,442 metric 

tons; applying Koomey’s law9 to ASICs and following the observation that only the most cost-

efficient machines can remain economically viable for mining, we can infer that in April 2020, all 

of the mining machines that were used in October 2018 have been dismissed and amounted to a 

minimum of 10,961 metric tons of electronic waste per year. Taking into consideration the number 

of transaction processed by Bitcoin network in 2018, that amounts to 81.4 millions according to 

blockchair.com, we find that, in that period, bitcoin generated an estimated 0.135 kilograms of e-

waste per transaction. 

Putting these numbers in context, the annual amount of e-waste is comparable to the one generated 

by a little country such as Luxembourg (12 metric tons per year) and the average e-waste footprint 

                                                           
8 Its regarded as a lower bound because the Antminer S9 had the least weight to computational power ratio at that 
time 
9 It states that the electrical efficiency of computing will double every 1.5 year. This law has been backed by empirical 
evidence since 1950’  
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per transaction is almost equal to the one generated by four standard 60 W light bulbs (136 grams). 

Moreover, if we want to make a comparison with the classical banking sector, Visa’s estimated 

average e-waste footprint per transaction is equal to 0.0045 grams (data taken from World payments 

report 2018, BNP Paribas), which is an amount 100.000 times lower than Bitcoin’s and that could 

put into question the whole cryptocurrency. 

 

 3.3 ENERGY CONSUMPTION 

 

All of the mining machines, being CPUs, GPUs or ASICs, require a certain amount of electricity to 

generate hashes and compete in the mining race. Measuring the total energy consumption of the 

Bitcoin network is impossible because, as we have already stated, there is no way to know how 

many miners are active in the network, nonetheless, it’s possible to estimate it using the total 

computational power in the network or the mining reward possibly won by miners. 

Those two methods are deeply explained in the Bitcoin Energy Consumption Index (BECI) 

everyone can find in the site bitcoinenergyconsumption.com. 

Using the latest site’s estimations, which are periodically updated, the amount of energy used to run 

the whole Bitcoin network’s mining hardware for a year is 123.09 TWh and the consumption per 

transaction is 1,546.71 kWh (as of June 2021). Once again, if we want to put into context these 

numbers, we can compare them to the electric consumption of whole countries, in fact, if Bitcoin 

were a country, it would be the 32nd most electricity consuming in the world, above nations such as 

Netherlands and Pakistan. 

Instead, if we want to compare the cryptocurrency to the classical baking system, an estimation 

made by the civil engineer Hass McCook comes in handy as it states that the entire banking sector, 

including data centers that process transaction, branches and ATMs, consume as much as 650 TWh 

of electricity per year to process an estimated 482.6 billion non-cash transaction, leading to a 1.35 

kWh consumption per transaction. Also in this case the classical banking system proves itself to be 

way more energy efficient than the Bitcoin network, and also in this case in the scale of a thousand 

times. 

 

 3.4 ENVIROMENTAL ISSUES 

 

The greatest problem that stems from Bitcoin network’s huge electricity requirement is the 

environmental impact, measured in CO2, caused by the energy supplier of miners. 
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To assess this matter in the best possible way, first of all we have to remember that miners in 

general are profit maximizer agents so, as the most cost-efficient machines are the ones that will 

generate the biggest profit, miners will locate their computing hardware in places capable of 

producing high quantities of electricity and where it is sold at a very cheap price. Because of this 

reasoning, Bitcoin enthusiast argue that the cryptocurrency’s environmental impact is very limited, 

in fact they say that the majority of the mining is powered by electricity in surplus that would be 

otherwise wasted because it is produced in locations that have abundant renewable resources and 

very low demand for electricity. 

Even if the latter hypothesis could seem pretty convincing at a first glance, especially if one thinks 

about its monetary implications, some further investigations about a Chinese region where mining 

is brought out in large scale, have proved it to be only partially truthful. 

The aforementioned Chinese region is represented by Sichuan and Yunnan provinces; here, the mix 

of great hydropower resources and the lack of infrastructures that would allow exporting away the 

electricity produced leaves the region with a great abundance of hydropower generated electricity, 

which obviously attracts energy-hungry industries. 

Among these industries we find Bitcoin mining that exploit this situation so much that estimates say 

that almost half of the global mining is currently conducted in this region. However, unlike power 

demanded for Bitcoin mining machines, which can suffer some sporadic fluctuations but is anyway 

consistent all year long, the supply of hydropower strictly relies on rain, floods and droughts, 

meaning that it is highly subject to seasonality and that it can leave the warehouses without the 

needed energy. These periodical shortages in hydroelectricity generation create a question over how 

to accommodate miners’ energetic demand and the only feasible answer can be found in the 

environmentally impacting coal-generated electricity. 

This particular case not only shall dismiss any possible belief about environmental neutrality of the 

Bitcoin protocol but it also opens a case about the CO2 emissions. 

Once again we will rely on the Bitcoin Energy Consumption Index to assess the environmental 

impact of the cryptocurrency, in fact, according to it, Bitcoin’s energetic needs in 2018 accounted 

for a carbon footprint estimated between 19 and 29.6 million metric tons of CO2, leading to an 

astonishing carbon footprint per transaction of 233.4 to 363.5 kg of CO2 that seems almost unreal if 

compared vis-a-vis with the 0.4 g of CO2 that is generated on average by a VISA transaction. 
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 3.5 POSSIBLE SOLUTION 

 

In recent days, maybe for the first time since Nakamoto’s paper was published, mass environmental 

awareness about Bitcoin protocol has spurred. The most iconic and influential example to mention 

was made 13th of May 2021 by Elon Musk, owner of Tesla, inc, who, from his twitter account, 

stated that “Tesla has suspended vehicle purchases using Bitcoin. We are concerned about rapidly 

increasing use of fossil fuels for Bitcoin mining and transactions, especially coal, which has the 

worst emissions of any fuel […] we intend to use it (Bitcoin) for transactions as soon as mining 

transitions to more sustainable energy. We are also looking at other cryptocurrencies that use <1% 

of Bitcoin’s energy/transaction”. 

These words, coming from one of the most influential technology enthusiasts worldwide, had great 

media resonance and resulted in a huge slump of Bitcoin’s price that fell for about 30% of its value 

in the timespan of just a few days. 

The question that logically arises following the environmental implications of the actual state of 

Bitcoin mining asks whether there is the possibility to decrease its ecological impact and how that 

can be accomplished. Among all the possible solutions that are being proposed and discussed, the 

most reliable, disruptive and realistic one is constituted by exchanging the Proof-of-Work 

demanded by the Bitcoin protocol to the easier and less energy demanding Proof-of-Stake. 

In Proof-of-Stake (PoS) systems, nodes in the network are asked to validate the transaction blocks 

rather than mining them, as happens with Proof-of-Work. PoS starts with a deterministic process 

that selects block validators among the nodes of the network, this choice is made taking into 

account the amount of currency the nodes already own (the more currency they own, the more their 

chances to be selected). Once the majority of the selected nodes accept the block, the set of 

transaction is added to the existing blockchain.  

This system lets the nodes use their own currency as a collateral when competing to add a block to 

the chain, so, each node actually is a stakeholder for the system and none of them will have 

incentives in altering its regular functioning. Moreover, in this context, the competition among 

nodes is settled only regarding the amount of currency they already dispose in their wallets, and, 

unlike PoW system, there is no specific computing or energetic requirement. 

Proof-of-Stake is not a new concept, as it has been firstly introduced in a paper by Sunny King and 

Scott Nadal in 2012, but only in recent times it has gained popularity: just a few cryptocurrencies, 

like DASH, already use PoS mechanism and many more, Ethereum above all, plan to implement it 

in the future as it promises to decrease largely the energetic need for them.  
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Whether Bitcoin protocol will switch its historic Proof-of-Work process with a Proof-of-Stake one 

cannot be determined in this moment, but, it is reasonable to say that if the latter proves to be a 

good alternative and the ecological issues arisen by PoW continue to gain importance in the 

financial environment, maybe the Bitcoin network will be obliged to change its functioning, leaving 

all the current miners with useless, ASICs filled, immense warehouses. 
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CONCLUSION 

 

At the light of both the empirical evidence and our mathematical work, the positive correlation 

between the hype that surrounds Bitcoin, and generally cryptocurrencies, and their huge energetic 

consumption and CO2 generation it now clear. 

Many cryptocurrencies enthusiasts affirm that the ecological issues arisen by mining activity are a 

price worth paying to have a brand new finance system which is capable of connecting people from 

all around the globe in an easy, widely accessible and quick way. 

However, in an era in which ecological awareness has paved its way into common knowledge and 

all of the most technologically advanced states are making some moves towards the so-called green 

economy (see the states that are committed to Paris 2030 agreement, an agenda that proposes to 

reduce greenhouse gas emissions by at least 40% by 2030 compared to 1990), the Bitcoin seems to 

be way too environmentally impactful, especially taking into account its actual usage. 

While some modifications have been proposed and accepted in the mining mechanism of other 

cryptocurrencies to face such ecological issues, at the present time it seems that no change in the 

Bitcoin functioning is programmed to reduce its environmental impact and, if nothing changes in 

the Bitcoin rules, it is possible that in the future it could lose its lead in the cryptocurrency market in 

favor of other, more efficient cryptocurrencies. 
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