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Abstract

This paper studies Ramsey-optimal monetary policy under commitment in a small-

open economy with uninsurable idiosyncratic income and liquidity shocks, long-term

nominal bonds and costly inflation. While my theoretical characterization of the

optimal inflation plan is consistent with that in Nuno and Thomas (2020), the inclusion

of liquidity shock has two significant implications for the equilibrium distributions of

wealth and consumption, which consequently affect optimal inflation. First, debtors,

especially those that are liquidity-constrained, consume much less, so redistributing

resources to them is more important. Second, households in my model save more to

insure for the liquidity shock, causing economy-aggregate net asset position to improve

and cross-border redistribution loss to emerge.

1 Introduction

In recent years there have been renewed academic and policy interests in the redis-

tributive effects of monetary policy, among other implications of household heterogeneity

for the macro-economy. On the methodological side, advancements in computational

techniques have enabled economics researchers to solve for and analyze monetary policy

in macroeconomic models featuring complex settings of incomplete market and heteroge-

neous agents.
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I build on Nuno and Thomas (2020)’s continuous-time model to analyze optimal

monetary policy under commitment in an economy with uninsurable idiosyncratic income

and liquidity shocks. As in their paper, I start with a Huggett (1993) model of incomplete

market, i.e. uninsurable idiosyncratic income shock. In addition, households once hit

with an income shock also have a probability of being hit by a simultaneous liquidity

shock, which leaves them constrained at their respective current net asset position. Being

unconstrained, the households can trade non-contingent claims, i.e. long-term nominal

bonds, subject to an exogenous borrowing limit, in order to smooth consumption in the

face of the idiosyncratic shocks. Importantly, I consider a small open economy, where

assets are priced by risk-neutral foreign investors and the asset market does not have to

clear domestically.

The novelty of this paper lies in the inclusion of an idiosyncratic and exogenous

liquidity shock, in the fashion of Bilbiie (2020). This new shock has two implication for the

model. First, the shock generates a proportion of households who cannot borrow or dis-

save to smooth their consumption in the face of a bad income shock. As opposed to Bilbiie

(2020) and other heterogeneous-agents models (e.g. Kaplan et al. (2018)) where liquidity-

constrained or hand-to-mouth households simply consume their labor income, liquidity-

constrained households in my model still have to pay nominal interest on their debt (or

receive nominal interest from their lending). Second, the unconstrained households are

aware of the liquidity shock, so they in choosing their consumption and saving also try to

partly insure for such event. As consumption in the constrained state is proportionate to

their asset position, households have incentive to increase savings compared to a setting

where there is no liquidity shock. This generally shifts the wealth distribution to the left

and improves the economy’s aggregate net asset position.

By introducing the liquidity shock, I attempt to feature in my model the liquidity

problem faced by many in an economy. With respect to the asset-poor workers, once they

lose their job, they might have difficulty accessing consumption credit, as most lending
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institution typically requires not only collateral to borrow against but also proof of income.

In addition, unsecured credit is often notoriously expensive (Herkenhoff, 2019). On the

other hand, even households with significant wealth might face difficulty in disposing

some of their properties in exchange for cash, i.e. consumption. Kaplan et al. (2014)

documents that the rich holds a large proportion of their wealth in illiquid assets.

In such set up, I solve for the Ramsey optimal monetary policy. The central bank

commits at time-0 to an optimal path of inflation. I apply the methodology introduced

in Nuño and Moll (2018) and Nuno and Thomas (2020) to address the issue of having a

infinite-dimensional object, i.e. the wealth distribution, as a state variable. In particular, I

employ Gateaux derivatives, which extend the concept of classical derivatives to infinite-

dimensional spaces, to derive analytical first-order conditions for the Ramsey problem.

The theoretical result is consistent with that of Nuno and Thomas (2020): the central bank

must balance between the effects of several transmission channels of inflation. Firstly, non-

zero inflation (deflation) directly hurts households’ welfare as a source of dis-utility. This

detrimental effect can be micro-founded on the basis of costly price adjustment. Secondly,

unexpected inflation decreases time-0 market price of the long-term nominal bond, which

implies a redistribution of real wealth from creditors to debtors. This amount to a gain, i.e.

domestic redistribution gain, as poor households (debtors) have higher marginal utility

from consumption (MUC). At the same time, if the country is a net debtor (creditor), wealth

is transferred to (from) foreign creditors, implying a cross-border redistribution gain (loss).

The latter effect stems from our setting of an open economy. Finally, increasing future

inflation disturbs both current and future bond prices, i.e. decreasing bond prices, which

hurts asset-poor and high-MUC households that need to sell new bonds. Furthermore,

this tightens the debt limit of constrained households, who are very in need of extra

consumption. In the long run, the central bank therefore must commit to undo its initial

inflation stance, resulting in optimal inflation ”front-loading” as in Nuno and Thomas

(2020). Using the same parameter values as Nuno and Thomas (2020) for my numerical
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exercise, however, I obtain much lower optimal initial and thereafter inflation levels. This

comes from the fact that households in my model also save to insure for the liquidity shock,

causing economy-aggregate net asset position to improve and cross-border redistribution

loss to emerge.

Related literature. This paper relates to two strands of literature. The first is the body

of literature on small-open economies. In this aspect, my model is most closely related to

that of De Ferra et al. (2020), which builds on the open-economy framework from Gali and

Monacelli (2005) and the heterogeneous-agent set up from Kaplan et al. (2018). De Ferra

et al. (2020), however, focuses on analyzing positive response of the economy to exogenous

aggregate shock, such as a sudden stop of foreign credit supply. Furthermore, the main

transmission channel in De Ferra et al. (2020) is via exchange rate depreciation. Second,

my paper features households with heterogeneous asset holding and limited market

participation in an incomplete-market setting, which are characteristic of the emerging

HANK literature. Most papers in this literature address positive questions. Recent works

include Gornemann et al. (2016), McKay et al. (2016), Kaplan et al. (2018), and Luetticke

(2021), among many others. Nuño and Moll (2018) provide the methodological framework

for analyzing optimal monetary policy in a general equilibrium model with uninsurable

idiosyncratic risk and infinite-dimensional wealth distribution. Nuno and Thomas (2020)

and Bigio et al. (2019) apply this framework to normative research of monetary policy. My

work builds on the former, rather than the latter’s closed-economy and bank-credit setting.

Like Nuno and Thomas (2020), I focus on the redistribution channel of monetary policy,

in particular the Fisher channel, which was introduced by Fisher (1933) and re-identified

in the HANK framework by Auclert (2019). My model adds to Nuno and Thomas (2020)

by inclusion of liquidity shock, which facilitates limited asset market participation by

a fraction of the population. Agents with limited asset market participation, or hand-

to-mouth agents have been well-documented in the empirical literature. With respect

to modeling, my liquidity shock is closest to Bilbiie (2020), which also let consumer be
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hit by exogenous shock and lose access to asset market. Other works generate liquidity-

constrained agents by modeling an addition illiquid asset (e.g. Kaplan et al. (2018)).

2 Model

2.1 The economy

This model is a modified version of the one in Nuno and Thomas (2020) - an extension

of a Hugget economy. The economy is small and open, in the sense that assets are priced

by risk-neutral foreign investors and the asset market does not have to clear domestically.

Assets (bonds) are nominal, non-contingent, and long-term. The model is in continuous

time. In the domestic economy, there is a measure-one continuum of households k ∈ [0,1],

who trade the assets and one single consumption good. I normalize the World price of this

consumption good to 1. The domestic price Pt has dynamics

dPt
dt

= πtPt

where πt is the domestic inflation rate. Alternatively, one can interpret Pt as the nominal

exchange rate and πt as the rate of nominal exchange rate depreciation.

2.2 Households

2.2.1 Assets, income, and borrowing constraint

Households trade nominal, domestic-currency denominated, non-contingent, long-

term bonds among themselves and with foreign investors. For tractability, I follow

Nuno and Thomas (2020) and assume that bonds pay exponentially declining nominal

coupons. One bond bought (issued) at time t will generate a stream of nominal payments

{δe−δ(s−t)}s∈(t,∞). These payments add up to 1 unit of domestic currency over the infinite

lifetime of the bond. From time-t point of view, one bond bought at time t′ < t is equivalent
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to eδ(t−t′) units of bonds bought at time t. Thus, the entire bond portfolio of household k

at time t can be summarized by their current total nominal coupon payment, denoted as

δAkt. Then Akt can be interpreted as the nominal face value of the bond portfolio, while δ

is the amortization rate. A negative Akt represents the face value of net outstanding debt.

Akt follows the law of motion

dAkt
dt

= Anewkt − δAkt

where Anewkt is the net flow of new bonds bought at time t, in face value. Let Qt denote the

nominal price of bonds issued at time t. Household k is subject to the following budget

constraint

QtA
new
kt = Pt(ykt − ckt) + δAkt

where ykt is the household’s endowed income, and ckt is their consumption at time t. Using

this budget constraint, the law of motion for Akt can also be expressed as

dAkt
dt

=
Pt(ykt − ckt) + δAkt

Qt
− δAkt

Further define akt ≡ Akt/Pt as the real face value of the bond portfolio (one’s net wealth).

Its dynamics is then given,

dakt
dt

=
δakt + ykt − ckt

Qt
− (δ+πt)akt (1)

from combining the dynamics of Akt and Pt. Here δakt+ykt−ckt
Qt

is the real face value new

bonds purchased at time t.

Household k lives in one of the three states. In state 1 and state 2, the household is

endowed with y1 and y2 units of the good, respectively. Let y2 < y1. In these two states,
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they can trade the bonds freely subject to a exogenous borrowing limit,

akt ≥ φ, φ < 0 (2)

In state 3, the household is endowed with y2 and cannot adjust their real face value of net

wealth (net asset position), that is, they must choose the consumption level such that

dakt
dt

= 0 (3)

The households move among these states following a three-state Poisson process. The

process jumps from state 1 to state 2 and state 3 with probabilities λ1p and λ1(1 − p),

respectively. A household jumps to state 1 from either of the two other states with

probability λ2.

2.2.2 Preferences

Household k has preference for consumption and inflation paths ckt and πt

E0

{∫ ∞
0
e−ρt [u(ckt)− x(πt)]dt

}

where ρ is the positive discount rate. The consumption utility function u(.) is bounded,

continuous, strictly increasing and strictly concave for c > 0. The inflation (dis-)utility

function x(.) satisfies x′ > 0 for π > 0 and x′ < 0 for π < 0, x′′ > 0 for all π, x(0) = x′(0) = 0.

Dis-utility from inflation (or deflation) can be attributed to e.g. costly price adjustment.

The household chooses consumption at each t to maximize its welfare. The value

function at time t is

vt(a,S) = max
{cs}∞s=t

Et

{∫ ∞
t
e−ρ(s−t) [u(cs)− x(πs)]ds

}
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subject to the law of motion of asset position (1) and a borrowing limit that depends on

the income-liquidity state S,

akt ≤ φ, if S ∈ {S1,S2}
dakt
dt

= 0, if S = S3

From now on, I use the notation vit(a) ≡ vt(a,Si) for the value function when the household

is in state i ∈ {1,2,3}. The household-identifier subscript k is also dropped for brevity. So,

v1t(a) is the value function at time t of the household in state 1 (high income, not liquidity

constrained) with real face value of net wealth a. The Hamilton-Jacobi-Bellman (HJB)

equation for this household’s problem is

ρv1t(a) =
∂v1t

∂t
+ max

c

{
u(c)− x(πt) + s1t(a,c)

∂v1t

∂a

}
+λ1 [(p)v2t(a) + (1− p)v3t(a)− v1t(a)] (4)

where s1t(a,c) is the drift of asset position

s1t(a,c) =
δa+ y1 − c

Qt
− (δ+πt)a

Similarly, the HJB equation for the household in state 2 (low income, not liquidity con-

strained) is

ρv2t(a) =
∂v2t

∂t
+ max

c

{
u(c)− x(πt) + s2t(a,c)

∂v2t

∂a

}
+λ2 [v1t(a)− v2t(a)] (5)
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with the drift function

s2t(a,c) =
δa+ y2 − c

Qt
− (δ+πt)a

Since the households in state 1 and state 2 can freely adjust their asset position above the

exogenous borrowing limit φ, their consumption satisfies first order conditions

u′(cit(a
m)) =

∂vit(a)
∂a

(6)

where cit(a) ≡ ct(a,Si) is the optimal consumption policy function, i ∈ {1,2}. Consumption

increases with nominal bond prices, because higher bond price (lower yield) makes it

less attractive to buy bonds, i.e. save. Consumption decreases with the slope of the value

function, because a steeper value function makes increasing bond holdings (improving

net asset position) and thus saving more attractive.

The HJB equation for the household in state 3 (low income, liquidity constrained) is

ρv3t(a) =
∂v3t

∂t
+u(c3t(a))− x(πt) + s3t(a)

∂v3t

∂a

+λ2 [v1t(a)− v3t(a)] (7)

where s3t(a) = 0 since the household in this state cannot adjust their real face value of net

wealth (net asset position). Consumption is such that this holds,

c3t(a) = δa+ y2 − (δ+πt)Qta (8)

The liquidity-constrained household can only consume their (low) labor income minus the

minimum interest payment that keep their net wealth (asset position) from declining.
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2.3 Foreign investors

Risk-neutral foreign investors trade the bonds previously introduced with domestic

households. Foreign investors also have the outside option of investing elsewhere at

(international) risk-free real rate r̄. The nominal bonds issued at time t are priced by

foreign investors

Qt =
∫ ∞
t
δe−(r̄+δ)(s−t)−

∫ s
t
πududs

where δ is the amortization rate. The price also accounts for the (foreseen) path of domestic

inflation. Foreign investors discount future nominal payments with inflation accumulated

between the moment the bond is purchased and the moment each payment is made. As

bonds have infinitive lives, foreign investors must consider the whole path of inflation

{πs}∞s=t.

The dynamics of bond prices is given by taking derivative with respect to time

dQt
dt

= (r̄ + δ+πt)Qt − δ (9)

Equation (8), together with the boundary condition that the discounted value of Q∞ is

zero, complete the risk-neutral pricing of the bonds. In the asymptotic steady state, bond

price is Q∞ = δ
r̄+δ+π∞

where π∞ is the steady-state inflation level.

2.4 Central bank

At time-0, the central bank directly chooses and commits to a plan of inflation {πt}∞t=0

to maximize aggregate welfare (to be discussed in detail in Section 3). An equivalent

setting (as in Nuno and Thomas (2020)) would be that the central bank trades with foreign

investors a short-term security with instantaneous nominal interest rate Rt, where Rt is set

by the central bank. Then, no-arbitrage implies that πt = Rt − r̄ and the central bank still
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effectively sets the inflation path.

2.5 Equilibrium

Given the central bank’s policy {πt}∞t=0, I define an equilibrium of this model as paths

for bond prices {Qt}∞t=0, households’ value function {vt(a,Si)}∞t=0 and consumption function

{ct(a,Si)}∞t=0, and the joint density of (net) wealth and income-liquidity state {ft(a,Si)}∞t=0

for i ∈ {1,2,3} such that, at every time t, (i) households maximize their welfare taking as

given equilibrium prices, (ii) markets clear. We have in this economy the bond market and

the goods (and labor) market. Since this is an endowment economy, the latter is of little

interest. Markets clear in the sense that the current account identity holds,

dāt
dt

=
δāt + ȳt − c̄t

Qt
+ (δ+πt)āt (10)

where āt, ȳt, c̄t are the economy-aggregate at time t of (real face value) net wealth, income,

and consumption, respectively. These aggregates can be calculated as the cross-household

average,

ḡt ≡
3∑
i=1

∫ ∞
φ
gt(a,Si)ft(a,Si)da

where gt is any function of individual variable, e.g. net wealth or consumption.

The state of an economy at each time t is summed up by the joint distribution of net

wealth and income-liquidity state, which has the density function ft(a,Si). Its dynamics is

given by a set of Kolmogorov Forward (KF) equations

∂f1t(a)
∂t

= − ∂
∂a

[s1t(a)f1t(a)]−λ2f1t(a) +λ1 [f3t(a) + f2t(a)] (11)

∂f2t(a)
∂t

= − ∂
∂a

[s2t(a)f2t(a)]−λ1f2t(a) +λ2(p)f1t(a) (12)

∂f3t(a)
∂t

= −λ1f3t(a) +λ2(1− p)f1t(a) (13)
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where sit(a), i ∈ {1,2} are the drifts of individual net wealth evaluated at optimal consump-

tion. It is worth noting that the consumption policy of those in state 3 is not optimal, but

rather one such that the drift s3t is zero. Hence, households in state 3 do not move from

one asset position to another, and the change in point density f3t(a) only comes from those

jumping into and out of state 3.

2.6 Transmission channels of monetary policy

To conclude this section, I will briefly review the transmission channels of inflation

that are discussed in Nuno and Thomas (2020) and further discuss how inflation affects

liquidity-constrained households in particular.

2.6.1 Three main channels

First, positive inflation (or deflation) directly shows up in households’ preference as a

source of dis-utility x(πt). This effect, by construction, is asymmetric across households.

Furthermore, the dis-utility from inflation is exogenous to the households’ consumption

and saving decisions, as inflation levels are set by the central bank and taken as given by the

households. This dis-utility cost can be attributed to costly price rigidities, which typically

show up in representative-agent New-Keynesian model. I follow Nuno and Thomas (2020)

to abstract from the modeling of other New-Keynesian transmission channels, e.g. labor

supply. In this endowment economy where aggregate income (output) is given, labor

supply can be considered fixed.

Second, inflation causes changes in bond prices, which in turn change the real market

value (not face value) of households’ bond portfolios. Define real market value of net

wealth amt ≡ Qtat. Since bonds are competitively priced by foreign investors, the real

returns on amt must be identical to the international real return r̄. This can be seen from

the dynamics of amt , derived from combining the dynamics of Qt and at from equations (1)
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and (7)

damt
dt

= r̄amt + yt − ct

with initial condition am0 =Q0a0.

The central bank, therefore, cannot use inflation to change the real returns on amt ,

which is fixed at international level r̄. However, inflation can affect households’ initial real

market value of net wealth am0 via Q0. Recall from Section 2.3 that in pricing Q0, foreign

investors must take into account the whole future inflation path, as accumulated inflation

erodes the value of future coupon payments

Q0 =
∫ ∞

0
δe−(r̄+δ)t−

∫ t
0 πududt

Therefore, unexpected inflation along the path {πt}∞t=0 will decrease time-0 bond price Q0,

while initial face-value asset position a0 is predetermined. Then, (unexpected) inflation

increases am0 for those who have a0 < 0 (debtors) and decreases am0 for those who have

a0 > 0 (creditors). This amounts to redistribution of wealth, in market value terms, from

creditors to debtors by the central bank. This is the Fischer channel.

The third and final channel discussed in Nuno and Thomas (2020), denoted the ”liq-

uidity channel”, is via changing the borrowing limit in real market value terms,

amt ≥Qtφ, φ < 0

This channel also operates through changing the bond price Qt. By unexpectedly rising

the future inflation path {πs}∞s=t, the central bank puts downward pressure on bond price

Qt and thus tightens the real market value borrowing limit Qtφ. This limits the ability

to borrow, in real market value terms, of households with net asset position at nearing

the exogenous borrowing limit φ. Deflationary policies, on the other hand, will relax the
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borrowing limit.

2.6.2 Effects on liquidity-constrained households

It is worthwhile to further discuss how the channels operate on liquidity-constrained

households, i.e. those are in state 3, which is the novelty of this paper. Consider a debtor

(one with a0 < 0) in state 3 at time 0. I can write their contemporaneous consumption as a

function of their debt (net asset position) in real market value

c3(am0 ) = y2 +
[
δ
Q0
− (π0 + δ)

]
am0

where I use equation (8) and the identity am0 =Qta0. Denote r̂(Q0,π0) ≡ δ
Q0
− (π0 + δ),

c3(am0 ) = y2 + r̂(Q0,π0)am0

Then r̂ is the effective payment rate the household must make on its net debt am0 to meet

its liability, i.e. keeping at constant. Notice that in the asymptotic steady state, r̂ = r̄.

The Fischer channel affects the household normally: any positive inflation shock along

the path {πt}∞t=0 will decreases the market value of their debt (improves their asset position

am0 ) via decreasing the time-0 bond price Q0. Holding the rate r̂ constant, the household

has to pay for less debt and therefore get to consume more instantly (am0 goes up, so c3 goes

up). This typically improves their welfare, as the household is in a state with low income

and cannot borrow, so their contemporaneous consumption is below the optimal level.

However, inflation also affects r̂. Suppose the central bank announces at time-0 a

positive shock to πt with any t > 0. Then Q0 will go down and make r̂ go up. The in-

debt household must pay more on their debt and consume less. I interpret this as the

”liquidity channel”: one can think that a household in state 3 is at their personal borrowing

limit Q0a0 (a0 predetermined), and inflation tightens this personal limit, forcing them to

consume less contemporaneously. Thus, this liquidity channel of inflation affects liquidity-
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constrained households across the whole distribution, tightening the constraint for debtors

but relaxing that of creditors. Notice that a positive shock to π0, however, has ambiguous

effect on liquidity-constrained households’ time-0 consumption.

3 Optimal monetary policy

3.1 The central bank’s problem

The central bank chooses and commits to its monetary policy at time zero, i.e. a plan of

inflation {πt}∞t=0, to maximize aggregate welfare. I only consider the case where the central

bank can credibly commits to its plan, so the problem is a Ramsey problem. I assume the

central bank is utilitarian, that is it attribute the same Pareto weight to each household.

The central bank’s objective is then to maximize

W0 ≡ Ef0(a,S) [v(a,S)]

=
∫ ∞

0
e−ρt

 3∑
i=1

∫ ∞
φ

[u(ct(a,Si))− x(πt)]ft(a,Si)da

dt
The value functional of the central bank at time zero is given by

W [f0(a,S)] = max
{Xt}∞t=0

W0 (14)

where Xt ≡ [πt,Qt,vt(a,S), ct(a,S), ft(a,S)]; subject to the KF (distribution dynamics) equa-

tions (11)-(13), the households’ HJB equations (4), (5) and (7), the optimal/constrained

consumption policies (6) and (8), and the bond pricing equation (9).

Given an initial distribution f0(a,S), a Ramsey allocation is composed of paths for

inflation {πt}∞t=0 and bond price {Qt}∞t=0; and sequences of functions for household value

{vt(a,S)}∞t=0, consumption policy {ct(a,S)}∞t=0, and distribution {ft(a,S)}∞t=0 that solve the

central bank’s problem (14).
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3.2 Solution to the central bank’s problem

The Lagrangian for the Ramsey problem L [π,Q,v,c, f ] ≡ L0 is given by

L0 =
∫ ∞

0
e−ρt

 3∑
i=1

∫ ∞
φ

[u(cit(a))− x(πt)]fit(a) (15)

+ ζ1t(a)
[
−
∂f1t(a)
∂t

− ∂
∂a

[s1t(a)f1t(a)]−λ2f1t(a) +λ1 [f3t(a) + f2t(a)]
]

+ ζ2t(a)
[
−
∂f2t(a)
∂t

− ∂
∂a

[s2t(a)f2t(a)]−λ1f2t(a) +λ2(p)f1t(a)
]

+ ζ3t(a)
[
−
∂f3t(a)
∂t

−λ1f3t(a) +λ2(1− p)f1t(a)
]

+θ1t(a)
[
−ρv1t(a) +

∂v1t

∂t
+u(c1t(a))− x(πt) + s1t(a)

∂v1t

∂a
+λ1 [pv2t(a) + (1− p)v3t(a)− v1t(a)]

]
+θ2t(a)

[
−ρv2t(a) +

∂v2t

∂t
+u(c2t(a))− x(πt) + s2t(a)

∂v2t

∂a
+λ2 [v1t(a)− v2t(a)]

]
+θ3t(a)

[
−ρv3t(a) +

∂v3t

∂t
+u(c3t(a))− x(πt) +λ2 [v1t(a)− v3t(a)]

]
+η3t [u(c3t(a))−u(δa+ y − (πt + δ)Qta)] +

2∑
i=1

ηit

[
u′(cit(a))−

1
Qt

∂vit
∂a

]dadt
+
∫ ∞

0
e−ρtµt

[
Qt(r̄ +πt + δ − δ − dQ

dt
)
]
dt

where ζ, θ, η, and µ are the Lagrangian multipliers for the KFEs, HJBs, consumption

policies, and bond pricing equation, respectively.

This is a optimal control problem. The central bank maximizes welfare taking into

account the dynamics of net wealth-state distribution (reflected in the constraints derived

from KFEs) and of households’ value functions (HJBs). It also understands the pricing

behavior of foreign investors and the optimization behavior of unconstrained households.

Notice that the consumption policy constraint of households in state 3, corresponding to

multiplier η3t, is different from the optimization conditions of those in states 1 and 2. It

instead reflects their constrained consumption level as given in equation (8).

In order to obtain the first-order conditions for the problem, I use the variational
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approach introduced by Nuno and Thomas (2020), by taking Gâteaux derivatives of the

Lagrangian (15) with respects to functions π, Q, v, c, f . The Gâteaux derivative is a

generalization of the standard derivative to the infinite-dimensional spaces. It is necessary

to employ this approach because the suitable function space for the central bank’s problem

(14) is infinite-dimensional. For instance, the optimal policy π is not an ordinary function

but a functional that map the infinite-dimensional object f0 (the initial distribution) and t

(time) into R.

To illustrate, let h be an arbitrary function in the same function space as π, the Gâteaux

derivative with respect to π is

d
dα
L0 [π+αh,Q,v,c, f ] |α=0 ≡ lim

α→0

L0 [π+αh,Q,v,c, f ]−L0 [π,Q,v,c, f ]
α

(16)

The first-order conditions are such that Gâteaux derivatives are equal to zero for any

function h.

In the appendix, I solve for these first-order conditions and derive the following

observations. The Lagrangian multipliers ζ corresponding to the KFEs must be equal to

the value function v. Intuitively, in equilibrium, the social (shadow) value of an individual

household, represented by ζ, must be equal to its private value v. Furthermore, the

Lagrange multipliers θi and ηi , i = 1,2, corresponding to the unconstrained households’ HJB

equations and first-order conditions are all zero. These constraints are slack, which means

the central would choose the same consumption policy as these optimizing households.

This is not the case for the liquidity-constrained households in state 3, however. Recall

that liquidity-constrained households have low income and are forbidden to borrow, so

by construction, their consumption c3 is set lower than the optimal level. Therefore,

the multiplier η3, representing the social value of relaxing this consumption (liquidity)

constraint, has a positive value. Some algebraic manipulation shows that the value of η3

coincides with f3. Intuitively, the central bank assigns the same Pareto weight to each
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household, so the social value from marginally improving welfare of those in asset position

a is equal to their mass f .

Using the fact that ζ = v, θ = 0, ηi = 0 for i = 1,2 and η3 = f3, taking Gâteaux derivative

with respect to π gives the optimality condition

µtQt = x′(πt) +
∫ ∞
φ
aQtu

′(c3t(a))f3t(a)da+
2∑
i=1

∫ ∞
φ
a
∂vit
∂a

fit(a)da (17)

where µt is the multiplier associated with the bond pricing equation, of which dynamics is

given by taking Gâteaux derivative with respect to Q,

−(πt + δ)
∫ ∞
φ
af3t(a)da+

2∑
i=1

∫ ∞
φ
−
δa+ y − c
Q2
t

∂vit
∂a

fit(a)da+µt(r̄ +πt + δ − ρ) +
dµt
dt

= 0 (18)

with µ0 = 0. Equations (17) and (18) provide the optimal inflation path, which together

with equations (4)-(13) forms the complete solution to the Ramsey problem.

3.3 Optimal inflation rule

Denote the real market value of a household’s net asset position (Net Nominal Posi-

tion) as NNPt(a) ≡Qta and the marginal utility of consumption MUCt(a,S) ≡ u′(c(a,S)).

Equation (17) is equivalent to

x′(πt) =covft(a,S) [−NNPt(a),MUCt(a,S)]︸                                     ︷︷                                     ︸
Domestic redistribution gain

+Eft(a,S) [−NNPt(a)] ∗Eft(a,S) [MUCt(a,S)]︸                                                  ︷︷                                                  ︸
Cross-border redistribution gain/loss

+µtQt (19)

where I use the first-order condition for consumption (6) and the identity cov(X,Y ) =

E(XY )−E(X)E(Y ).

This expression clearly represents the central bank’s trade-offs in choosing the opti-
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mal inflation path. Optimality requires that the marginal direct cost of dis-utility x′(π)

must be equal to the marginal gain, which is divided into three terms. The first term

covft(a,S) [−NNPt(a),MUCt(a,S)] reflects the effect of redistributing wealth from creditors

to debtors domestically. The covariance is generally positive: the poorer households, i.e.

those with more debt, have lower consumption levels and thus higher marginal utility

from consumption. On the other hand, wealthy households, i.e. those with positive asset

position, have relatively higher consumption and lower marginal utility from consump-

tion. Therefore, the central bank is biased towards redistributing wealth, and effectively

consumption from creditors to debtors using positive inflation. Furthermore, there are

constrained debtors in our economy, who have even lower consumption levels due to the

fact that they are forbidden to borrow for consumption. Inflation would also channel

resources to these households and provide them with badly needed consumption. The ex-

istence of liquidity shocks, in this aspect, would strengthen the central bank’s inflationary

bias.

The second term, Eft(a,S) [−NNPt(a)] ∗Eft(a,S) [MUCt(a,S)], reflects the effect of redis-

tributing wealth cross-border, in aggregate term. Recall that we defined the aggregate net

wealth,

āt ≡
3∑
i=1

∫ ∞
φ
atft(a,Si)da

If the country has net debt in aggregate, that is Eft(a,S) [−NNPt(a)] = −āt > 0, we say the

country is a net debtor. When this is the case, the term Eft(a,S) [−NNPt(a)]∗Eft(a,S) [MUCt(a,S)]

is positive: inflation redistributes wealth from foreigners to domestic households, who

have in average marginal utility Eft(a,S) [MUCt(a,S)]. This formulation comes from the

fact that foreigners’ welfare does not enter the central bank objective function. Conversely,

if the country is a net creditor, inflation transfers wealth abroad and harm domestic house-

holds in aggregate. This is more likely the case in our economy with liquidity shocks.

19



Households in state 1, who have high income, would try to save, not only for the income

shock, but also for the liquidity shock. Saving is ever more important because once the

household is liquidity-constrained, their consumption will be directly proportionate to

their wealth (debt) level. Households in state 2, even though they have low income, also

refrain from taking up too much debt, as they know this might subject them to forced

interest payment and drastically low consumption if they enter state 3 in the future.

Economy-wide aggregate net asset position, therefore, tend to be higher once we allow for

liquidity shocks, to such an extent that the country may become a net creditor. This effect

goes against the inflationary bias and might undo the effect on domestic redistribution

gain.

Finally, the third term µtQt reflects the cost of defecting from previous commitment

about time-t inflation. The central bank effectively make promises about time-t inflation

to foreign investors, who price the bond taking as given the promised inflation path.

The term equals zero at time 0, since the central bank has not been subject to previous

commitments. After that, the multiplier µt is shown to become increasingly negative

over time in our numerical exercise. Intuitively, increasing future inflation disturbs both

current and future bond prices, i.e. decreasing bond prices, which hurts asset-poor and

high-MUC households that need to sell new bonds. This effect ensures that inflation

is tempered in the long-run. We will see from the numerical solution in Section 4, as

well as in Nuno and Thomas (2020)’s theoretical analysis, that optimal long-run inflation

converges to 0. With respect to liquidity-constrained households, equation (18) shows that

they contribute to the dynamics of the multiplier dµt/dt with the term

(πt + δ)
∫ ∞
φ
af3t(a)da = (πt + δ)Ef3t(a) [NNPt(a)]

If households in state 3 constitute a net debtor in aggregate (Ef3t(a) [NNPt(a)] < 0), the

term is negative and thus further pushes for decreasing inflation, as inflation tightens the
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debt limit of these liquidity-constrained debtors in real term, as discussed in section 2.6.2.

4 Numerical analysis

4.1 Algorithm

Equations (17) and (18) provides the complete solution, i.e. an optimal inflation path,

to our Ramsey problem. However, there is no close-form solution and we must proceed to

find a numerical solution. The algorithm is as follows. We start by guessing an inflation

path, for instance, πt = 0 for all t. Given the inflation path, we can compute the path of

bond prices. Then we can solve for the households’ HJB equation, the KF equation and

their respective dynamics taking inflation and prices as given. We do this by applying

the scheme of finite difference method provided by Achdou et al. (2017) and Nuño and

Moll (2018). Using the functions and moments obtained, we calculate the whole path of

multiplier µt under equation (18) and the implied optimal inflation path under equation

(17). If this implied optimal inflation path is close enough to our initial guess, we have

found the solution. Otherwise, we update our guess and iterate until the two coincide.

Nuno and Thomas (2020) highlights that solving numerically the continuous-time model

is significantly more efficient than doing so in discrete time, because solving the HBJ and

KF equation makes use of Matlab’s (or any other common software package) fast routines

to handle sparse matrices.

4.2 Calibration

Before initiating the algorithm described above, we need to pin down some parameters.

My calibration bases largely on that of Nuno and Thomas (2020), for the sake of compa-

rability. The calibration is supposed to be mainly illustrative, as I want to highlight the

effects of inclusion of liquidity shocks. Table 1 summarizes the calibration.

Time frequency is 1 year. For preferences, I assume functional forms u(c) = log(c) and
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Parameter Value Description Source/Target
ψ 5.5 coefficient inflation dis-utility Nuno and Thomas (2020)
λ2 0.72 transition rate unemployed-to-employed job finding rate =0.72
λ1 0.8 transition rate employed-to-unemployed unemployment rate = 0.1
y1 1.03 employment income Hall and Milgrom (2008)
y2 1.03 unemployment income Hall and Milgrom (2008)
ρ 0.0302 subjective discount rate Nuno and Thomas (2020)
φ -3.6 debt limit Nuno and Thomas (2020)
r̄ 0.03 international real interest rate standard
δ 0.19 amortization rate bond duration = 4.5 years
p 0.98 probability unconstrained given unemployment illustrative

Table 1: Calibration

x(π) = ψπ2

2 . The algorithm and general results are robust for other CRRA utility functions,

i.e. those with coefficient of relative risk aversion different from 1. The quadratic form of

inflation dis-utility cost can be micro-founded by modeling firms explicitly and allowing

them to set prices subject to standard quadratic price adjustment costs à la Rotemberg

(1982).

The parameters for income process are set to feature European labor market fol-

lowing Blanchard and Galı́ (2010). Let income states y1 and y2 be ”employment” and

”unemployment” as in Huggett (1993). The Poisson rates λ1 and λ2 of jumping between

unemployment and employment are set such that the unemployment rate is λ2
λ1+λ2

= 0.1,

and the annual job finding rate is λ2 = 0.72. I normalize average income to 1 and set

y2/y1 = 0.71 per Hall and Milgrom (2008).

For values of subjective discount rate ρ and debt limit φ, I also set those equal to the

values in Nuno and Thomas (2020) to highlight the changes from including liquidity

shocks. Notice that Nuno and Thomas (2020) set ρ and φ jointly to target UK, Sweden,

and Baltic countries’ steady-state net international investment position (NIIP) over GDP

(ā/ ȳ) and gross credit to household over GDP (b̄/ȳ). For the model with liquidity shock,

we would need different values of ρ and debt limit φ to match these features. I will also

consider such calibration in the Appendix. In addition, I set the world real interest rate

r̄ = 0.03 as in standard practice. Finally, amortization rate δ = 0.19 gives average bond
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duration of 4.5 years, which is consistent with Auclert (2019). For illustrative purpose, I

choose the probability of a liquidity shock given an income shock (1− p) = 0.02. With the

parameters chosen by Nuno and Thomas (2020), arbitrarily large probability of liquidity

shock would make the wealth distribution degenerate.

4.3 Stationary distribution under exogenous zero inflation rate

Recall from section 3 that the optimal policy is a functional of the time-0 distribution

f0(a,S), which is an infinitive-dimensional object. For the calibration, I consider the steady

state distribution under a zero inflation policy as the initial distribution. Figure 1 shows

the this initial distribution together with other equilibrium objects un the zero inflation

policy.

Figure 1: Time-0 equilibrium objects (p = 0.02)

It can be seen from panel (b) that given the same net asset position and income,

households which are met with the liquidity shock, i.e. those in state 3, have consumption

levels much lower than unconstrained households. Panel (d) shows the initial distribution

of wealth. There is a significant mass of households in state 2 at the debt limit φ.
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4.4 Optimal inflation and transition dynamics

Given the initial distribution, we can proceed to solve for optimal transition dynamics.

Figure 2 shows the optimal path of inflation and the transition dynamics of relevant

variables.

Figure 2: Optimal inflation path and transitional dynamics

At time-0, we can see that given µ0 = 0 and our functional form for inflation dis-utility,

the optimal inflation level depends only on domestic and cross-border redistribution

motive,

π0 =
1
ψ
{covf0(a,S) [−NNP0(a),MUC0(a,S)]︸                                      ︷︷                                      ︸

Domestic redistribution gain

+Ef0(a,S) [−NNP0(a)] ∗Ef0(a,S) [MUC0(a,S)]︸                                                   ︷︷                                                   ︸
Cross-border redistribution gain/loss

}

With our calibration, the second term is negative, as the country is a net creditor with

aggregate net asset position at 9 percent of GDP. So positive inflation comes at the cost of

transferring some wealth from domestic households to foreigners, while the central bank

do not care about the latter. This can be seen from panel (e), where the country aggregate
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net asset position deteriorates over time. However, there still exists some inflationary bias:

optimal policy recommends positive inflation of around 0.6 percent at time-0. This means

the domestic redistribution gain still somewhat dominate the cross-border redistribution

loss. The recommended inflation level is however much lower than that in Nuno and

Thomas (2020) (above 4%), where the country is a net debtor with aggregate net asset

position at minus 25 percent of GPD.

Figure 3: Optimal inflation path with and without liquidity shock

Over time, the optimal inflation path is dictated by the dynamics of µt, according

to equations (17) and (18). The multiplier µt and consequently the term µtQt becomes

more and more negative over time, implying the central bank must commit to undo

initial inflation and bring bond price back to the steady-state level. Optimal long-run

inflation converges to 0, due the fact that the subjective discount rate is very close to the

international real interest rate. The last two panels show that optimal inflation favors

debtors initially, by redistributing wealth from creditors to the latter. This effect fades as

inflation converge to near-0 long-run optimal level.
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5 Conclusion

Building on the seminal work of Huggett (1993) and the recent methodological contri-

bution of Nuno and Thomas (2020), I model and analyze optimal monetary policy in a

continuous-time, incomplete-market, small-open economy allowing for liquidity shock. I

derive theoretical and normative results consistent with that in Nuno and Thomas (2020),

while the numerical solution recommends a significantly lower inflation level. This re-

sulted from the fact that using the same parameter values, our model gives rise to welfare

loss from cross-border redistribution, as opposed to cross-border gain in their work.

This paper aims to characterize an important feature of many economies, that is not

everyone can have access to consumption credit, especially during spells of unemployment.

To this end, my model involves liquidity shock that hit simultaneously with the income

shock, leaving some low-income households constrained even though they are far from the

exogenous debt limit. The simultaneity of income and liquidity shock, however, poses a

problem for calibration. As the unemployment rate is generally below 10 percent for most

real economies, liquidity-constrained households cannot account for a larger proportion

(up to 40-50 percent) of the population, as suggested by the empirical literature studying

consumption behavior (see for example, Campbell and Mankiw, 1989 ). This is a point for

future improvement. Another potential extension is a more detailed characterization of

the income distribution, either by more using a more complicated income process or by

endogenizing labor supply.
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Appendices

A Solution to the central bank’s problem

First, we need to define some math notation. Given the states t and a, define the

operater A

Av ≡


s1(t,a)∂v1(t,a)

∂a +λ1 [pv2(t,a) + (1− p)v3(t,a)− v1(t,a)]

s2(t,a)∂v2(t,a)
∂a +λ2 [v1(t,a)− v2(t,a)]

0 +λ2 [v1(t,a)− v2(t,a)]



where v ≡


v1(t,a)

v2(t,a)

v3(t,a)

. Then the HJBs can be expressed as

ρv =
∂v
∂t

+ max
c
{u(c)− x(π) +Av}

Let Φ ≡ {1,2,3}×R. Define

〈f ,g〉Φ ≡
3∑
i=1

∫
Φ

figida

〈f ,g〉Φ1,2
≡

2∑
i=1

∫
Φ1,2

figida

〈f ,g〉Φ3
≡

∫
Φ3

f3g3da

where f ,g are functions in the spaces of Lebesgue-integrable functions L2(Φ). Given some

operator A, its adjoint is operator A∗, such that 〈f ,Av〉Φ = 〈A∗f ,v〉Φ . The adjoint of our
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operator A is

A∗f =


∂(s1f1)
∂a

∂(s2f2)
∂a

0

− λf1 +λ2f2

− λf2 +λ1pf1

− λ2f3 +λ1(1− p)f1


The Lagrangian to our problem can be written as

L(π,Q,f ,v,c) =
∫ ∞

0
e−ρt〈u(ct)− x(πt)〉Φdt

+
∫ ∞

0
〈e−ρtζt,A∗ft −

∂ft
∂t
〉Φdt

+
∫ ∞

0
〈e−ρtθt,u(ct)− x(πt) +Avt +

∂vt
∂t
− ρvt〉Φdt

+
∫ ∞

0

[
〈e−ρtηt,u′(ct)−

1
Qt

∂v
∂a
〉Φ1,2

+ 〈e−ρtηt,u(ct)−u(δa+ y2 − (δ+πt)Qta)〉Φ3

]
dt+

+
∫ ∞

0
e−ρtµt

[
Qt(r̄ +πt + δ)− δ − Q̇t

]
dt

The Gateaux derivative with respect to f is

d
dα
L(π,Q,f +αh,v,c) =−

∫ ∞
0
e−ρt〈u(ct)− x(πt) +

∂ζ
∂t
,ht〉Φdt

+ 〈ζ0,h0〉Φ − lim
T→∞
〈e−ρT ζT ,hT 〉Φ

where I use defintion of the adjoint operator 〈ζt,A∗ft〉Φ = 〈A∗ζt, ft〉Φ and integrate by parts

∫ ∞
0
〈e−ρtζt,

∂ft
∂t
〉Φ = 〈ζ0, f0〉Φ − lim

T→∞
〈e−ρT ζT , fT 〉Φ +

∫ ∞
0
e−ρt〈∂ζ

∂t
− ρt, ft〉Φdt

before taking derivative. The derivative must be equal for any pertubation h in the defined

space, such that h0 = 0 since the initial distribution f0 is given. Use transversality condition

limT→∞ e
−ρT ζT = 0 (since ζ ∈ L2(Φ) ), we have the PDE for ζ

ρζ =
∂ζ
∂t

+u(c)− x(π) +Aζ
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which looks exactly like that of the HJBs. The boundary conditions are also the same, so

they must have the same solution, i.e. ζ = v.

The Gateaux derivative with respect to c is

d
dα
L(π,Q,f ,v,c+αh) =

∫ ∞
0
e−ρt〈

(
u′(ct)−

1
Qt

∂ζ
∂a

)
ht, ft〉Φ1,2

dt +
∫ ∞

0
e−ρt〈

(
u′(ct)−

1
Qt

∂v
∂a

)
ht,θt〉Φ1,2

dt

+
∫ ∞

0
e−ρt〈u′′(ct)ht,ηt〉Φ1,2

dt

+
∫ ∞

0
e−ρt〈u′(ct)ht,θt〉Φ3

dt +
∫ ∞

0
e−ρt〈u′(ct)ht, ft〉Φ3

dt −
∫ ∞

0
e−ρt〈u′(ct)ht,θt〉Φ3

dt

which should be equals to zero for any functional h. Consider the first line, the FOC

u′(ct) − 1
Qt

∂ζ
∂a = 0 holds for households in state 1 and state 2, and u′′(ct) > 0 (u strictly

concave). So η1 = η2 = 0.

Consider the second line and the case θ3 = 0, which we will check later. Then η3 = f3.

The Gateaux derivative with respect to c is

d
dα
L(π,Q,f ,v +αh,c) =

∫ ∞
0
e−ρt〈A∗θt −

∂θ
∂t
,ht〉Φ

− 〈θ0,h0〉Φ + lim
T→∞
〈e−ρTθT ,hT 〉Φ

which must be zero for any h. Since θ ∈ L2(Φ) we have transversality condition limT→∞ e
−ρTθT =

0. Also, h0 can be positive so θ0 = 0. We finally have

∂θ
∂t

=A∗θt

θ0 = 0

This is a KF equation with initial zero mass everywhere θ0 = 0. Therefore, the distribution

is 0 everywhere at all time θ = 0.

The Gateaux derivative with respect to π gives equation (17) and with respect to Q gives

equation (18).
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B Numerical algorithm

Here I describe the numerical algorithm to compute the optimal Ramsey plan. The

complete algorithm proceeds as follows

• Step 0: Compute the stationary steady-state distribution fN , bond price QN and

inflation πN . Set initial guess for optimal inflation path π(1) ≡ {π(1)
t }∞t=0 = πN , and

iteration count n := 1.

• Step 1: Given π(n), compute the path of bond prices Q(n) using equation (9).

• Step 2: Given bond prices Q(n) and inflation path π(n), solve the household’s tran-

sition problem (HJB) and find the path of distributions (KFE) using the method

described by Achdou et al. (2017) (also used in Nuno and Thomas (2020) and Nuño

and Moll (2018)). We obtain paths of consumption function c(n), value function v(n)

and net wealth distribution f(n).

• Step 3: Given c(n), v(n), and f(n), compute Lagrange multiplier µ(n) using equation

(18)

µ
(n)
t+1 = µ(n)

t+1[1 + dt(ρ − r̄ −π(n)
t − δ)] +

dt

Q
(n)
t

 3∑
i=1

J∑
j=1

(δaj + yi − c
(n)
t,i,j)u

′
(
c

(n)
t,i,j

)
f

(n)
t,i,jda


with µ(n)

0 = 0.

• Step 4: . Given c(n), v(n), f(n), and µ(n) iterate steps 1-4 until π(n) satisfies equation

(17)

∆
(n)
t ≡

3∑
i=1

J∑
j=1

ajQ
(n)
t u

′
(
c

(n)
t,i,j

)
f

(n)
t,i,jda+ψπ(n)

t −Q
(n)
t µ

(n)
t = 0

If ∆(n)
t is close enough to 0 for all t, we have found the Ramsey solution. Otherwise,

we update the inflation path guess π(n+ 1) = π(n)− ξ∆(n) with coefficient ξ = 0.05.
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C Alternative calibration

Here I jointly set households’ discount rate ρ and ad-hoc borrowing limit φ such that

the steady-state net international investment position (NIIP) over GDP, i.e. aggregate asset

position in our model ( ā/ȳ) is around -25 percent, and gross household debt to GDP (ā/ ȳ)

is around 90 percent. These numbers are features of Nuno and Thomas (2020) target

economies, namely Sweden, the UK and Baltic countries. Under probability of liquidity

shock 1 − p = 0.02, such calibration give ρ = 0.03019 and φ = −3.5, corresponding to

aggregate asset position at -25.4 and total debt at 86.8 percent of GDP. Figure 4 illustrates

the optimal transitional dynamics under such calibration.

Figure 4: Optimal inflation path and transitional dynamics under alternative calibration

Optimal initial inflation is close and a bit higher than that in Nuno and Thomas (2020),

which is expected given that here we calibrated such that the cross-border redistribution

motive is roughly the same as theirs.

33


	Introduction
	Model
	The economy
	Households
	Assets, income, and borrowing constraint
	Preferences

	Foreign investors
	Central bank
	Equilibrium
	Transmission channels of monetary policy
	Three main channels
	Effects on liquidity-constrained households


	Optimal monetary policy
	The central bank's problem
	Solution to the central bank's problem
	Optimal inflation rule

	Numerical analysis
	Algorithm
	Calibration
	Stationary distribution under exogenous zero inflation rate
	Optimal inflation and transition dynamics

	Conclusion
	Solution to the central bank's problem
	Numerical algorithm
	Alternative calibration

