
Liberà Università degli Studi Sociali Guido Carli
Department of Economics and Finance
Bachelor in Economics and Business

Major in Finance

A Monte Carlo Simulation applied to
Portfolio Management and the Constant
Proportion Portfolio Insurance

Supervisor:
Professor Emanuele Tarantino

Candidate:
Dario Faggi
236041

Academic year: 2020/2021

A Lodovico, a Dina, a Gemma e a tutta la mia famiglia

4

Abstract

The practice of investment management has been transformed in recent years by new com-
putational methods. Statistical Machine Learning tools, novel algorithmic representations
of data and increasing computational power have allowed for non-parametric extensions
of financial modelling that are characterized by a better out-of-sample forecasting process
with respect to Modern Portfolio Theory predictions. The programming language imple-
mentation of portfolio optimization as proposed byMarkowitz has given a new perspective
about the roles played by parameter estimates such as expected return and the co-variance
matrix in the asset allocation process. When PortfolioManagers apply quadratic optimiza-
tion, most of the times they may run into several problems. For instance, the weights of
the Optimal Portfolio vary wildly with small changes in the estimates of returns and co-
variances parameters. Also, the mathematical resolution of the Markowitz optimization
problem may lead to portfolios that show little diversification, whose out-of-sample per-
formances are poor, or whose capital allocation is illogical from an economic standpoint.
The expected returns estimates are too error-prone; they may work against risk diversifica-
tion and favour disappointing out-of-sample Sharpe Ratios. Actually, these problems can
become so severe that many Portfolio Managers prefer to completely ignore the standard
optimization process and replace it with advancedmethodologies such as the risk parity al-
location strategy. This thesis develops a portfolio optimization approach by using a Monte
Carlo simulation and describes how it can be implemented with linear programming. The
proposed method is tested in Python with a portfolio composed of 15 random stocks to un-
derline some of the major drawbacks of the Markowitz Analysis and the benefits derived
from the alternative procedure in terms of forward-looking results. Lastly, this thesis illus-
trates the importance of the Constant Proportion Portfolio Insurance as a basic algorithm
in re-balancing strategies that are widely adopted in the financial industry. This strategy
may help a Portfolio Manager in creating option-like payoff functions by exploiting upside
potential while limiting the risk of sever drawdowns.

5

6

Contents

1 Introduction 1
1.1 Background . 1
1.2 Aim and Purpose . 2
1.3 Methodology . 2
1.4 Thesis Structure . 2

2 Overview of Modern Portfolio Theory 5
2.1 Fundamentals . 5

2.1.1 Actual and Expected Returns . 5
2.1.2 Portfolio return . 6
2.1.3 Volatility as the simplest measure of risk 7
2.1.4 Portfolio Variance . 8

2.2 Modern portfolio Optimization with Python 8
2.2.1 Data Manipulation and Relevant Assumption 9
2.2.2 Data Manipulation . 10
2.2.3 Efficient Frontier in the absence of the risk-free asset 12
2.2.4 Efficient Frontier after the introduction of the risk-free asset . . . 12

2.3 Major drawbacks of MPT . 16

3 The Monte Carlo Simulation and the Efficient Frontier 17
3.1 History . 17
3.2 Random Walk theory . 18

3.2.1 Geometric Brownian Motion Model 19
3.2.2 Random Walk Generation of Asset Prices 20

3.3 Portfolio Optimization through a Monte Carlo simulation 21
3.3.1 Optimization Algorithm . 22

4 The Constant Proportion Portfolio Insurance as a re-balancing strategy 27
4.1 The Max Drawdown CPPI and its implementation 27
4.2 The Monte Carlo Simulation and the Max Drawdown CPPI 29

7

CONTENTS

Bibliography 35

5 Appendix 37
5.1 Python Codes . 37

8

Chapter 1

Introduction

1.1 Background

The robustness of optimization approaches is of major concern for Portfolio Managers.
Slight changes in the estimation of return and risk parameters may drastically alter the
portfolio composition and the portion of capital to be allocated to risky financial assets.
The best-know portfolio optimization process was illustrated in Markowitz’s article pub-
lished 1952 in the Journal of Finance [16]. However, the application of his optimization
model has showed several drawbacks. In particular, the lack of robustness of Markowitz
Analysis with respect to errors in parameter estimates is one of the major pitfalls in its
implementation.
Traditionally, estimation errors has been the key challenge in portfolio optimization. This
problem is particularly important when it comes to expected return estimates because they
are much harder to be obtained with a good degree of accuracy if compared to variance/co-
variance matrix estimates. Asset managers and investors are more likely to focus on port-
folio construction methodologies that do not heavily rely on those parameter estimates.
In particular, they tend to avoid expected return estimates and focus on the Global Mini-
mum Variance Portfolio, since it is the only portfolio on the efficient frontier for which no
expected return estimates are needed.

1

1. Introduction

1.2 Aim and Purpose
This thesis provides an introduction to the Investment Management science, with a par-
ticular emphasis on the use of data science techniques to improve investment decision.
We will discuss hands-on implementations of recent applications of techniques to port-
folio management decisions, including the design of more robust empirical models, the
construction of portfolios with improved diversification benefits through a Monte Carlo
Simulation, and the implementation of a particular insurance Portfolio strategy.
Instead of merely explaining these concepts, we will cover a practical analysis of those
ideas in the Python language. We will analyze the problem of estimating risk and re-
turn parameters for meaningful portfolio decisions and illustrate the benefit of applying a
Monte Carlo simulation to the process of portfolio construction and analysis.
Finally, we will develop a primary insurance strategy that represents a core algorithm in
investment management and portfolio construction due to its enhanced robustness. In
Chapter 3, the strategy will be tested on possible Brownian developments of our 15-stocks
portfolio to show how a Portfolio Manager may exploit upside potential of a risky asset by
maintaining a downside protection at the same time.

1.3 Methodology
Firstly, the traditional concepts and methods of Modern Portfolio Theory are analyzed.
Therefore, relevant assumptions and data manipulations are illustrated to implement a 4-
stocks portfolio optimization in Python. Secondly, the methodologies of the Monte Carlo
simulation and the properties of the Geometric Brownian Motion model are described.
Consequently, an optimization algorithm that executes a Monte Carlo simulation is imple-
mented to find the Maximum Sharpe Ratio and the Global Minimum Variance Portfolio
composed by 15 randomly-chosen stocks. Thirdly, different scenarios for the evolution of
the Max Sharpe Ratio Portfolio are generated through a Random Walk model. Finally, a
comparison is drawn between the statistical performances of a portfolio that is re-balanced
once a month according to the Constant Proportion Portfolio Insurance principles and one
that is left undisturbed.

1.4 Thesis Structure
The thesis is structured into the following four chapters:

• In Chapter 1, the background of current optimization approaches is briefly intro-

2

1.4 Thesis Structure

duced, the aim and the purpose of the thesis are presented and the implemented
methodology is described.

• In Chapter 2, the fundamental concepts of Modern Portfolio Theory are defined and
the result of a portfolio optimization carried out in Python according to Markowitz’s
principles is analyzed. Additionally, we show how the shape of the Efficient Frontier
is dramatically altered when a risk-free asset is introduced.

• In Chapter 3, a Monte Carlo simulation technique is applied to the problem of port-
folio optimization. The associated algorithm is introduced in full details and com-
pared to the standard portfolio optimization procedure. The empirical weights of
the Maximum Sharpe Ratio and Global Minimum Variance Portfolio are founded
and confronted with the theoretical ones.

• In Chapter 4, the expected return and volatility of the Maximum Sharpe Ratio Port-
folio founded in Chapter 3 are used to produce ten possible developments of the
portfolio over the next 252 trading days according to a Brownian Motion Model.
We also analyze the crucial role played by the Constant Proportion Portfolio In-
surance strategy in the context of portfolio management by comparing 2 possible
forward-looking performances of the same portfolio.

3

1. Introduction

4

Chapter 2

Overview of Modern Portfolio Theory

Many of the arguments covered in this Chapter date back to a world-wide famous article
written in 1952 by Harry Markowitz [16], the father of Portfolio Selection and the 1990
Nobel Prize winner in Economics. This publication led the foundation of a mathemat-
ical framework called Modern Portfolio Theory (MPT) that is still widely used among
mutual funds, pension plans, banks, insurance companies and many others institutions.
Chapter 2 analyzes the relevant characteristic of asset securities and portfolios, imple-
ments Markowitz’s mathematical model by offering an example of portfolio optimization
in Python and ultimately discusses some of the criticisms against Markowitz’s criteria for
selecting an efficient portfolio.

2.1 Fundamentals

2.1.1 Actual and Expected Returns
The Actual Dollar Return of an asset can be defined as the total dollar value that an investor
gains or loses over a certain period of time. It is the sum of the cash received and the change
in the value of the asset, in dollars term

DollarReturn = Ct+1 + Pt+1 − Pt (2.1)

where:

5

2. Overview of Modern Portfolio Theory

• Ct+1 is any Cash Flow that directly derives from the asset during the period

• Pt+1 is the price at the end of the period

• Pt is the price at the beginning of the period

In an equity-purchase context, the percentage return of a stock at time t (Rt) is given by the
dividend yield plus any capital gain or loss:

Rt =
Pt+1 − Pt

Pt
+

Dt+1

Pt
(2.2)

where Dt+1is the dividend paid during the period.
On the other hand, an expected return is uncertain by definition. It is based on differ-
ent types of estimations and may or may not occur in the future. The reason for that is
the concept of risk, that is the unpredictability of future returns from an investment [18].
One of the most common unbiased estimator under the Efficient Market Hypothesis is the
arithmetic average of the historical returns [14]:

E[R] =
1
N

N∑
t=1

Rt (2.3)

where Rt is the return at time t and N is the number of trading days.
Given that in Chapter 3 we will develop a Monte Carlo Simulation based on the Geometric
Brownian Motion (GBM) Model, a log-normal returns approach seems to be the most
appropriate [15]. We define the logarithmic return of a stock at time t as

Rt = log
(
Pt+1

Pt

)
(2.4)

where Pt is the price of the stock at time t.
As we will mention in Sec. 2.2.1, the use Log Returns also implies great statistical advan-
tage and smoothness in computational procedure.

2.1.2 Portfolio return
Under the MPT assumptions, expected returns of any weighted combination of assets is
just the weighted average of the expected returns of those assets:

E(Rp) =

N∑
i=1

wiE(Ri) (2.5)

where

6

2.1 Fundamentals

• Rp is the return of the portfolio

• wi is the weight of asset i in the portfolio

• Ri is the return of asset i

In other words, the portfolio expected return is simply the arithmetic mean of the returns
of the individual securities weighted by their portfolio weights.

2.1.3 Volatility as the simplest measure of risk
Ageneral accepted trading principle, the Risk-Return Trade-off, claims that there is usually
a positive relationship between the level of risk and the potential return. The higher the
level of risk, the greater is the potential return. Volatility quantifies the amount of risk
of a certain investment. Under the assumption of normally-distributed level of prices in
the stock market, the standard deviation of the returns is the simplest statistical figure
that represents volatility. The standard deviation δk of the returns of asset k on a risky
investment provides a measure of the deviation of the values of k from their mean µk [8]
and it is defined as follow:

δk =

√√
1

N − 1

N∑
t=1

(kt − µk)2 (2.6)

where:

• kt represents the returns of asset k at time t

• N is the number of returns

• µk is the expected return of asset k

(see Eq.2.3) [5]. In a normal distribution, 68% of the time the price of a stock fall within
one standard deviation of the mean. Future prices are within two standard deviations 95%
of the time.
The total dispersion of a return is made up by two components. The first is the systemic
risk, a type of risk that is persistent and depends on the current status of the economy.
Systemic risk derives from economy-wide perils that threaten all businesses [5]. The sec-
ond component of the total dispersion of an asset is called unsystematic risk, a risk that
is specific to any particular asset. It is intrinsic to the company that issues the asset and,
therefore, cannot be eliminated.

7

2. Overview of Modern Portfolio Theory

2.1.4 Portfolio Variance

The portfolio Variance is defined as [5]

σ2
p =

N∑
k

N∑
j

wkw jσkσ jρk, j (2.7)

where ρk, j is the correlation coefficient between the return on asset k and asset j

ρk, j =
Covk, j

σkσ j
(2.8)

Covk, j =

n∑
t=1

(kt − µk)(jt − µ j) (2.9)

As long as −1 ≤ ρk, j < 1, a diversification benefit can occur and an investor can reduce
the risk of the portfolio by simply investing in different assets which are not perfectly cor-
related. If ρk, j = 1, then the risk of the portfolio is simply the weighted average of the
standard deviation of the asset in the portfolio, and diversification benefits do not materi-
alize. Even if assets are positively correlated, but not perfectly correlated, diversification
still allows for the same portfolio expected return with reduced risk [18]. Unsystematic
risk can potentially be eliminated by combining together more assets whose prices do not
move exactly together, while systematic risk cannot be avoided, regardless of how much
an investor diversifies [5].

2.2 Modern portfolioOptimizationwith Python

Portfolio optimization is a process that can be carried out in several ways. Mathematically,
to find the weights of an efficient portfolio associated with an expected return of R∗ ∈ R+

at time t , the following problem must be solved:

min
w∈Rn

Var[Rt], (2.10)

subject to: E[Rt] = R∗ (2.11)
n∑

i=1

wi = 1 (2.12)

wi ≥ 0 (2.13)

8

2.2 Modern portfolio Optimization with Python

The constraint in Eq.2.12 requires that the sum of the weights of the portfolio sum up
to 1, i.e. the portfolio is fully invested. Eq.2.13 is a short-selling constraint, meaning
that we are assuming that short-selling is not possible and, therefore, that every weight
in the portfolio is positive. Alternatively, we could have set a certain risk level (σ∗)2 and
consequently maximizing the return for that particular risk level:

max
w∈Rn

E[Rt], (2.14)

subject to: Var[Rt] = (σ∗)2 (2.15)
n∑

i=1

wi = 1 (2.16)

wi ≥ 0 (2.17)

By solving one of these two problems, we can delineate a set of Efficient Portfolios: they
offer the highest expected return for any level of risk or, on the other hand, the lower level
of volatility for any level of return. For the purpose of this Thesis, we will use Python opti-
mization libraries to find the Efficient Frontier. To illustrate the methodology, we proceed
with an example of portfolio optimization in Python.

2.2.1 Data Manipulation and Relevant Assumption
Before to start to collect and analyze historical data, it is important to state the relevant
assumptions of the case. First, we will use logarithmic returns because they have statistical
advantages against the simple returns (see Eq. 2.2); the multi-period logarithmic return
is defined as the sum of the one-period logarithmic returns, while the multi-period simple
return is the product of the one-period simple returns, which can lead to computational
problems for values close to zero [19]. Additionally, logarithms are widely used in finance
and are often a more advantageous and powerful way to look at returns [12]. Second,
due to limitations in computational power and for reasons of clarity, we prefer to work
with a narrow sample size and over a short period of time. For the illustrative example of
this Chapter, we combine together four random stocks quoted in the US to form Efficient
Portfolios. These stocks are

• General Electric Company(GE)

• The Walt Disney Company (DIS)

• Starbucks Corporation (SBUX)

9

2. Overview of Modern Portfolio Theory

• The Boeing Company (BA)

Historical data for all the assets cover the period from 2020/05/01 to 2021/05/01 [20]. In
Chapter 4, during the Monte Carlo Simulation, the sample size will be broaden and will
include more stocks to make the model more reliable and realistic. The risk free rate is
assumed to be the Treasury Yield curve rate for 5 years of 05/05/21 (0.77 %) according to
the US Department of The Treasury [17].

2.2.2 Data Manipulation
We start by collecting historical Adjusted Closing Price from Yahoo!Finace [20] and then
by computing the percentage change in the Adjusting Closing price from one trading day
to the following (Eq. 2.2). We set up a data frame that concatenates the 4 stocks in a table
and, for visual purposes, only the Normal Returns of first 5 among the 225 trading days
are displayed (Fig. 2.1)

Figure 2.1: Daily Normal Returns

It is well know that the relationship between Normal and Log Returns is given by the
formula

Normal Return = eLog Return − 1 (2.18)

and therefore
Log Return = log(Normal Return + 1) (2.19)

By using the above formula (Eq. 2.19), we can convert Normal Returns into Log Returns
and annualize the Log returns by summing up all the daily Log returns of the 252 trading
days. However, the definition of the expected return of a portfolio over any time period
is the weighted average of all the simple expected returns of the individual securities (Eq.
2.5). It would be erroneous to actually use Annualized Log Returns to compute the one-
period return of the portfolio, since there is no compounding element. We are operating
on one-period basis, and we should instead use Annualized Normal Return. Revisiting the
formula above (Eq. 2.19), we get

Annualized Log Return = log(Annualized Normal Return + 1) (2.20)

10

2.2 Modern portfolio Optimization with Python

All the following measures have been computed according to the formulas in Chapter 2.
The annualized logarithmic returns and the annualized volatility of the returns of the stocks
are displayed below:

Figure 2.2: A Comparison of the four stocks’ Annualized Normal Returns

We can calculate the Annualized Volatility of the 4 stocks by simply using the built-in
Standard Deviation function in Python (std()). Then, the result is annualized by multiply-
ing for

√
252. (Figure 2.3)

Figure 2.3: A Comparison of the four stocks’ Annualized Volatility

We are still missing the Co-variance matrix to see how much the stocks co-move together
and to actually compute the portfolio Variance. To fill this gap, we can use the built-in
Co-variance Matrix Python function (cov()) and annualize the result by multiplying for
252 (see Fig2.4). Relevant statistical figures of the stocks are displayed below in Fig. 2.5.

11

2. Overview of Modern Portfolio Theory

Figure 2.4: Annualized Co-variance Matrix

Figure 2.5: A summary of the relevant statistics

2.2.3 Efficient Frontier in the absence of the risk-
free asset
Now it is all set for the computation and the plotting of the Markowtiz’s Efficient Frontier.
Python optimization libraries allow us to quickly solve one of the two optimization prob-
lems mentioned in Sec. 2.2. Consequently, different baskets of Efficient Weights can be
found. These feasible portfolios allow an investor to maximize the return given any target
level of volatility (or, vice versa, to minimize the volatility given any target level of return).
Any portfolio that lies above the Efficient Frontier cannot be achieved. Any portfolio that
lies beneath the Efficient Portfolio is dominated by at least two portfolios on the Efficient
Frontier. The Efficient Frontier represents the only set of portfolios that a Mean-Variance
investor should be interested in, because it represents the set of feasible portfolios that have
the maximum return for a given level of risk [5].
The pink portfolio at the nose of the curve in Fig 2.7 represents the Global Minimum Vari-
ance Portfolio, the most efficient portfolio that provides investors with the lowest level of
volatility. When there are only risky assets, Markowitz’s Efficient Frontier is the upper
side (above the GMV Portfolio) of the envelope of all feasible portfolios.

2.2.4 Efficient Frontier after the introduction of the
risk-free asset
When a risk-free asset is introduced, the Efficient Frontier dramatically changes shape and
more feasible portfolios are created. In Fig. 2.8, any portfolio that lies on the dotted purple

12

2.2 Modern portfolio Optimization with Python

Figure 2.6: Set of Mean-Variance feasible portfolios

Figure 2.7: The Efficient Frontier without a risk-free asset

line, which goes from the risk-free asset to any risky portfolio, is also a feasible portfolio
and a component of the Efficient Frontier [13]. Note that the Efficient Frontier does not
continue beyond the Optimal Portfolio because we have imposed a short-selling constraint
(Eq. 2.13).
In Fig. 2.8, the purple dotted line that links together the risk free rate and the set of feasible
Portfolios is called the Capital Market Line.
The point of tangency (purple dot) is the point where an Efficient Portfolio has the highest
Sharpe Ratio, a measures tracked by investors to asses risk-adjusted performance of an
investment. The Sharpe Ratio is the most famous measure of risk- adjusted performance
and it is defined as the following [5]:

Sharpe Ratio =
RiskPremium

Standard deviation
=

E[Rp − R f]
σp

(2.21)

13

2. Overview of Modern Portfolio Theory

Figure 2.8: Efficient Frontier

where R f is the risk free rate. It measures the amount of excess return per unit of risk,
measured as volatility; the higher is the Sharpe Ratio, the more efficient is the portfolio.
This measure of performance is straightforward to be computed and allows for instanta-
neous comparison of portfolios’ performance. This is why we will use the Sharpe Ratio
as the unique measure of portfolio’s performance for the purpose of this thesis. However,
it also has its limitations. The main drawback is that the Sharpe Ratio does not distinguish
between downside and upside potential. Given that one of the main objective of risk man-
agement is to avoid only downside risk, the Sharpe Ratio may lead to analyses that are
flawed and other ways to gauge the performance of a portfolio should be considered.
The Tangency Portfolio (also known as the Maximum Sharpe Ratio Portfolio) is the port-
folio that gives to an investor the highest reward per unit of volatility. It can be easily
shown that the Tangency Portfolio contains only systematic risk and no exposure to spe-
cific risk. This characteristic is the reason why the Maximum Sharpe Ratio Portfolio is so
attractive: by diversifying away specific risk (that is not rewarded by financial markets),
the Maximum Sharpe Ratio Portfolio does a very good job at maximizing the reward per
unit of risk. According to the Capital Asset Pricing Model, all investors hold the Tangent
Portfolio as their Optimal Portfolio, varying only the amount invested in the Optimal Port-
folio and in the risk-free-asset according to their personal preferences [5].
The yellow portfolio is a naive Equally Weighted Portfolio, in which each asset has the
same weight (25 %). Clearly, this portfolio is not efficient and dominated by at least other

14

2.2 Modern portfolio Optimization with Python

two portfolios that lie on the Efficient Frontier. In this specific case, investors would never
hold the Equally Weighted Portfolio (in general, they would never invest in any portfolio
that lies beneath the Efficient Frontier) as they could get either:

• Higher return for the same level of volatility

• Lower volatility for the same level of return

All investors optimally choose to hold a combination of the Maximum Sharpe Ratio port-
folio and the risk-free asset. In our 4-stocks-model example, the blue dot in Fig. 2.9 is the

Figure 2.9: The Optimal Portfolio

Optimal Portfolio and has an Expected Return of approximately 87 %, a volatility of 31
% and a Sharpe Ratio is 2.77. The composition of the Optimal Portfolio is the following:

• General Electric 42.89 %

• Disney 29.98 %

• Starbucks 27.07 %

• Boeing 0.6 %

15

2. Overview of Modern Portfolio Theory

The Sharpe Ratio seems quite impressive. However, we should keep in mind that portfolio
performance are biased and altered by the very narrow time-horizon that we imposed at the
beginning of this Chapter. The Covid-19 pandemic caused US financial asset evaluations
to plummet inMarch 2020 and consequently to rally in the stockmarket starting fromApril
2020. Many profitable and peculiar opportunities were created at that time. It follows that
we should not expect these abnormal returns to happen again in the future. Therefore,
sample average of returns of a short period of time might not be accurate as a proxy for
the expected return and volatility of a portfolio.

2.3 Major drawbacks of MPT
Unfortunately, early applications of Markowitz’s optimization technique based on naive
estimates of the input parameters have been found of little use because leading to non-
sensible portfolio allocations. Despite the fact that MPT is still widely used among the
major financial centers all around the world, lately the underlying assumptions of this
mathematical framework have been widely criticized. The implementation of the Mean-
Variance optimization method is affected by a sampling error because it is based on biased
estimations of expected variables obtained from historical data. Moreover, the portfolio
weights tend to be extremely sensitive to very small changes in the expected returns es-
timates. As a result, even a small increase in the expected return of just one asset can
dramatically alter the optimal composition of the entire portfolio [11]. In other words, a
minor perturbation of the inputs (mean return vector and Co-variance matrix) may result
in two completely different portfolios. This is what some experts call the error maximizing
nature of Markowitz’s analysis, because an estimation error that is fairly minor may cause
massive shift in portfolio weights. As stated in Sec. 2.1.3, volatility is the simplest mea-
sure of risk under the assumption of normally distributed returns. However, empirical data
suggest that price levels do not necessarily follow the pattern of a normal probability dis-
tribution [10]. Moreover, this extreme computational simplicity is accompanied by several
drawbacks. The most important disadvantage is that variance treats gains and losses sym-
metrically [14]. As a result, alternative risk measures and better estimation techniques
should be taken into account by financial managers to overcome these weaknesses and
achieve a better theory-practice fit in portfolio optimization practices.

16

Chapter 3

The Monte Carlo Simulation and the Ef-
ficient Frontier

Chapter 2 starts by analyzing the intuition behind the Monte Carlo simulation and how
this powerful algorithm was born. Then, the Random Walk theory is briefly introduced
and random different scenarios about stock prices and returns are generated for one of the
stocks we analyzed in Chapter 1. This will be propaedeutic to properly run a Constant Pro-
portion Insurance Strategy in Chapter 4. Therefore, the Monte Carlo simulation method
and one optimization algorithm are implemented to identify the set of weights that maxi-
mizes the Sharpe Ratio of the portfolio composed by the 15 stocks with the highest market
cap in the S&P 500 index. Finally, the performances of the Maximum Sharpe Ratio and
the Global Minimum Variance Portfolios obtained through the optimization algorithm are
compared with those ones derived from Markowitz’s analysis.

3.1 History
TheMonte Carlo simulation is amethod of estimating the value of an unknown quantity us-
ing inferential statistics. The archetype of the method was firstly formulated in 1946 by the
Polish-American mathematician Stanislan Ulam while he was working on thermonuclear
weapons. During that period, Stan Ulam was recovering at home from a serious illness.
He had plenty of spare time to be dedicated to a particular type of solitary card game. He
was keeping on losing and, really soon, his mathematical mindset made him wonder about

17

3. The Monte Carlo Simulation and the Efficient Frontier

the probability of winning the game. He spent a considerable amount of time in trying to
estimate the calculations; however, the combinatorics were just too hard, even for a mathe-
matician of his level. He started to think about an innovative way to solve the problem and
seriously took into consideration the possibility of combining together statistical inference
and electronic computer techniques. He knew that estimating the probability by using a
succession of random operation would have taken several years. Fortunately, Mr. Ulam
had really some good friends. He talked to John von Neumann, who is considered as the
inventor of the stored program computer, and von Neumann recognized immediately the
brightness of his friend’s intuition. The underlying idea was that, under certain assump-
tions, a random sample tends to exhibit the same properties of the population from which
it is drawn, according to the Law of Large Number. Together, they were able to implement
Ulam’s intuition using the first digital computer, the ENIAC, and a new groundbreaking
computational algorithm was born under the code-name " Monte Carlo simulation " [7].
In recent years, the Monte Carlo simulation has become an essential tool in the pricing of
derivative securities and in risk management [9].

3.2 Random Walk theory

The Random Walk theory states that stock prices are independent of other factors, so the
past movements cannot predict future ones. The theory was introduced in 1972 by Burton
Malkiel in his book " A Random Walk down Wall Street " and it still represents one of
the most controversial theory in finance. The main point of the theory is that stock prices
follow a random path and that they are nomore predictable than a walking path of someone
who is drunk. Statistical research has shown that stock prices tend to follow a random
walk with no discernible predictable patterns that investors can exploit. Such findings are
now taken as evidence of market efficiency, meaning that market prices are supposed to
reflect all currently available information. Only new information will move stock prices,
and this information is equally likely to be good news or bad news [3]. Assuming that
markets are strong-efficient, it is impossible to beat or predict stock prices given that they
already reflect all the available information in the market. As a result, both technical and
fundamental analysis are useless.
Asset returns are often assumed to follow a randomwalk in the financial industry, meaning
they are assumed to be independent and identically distributed, with zero serial correlation
and a variance proportional to time.

18

3.2 Random Walk theory

3.2.1 Geometric Brownian Motion Model
The Geometric Brownian Motion Model process has been introduced in 1900 by the
French mathematician Louis Bachelier. The Brownian Motion model can be used as a
building block for generating scenarios for stock returns. Consider a stock with price Pt

at time t and an expected annualized rate of return µ. The purchase price over the next
period of time ∆t can be decomposed in two parts. The stochastic model for asset returns
that we are going to working with is

Pt+∆t − Pt

Pt
= (R f + σλ)∆t + σ

√
∆tζt (3.1)

where:

• Pt+∆t − Pt is the change in the stock price between t and t+∆t in dollar value

• Pt is the stock price at time t

• R f is the risk-free rate

• σ is the percentage annualized volatility , i.e. the annualized volatility of the stock
index

• λ is the Sharpe Ratio of the stock index

• ∆t is an infinitesimal small time period

• ζt is a random normal number that represents unexpected events and, therefore, the
stochastic part of the Brownian motion model.

In particular, we define µ as the percentage drift, i.e. the annualized expected return of the
stock price. In our model, µ is assumed to be the sum of the risk-free rate and product of
σ and λ

µ = R f + σλ (3.2)

Therefore, Eq. 3.1 becomes

Pt+∆t − Pt

Pt
= µ∆t + σ

√
∆tζt (3.3)

The first term of the right hand side of the equation represents a predictable part that can
be anticipated in advance. It is the expected return of the stock during the infinitesimally
small period of time dt. The second term is a stochastic component that is not predictable
and represents the random changes in the stock price during the interval of time dt, in

19

3. The Monte Carlo Simulation and the Efficient Frontier

Figure 3.1: Normal
distribution of price
levels.

Figure 3.2: Log-
normal distribution of
price levels

response to external effects such as unexpected news on the stock [6]. Both µ and δ are
assumed to be constant. Moreover, GBM assumes the logarithmic change of the stock
price at time t to be a normally distributed random variable according to [15]:

Rt = log
(

Pt

Pt − 1

)
= µ + ζt, ζt ∼ Normal(σ2, 0) (3.4)

Price levels, instead, are assumed to be log-normally distributed. This assumption of-
ten is justified by referring to the historical positivity and right skewness of stock prices.
Moreover, given that stock prices cannot be negative, it is illogical to assume a normal
distribution of stock prices (see Fig. 3.2).
We can use the Geometric Brownian motion process to construct even more complex as-
set returns models with time-varying parameters. In reality, interest rates volatility and
the Sharpe Ratio change over time. Therefore, the risk-free rate,the volatility index and
the Sharpe Ratio used in Eq. 3.1 should not be regarded as constants but as time-varying
quantities. In order to have more realistic stochastic scenarios, we would be better-off by
allowing those parameters to change over time. However, this augmented time-varying
Brownian Motion model falls outside the purpose of this thesis and will not be analyzed.

3.2.2 Random Walk Generation of Asset Prices
By using the model specification described previously in this Chapter, we can run random
trials of stock prices. The stock price of Disney on 5/05/2021 was $ 181.5 according to Ya-
hoo!Finance. As illustrated in Fig. 2.5, the drift µ (expected annualized return) of Disney
is estimated to be 86.2 %. The annualized volatility was estimated to be 35.5 %. Below is
a chart of the outcome where each time step (or interval) is one trading day and the series
runs for a whole years (252 trading days). This tool will be deeply exploited in Chapter 4
when we will run the Constant Proportion Portfolio Insurance.

20

3.3 Portfolio Optimization through a Monte Carlo simulation

Figure 3.3: Random Generation of the stock prices for Disney over 1 year start-
ing form 5/05/2021

The simulation has produced a distribution of hypothetical future outcomes. Fig 3.3 rep-
resents the evolution of Disney’s stock price using a Geometric Brownian motion model;
each line illustrates one possible way in which the stock price may evolve over time.

3.3 Portfolio Optimization through a Monte
Carlo simulation

The term Monte Carlo simulation is usually associated with the process of modeling and
simulating a system affected by randomness [4]. The optimization problem presented in
Subsec. 2.2 seems easily solvable when there are few financial assets. Indeed, efficient
algorithms for solving the quadratic maximization problem formulated by Markowitz are
widely available. No Monte Carlo simulation is actually required. However, the solution
of the problem proposed by Markowitz may lead to a composition of a portfolio that, even
if is correct from a mathematical standpoint, is economically unreasonable. As we will see
at the end of this Chapter, the pure resolution of this problemmay lead to extreme portfolio
allocations. The Optimal Portfolio obtained by running a Monte Carlo simulation seems
to better tolerate sample error in the estimation of the return parameters and to be more
efficient in a forward-looking prospect.

21

3. The Monte Carlo Simulation and the Efficient Frontier

3.3.1 Optimization Algorithm
For the purpose of this simulation, we will first analyze historical data of the 15 stocks with
the highest market cap in the S&P 500 index and, secondly, formulate an efficient alloca-
tion of wealth to maximize the return of the investment while minimizing risk. The stocks
are Apple Inc. (AAPL), Microsoft Corp (MSFT), Amazon.com Inc (AMZN), Facebook
Inc (FB), Alphabet Inc- A shares (GOOGL), Alphabet Inc- C shares (GOOG),Berkshire
Hathaway (BRK.B), Johnson & Johnson (JNJ),Procter & Gamble Company (PG),Visa Inc
(V),NVIDIA Corporation (NVDA),Home Depot (HD),Mastercard Incorporated (MA),JP
Morgan Chase & Co (JPM),UnitedHealth Group (UNH). Historical data are downloaded
from Yahoo!Finance and cover the period between 2015-01-05 and 2020-12-31. We will
implement a Monte Carlo simulation to assign random weights (each of which must be
negative and the sum of which must be 1) to each of the tickers in our portfolio and plot
the returns of each portfolio against its standard deviation. One million portfolios will be
generated in this process. The relevant statistical figures of the stocks are displayed below.
.

Figure 3.4: A summary of the relevant statistics

Once we have gathered all the relevant information and put into code the equations defined
in Sec. 2.1, we can generate random portfolios by initializing one million random arrays
that will constitute the weights of the different portfolios. We require that all the weights
must be positive and that they must add up to one, according to the constraints illustrated
in Eq. 2.12 and Eq. 2.13. The mechanism of this Monte Carlo simulation is to generate

22

3.3 Portfolio Optimization through a Monte Carlo simulation

Figure 3.5: A compari-
son of the annualized log-
arithmic returns

Figure 3.6: A com-
parison of the annualized
volatilities

Figure 3.7: The Efficient Frontier and the Maximum Sharpe Ratio Portfolio

one million different scenarios while keeping track of portfolio’s return and volatility in
every scenario. Then, portfolios with different Sharpe Ratios are plotted in different col-
ors. The blue dotted line in Fig. 3.7 represents the Efficient Frontier, while the green dot
is the Maximum Sharpe Ratio Portfolio. This portfolio is invested according to the the fol-
lowing proportions: 14 % in AAPL , 18.9 % in MSFT , 0.7 % in AMZN, 5.3 % in FB, 3.2

23

3. The Monte Carlo Simulation and the Efficient Frontier

% in GOOGL, 1.4 % in GOOG, 3.5 % in BRK.B, 4.2 % in JNG, 3.5 % in PG, 3.7 % in V,
12.6 % in NVDA, 15 % in HD, 2.4 % in MA, 10 % in JPM and 1.5 % in UNH. It provides
the investor with a return of 36.8 %, volatility of 23.5 % and a Sharpe Ratio of 1.53. It
is the portfolio with the highest reward per unit of risk. The result achieved through the
Monte Carlo simulation looks reasonable both in the composition of the weights and in
the graphical representation illustrated in Fig. 3.7.
By minimizing or maximizing analytically the problem illustrated in Eq. 2.10 and Eq.
2.14, unreasonable portfolio weights are generated because of the lack of robustness of
the Markowitz’s model. In our case, the pure mathematical resolution of the maximiza-
tion problem would suggest to invest 96 % of the initial capital in just 2 stocks, Amazon
and NVIDIA, which have the 2 highest expected returns and are among the most volatile
stocks. The portfolio obtained theoretically has an expected return of 56.7 % and a volatil-
ity of 31.1 %, leading to a Sharpe Ratio of 1.82, which is approximately 0.3 higher than the
one obtained by running our Monte Carlo simulation. Such portfolio allocation is biased
by parameter estimates of the expected returns of the most high-performing stocks and
would make lose an investor the benefits of diversification. Even a estimation error of 1
% in the expected return of a stock may dramatically alter the composition of the portfolio
imposed by Markowitz.
AssetManagers tend to avoid the sample-based expected return parameter estimates, which
are very noisy and not very reliable, while they tend to engage in estimation of risky pa-
rameters that are usually much easier to obtain with a good degree of accuracy. Therefore,
professionals implement Markowitz Analysis by focusing more on the Global Minimum
Variance Portfolio, instead of the portfolio which maximizes the Sharpe Ratio. This is
mainly due to two reasons. Firstly, because of all the limitation of Sharpe Ratio as a mea-
sure of portfolio performance illustrated in Sec. 2.2.4. Secondly, the GMV is the portfolio
that is the least sensitive to errors in parameter estimates. Since it requires no expected
return estimates, it is only sensitive to errors in risk parameter estimates [13]. The esti-
mate for the Global Minimum Variance Portfolio obtained by running our Monte Carlo
simulation is more reliable than that one about the portfolio with the highest Sharpe Ratio.
By looking at Fig. 3.8, we can see that theoretical GMV Portfolio (red dot) should have
a return of 13.5 % and a volatility of 16.4 %; instead, the GMV Portfolio derived from
the simulation (grey dot) has the the exact same return with only 1.5 % more volatility if
compared to the red dot.
By assigning random weights to each of the tickers in the portfolio and plotting the perfor-
mance measure of each portfolio, the Portfolio Manager may spot a more diversified Max
Sharpe Ratio Portfolio and avoid the extreme sensibility ofMarkowitz’s model, which may
lead to biased portfolios with strong positive allocation in some assets and strong negative

24

3.3 Portfolio Optimization through a Monte Carlo simulation

allocation in others. The Monte Carlo Simulation seems not to be as sensible to sample
error as the Markwowitz formulation, resulting in a well-diversified Portfolio that looks
more reasonable in terms of diversification and out-of-sample performances. By summing

Figure 3.8: The Efficient Frontier and The Global MinimumVariance Portfolios

up, we conclude that Markowitz’s Analysis is extremely attractive in principle, because it
allows an investor to build efficient portfolios. But in practice, its applicability is severely
limited by the presence of errors in parameter estimates [13]. The alternative portfolios
that have been generated by running a Monte Carlo simulation appear to be more robust
with respect to sample risk and more reliable in terms of a forward-looking prospect.

25

3. The Monte Carlo Simulation and the Efficient Frontier

26

Chapter 4

TheConstant Proportion Portfolio Insur-
ance as a re-balancing strategy

The Constant Proportion Portfolio Insurance is an insurance strategy that consists in a
dynamic allocation of capital to a risky and a risk-free asset in order to exploit the upside
potential of a certain investment strategy by maintaining a downside protection at the same
time. The CPPI strategies have been introduced in 1987 by Black and Jones and allow an
investor to generate convex payoff functions without the use of any option instrument.
Specifically, the payoffs under CPPI can be reconstructed with a position in perpetual
American calls on a dividend-paying security [2].
This chapter offers an approach to portfolio insurance that is really intuitive and does not
require the use of any complex mathematical formula.

4.1 The Max Drawdown CPPI and its imple-
mentation
We introduce a particular version of the CPPI, the Maximum Drawdown Constraints one,
whose focus is to maintain the maximum drawdown below a certain pressure level. The
Max Drawdown is a very popular measure of downside risk that measures the maximum
loss that an investor could have experienced during a certain time period if she had bought
a risky asset at its peak price and sold it at its lowest price; it measures the worst possible

27

4. The Constant Proportion Portfolio Insurance as a re-balancing strategy

return, that is the maximum loss from a previous high to a subsequent low, of a certain
risky investment.
In its traditional formulation, the CPPI implies a two-asset framework and that the wealth
of an investor is to be allocated between the risky and risk-free asset.
More precisely, we define:

Max Drawdown Constraint : Vt > α ∗ Mt (4.1)

where:

• Vt is the value of the portfolio at time t

• 1-α is the maximum acceptable drawdown

• Mt is a running max process that keeps track of maximum value of the portfolio
between time 0 and time t

This specific approach is particularly well-suited to meet the needs of pension funds’ man-
agers who do not want that the value of their portfolio falls below the floor given by the
present value of their liabilities [1].
Our dynamic algorithm will try to protect a floor, set by the investor, that represents the
minimum dollar level of a portfolio that the investor is willing to tolerate. Note that the
floor value is actually a dynamic figure that changes over time as the value of the portfolio
changes over time. At every point in time, the floor value will be the maximum previous
peak of the portfolio value multiplied by α.
What the strategy says is very intuitive: at every point in time, an investor is going to allo-
cate to the risky asset a multiple of the difference between the current value of the assets
in the portfolio and the floor value. This difference is defined as the " cushion ". The per-
centage of initial wealth allocated to the risky asset is given by multiplying the cushion by
a coefficient m. The coefficient m is usually a function of the maximum drawdown that an
investor is willing to tolerate during the investment time horizon; it represents the amount
of leverage that an investor is willing to take, as an higher m indicates more aggressive
strategies.
Let’s suppose an investor wants to invest $ 100 000 in the portfolio derived in Sec. 3.3.1
and imposes $ 90 000 as a floor and 20% as the maximum acceptable drawdown. Also,
let’s assume that the multiplier m is equal to 5. The cushion is $ 100 000 - $90 000 = $
10 000. According to her risk preferences, the investor will allocate $10 000 * 5 = $ 50
000 to the risky asset and the $100 000 - $ 50 000 = $ 50 000 to the safe asset at this point
in time. In other word, we are imposing that the portfolio value must always be greater

28

4.2 The Monte Carlo Simulation and the Max Drawdown CPPI

Figure 4.1: Illustration of the Max Drawdown CPPI process

than 80 percent of the maximum value ever reached (not the current value) from the ori-
gin of the implementation of the portfolio strategy. The beauty of the CPPI is that if an
investor implements it carefully and is willing to re-balance the portfolio extremely often,
then nothing can go wrong. As the cushion shrinks to 0 and the the investor gets close to
the floor, the portfolio insurance is built in such a way to reduce the allocation to the risky
asset and to move capital into the safer asset. However, from a practical point of view, an
investor may not willing to trade on a daily basis given the existence of transaction costs.
If the investor wants to re-balance the portfolio quarterly, it could happen that, between
the two trading dates, the loss in the risky component is so large that she get below the
floor before having time to trade. The risk (probability) of breaching the floor because of
discrete trading in CPPI strategy is known as gap risk [13].

4.2 TheMonteCarlo Simulation and theMax
Drawdown CPPI
For the purpose of this thesis, we will run the CPPI for exactly 252 trading days and assume
that the risk-free asset is a constant given by the Treasury Yield curve rate for 5 years of
05/05/21 (0.77 %). The risky asset is assumed to be the Tangent Portfolio derived in Sec.
3.3.1, which will follow a Geometric Brownian Motion model. The set of returns for the
risky asset over the 252 days will be derived according to Eq. 3.4, using as µ and as σ
respectively the expected return and the volatility of the same Tangent Portfolio. We will
implement a Monte Carlo simulation that will generate ten different evolution scenarios
of the risky asset. The Monte Carlo simulation has proven really useful in testing the
outcome of the strategy out of sample and in generating reasonable scenarios for the asset
returns by using a Geometric Brownian Motion model. The output of the simulation is
an estimate for an unknown quantity (the return of the Tangent Portfolio over the next 252

29

4. The Constant Proportion Portfolio Insurance as a re-balancing strategy

trading days), which will serve as an input to run the CPPI. Finally, we can generate an
asset value history, a risk budget history and a risk weight history. We will get a sense of
the whole benefit of the CPPI by comparing the standard wealth index – the evolution of
the the investor’s portfolio without the application of the CPPI- with the wealth scenario
of an investor who has actually implemented CPPI principles. We will call the former
portfolio "Portfolio1" and the latter portfolio "Portfolio2". Throughout this Chapter we
assume that:

• 1-α is 10 % , i.e. the maximum acceptable drawdown is 10%

• The coefficient m is 3

• The initial wealth of the investor is $1000

• The floor value is 80 % of the current value of the portfolio

• The Cushion is the difference between the value of the portfolio at time t and the
floor value at time t. Therefore, the Cushion is initially $1000 - $800 = $ 200

• The Portfolio Manager re-balances the portfolio once every month.

We start by generating the different simulated scenarios of the future wealth for the in-
vestor who does not want to apply the CPPI principle discussed so far. Over the next 252
trading day, the portfolio may follow one of these 10 paths: By contrast, we illustrate the

Figure 4.2: Possible paths of Portfolio1

day-by-day progression of Portfolio2 over time in Fig 4.3.
A quick comparison between the relevant summary statistics of Portfolio1 in Fig 4.4 and
those of Portfolio2 in Fig 4.5 reveals that CPPI is really effective in limiting downside risk
and maintaining upside potential. The average annualized return obtained in scenario1

30

4.2 The Monte Carlo Simulation and the Max Drawdown CPPI

Figure 4.3: Possible paths of Portfolio2

Figure 4.4: A statistical summary of Portfolio1

Figure 4.5: A statistical summary of Portfolio2

is approximately 24.7%. However, the Portfolio Manager could have experienced a maxi-
mum drawdown of approximately 31 % during the same time period. On the other hand,
scenario2 is way more appealing for a risk-averse investors aiming at maximising their
upside potential: the CPPI, in this particular case, would have allowed for a maximum
drawdown of -11.9 % in the worst case scenario, with an average annualized return of ap-
proximately 19.72 % .
Moreover, volatility figures in Portfolio2 are always below 14 % and substantially lower
if compared with those in Portfolio1. In particular, let’s compare the day-by-day devel-

31

4. The Constant Proportion Portfolio Insurance as a re-balancing strategy

opment of the two Portfolios. Fig 4.6 illustrates 2 different paths: the black dotted line,
representing the average wealth index of Portfolio1, exhibit a more pronounced and frag-
mented zig-zag pattern with respect to the blue line, which is smoother. Nevertheless, the
black dotted line reaches an higher level of wealth at the end of 252 trading days. This is
perfectly in line with the CPPI strategy, which sacrifices a reasonable measure of upside
potential to protect a floor that, in the absence of transaction costs , would never be broken.
The Figure also suggests that the Portfolio Manager experiences more severe drawdowns
if the CPPI is not implemented. This is confirmed by Fig 4.7, which compares the maxi-
mum drawdown experienced by Portfolio1 vis-a-vis that one experienced by Portfolio2 in
the in the worst case scenario (scenario n.7 for both the models). It is worth-nothing that
the Max Drawdowns incurred by running the CPPI strategy never breach the 10 % limit by
more than 1.6 % (scenario n.5). This is because in our example we are re-balancing every
month. However, in a true portfolio management environment, this re-balancing strategy
would generate high transaction costs that would seriously harm profitability. That’s why
most re-balancing strategies envisage a quarterly or annually re-balancing of the portfolio
under management. When the volatility in the market is high, as long as Portfolio Man-
agers check and re-balance the portfolio often enough, they might still be able to not incur
any violation of the Max Drawdown limit. However, in order to avoid useless transaction
costs, an efficient Portfolio Manager usually tries to manipulate the coefficient m. This
"aggressivity" parameter plays a crucial in determining the overall benefit of the CPPI
in different volatility scenarios. When markets are very volatile, the Portfolio Manager
should instinctively use a small coefficient; instead, if the markets are very calm, the Man-
ager might opt for a larger m. In the financial industry no portfolio insurance strategy
contemplates a fixed multiplier as our coefficient m. All Portfolio Managers would make
sure that m is appropriate for the market conditions that they see going forward [13].

Figure 4.6: A comparison of theMeanWealth Index of Portfolio1 and Portfolio2

32

4.2 The Monte Carlo Simulation and the Max Drawdown CPPI

Figure 4.7: Maximum Drawdown comparison

It is interesting to look also at how the composition of the risky and safe weights is altered
by the CPPI mechanism all over the trading-year. Initially, the weight allocated to the risky
asset is the multiplier m multiplied by the cushion. In our case, the Portfolio Manager al-
locates 60% of the initial wealth of the investor to the risky asset. During the course of the
strategy, the portion of capital allocated to the risky asset in the worst-performing port-
folios is reduced to up approximately 30% during the 12 months period. As the value of
the portfolio reduces over time, the value of the cushion shrinks as well and consequently
the Portfolio Manager decides to allocate an higher portion of capital to the risk-free asset.
On the other hand, in the best-performing portfolios, the portion of risky capital fluctuates
around its original level, in an interval that goes from 50 % to 60 %. In fact, the mean of
capital allocated to the risky asset in each different scenario is 54.8 % .
By generating exactly 1 million different scenarios with our Geometric Brownian Model,
it can be seen that the average risky weight among all the different scenarios is approxi-
mately 53.6 % .
In conclusion, the CPPI is far more important than people give it credit for because it is the
basis for a lot of downside-protection algorithms that are becoming more and more popu-
lar into the marketplace [13]. The CPPI is just a core algorithm. No finance-professional
implements the CPPI following the step just described in this Chapter. In practice, there
are always sophisticated sort of twists that are implemented alongside the standard CPPI.
Portfolio Managers would typically impose buffers around their training limits and adjust
the CPPI to deal with massive trading costs. Nevertheless, as transaction costs are getting
lower, these kinds of algorithms are finding their way into retail accounts. Finally, the out-
comes of this strategy really depends on market condition. CPPI is not meant to have lot of
downside potential, but rather to have a strong protection floor below which the portfolio
value can not fall.

33

4. The Constant Proportion Portfolio Insurance as a re-balancing strategy

34

Bibliography

[1] Fischer Black and Robert Jones. Simplifying portfolio insurance. Journal of portfolio
management, 14(1):48, 1987.

[2] Fischer Black and AndreF Perold. Theory of constant proportion portfolio insurance.
Journal of Economic Dynamics and Control, 16(3-4):403–426, 1992.

[3] Kane Bodie. Marcus. investments. Global Edition, 10th, Mc Growth Hill Education,
1999.

[4] Paolo Brandimarte. Handbook in Monte Carlo simulation: applications in financial
engineering, risk management, and economics. John Wiley & Sons, 2014.

[5] Richard A Brealey, Stewart C Myers, Franklin Allen, and Pitabas Mohanty. Princi-
ples of corporate finance. Tata McGraw-Hill Education, 2012.

[6] Abdelmoula Dmouj. Stock price modelling: Theory and practice. Masters Degree
Thesis, Vrije Universiteit, 2006.

[7] Roger Eckhardt. Stan ulam, john von neumann, and the monte carlo method. Los
Alamos Science, 15(30):131–136, 1987.

[8] Robert J Elliott and PEkkehardKopp. Pricing by arbitrage.Mathematics of Financial
Markets, pages 1–26, 2005.

[9] Paul Glasserman. Monte Carlo methods in financial engineering, volume 53.
Springer Science & Business Media, 2013.

[10] Simone Grüninger. Climbing returns and falling meteorites. Credit Suisse Bul-
letin,(2), 27, 2013.

35

BIBLIOGRAPHY

[11] Martin Haugh. Mean-variance optimization and the capm. Foundations of Financial
Engineering, IEOR E, 4706:1–7, 2016.

[12] Robert S Hudson and Andros Gregoriou. Calculating and comparing security returns
is harder than you think: A comparison between logarithmic and simple returns.
International Review of Financial Analysis, 38:151–162, 2015.

[13] Edhec Risk Institute. Introduction to portfolio management and construction with
python.

[14] Matthias Kull. Portfolio optimization for constrained shortfall risk: Implementation
and IT Architecture considerations. PhD thesis, M. Sc. Thesis, ETH Zürich, 2014.

[15] Joel Lidén. Stock price predictions using a geometric brownian motion, 2018.

[16] Harry M Markowitz. Portfolio selection. Yale university press, 1968.

[17] US Department of The Treasury. Daily treasury yield curve rate.

[18] IyiolaOmisore, Munirat Yusuf, andNwufoChristopher. Themodern portfolio theory
as an investment decision tool. Journal of Accounting and Taxation, 4(2):19–28,
2011.

[19] Miskolczi Panna. Note on simple and logarithmic return. APSTRACT: Applied Stud-
ies in Agribusiness and Commerce, 11(1033-2017-2935):127–136, 2017.

[20] Yahoo!Finance. Historical data.

36

Chapter 5

Appendix

5.1 Python Codes
Some of the following codes have been written with the help of online tutorials and have
been revisited by the author for the purpose of the thesis.

from math import s q r t
import numpy as np
import pandas as pd
import s e abo r n as sb
import ma t p l o t l i b . p y p l o t a s p l t
from s c i p y . o p t im i z e import minimize
import s c i p y . s t a t s a s s s
import random
import y f i n a n c e as y f
p l t . s t y l e . use (" s e abo rn ")
%l o a d _ e x t a u t o r e l o a d
%a u t o r e l o a d 2
def check_sum (we i gh t s) :

r e t u r n 0 i f sum o f t h e we i g h t s i s 1
re turn np . sum (we i gh t s)−1

import i p yw i d g e t s a s w idge t s

37

5. Appendix

def p o r t f o l i o _ r e t u r n (we igh t s , r e t u r n s) :

re turn we igh t s . T @ r e t u r n s

def p o r t f o l i o _ v o l (we igh t s , cov) :
re turn (we i gh t s . T @ cov @ we igh t s) ∗ ∗0 . 5

def l o g _ r e t u r n s (r e t u r n s) :
l o g _ r e t u r n s =np . l og (1+ r e t u r n s)
re turn l o g _ r e t u r n s

def g e t _ r e t _ v o l _ s r (we i gh t s) :
we i gh t s = np . a r r a y (we i gh t s)
r e t = p o r t f o l i o _ r e t u r n (we igh t s , a n n _ l o g _ r e t s)
vo l = p o r t f o l i o _ v o l (we igh t s , a n nu a l i z e d_ cov)
s r = (r e t − r f _ r a t e) / vo l
re turn np . a r r a y ([r e t , vol , s r])

def op t ima l _we i g h t s (n_po i n t s , er , cov) :
t a r g e t _ r s = np . l i n s p a c e (e r .min () , e r .max () , n _ p o i n t s)
we i gh t s =
[min imize_vo l (t a r g e t _ r e t u r n , er , cov)
f o r t a r g e t _ r e t u r n in t a r g e t _ r s]
re turn we igh t s

def min imize_vo l (t a r g e t _ r e t u r n , e r , cov) :
n = e r . shape [0]
i n i t _ g u e s s = np . r e p e a t (1 / n , n)
bounds = ((0 . 0 , 1 . 0) ,) ∗ n
r e t u r n _ i s _ t a r g e t = {

' t yp e ' : ' eq ' ,
' a r g s ' : (er ,) ,
' fun ' : lambda weigh t s , e r :
t a r g e t _ r e t u r n − p o r t f o l i o _ r e t u r n (we igh t s , e r)

}

we igh t s_sum_to_1 = {
' t yp e ' : ' eq ' ,
' fun ' : lambda we igh t s : np . sum (we i gh t s) − 1

}

38

5.1 Python Codes

def gmv (cov) :

n = cov . shape [0]
re turn msr (0 , np . r e p e a t (1 , n) , cov)

def msr (r f _ r a t e , a n n _ l o g _ r e t s , a n nu a l i z e d_ cov) :

n = a n n _ l o g _ r e t s . shape [0]
i n i t _ g u e s s = np . r e p e a t (1 / n , n)
bounds = ((0 . 0 , 1 . 0) ,) ∗ n
we igh t s_sum_to_1 = {

' t yp e ' : ' eq ' ,
' fun ' : lambda we igh t s : np . sum (we i gh t s) − 1

}
def s h a r p e _ r a t i o (l o g _ r e t s , r f _ r a t e , p e r i o d s _ p e r _ y e a r) :

r f _ p e r _ p e r i o d = (1+ r f _ r a t e) ∗ ∗ (1 / p e r i o d s _ p e r _ y e a r)−1
a n n _ l o g _ r e t s = f _ a n n u a l i z e _ l o g _ r e t s (

l o g _ r e t s , p e r i o d s _ p e r _ y e a r)
e x c e s s _ r e t = a n n _ l o g _ r e t s − r f _ p e r _ p e r i o d

ann_vo l = f _ a n n u a l i z e _ v o l (l o g _ r e t s ,
p e r i o d s _ p e r _ y e a r)

re turn e x c e s s _ r e t / ann_vo l

def n e g _ s h a r p e _ r a t i o (we igh t s , r f _ r a t e , er , cov) :
r = p o r t f o l i o _ r e t u r n (we igh t s , e r)
vo l = p o r t f o l i o _ v o l (we igh t s , cov)
re turn −(r− r f _ r a t e) / vo l

r e s u l t s = min imize (p o r t f o l i o _ v o l , i n i t _ g u e s s ,
a r g s = (cov ,) , method = "SLSQP" ,
o p t i o n s ={ ' d i s p ' : F a l s e } ,
c o n s t r a i n t s =(r e t u r n _ i s _ t a r g e t ,
we igh t s_sum_to_1) ,
bounds=bounds)

re turn r e s u l t s . x

39

5. Appendix

def msr (r f _ r a t e , a n n _ l o g _ r e t s , a n nu a l i z e d_ cov) :

n = a n n _ l o g _ r e t s . shape [0]
i n i t _ g u e s s = np . r e p e a t (1 / n , n)
bounds = ((0 . 0 , 1 . 0) ,) ∗ n
we igh t s_sum_to_1 = {

' t yp e ' : ' eq ' ,
' fun ' : lambda we igh t s : np . sum (we i gh t s) − 1

}

def summary_s t a t s (normal_r , r f _ r a t e) :

ann_r = no rma l_ r . a g g r e g a t e (
f _ a n n u a l i z e _ l o g _ r e t s , p e r i o d s _ p e r _ y e a r =12)

ann_vo l = no rma l_ r . a g g r e g a t e (
f _ a n n u a l i z e _ v o l , p e r i o d s _ p e r _ y e a r =12)

ann_ s r = no rma l_ r . a g g r e g a t e (
s h a r p e _ r a t i o , r f _ r a t e = r f _ r a t e , p e r i o d s _ p e r _ y e a r =12)

dd = no rma l_ r . a g g r e g a t e (
lambda r : drwdwn (r) . Drawdown .min ())

skew = norma l_ r . a g g r e g a t e (skewness)
k u r t = no rma l_ r . a g g r e g a t e (k u r t o s i s)
c f _ v a r 5 = no rma l_ r . a g g r e g a t e (g a u s s i a n_v a r ,

mod i f i ed = True)

re turn pd . DataFrame ({
' Annua l i z ed ␣ Re tu rn ' : ann_r ,
' Annua l i z ed ␣ V o l a t i l i t y ' : ann_vol ,
' Skewness ' : skew ,
' K u r t o s i s ' : ku r t ,
" Corn i sh −F i s h e r ␣Var␣5%" : c f_va r5 ,
' Sha rpe ␣ Ra t i o ' : ann_s r ,
'Max␣Drawdown ' : dd

40

5.1 Python Codes

})

def drwdwn (r e t u r n _ s e r i e s : pd . S e r i e s) :

we a l t h _ i nd ex = 1000∗(1+ r e t u r n _ s e r i e s) . cumprod ()
p r e v i ou s _p e ak = wea l t h _ i nd ex . cummax ()
drw = (wea l t h_ index −p r e v i ou s _p e ak) / p r e v i o u s _p e ak
re turn pd . DataFrame ({

' Wea l th_ Index ' : wea l t h_ index ,
' Peaks ' : p r ev i ou s_peak ,
' Drawdown ' : drw

})
def skewness (r) :

demeaned_r = r − r . mean ()

s igma_r = r . s t d (ddof =0)
exp = (demeaned_r ∗ ∗3) . mean ()
re turn exp / s igma_r ∗∗3

def k u r t o s i s (r) :
demeaned_r = r − r . mean ()

s igma_r = r . s t d (ddof =0)
exp = (demeaned_r ∗ ∗4) . mean ()
re turn exp / s igma_r ∗∗4

def g a u s s i a n _ v a r (r , l e v e l = 5 , mod i f i ed = F a l s e) :

z= s s . norm . ppf (l e v e l / 1 0 0)
i f mod i f i ed :

s = skewness (r)
k = k u r t o s i s (r)
z= (z +(z ∗∗2−1)∗ s / 6+ (z∗∗3−3∗z)∗
(k−3) /24 − (2∗ z∗∗3 − 5∗z) ∗ (s ∗ ∗2) / 3 6)

re turn −(r . mean () + z∗ r . s t d (ddof =0))

41

5. Appendix

def l o g _ r e t u r n s (r e t u r n s) :
l o g _ r e t u r n s =np . l og (1+ r e t u r n s)
re turn l o g _ r e t u r n s

def f _ a n n u a l i z e _ l o g _ r e t s (l o g _ r e t s , p e r i o d s _ p e r _ y e a r) :
x=np . mean (l o g _ r e t s)∗ p e r i o d s _ p e r _ y e a r
a n n _ r e t s = np . exp (x) −1
re turn a n n _ r e t s

def f _ a n n u a l i z e _ l o g _ r e t s (l o g _ r e t s , p e r i o d s _ p e r _ y e a r) :
x=np . mean (l o g _ r e t s)∗ p e r i o d s _ p e r _ y e a r
a n n _ r e t s = np . exp (x) −1
re turn a n n _ r e t s

def f _ a n n u a l i z e _ v o l (r , p e r i o d s _ p e r _ y e a r) :

re turn r . s t d () ∗ (p e r i o d s _ p e r _ y e a r ∗ ∗0 . 5)

def p l o t _ e f (n_po i n t s , er , cov , show_cml = Fa l s e ,
s t y l e = ' .− ' , r f _ r a t e = 0 , show_ew=Fa l s e ,
show_gmv=Fa l s e) :

we i gh t s = op t ima l _we i g h t s (n_po i n t s , er , cov)
r e t s = [p o r t f o l i o _ r e t u r n (w, e r) f o r w in we igh t s]
v o l s = [p o r t f o l i o _ v o l (w, cov) f o r w in we igh t s]
e f = pd . DataFrame ({ " Re t u r n s " : r e t s , " V o l a t i l i t y " : v o l s })
ax = e f . p l o t . l i n e (x=" V o l a t i l i t y " , y=" Re t u r n s " ,

s t y l e = s t y l e , c o l o r = ' b ')
i f show_gmv :

w_gmv = gmv (cov)
r_gmv = p o r t f o l i o _ r e t u r n (w_gmv , e r)
vol_gmv = p o r t f o l i o _ v o l (w_gmv , cov)
d i s p l a y GMV
ax . p l o t ([vol_gmv] , [r_gmv] , c o l o r = ' p ink ' ,

marker = ' o ' , m a r k e r s i z e =12 ,
l a b e l =" Globa l ␣Minimum␣Var i ance ␣ P o r t f o l i o ")

i f show_ew :
n = e r . shape [0]

42

5.1 Python Codes

w_ew = np . r e p e a t (1 / n , n)
r_ew = p o r t f o l i o _ r e t u r n (w_ew , e r)
vol_ew = p o r t f o l i o _ v o l (w_ew , cov)
d i s p l a y EW
ax . p l o t ([vol_ew] , [r_ew] , c o l o r = ' go l d en rod ' ,

marker = ' o ' , m a r k e r s i z e =12 ,
l a b e l =" Equa l l y ␣Weighted ␣ P o r t f o l i o ")

i f show_cml :
ax . s e t _ x l im (l e f t = 0)
w_msr = msr (r f _ r a t e , er , cov)
r_msr = p o r t f o l i o _ r e t u r n (w_msr , e r)
vo l_msr = p o r t f o l i o _ v o l (w_msr , cov)
#ADD CML
cml_x = [0 , vo l_msr]
cml_y = [r f _ r a t e , r_msr]
ax . p l o t (cml_x , cml_y , c o l o r = ' p u r p l e ' ,

marker= ' o ' , l i n e s t y l e = ' dashed ' ,
m a r k e r s i z e = 12 ,
l i n ew i d t h = 2 ,
l a b e l =" C a p i t a l ␣Market ␣ Line ")

l e g = ax . l e g end ()
re turn ax

def gbm(n_yea r s = 10 , n _ s c e n a r i o s =1000 , mu , sigma ,
s t e p s _p e r _y e a , s_0 , p r i c e s =True) :

d t = 1 / s t e p s _ p e r _ y e a r
n _ s t e p s = i n t (n_ye a r s ∗ s t e p s _ p e r _ y e a r) + 1

r e t s _ p l u s _ 1 = np . random . normal (l o c =(1+mu)∗∗ dt ,
s c a l e =
(s igma∗np . s q r t (d t)) ,
s i z e =

43

5. Appendix

(n_ s t ep s , n _ s c e n a r i o s))
r e t s _ p l u s _ 1 [0] = 1
x = pd . DataFrame (r e t s _ p l u s _ 1)
x_1 = (x) . cumprod () ∗ s_0
re turn x_1

def r u n_cpp i (r i s k y _ r , s a f e _ r = None , m = 3 ,
s t a r t = 1000 , f l o o r = 0 . 9 , r f _ r a t e =0 .0077 ,
drawdown = 0 . 2) :

d a t e s = r i s k y _ r . i ndex
n _ s t e p s = l en (d a t e s)
a c c oun t _ v a l u e = s t a r t
f l o o r _ v a l u e = s t a r t ∗ f l o o r
peak = s t a r t

i f i s i n s t a n c e (r i s k y _ r , pd . S e r i e s) :
r i s k y _ r = pd . DataFrame (r i s k y _ r)
r i s k y _ r . columns = ["R"]

i f s a f e _ r i s None :
s a f e _ r = pd . DataFrame () . r e i n d e x _ l i k e (r i s k y _ r)
s a f e _ r . v a l u e s [:] = r f _ r a t e / 12

a c c o u n t _ h i s t o r y = pd . DataFrame () . r e i n d e x _ l i k e (r i s k y _ r)
r i s k y _w_h i s t o r y = pd . DataFrame () . r e i n d e x _ l i k e (r i s k y _ r)
c u s h i o n _ h i s t o r y = pd . DataFrame () . r e i n d e x _ l i k e (r i s k y _ r)

f o r s t e p in range (n _ s t e p s) :
i f drawdown i s not None :

peak = np . maximum (peak , a c c oun t _ v a l u e)
f l o o r _ v a l u e = peak ∗ (1−drawdown)

r i sky_w = m∗ cu sh i on
r i sky_w = np . minimum (r isky_w , 1)
r i sky_w = np . maximum (r isky_w , 0)
safe_w = 1− r i sky_w

44

5.1 Python Codes

s a f e _ a l l o c = a c c oun t _ v a l u e ∗ safe_w
r i s k y _ a l l o c = a c c oun t _ v a l u e ∗ r i sky_w

ac c oun t _ v a l u e = r i s k y _ a l l o c ∗(1+ r i s k y _ r . i l o c [s t e p])
+ s a f e _ a l l o c ∗(1+ s a f e _ r . i l o c [s t e p])

c u s h i o n _ h i s t o r y . i l o c [s t e p] = cu sh i on
r i s k y _w_h i s t o r y . i l o c [s t e p] = r i sky_w
a c c o u n t _ h i s t o r y . i l o c [s t e p] = a c c oun t _ v a l u e

r i s k y _we a l t h = s t a r t ∗(1+ r i s k y _ r) . cumprod ()

b a c k t e s t _ r e s u l t = {
' Weal th ' : a c c o u n t _ h i s t o r y ,
' R i sky_wea l t h ' : r i s k y _we a l t h ,
' R i sk_Budge t ' : c u s h i o n _ h i s t o r y ,
' R i s k y _A l l o c a t i o n ' : r i s k y _w_h i s t o r y ,
'm ' : m,
' s t a r t ' : s t a r t ,
' f l o o r ' : f l o o r ,
' r i s k y _ r ' : r i s k y _ r ,
' s a f e _ r ' : s a f e _ r

}

re turn b a c k t e s t _ r e s u l t

The Monte Carlo simulation applied to find the empirical Maximum Sharpe Ratio
Portfolio in Chapter 3 is the following:

np . random . seed (0)
num_por t s = 100000
a l l _w e i g h t s = np . z e r o s ((num_ports ,

l en (c l o s i n g _ p r i c e . columns)))
r e t _ a r r = np . z e r o s (num_por t s)
v o l _ a r r = np . z e r o s (num_por t s)

45

5. Appendix

s h a r p e _ a r r = np . z e r o s (num_por t s)

f o r x in range (num_por t s) :
Weigh t s
we igh t s = np . a r r a y (np . random . sample (1 5))
we i gh t s = we i gh t s / np . sum (we i gh t s)

Save we i g h t s
a l l _w e i g h t s [x , :] = we i gh t s

Expec t ed r e t u r n
r e t _ a r r [x] = p o r t f o l i o _ r e t u r n (we igh t s , a n n _ l o g _ r e t s)

Expec t ed v o l a t i l i t y
v o l _ a r r [x] = p o r t f o l i o _ v o l (we igh t s , a n nu a l i z e d_ cov)

Sharpe Ra t i o
s h a r p e _ a r r [x] = (r e t _ a r r [x]− r f _ r a t e) / v o l _ a r r [x]

pr in t ("Max␣ Sharpe ␣ Ra t i o ␣ i n ␣ t h e ␣ a r r a y : { } " . format (
s h a r p e _ a r r .max ()))

pr in t (" I t s ␣ l o c a t i o n ␣ i n ␣ t h e ␣ a r r a y : { } " . format
(s h a r p e _ a r r . argmax ()))

g e t t h e a l l o c a t i o n o f t h i s max :

pr in t (a l l _w e i g h t s [s h a r p e _ a r r . argmax () , :])
max_ s r _ r e t = r e t _ a r r [s h a r p e _ a r r . argmax ()]
max_sr_vo l= v o l _ a r r [s h a r p e _ a r r . argmax ()]
m in_ s r_vo l = v o l _ a r r [s h a r p e _ a r r . a rgmin ()]
p l t . f i g u r e (f i g s i z e = (1 2 , 8))
p l t . s c a t t e r (v o l _ a r r , r e t _ a r r , c= s h a r p e _ a r r ,

cmap= ' i n f e r n o ')
p l t . c o l o r b a r (l a b e l = ' Sharpe ␣ Ra t i o ')
p l t . x l a b e l (' V o l a t i l i t y ')
p l t . y l a b e l (' Re tu rn ')
p l t . s c a t t e r (max_sr_vol , max_s r_ r e t , c= ' b l u e ' ,

s =50) # red do t

46

5.1 Python Codes

p l t . show ()

47

	Introduction
	Background
	Aim and Purpose
	Methodology
	Thesis Structure

	Overview of Modern Portfolio Theory
	Fundamentals
	Actual and Expected Returns
	Portfolio return
	Volatility as the simplest measure of risk
	Portfolio Variance

	Modern portfolio Optimization with Python
	Data Manipulation and Relevant Assumption
	Data Manipulation
	Efficient Frontier in the absence of the risk-free asset
	Efficient Frontier after the introduction of the risk-free asset

	Major drawbacks of MPT

	The Monte Carlo Simulation and the Efficient Frontier
	History
	Random Walk theory
	Geometric Brownian Motion Model
	Random Walk Generation of Asset Prices

	Portfolio Optimization through a Monte Carlo simulation
	Optimization Algorithm

	The Constant Proportion Portfolio Insurance as a re-balancing strategy
	The Max Drawdown CPPI and its implementation
	The Monte Carlo Simulation and the Max Drawdown CPPI

	Bibliography
	Appendix
	Python Codes

