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Introduction

In economics, as in many other scientific fields, theories are stated in a rigorous,
non-ambiguous way, by formailizing them into mathematical expressions.

For example, the Fisher’s equation: MV = PY , the consumer’s Utility function,
and the evolution law of capital in growth models: k(t+ 1) = i(t) +k(t)− δk(t),
have in common to estabilish cause-effect relationships between some quantities.

As happens in phisics, chemistry, engeneering etc., an economic theory is rec-
ognized as valid when its statement is confirmed by empirical evidence. For
this purpose, mathematical and statistical tools, such as regression models, are
employed.
On the converse, applying such techniques to empirical data allows to find reg-
ularities and patterns, so to formulate new theories.

The central assumption on which economic theory is built upon is scarcity of
resources, and how these can be allocated in the most efficient way. Therefore,
optimization and related mathematical theory is extensively applied.
Since the first year, each university student is expected to get familiar with utiliy
maximization and profit maximization problems. As a student progresses, in-
creasingly more complex optimization problems are studied: starting from static
optimization problems encountered in microeconomic courses of the bachelor
degree, till the more complex dynamic optimization problems in the most ad-
vanced master courses. As the student progresses, the necessary mathematical
tools to solve these problems are taught, as constrained optimization theory,
Lagrange method or the Kuhn-Tucker theorem. However, the mathematical
theory behind dynamic optimization is not studied in a complete and extensive
way, being considered outside the scope of the courses.

Fascinated by the complexity of these dynamic models, I wished I could get
a better grasp of the underlying mathematical theory, and I had the opportu-
nity to deepen my knowledge of it by writing a dissertation in Mathematical
Methods for Economics and Finance.
After doing some research, I discovered Pontryagin’s Maximum Principle, a fun-
damental instrument of optimal control theory, which is a mathematical branch
that studies how to drive a controlled dynamical system towards a determined

2



objective.

My work has the following structure: in Chapter 1, I give an introduction
about the theory of dynamical systems and optimal control theory; in Chapter
2 I present the precise statement of Pontryagin’s Maximum Prinipcle; in Chap-
ter 3 I show some applications of the principle to dynamic economic problems.

I want to thank everyone who supported me in this last phase of my jour-
ney as a university student: my parents, my brother, my closest friends, and
my supervisor, Professor Gozzi.
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Chapter 1

Dynamical systems and
controls

1.1 Introduction

Optimal control theory is a field of mathematics that studies how dynamical
systems are driven to pursue an objective.
Mathematically, a problem of optimal control is represented by the system:

max
C

J(u) =

∫ t1

t0

f(t, x(t), u(t)) dt (1.1)

ẋ(t) = g(t, x(t), u(t)) (1.2)

x(t0) = p (1.3)

The functional (1.1) is the objective functional ; the differential system (1.2),
and the equation (1.3), together, form a controlled dynamical system.

The set of functions C, on which the functional (1.1) is maximized, is the set of
admissible controls.

1.2 Dynamical systems

A dynamical system is a mathematical representation of the evolution of a quan-
tity, or a set of quantities, on an time interval. For example, a dynamical system
may describe fluctuations of the S&P500 in a year, the price of iron, or incre-
ments in GDP.

A dynamical system is characterized by:

Dimension: denoted with letter n, it is the number of the quantities the dy-
namical system represents; for example, for a dynamical system modelling the
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evolution in time of the prices of 10 stocks, we set n = 10.

Time interval : it is the horizon where the dynamical system is defined, and
is denoted with [t0, t1]; t0 is defined initial time; t1 denoted final time.

State space: a subset of Rn (where n is the dimension of the system), it is
the space where the quantities represented by the system are allowed to take
value. For example, if a dynamical system represents the evolution of the num-
ber of trees in an area, the State space must necessarly be only positive.
The state space is denoted with X; in the “tree” example, we should set
X = [0,+∞).

Dynamics: it is the core of the dynamical system; its made of system of differ-
ential equations:

ẋ1 = g1(t, x(t)) ∀ t ∈ [t0, t1]

ẋ2 = g2(t, x(t)) ∀ t ∈ [t0, t1]

...

ẋn(t) = gn(t, x(t)) ∀ t ∈ [t0, t1]

Initial values: a system of equations:

x1(t0) = p1

x2(t0) = p2

...

xn(t0) = pn

p1, p2, ..., pn are the values the varaibles of the system assume at the initial time
t0.

Trajectories: n functions x1, x2, ..., xn that solve the dynamics and the initial
values.

1.2.1 Example: bank balance

Immagine to model the time evolution of a bank balance where a continuously
compounded nominal rate r is earned.

Denote with x(t) the number of dollars on the bank account at any time
t ∈ [t0, t1]; if the account can be negative, the state space X equals R; oth-
erwise, we would have X = [0,+∞).
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The dynamic describing the evolution of the account is

ẋ(t) = rx(t) for a.e. t ∈ [t0, t1] (1.4)

The choice of the initial condition

x(t0) = p (1.5)

is the value of the bank account at the beginning of the period, and determines
the trajectory x as

x(t) = pet−t0 ∀ t ∈ [t0, t1] (1.6)

that gives the amount, in dollars, on the account at time t.

1.2.2 Autonomous dynamical systems

An autonomous dynamical system is a system whose dynamics g1, g2, ..., gn don’t
depend explicitely on time: g(t, x) = g(x).

An example of autonomous dynamical system is

ẋ(t) = 3x ∀ t ∈ [t0, t1]

x(t0) = p

Autonomous dynamical systems evolution is independent of the choice of the
initial time t0, t1, and the value of the trajectory x at time t depends exclusively
on the difference t− t0.

This same property holds for dynamical system that, even though depend on
time (as the example in the former paragraph), only depend on the difference
t− t0 between time and initial time.

1.3 Controlled dynamical system

A controlled dynamical system is similar to a “classic” dynamical system (see
par. 1.2), but the dynamics: g1, g2, ... ,gn depend, other than t and x(t), on a
function, u = u1, u2, ..., uk, that is called control :

ẋ1 = g1(t, x(t), u(t)) for a.e. t ∈ [t0, t1]

ẋ2 = g2(t, x(t), u(t)) for a.e. t ∈ [t0, t1]

...

ẋn = gn(t, x(t), u(t)) for a.e. t ∈ [t0, t1]

The trajectories x1, x2, ..., xn, determined as solution of the system, plus initial
conditions x1(t0) = p1, x2(t0) = p2, ... ,xn(t0) = pn, are defined associated
trajectories of the control u1, u2, ..., uk.
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1.3.1 Example: bank balance 2

Consider, again, the bank balance example of par. 1.2.1; now, suppose the
owner plans a “withdraw” strategy, defined as a continuous function w(t) over
[t0, t1].
The dynamic would become

ẋ(t) = rx(t)− w(t) (1.7)

Depending on the withdraw strategy w, we shall have different trajectories com-
puted for the bank balance x(t), which are trends of the account associated to
different withdrawal decisions.

1.4 Optimal control

A controlled dynamical system can be driven to purse pre-determined objectives.

Finding the control functions u1, u2, ..., uk that better aim at these objective
is the object of study of Optimal Control Theory.

As introduced in 1.1, the objective is defined through a functional :

J(u) =

∫ t1

t0

f(t, x(t), u(t)) dt (1.8)

which takes the name of objective functional ; the function f is called cost func-
tion.

An optimal control is a control function u1, u2, ...uk that verifies the inequality

J(u∗) ≤ J(u) (1.9)

for any other possible choice of a control u1, u2, ..uk.

Among the candidates eligible for being optimal controls, we should restrict
our choice to a set of admissible functions: C; that is, functions which don’t
violate any condition posed by the problem.
As a general rule, a control is admissible when it satifies the constraint:

u(t) ∈ U ∀t ∈ [t0, t1] (1.10)

where U is called control set.
In some cases, constraints on the states, such as x(t) ∈ X, may be present.

1.4.1 Example: bank balance 2

Suppose the owner of the balance recieves an utility from his/her withdraw de-
cision, U(w); how should he/she choose his withdraw strategy so to maximize
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his utility over the time period [t0, t1]?

This is an optimal control problem with objective functional∫ t1

t0

U(w(t)) dt

Dynamic:
ẋ(t) = rx(t)− w(t) for a.e. t ∈ [t0, t1]

and initial condition
x(t0) = p (1.11)

The admissible controls C are all piecewise continous functions w(t) : [t0, t1]→
[0,+∞).

.
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Chapter 2

Pontryagin’s Maximum
Principle

Consider an optimal control problem with:

A state space X, a control set U and an admissible set C, defined on a time
period [t0, t1].

Have also: An objective functional J(u) =
∫ t1
t0
f(t, x(t), u(t)) dt.

A dynamic ẋ(t) = g(t, x(t), u(t)) for a.e. t ∈ [t0, t1].

An initial condition x(t0) = x0.

Define the Hamiltonian function as:

H(t, x, u, λ0, λ) = λ0f(t, x, u)+ < λ, g(t, x, u) >

2.1 The theorem

If u ∈ C is an optimal control, there exists a continuous function λ0, λ : [t0, t1]→
Rn+1 such that the following conditions are verified:

λ0 = 1

u∗(t) ∈ arg maxv∈UH(t, x(t), v, 1, λ(t)) ∀t ∈ [t0, t1] (2.1)

λ̇(t) = −∇xH(t, x∗(t), u∗(t), 1, λ(t)) for a.e. t ∈ [t0, t1] (2.2)

λ(t1) = 0 (2.3)

We call (2.1) “Maximum Principle”, (2.2) is the “adjoint equation” and (2.3)
“transversality condition”.

9



2.1.1 Example

Consider the optimal conttrol problem:

J(u) =

∫ 1

0

x(t)− u(t)2 dt

ẋ(t) = u for a.e. t ∈ [0, 1]

x(0) = 2

The Hamiltonian is
H(t, x, u, λ) = x− u2 + λu

From the Maximum principle (2.1) we obtain

u(t) =
λ(t)

2
∀ t ∈ [0, 1]

Then, from the adjoint equation, we have

λ̇(t) = −∂H
∂x

(t, x(t), u(t), λ(t)) = −1

o we have λ(t) = −t+ c; from the transverality condition (2.3) we obtain

λ(t1) = λ(1) = −1 + c = 0

so c = 1, λ(t) = 1− t.

For u(t) = λ(t)/2 we have

u(t) =
1− t

2

We can obtain the associated trajectory x by integrating the dynamic ẋ(t) =
u(t):

x(t) = x0 +

∫ t

t0

u(s) ds = x0 −
t2

4
+
t

2

By substituting x0 with the initial condition x0 = 2 we have

x(t) = − t
2

4
+
t

2
+ 2
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2.2 General case

Consider a cost functional

J(u) =

∫ t1

t0

f(t, x(t), u(t)) dt+ φ(x(t1))

where φ is called savage value or terminal payoff.

Than, Pontryagin Maximum Principle is re-stated as:

λ0 ∈ {0, 1} (2.4)

(λ0, λ(t)) 6= (0, 0) ∀ t ∈ [t0, t1] (2.5)

u∗(t) ∈ arg maxv∈UH(t, x(t), v, λ0, λ(t)) ∀t ∈ [t0, t1] (2.6)

λ̇(t) = −∇xH(t, x∗(t), u∗(t), λ0, λ(t)) for a.e. t ∈ [t0, t1] (2.7)

λ(t1) = λ0
∂φ

∂x
(x(t1)) (2.8)

where (2.5) is called non-triviality condition ((2.6), (2.7) and (2.8) take the same
names as par. 2.1).

If on the state is asked a condition

x(t1) = β (2.9)

(called final condition) then the transversality condition (2.8) is not required.

Free final time
If the final time t1 is free, then there’s the additional condition

H(t1, x(t1), u(t1), λ0, λ(t1)) +
∂φ

∂t
(t1, x(t1)) = 0
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Chapter 3

Applications of the PMP

3.1 Cost minimization with general price func-
tion

Suppose a woolen mill recieves the order to produce F ∈ R tonnes of whool in
T ∈ R days from now, with 0 < F < α ∈ R.

We denote with x(t) tons of wool producedd at time t ∈ [0, T ] (for example,
x(3) = 4 means 4 tonnes produced after exactly 4 days from now).

We denote with u(t) the production rate at time t, such that

ẋ(t) = u(t) for a.e. t ∈ [0, T ] (3.1)

Suppose also 0 ≤ u(t) ≤ α, for all t ∈ [0, T ]; therefore we have a one dimen-
sional (n = 1) controlled dynamical system, whose state variable is x and whose
control variable is u(t); the set of admissible controls is the set of piecewise
continuos functions defined on [0, T ], with range contaied in the set U = [0, α],
that is the control set.

Suppose x(0) = 0.
The objective of the firm is to minimize∫ T

0

p(t)u(t) dt (3.2)

where p(t) is an instant cost function, p(t) > 0 for all t ∈ [0, T ], p ∈ C1, p′(t) 6= 0
a.e. in [0, T ] (that is, there are no intervals on which the function is flat, so p(t)
is alternatively striclty increasing/decreasing).
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This is an optimal control problem, with cost functional

J(u) =

∫ T

0

p(t)u(t) dt (3.3)

so we have the cost function, f(t, x, u), equal to p(t)u;
the dynamic is

ẋ(t) = u(t) for a.e. t ∈ [0, T ] (3.4)

so we have g(t, x, u) = u;
then the initial condition, x(0) = 0, and the final condition, x(T ) = F .

The control set is U = [0, α], and the admissible controls are all piecewise
continuous functions on [0, T ] with range contained in U .

min
u∈C

J(u) =

∫ T

0

p(t)u(t) dt

ẋ(t) = u(t) for a.e. t ∈ [0, T ]

x(0) = 0

x(T ) = F

U = [0, α] ∩ R

We can apply Pontryagin’s Maximum Principle, referring to the version reported
in par. 2.2 and fixing the savage value φ(t) ≡ 0.
Since we have a final condition like (2.9), that is, (x(T ) = F ), the last equation
of the theorem (2.8) does not hold.

We start by writing down the Hamiltonian:

H(t, x, u, λ0, λ) = λ0p(t)u+ λu

The first condition of the theorem (2.4) tell’s us λ0 is either 0 or 1. See the
Appendix to see why, in this problem, it is necessairly λ0 = 1.

Our Hamiltonian therefore becomes::

H(t, x, u, 1, λ) = p(t)u+ λu

The Maximimum Principle requires an optimal control u(t) to minimize the
Hamiltonian, which is, in this case, a linear function of u(t) with slope p(t)+λ(t)
(Figure 3.1).

This implies that the minimum is reached for u(t) = α if the slope is nega-
tive, and for u(t) = 0 if the slope is positive. That is, we must ask u(t) to follow
the rule

u(t) = α when p(t) < −λ(t) (3.5)

u(t) = 0 when p(t) > −λ(t) (3.6)
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Figure 3.1:

What happens when p(t) = −λ(t) ? Here the PMP does not impose a rule on
u(t), or better, since the slope of the Hamiltonian is zero and H(t, x, uλ) = 0
for any choice of u(t).

In optimal control theory, this kind of points are called switching points, and
the standard way to define u(t) in this cases is to exploit the discontinuity of
u(t) to make it “jump” from a value (in this case, α or 0) to another in this
points.
More precisely (Figure 3.2) if in a neighbourhood a point τ ∈ [0, T ] such that

Figure 3.2:

p(τ) = −λ(τ), with p(t) > −λ(t) on a left neghbourhood of τ and p(t) < −λ(t)
on the right, we would set u(t) such that

u(t) = 0 in [..., τ ] (3.7)

u(t) = α in (τ, ...] (3.8)
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or, equivantely

u(t) = 0 in [.., τ) (3.9)

u(t) = α in [τ, T ] (3.10)

Now, consider the second statement of the PMP:

−λ̇(t) =
∂H

∂x
(t, x, u, λ) (3.11)

In our problem, the variable x(t) does not appear in the Hamiltonian (H =
c(t)u(t) + λ(t)u(t)), so its partial derivative with respect to x is 0:

∂H

∂x
= 0 (3.12)

that
−λ̇(t) = 0 ∀ t ∈ [0, T ] (3.13)

This tells us that the function λ is a constant to be determined.

If b = −λ than conditions (3.5) and (3.6) imply

u(t) = α when p(t) < b (3.14)

u(t) = 0 when p(t) > b (3.15)

with

u(t) = 0 in [..., τ ] (3.16)

u(t) = α in (τ, ...] (3.17)

in the neighbourhood of points τ such that if p(τ) = b with p(t) > b on the left
and p(t) < b on the right (that is, p′(τ) < 0, see Figure 3.3), and

u(t) = 0 in [.., τ) (3.18)

u(t) = α in [τ, T ] (3.19)

for the opposite case.

Look at Figure 3.3, where the graphs of the function p(t) and the constant
b = −λ are shown.

The meaning of this representation is clear: the firm should produce at the
maximum rate α in periods where the price p(t) is lower, while stop completely
(u(t) = 0) when its higher. This firm, while remaining in the limits given by
this elementary model, should employ a astrategy u(t) so to solve the maximum
problem.
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Figure 3.3:

Now, if u(t) respect the specified rule, and λ(t) as well, than the only remaing
condition we can employ to find a solution is the final state x(T ) = B.

Knowing that the dynamic of x(t) is ẋ = u, and its initial point x(0) = 0,
we can integrate ẋ = u to obtain:

x(t) =

∫ t

0

ẋ ds =

∫ t

0

u(s) ds (3.20)

The condition x(T ) = B is equivalent to ask

x(T ) =

∫ T

0

ẋ ds =

∫ T

0

u(s) ds = B (3.21)

that is, the integral of u(t) over the whole time period [0, T ] should equal B.

The integral of u(t) can be re-written as:∫ T

0

u(t) dt =

∫ τ1

0

u(t) dt+

∫ τ2

τ1

u(t) dt+

∫ τ3

τ2

u(t) dt+

∫ τ4

τ3

u(t) dt+ . . .

(3.22)

=
∑
p(t)<b

∫
αdt+

∑
p(t)>b

∫
0 dt =

∑
p(t)<b

∫
αdt (3.23)

=α
∑
p(t)<b

(τi − τi−1) (3.24)

After last result, a natural question arises: how to determine (if possible) b such
that (3.24) equals the order B?

Consider Figure 3.4: if we choose the constant b = b1 (the higher of the four
horizontal lines), we would obtain a control u(t) = alpha on the whole horizon
[0, T ].
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Figure 3.4:

This would imply u(t) = α for all t ∈ [0, T ], so that∫ T

0

u(t) dt =

∫ T

0

α = αT (3.25)

so, unless we had B = αT , this wouldn’t be a solution.

If, instead, we chose b = b2, we would obtain a set of intervals [0, τ1], [τ1, τ2],...
where u(t) takes alternatively the values of α and zero, depending on whether
p(t) < b or p(t) > b on those intervals; in particular, it is α on intervals [τ1, τ2]
and [τ3, τ4], while it be zero on [τ2, τ3].

If we chose b = b3, we would obtain a new set of intervals [0, θ1], [θ1, θ2], ....
Note how the intervals [θ1, θ2] and [θ3, θ4], which are the “analog” of where
u(t) = α, have been restricted, while the interval [θ2, θ3], (the “analogous”
of[τ2, τ3]), where u(t) = 0, has widened.

This holds for all intervals [θi−1, θi], analogous of [τi−1, τi]. This implies that∫ T

0

u(t) dt = x(T ) =
∑
p(t)<b

[τi−1, τi] = B

in (3.24) must decrease as we choose lower b, that is∫ T

0

u(t) dt = x(T )

17



is a (continuous) increasing function of b, with

x(T ) = αT if b > p(t) ∀ t ∈ [0, T ]

x(T ) = 0 if b < p(t) ∀ t ∈ [0, T ]

This implies that there exists a b such that x(T ) = B if and only if 0 ≤ B ≤ αT .

3.1.1 Periodic price function

Suppose the cost function p(t) is:

p(t) = c sin(kt) + d (3.26)

with c, k > 0, d ∈ R

We are looking for b ∈ R such that

α
∑
p(t)<b

(τi − τi−1) = F (3.27)

Can we identify the intervals in the sum in (3.27) knowing b?

We are looking for all the subintervals of [0, T ] where conditions

c sin(kt) + d < b

holds. By manipulating the expression, we obtain the equivalent condition

sin(kt) <
b− d
c

(3.28)

If we choose b such that b−d
c > 1 (3.28) is always verified, and we have u(t) ≡ α,

while if b−d
c < −1 (3.28) is never verified and u(t) ≡ 0.

In general, for any a ∈ (−1, 1], the condition

sin(θ) < a

holds on the set of intervals (see Figure 3.5) [σ1 + 2nπ, σ2 + 2nπ], n ∈ Z, with
σ2 = arcsin(a), σ1 = −σ2 − π .Here we have θ = kt and a = b−d

c ; so we obtain

sin(kt) <
b− d
c

for kt ∈ [σ1 + 2nπ, σ2 + 2nπ] n ∈ Z

with sigma2 = arcsin(b− d)/c.
We therefore have

p(t) < b fort ∈ [τ1(n), τ2(n)] ∩ [0, T ] n ∈ Z

with

τ1(n) =
1

k
(σ1 + 2nπ)

τ2(n) =
1

k
(σ2 + 2nπ)
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Figure 3.5:

3.2 A moving car

Figure 3.6:

Consider a car driving along a straight road; denote with with s(t) the dis-
tance (in kilometers) the car has travelled at time t and with v(t) the velocity
(in km/h)the car has at time t.

Being the velocity the derivative of the distance, we have

ṡ(t) = v(t)

Denote with a(t) the intensity of acceleration of the car at time t, with a(t) ∈
[0, α] and with b(t) the braking intensity of the car at time t, with b(t) ∈ [0, β]
the derivative of velocity, we have

v̇(t) = a(t)− b(t) (3.29)

Moreover, suppose the car starts its journey at time 0, with velocity 0:

s(0) = v(0) = 0

and that t ∈ [0,+∞) ∩ R are the hours passed from the start of the journey.

Now, define as F the distance in kilometers from the point where the car starts,
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to a finish line, and suppose the car wants to reach such finisch line the mini-
mum possible time; moreover, suppose also the car has to stop exactly at the
finish line.
If we denote by T the number of hours passed from the start of the “race” when
the car reaches the finish line, the last two requirements can be formalized as:
s(T ) = F , v(T ) = 0, and asking to minimize T .

Euristically, a solution which comes to mind is to accelerate at the maximu-
mum rate (β) until the distance that remains to percour till F is such that,
braking with the maximum force (α) would allow to stop in F with a velocity of
0 Pontryagin’s Maximum Principle (as shown in this section) it turns out that
this is actually the optimal strategy.

This is an optimal control problem, where the dimension of the controlled dy-
namical system is 2 (so n = 2); the dimension of the control vector is 2 as well
(k = 2).
The dynamic is g(t, x, u) = (x2, u1 − u2), the cost function is f(t, x, u) = 1
equals 1, and the savage value is φ(t, x) ≡ 01

The set C of admissible controls is made up of all piecewise continuous functions
on[0,+∞) ∩ R with image subset of U = [0, α]× [0, β] ∩ R2. We can now state
the problem in the standard form

min
u∈C

J(u) =

∫ T

0

dt

ẋ(t) = u1(t)− u2(t) for a.e. t ∈ [0, T ]

x1(0) = x2(0) = 0

x1(T ) = F

x2(T ) = 0

U = [0, α]× [0, β] ∩ R2

We start by writing the Hamiltonian:

H(t, x, u, λ0, λ) = λ(u1 − u2)

In the Appendix is shown why λ0 ≡ 1; the Hamiltonian becomes

H(t, x, u, λ) = 1 + λ1(t)x2(t) + λ2(t)u1(t)

For the first condition of PMP (Minimum Principle), we have{
u1(t) = α

u2(t) = 0
forλ2(t) < 0

{
u1(t) = 0

u2(t) = β
forλ2(t) > 0 (3.30)

1Since T =
∫ T
0 1 dt.
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For the second condition (adjoint equation), we have

λ̇1(t) = − ∂

∂s
H(t, x, u, λ) = 0

λ̇2(t) = − ∂

∂v
H(t, x, u, λ) = −λ1(t)

So we have that λ1 has to be a constant, which we denote by d, and λ2 takes
the form

λ2(t) = −dt+ f, f ∈ R

Now, set d, f < 02; we have

λ2(t) < 0 for t ∈ [0, τ)

λ2(t) > 0 for t ∈ (τ, T ]

where τ = f
d .

For (3.30) we would have (Figure 3.7){
u1(t) = α

u2(t) = 0
for t ∈ [0, τ ]

{
u1(t) = 0

u2(t) = β
for t ∈ (τ, T ] (3.31)

Figure 3.7:

Integrating (A.5) we obtain

x2(t) =

{
αt t ∈ [0, τ ]

τ(α+ β)− βt t ∈ (τ, T ]
(3.32)

and

x1(t) =

{
α
2 t

2 t ∈ [0, τ ]
α
2 τ

2 + τ(α+ β)(t− τ)− β
2 (t2 − τ2) t ∈ (τ, T ]

(3.33)

2Proof in Appendix
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Condition3

H(t, x, u, λ) = 0 for all t ∈ [0, T ]

implies f = − 1
β .

From x2(T ) = 0 and using (3.49) we obtain

β

α+ β
T = τ (3.34)

and from x1(T ) = F , (3.34) and (3.50) we obtain4

T =

√
2F

α+ β

αβ
(3.35)

from x1(T ) = F .

3.2.1 Analysis of the results

These last two results ((3.34) and (3.35)), allow us to make some observations.

From (3.34), we see that (not surprisingly) the switching point τ increases if
the braking force β increases, and vice versa; moreover, it also tells us, that the
division of the total time T between acceleration time [0, τ ] and braking time
[τ, T ] is exactly equal to the proportion between the acceleration force and the
braking force (Figure 3.8):

τ

T
=

β

α+ β
,

T − τ
T

=
α

α+ β

Figure 3.8:

3See section Appendix
4Appendix
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The minimum necessary time T to reach F

T =

√
2F

α+ β

αβ

is the square root of a term, 2F α+β
αβ , which is directly proportional to the

distance F , and the ratio between the sum of the two coefficients (α and β) and
their product.
Computing the partial derivatives of this term (α+βαβ ) with respect to the two
coefficients, we get

∂

∂α

α+ β

αβ
= − 1

α

∂

∂β

α+ β

αβ
= − 1

β

This implies that the two coefficients have a marginal effect on the total time,
which is inversely proportional to their value (that is, if for example α is realy
law, it will impact T more strongly than if it was higher); morover, being the
term under square root, the effect also decreases as T is bigger.
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3.3 A moving car 2

Consider, again, the time minimization problem as that of the former section: a
moving car on a straight road, with distance function s(t) and velocity function
v(t) characterized by the dynamics:

ṡ(t) = v(t) (3.36)

v̇(t) = a(t)− b(t) (3.37)

a(t) ∈ [0, α] ∀ t ∈ [0, T ] (3.38)

b(t) ∈ [0, β] ∀ t ∈ [0, T ] (3.39)

and whose objective is to minimize the time it takes to reach a point F .

Now, suppose the car’s runs into cost, equal to c(a(t) + b(t)), which equally
penalizes acceleration and braking; moreover, we denote with s the “weight” we
assign to T to manage its optimization in the problem.

We write the objective functional as:

sT +

∫ t

0

c((a(t) + b(t))) dt =

∫ T

0

s+ c((a(t) + b(t))) dt

with (a(t), b(t)) ∈ [0, α]× [0, β].

This is therefore an optimal control problem with cost function f(t, x, u) =
s + c(u1 + u2) and savage value φ(t, x) ≡ 0; the dimension of the controlled
dynamical system is 2 (so n = 2); the dimension of the control vector is 2 as
well (k = 2).
The dynamic is g(t, x, u) = (x2, u1 − u2), the cost function is f(t, x, u) = 1
equals 1, and the savage value is φ(t, x) ≡ 05

The set C of admissible controls is made up of all piecewise continuous functions
on[0,+∞) ∩ R with image subset of U = [0, α]× [0, β] ∩ R2. We can now state
the problem in the standard form

min
u∈C

J(u) =

∫ T

0

s+ c(u1(t) + u2(t)) dt

ẋ(t) = u1(t)− u2(t) for a.e. t ∈ [0, T ]

x1(0) = x2(0) = 0

x1(T ) = F

x2(T ) = 0

U = [0, α]× [0, β] ∩ R2

5Since T =
∫ T
0 1 dt.
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We start by writing down the Hamiltonian:

H(x(t), u(t), λ(t)) = λ0(s+ b(u1(t) + u2(t))) + λ1x2(t) + λ2(u1(t)− u2(t))

We can immediately exclude the case λ0 = 0 (see See Appendix ) for the same
reasons as in the previous problem; so we can set λ0 = 1; the Hamiltonian
becomes

H(t, x(t), u(t), λ(t)) = s+ c(u1(t) + u2(t)) + λ1(t)x2(t) + λ2(t)(u1(t)− u2(t)) dt

We start by verifying the first condition of the PMP:

u(t) ∈ arg maxu(t)∈UH(x(t), u(t), λ(t)) ∀ t ∈ [0, T ]

that is

u(t) ∈ arg maxu(t)∈Ua+ b(u1(t) + u2(t)) + λ1(t)x2(t) + λ2(t)(u1(t)− u2(t))

Since the part of the Hamiltonian that depends on u(t) is

b(u1(t) + u2(t)) + λ2(t)(u1(t)− u2(t))

finding the arg min of (3.3) is equivalent to find the arg min of the function

y(u(t)) = b(u1(t) + u2(t)) + λ2(t)(u1(t)− u2(t))

From these three we have the following values for u(t):

u1(t) = α
u2(t) = 0

λ2(t) < −c (3.40)

u1(t) = 0
u2(t) = 0

−c < λ2(t) < c (3.41)

u1(t) = 0
u2(t) = β

λ2(t) > c (3.42)

We now know how λ2(t) determines u(t), and we can use the second condition of
the PMP (adjoint equation) to know λ2(t); as in the former problem, we have:

λ̇1(t) = − ∂

∂x1
H(x(t), u(t), λ(t)) = 0

λ̇2(t) = − ∂

∂x2
H(x(t), u(t), λ(t)) = −λ1(t)
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so that λ1 is a constant, which we denote by d, and λ2 is the straight line
−dt+ f , f ∈ R.

Since we can exlude6 the case d ≥ 0, we fix d < 0: λ2(t) is therefore a line
with positive slope (−d) such that

λ2(t) < −b for t ∈ [0, τ1) (3.43)

− b ≤ λ2(t) < b for t ∈ [τ1, τ2) (3.44)

λ2(t) ≥ c for t ∈ [τ2, T ] (3.45)

with τ1 = f+c
d and τ2 = f−c

d (see Figure 3.9).

Figure 3.9:

By (3.40), (3.41) and (3.42), we have:

u1(t) = α
u2(t) = 0

t ∈ [0, τ1) (3.46)

u1(t) = 0
u2(t) = 0

t ∈ [τ1, τ2) (3.47)

u1(t) = 0
u2(t) = β

t ∈ [τ2, T (3.48)

6See Appendix, where is also shown f < −b.
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Note how this time, differently from the previous problem, λ2 splits the time
interval [0, T ] in three segments (instead of two).

Similarly to the previous case, the control u(t) takes a bang-bang form; how-
ever, we note tha in the central interval [τ1, τ2] the car neither accelerates or
brakes, proceding on the whole interval with the same the velocity (βτ1) that
was reached at the end of the first interval ([0, τ1]).

We therefore ascertain that the introduciton of the new parameters a and b
has changed the solution.

Now, we can integrate ẋ2 on the interval [0, T ], with u1 and u2 following the
law given by (3.46), (3.47) and (3.48) and get

x2(t) =


αt t ∈ [0, τ1]

ατ1 t ∈ [τ1, τ2]

ατ1 + βτ2 − βt t ∈ (τ2, T ]

(3.49)

then integrate ẋ1(t) = x2(t) and obtain

x1(t) =


α
2 t

2 t ∈ [0, τ1]

αtτ1 − α
2 τ

2
1 t ∈ [τ1, τ2]

α
2 τ

2
1 + (ατ1 + βτ2)(t− τ2)− β

2 (t2 − τ22 ) t ∈ (τ2, T ]

(3.50)

Now, we can use the two remaining conditions (x2(T ) = 0 and x1(T ) = F ) to
gain further information.
The first (x2(T ) = 0), together with (3.49) provides

βT = ατ1 + βτ2 (3.51)

and the second (x1(T ) = F ), together with (3.51) and (3.50) and7 f = − s
α − c,

provides

T =

√
2Fδ

s2 + 4c2 + 4sc

s2 + 4sc

with

δ =
α+ β

αβ

3.3.1 Analysis of results

Respect to the previous problem, where the only objective was to minimize
time, here a “trade-off” is introduced by assigning a cost, parametrized by c, to
the use of acceleration a(t) > 0 and braking (b(t) > 0).

7See Appendix
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The “bang-bang” situation of the previous problem here is partially modi-
fied: this time the control u(t) takes three different values on three intervals
([0, τ1], [τ1, τ2] and [τ2, T ]), where the optimal strategy is to use maximal ac-
celeration (u(t) = (α, 0)) in the first segment, then keeping a constant speed
(u(t) = (0, 0)) on the second, and finally brake at maximum force in the third
segment (u(t) = (0, β)).

In “a moving car 2”, he “appearance” of the central interval where the car
proceeds at constant velocity explained by the fact that, introducing a penalty
for accelaration and braking, it may be more convenient to both accerate less
and brake less, even if this implies increasing the final time T (depending also
on the weight a put on time).
Indeed, it turns out that the proportion of the length (τ2 − τ1) central interval
over the whole time interval is8

τ2 − τ1
T

=
2c

sδ + 2c
(3.52)

which goes to 1 as b dominates a.

A further observation is that, by (3.3) since, in the previous problem, we had

T ∗ =

√
2F

α+ β

αβ
=
√

2Fδ (3.53)

the minimal time T of this problem can be expressed as

T =

√
T ∗

s2 + 4c2 + 4sc

s2 + 4sc
(3.54)

where T ∗ is the optimal time of the old problem.

The term under square root converges to T ∗ as s grows respect to c; on the
converse, it diverges to +∞ as c dominates s.

8See Appendix
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3.4 General cost function on state and control,
free final time

Suppose a firm has recieved the request to produce amount F of some good;
denote with x(t) the amount the firm has produced at time t, and starting
with x(0) = 0; the firm ends its production at the first time T > 0 such that
x(T ) = F ; the production rate is u(t), which determines x(t) throught the
relation

ẋ(t) = u(t)

Suppose u(t) ∈ [0, α] for all t > 0.

When the firm delivers the order, it recieves a payment

P (T ) = P ∗ − φ(T )

with P ∗ > 0 and φ′(t) > 0. The firm therefore pays a cost equal to φ(T ) for the
time it takes to produce F .
Suppose also the firm sustains, at the end of the time period, a cost which
depends the production-rate strategy through the function g : U → [0,+∞),
g′(u) > 0. ∫ T

0

g(u(t)) dt

and a cost depending on the production x, over the time period, through the
function f : R→ R, f ′(x) > 0: ∫ T

0

f(x(t)) dt

The cost functional of the firm is given by:

J(u) = φ(T ) +

∫ T

0

f(x(t)) + g(u(t)) (3.55)

We have an optimal control problem with n = 1, k = 1, admissible set C of
piecewise continuous functions u : [0,+∞)→ U = [0, α] ∩ R.

The problem of the firm can be written as

min
u∈C

J(u) = φ(T ) +

∫ T

0

g(u(t)) + f(x(t)) dt

ẋ(t) = u(t)

x(0) = 0

x(T ) = F

U = [0, α]
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We can start by writing down the Hamiltonian

H(x(t), u(t), λ0, λ(t)) = λ0(f(x(t)) + g(u(t))) + λ(t)u(t)

Suppose λ0 = 1. We have

H(x(t), u(t), 1, λ(t)) = f(x(t)) + g(u(t)) + λ(t)u(t)

The first condition of the PMP gives the followingive

u(t) = 0 g′(u(t)) > −λ(t)

u(t) = α g′(u(t)) < −λ(t)

The adjoint equation gives
λ̇(t) = −f ′(x(t))

and the free-end time condition gives

f(x(t)) + g(u(t)) + λ(t) +
∂

∂t
φ(T ) = 0 ∀ t ∈ [0, T ]

For the case λ0 =, the Hamiltonian is

H(x(t), u(t), 0, λ(t)) = λ(t)u(t)

The minimization condition gives

u(t) = 0 λ(t) > 0

u(t) = α λ(t) < 0

From the adjoint equation we get

˙λ(t) = 0

so that λ(t) = c ∈ R.

The free-end time condition becomes

λ(t)u(t) +
∂

∂t
φ(t1) = 0 ∀ t ∈ [0, T ]

which gives the extremal control u(t) ≡ α for ∂
∂tφ(T ) > 0 (as assumed before)

and gives no solutions otherwise.
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3.4.1 Particular case

We now consider the particular case with f(x) = x, g(u) = u2 and φ(t) = t.

The cost functional is

J(u) = T +

∫ T

0

x(t) + u(t)2 dt

Suppose λ0 = 1 The Hamiltonian is

f(x(t)) + g(u(t)) + λ(t)u(t) = x(t) + u(t)2 + λ(t)u(t)

The minimizing condition on u(t) gives

u(t) = 0 −λ(t)

2
< 0, t ∈ [0, T ] (3.56)

u(t) = −λ(t)

2
−λ(t)

2
∈ [0, α], t ∈ [0, T ]u(t) = α −λ(t)

2
> α, t ∈ [0, T ]

(3.57)

From the adjoint equation we get

λ̇(t) = −1

that implies λ(t) = c− t, c ∈ R.

By substituting this result in (3.56) and (3.57) we have

u(t) = 0 t < c, t ∈ [0, T ]

u(t) = − t− c
2

t ∈ [c, c+ 2α], t ∈ [0, T ]u(t) = α t > c+ 2α, t ∈ [0, T ]α

From the free-final time condition

H(x(t), u(t), λ(t)) +
∂

∂t
φ(T ) = 0 ∀ t ∈ [0, T ]

we obtain
x(t) + u(t)2 + λ(t)u(t) + 1 = 0 ∀ t ∈ [0, T ] (3.58)

By substituting u(t) with ẋ(t) and λ(t) with c− t (??) becomes

x(t) + ẋ(t)2 + (c− t)ẋ(t) + 1 = 0

Further computations (shown in the Appendix relatively to this exercise) lead
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to the following result: if α ≤ 1, the only extremal strategy is u(t) ≡ α, while if
α > 1, there are two extremal strategies u1 and u2:

u1(t) =

{
t2

4 + t t ∈ [0, 2(α− 1)]

u(t) = α t > 2(α− 1)

u2(t) ≡ α t > 0

The optimal among the two is the one for which the functional (3.55) is smaller.
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Conclusions

I have applied Pontryagin’s Maximum Principle to three different cases.

In the first one, Cost minimization with a general cost function, I analized the
problem of a firm which has to supply a given quantity of a good at a specific
date. The firm pays a cost, linear in the production (rate), which varies in time
according to a known function. The solution provided by the theorem is to
alternate periods of maximum production intensity with periods of minimum
intensity, with the switching times between one mode and the other correspond-
ing to the same level of cost. Such level is to be determined so to reach the given
quanity at the end of the period.

In the second case, A moving car and its variant A moving car 2, I look at
the problem of a car which has to cover a given space, in the minimum pos-
sible time. In the first variant, there are no costs associated with accelerating
and braking, so the optimal solution is to accelerate at the maximum rate for
a first segment of the time interval, and then to brake at maximum force in
the remaining time. In the second variant, a cost is associated with accelerat-
ing and braking, and the solution becomes a three-segmented strategy, with an
additional central period of constant speed. Pontryagin’s Maximum Principle
gives us the ratio of this segment over the whole interval as a function of the
cost parameters, expliciting their effect on the solution.

In the third problem, I examined a firm which, having to supply a given quan-
tity, faces the following conditions: a linear time cost, a quadratic production
rate cost and a linear warehouse cost. In this case, two possible strategies arise
from the application of the Maximum Principle: which of the two is optimal
depends on parameter α, that expresses the maximum possible production rate.

From these results, we understand that the Maximum principle is able to tell
us which parameters are relevant for the solution of a problem, and how each
of them affects the final result.
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Appendix A

Appendix

A.1 Exercises computations

A.1.1 Cost minimization with general price function

λ0 = 1

Suppose λ0 = 0. We would have

H(t, x, u, 0, λ) = λu (A.1)

For the Maximum Principle equation (2.1) in 2.1, we have

u(t) = 0 λ(t) > 0

u(t) = α λ(t) < 0

For the adjoint equation we have

λ̇(t) ≡ 0

so λ(t) ≡ c ∈ R.

If c > 0, than u(t) ≡ 0, so x(t) ≡ 0 and, in particular, x(T ) = 0 6= F .
If c < 0, than u(t) ≡ α, so x(T ) = αT > F .
If c = 0, the non triviality condition ((λ0, λ(t)) 6= 0 for all t ∈ [0, T ]) is violated.

A.1.2 A moving car

Proof that λ0 = 1

The Hamiltonian is:

H(t, x(t), u(t), 0, λ(t) =< λ(t), g(t, x(t), u(t)) >= λ1(t)x2(t) + λ2(t)u1(t)
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The minimum respect to u1(t) and u1(t) of the Hamiltonian is reached for{
u1(t) = α

u2(t) = 0
forλ2(t) < 0

{
u1(t) = 0

u2(t) = β
forλ2(t) > 0

Morover, we have

∇x(t)H(t, x(t), u(t), 0, λ(t) = (0, λ1(t))

so we have
λ̇ = (0,−λ1(t)) (A.2)

(A.2) implies that λ1(t) is a constant, which we call d.
Then we have λ2(t) = −dt+ f with f ∈ R. Fix τ = f

d if d 6= 0.
We must necessairly have d < 0 and f < 0.
In fact, suppose d = 0; this implies λ2(t) = f . Now

1. If f > 0, than λ2(t) > 0 for every t ∈ [0, T ]. By (A.5), this would imply
(u1, u2)(t) = (0, β)for every t ∈ [0, T ]; now, for (A.5), this would imply
x2(t) < 0 for every t ∈ (0, T ], violating condition x2(T ) = 0.

2. If f = 0, than we would have λ0 = 0, λ1(t) ≡ 0 and λ2(t) ≡ 0, violating
the non-triviality condition.

3. If f < 0, λ2(t) < 0, implying (u1, u2)(t) = (α, 0), so that x2(t) > 0,
violating x2(T ) = 0.

If d > 0

1. If f = 0 we have (u1, u2)(t) = (0, β), so x2 > 0 violating x2(T ) = 0.

2. If f < 0 we have u(t) = β, violating x2(T ) = 0.

So we have f > 0.
This implies (u1, u2)(t) = (0, β) for [0, fd ], so that x2(τ) = −βτ , x2(τ α+βα ) = 0

and x1(t) < [0, τ α+βα ].

Since u(t) = α on [τ α+βα , T ], we have x2(t) > 0 on [0,+∞), violating x2(T ) = 0.

If d < 0, we must have f < 0.
In fact if f ≥ 0 we have (u1, u2)(t) = (α, 0) on (0, T ], so x2(t) < 0 on [0, T ],
violating x2(T ) = 0.

If d, f < 0, we have{
u1(t) = 0

u2(t) = β
for t ∈ [0, τ ]

{
u1(t) = α

u2(t) = 0
for t ∈ (τ, T ] (A.3)
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and

x1(t) = −β
2
t2 on [0, τ)

x1(t) = −β
2
τ2 − τ(α+ β)(t− τ) +

α

2
(t2 − τ2)

Now, for the free-final time autonomous problem condition

H(t, x(t), u(t), λ0, λ(t)) =

we have

λ1(t)x2(t)d+ λ2(t)(u1(t)− u2(t))

dβt+ (−dt+ f)β on [0, τ ]

that is, βf = 0, which contradicts β > 0, f < 0.

Proof that d < 0 for λ0 = 1

If d = 0, we have

1. For f > 0 we have (u1, u2)(t) ≡ (0, β) (which violates x2(T ) = 0).

2. For f < 0 we have(u1, u2)(t) = (α, 0), which violates x2(T ) = 0. For
f = 0, than, for H(t, x(t), u(t), 1, λ(t)) ≡ 0 we have 1 = 0, that is false.

If d > 0, we have f > 0, since for f ≤ 0 we have (u1, u2)(t) ≡ (α, 0) so x2(t) > 0
violates x2(T ) = 0.

For d, f > 0, we have{
u1(t) = 0

u2(t) = β
for t ∈ [0, τ ]

{
u1(t) = 0

u2(t) = β
for t ∈ (τ, T ] (A.4)

We would have x2(t) < 0 on (0, τ α+ββ ), so x1 < 0 on [0, τ α+ββ ], so that x1(t) = F
is never verified on this interval.
Then, since u(t) = β on [τ α+ββ , T ], we have x2(t) > 0 on [τ α+ββ , T ], violating

x2(T ) = 0.

Proof f = − 1
α

We have {
u1(t) = α

u2(t) = 0
for t ∈ [0, τ ]

{
u1(t) = 0

u2(t) = β
for t ∈ (τ, T ] (A.5)
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So the condition
H(t, x(t), u(t), 1, λ(t)) ≡ 0 (A.6)

implies
1 + dαt+ (−dt+ f)α = 0 for t ∈ [0, τ) (A.7)

gives f = − 1
α .

A.1.3 A moving car 2

f = − s
α − c

For the free end time condition

H(x(t), u(t), λ(t)) = 0 ∀t ∈ [0, T ]

we have
s+ αc+ dαt+ (−dt+ f)α ∀t ∈ [0, τ1)

that gives the result.

Central interval proportion

Since f = − s
α−c, τ1 = f+c

d and τ2 = f−c
d , we have τ1 = − s

αd and τ2 = − s
αd−

2c
d ,

so τ2 = τ1 − 2c
d .

Now, from βT = ατ1 + βτ2, by we have

βT = − s
d
− β

(
− s

αd
− 2c

d

)
from which we get

d = − σ
T

with

σ = s

(
1

α
+

1

β

)
+ 2c = sδ + 2c

remembering δ = α+β
αβ .

This implies
τ2 − τ1
T

= −2c

d
= 2c

T

σ

1

T
=

2c

σ
=

2c

sδ + 2c
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A.1.4 General cost function on state and control, free final
time

Case λ0 = 1

We have

u(t) = 0 t < c, t ∈ [0, T ] (A.8)

u(t) = − t− c
2

t ∈ [c, c+ 2α], t ∈ [0, T ] (A.9)

u(t) = α t > 2α+ c, t ∈ [0, T ]α (A.10)

and
x(t) + ẋ2 + (c− t)ẋ(t) + 1 = 0 ∀ t ∈ [0, T ] (A.11)

Deriving the LHS of (A.11) respect to t:

ẋ+ 2ẋẍ− ẋ+ (c− t)ẍ = 2ẋẍ+ (c− t)ẍ = 0 for a.e. t ∈ [0, T ]

There are two solutions to (A.5): ẍ = 0 and ẋ = t−c
2 . These solutions must be

intended in the sens that, for every sub-interval of [0, T ], it must be veriefied
either one or the other.

If, ẍ = 0, than u(t) is constant; for (A.8), (A.9) and (A.10), this can be true
only if u(t) ≡ 0 or u(t) ≡ α.
Suppose u(t) ≡ 0; by substituting in (A.11), we get x(t) = −1, which is impos-
sible since x(0) = 0 and ẋ = u ≥ 0, so x(t) ≥ 0 for all t > 0.

If u(t) = α, by substituitng in (A.11) we get x(t) = α2−αc+αt− 1; moreover,
for (A.10), we also need t ≥ 2α+ c.

If u(t) = t−c
2 ; by substituiting in (A.11), we get c2 = 4, so c = ±2; for (A.9),

we also need t ∈ [c, c+ 2α].
If c = 2 > 0, for (A.8) we’d have u(t) = 0 in [0, c], which has already been
excluded; therefore c = −2.

Now, we can divide the possible cases in two: c = −2 and c 6= −2.

If c 6= 2, the case u(t) = t−c
2 is exluded, so we can only have u(t) ≡ α on

[0, T ]; for (A.10), this requires 2α+ c ≤ 0, so c ≤ −2α.
By substituting in u(t) ≡ α in (A.11) we have, thanks to the initial condition
x(0) = 0:

x(0) = 0 = −α2 − αc− 1

that gives c = −α
2+1
α .

The condition required before, 2α + c ≤ 0, gives α ≤ 1 (and, in particular,
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α < 1 since α = 1 implies c = −2).

To resume, if c 6= −2, than c = −α
2+1
α and α < 1.

Now, suppose c = −2; by substituting it in (A.8), (A.9) and (A.10), and ex-
cluding the case u(t) = 0, we have

u(t) =
t

2
+ 1 t ∈ [0, 2(α− 1)] (A.12)

u(t) = α t > 2(α− 1) (A.13)

for α > 1 and

u(t) = α t ∈ [0, T ]

if α ≤ 1.

Suppose α > 1; than, by integrating (A.12) and (A.13):

x(t) =
t2

4
+ t t ∈ [0, 2(α− 1)]x(t) = −(α− 1)2 + αt t > 2(α− 1)

Now, if the firm reaches the production level F for t ≤ 2(α − 1), we have
T ∈ [0, 2(α− 1)]; this implies

x(T ) =
T 2

4
+ T = F

that gives T = 2[
√
F + 1− 1].

From T ≤ 2(α − 1), we obtain
√
F + 1 ≤ α, which requires (as has already

been assumed for the case under the exam) α > 1 (since F > 0).
If,instead, we had

√
F + 1 > α; than T > 2(α − 1), which gives T = F

α . If

α ≤ 1, we have u(t) = α on [0, T ] and T = F
α .

Case λ0 = 0

The Hamiltonian, in this case, is

λ(t)u(t)

For the Minimum principle, we have

u(t) = α λ(t) < 0 (A.14)

u(t) = 0 λ(t) > 0 (A.15)

For the adjoint equation we have λ̇(t) ≡ 0, so λ = c ∈ R.
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Exluding c = 0 for non-triviality, we have

u(t) = α c < 0 (A.16)

u(t) = 0 c > 0 (A.17)

The free final time condition gives

H(x(t), u(t), λ(t)) +
∂

∂t
φ(T ) = λ(t)u(t) + 1 = 0 ∀ t ∈ [0, T ] (A.18)

If c > 0, than u(t) = 0, so (A.27) gives 1 = 0.
If c < 0, than u(t) ≡ α, so we get c = − 1

α .
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A.2 Optimal Control Theory: from the origins
to nowadays

Optimal control theory can be conceived as the last step of a long journey, which
started with geometrical problems of Ancient Greek philosphers, went throught
the 17th, 18th and 19th centuries when the Caclulus of Variations (the “ances-
sor” of optimal control theory) whas developed, ending with the fundamental
contributions of Lev Pontryagin and Richard Bellman in the 1950s’.

As a premise to the series of events that led to maturity of Calculus of Varia-
tion, and eventually, of Optimal control Theory, here is the standard form of a
Calculus of Variations problem:

min max
x∈C1

∫ t1

t0

L(t, x(t), ẋ(t)) dt (A.19)

x(t0) = x0, x(t1) ∈ Xf ⊆ Rn (A.20)

where n ∈ N.
The problem asks to find the function x : [t0, t1] → Rn that respects (A.19)
and (A.20). Calculus of Variations is the subject that studies how to find the
funciton x(t) that minimizes/maximizes intergral (A.19), while respecting the
initial and final conditions (A.20).

Now, one of the most antique mathematical problems that can be arranged in
this form was studied for the first time, around 300 B.C., by the greek philoso-
pher Euclid of Alexandria. He was trying to find the shortest curve that connects
two points (A and B) on a plane (Figure A.1).The solution may seem obvious:
the straight line is the shortest. However, proving this mathematically is not as
trivial. Indeed, Euclid did not leave the burden to others (some centuries after).
If the two points A and B have coordinates (t0, a) and (t1, b), the problem can
be written in a Calculus of Variations structure as this: :

min
x∈C1

∫ t1

t0

√
1 + x′(t)2 dt

x(t0) = a

x(t1) = b

Another example of a Calculus of Variations problem is contained in the epic
of queen Dido of Virgil’s Aeneid. Dido was the daughter of the Phoenician
king in the 9th century B.C., and was forced to a long exile by her brother,
Pigmalion, who assassinated her husband. At the end of a long journey in the
Mediterrean see, Queen Dido ended up in Tunis. There, king Iarba allowed her
to delimit the perimeter of a piece of land which would the have become her
own city (Carthage). The queen was allowed to sign the border using only a
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Figure A.1:

bull’s hide. Now, moving to a mathematical formulation, if we hypothesize that
the animal’s skin had a given length B, this problem can be written as

max

∫ t1

t0

x(t) dt

x(t0) = x(t1) = 0∫ t1

t0

√
1 + x′(t)2 = B

with t1 a free variable (Figure A.2).
This problem, which falls in the cathegory of Isoperimetric problems, is also
present in the collected in the mathematical book of Pappus of Alexandria
(Mathamatical Collection, Book 5) where are inserted several discoveries from
characters such as Eulcid, Archimedes and Zeonodrus.

For several centuries, nothing relevant happened in the research of Calculus
of Variations, and we move directly to the 17th century. At that time Pierre
De Fermat was studying the problem of finding the path traversed by a ray of
light while being refracted through a medium with varying density, such air and
water, or reflected by a surface, such as a flat or spherical mirror.
Fermat stated that “nature works in those ways which are easier and faster”.
Fermat’s Principle, that is, that light minimizes the time it takes to go from
a point A to a point B, equals affirming that light chooses the trajectory
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Figure A.2:

(y(x), z(x)) that solves the following Calculus of Variations problem:

min
x∈C1

∫ x1

x0

√
z′(x)2 + y′(x)2 + 1

v(x, y, z)
dt

(z, y)(x0) = (z0, y0) (z, y)(x1) = (z1, y1)

where (z, y) : x 7→ (z, y) is the function that defines the position is space of
the ray of light, v(x, y, z) is the velocity of light that must be expressed as a
function of the coordinate (x, y, z), and (z0, y0, x0) and (z1, y1, x1) are the two
points the light passes throught.

Towards the end of the same century, two other the important mathematicians
of the time, Isaac Newton and G.W. von Leibniz, had developed, working com-
pletely independently from each other, the infinitesimal calculus. The modern
definition of “derivative” was, for the first time, published by Newton in 1704
in the Acta eruditorum, one of the most influential scientific journals.

Despite the fundamental contribution of Newton and Leibnitz, it is nowadays
believed that the event which really lighted the fuse of research in the Calculus
of Variations happened in 1696. At the time Johann Bernoulli, who was the
youngest member of one of the most renowned families of mathematicians (the
Bernoullis), published, again on the Acta eruditorum, a problem known as the
“Brachistochrone” (form ancient greek brachistos, shorter, and chronos, time).

The problem proposed by Bernoulli was about finding the curve that an ob-
ject, falling under gravity force, would follow to cover the distance between two
points, the origin (0, 0) and B = (xB , yB) (Figure A.3) in the minimum possible
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time

min y ∈ C1 1√
2g

∫ xB

0

√
1 + y′(x)√
y(x)

dx

y(0) = 0

y(xB) = yB

Figure A.3:

Among the great minds that solved this problem were Leibniz, de l’Hopital,
Newton and Johann’s younger brother, Jacob (with whom he had a quite thorny
relationship). The solution of the problem corresponds to the cycloid generated
by a point on a circumference, such that this point is at the origin and then, by
making the circumference rotate on the x axis, we should have that A equals to
the arch of circumference AB (Figure A.4).

Since this problem had some similarities with Fermat’s principle of the time
minimizing light’s path, Johann Bernoulli praiesed himself to “have with one
blow solved two fundamental problems, one optical and the other mechanical”.

A few years later, on of the biggest mathematicians of the 18th century, Leon-
hard Euler, entered the scene in the Calculus of Variations Odyssey. His father,
Paul Euler, was in a tight bound with the Bernoullis: they were both of Protes-
tant faith and Paul, while studying theology at the university of Basel, was
hosted by Jacob Bernoulli, who had a chair of Mathematics at the same univer-
sity.
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Figure A.4:

When Jacob died, Johanne took his chair, and some years later, the thirteen
years old son of Paul, Leonhard, become his student. Instead of following in
the footsepts of his father and become a protestant minister, he captured Jo-
hanne’s attention for his extra-ordinary mathematical talent. The two formed
a close friendship, and Johann encouraged the young Euler to study advanced
textbooks in mathematics, while giving him also private lessons.
A few years later, Leonhard had already published his first mathematical text-
book (“On finding the equation of geodesic curves”) and was actively working
on isoperimetric problems. In 1744 Euler published what would become the
work that estabilished the Calculus of Variation a proper field of study, Metho-
dus Inveniendi Lineas Curva [...].
In the book, problems were scripted in the forms (A.19), (A.20) reported at
the beginning of this section. Moreover, Euler proved the fundamental result of
Calculus of Variations:

d

dt

∂

∂ẋ(t)
L(t, x(t), ẋ(t)) =

∂

∂x(t)
L(t, x(t), ẋ(t)) (A.21)

known as the Euler Equation.

Some years later, in 1755, a young teenager of Turin, Joseph Lagrange, sent
a document to Euler, where he had reworked some of the results in Methodus
Inveniendi Lineas Curva [...] purely analytically, instead of employing the ge-
ometric procedures of the author. Euler was enthusiastic of Lagrange’s new
treatment of the argument, since it was was arranged in a much more elegant
and convenient way.
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Euler himself re-defined the maximum-minimum problems he was working on,
which were before denoted as “isoperimetric problems”, as “calculi variationum”
problems, borrowing the term the “δ calculus” that Lagrange used in his work,
where “δ” stood for “variation”.
From there on the Euler euqation (A.21) has become known to the world’s
mathemathical community as the Euler-Lagrange equation.

Almost a century after, in 1830s’, an Irish mathematician, William Hamilton,
was studying a subject today known as Hamiltonian mechanics. Hamilton em-
ployed the same integral form (A.19) to describe the law of motion of matter.
In particular, the integrated function, L(t, x(t), ẋ(t)), expressed the difference
bertween kinetic and potential energy of a particle at time t, while x(t) was the
space coordinate vector.

His Principle of Least action affirms that the law of motion is the function
x(t) that minimizes the integral, that is, the solution of the relative Caluclus of
Variations problem.
However, instead of using the Euler-Lagrange Equation, he set up this system,
known asHamiltonian system:

H(t, x(t), λ(t)) =< λ(t), ẋ(t, x(t), λ(t) > −L(t, x, ẋ) (A.22)

ẋ =
∂

∂λ(t)
H(t, x(t), λ(t))

λ̇(t) = −∂
∂
H(t, x(t), λ(t))

λ(t) =
∂

∂ẋ(t)
L(t, x(t), ẋ(t))

These equations can be proved to be equivalent to the Euler Lagrange equation.

Hamilton’s contribution was fundamental, since the Hamiltonian function (A.22)
became a an essential component of Optimal Control Theory.

A few years later, Jacobi, one of the main contributors to Optimal Control
Theory, reviewed Hamilton’s work and noticed that some results could be better
expressed with this partial differential equation (now known as Hamilton-Jacobi
equation):

Vt(t, x(t)) +H(t, p, x(t)) = 0 (A.23)

The function V (t, x(t) was called “action function” (now value function), and
gives the value of the integral (A.19) when x(t) is a minimizing function, at the
starting point t0 = t and x0 = x. If x(t) is an minimizing function, than V (t, x)
must verify (A.23) for all (t, x(t)), t ∈ [t0, t1].

Optimal control theory’s origins date around 1950s’; the focus of mathemat-
ical engineering was on finding optimal driving inputs for controlled dynamical
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systems (of the kind displayed in Figure ??); the transition from the Calculus
of Variations structure to the Optimal Control’s arrangement occurred by ex-
pliciting the derivative of the x function, ẋ, by constraining it to be a solution
of a differential equation:

ẋ(t) = g(t, x(t), u(t)) for a.e. t ∈ [t0, t1] (A.24)

where u(t) is the control function; the objective of minimizing (or maximizing)
the integral (A.19) remains the same, even thought it’s not achieved by direclty
choosing a function x(t) (or its derivative) as in Calculus of Variation, but by
“controlling” its derivative.

During this period (1950’s/60s’), he advent of computers allowed to process
mathematical operations that were not even thinkable up to that time; more-
over, the end of the Second World War worked as a powerful propellent for
research in all fields of technology.

The main contributions to Optimal Control Theory were those of Richard Bell-
man and Lev Pontryagin’s and his group.

Richard Bellman was an american mathematician employed at RAND (Re-
search AND develpement), as institution founded in USA in 1948, after the
War made clear how vital technological progress and scientific knowledge were
in the struggle for a competitive advantage over other Countries.
The objective of this no-profit governmental organization was to reunite the
brightest intellectuals of USA (mathematicians, engineers, physicists, chemists,
etc.) to quicken the progress of military or aerospace technologies.
Bellman’s work evolved from Calculus of Variations to a new and striclty algorithm-
related field: dynamic programming.

This is the “Bellman’s equation”:

− ∂

∂t
V (t, x(t)) = max

u(t)∈U
H(t, x(t), u(t),

∂

∂x(t)
V (t, x(t)))

known also as Hamilton-Jacobi-Bellman’s. It’s originated by inserting a feed-
back control function in the Hamilton Jacobi equation (A.23), where the classical
Hamiltonian (A.22) was substituted by Maximized Hamiltonian, andẋ was sub-
stituted with it’s derivative g of the Optimal Control structure (A.24).

Similarly as in the US, also in the USSR intellectuals, such as mathematicians
and phisicists, were pushed towards development of military technologies. Lev
Pontryaginwas one of the leading mathematicians of Russia and head of the
Department of Differential equations at the Steklov Institute in Moscow, who
devoted his deep knowledge of dynamical systems to advancements in optimal
control theory.
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Figure A.5: monument to Lev Pontryagin in Moscow

Pontryagin’s Maximum Principle (equations (A.25), (A.26) and (A.27)) was
developed by Lev himself and some of his students: V.G. Boltianskii, R.V.
Gamkrelidze and E.F. Mischelnko. In 1961, they published their results in
“The Mathematical Theory of Optimal Processes”, and were rewarded with the
Lenin Prize

u(t) ∈ arg maxu(t)∈UH(t, x(t), u(t), λ(t)) (A.25)

λ̇(t) = − ∂

∂x(t)
H(t, x(t), u(t), λ(t)) (A.26)

λ(t0) = 0 (A.27)

With respect to Bellman’s equation, the PMP provides a less computation heavy
approach, however with a more limited field of applicability.
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